project-llm-trainer 0.7.5__py3-none-any.whl → 0.7.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of project-llm-trainer might be problematic. Click here for more details.

@@ -0,0 +1,24 @@
1
+ #!python
2
+
3
+ if __name__ == '__main__':
4
+ import os, sys
5
+ arguments = sys.argv[1:]
6
+ # file_name
7
+ run_file_name = arguments[0]
8
+
9
+ # cuda_visible_devive
10
+ if len(arguments) > 1:
11
+ # 0,1,2,3
12
+ cuda_visible_devive = arguments[1]
13
+ else:
14
+ cuda_visible_devive = None
15
+
16
+ os.environ['PARALLEL_TYPE'] = 'ddp'
17
+
18
+ if cuda_visible_devive:
19
+ os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devive
20
+
21
+ command = f'torchrun --standalone --nproc_per_node=gpu {run_file_name}'
22
+
23
+ print(f'run command {command}')
24
+ os.system(command)
@@ -0,0 +1,29 @@
1
+ #!python
2
+
3
+ if __name__ == '__main__':
4
+ import os, sys
5
+ arguments = sys.argv[1:]
6
+ # file_name
7
+ run_file_name = arguments[0]
8
+
9
+ # cuda_visible_devive
10
+ if len(arguments) > 1:
11
+ # 0,1,2,3
12
+ cuda_visible_devive = arguments[1]
13
+ else:
14
+ cuda_visible_devive = None
15
+
16
+ # cuda location
17
+ if len(arguments) > 2:
18
+ cuda_loc = arguments[2]
19
+ else:
20
+ cuda_loc = 'localhost'
21
+
22
+ os.environ['PARALLEL_TYPE'] = 'ds'
23
+
24
+ cuda_ctrl = f' --include {cuda_loc}:{cuda_visible_devive}' if cuda_visible_devive else ''
25
+
26
+ command = f'deepspeed{cuda_ctrl} {run_file_name}'
27
+
28
+ print(f'run command {command}')
29
+ os.system(command)
@@ -2,9 +2,24 @@
2
2
 
3
3
  if __name__ == '__main__':
4
4
  import os, sys, torch
5
+
5
6
  arguments = sys.argv[1:]
7
+ # file name
6
8
  run_file_name = arguments[0]
7
9
 
10
+ # cuda_visible_devive
11
+ if len(arguments) > 1:
12
+ # 0,1,2,3
13
+ cuda_visible_devive = arguments[1]
14
+ else:
15
+ cuda_visible_devive = None
16
+
17
+ # cuda location
18
+ if len(arguments) > 2:
19
+ cuda_loc = arguments[2]
20
+ else:
21
+ cuda_loc = 'localhost'
22
+
8
23
  try:
9
24
  import deepspeed
10
25
  parallel_type = 'ds'
@@ -18,11 +33,14 @@ if __name__ == '__main__':
18
33
  os.environ['PARALLEL_TYPE'] = parallel_type
19
34
 
20
35
  if parallel_type == 'ds':
21
- command = f'deepspeed {run_file_name}'
36
+ cuda_ctrl = f' --include {cuda_loc}:{cuda_visible_devive}' if cuda_visible_devive else ''
37
+ command = f'deepspeed{cuda_ctrl} {run_file_name}'
22
38
  elif parallel_type == 'ddp':
39
+ if cuda_visible_devive:
40
+ os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devive
23
41
  command = f'torchrun --standalone --nproc_per_node=gpu {run_file_name}'
24
42
  else:
25
43
  command = f'python3 {run_file_name}'
26
44
 
27
- print(f'real command is {command}')
45
+ print(f'run command {command}')
28
46
  os.system(command)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: project_llm_trainer
3
- Version: 0.7.5
3
+ Version: 0.7.7
4
4
  Summary: LLM and VLM trainer
5
5
  Author: qibin
6
6
  Author-email: qibin0506@gmail.com
@@ -20,14 +20,14 @@ llm_trainer/tools.py,sha256=5op5qrjjkK-Lr9oes5VxIVnOVYOYGoAdlIJq9mPUf64,2637
20
20
  llm_trainer/train_configs.py,sha256=N3ykM1uaLHcSNRC8ErYIxp9VYhSP7voJyAP-2D4ZJe0,7574
21
21
  llm_trainer/trainer.py,sha256=jS31zEXIIj9BoPTPlmaGYq61x72HGCjKfS2u3_gOkDk,27924
22
22
  llm_trainer/utils.py,sha256=xcdzpvPvXRKqsOK2yB7PZ9GmOvZMDFcglDPUZY2hJTY,11484
23
- project_llm_trainer-0.7.5.data/scripts/calc_intermediate_size,sha256=AggpgNHokJiJMbEtVdOnolqr_4bH3i1UYuZNEAzC2Gc,460
24
- project_llm_trainer-0.7.5.data/scripts/ddp_train,sha256=x81AasaN2-9TwARFFF1l7iV1LmfMQ0bLw0i_CGbOwSw,299
25
- project_llm_trainer-0.7.5.data/scripts/ds_train,sha256=qL3qc3TcedBCw98UZUjW07ONcErRawLE1HymW2AmscA,265
26
- project_llm_trainer-0.7.5.data/scripts/plot_loss,sha256=MzFcdJESlVr1srj4Td6-AxPGUKkfB_QEcJwm0Bd-5fU,910
27
- project_llm_trainer-0.7.5.data/scripts/plot_lr,sha256=w_7XR_x3KYYyboeOVAeu_I4fveLFI-C0wBmRrNlmWUI,894
28
- project_llm_trainer-0.7.5.data/scripts/py_train,sha256=tOp9TquORQeU8XN5H7OVIk5O0Ypwi34p_GENxTwgwdk,265
29
- project_llm_trainer-0.7.5.data/scripts/smart_train,sha256=Pmt4Q0to4Hoz82iB9uFPZuz7uahNUbfE7FR1940EBy8,716
30
- project_llm_trainer-0.7.5.dist-info/METADATA,sha256=9DcoFVuXDrhxZOVWF1Ouzk7NF6NTEnpBTkg1n6bMCYQ,195
31
- project_llm_trainer-0.7.5.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
32
- project_llm_trainer-0.7.5.dist-info/top_level.txt,sha256=LtRFg28i0QIG7iBCD2t095oSco99LCtkijibS9cMGik,12
33
- project_llm_trainer-0.7.5.dist-info/RECORD,,
23
+ project_llm_trainer-0.7.7.data/scripts/calc_intermediate_size,sha256=AggpgNHokJiJMbEtVdOnolqr_4bH3i1UYuZNEAzC2Gc,460
24
+ project_llm_trainer-0.7.7.data/scripts/ddp_train,sha256=Z-309mM56CN0m3bxoeC5us4LUuwuNnoiOm3-fDdLMjQ,566
25
+ project_llm_trainer-0.7.7.data/scripts/ds_train,sha256=3nXNNKmYI7miqyBdf-Ijl_rW1cGIKrAMZ1CSswN_gGo,665
26
+ project_llm_trainer-0.7.7.data/scripts/plot_loss,sha256=MzFcdJESlVr1srj4Td6-AxPGUKkfB_QEcJwm0Bd-5fU,910
27
+ project_llm_trainer-0.7.7.data/scripts/plot_lr,sha256=w_7XR_x3KYYyboeOVAeu_I4fveLFI-C0wBmRrNlmWUI,894
28
+ project_llm_trainer-0.7.7.data/scripts/py_train,sha256=tOp9TquORQeU8XN5H7OVIk5O0Ypwi34p_GENxTwgwdk,265
29
+ project_llm_trainer-0.7.7.data/scripts/smart_train,sha256=3oLIDuuqb4U4TU1lXy9V8lw_0gIf7i8tGsxlQ_s6bro,1220
30
+ project_llm_trainer-0.7.7.dist-info/METADATA,sha256=1O3xW3QM5aJgk1EESixX5DjxQ5ReX_pikUjI5x2qOvk,195
31
+ project_llm_trainer-0.7.7.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
32
+ project_llm_trainer-0.7.7.dist-info/top_level.txt,sha256=LtRFg28i0QIG7iBCD2t095oSco99LCtkijibS9cMGik,12
33
+ project_llm_trainer-0.7.7.dist-info/RECORD,,
@@ -1,12 +0,0 @@
1
- #!python
2
-
3
- if __name__ == '__main__':
4
- import os, sys
5
- arguments = sys.argv[1:]
6
- run_file_name = arguments[0]
7
-
8
- os.environ['PARALLEL_TYPE'] = 'ddp'
9
- command = f'torchrun --standalone --nproc_per_node=gpu {run_file_name}'
10
-
11
- print(f'real command is {command}')
12
- os.system(command)
@@ -1,12 +0,0 @@
1
- #!python
2
-
3
- if __name__ == '__main__':
4
- import os, sys
5
- arguments = sys.argv[1:]
6
- run_file_name = arguments[0]
7
-
8
- os.environ['PARALLEL_TYPE'] = 'ds'
9
- command = f'deepspeed {run_file_name}'
10
-
11
- print(f'real command is {command}')
12
- os.system(command)