prompt-caller 0.1.1__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- prompt_caller/prompt_caller.py +155 -78
- {prompt_caller-0.1.1.dist-info → prompt_caller-0.2.0.dist-info}/METADATA +7 -5
- prompt_caller-0.2.0.dist-info/RECORD +8 -0
- prompt_caller-0.1.1.dist-info/RECORD +0 -8
- {prompt_caller-0.1.1.dist-info → prompt_caller-0.2.0.dist-info}/LICENSE +0 -0
- {prompt_caller-0.1.1.dist-info → prompt_caller-0.2.0.dist-info}/WHEEL +0 -0
- {prompt_caller-0.1.1.dist-info → prompt_caller-0.2.0.dist-info}/top_level.txt +0 -0
prompt_caller/prompt_caller.py
CHANGED
|
@@ -1,13 +1,18 @@
|
|
|
1
1
|
import os
|
|
2
2
|
import re
|
|
3
|
+
import ast
|
|
3
4
|
|
|
4
5
|
import requests
|
|
5
6
|
import yaml
|
|
6
7
|
from dotenv import load_dotenv
|
|
7
8
|
from jinja2 import Template
|
|
9
|
+
from langgraph.types import Command
|
|
8
10
|
from langchain_core.tools import tool
|
|
9
11
|
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
|
|
12
|
+
from langchain.agents import create_agent
|
|
13
|
+
from langchain.agents.middleware import wrap_tool_call
|
|
10
14
|
from langchain_openai import ChatOpenAI
|
|
15
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
11
16
|
from PIL import Image
|
|
12
17
|
from pydantic import BaseModel, Field, create_model
|
|
13
18
|
|
|
@@ -18,7 +23,6 @@ load_dotenv()
|
|
|
18
23
|
|
|
19
24
|
|
|
20
25
|
class PromptCaller:
|
|
21
|
-
|
|
22
26
|
def __init__(self, promptPath="prompts"):
|
|
23
27
|
self.promptPath = promptPath
|
|
24
28
|
|
|
@@ -39,17 +43,44 @@ class PromptCaller:
|
|
|
39
43
|
template = Template(body)
|
|
40
44
|
return template.render(context)
|
|
41
45
|
|
|
46
|
+
import re
|
|
47
|
+
|
|
42
48
|
def _parseJSXBody(self, body):
|
|
43
49
|
elements = []
|
|
44
|
-
|
|
50
|
+
# 1. Regex to find tags, attributes string, and content
|
|
51
|
+
tag_pattern = r"<(system|user|assistant|image)([^>]*)>(.*?)</\1>"
|
|
52
|
+
|
|
53
|
+
# 2. Regex to find key="value" pairs within the attributes string
|
|
54
|
+
attr_pattern = r'(\w+)\s*=\s*"(.*?)"'
|
|
45
55
|
|
|
46
56
|
matches = re.findall(tag_pattern, body, re.DOTALL)
|
|
47
57
|
|
|
48
|
-
for tag, content in matches:
|
|
49
|
-
|
|
58
|
+
for tag, attrs_string, content in matches:
|
|
59
|
+
# 3. Parse the attributes string (e.g., ' tag="image 1"') into a dict
|
|
60
|
+
attributes = {}
|
|
61
|
+
if attrs_string:
|
|
62
|
+
attr_matches = re.findall(attr_pattern, attrs_string)
|
|
63
|
+
for key, value in attr_matches:
|
|
64
|
+
attributes[key] = value
|
|
65
|
+
|
|
66
|
+
element = {"role": tag, "content": content.strip()}
|
|
67
|
+
|
|
68
|
+
# 4. Add the attributes to our element dict if they exist
|
|
69
|
+
if attributes:
|
|
70
|
+
element["attributes"] = attributes
|
|
71
|
+
|
|
72
|
+
elements.append(element)
|
|
50
73
|
|
|
51
74
|
return elements
|
|
52
75
|
|
|
76
|
+
def _createChat(self, configuration):
|
|
77
|
+
if configuration.get("model") is not None and configuration.get(
|
|
78
|
+
"model"
|
|
79
|
+
).startswith("gemini"):
|
|
80
|
+
return ChatGoogleGenerativeAI(**configuration)
|
|
81
|
+
else:
|
|
82
|
+
return ChatOpenAI(**configuration)
|
|
83
|
+
|
|
53
84
|
def getImageBase64(self, url: str) -> str:
|
|
54
85
|
response = requests.get(url)
|
|
55
86
|
response.raise_for_status()
|
|
@@ -87,16 +118,18 @@ class PromptCaller:
|
|
|
87
118
|
if base64_image.startswith("http"):
|
|
88
119
|
base64_image = self.getImageBase64(base64_image)
|
|
89
120
|
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
121
|
+
content = [
|
|
122
|
+
{
|
|
123
|
+
"type": "image_url",
|
|
124
|
+
"image_url": {"url": base64_image},
|
|
125
|
+
}
|
|
126
|
+
]
|
|
127
|
+
|
|
128
|
+
tag = message.get("attributes", {}).get("tag")
|
|
129
|
+
if tag:
|
|
130
|
+
content.append({"type": "text", "text": f"({tag})"})
|
|
131
|
+
|
|
132
|
+
messages.append(HumanMessage(content=content))
|
|
100
133
|
|
|
101
134
|
return configuration, messages
|
|
102
135
|
|
|
@@ -110,7 +143,6 @@ class PromptCaller:
|
|
|
110
143
|
return create_model("DynamicModel", **fields)
|
|
111
144
|
|
|
112
145
|
def call(self, promptName, context=None):
|
|
113
|
-
|
|
114
146
|
configuration, messages = self.loadPrompt(promptName, context)
|
|
115
147
|
|
|
116
148
|
output = None
|
|
@@ -119,7 +151,7 @@ class PromptCaller:
|
|
|
119
151
|
output = configuration.get("output")
|
|
120
152
|
configuration.pop("output")
|
|
121
153
|
|
|
122
|
-
chat =
|
|
154
|
+
chat = self._createChat(configuration)
|
|
123
155
|
|
|
124
156
|
if output:
|
|
125
157
|
dynamicModel = self.createPydanticModel(output)
|
|
@@ -129,78 +161,123 @@ class PromptCaller:
|
|
|
129
161
|
|
|
130
162
|
return response
|
|
131
163
|
|
|
132
|
-
def
|
|
164
|
+
def _create_pdf_middleware(self):
|
|
165
|
+
"""Middleware to handle tool responses that contain pdf content."""
|
|
166
|
+
|
|
167
|
+
@wrap_tool_call
|
|
168
|
+
def handle_pdf_response(request, handler):
|
|
169
|
+
# Execute the actual tool
|
|
170
|
+
result = handler(request)
|
|
171
|
+
|
|
172
|
+
# Check if result content is pdf data
|
|
173
|
+
if hasattr(result, "content"):
|
|
174
|
+
content = result.content
|
|
175
|
+
# Try to parse if it's a string representation of a list
|
|
176
|
+
if isinstance(content, str) and content.startswith("["):
|
|
177
|
+
try:
|
|
178
|
+
content = ast.literal_eval(content)
|
|
179
|
+
except (ValueError, SyntaxError):
|
|
180
|
+
pass
|
|
181
|
+
|
|
182
|
+
if (
|
|
183
|
+
isinstance(content, list)
|
|
184
|
+
and content
|
|
185
|
+
and isinstance(content[0], dict)
|
|
186
|
+
and "input_file" in content[0]
|
|
187
|
+
and "pdf" in content[0]["file_data"]
|
|
188
|
+
):
|
|
189
|
+
# Use Command to add both tool result and image to messages
|
|
190
|
+
return Command(
|
|
191
|
+
update={"messages": [result, HumanMessage(content=content)]}
|
|
192
|
+
)
|
|
133
193
|
|
|
134
|
-
|
|
194
|
+
return result # Return normal result
|
|
195
|
+
|
|
196
|
+
return handle_pdf_response
|
|
197
|
+
|
|
198
|
+
def _create_image_middleware(self):
|
|
199
|
+
"""Middleware to handle tool responses that contain image content."""
|
|
200
|
+
|
|
201
|
+
@wrap_tool_call
|
|
202
|
+
def handle_image_response(request, handler):
|
|
203
|
+
# Execute the actual tool
|
|
204
|
+
result = handler(request)
|
|
205
|
+
|
|
206
|
+
# Check if result content is image data (list with image_url dict)
|
|
207
|
+
if hasattr(result, "content"):
|
|
208
|
+
content = result.content
|
|
209
|
+
# Try to parse if it's a string representation of a list
|
|
210
|
+
if isinstance(content, str) and content.startswith("["):
|
|
211
|
+
try:
|
|
212
|
+
content = ast.literal_eval(content)
|
|
213
|
+
except (ValueError, SyntaxError):
|
|
214
|
+
pass
|
|
215
|
+
|
|
216
|
+
if (
|
|
217
|
+
isinstance(content, list)
|
|
218
|
+
and content
|
|
219
|
+
and isinstance(content[0], dict)
|
|
220
|
+
and "image_url" in content[0]
|
|
221
|
+
):
|
|
222
|
+
# Use Command to add both tool result and image to messages
|
|
223
|
+
return Command(
|
|
224
|
+
update={"messages": [result, HumanMessage(content=content)]}
|
|
225
|
+
)
|
|
135
226
|
|
|
136
|
-
|
|
227
|
+
return result # Return normal result
|
|
137
228
|
|
|
138
|
-
|
|
139
|
-
output = configuration.get("output")
|
|
140
|
-
configuration.pop("output")
|
|
229
|
+
return handle_image_response
|
|
141
230
|
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
231
|
+
def agent(
|
|
232
|
+
self, promptName, context=None, tools=None, output=None, allowed_steps=10
|
|
233
|
+
):
|
|
234
|
+
configuration, messages = self.loadPrompt(promptName, context)
|
|
235
|
+
|
|
236
|
+
# Handle structured output from config
|
|
237
|
+
dynamicOutput = None
|
|
238
|
+
if output is None and "output" in configuration:
|
|
239
|
+
dynamicOutput = configuration.pop("output")
|
|
146
240
|
|
|
147
|
-
chat =
|
|
241
|
+
chat = self._createChat(configuration)
|
|
148
242
|
|
|
149
|
-
#
|
|
243
|
+
# Prepare tools
|
|
150
244
|
if tools is None:
|
|
151
245
|
tools = []
|
|
152
|
-
|
|
153
|
-
# Transform functions in tools
|
|
154
246
|
tools = [tool(t) for t in tools]
|
|
155
247
|
|
|
156
|
-
|
|
157
|
-
|
|
248
|
+
# Handle response format (structured output)
|
|
249
|
+
response_format = None
|
|
158
250
|
if output:
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
# Invoke the selected tool with provided arguments
|
|
185
|
-
tool_response = selected_tool.invoke(tool_call)
|
|
186
|
-
messages.append(tool_response)
|
|
187
|
-
|
|
188
|
-
# If the latest message is a ToolMessage, re-invoke the LLM
|
|
189
|
-
if isinstance(messages[-1], ToolMessage):
|
|
190
|
-
response = chat.invoke(messages)
|
|
191
|
-
messages.append(response)
|
|
192
|
-
else:
|
|
193
|
-
break
|
|
194
|
-
|
|
195
|
-
steps += 1
|
|
196
|
-
|
|
197
|
-
# Final LLM call if the last message is still a ToolMessage
|
|
198
|
-
if isinstance(messages[-1], ToolMessage):
|
|
199
|
-
response = chat.invoke(messages)
|
|
200
|
-
messages.append(response)
|
|
251
|
+
response_format = output
|
|
252
|
+
elif dynamicOutput:
|
|
253
|
+
response_format = self.createPydanticModel(dynamicOutput)
|
|
254
|
+
|
|
255
|
+
# Extract system message for create_agent
|
|
256
|
+
system_prompt = None
|
|
257
|
+
user_messages = []
|
|
258
|
+
for msg in messages:
|
|
259
|
+
if isinstance(msg, SystemMessage):
|
|
260
|
+
system_prompt = msg.content
|
|
261
|
+
else:
|
|
262
|
+
user_messages.append(msg)
|
|
263
|
+
|
|
264
|
+
# Create and invoke agent
|
|
265
|
+
agent_graph = create_agent(
|
|
266
|
+
model=chat,
|
|
267
|
+
tools=tools,
|
|
268
|
+
system_prompt=system_prompt,
|
|
269
|
+
response_format=response_format,
|
|
270
|
+
middleware=[
|
|
271
|
+
self._create_image_middleware(),
|
|
272
|
+
self._create_pdf_middleware(),
|
|
273
|
+
],
|
|
274
|
+
)
|
|
201
275
|
|
|
202
|
-
|
|
276
|
+
result = agent_graph.invoke(
|
|
277
|
+
{"messages": user_messages}, config={"recursion_limit": allowed_steps}
|
|
278
|
+
)
|
|
203
279
|
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
280
|
+
# Return structured output or last message
|
|
281
|
+
if response_format and result.get("structured_response"):
|
|
282
|
+
return result["structured_response"]
|
|
283
|
+
return result["messages"][-1]
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: prompt_caller
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.2.0
|
|
4
4
|
Summary: This package is responsible for calling prompts in a specific format. It uses LangChain and OpenAI API
|
|
5
5
|
Home-page: https://github.com/ThiNepo/prompt-caller
|
|
6
6
|
Author: Thiago Nepomuceno
|
|
@@ -11,11 +11,13 @@ Classifier: Operating System :: OS Independent
|
|
|
11
11
|
Description-Content-Type: text/markdown
|
|
12
12
|
License-File: LICENSE
|
|
13
13
|
Requires-Dist: pyyaml>=6.0.2
|
|
14
|
-
Requires-Dist: python-dotenv>=1.
|
|
14
|
+
Requires-Dist: python-dotenv>=1.2.1
|
|
15
15
|
Requires-Dist: Jinja2>=3.1.4
|
|
16
|
-
Requires-Dist: langchain-
|
|
17
|
-
Requires-Dist: openai>=1.
|
|
18
|
-
Requires-Dist:
|
|
16
|
+
Requires-Dist: langchain-core>=1.2.7
|
|
17
|
+
Requires-Dist: langchain-openai>=1.1.7
|
|
18
|
+
Requires-Dist: langchain-google-genai>=4.2.0
|
|
19
|
+
Requires-Dist: openai>=2.16.0
|
|
20
|
+
Requires-Dist: pillow>=12.1.0
|
|
19
21
|
|
|
20
22
|
# PromptCaller
|
|
21
23
|
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
prompt_caller/__init__.py,sha256=4EGdeAJ_Ig7A-b-e17-nYbiXjckT7uL3to5lchMsoW4,41
|
|
2
|
+
prompt_caller/__main__.py,sha256=dJ0dYtVmnhZuoV79R6YiAIta1ZkUKb-TEX4VEuYbgk0,139
|
|
3
|
+
prompt_caller/prompt_caller.py,sha256=b6AvhCRDfSpRHpg5qGVkTV1WRwSsmq5l0uy79Y-XYEs,9798
|
|
4
|
+
prompt_caller-0.2.0.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
5
|
+
prompt_caller-0.2.0.dist-info/METADATA,sha256=ntbB3PEOrASgd4UjhzXMSztBUIr3pdASL2R42mPNQak,4993
|
|
6
|
+
prompt_caller-0.2.0.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
|
7
|
+
prompt_caller-0.2.0.dist-info/top_level.txt,sha256=iihiDRq-0VrKB8IKjxf7Lrtv-fLMq4tvgM4fH3x0I94,14
|
|
8
|
+
prompt_caller-0.2.0.dist-info/RECORD,,
|
|
@@ -1,8 +0,0 @@
|
|
|
1
|
-
prompt_caller/__init__.py,sha256=4EGdeAJ_Ig7A-b-e17-nYbiXjckT7uL3to5lchMsoW4,41
|
|
2
|
-
prompt_caller/__main__.py,sha256=dJ0dYtVmnhZuoV79R6YiAIta1ZkUKb-TEX4VEuYbgk0,139
|
|
3
|
-
prompt_caller/prompt_caller.py,sha256=fy-pLXmYD2j5fnAxgBvxCNBrkQvDPGX0nWyqnaWeqSo,6737
|
|
4
|
-
prompt_caller-0.1.1.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
5
|
-
prompt_caller-0.1.1.dist-info/METADATA,sha256=j1xmg_Y_NAhh7CmlCgAcfSMuHChZ9C4DPcszLADg7dk,4909
|
|
6
|
-
prompt_caller-0.1.1.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
|
7
|
-
prompt_caller-0.1.1.dist-info/top_level.txt,sha256=iihiDRq-0VrKB8IKjxf7Lrtv-fLMq4tvgM4fH3x0I94,14
|
|
8
|
-
prompt_caller-0.1.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|