project-llm-trainer 0.3.6__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of project-llm-trainer might be problematic. Click here for more details.

llm_trainer/checkpoint.py CHANGED
@@ -3,6 +3,7 @@ from typing import Optional, Union, Tuple
3
3
  import torch
4
4
  from torch import nn
5
5
  from torch.optim import Optimizer
6
+ from torch.nn.parallel import DistributedDataParallel as DDP
6
7
 
7
8
  from .parallel_ds import DsParallel
8
9
  from .parallel_fsdp import FsdpParallel
@@ -44,39 +45,22 @@ def save_checkpoint(
44
45
  save_ds_checkpoint(model, suffix)
45
46
  elif _can_use_dcp(model):
46
47
  save_dcp(model, optimizer, suffix)
48
+ elif isinstance(model, FSDP):
49
+ from .fsdp_checkpoint import save_fsdp_checkpoint
50
+ save_fsdp_checkpoint(model, optimizer, suffix)
47
51
  else:
48
- if isinstance(model, FSDP):
49
- # 未经过测试 参考:https://doc.hfai.high-flyer.cn/haiscale/haiscale_fsdp.html
50
- # 是否使用rank0_only=True?
51
- with FSDP.summon_full_params(
52
- module=model,
53
- rank0_only=True,
54
- writeback=False,
55
- offload_to_cpu=True
56
- ):
57
- if TrainerTools().parallel.is_main_process:
58
- checkpoint_name = os.environ.get('CHECKPOINT_NAME', DEFAULT_CHECKPOINT_NAME)
59
- if suffix:
60
- checkpoint_name = f"{checkpoint_name}_{suffix}"
52
+ if TrainerTools().parallel.is_main_process:
53
+ checkpoint_name = os.environ.get('CHECKPOINT_NAME', DEFAULT_CHECKPOINT_NAME)
54
+ if suffix:
55
+ checkpoint_name = f"{checkpoint_name}_{suffix}"
61
56
 
62
- ckpt = {'model_state_dict': model.state_dict()}
57
+ raw_model = model if not isinstance(model, DDP) else model.module
58
+ ckpt = {'model_state_dict': raw_model.state_dict()}
63
59
 
64
- if optimizer:
65
- ckpt.update({'optim_state_dict': optimizer.state_dict()})
60
+ if optimizer:
61
+ ckpt.update({'optim_state_dict': optimizer.state_dict()})
66
62
 
67
- torch.save(ckpt, checkpoint_name)
68
- else:
69
- if TrainerTools().parallel.is_main_process:
70
- checkpoint_name = os.environ.get('CHECKPOINT_NAME', DEFAULT_CHECKPOINT_NAME)
71
- if suffix:
72
- checkpoint_name = f"{checkpoint_name}_{suffix}"
73
-
74
- ckpt = {'model_state_dict': TrainerTools().parallel.raw_model.state_dict()}
75
-
76
- if optimizer:
77
- ckpt.update({'optim_state_dict': optimizer.state_dict()})
78
-
79
- torch.save(ckpt, checkpoint_name)
63
+ torch.save(ckpt, checkpoint_name)
80
64
 
81
65
 
82
66
  def load_checkpoint(
@@ -91,26 +75,20 @@ def load_checkpoint(
91
75
  load_ds_checkpoint(model, load_module_only=load_module_only, suffix=suffix)
92
76
  elif _can_use_dcp(model):
93
77
  load_dcp(model, optimizer, suffix)
78
+ elif isinstance(model, FSDP):
79
+ from .fsdp_checkpoint import load_fsdp_checkpoint
80
+ load_fsdp_checkpoint(model, optimizer, device, suffix)
94
81
  else:
95
82
  checkpoint_name = os.environ.get('CHECKPOINT_NAME', DEFAULT_CHECKPOINT_NAME)
96
83
  if suffix:
97
84
  checkpoint_name = f"{checkpoint_name}_{suffix}"
98
85
 
99
- if os.path.exists(checkpoint_name):
100
- # 未经过测试,else的逻辑经过测试在fsdp下也没问题
101
- if isinstance(model, FSDP):
102
- with FSDP.summon_full_params(module=model):
103
- state_dict = torch.load(checkpoint_name, weights_only=True, map_location=device)
104
- model.load_state_dict(state_dict['model_state_dict'])
86
+ state_dict = torch.load(checkpoint_name, weights_only=True, map_location=device)
87
+ raw_model = model.module if isinstance(model, DDP) else model
88
+ raw_model.load_state_dict(state_dict['model_state_dict'])
105
89
 
106
- if optimizer:
107
- optimizer.load_state_dict(state_dict['optim_state_dict'])
108
- else:
109
- state_dict = torch.load(checkpoint_name, weights_only=True, map_location=device)
110
- model.load_state_dict(state_dict['model_state_dict'])
111
-
112
- if optimizer:
113
- optimizer.load_state_dict(state_dict['optim_state_dict'])
90
+ if optimizer:
91
+ optimizer.load_state_dict(state_dict['optim_state_dict'])
114
92
 
115
93
 
116
94
  def load_checkpoint_for_eval(
@@ -141,6 +119,29 @@ def load_checkpoint_for_eval(
141
119
  load_checkpoint(model, None, device, suffix=suffix)
142
120
 
143
121
 
122
+ def copy_model_params(
123
+ _from: nn.Module,
124
+ _to: Optional[nn.Module]
125
+ ):
126
+ """
127
+ 必须在所有rank上调用,非rank0, _to可以设置为None
128
+ """
129
+
130
+ if isinstance(TrainerTools().parallel, DsParallel):
131
+ from .ds_checkpoint import get_ds_model_params
132
+ state_dict = get_ds_model_params(_from)
133
+ elif isinstance(TrainerTools().parallel, FsdpParallel):
134
+ from .fsdp_checkpoint import get_fsdp_model_params
135
+ state_dict = get_fsdp_model_params(_from)
136
+ elif isinstance(_from, DDP):
137
+ state_dict = _from.module.state_dict()
138
+ else:
139
+ state_dict = _from.state_dict()
140
+
141
+ if _to and state_dict:
142
+ _to.load_state_dict(state_dict)
143
+
144
+
144
145
  def save_steps(global_steps: int, lr_scheduler: Optional[LRScheduler] = None):
145
146
  # 暂时只保存主进程的
146
147
  if TrainerTools().parallel.is_main_process:
@@ -16,7 +16,7 @@ from .utils import get_dpo_collate_fn
16
16
 
17
17
  from .checkpoint import (
18
18
  save_checkpoint,
19
- load_checkpoint_for_eval,
19
+ copy_model_params,
20
20
  save_steps,
21
21
  )
22
22
 
@@ -37,23 +37,18 @@ class DPOTrainer(Trainer):
37
37
  self.reference_model = self._init_reference_model()
38
38
 
39
39
  def _init_reference_model(self):
40
- parallel = TrainerTools().new_parallel()
41
-
42
40
  reference_model = self._new_model(self.train_config)
43
- if self.train_config.init_state_dict:
44
- reference_model.load_state_dict(self.train_config.init_state_dict, strict=False)
45
- self.train_config.init_state_dict = None
46
- else:
47
- load_checkpoint_for_eval(model=reference_model, device=parallel.device)
41
+ copy_model_params(_from=self.train_model, _to=reference_model)
48
42
 
49
- reference_model, _ = parallel.process(
43
+ reference_model, _ = TrainerTools().parallel.process(
50
44
  model=reference_model,
51
45
  optimizer=None,
52
- kwargs=self._init_reference_args()
46
+ kwargs=self._init_reference_args(),
47
+ save_instance=False
53
48
  )
54
49
 
55
- parallel.raw_model.eval()
56
- for param in parallel.raw_model.parameters():
50
+ reference_model.eval()
51
+ for param in reference_model.parameters():
57
52
  param.requires_grad = False
58
53
 
59
54
  return reference_model
@@ -2,8 +2,14 @@ import os
2
2
  from typing import Optional
3
3
  from glob import glob
4
4
  import shutil
5
+ import torch
5
6
  from torch import nn
7
+ import torch.distributed as dist
8
+
9
+ from .tools import TrainerTools
10
+
6
11
  try:
12
+ import deepspeed
7
13
  from deepspeed import DeepSpeedEngine
8
14
  from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
9
15
  except: ...
@@ -59,3 +65,51 @@ def load_ds_checkpoint_for_eval(model: nn.Module):
59
65
  ckpt_dir = os.environ.get('DIST_CHECKPOINT_DIR', 'checkpoint')
60
66
  state_dict = get_fp32_state_dict_from_zero_checkpoint(ckpt_dir)
61
67
  model.load_state_dict(state_dict)
68
+
69
+
70
+ def _get_ds_full_state_dict_on_rank0(model: DeepSpeedEngine) -> Optional[dict]:
71
+ """
72
+ 可以在任意rank上调用,然后只有rank0有值
73
+ """
74
+
75
+ if model.zero_optimization_stage() != 3:
76
+ if TrainerTools().parallel.is_main_process:
77
+ return {k: v.cpu().clone() for k, v in model.module.state_dict().items()}
78
+ return None
79
+
80
+ # ZeRO-3
81
+ state_dict_on_rank_0 = {}
82
+ for param_name, param in model.module.named_parameters():
83
+ if hasattr(param, 'ds_id'):
84
+ with deepspeed.zero.GatheredParameters(param, modifier_rank=0):
85
+ if TrainerTools().parallel.is_main_process:
86
+ state_dict_on_rank_0[param_name] = param.data.to(torch.float32).cpu().clone()
87
+ else:
88
+ if TrainerTools().parallel.is_main_process:
89
+ state_dict_on_rank_0[param_name] = param.data.to(torch.float32).cpu().clone()
90
+
91
+ return state_dict_on_rank_0 if TrainerTools().parallel.is_main_process else None
92
+
93
+
94
+ def get_ds_model_params(model: nn.Module):
95
+ """
96
+ 从一个正在运行的 DeepSpeedEngine 中高效地提取完整的 FP32 state_dict,
97
+ 兼容 ZeRO Stages 0, 1, 2, 3。
98
+ 包含了对 ZeRO-3 中分片参数的正确处理。
99
+ """
100
+
101
+ assert isinstance(model, DeepSpeedEngine)
102
+ state_dict = _get_ds_full_state_dict_on_rank0(model)
103
+
104
+ # 现在,只有 rank 0 上的 state_dict 是一个有效的字典,其他 rank 上是 None。
105
+ # 我们需要将其广播给所有进程。
106
+ if TrainerTools().parallel.world_size > 1:
107
+ # 准备一个列表,rank 0 有数据,其他 rank 是占位符
108
+ object_list = [state_dict] if TrainerTools().parallel.is_main_process else [None]
109
+ # 执行广播,这个操作是阻塞的,会同步所有进程
110
+ dist.broadcast_object_list(object_list, src=0)
111
+ # 所有进程从列表中获取广播后的 state_dict 副本
112
+ state_dict = object_list[0]
113
+
114
+ return state_dict
115
+
llm_trainer/eval.py CHANGED
@@ -1,9 +1,6 @@
1
- import time
2
-
3
1
  import torch
4
2
 
5
3
  from .generate_utils import generate
6
- from .checkpoint import load_checkpoint_for_eval
7
4
  from .log import get_log_dir
8
5
  from .tools import TrainerTools
9
6
  from .train_configs import EvalConfig
@@ -21,27 +18,6 @@ def _eval_task(
21
18
  ):
22
19
  log_dir = get_log_dir()
23
20
 
24
- # 当eval_model不是独立model时可以尝试这个
25
- # if isinstance(eval_model, FSDP):
26
- # with FSDP.summon_full_params(module=eval_model, writeback=False, recurse=False):
27
- # gen = generate(
28
- # eval_model,
29
- # prompt=prompt,
30
- # max_position_embeddings=max_position_embeddings,
31
- # max_new_tokens=max_new_tokens,
32
- # # temperature=None,
33
- # # k=None,
34
- # # p=None,
35
- # device='cpu',
36
- # item_callback=lambda item: write_temp(item)
37
- # )
38
-
39
- # ---------
40
- try:
41
- load_checkpoint_for_eval(eval_model, device=device)
42
- except:
43
- return
44
-
45
21
  gen_result = generate(
46
22
  eval_model,
47
23
  prompt=prompt,
@@ -68,8 +44,6 @@ def submit_gen_task(
68
44
  max_position_embeddings,
69
45
  tokens_per_image
70
46
  ):
71
- # 等待1s,防止deepspeed模式下,找不到checkpoint问题
72
- time.sleep(1)
73
47
  eval_model.to(TrainerTools().parallel.device)
74
48
  _eval_task(
75
49
  eval_model=eval_model,
@@ -0,0 +1,87 @@
1
+ import os
2
+ from typing import Optional, Union, Tuple
3
+ import torch
4
+ from torch import nn
5
+ from torch.optim import Optimizer
6
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
7
+ import torch.distributed as dist
8
+
9
+ from .tools import TrainerTools
10
+
11
+ DEFAULT_CHECKPOINT_NAME = "checkpoint.pth"
12
+
13
+ def save_fsdp_checkpoint(
14
+ model: nn.Module,
15
+ optimizer: Optional[Optimizer] = None,
16
+ suffix: Optional[str] = None
17
+ ):
18
+ # 未经过测试 参考:https://doc.hfai.high-flyer.cn/haiscale/haiscale_fsdp.html
19
+ # 是否使用rank0_only=True?
20
+ with FSDP.summon_full_params(
21
+ module=model,
22
+ rank0_only=True,
23
+ writeback=False,
24
+ offload_to_cpu=True
25
+ ):
26
+ if TrainerTools().parallel.is_main_process:
27
+ checkpoint_name = os.environ.get('CHECKPOINT_NAME', DEFAULT_CHECKPOINT_NAME)
28
+ if suffix:
29
+ checkpoint_name = f"{checkpoint_name}_{suffix}"
30
+
31
+ ckpt = {'model_state_dict': model.state_dict()}
32
+ if optimizer:
33
+ ckpt.update({'optim_state_dict': optimizer.state_dict()})
34
+
35
+ torch.save(ckpt, checkpoint_name)
36
+
37
+
38
+ def load_fsdp_checkpoint(
39
+ model: nn.Module,
40
+ optimizer: Optional[Optimizer] = None,
41
+ device: Optional[Union[torch.device, str]] = None,
42
+ suffix: Optional[str] = None
43
+ ):
44
+ checkpoint_name = os.environ.get('CHECKPOINT_NAME', DEFAULT_CHECKPOINT_NAME)
45
+ if suffix:
46
+ checkpoint_name = f"{checkpoint_name}_{suffix}"
47
+
48
+ with FSDP.summon_full_params(module=model):
49
+ state_dict = torch.load(checkpoint_name, weights_only=True, map_location=device)
50
+ model.load_state_dict(state_dict['model_state_dict'])
51
+
52
+ if optimizer:
53
+ optimizer.load_state_dict(state_dict['optim_state_dict'])
54
+
55
+
56
+ def _get_fsdp_full_state_dict_on_rank0(model: nn.Module) -> Optional[dict]:
57
+ """
58
+ 可以在任意rank上调用,然后只有rank0有值
59
+ """
60
+
61
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
62
+ with FSDP.summon_full_params(model, writeback=False, offload_to_cpu=True):
63
+ if TrainerTools().parallel.is_main_process:
64
+ return {k: v.clone() for k, v in model.state_dict().items()}
65
+
66
+ return None
67
+
68
+
69
+ def get_fsdp_model_params(model: nn.Module):
70
+ """
71
+ 从一个 FSDP 包装的模型中高效地提取完整的 FP32 state_dict。
72
+ 这个函数会聚合所有分片的参数,并确保所有 rank 都收到一个完整的副本。
73
+ """
74
+
75
+ state_dict = _get_fsdp_full_state_dict_on_rank0(model)
76
+
77
+ # 现在,只有 rank 0 上的 state_dict 是一个有效的字典,其他 rank 上是 None。
78
+ # 我们需要将其广播给所有进程。
79
+ if TrainerTools().parallel.world_size > 1:
80
+ # 准备一个列表,rank 0 有数据,其他 rank 是占位符
81
+ object_list = [state_dict] if TrainerTools().parallel.is_main_process else [None]
82
+ # 执行广播,这个操作是阻塞的,会同步所有进程
83
+ dist.broadcast_object_list(object_list, src=0)
84
+ # 所有进程从列表中获取广播后的 state_dict 副本
85
+ state_dict = object_list[0]
86
+
87
+ return state_dict
@@ -17,7 +17,7 @@ from .generate_utils import batch_generate
17
17
 
18
18
  from .checkpoint import (
19
19
  save_checkpoint,
20
- load_checkpoint_for_eval,
20
+ copy_model_params,
21
21
  save_steps,
22
22
  )
23
23
 
@@ -44,9 +44,6 @@ class GRPOTrainer(Trainer):
44
44
  # 如果pad_sequence不支持padding_side参数,则将改参数置为False,使用反转的方式
45
45
  self._use_origin_pad_sequence = True
46
46
 
47
- # 保存一下train model的checkpoint,方便下面reference_model使用
48
- save_checkpoint(self.train_model, self.optimizer)
49
-
50
47
  def _init_reference_model(self):
51
48
  reference_model = self._new_model(self.train_config)
52
49
 
@@ -296,7 +293,7 @@ class GRPOTrainer(Trainer):
296
293
  aux_loss_coef = self.train_config.loss_config.aux_loss_coef
297
294
 
298
295
  for epoch in range(self.train_config.n_epochs):
299
- load_checkpoint_for_eval(model=self.reference_model, device=device)
296
+ copy_model_params(_from=self.train_model, _to=self.reference_model)
300
297
  self.train_model.train()
301
298
  file_count = len(self.train_config.file_dataset)
302
299
 
@@ -325,11 +322,11 @@ class GRPOTrainer(Trainer):
325
322
 
326
323
  # start generate
327
324
  # 使用单独的模型生成数据, 原因是在deepspeed并行训练时,使用train_model生成数据会卡死
328
- self.generate_model.to(TrainerTools().parallel.device)
329
- self.reference_model.to(TrainerTools().parallel.device)
325
+ self.generate_model.to(device)
326
+ self.reference_model.to(device)
330
327
 
331
328
  # 保存了train_model checkpoint后,这里保证生成模型使用的参数是最新
332
- load_checkpoint_for_eval(self.generate_model, TrainerTools().parallel.device)
329
+ copy_model_params(_from=self.train_model, _to=self.generate_model)
333
330
  # 生成数据
334
331
  rollout_data = self._generate_rollout_data(batch_data)
335
332
 
llm_trainer/parallel.py CHANGED
@@ -64,7 +64,8 @@ class Parallel(ABC):
64
64
  self,
65
65
  model: nn.Module,
66
66
  optimizer: torch.optim.Optimizer,
67
- kwargs: Optional[dict] = None
67
+ kwargs: Optional[dict] = None,
68
+ save_instance: bool = True
68
69
  ) -> Tuple[nn.Module, torch.optim.Optimizer]: ...
69
70
 
70
71
  def process_dataloader(
@@ -21,7 +21,8 @@ class DdpParallel(Parallel):
21
21
  self,
22
22
  model: nn.Module,
23
23
  optimizer: torch.optim.Optimizer,
24
- kwargs: Optional[dict] = None
24
+ kwargs: Optional[dict] = None,
25
+ save_instance: bool = True
25
26
  ) -> Tuple[nn.Module, torch.optim.Optimizer]:
26
27
  model.to(self.device)
27
28
 
@@ -30,10 +31,14 @@ class DdpParallel(Parallel):
30
31
 
31
32
  if self._use_parallel:
32
33
  # self.model = DDP(module=model, broadcast_buffers=False, find_unused_parameters=True)
33
- self.model = DDP(module=model, device_ids=[self._local_rank], output_device=self._local_rank)
34
- self.raw_model = self.model.module
34
+ model = DDP(module=model, device_ids=[self._local_rank], output_device=self._local_rank)
35
+ raw_model = model.module
35
36
  else:
37
+ model = model
38
+ raw_model = model
39
+
40
+ if save_instance:
36
41
  self.model = model
37
- self.raw_model = model
42
+ self.raw_model = raw_model
38
43
 
39
- return self.model, optimizer
44
+ return model, optimizer
@@ -16,16 +16,20 @@ class DsParallel(Parallel):
16
16
  self,
17
17
  model: nn.Module,
18
18
  optimizer: torch.optim.Optimizer,
19
- kwargs: Optional[dict] = None
19
+ kwargs: Optional[dict] = None,
20
+ save_instance: bool = True
20
21
  ) -> Tuple[nn.Module, torch.optim.Optimizer]:
21
22
  """
22
- :param model:
23
- :param optimizer:
24
- :param kwargs:
25
- 参考deepspeed配置
26
- :return:
23
+ :param model:
24
+ :param optimizer:
25
+ :param kwargs:
26
+ 参考deepspeed配置
27
+ :param save_instance
28
+ :return:
27
29
  """
28
- self.raw_model = model
30
+
31
+ if save_instance:
32
+ self.raw_model = model
29
33
 
30
34
  model, optim, _, _ = deepspeed.initialize(
31
35
  model=model,
@@ -34,7 +38,9 @@ class DsParallel(Parallel):
34
38
  config_params=kwargs
35
39
  )
36
40
 
37
- self.model = model
41
+ if save_instance:
42
+ self.model = model
43
+
38
44
  return model, optim
39
45
 
40
46
  def synchronize(self): ...
@@ -28,16 +28,18 @@ class FsdpParallel(Parallel):
28
28
  self,
29
29
  model: nn.Module,
30
30
  optimizer: torch.optim.Optimizer,
31
- kwargs: Optional[dict] = None
31
+ kwargs: Optional[dict] = None,
32
+ save_instance: bool = True
32
33
  ) -> Tuple[nn.Module, torch.optim.Optimizer]:
33
34
  """
34
- :param model:
35
- :param optimizer:
36
- :param kwargs:
37
- "wrap_policy_num_params" int size_based_auto_wrap_policy的最小参数量
38
- "cpu_offload" bool 是否使用cpu卸载
39
- "offload_params" bool 是否卸载参数,在cpu_offload为True时生效
40
- :return:
35
+ :param model:
36
+ :param optimizer:
37
+ :param kwargs:
38
+ "wrap_policy_num_params" int size_based_auto_wrap_policy的最小参数量
39
+ "cpu_offload" bool 是否使用cpu卸载
40
+ "offload_params" bool 是否卸载参数,在cpu_offload为True时生效
41
+ :param save_instance
42
+ :return:
41
43
  """
42
44
 
43
45
  model.to(self.device)
@@ -81,10 +83,10 @@ class FsdpParallel(Parallel):
81
83
  else:
82
84
  mixed_precision = None
83
85
 
84
- self.raw_model = model
86
+ raw_model = model
85
87
 
86
88
  # device_mesh = init_device_mesh("cuda", (self.world_size,))
87
- # self.model = FSDP(
89
+ # model = FSDP(
88
90
  # model,
89
91
  # auto_wrap_policy=auto_wrap_policy,
90
92
  # mixed_precision=mixed_precision,
@@ -93,7 +95,7 @@ class FsdpParallel(Parallel):
93
95
  # device_mesh=device_mesh
94
96
  # )
95
97
 
96
- self.model = FSDP(
98
+ model = FSDP(
97
99
  model,
98
100
  sharding_strategy=ShardingStrategy.FULL_SHARD,
99
101
  auto_wrap_policy=auto_wrap_policy,
@@ -107,9 +109,13 @@ class FsdpParallel(Parallel):
107
109
  # forward_prefetch=True,
108
110
  )
109
111
  else:
112
+ model = model
113
+ raw_model = model
114
+
115
+ if save_instance:
116
+ self.raw_model = raw_model
110
117
  self.model = model
111
- self.raw_model = model
112
118
 
113
- return self.model, optimizer
119
+ return model, optimizer
114
120
 
115
121
 
@@ -12,17 +12,19 @@ class NoneParallel(Parallel):
12
12
  self,
13
13
  model: nn.Module,
14
14
  optimizer: torch.optim.Optimizer,
15
- kwargs: Optional[dict] = None
15
+ kwargs: Optional[dict] = None,
16
+ save_instance: bool = True
16
17
  ) -> Tuple[nn.Module, torch.optim.Optimizer]:
17
18
  model.to(self.device)
18
19
 
19
20
  if self._use_compile:
20
21
  model = torch.compile(model)
21
22
 
22
- self.raw_model = model
23
- self.model = model
23
+ if save_instance:
24
+ self.raw_model = model
25
+ self.model = model
24
26
 
25
- return self.model, optimizer
27
+ return model, optimizer
26
28
 
27
29
 
28
30
 
llm_trainer/tools.py CHANGED
@@ -28,7 +28,7 @@ class TrainerTools:
28
28
  if not hasattr(TrainerTools, "_first_init"):
29
29
  TrainerTools._first_init = True
30
30
 
31
- self.parallel = self.new_parallel()
31
+ self.parallel = self._new_parallel()
32
32
 
33
33
  self.tokenizer = Tokenizer(os.environ.get('TOKENIZERS_TYPE', 'zh_llama'))
34
34
  self.use_amp = 'cuda' in self.parallel.device and not isinstance(self.parallel, DsParallel)
@@ -43,7 +43,7 @@ class TrainerTools:
43
43
  f' use_amp={self.use_amp},'
44
44
  f' dtype={self.dtype}')
45
45
 
46
- def new_parallel(self):
46
+ def _new_parallel(self):
47
47
  parallel_type = os.environ.get('PARALLEL_TYPE', 'none')
48
48
  log(f'parallel_type={parallel_type}')
49
49
  return parallel_types[parallel_type]()
llm_trainer/trainer.py CHANGED
@@ -31,6 +31,7 @@ from .scheduler import (
31
31
  from .checkpoint import (
32
32
  load_checkpoint,
33
33
  save_checkpoint,
34
+ copy_model_params,
34
35
  load_steps,
35
36
  save_steps,
36
37
  )
@@ -416,6 +417,8 @@ class Trainer:
416
417
  self,
417
418
  tag: str
418
419
  ):
420
+ copy_model_params(_from=self.train_model, _to=self.eval_model)
421
+
419
422
  if TrainerTools().parallel.is_main_process:
420
423
  eval_prompt, eval_image_tag = self._get_eval_data()
421
424
  if isinstance(self.train_model, VlmModel) and self.pixel_values_provider and eval_image_tag:
@@ -438,6 +441,8 @@ class Trainer:
438
441
  self,
439
442
  tag: str
440
443
  ):
444
+ copy_model_params(_from=self.train_model, _to=self.eval_model)
445
+
441
446
  if TrainerTools().parallel.is_main_process:
442
447
  eval_prompt, eval_image_tag = self._get_eval_data()
443
448
  if isinstance(self.train_model, VlmModel) and self.pixel_values_provider and eval_image_tag:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: project_llm_trainer
3
- Version: 0.3.6
3
+ Version: 0.4.1
4
4
  Summary: LLM and VLM trainer
5
5
  Author: qibin
6
6
  Author-email: qibin0506@gmail.com
@@ -0,0 +1,35 @@
1
+ llm_trainer/__init__.py,sha256=HWgtTEVeQSnZmEyYQm2K6eFEG4X2QAoigMlB5Z2tcXE,260
2
+ llm_trainer/checkpoint.py,sha256=yZcExxneN2yzvWxRiK-pstMWs35LV7GiOfqcLq-S6vc,5745
3
+ llm_trainer/dataset.py,sha256=4QlOo0SFB5816BUYegQjgobUqTUMQvdmZMM_OEAMSjE,4347
4
+ llm_trainer/dcp.py,sha256=PkD97DyrOtoTKn4FJsfL3VqAy4dxufgjdzJEz8-Cnoc,3635
5
+ llm_trainer/dpo_trainer.py,sha256=rC_I5ipesSlP3gFK_SG2GB8NbgJAMu4K7KLxkAS-aRY,13406
6
+ llm_trainer/ds_checkpoint.py,sha256=nchGocJE2oJnQ_KNN1kw-BkOAEIyTtO8SJt41cuN_xM,4232
7
+ llm_trainer/eval.py,sha256=NDm8PbXLch7xT81xPYPRCNrcrB_Xj5GDJSCxyVwUOp4,1524
8
+ llm_trainer/fsdp_checkpoint.py,sha256=lqZFzHyWyfzuCq_81kQNtJd2qaiMeY1N5BCEMnrJTBw,3192
9
+ llm_trainer/generate_utils.py,sha256=4iM0vyc_1C_iTL31GlS9PR4eZtYaELPRZ02KDSPZA9U,15158
10
+ llm_trainer/grpo_trainer.py,sha256=fqLT48ORSCece_e8dpyt8J7EarDuTnGoJ_eHk7Oy-1k,16177
11
+ llm_trainer/log.py,sha256=LxqTGRNZUGMTSQCePRpk-rYyxSnSIbT4kOdP8Fbzr0M,462
12
+ llm_trainer/loss.py,sha256=Yv3fsaVuZ5AhnGPJOr5vEMb_tM2urR6mCb4DBbrHHI8,6030
13
+ llm_trainer/parallel.py,sha256=DQu8GqEFxD99HQ6hKuIxxyKi-05dMO33eMhImYlPuOI,4468
14
+ llm_trainer/parallel_ddp.py,sha256=Pob9vUlBZnkL4oP1Re11kFob7nufMSE96pn7m7fuOEM,1345
15
+ llm_trainer/parallel_ds.py,sha256=oy8RRxHud3rACWubFlJqqd0pjPEQhKeAPGPQUSdJX2c,1145
16
+ llm_trainer/parallel_fsdp.py,sha256=cQOdY8ou6m8OsR06PpFVn6GiyZlK9nefkcGyszUOIJk,4055
17
+ llm_trainer/parallel_none.py,sha256=TG6Pm829Dg-yQu-97O-EHV3FCARBlNcP47KkGFAs16E,676
18
+ llm_trainer/scheduler.py,sha256=Xz8HhwoRMjRe41sf_NHhpZfkTlEs0I2MYusvMY6hCVw,3531
19
+ llm_trainer/sft_trainer.py,sha256=gxQA7T1o1QGUsHp2CX1Qb_fO5LppBJuNbc0H4ixCYUA,1783
20
+ llm_trainer/tokenizer.py,sha256=A7TYYUbtPf75kjCvWP7yBui4xZBObMk2aPem62YpwpY,6776
21
+ llm_trainer/tools.py,sha256=O45-20wRmh-nyTfU-U-XtjbKAoe7boEIsUvWT_NaKx4,3041
22
+ llm_trainer/train_configs.py,sha256=arnet3tIzgVnwshod08F1jE7r4I7e-SIgMy55IagPnE,15971
23
+ llm_trainer/trainer.py,sha256=hOn-z8kOd67RTuaaNMmdQjlw7N5LIZRHjSt5frpA1xI,25355
24
+ llm_trainer/utils.py,sha256=-ivhMF0d999va13S1wt2uBvtVw8Nvr3uBzhaUFKL04Q,6826
25
+ project_llm_trainer-0.4.1.data/scripts/calc_intermediate_size,sha256=AggpgNHokJiJMbEtVdOnolqr_4bH3i1UYuZNEAzC2Gc,460
26
+ project_llm_trainer-0.4.1.data/scripts/ddp_train,sha256=x81AasaN2-9TwARFFF1l7iV1LmfMQ0bLw0i_CGbOwSw,299
27
+ project_llm_trainer-0.4.1.data/scripts/ds_train,sha256=qL3qc3TcedBCw98UZUjW07ONcErRawLE1HymW2AmscA,265
28
+ project_llm_trainer-0.4.1.data/scripts/plot_loss,sha256=MzFcdJESlVr1srj4Td6-AxPGUKkfB_QEcJwm0Bd-5fU,910
29
+ project_llm_trainer-0.4.1.data/scripts/plot_lr,sha256=w_7XR_x3KYYyboeOVAeu_I4fveLFI-C0wBmRrNlmWUI,894
30
+ project_llm_trainer-0.4.1.data/scripts/py_train,sha256=tOp9TquORQeU8XN5H7OVIk5O0Ypwi34p_GENxTwgwdk,265
31
+ project_llm_trainer-0.4.1.data/scripts/smart_train,sha256=Pmt4Q0to4Hoz82iB9uFPZuz7uahNUbfE7FR1940EBy8,716
32
+ project_llm_trainer-0.4.1.dist-info/METADATA,sha256=9z1AB745r7BzQHNc3j-3N2nOdB9ZRUYsxcM42QoSb1o,195
33
+ project_llm_trainer-0.4.1.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
34
+ project_llm_trainer-0.4.1.dist-info/top_level.txt,sha256=LtRFg28i0QIG7iBCD2t095oSco99LCtkijibS9cMGik,12
35
+ project_llm_trainer-0.4.1.dist-info/RECORD,,
@@ -1,34 +0,0 @@
1
- llm_trainer/__init__.py,sha256=HWgtTEVeQSnZmEyYQm2K6eFEG4X2QAoigMlB5Z2tcXE,260
2
- llm_trainer/checkpoint.py,sha256=Dlkcit0o7Gx6S9QUrIrVp2pTurP9X0zVA7w7ImSuVQU,6049
3
- llm_trainer/dataset.py,sha256=4QlOo0SFB5816BUYegQjgobUqTUMQvdmZMM_OEAMSjE,4347
4
- llm_trainer/dcp.py,sha256=PkD97DyrOtoTKn4FJsfL3VqAy4dxufgjdzJEz8-Cnoc,3635
5
- llm_trainer/dpo_trainer.py,sha256=rEhoVN4gPweX5NYKZaEH7jgWav4w6OQ2x-QRocahYjg,13640
6
- llm_trainer/ds_checkpoint.py,sha256=_svpzqRaa43--DKPputoXAelc6X9vPM0gNQu-hlh6NI,2153
7
- llm_trainer/eval.py,sha256=sCvdYnqWWf5_nuDQN5BHb_YivXLOQW-V0ET9mPu0tPU,2389
8
- llm_trainer/generate_utils.py,sha256=4iM0vyc_1C_iTL31GlS9PR4eZtYaELPRZ02KDSPZA9U,15158
9
- llm_trainer/grpo_trainer.py,sha256=1oH0argbpITlzAEkGKW8F9kZPr67bcb95FGOVpP8XTM,16385
10
- llm_trainer/log.py,sha256=LxqTGRNZUGMTSQCePRpk-rYyxSnSIbT4kOdP8Fbzr0M,462
11
- llm_trainer/loss.py,sha256=Yv3fsaVuZ5AhnGPJOr5vEMb_tM2urR6mCb4DBbrHHI8,6030
12
- llm_trainer/parallel.py,sha256=2VJtW3Gq2c1yS_LdcrNhk7B12prFwBmFnKhvV8FS2d8,4428
13
- llm_trainer/parallel_ddp.py,sha256=Gz-3LZ6LKmqlNwxrnGRC4uKoqoSxCvp9JHejIBSQp3c,1238
14
- llm_trainer/parallel_ds.py,sha256=W_PkczyAlgffCRcQadN-Pf7H7HM7TU26v5W63jKELFM,990
15
- llm_trainer/parallel_fsdp.py,sha256=u9XbbVTzcsMcaf-aQFrC_QwWsDRGoEpRmgvu1cKNtgk,3887
16
- llm_trainer/parallel_none.py,sha256=a6tt3aBmCq5rSP7n2I-sF-hsZ992BbLbpbxutDCFJfs,607
17
- llm_trainer/scheduler.py,sha256=Xz8HhwoRMjRe41sf_NHhpZfkTlEs0I2MYusvMY6hCVw,3531
18
- llm_trainer/sft_trainer.py,sha256=gxQA7T1o1QGUsHp2CX1Qb_fO5LppBJuNbc0H4ixCYUA,1783
19
- llm_trainer/tokenizer.py,sha256=A7TYYUbtPf75kjCvWP7yBui4xZBObMk2aPem62YpwpY,6776
20
- llm_trainer/tools.py,sha256=AhfjN9oln5Pyif1SgCWwgQg-Q5acTCd9xpz4L26QUjA,3039
21
- llm_trainer/train_configs.py,sha256=arnet3tIzgVnwshod08F1jE7r4I7e-SIgMy55IagPnE,15971
22
- llm_trainer/trainer.py,sha256=2cO-MwWJsgPbTisOp_HVIdA0SVodFZx3M8lafarnLdw,25188
23
- llm_trainer/utils.py,sha256=-ivhMF0d999va13S1wt2uBvtVw8Nvr3uBzhaUFKL04Q,6826
24
- project_llm_trainer-0.3.6.data/scripts/calc_intermediate_size,sha256=AggpgNHokJiJMbEtVdOnolqr_4bH3i1UYuZNEAzC2Gc,460
25
- project_llm_trainer-0.3.6.data/scripts/ddp_train,sha256=x81AasaN2-9TwARFFF1l7iV1LmfMQ0bLw0i_CGbOwSw,299
26
- project_llm_trainer-0.3.6.data/scripts/ds_train,sha256=qL3qc3TcedBCw98UZUjW07ONcErRawLE1HymW2AmscA,265
27
- project_llm_trainer-0.3.6.data/scripts/plot_loss,sha256=MzFcdJESlVr1srj4Td6-AxPGUKkfB_QEcJwm0Bd-5fU,910
28
- project_llm_trainer-0.3.6.data/scripts/plot_lr,sha256=w_7XR_x3KYYyboeOVAeu_I4fveLFI-C0wBmRrNlmWUI,894
29
- project_llm_trainer-0.3.6.data/scripts/py_train,sha256=tOp9TquORQeU8XN5H7OVIk5O0Ypwi34p_GENxTwgwdk,265
30
- project_llm_trainer-0.3.6.data/scripts/smart_train,sha256=Pmt4Q0to4Hoz82iB9uFPZuz7uahNUbfE7FR1940EBy8,716
31
- project_llm_trainer-0.3.6.dist-info/METADATA,sha256=1ClKvVThd4g8uToJQevDXmjAI8gbVYzDfYImWXHFRqI,195
32
- project_llm_trainer-0.3.6.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
33
- project_llm_trainer-0.3.6.dist-info/top_level.txt,sha256=LtRFg28i0QIG7iBCD2t095oSco99LCtkijibS9cMGik,12
34
- project_llm_trainer-0.3.6.dist-info/RECORD,,