promptbuilder 0.4.18__py3-none-any.whl → 0.4.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- promptbuilder/embeddings.py +206 -0
- {promptbuilder-0.4.18.dist-info → promptbuilder-0.4.19.dist-info}/METADATA +1 -1
- {promptbuilder-0.4.18.dist-info → promptbuilder-0.4.19.dist-info}/RECORD +6 -5
- {promptbuilder-0.4.18.dist-info → promptbuilder-0.4.19.dist-info}/WHEEL +0 -0
- {promptbuilder-0.4.18.dist-info → promptbuilder-0.4.19.dist-info}/licenses/LICENSE +0 -0
- {promptbuilder-0.4.18.dist-info → promptbuilder-0.4.19.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,206 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import asyncio
|
|
3
|
+
from copy import deepcopy
|
|
4
|
+
from typing import Literal, get_args
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
from google import genai
|
|
8
|
+
from google.genai.types import EmbedContentConfig, EmbedContentResponse
|
|
9
|
+
from openai import AsyncOpenAI
|
|
10
|
+
|
|
11
|
+
import promptbuilder.llm_client.utils as utils
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
type EMBS_TASK_TYPE = Literal["RETRIEVAL_QUERY", "RETRIEVAL_DOCUMENT", "SEMANTIC_SIMILARITY"]
|
|
15
|
+
type EMBEDDING = list[float]
|
|
16
|
+
EMBS_TASKS = get_args(EMBS_TASK_TYPE)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def normalize_embeddings(embs: list[list[float]] | list[float]) -> list[list[float]] | list[float]:
|
|
20
|
+
embs_np = np.array(embs)
|
|
21
|
+
emb_norms = np.sqrt(np.sum(embs_np * embs_np, axis=-1, keepdims=True))
|
|
22
|
+
embs_np = embs_np / emb_norms
|
|
23
|
+
return embs_np.tolist()
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class EmbeddingsApi(utils.InheritDecoratorsMixin):
|
|
27
|
+
available_model_dims: dict[str, list[int]] = {}
|
|
28
|
+
default_model_dim: dict[str, int] = {}
|
|
29
|
+
model_name_prefix: str = ""
|
|
30
|
+
|
|
31
|
+
def __init__(self, model_name: str, embs_dim: int | None = None, *args, retry_times: int = 0, retry_delay: float = 0, **kwargs):
|
|
32
|
+
if model_name not in self.available_model_dims:
|
|
33
|
+
raise ValueError(f"Model {model_name} is not supported.")
|
|
34
|
+
if embs_dim is None:
|
|
35
|
+
embs_dim = self.default_model_dim[model_name]
|
|
36
|
+
else:
|
|
37
|
+
if embs_dim not in self.available_model_dims[model_name]:
|
|
38
|
+
raise ValueError(f"Model {model_name} does not support embedding dimension {embs_dim}.")
|
|
39
|
+
|
|
40
|
+
self._model_name = model_name
|
|
41
|
+
self._embs_dim = embs_dim
|
|
42
|
+
self._retry_times = retry_times
|
|
43
|
+
self._retry_delay = retry_delay
|
|
44
|
+
|
|
45
|
+
@property
|
|
46
|
+
def embeddings_dim(self) -> int:
|
|
47
|
+
return self._embs_dim
|
|
48
|
+
|
|
49
|
+
@property
|
|
50
|
+
def model_name(self) -> str:
|
|
51
|
+
return self.model_name_prefix + self._model_name
|
|
52
|
+
|
|
53
|
+
@utils.retry_cls_async
|
|
54
|
+
async def get_embeddings(
|
|
55
|
+
self,
|
|
56
|
+
texts: list[str] | str,
|
|
57
|
+
task_types: list[EMBS_TASK_TYPE] | EMBS_TASK_TYPE = ["SEMANTIC_SIMILARITY"],
|
|
58
|
+
normalize: bool = True,
|
|
59
|
+
) -> dict[EMBS_TASK_TYPE, list[EMBEDDING]] | dict[EMBS_TASK_TYPE, EMBEDDING] | list[EMBEDDING] | EMBEDDING:
|
|
60
|
+
pass
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class GoogleEmbsApi(EmbeddingsApi):
|
|
64
|
+
available_model_dims: dict[str, list[int]] = {"text-embedding-004": [768]}
|
|
65
|
+
default_model_dim: dict[str, int] = {"text-embedding-004": 768}
|
|
66
|
+
model_name_prefix: str = "google:"
|
|
67
|
+
|
|
68
|
+
def __init__(
|
|
69
|
+
self,
|
|
70
|
+
model_name: str = "text-embedding-004",
|
|
71
|
+
embs_dim: int | None = None,
|
|
72
|
+
*,
|
|
73
|
+
retry_times: int = 0,
|
|
74
|
+
retry_delay: float = 0,
|
|
75
|
+
**kwargs,
|
|
76
|
+
):
|
|
77
|
+
super().__init__(model_name, embs_dim, retry_times=retry_times, retry_delay=retry_delay)
|
|
78
|
+
self._client = genai.Client(api_key=os.getenv("GOOGLEAI_API_KEY"))
|
|
79
|
+
self._rpm_limit = 145
|
|
80
|
+
|
|
81
|
+
async def get_embeddings(
|
|
82
|
+
self,
|
|
83
|
+
texts: list[str] | str,
|
|
84
|
+
task_types: list[EMBS_TASK_TYPE] | EMBS_TASK_TYPE = ["SEMANTIC_SIMILARITY"],
|
|
85
|
+
normalize: bool = True,
|
|
86
|
+
**kwargs,
|
|
87
|
+
) -> dict[EMBS_TASK_TYPE, list[EMBEDDING]] | dict[EMBS_TASK_TYPE, EMBEDDING] | list[EMBEDDING] | EMBEDDING:
|
|
88
|
+
batch_size = 10
|
|
89
|
+
|
|
90
|
+
if isinstance(task_types, list):
|
|
91
|
+
task_types = list(set(task_types))
|
|
92
|
+
embeddings = await asyncio.gather(*[self.get_embeddings(texts, task_type, normalize) for task_type in task_types])
|
|
93
|
+
response = {task_type: embs for task_type, embs in zip(task_types, embeddings)}
|
|
94
|
+
return response
|
|
95
|
+
|
|
96
|
+
task_type = task_types
|
|
97
|
+
if isinstance(texts, str):
|
|
98
|
+
response = await self._api_request(
|
|
99
|
+
model=self._model_name,
|
|
100
|
+
contents=texts,
|
|
101
|
+
config=EmbedContentConfig(task_type=task_type),
|
|
102
|
+
)
|
|
103
|
+
if normalize:
|
|
104
|
+
return normalize_embeddings(response.embeddings[0].values)
|
|
105
|
+
else:
|
|
106
|
+
return response.embeddings[0].values
|
|
107
|
+
elif isinstance(texts, list):
|
|
108
|
+
batches_num = len(texts) // batch_size + 1
|
|
109
|
+
result_embeddings: list[list[float]] = []
|
|
110
|
+
|
|
111
|
+
for i in range(batches_num):
|
|
112
|
+
first_idx = i * batch_size
|
|
113
|
+
last_idx = (i + 1) * batch_size
|
|
114
|
+
batch = texts[first_idx: last_idx]
|
|
115
|
+
if len(batch) > 0:
|
|
116
|
+
response = await self._api_request(
|
|
117
|
+
model=self._model_name,
|
|
118
|
+
contents=batch,
|
|
119
|
+
config=EmbedContentConfig(task_type=task_type),
|
|
120
|
+
)
|
|
121
|
+
result_embeddings += [embeddings.values for embeddings in response.embeddings]
|
|
122
|
+
|
|
123
|
+
if normalize:
|
|
124
|
+
return normalize_embeddings(result_embeddings)
|
|
125
|
+
else:
|
|
126
|
+
return result_embeddings
|
|
127
|
+
else:
|
|
128
|
+
raise ValueError("'texts' must be a string or a list of strings.")
|
|
129
|
+
|
|
130
|
+
@utils.rpm_limit_cls_async
|
|
131
|
+
async def _api_request(self, model: str, contents: str | list[str], config: EmbedContentConfig) -> EmbedContentResponse:
|
|
132
|
+
return await self._client.aio.models.embed_content(
|
|
133
|
+
model=model,
|
|
134
|
+
contents=contents,
|
|
135
|
+
config=config,
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
class OpenAIEmbsApi(EmbeddingsApi):
|
|
140
|
+
available_model_dims: dict[str, list[int]] = {
|
|
141
|
+
"text-embedding-3-small": [512, 1536],
|
|
142
|
+
"text-embedding-3-large": [1024, 3072],
|
|
143
|
+
}
|
|
144
|
+
default_model_dim: dict[str, int] = {
|
|
145
|
+
"text-embedding-3-small": 1536,
|
|
146
|
+
"text-embedding-3-large": 3072,
|
|
147
|
+
}
|
|
148
|
+
model_name_prefix: str = "openai:"
|
|
149
|
+
|
|
150
|
+
def __init__(
|
|
151
|
+
self,
|
|
152
|
+
model_name: str = "text-embedding-3-small",
|
|
153
|
+
embs_dim: int | None = None,
|
|
154
|
+
*,
|
|
155
|
+
retry_times: int = 0,
|
|
156
|
+
retry_delay: float = 0,
|
|
157
|
+
**kwargs,
|
|
158
|
+
):
|
|
159
|
+
super().__init__(model_name, embs_dim, retry_times=retry_times, retry_delay=retry_delay)
|
|
160
|
+
self._client = AsyncOpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
|
161
|
+
|
|
162
|
+
async def get_embeddings(
|
|
163
|
+
self,
|
|
164
|
+
texts: list[str] | str,
|
|
165
|
+
task_types: list[EMBS_TASK_TYPE] | EMBS_TASK_TYPE = ["SEMANTIC_SIMILARITY"],
|
|
166
|
+
normalize: bool = True,
|
|
167
|
+
**kwargs,
|
|
168
|
+
) -> dict[EMBS_TASK_TYPE, list[EMBEDDING]] | dict[EMBS_TASK_TYPE, EMBEDDING] | list[EMBEDDING] | EMBEDDING:
|
|
169
|
+
if isinstance(task_types, list):
|
|
170
|
+
task_types = list(set(task_types))
|
|
171
|
+
embeddings = await self.get_embeddings(texts, "SEMANTIC_SIMILARITY", normalize)
|
|
172
|
+
response = {task_type: deepcopy(embeddings) for task_type in task_types}
|
|
173
|
+
return response
|
|
174
|
+
|
|
175
|
+
if isinstance(texts, str):
|
|
176
|
+
response = await self._client.embeddings.create(
|
|
177
|
+
input=texts,
|
|
178
|
+
model=self._model_name,
|
|
179
|
+
dimensions=self._embs_dim,
|
|
180
|
+
)
|
|
181
|
+
if normalize:
|
|
182
|
+
return normalize_embeddings(response.data[0].embedding)
|
|
183
|
+
else:
|
|
184
|
+
return response.data[0].embedding
|
|
185
|
+
elif isinstance(texts, list):
|
|
186
|
+
batches_num = len(texts) // 100 + 1
|
|
187
|
+
result_embeddings = []
|
|
188
|
+
|
|
189
|
+
for i in range(batches_num):
|
|
190
|
+
first_idx = i * 100
|
|
191
|
+
last_idx = (i + 1) * 100
|
|
192
|
+
batch = texts[first_idx: last_idx]
|
|
193
|
+
if len(batch) > 0:
|
|
194
|
+
response = await self._client.embeddings.create(
|
|
195
|
+
input=texts,
|
|
196
|
+
model=self._model_name,
|
|
197
|
+
dimensions=self._embs_dim,
|
|
198
|
+
)
|
|
199
|
+
result_embeddings += [emb.embedding for emb in response.data]
|
|
200
|
+
|
|
201
|
+
if normalize:
|
|
202
|
+
return normalize_embeddings(result_embeddings)
|
|
203
|
+
else:
|
|
204
|
+
return result_embeddings
|
|
205
|
+
else:
|
|
206
|
+
raise ValueError("'texts' must be a string or a list of strings.")
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
promptbuilder/__init__.py,sha256=o_NdXl7NppM399-fy5VGfYkSN8iYDAaFAwJNhdkW3bI,56
|
|
2
|
+
promptbuilder/embeddings.py,sha256=bu-soCNYiHxshc1jejGmI5iJTIdotqEhmvpImSjlFTY,8087
|
|
2
3
|
promptbuilder/prompt_builder.py,sha256=kK6WHr2umYmsanYb2fQVxqEajs_dzGPXRulTo40g36E,12428
|
|
3
4
|
promptbuilder/agent/__init__.py,sha256=qG4Jq4wbmCH5NKLOX6ZMtZ7lFURhJXf464BntR-u5rU,56
|
|
4
5
|
promptbuilder/agent/agent.py,sha256=dVu251C1r9w5LS2P_shsIRH9tFz1Jq93MDv3Uu41_4E,9274
|
|
@@ -17,8 +18,8 @@ promptbuilder/llm_client/main.py,sha256=k4JTyKq2atNyFtI1bjjqXEnGSEugj4xk0AJEvHJi
|
|
|
17
18
|
promptbuilder/llm_client/openai_client.py,sha256=5yvjp-Zzp4JsBC9_ffSb1A9-iMG4Lu2B2et2CdtK9R0,22864
|
|
18
19
|
promptbuilder/llm_client/types.py,sha256=2E-aPRb5uAkLFJocmjF1Lh2aQRq9r8a5JRIw-duHfjA,7460
|
|
19
20
|
promptbuilder/llm_client/utils.py,sha256=79lvSppjrrItHB5MIozbp_5Oq7TsOK4Qzt9Ae3XMLFw,7624
|
|
20
|
-
promptbuilder-0.4.
|
|
21
|
-
promptbuilder-0.4.
|
|
22
|
-
promptbuilder-0.4.
|
|
23
|
-
promptbuilder-0.4.
|
|
24
|
-
promptbuilder-0.4.
|
|
21
|
+
promptbuilder-0.4.19.dist-info/licenses/LICENSE,sha256=fqXmInzgsvEOIaKSBgcrwKyYCGYF0MKErJ0YivtODcc,1096
|
|
22
|
+
promptbuilder-0.4.19.dist-info/METADATA,sha256=H7BlzTYhhJi7NGunmjiYhaUqWAhWS-6ELC682S14VKY,3738
|
|
23
|
+
promptbuilder-0.4.19.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
24
|
+
promptbuilder-0.4.19.dist-info/top_level.txt,sha256=UBVcYn4UgrPy3O3fmmnPEU_kieuplBMgheetIMei4EI,14
|
|
25
|
+
promptbuilder-0.4.19.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|