project-llm-trainer 0.4.6__py3-none-any.whl → 0.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of project-llm-trainer might be problematic. Click here for more details.

@@ -69,7 +69,7 @@ def load_ds_checkpoint_for_eval(model: nn.Module):
69
69
 
70
70
  def _get_ds_full_state_dict_on_rank0(model: DeepSpeedEngine) -> Optional[dict]:
71
71
  """
72
- 可以在任意rank上调用,然后只有rank0有值
72
+ 需要在所有rank上调用,然后只有rank0有值
73
73
  """
74
74
 
75
75
  if model.zero_optimization_stage() != 3:
@@ -99,7 +99,6 @@ def _get_ds_full_state_dict_on_rank0(model: DeepSpeedEngine) -> Optional[dict]:
99
99
  # if TrainerTools().parallel.is_main_process:
100
100
  # state_dict_on_rank_0[param_name] = param.data.to(torch.float32).cpu().clone()
101
101
  # else:
102
- # print("22222222")
103
102
  # if TrainerTools().parallel.is_main_process:
104
103
  # state_dict_on_rank_0[param_name] = param.data.to(torch.float32).cpu().clone()
105
104
  #
@@ -175,7 +175,7 @@ def _generate(
175
175
  if k and k != 0:
176
176
  logits = _top_k_warper(logits, k, device)
177
177
 
178
- if p and p < 1:
178
+ if p and 0 < p <= 1:
179
179
  logits = _top_p_warper(logits, p)
180
180
 
181
181
  if multinomial:
@@ -210,7 +210,7 @@ def _streaming_generate(
210
210
  max_new_tokens: int,
211
211
  temperature: Optional[float] = 1.0,
212
212
  k: Optional[int] = None,
213
- p: Optional[float] = 1.0,
213
+ p: Optional[float] = None,
214
214
  pixel_values: Optional[torch.Tensor] = None,
215
215
  tokens_per_image: int = -1,
216
216
  suppress_tokens: Optional[List[int]] = None,
@@ -245,7 +245,7 @@ def streaming_generate(
245
245
  max_new_tokens: int,
246
246
  temperature: Optional[float] = 1.0,
247
247
  k: Optional[int] = None,
248
- p: Optional[float] = 1.0,
248
+ p: Optional[float] = None,
249
249
  pixel_values: Optional[torch.Tensor] = None,
250
250
  tokens_per_image: int = -1,
251
251
  suppress_tokens: Optional[List[int]] = None,
@@ -278,7 +278,7 @@ def generate(
278
278
  max_new_tokens: int,
279
279
  temperature: Optional[float] = 1.0,
280
280
  k: Optional[int] = None,
281
- p: Optional[float] = 1.0,
281
+ p: Optional[float] = None,
282
282
  pixel_values: Optional[torch.Tensor] = None,
283
283
  tokens_per_image: int = -1,
284
284
  suppress_tokens: Optional[List[int]] = None,
@@ -382,7 +382,7 @@ def batch_generate(
382
382
  if k and k != 0:
383
383
  logits = _top_k_warper(logits, k, device)
384
384
 
385
- if p and p < 1:
385
+ if p and 0 < p <= 1:
386
386
  logits = _top_p_warper(logits, p)
387
387
 
388
388
  prob = logits.softmax(dim=-1)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: project_llm_trainer
3
- Version: 0.4.6
3
+ Version: 0.4.7
4
4
  Summary: LLM and VLM trainer
5
5
  Author: qibin
6
6
  Author-email: qibin0506@gmail.com
@@ -3,10 +3,10 @@ llm_trainer/checkpoint.py,sha256=yZcExxneN2yzvWxRiK-pstMWs35LV7GiOfqcLq-S6vc,574
3
3
  llm_trainer/dataset.py,sha256=4QlOo0SFB5816BUYegQjgobUqTUMQvdmZMM_OEAMSjE,4347
4
4
  llm_trainer/dcp.py,sha256=PkD97DyrOtoTKn4FJsfL3VqAy4dxufgjdzJEz8-Cnoc,3635
5
5
  llm_trainer/dpo_trainer.py,sha256=rC_I5ipesSlP3gFK_SG2GB8NbgJAMu4K7KLxkAS-aRY,13406
6
- llm_trainer/ds_checkpoint.py,sha256=7o9oxHUqPJNQESuZz83vHUmV83AkUh19mV9nY6qg4PE,4957
6
+ llm_trainer/ds_checkpoint.py,sha256=x_tjgJR47P8gVwV4qAnTUCGwx7eVq2Epw0vOVV7fkYo,4925
7
7
  llm_trainer/eval.py,sha256=NDm8PbXLch7xT81xPYPRCNrcrB_Xj5GDJSCxyVwUOp4,1524
8
8
  llm_trainer/fsdp_checkpoint.py,sha256=lqZFzHyWyfzuCq_81kQNtJd2qaiMeY1N5BCEMnrJTBw,3192
9
- llm_trainer/generate_utils.py,sha256=_3TWAt-W8ZIzDZrLHEBR2iiZ3bn4V34WuVvKgCuDtyI,15193
9
+ llm_trainer/generate_utils.py,sha256=BmjpCrus_jvJ3SM2KS1bQNzJWAFnpJ9mI28iBWXZpvo,15206
10
10
  llm_trainer/grpo_trainer.py,sha256=bZPrxhyPQLAnFzWhI7hhA6fpuKVNwj7nOm9k0ku9aK4,15977
11
11
  llm_trainer/log.py,sha256=LxqTGRNZUGMTSQCePRpk-rYyxSnSIbT4kOdP8Fbzr0M,462
12
12
  llm_trainer/loss.py,sha256=Yv3fsaVuZ5AhnGPJOr5vEMb_tM2urR6mCb4DBbrHHI8,6030
@@ -22,14 +22,14 @@ llm_trainer/tools.py,sha256=O45-20wRmh-nyTfU-U-XtjbKAoe7boEIsUvWT_NaKx4,3041
22
22
  llm_trainer/train_configs.py,sha256=arnet3tIzgVnwshod08F1jE7r4I7e-SIgMy55IagPnE,15971
23
23
  llm_trainer/trainer.py,sha256=Zy1oesBfsFlDedZ4hn3gcAkTrpi5fr76bFFQikfAkak,25351
24
24
  llm_trainer/utils.py,sha256=-ivhMF0d999va13S1wt2uBvtVw8Nvr3uBzhaUFKL04Q,6826
25
- project_llm_trainer-0.4.6.data/scripts/calc_intermediate_size,sha256=AggpgNHokJiJMbEtVdOnolqr_4bH3i1UYuZNEAzC2Gc,460
26
- project_llm_trainer-0.4.6.data/scripts/ddp_train,sha256=x81AasaN2-9TwARFFF1l7iV1LmfMQ0bLw0i_CGbOwSw,299
27
- project_llm_trainer-0.4.6.data/scripts/ds_train,sha256=qL3qc3TcedBCw98UZUjW07ONcErRawLE1HymW2AmscA,265
28
- project_llm_trainer-0.4.6.data/scripts/plot_loss,sha256=MzFcdJESlVr1srj4Td6-AxPGUKkfB_QEcJwm0Bd-5fU,910
29
- project_llm_trainer-0.4.6.data/scripts/plot_lr,sha256=w_7XR_x3KYYyboeOVAeu_I4fveLFI-C0wBmRrNlmWUI,894
30
- project_llm_trainer-0.4.6.data/scripts/py_train,sha256=tOp9TquORQeU8XN5H7OVIk5O0Ypwi34p_GENxTwgwdk,265
31
- project_llm_trainer-0.4.6.data/scripts/smart_train,sha256=Pmt4Q0to4Hoz82iB9uFPZuz7uahNUbfE7FR1940EBy8,716
32
- project_llm_trainer-0.4.6.dist-info/METADATA,sha256=PcLGKG5luK4XZFXbVRjiBrXNq9EzRvWCgZ6K1cxMzlo,195
33
- project_llm_trainer-0.4.6.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
34
- project_llm_trainer-0.4.6.dist-info/top_level.txt,sha256=LtRFg28i0QIG7iBCD2t095oSco99LCtkijibS9cMGik,12
35
- project_llm_trainer-0.4.6.dist-info/RECORD,,
25
+ project_llm_trainer-0.4.7.data/scripts/calc_intermediate_size,sha256=AggpgNHokJiJMbEtVdOnolqr_4bH3i1UYuZNEAzC2Gc,460
26
+ project_llm_trainer-0.4.7.data/scripts/ddp_train,sha256=x81AasaN2-9TwARFFF1l7iV1LmfMQ0bLw0i_CGbOwSw,299
27
+ project_llm_trainer-0.4.7.data/scripts/ds_train,sha256=qL3qc3TcedBCw98UZUjW07ONcErRawLE1HymW2AmscA,265
28
+ project_llm_trainer-0.4.7.data/scripts/plot_loss,sha256=MzFcdJESlVr1srj4Td6-AxPGUKkfB_QEcJwm0Bd-5fU,910
29
+ project_llm_trainer-0.4.7.data/scripts/plot_lr,sha256=w_7XR_x3KYYyboeOVAeu_I4fveLFI-C0wBmRrNlmWUI,894
30
+ project_llm_trainer-0.4.7.data/scripts/py_train,sha256=tOp9TquORQeU8XN5H7OVIk5O0Ypwi34p_GENxTwgwdk,265
31
+ project_llm_trainer-0.4.7.data/scripts/smart_train,sha256=Pmt4Q0to4Hoz82iB9uFPZuz7uahNUbfE7FR1940EBy8,716
32
+ project_llm_trainer-0.4.7.dist-info/METADATA,sha256=u4_cQkQaH9QKqG_XcWiXzGHD5rnrzqHjvJWQvgVnkZQ,195
33
+ project_llm_trainer-0.4.7.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
34
+ project_llm_trainer-0.4.7.dist-info/top_level.txt,sha256=LtRFg28i0QIG7iBCD2t095oSco99LCtkijibS9cMGik,12
35
+ project_llm_trainer-0.4.7.dist-info/RECORD,,