promptforest 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,3 @@
1
+ __version__ = "0.1.0"
2
+
3
+ from .lib import EnsembleGuard
promptforest/cli.py ADDED
@@ -0,0 +1,54 @@
1
+ import argparse
2
+ import sys
3
+ import json
4
+ import os
5
+ from .config import load_config
6
+
7
+ def main():
8
+ parser = argparse.ArgumentParser(description="PromptForest: Ensemble Prompt Injection Detection")
9
+ subparsers = parser.add_subparsers(dest="command")
10
+
11
+ # Serve Command
12
+ serve_parser = subparsers.add_parser("serve", help="Start the inference server")
13
+ serve_parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
14
+ serve_parser.add_argument("--config", type=str, default=None, help="Path to configuration file")
15
+
16
+ # Check Command (One-off inference)
17
+ check_parser = subparsers.add_parser("check", help="Check a single prompt")
18
+ check_parser.add_argument("prompt", type=str, help="The prompt to analyze")
19
+ check_parser.add_argument("--config", type=str, default=None, help="Path to configuration file")
20
+
21
+ args = parser.parse_args()
22
+
23
+ # helper to load config
24
+ def get_user_config(path):
25
+ if path:
26
+ print(f"Loading configuration from {path}...")
27
+ return load_config(path)
28
+ return load_config(None)
29
+
30
+ if args.command == "serve":
31
+ from .server import run_server
32
+ cfg = get_user_config(args.config)
33
+ run_server(port=args.port, config=cfg)
34
+
35
+ elif args.command == "check":
36
+ from .lib import EnsembleGuard
37
+ cfg = get_user_config(args.config)
38
+ try:
39
+ print(f"Loading PromptForest...")
40
+ guard = EnsembleGuard(config=cfg)
41
+ print(f"Device: {guard.device_used}")
42
+ result = guard.check_prompt(args.prompt)
43
+ print(json.dumps(result, indent=2))
44
+ except Exception as e:
45
+ print(f"Error: {e}")
46
+ import traceback
47
+ traceback.print_exc()
48
+ sys.exit(1)
49
+
50
+ else:
51
+ parser.print_help()
52
+
53
+ if __name__ == "__main__":
54
+ main()
promptforest/config.py ADDED
@@ -0,0 +1,77 @@
1
+ import os
2
+ import yaml # type: ignore
3
+ from pathlib import Path
4
+
5
+ # Package-internal paths (for assets like the XGBoost classifier pickle)
6
+ PACKAGE_DIR = os.path.dirname(os.path.abspath(__file__))
7
+ XGB_MODEL_PATH = os.path.join(PACKAGE_DIR, 'xgboost', 'xgb_model.pkl')
8
+
9
+ # User data paths (for models)
10
+ USER_DATA_DIR = Path.home() / ".promptforest"
11
+ MODELS_DIR = USER_DATA_DIR / "models"
12
+
13
+ DEFAULT_CONFIG = {
14
+ "models": [
15
+ {"name": "llama_guard", "path": "llama_guard", "type": "hf", "enabled": True},
16
+ {"name": "protectai", "path": "protectai_deberta", "type": "hf", "enabled": True},
17
+ {"name": "deepset", "path": "deepset_deberta", "type": "hf", "enabled": True},
18
+ {"name": "katanemo", "path": "katanemo_arch", "type": "hf", "enabled": True},
19
+ {"name": "xgboost", "type": "xgboost", "enabled": True}
20
+ ],
21
+ "settings": {
22
+ "device": "auto", # Options: auto, cuda, mps, cpu
23
+ "fp16": True # Use FP16 precision on GPU/MPS (only applies if device is GPU/MPS)
24
+ },
25
+ "logging": {
26
+ "stats": True
27
+ }
28
+ }
29
+
30
+ def load_config(config_path=None):
31
+ """
32
+ Load configuration from a YAML file, merging with defaults.
33
+ """
34
+ # Start with a deep copy of the default config structure
35
+ config = {
36
+ "models": [m.copy() for m in DEFAULT_CONFIG["models"]],
37
+ "settings": DEFAULT_CONFIG["settings"].copy(),
38
+ "logging": DEFAULT_CONFIG["logging"].copy()
39
+ }
40
+
41
+ if config_path:
42
+ path = Path(config_path)
43
+ if path.exists():
44
+ try:
45
+ with open(path, 'r') as f:
46
+ user_config = yaml.safe_load(f)
47
+ if user_config:
48
+ # 1. Merge Settings
49
+ if "settings" in user_config:
50
+ config["settings"].update(user_config["settings"])
51
+
52
+ # 2. Merge Logging
53
+ if "logging" in user_config:
54
+ config["logging"].update(user_config["logging"])
55
+
56
+ # 3. Merge Models (Smart Merge)
57
+ if "models" in user_config:
58
+ user_models = user_config["models"]
59
+ if isinstance(user_models, list):
60
+ # Convert current models to dict for easy lookup by name
61
+ existing_model_map = {m["name"]: m for m in config["models"]}
62
+
63
+ for u_model in user_models:
64
+ name = u_model.get("name")
65
+ if name and name in existing_model_map:
66
+ # Update existing model configuration (e.g. enable/disable, change path)
67
+ existing_model_map[name].update(u_model)
68
+ else:
69
+ # Add new custom model
70
+ config["models"].append(u_model)
71
+
72
+ except Exception as e:
73
+ print(f"Warning: Failed to load config from {path}: {e}")
74
+ else:
75
+ print(f"Warning: Config file {path} not found. Using defaults.")
76
+
77
+ return config
@@ -0,0 +1,82 @@
1
+ """
2
+ Script to download and save ensemble models locally.
3
+ """
4
+
5
+ import os
6
+ import sys
7
+ import threading
8
+ from pathlib import Path
9
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
10
+ from sentence_transformers import SentenceTransformer
11
+ from .config import MODELS_DIR
12
+ from .llama_guard_86m_downloader import download_llama_guard
13
+
14
+ # Configuration
15
+ MODELS = {
16
+ "protectai_deberta": "protectai/deberta-v3-base-prompt-injection",
17
+ "deepset_deberta": "deepset/deberta-v3-base-injection",
18
+ "katanemo_arch": "katanemo/Arch-Guard"
19
+ }
20
+
21
+ EMBEDDING_MODEL_NAME = 'all-MiniLM-L6-v2'
22
+
23
+ def _ensure_dir(path):
24
+ if not os.path.exists(path):
25
+ os.makedirs(path)
26
+
27
+ def _download_hf_model(name, model_id):
28
+ """Download and save a Hugging Face model and tokenizer."""
29
+ save_path = MODELS_DIR / name
30
+
31
+ try:
32
+ if save_path.exists():
33
+ return
34
+
35
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
36
+ model = AutoModelForSequenceClassification.from_pretrained(model_id)
37
+
38
+ tokenizer.save_pretrained(save_path)
39
+ model.save_pretrained(save_path)
40
+
41
+ except Exception as e:
42
+ print("Failed to download a model!")
43
+
44
+ def _download_sentence_transformer():
45
+ """Download and save the SentenceTransformer model."""
46
+ # print(f"Downloading SentenceTransformer ({EMBEDDING_MODEL_NAME})...")
47
+ save_path = MODELS_DIR / 'sentence_transformer'
48
+
49
+ try:
50
+ if save_path.exists():
51
+ # print(f" - Model already exists at {save_path}. Skipping.")
52
+ return
53
+
54
+ model = SentenceTransformer(EMBEDDING_MODEL_NAME)
55
+ model.save(str(save_path))
56
+ #print(f" - Saved to {save_path}")
57
+
58
+ except Exception as e:
59
+ print(f"SentenceTransformer download failed: {e}")
60
+
61
+ def download_all():
62
+ print(f"Downloading models to {MODELS_DIR}...")
63
+ _ensure_dir(MODELS_DIR)
64
+
65
+ # Download Llama Guard in parallel (slowest download)
66
+ llama_guard_thread = threading.Thread(target=download_llama_guard, daemon=False)
67
+ llama_guard_thread.start()
68
+
69
+ # Download HF Classification Models
70
+ for name, model_id in MODELS.items():
71
+ _download_hf_model(name, model_id)
72
+
73
+ # Download Embedding Model for XGBoost
74
+ _download_sentence_transformer()
75
+
76
+ # Wait for Llama Guard to complete
77
+ llama_guard_thread.join()
78
+
79
+ print("All models downloaded.")
80
+
81
+ if __name__ == "__main__":
82
+ download_all()
promptforest/lib.py ADDED
@@ -0,0 +1,239 @@
1
+ """
2
+ Ensemble Inference Library for PromptForest.
3
+ """
4
+
5
+ import os
6
+ import sys
7
+ import time
8
+ import joblib
9
+ import torch
10
+ import numpy as np
11
+ import logging
12
+ from concurrent.futures import ThreadPoolExecutor
13
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, logging as transformers_logging
14
+ from sentence_transformers import SentenceTransformer
15
+ from .config import MODELS_DIR, XGB_MODEL_PATH, load_config
16
+
17
+ # Suppress Warnings
18
+ transformers_logging.set_verbosity_error()
19
+ os.environ["TOKENIZERS_PARALLELISM"] = "false" # Prevent deadlocks/warnings
20
+
21
+ MALICIOUS_KEYWORDS = ['unsafe', 'malicious', 'injection', 'attack', 'jailbreak']
22
+
23
+ def get_device(device_setting):
24
+ if device_setting == 'auto':
25
+ return 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
26
+ return device_setting
27
+
28
+ class ModelInference:
29
+ def predict(self, prompt):
30
+ raise NotImplementedError
31
+
32
+ class HFModel(ModelInference):
33
+ def __init__(self, name, dirname, settings):
34
+ self.name = name
35
+ self.path = MODELS_DIR / dirname
36
+ self.settings = settings
37
+ self.model = None
38
+ self.tokenizer = None
39
+ self.malicious_idx = 1
40
+
41
+ self.device_name = get_device(settings.get('device', 'auto'))
42
+ self.fp16 = settings.get('fp16', True)
43
+
44
+ self._load()
45
+
46
+ def _load(self):
47
+ if not self.path.exists():
48
+ print(f"[WARN] Model path not found: {self.path}")
49
+ return
50
+
51
+ try:
52
+ self.tokenizer = AutoTokenizer.from_pretrained(self.path)
53
+ self.model = AutoModelForSequenceClassification.from_pretrained(self.path)
54
+
55
+ self.model.to(self.device_name)
56
+ if self.device_name in ['cuda', 'mps'] and self.fp16:
57
+ print("Using FP16 precision for model " + self.model.config._name_or_path)
58
+ self.model.half()
59
+ self.device = self.device_name
60
+
61
+ self.model.eval()
62
+ self._determine_label_map()
63
+ except Exception as e:
64
+ print(f"[ERR] Failed to load {self.name}: {e}")
65
+ self.model = None
66
+
67
+ def _determine_label_map(self):
68
+ id2label = self.model.config.id2label
69
+ found = False
70
+ for idx, label in id2label.items():
71
+ if any(kw in label.lower() for kw in MALICIOUS_KEYWORDS):
72
+ self.malicious_idx = idx
73
+ found = True
74
+ break
75
+ if not found:
76
+ self.malicious_idx = 1
77
+
78
+ def predict(self, prompt):
79
+ if not self.model:
80
+ return 0.0
81
+
82
+ try:
83
+ inputs = self.tokenizer(
84
+ prompt, return_tensors="pt", truncation=True, max_length=512
85
+ ).to(self.device)
86
+
87
+ with torch.no_grad():
88
+ outputs = self.model(**inputs)
89
+
90
+ probs = torch.softmax(outputs.logits.float(), dim=-1).cpu().numpy()[0]
91
+
92
+ if self.malicious_idx < len(probs):
93
+ return float(probs[self.malicious_idx])
94
+ else:
95
+ return float(probs[-1])
96
+
97
+ except Exception:
98
+ return 0.0
99
+
100
+
101
+ class XGBoostModel(ModelInference):
102
+ def __init__(self, settings):
103
+ self.name = "xgboost_custom"
104
+ self.settings = settings
105
+ self.model = None
106
+ self.embedder = None
107
+
108
+ self.device_name = get_device(settings.get('device', 'auto'))
109
+ self.fp16 = settings.get('fp16', True)
110
+
111
+ self._load()
112
+
113
+ def _load(self):
114
+ try:
115
+ if os.path.exists(XGB_MODEL_PATH):
116
+ self.model = joblib.load(XGB_MODEL_PATH)
117
+
118
+ ST_PATH = MODELS_DIR / 'sentence_transformer'
119
+ if ST_PATH.exists():
120
+ self.embedder = SentenceTransformer(str(ST_PATH))
121
+ else:
122
+ print("Cannot find local SentenceTransformer model. Downloading...")
123
+ # Fallback to download default if local cache missing
124
+ self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
125
+
126
+ if self.device_name in ['cuda', 'mps']:
127
+ self.embedder.to(self.device_name)
128
+ if self.fp16:
129
+ try:
130
+ self.embedder[0].auto_model.half()
131
+ except:
132
+ pass
133
+ except Exception as e:
134
+ print(f"[ERR] Failed to load XGBoost: {e}")
135
+ self.model = None
136
+
137
+ def predict(self, prompt):
138
+ if not self.model or not self.embedder:
139
+ return 0.0
140
+ try:
141
+ emb = self.embedder.encode([prompt])
142
+ prob = self.model.predict_proba(emb)[0][1]
143
+ return float(prob)
144
+ except Exception:
145
+ return 0.0
146
+
147
+
148
+ class EnsembleGuard:
149
+ def __init__(self, config=None):
150
+ """
151
+ Initialize the EnsembleGuard.
152
+ :param config: Dictionary containing configuration. If None, loads default/user config.
153
+ """
154
+ # Check if models need to be downloaded
155
+ self._ensure_models_available()
156
+
157
+ if config is None:
158
+ self.config = load_config()
159
+ else:
160
+ self.config = config
161
+
162
+ self.models = []
163
+ self._init_models()
164
+ self.device_used = get_device(self.config['settings'].get('device', 'auto'))
165
+
166
+ def _ensure_models_available(self):
167
+ """Check if models are available, download if needed."""
168
+ from .config import MODELS_DIR
169
+
170
+ # Check if models directory exists and has content
171
+ if MODELS_DIR.exists() and any(MODELS_DIR.iterdir()):
172
+ return
173
+
174
+ # Models not found, download them
175
+ print("Models not found. Downloading...")
176
+ from .download import download_all
177
+ download_all()
178
+
179
+ def _init_models(self):
180
+ settings = self.config.get('settings', {})
181
+ model_configs = self.config.get('models', [])
182
+
183
+ for model_cfg in model_configs:
184
+ if not model_cfg.get('enabled', True):
185
+ continue
186
+
187
+ model_type = model_cfg.get('type')
188
+
189
+ if model_type == 'hf':
190
+ self.models.append(HFModel(model_cfg['name'], model_cfg['path'], settings))
191
+ elif model_type == 'xgboost':
192
+ self.models.append(XGBoostModel(settings))
193
+ else:
194
+ print(f"Unknown model type: {model_type}")
195
+
196
+ def check_prompt(self, prompt):
197
+ start_time = time.perf_counter()
198
+ results = {}
199
+
200
+ with ThreadPoolExecutor() as executor:
201
+ future_to_model = {executor.submit(model.predict, prompt): model for model in self.models}
202
+ for future in future_to_model:
203
+ model = future_to_model[future]
204
+ try:
205
+ prob = future.result()
206
+ results[model.name] = prob
207
+ except Exception:
208
+ results[model.name] = 0.0
209
+
210
+ end_time = time.perf_counter()
211
+ duration_ms = (end_time - start_time) * 1000
212
+
213
+ probs = list(results.values())
214
+ if not probs:
215
+ return {"error": "No models loaded"}
216
+
217
+ avg_prob = np.mean(probs)
218
+ max_prob = np.max(probs)
219
+
220
+ # Uncertainty
221
+ std_dev = np.std(probs)
222
+ uncertainty_score = min(std_dev * 2, 1.0)
223
+
224
+ is_malicious = avg_prob > 0.5
225
+
226
+ response = {
227
+ "is_malicious": bool(is_malicious),
228
+ "confidence": float(avg_prob if is_malicious else 1 - avg_prob),
229
+ "uncertainty": float(uncertainty_score),
230
+ "malicious_score": float(avg_prob),
231
+ "max_risk_score": float(max_prob)
232
+ }
233
+
234
+ # Add stats if requested
235
+ if self.config.get('logging', {}).get('stats', True):
236
+ response["details"] = results
237
+ response["latency_ms"] = duration_ms
238
+
239
+ return response
@@ -0,0 +1,67 @@
1
+ """
2
+ Script to download Llama Guard 2 86M from a custom GitHub repository.
3
+ Handles split safetensor files and combines them locally.
4
+ """
5
+
6
+ import os
7
+ import shutil
8
+ import subprocess
9
+ import tempfile
10
+ from pathlib import Path
11
+ from .config import MODELS_DIR
12
+
13
+ LLAMA_GUARD_REPO = "https://github.com/appleroll-research/promptforest-model-ensemble.git"
14
+
15
+ def _download_llama_guard():
16
+ """Download Llama Guard from custom repository and combine split files."""
17
+ save_path = MODELS_DIR / "llama_guard"
18
+
19
+ if save_path.exists():
20
+ return
21
+
22
+ try:
23
+ # Use temporary directory for cloning
24
+ with tempfile.TemporaryDirectory() as temp_dir:
25
+ temp_path = Path(temp_dir)
26
+
27
+ # Clone repository silently
28
+ subprocess.run(
29
+ ["git", "clone", "--depth", "1", LLAMA_GUARD_REPO, str(temp_path)],
30
+ stdout=subprocess.DEVNULL,
31
+ stderr=subprocess.DEVNULL,
32
+ check=True
33
+ )
34
+
35
+ # Get the llama_guard folder from the cloned repo
36
+ source_dir = temp_path / "llama_guard"
37
+ if not source_dir.exists():
38
+ raise FileNotFoundError(f"llama_guard folder not found in repository")
39
+
40
+ # Copy to models directory
41
+ save_path.parent.mkdir(parents=True, exist_ok=True)
42
+ shutil.copytree(source_dir, save_path)
43
+
44
+ # Combine split safetensor files
45
+ model_file = save_path / "model.safetensors"
46
+ if not model_file.exists():
47
+ # Find and combine c_* files
48
+ split_files = sorted(save_path.glob("c_*"))
49
+ if split_files:
50
+ with open(model_file, 'wb') as outfile:
51
+ for split_file in split_files:
52
+ with open(split_file, 'rb') as infile:
53
+ outfile.write(infile.read())
54
+
55
+ # Delete split files
56
+ for split_file in split_files:
57
+ split_file.unlink()
58
+
59
+ except Exception as e:
60
+ # Clean up on failure
61
+ if save_path.exists():
62
+ shutil.rmtree(save_path)
63
+ raise Exception(f"Failed to download Llama Guard: {e}")
64
+
65
+ def download_llama_guard():
66
+ """Public interface for downloading Llama Guard."""
67
+ _download_llama_guard()
promptforest/server.py ADDED
@@ -0,0 +1,86 @@
1
+ """
2
+ Simple HTTP Server for PromptForest.
3
+ """
4
+
5
+ import http.server
6
+ import socketserver
7
+ import json
8
+ import sys
9
+ import time
10
+ from .lib import EnsembleGuard
11
+
12
+ PORT = 8000
13
+ ensemble = None
14
+
15
+ class GuardRequestHandler(http.server.BaseHTTPRequestHandler):
16
+ def do_POST(self):
17
+ """Handle POST requests for inference."""
18
+ if self.path == '/analyze':
19
+ try:
20
+ content_length = int(self.headers.get('Content-Length', 0))
21
+ if content_length == 0:
22
+ self._send_json(400, {'error': 'Empty body'})
23
+ return
24
+
25
+ post_data = self.rfile.read(content_length)
26
+ data = json.loads(post_data)
27
+ prompt = data.get('prompt')
28
+
29
+ if not prompt:
30
+ self._send_json(400, {'error': 'Field "prompt" is required'})
31
+ return
32
+
33
+ print(f"{time.strftime('%Y-%m-%d %H:%M:%S')} Received prompt \"{prompt}\"")
34
+
35
+ result = ensemble.check_prompt(prompt)
36
+ self._send_json(200, result)
37
+
38
+ except json.JSONDecodeError:
39
+ self._send_json(400, {'error': 'Invalid JSON'})
40
+ except Exception as e:
41
+ import traceback
42
+ traceback.print_exc()
43
+ print(f"Server Error: {e}")
44
+ self._send_json(500, {'error': str(e)})
45
+ else:
46
+ self._send_json(404, {'error': 'Endpoint not found.'})
47
+
48
+ def do_GET(self):
49
+ if self.path == '/health':
50
+ device = ensemble.device_used if ensemble else "unknown"
51
+ self._send_json(200, {'status': 'ok', 'device': device})
52
+ else:
53
+ self._send_json(404, {'error': 'Not Found'})
54
+
55
+ def _send_json(self, code, data):
56
+ self.send_response(code)
57
+ self.send_header('Content-type', 'application/json')
58
+ self.end_headers()
59
+ self.wfile.write(json.dumps(data, indent=2).encode('utf-8'))
60
+
61
+ class ThreadedHTTPServer(socketserver.ThreadingMixIn, socketserver.TCPServer):
62
+ daemon_threads = True
63
+
64
+ def run_server(port=8000, config=None):
65
+ global ensemble
66
+ print(f"Initializing PromptForest...")
67
+ try:
68
+ ensemble = EnsembleGuard(config=config)
69
+ print(f"Device: {ensemble.device_used}")
70
+ print("Warming up...")
71
+ ensemble.check_prompt("warmup")
72
+ print("Ready.")
73
+ except Exception as e:
74
+ print(f"Failed to initialize model: {e}")
75
+ sys.exit(1)
76
+
77
+ print(f"\nListening on http://localhost:{port}")
78
+ socketserver.TCPServer.allow_reuse_address = True
79
+
80
+ with ThreadedHTTPServer(("", port), GuardRequestHandler) as httpd:
81
+ try:
82
+ httpd.serve_forever()
83
+ except KeyboardInterrupt:
84
+ print("\nShutting down. Goodbye...")
85
+ httpd.shutdown()
86
+ httpd.server_close()
Binary file
@@ -0,0 +1,21 @@
1
+ Metadata-Version: 2.4
2
+ Name: promptforest
3
+ Version: 0.1.0
4
+ Summary: Ensemble Prompt Injection Detection
5
+ Requires-Python: >=3.8
6
+ License-File: LICENSE.txt
7
+ License-File: NOTICE.md
8
+ Requires-Dist: numpy
9
+ Requires-Dist: pandas
10
+ Requires-Dist: torch
11
+ Requires-Dist: transformers
12
+ Requires-Dist: sentence-transformers
13
+ Requires-Dist: xgboost
14
+ Requires-Dist: scikit-learn
15
+ Requires-Dist: pyyaml
16
+ Requires-Dist: joblib
17
+ Requires-Dist: protobuf
18
+ Dynamic: license-file
19
+ Dynamic: requires-dist
20
+ Dynamic: requires-python
21
+ Dynamic: summary
@@ -0,0 +1,15 @@
1
+ promptforest/__init__.py,sha256=cE1cQyRL4vUzseCwLYbI5wrZuZ-NRMVXIjAgwTLwIEs,54
2
+ promptforest/cli.py,sha256=LKsnbEQNQ9pP_Ww24Ql2Tb_uomO-StqHnk-IHONSKTM,1856
3
+ promptforest/config.py,sha256=bOFHlK0kI7c3fzccZrcjccNUfZJPzvLtKEAZ_loLvzE,3366
4
+ promptforest/download.py,sha256=3Ss1BX6kQatfhif1cbErUekPlSA2RCqtiatUzGi72zo,2454
5
+ promptforest/lib.py,sha256=LT8A1_veV9tB2DyrZ0JEOBW4EWEs9El5xOxF0zNHOAc,8042
6
+ promptforest/llama_guard_86m_downloader.py,sha256=ibFeeuDgMBVe-8aD0zl23xJKOPdKyw-4Bsf0iZJih4s,2412
7
+ promptforest/server.py,sha256=uF4Yj7yR_2vEx_7nQabGHGGw-6GWnT0iBZx3UPQK634,2905
8
+ promptforest/xgboost/xgb_model.pkl,sha256=97Y_Dfu8PwubkplRXJdNEuAj9te1v-nEJlXfPpEZWdM,748772
9
+ promptforest-0.1.0.dist-info/licenses/LICENSE.txt,sha256=GgVl4CdplCpCEssTcrmIRbz52zQc0fdcSETZp34uBF4,11349
10
+ promptforest-0.1.0.dist-info/licenses/NOTICE.md,sha256=XGjuV5VAWBinW6Jzu7-9h0Ph3xwCNzcJdbMH_EgU_g4,356
11
+ promptforest-0.1.0.dist-info/METADATA,sha256=OYvSPhnatbf97rur1W3zaY4FE0MFRE67j8QmC8hpz_M,509
12
+ promptforest-0.1.0.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
13
+ promptforest-0.1.0.dist-info/entry_points.txt,sha256=sVcjABvpA7P2fXca2KMZSYf0PNfDgLt1NHlYFMPO_eE,55
14
+ promptforest-0.1.0.dist-info/top_level.txt,sha256=NxasbbadJaf8w9zaRXo5KOdBqNA1oDe-2X7e6zdz3k0,13
15
+ promptforest-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ promptforest = promptforest.cli:main
@@ -0,0 +1,202 @@
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright 2026 Appleroll Research
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
@@ -0,0 +1,10 @@
1
+ PromptForest
2
+
3
+ This product includes software developed by:
4
+ - Meta Platforms, Inc. (“LLaMA 4”): LLaMA 4 Community License, Copyright © 2025 Meta Platforms, Inc.
5
+ https://llama.com/llama4
6
+
7
+ Additional notices:
8
+ - PromptForest core logic licensed under Apache-2.0
9
+ - See LICENSE for full Apache terms
10
+ - See COMMERCIAL_LICENSE.md for commercial usage terms
@@ -0,0 +1 @@
1
+ promptforest