project-llm-trainer 0.12.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- llm_trainer/__init__.py +13 -0
- llm_trainer/base_trainer.py +683 -0
- llm_trainer/checkpoint.py +126 -0
- llm_trainer/dataset.py +335 -0
- llm_trainer/dpo_trainer.py +297 -0
- llm_trainer/ds_checkpoint.py +63 -0
- llm_trainer/eval.py +33 -0
- llm_trainer/generate_utils.py +450 -0
- llm_trainer/grpo_trainer.py +385 -0
- llm_trainer/log.py +65 -0
- llm_trainer/loss.py +268 -0
- llm_trainer/parallel.py +220 -0
- llm_trainer/partition_utils.py +219 -0
- llm_trainer/ppo_trainer.py +521 -0
- llm_trainer/scheduler.py +179 -0
- llm_trainer/sft_trainer.py +97 -0
- llm_trainer/tokenizer.py +162 -0
- llm_trainer/tools.py +116 -0
- llm_trainer/train_configs.py +324 -0
- llm_trainer/trainer.py +34 -0
- llm_trainer/utils.py +547 -0
- project_llm_trainer-0.12.3.data/scripts/calc_intermediate_size +15 -0
- project_llm_trainer-0.12.3.data/scripts/ddp_train +21 -0
- project_llm_trainer-0.12.3.data/scripts/ds_train +17 -0
- project_llm_trainer-0.12.3.data/scripts/plot_log +69 -0
- project_llm_trainer-0.12.3.data/scripts/plot_lr +45 -0
- project_llm_trainer-0.12.3.data/scripts/py_train +12 -0
- project_llm_trainer-0.12.3.data/scripts/smart_train +37 -0
- project_llm_trainer-0.12.3.dist-info/METADATA +9 -0
- project_llm_trainer-0.12.3.dist-info/RECORD +32 -0
- project_llm_trainer-0.12.3.dist-info/WHEEL +5 -0
- project_llm_trainer-0.12.3.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,521 @@
|
|
|
1
|
+
from typing import Tuple, List, Union, Callable, Optional
|
|
2
|
+
import gc
|
|
3
|
+
import torch
|
|
4
|
+
import torch.distributed as dist
|
|
5
|
+
from torch.utils.data import Dataset
|
|
6
|
+
import torch.nn as nn
|
|
7
|
+
|
|
8
|
+
from llm_model import LlmModel, VlmModel
|
|
9
|
+
|
|
10
|
+
from .base_trainer import BaseTrainer
|
|
11
|
+
from .train_configs import TrainConfig
|
|
12
|
+
from .dataset import RLDataset
|
|
13
|
+
from .loss import PPOLoss
|
|
14
|
+
from .tools import TrainerTools
|
|
15
|
+
from .generate_utils import batch_generate
|
|
16
|
+
from .utils import (
|
|
17
|
+
autocast,
|
|
18
|
+
left_pad_sequence,
|
|
19
|
+
log_softmax,
|
|
20
|
+
masked_whiten,
|
|
21
|
+
disable_dropout_in_model,
|
|
22
|
+
calc_position_ids
|
|
23
|
+
)
|
|
24
|
+
from .partition_utils import unwrap_model_for_generation
|
|
25
|
+
from .log import Logger
|
|
26
|
+
from .checkpoint import (
|
|
27
|
+
save_checkpoint,
|
|
28
|
+
save_steps,
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class ValueModel(nn.Module):
|
|
33
|
+
def __init__(self, base_model: Union[LlmModel, VlmModel]):
|
|
34
|
+
super().__init__()
|
|
35
|
+
self.base_model = base_model
|
|
36
|
+
self.value_head = nn.Linear(base_model.config.hidden_size, 1, bias=True)
|
|
37
|
+
self.value_head.weight.data.normal_(mean=0.0, std=0.01)
|
|
38
|
+
self.value_head.bias.data.zero_()
|
|
39
|
+
|
|
40
|
+
def forward(self, *args, **kwargs) -> torch.Tensor:
|
|
41
|
+
outputs = self.base_model(*args, **kwargs)
|
|
42
|
+
# [batch_size, seq_len, hidden_size]
|
|
43
|
+
last_hidden_state = outputs['hidden_states']
|
|
44
|
+
# [batch_size, seq_len, 1]
|
|
45
|
+
values = self.value_head(last_hidden_state)
|
|
46
|
+
# [batch_size, seq_len]
|
|
47
|
+
return values.squeeze(-1)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class PolicyAndValueModelWrapper(nn.Module):
|
|
51
|
+
def __init__(self, policy_model: nn.Module, value_model: nn.Module):
|
|
52
|
+
super().__init__()
|
|
53
|
+
self.policy_model = policy_model
|
|
54
|
+
self.value_model = value_model
|
|
55
|
+
|
|
56
|
+
def forward(self, *args, **kwargs):
|
|
57
|
+
return self.policy_model(*args, **kwargs), self.value_model(*args, **kwargs)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
class PPOTrainer(BaseTrainer):
|
|
61
|
+
"""
|
|
62
|
+
reward_func(prompt_ids, complete_ids, answer_ids) -> scores
|
|
63
|
+
"""
|
|
64
|
+
|
|
65
|
+
def __init__(
|
|
66
|
+
self,
|
|
67
|
+
*,
|
|
68
|
+
train_config: TrainConfig,
|
|
69
|
+
reward_func: Callable[[List[torch.Tensor], torch.Tensor, List[Optional[torch.Tensor]]], List[float]],
|
|
70
|
+
eval_prompts: List[str]
|
|
71
|
+
):
|
|
72
|
+
self.ppo_config = train_config.ppo_config
|
|
73
|
+
|
|
74
|
+
super().__init__(
|
|
75
|
+
train_config=train_config,
|
|
76
|
+
eval_prompts=eval_prompts,
|
|
77
|
+
gradient_accumulation_steps=self.ppo_config.gradient_accumulation_steps
|
|
78
|
+
)
|
|
79
|
+
self.reward_func = reward_func
|
|
80
|
+
|
|
81
|
+
self.ref_model = self._init_ref_model()
|
|
82
|
+
|
|
83
|
+
if self.train_config.ppo_config.normalize_rewards and self.train_config.ppo_config.whiten_rewards:
|
|
84
|
+
self.train_config.ppo_config.whiten_rewards = False
|
|
85
|
+
if TrainerTools().parallel.is_main_process:
|
|
86
|
+
Logger.std_log('WARN: ppo_config.normalize_rewards is enabled, ppo_config.whiten_rewards must be disabled.')
|
|
87
|
+
|
|
88
|
+
def _init_train_model_and_optim(self, initial_lr: float):
|
|
89
|
+
policy_model = self._new_model(self.train_config)
|
|
90
|
+
value_model = ValueModel(self._new_model(self.train_config))
|
|
91
|
+
train_model = PolicyAndValueModelWrapper(policy_model, value_model)
|
|
92
|
+
|
|
93
|
+
if self.train_config.init_state_dict:
|
|
94
|
+
policy_model.load_state_dict(self.train_config.init_state_dict)
|
|
95
|
+
value_model.base_model.load_state_dict(self.train_config.init_state_dict)
|
|
96
|
+
self.train_config.init_state_dict = None
|
|
97
|
+
|
|
98
|
+
if self.train_config.ppo_config.value_model_checkpoint:
|
|
99
|
+
value_model.load_state_dict(self.train_config.ppo_config.value_model_checkpoint)
|
|
100
|
+
self.train_config.ppo_config.value_model_checkpoint = {}
|
|
101
|
+
|
|
102
|
+
if TrainerTools().parallel.is_main_process:
|
|
103
|
+
for name, model in zip(['policy', 'value'], [policy_model, value_model]):
|
|
104
|
+
total_params = sum(p.numel() for p in model.parameters())
|
|
105
|
+
Logger.std_log(f"Total number of {name} model parameters: {total_params:,}")
|
|
106
|
+
|
|
107
|
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
108
|
+
Logger.std_log(f"Trainable number of {name} model parameters: {trainable_params:,}")
|
|
109
|
+
|
|
110
|
+
total_size_bytes = total_params * 4
|
|
111
|
+
total_size_mb = total_size_bytes / (1024 * 1024)
|
|
112
|
+
Logger.std_log(f"Total size of {name} model model: {total_size_mb:.2f} MB")
|
|
113
|
+
|
|
114
|
+
model, optim = TrainerTools().parallel.process(
|
|
115
|
+
model=train_model,
|
|
116
|
+
optimizer=self._config_optim(train_model, initial_lr),
|
|
117
|
+
kwargs=self.parallel_kwargs
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
return model, optim
|
|
121
|
+
|
|
122
|
+
def _init_ref_model(self):
|
|
123
|
+
ref_model = self._new_model(self.train_config)
|
|
124
|
+
|
|
125
|
+
if self.train_config.ppo_config.ref_model_checkpoint:
|
|
126
|
+
ref_model.load_state_dict(self.train_config.ppo_config.ref_model_checkpoint)
|
|
127
|
+
self.train_config.ppo_config.ref_model_checkpoint = {}
|
|
128
|
+
|
|
129
|
+
ref_model.eval()
|
|
130
|
+
for param in ref_model.parameters():
|
|
131
|
+
param.requires_grad = False
|
|
132
|
+
|
|
133
|
+
ref_model, _ = TrainerTools().parallel.process(
|
|
134
|
+
model=ref_model,
|
|
135
|
+
optimizer=None,
|
|
136
|
+
kwargs=self._init_ref_model_args(),
|
|
137
|
+
save_instance=False
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
return ref_model
|
|
141
|
+
|
|
142
|
+
def _new_model(self, train_config: TrainConfig):
|
|
143
|
+
model = super()._new_model(train_config)
|
|
144
|
+
disable_dropout_in_model(model)
|
|
145
|
+
return model
|
|
146
|
+
|
|
147
|
+
def _init_loss(self):
|
|
148
|
+
ppo_config = self.train_config.ppo_config
|
|
149
|
+
criterion = PPOLoss(
|
|
150
|
+
clip_eps=ppo_config.clip_eps,
|
|
151
|
+
vf_coef=ppo_config.vf_coef
|
|
152
|
+
)
|
|
153
|
+
return criterion, None
|
|
154
|
+
|
|
155
|
+
def _convert_train_args(self) -> Tuple[dict, dict, dict]:
|
|
156
|
+
parallel_kwargs, data_loader_kwargs, sampler_kwargs = super()._convert_train_args()
|
|
157
|
+
data_loader_kwargs.update({"collate_fn": lambda x: x})
|
|
158
|
+
return parallel_kwargs, data_loader_kwargs, sampler_kwargs
|
|
159
|
+
|
|
160
|
+
def _create_dataset(self, file_idx) -> Tuple[Dataset, str]:
|
|
161
|
+
file_path = self.train_config.file_dataset[file_idx]
|
|
162
|
+
return RLDataset(file_path), file_path
|
|
163
|
+
|
|
164
|
+
def _calc_loss(self, inputs, attention_mask, logits, labels): ...
|
|
165
|
+
|
|
166
|
+
def _check_eval_model(self, eval_model):
|
|
167
|
+
return eval_model.policy_model
|
|
168
|
+
|
|
169
|
+
def _compute_advantages_and_returns(
|
|
170
|
+
self,
|
|
171
|
+
rewards: torch.Tensor,
|
|
172
|
+
values: torch.Tensor,
|
|
173
|
+
last_values: torch.Tensor,
|
|
174
|
+
completion_mask: torch.Tensor,
|
|
175
|
+
dones: torch.Tensor,
|
|
176
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
177
|
+
gamma, lam = self.train_config.ppo_config.gamma, self.train_config.ppo_config.lam
|
|
178
|
+
advantages_reversed = []
|
|
179
|
+
last_gae_lam = 0
|
|
180
|
+
seq_len = rewards.size(1)
|
|
181
|
+
|
|
182
|
+
values = values * completion_mask
|
|
183
|
+
for t in reversed(range(seq_len)):
|
|
184
|
+
if t == seq_len - 1:
|
|
185
|
+
next_values = torch.where(dones, 0.0, last_values)
|
|
186
|
+
else:
|
|
187
|
+
next_values = values[:, t + 1]
|
|
188
|
+
|
|
189
|
+
delta = rewards[:, t] + gamma * next_values - values[:, t]
|
|
190
|
+
last_gae_lam = delta + gamma * lam * last_gae_lam * completion_mask[:, t]
|
|
191
|
+
advantages_reversed.append(last_gae_lam)
|
|
192
|
+
|
|
193
|
+
advantages = torch.stack(advantages_reversed[::-1], dim=1)
|
|
194
|
+
returns = advantages + values
|
|
195
|
+
|
|
196
|
+
return advantages * completion_mask, returns * completion_mask
|
|
197
|
+
|
|
198
|
+
def _generate_rollout_data(self, batch_data: List[dict]) -> dict:
|
|
199
|
+
ppo_config = self.train_config.ppo_config
|
|
200
|
+
device = TrainerTools().parallel.device
|
|
201
|
+
pad_token_id = TrainerTools().tokenizer.pad
|
|
202
|
+
eos_token_id = TrainerTools().tokenizer.end
|
|
203
|
+
|
|
204
|
+
prompts = [item["prompt"] for item in batch_data]
|
|
205
|
+
answers = [item["answer"] for item in batch_data]
|
|
206
|
+
|
|
207
|
+
prompt_ids = left_pad_sequence(prompts, padding_value=pad_token_id)
|
|
208
|
+
prompt_ids = prompt_ids.to(device)
|
|
209
|
+
prompt_masks = (prompt_ids != pad_token_id)
|
|
210
|
+
prompt_len = prompt_ids.shape[1]
|
|
211
|
+
|
|
212
|
+
with torch.no_grad():
|
|
213
|
+
with unwrap_model_for_generation(self.train_model) as unwrapped_model:
|
|
214
|
+
full_ids, logitss = batch_generate(
|
|
215
|
+
model=unwrapped_model.policy_model,
|
|
216
|
+
tokens=prompt_ids,
|
|
217
|
+
attention_mask=prompt_masks,
|
|
218
|
+
max_new_tokens=ppo_config.gen_max_new_tokens,
|
|
219
|
+
temperature=ppo_config.gen_temperature,
|
|
220
|
+
k=ppo_config.gen_k,
|
|
221
|
+
p=ppo_config.gen_p,
|
|
222
|
+
suppress_tokens=ppo_config.gen_suppress_tokens,
|
|
223
|
+
device=device
|
|
224
|
+
)
|
|
225
|
+
completion_ids = full_ids[:, prompt_len:]
|
|
226
|
+
full_attention_mask = (full_ids != pad_token_id)
|
|
227
|
+
full_position_ids = calc_position_ids(full_attention_mask)
|
|
228
|
+
|
|
229
|
+
with autocast(TrainerTools().parallel.device_type):
|
|
230
|
+
value_output = unwrapped_model.value_model(
|
|
231
|
+
full_ids,
|
|
232
|
+
attention_mask=full_attention_mask,
|
|
233
|
+
position_ids=full_position_ids
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
old_log_probs = log_softmax(logitss.float(), completion_ids)
|
|
237
|
+
|
|
238
|
+
with unwrap_model_for_generation(self.ref_model) as unwrapped_ref_model:
|
|
239
|
+
ref_outputs = unwrapped_ref_model(
|
|
240
|
+
full_ids,
|
|
241
|
+
attention_mask=full_attention_mask,
|
|
242
|
+
position_ids=full_position_ids
|
|
243
|
+
)
|
|
244
|
+
ref_logits_full = ref_outputs['logits']
|
|
245
|
+
|
|
246
|
+
ref_logits_completion = ref_logits_full[:, prompt_len - 1: -1]
|
|
247
|
+
ref_log_probs_completion = log_softmax(ref_logits_completion.float(), completion_ids)
|
|
248
|
+
|
|
249
|
+
dones = torch.any(completion_ids == eos_token_id, dim=1)
|
|
250
|
+
rewards = torch.zeros_like(completion_ids, dtype=torch.float32, device=device)
|
|
251
|
+
completion_mask = (completion_ids != pad_token_id)
|
|
252
|
+
|
|
253
|
+
if ppo_config.kl_beta > 0.0:
|
|
254
|
+
logr = ref_log_probs_completion - old_log_probs
|
|
255
|
+
kl = -logr if ppo_config.kl_estimator == "k1" else (logr.exp() - 1) - logr
|
|
256
|
+
kl_rewards = -ppo_config.kl_beta * kl
|
|
257
|
+
rewards += kl_rewards * completion_mask
|
|
258
|
+
|
|
259
|
+
env_rewards_tensor = torch.tensor(
|
|
260
|
+
self.reward_func(prompts, completion_ids, answers),
|
|
261
|
+
dtype=torch.float32,
|
|
262
|
+
device=device
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
if ppo_config.missing_eos_penalty is not None:
|
|
266
|
+
env_rewards_tensor[~dones] -= ppo_config.missing_eos_penalty
|
|
267
|
+
|
|
268
|
+
raw_reward_mean = env_rewards_tensor.mean()
|
|
269
|
+
if self.train_config.ppo_config.normalize_rewards:
|
|
270
|
+
batch_std = env_rewards_tensor.std()
|
|
271
|
+
if torch.isnan(batch_std) or batch_std < 1e-8:
|
|
272
|
+
batch_std = 1.0
|
|
273
|
+
|
|
274
|
+
env_rewards_tensor = (env_rewards_tensor - raw_reward_mean) / batch_std
|
|
275
|
+
|
|
276
|
+
last_token_indices = completion_mask.sum(dim=1) - 1
|
|
277
|
+
valid_indices_mask = last_token_indices >= 0
|
|
278
|
+
|
|
279
|
+
if valid_indices_mask.any():
|
|
280
|
+
valid_batch_indices = torch.arange(prompt_ids.size(0), device=device)[valid_indices_mask]
|
|
281
|
+
valid_last_token_indices = last_token_indices[valid_indices_mask]
|
|
282
|
+
valid_env_rewards = env_rewards_tensor[valid_indices_mask]
|
|
283
|
+
rewards[valid_batch_indices, valid_last_token_indices] += valid_env_rewards
|
|
284
|
+
|
|
285
|
+
return {
|
|
286
|
+
'prompt_ids': prompt_ids.detach(),
|
|
287
|
+
'completion_ids': completion_ids.detach(),
|
|
288
|
+
'old_log_probs': old_log_probs.detach(),
|
|
289
|
+
'values': value_output.detach(),
|
|
290
|
+
'rewards': rewards.detach(),
|
|
291
|
+
'env_rewards': raw_reward_mean.detach(),
|
|
292
|
+
'dones': dones.detach(),
|
|
293
|
+
}
|
|
294
|
+
|
|
295
|
+
def _ppo_learning_phase(self, rollout_data: dict):
|
|
296
|
+
ppo_config = self.train_config.ppo_config
|
|
297
|
+
|
|
298
|
+
prompt_ids: torch.Tensor = rollout_data['prompt_ids']
|
|
299
|
+
completion_ids: torch.Tensor = rollout_data['completion_ids']
|
|
300
|
+
old_log_probs: torch.Tensor = rollout_data['old_log_probs']
|
|
301
|
+
old_values: torch.Tensor = rollout_data['values']
|
|
302
|
+
rewards: torch.Tensor = rollout_data['rewards']
|
|
303
|
+
dones: torch.Tensor = rollout_data['dones']
|
|
304
|
+
|
|
305
|
+
prompt_len = prompt_ids.shape[1]
|
|
306
|
+
batch_size = prompt_ids.shape[0]
|
|
307
|
+
|
|
308
|
+
values_for_gae = old_values[:, prompt_len - 1: -1]
|
|
309
|
+
last_values = old_values[:, -1]
|
|
310
|
+
assert values_for_gae.shape[1] == completion_ids.shape[1]
|
|
311
|
+
|
|
312
|
+
completion_mask: torch.Tensor = (completion_ids != TrainerTools().tokenizer.pad)
|
|
313
|
+
|
|
314
|
+
if ppo_config.whiten_rewards:
|
|
315
|
+
rewards = masked_whiten(rewards, completion_mask, shift_mean=False)
|
|
316
|
+
rewards = torch.masked_fill(rewards, ~completion_mask, 0.0)
|
|
317
|
+
|
|
318
|
+
advantages, returns = self._compute_advantages_and_returns(
|
|
319
|
+
rewards, values_for_gae, last_values, completion_mask, dones
|
|
320
|
+
)
|
|
321
|
+
|
|
322
|
+
advantages_whitened = masked_whiten(advantages, completion_mask, shift_mean=True)
|
|
323
|
+
advantages_whitened = torch.masked_fill(advantages_whitened, ~completion_mask, 0.0)
|
|
324
|
+
|
|
325
|
+
input_ids = torch.cat((prompt_ids, completion_ids), dim=1)
|
|
326
|
+
attention_mask = (input_ids != TrainerTools().tokenizer.pad)
|
|
327
|
+
|
|
328
|
+
ppo_stats = {
|
|
329
|
+
"loss": 0.0, "moe_aux_loss": 0.0, "actor_loss": 0.0,
|
|
330
|
+
"value_loss": 0.0, "approx_kl": 0.0, "clip_frac": 0.0
|
|
331
|
+
}
|
|
332
|
+
|
|
333
|
+
grad_acc_steps = max(1, self.gradient_accumulation_steps)
|
|
334
|
+
ppo_batch_size = ppo_config.ppo_batch_size
|
|
335
|
+
num_micro_batches = (batch_size + ppo_batch_size - 1) // ppo_batch_size
|
|
336
|
+
total_micro_batches_processed = 0
|
|
337
|
+
|
|
338
|
+
for ppo_epoch in range(ppo_config.ppo_epochs):
|
|
339
|
+
indices = torch.randperm(batch_size, device=TrainerTools().parallel.device)
|
|
340
|
+
|
|
341
|
+
for i in range(0, batch_size, ppo_batch_size):
|
|
342
|
+
mini_batch_indices = indices[i:i + ppo_batch_size]
|
|
343
|
+
micro_batch_idx = i // ppo_batch_size
|
|
344
|
+
is_last_micro_batch = (micro_batch_idx == num_micro_batches - 1)
|
|
345
|
+
need_update_grad = ((micro_batch_idx + 1) % grad_acc_steps == 0) or is_last_micro_batch
|
|
346
|
+
|
|
347
|
+
if is_last_micro_batch:
|
|
348
|
+
remainder = (micro_batch_idx + 1) % grad_acc_steps
|
|
349
|
+
actual_acc_steps = remainder if remainder > 0 else grad_acc_steps
|
|
350
|
+
else:
|
|
351
|
+
actual_acc_steps = grad_acc_steps
|
|
352
|
+
|
|
353
|
+
if TrainerTools().parallel.parallel_train:
|
|
354
|
+
self.train_model.require_backward_grad_sync = need_update_grad
|
|
355
|
+
|
|
356
|
+
mb_input_ids = input_ids[mini_batch_indices]
|
|
357
|
+
mb_attention_mask = attention_mask[mini_batch_indices]
|
|
358
|
+
mb_completion_ids = completion_ids[mini_batch_indices]
|
|
359
|
+
mb_completion_mask = completion_mask[mini_batch_indices]
|
|
360
|
+
mb_old_log_probs = old_log_probs[mini_batch_indices]
|
|
361
|
+
mb_values = values_for_gae[mini_batch_indices]
|
|
362
|
+
mb_returns = returns[mini_batch_indices]
|
|
363
|
+
mb_advantages = advantages_whitened[mini_batch_indices]
|
|
364
|
+
mb_position_ids = calc_position_ids(mb_attention_mask)
|
|
365
|
+
|
|
366
|
+
with autocast(TrainerTools().parallel.device_type):
|
|
367
|
+
policy_output, value_output = self.train_model(
|
|
368
|
+
mb_input_ids,
|
|
369
|
+
attention_mask=mb_attention_mask,
|
|
370
|
+
position_ids=mb_position_ids
|
|
371
|
+
)
|
|
372
|
+
|
|
373
|
+
target_dtype = policy_output['logits'].dtype
|
|
374
|
+
mb_old_log_probs = mb_old_log_probs.to(target_dtype)
|
|
375
|
+
mb_values = mb_values.to(target_dtype)
|
|
376
|
+
mb_returns = mb_returns.to(target_dtype)
|
|
377
|
+
mb_advantages = mb_advantages.to(target_dtype)
|
|
378
|
+
|
|
379
|
+
logits_completion = policy_output['logits'][:, prompt_len - 1: -1]
|
|
380
|
+
current_log_probs = log_softmax(logits_completion, mb_completion_ids)
|
|
381
|
+
current_values = value_output[:, prompt_len - 1: -1]
|
|
382
|
+
|
|
383
|
+
loss, actor_loss, value_loss, approx_kl, clip_frac = self.criterion(
|
|
384
|
+
log_probs=current_log_probs,
|
|
385
|
+
old_log_probs=mb_old_log_probs,
|
|
386
|
+
values=current_values,
|
|
387
|
+
old_values=mb_values,
|
|
388
|
+
returns=mb_returns,
|
|
389
|
+
advantages=mb_advantages,
|
|
390
|
+
mask=mb_completion_mask
|
|
391
|
+
)
|
|
392
|
+
|
|
393
|
+
aux_loss = torch.tensor(0.0, device=loss.device, dtype=loss.dtype)
|
|
394
|
+
if policy_output.get('aux_loss') and self.train_config.loss_config.aux_loss_coef:
|
|
395
|
+
aux_loss = self.train_config.loss_config.aux_loss_coef * policy_output['aux_loss']
|
|
396
|
+
|
|
397
|
+
total_loss = loss + aux_loss
|
|
398
|
+
scaled_total_loss = total_loss / actual_acc_steps
|
|
399
|
+
self._backward_loss(scaled_total_loss)
|
|
400
|
+
|
|
401
|
+
ppo_stats["loss"] += total_loss.detach().item()
|
|
402
|
+
ppo_stats["moe_aux_loss"] += aux_loss.detach().item()
|
|
403
|
+
ppo_stats["actor_loss"] += actor_loss.detach().item()
|
|
404
|
+
ppo_stats["value_loss"] += value_loss.detach().item()
|
|
405
|
+
ppo_stats["approx_kl"] += approx_kl.detach().item()
|
|
406
|
+
ppo_stats["clip_frac"] += clip_frac.detach().item()
|
|
407
|
+
total_micro_batches_processed += 1
|
|
408
|
+
|
|
409
|
+
if need_update_grad:
|
|
410
|
+
self._apply_grad_clipping()
|
|
411
|
+
self._apply_step()
|
|
412
|
+
|
|
413
|
+
if total_micro_batches_processed > 0:
|
|
414
|
+
for key in ppo_stats:
|
|
415
|
+
ppo_stats[key] /= total_micro_batches_processed
|
|
416
|
+
|
|
417
|
+
return ppo_stats
|
|
418
|
+
|
|
419
|
+
def train(self):
|
|
420
|
+
global_steps = 0
|
|
421
|
+
skipping_train = False
|
|
422
|
+
|
|
423
|
+
for epoch in range(self.train_config.n_epochs):
|
|
424
|
+
file_count = len(self.train_config.file_dataset)
|
|
425
|
+
for file_idx in range(file_count):
|
|
426
|
+
dataset, file_path = self._create_dataset(file_idx)
|
|
427
|
+
train_data_loader = TrainerTools().parallel.process_dataloader(
|
|
428
|
+
dataset=dataset,
|
|
429
|
+
data_loader_kwargs=self.data_loader_kwargs,
|
|
430
|
+
sampler_kwargs=self.sampler_kwargs
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
last_ckpt_batch = 0
|
|
434
|
+
batch_count_per_file = len(train_data_loader)
|
|
435
|
+
|
|
436
|
+
TrainerTools().parallel.on_epoch_start(epoch)
|
|
437
|
+
self._on_file_start(epoch, file_path)
|
|
438
|
+
|
|
439
|
+
for batch, batch_data in enumerate(train_data_loader):
|
|
440
|
+
global_steps += 1
|
|
441
|
+
if global_steps < self.last_global_steps:
|
|
442
|
+
skipping_train = True
|
|
443
|
+
continue
|
|
444
|
+
|
|
445
|
+
if skipping_train:
|
|
446
|
+
TrainerTools().parallel.wait('skip train')
|
|
447
|
+
skipping_train = False
|
|
448
|
+
|
|
449
|
+
rollout_data = self._generate_rollout_data(batch_data)
|
|
450
|
+
torch.cuda.empty_cache()
|
|
451
|
+
|
|
452
|
+
try:
|
|
453
|
+
ppo_stats = self._ppo_learning_phase(rollout_data)
|
|
454
|
+
|
|
455
|
+
stats_tensor = torch.tensor([
|
|
456
|
+
ppo_stats['loss'],
|
|
457
|
+
ppo_stats['moe_aux_loss'],
|
|
458
|
+
ppo_stats['actor_loss'],
|
|
459
|
+
ppo_stats['value_loss'],
|
|
460
|
+
ppo_stats['approx_kl'],
|
|
461
|
+
ppo_stats['clip_frac'],
|
|
462
|
+
rollout_data['env_rewards'].item()
|
|
463
|
+
], device=TrainerTools().parallel.device)
|
|
464
|
+
|
|
465
|
+
if TrainerTools().parallel.parallel_train:
|
|
466
|
+
dist.all_reduce(stats_tensor, op=dist.ReduceOp.AVG)
|
|
467
|
+
|
|
468
|
+
ppo_stats['loss'] = stats_tensor[0].item()
|
|
469
|
+
ppo_stats['moe_aux_loss'] = stats_tensor[1].item()
|
|
470
|
+
ppo_stats['actor_loss'] = stats_tensor[2].item()
|
|
471
|
+
ppo_stats['value_loss'] = stats_tensor[3].item()
|
|
472
|
+
ppo_stats['approx_kl'] = stats_tensor[4].item()
|
|
473
|
+
ppo_stats['clip_frac'] = stats_tensor[5].item()
|
|
474
|
+
reward_value = stats_tensor[6].item()
|
|
475
|
+
|
|
476
|
+
self._log(
|
|
477
|
+
keys={
|
|
478
|
+
'epoch': epoch,
|
|
479
|
+
'file': f'{file_idx + 1}/{file_count}',
|
|
480
|
+
'batch': f'{batch}/{batch_count_per_file}'
|
|
481
|
+
},
|
|
482
|
+
values={
|
|
483
|
+
'loss': ppo_stats['loss'],
|
|
484
|
+
'moe_aux_loss': ppo_stats['moe_aux_loss'],
|
|
485
|
+
'actor_loss': ppo_stats['actor_loss'],
|
|
486
|
+
'value_loss': ppo_stats['value_loss'],
|
|
487
|
+
'approx_kl': ppo_stats['approx_kl'],
|
|
488
|
+
'clip_frac': ppo_stats['clip_frac'],
|
|
489
|
+
'rewards': reward_value
|
|
490
|
+
}
|
|
491
|
+
)
|
|
492
|
+
except Exception as e:
|
|
493
|
+
self._on_exception(e, epoch, batch)
|
|
494
|
+
finally:
|
|
495
|
+
save_steps(global_steps=global_steps, lr_scheduler=self.lr_scheduler)
|
|
496
|
+
|
|
497
|
+
if (batch - last_ckpt_batch) >= self.train_config.eval_config.eval_batch_interval:
|
|
498
|
+
save_checkpoint(model=self.train_model, optimizer=self.optimizer)
|
|
499
|
+
last_ckpt_batch = batch
|
|
500
|
+
self._on_batch_end(tag=f'epoch:{epoch}/batch:{batch}')
|
|
501
|
+
|
|
502
|
+
torch.cuda.empty_cache()
|
|
503
|
+
|
|
504
|
+
# 一个文件训练结束后,清理内存
|
|
505
|
+
del train_data_loader
|
|
506
|
+
del dataset
|
|
507
|
+
if hasattr(TrainerTools().parallel, '_sampler'):
|
|
508
|
+
TrainerTools().parallel._sampler = None
|
|
509
|
+
|
|
510
|
+
gc.collect()
|
|
511
|
+
torch.cuda.empty_cache()
|
|
512
|
+
|
|
513
|
+
# end epoch
|
|
514
|
+
if not skipping_train:
|
|
515
|
+
save_steps(global_steps=global_steps, lr_scheduler=self.lr_scheduler)
|
|
516
|
+
save_checkpoint(model=self.train_model, optimizer=self.optimizer)
|
|
517
|
+
|
|
518
|
+
TrainerTools().parallel.on_epoch_end(epoch)
|
|
519
|
+
self._on_epoch_end(tag=f'epoch:{epoch}')
|
|
520
|
+
|
|
521
|
+
TrainerTools().parallel.destroy()
|
llm_trainer/scheduler.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
import math
|
|
3
|
+
import torch
|
|
4
|
+
from .log import Logger
|
|
5
|
+
|
|
6
|
+
class LRScheduler(ABC):
|
|
7
|
+
@property
|
|
8
|
+
@abstractmethod
|
|
9
|
+
def cur_steps(self): ...
|
|
10
|
+
|
|
11
|
+
@property
|
|
12
|
+
@abstractmethod
|
|
13
|
+
def cur_lr(self): ...
|
|
14
|
+
|
|
15
|
+
@abstractmethod
|
|
16
|
+
def step(self): ...
|
|
17
|
+
|
|
18
|
+
@abstractmethod
|
|
19
|
+
def can_clip_grad(self): ...
|
|
20
|
+
|
|
21
|
+
@abstractmethod
|
|
22
|
+
def get_ckpt_dict(self) -> dict: ...
|
|
23
|
+
|
|
24
|
+
@abstractmethod
|
|
25
|
+
def restore_ckpt_dict(self, ckpt: dict): ...
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class WarmupCosineAnnealingLRScheduler(LRScheduler):
|
|
29
|
+
def __init__(
|
|
30
|
+
self,
|
|
31
|
+
*,
|
|
32
|
+
optimizer: torch.optim.Optimizer,
|
|
33
|
+
warmup_iters: int,
|
|
34
|
+
initial_lr: float,
|
|
35
|
+
min_lr: float,
|
|
36
|
+
max_lr: float,
|
|
37
|
+
cosine_annealing_period: int, # 每个周期的步数
|
|
38
|
+
cosine_annealing_period_mul: int = 0, # 周期长度的倍数
|
|
39
|
+
need_log: bool = False
|
|
40
|
+
):
|
|
41
|
+
super().__init__()
|
|
42
|
+
|
|
43
|
+
self._optimizer = optimizer
|
|
44
|
+
self._initial_lr = initial_lr
|
|
45
|
+
self._min_lr = min_lr
|
|
46
|
+
self._max_lr = max_lr
|
|
47
|
+
self._warmup_iters = warmup_iters
|
|
48
|
+
|
|
49
|
+
self._cosine_annealing_period = cosine_annealing_period
|
|
50
|
+
self._cosine_annealing_period_mul = cosine_annealing_period_mul
|
|
51
|
+
|
|
52
|
+
self.T_cur = 0 # 当前周期内已走过的步数
|
|
53
|
+
self.cycle = 0 # 当前周期编号
|
|
54
|
+
|
|
55
|
+
if warmup_iters != 0:
|
|
56
|
+
self._lr_increment = (max_lr - initial_lr) / warmup_iters
|
|
57
|
+
else:
|
|
58
|
+
self._lr_increment = 0
|
|
59
|
+
|
|
60
|
+
self._steps = -1
|
|
61
|
+
self._current_lr = initial_lr
|
|
62
|
+
self._cosine_annealing_base_lr = None
|
|
63
|
+
|
|
64
|
+
if need_log:
|
|
65
|
+
self.logger = Logger('lr.txt')
|
|
66
|
+
else:
|
|
67
|
+
self.logger = None
|
|
68
|
+
|
|
69
|
+
@property
|
|
70
|
+
def cur_steps(self):
|
|
71
|
+
return self._steps
|
|
72
|
+
|
|
73
|
+
@property
|
|
74
|
+
def cur_lr(self):
|
|
75
|
+
return self._current_lr
|
|
76
|
+
|
|
77
|
+
def step(self):
|
|
78
|
+
self._steps += 1
|
|
79
|
+
self._update_lr()
|
|
80
|
+
|
|
81
|
+
def can_clip_grad(self):
|
|
82
|
+
return self._steps > self._warmup_iters
|
|
83
|
+
|
|
84
|
+
def _update_lr(self):
|
|
85
|
+
# 如果period_mul是0,则认为没有周期,超过余弦退火总步数,则一直保持最小lr
|
|
86
|
+
if self._cosine_annealing_period_mul == 0 and self._steps >= self._cosine_annealing_period + self._warmup_iters:
|
|
87
|
+
lr = self._min_lr
|
|
88
|
+
for param_group in self._optimizer.param_groups:
|
|
89
|
+
param_group['lr'] = lr
|
|
90
|
+
elif self._steps <= self._warmup_iters:
|
|
91
|
+
# Warmup: adjust learning rate linearly
|
|
92
|
+
# (max_lr - initial_lr) / warmup_iters
|
|
93
|
+
lr = self._initial_lr + self._steps * self._lr_increment
|
|
94
|
+
for param_group in self._optimizer.param_groups:
|
|
95
|
+
param_group['lr'] = lr
|
|
96
|
+
else:
|
|
97
|
+
if not self._cosine_annealing_base_lr:
|
|
98
|
+
self._cosine_annealing_base_lr = self.cur_lr
|
|
99
|
+
|
|
100
|
+
"""每步更新学习率"""
|
|
101
|
+
# 计算当前周期的最大步数
|
|
102
|
+
T_max = self._cosine_annealing_period * (max(self._cosine_annealing_period_mul, 1) ** self.cycle)
|
|
103
|
+
|
|
104
|
+
# 更新周期状态
|
|
105
|
+
self.T_cur += 1
|
|
106
|
+
calc_t = self.T_cur
|
|
107
|
+
|
|
108
|
+
if self.T_cur >= T_max:
|
|
109
|
+
if self._cosine_annealing_period_mul == 0:
|
|
110
|
+
self.T_cur = T_max
|
|
111
|
+
calc_t = T_max
|
|
112
|
+
else:
|
|
113
|
+
self.cycle += 1
|
|
114
|
+
self.T_cur = 0
|
|
115
|
+
calc_t = T_max
|
|
116
|
+
|
|
117
|
+
# 计算并设置新学习率
|
|
118
|
+
cos_factor = (1 + math.cos(math.pi * calc_t / T_max)) / 2
|
|
119
|
+
lr = self._min_lr + (self._cosine_annealing_base_lr - self._min_lr) * cos_factor
|
|
120
|
+
|
|
121
|
+
for param_group in self._optimizer.param_groups:
|
|
122
|
+
param_group['lr'] = lr
|
|
123
|
+
|
|
124
|
+
self._current_lr = lr
|
|
125
|
+
|
|
126
|
+
if self.logger:
|
|
127
|
+
self.logger.log(f"step: {self.cur_steps}, lr: {lr}", log_to_console=False)
|
|
128
|
+
|
|
129
|
+
def get_ckpt_dict(self) -> dict:
|
|
130
|
+
return {
|
|
131
|
+
'cur_lr': self._current_lr,
|
|
132
|
+
'lr_steps': self.cur_steps,
|
|
133
|
+
'cosine_annealing_base_lr': self._cosine_annealing_base_lr,
|
|
134
|
+
't_cur': self.T_cur,
|
|
135
|
+
'cycle': self.cycle,
|
|
136
|
+
}
|
|
137
|
+
|
|
138
|
+
def restore_ckpt_dict(self, ckpt: dict):
|
|
139
|
+
if 'cur_lr' in ckpt:
|
|
140
|
+
self._current_lr = ckpt['cur_lr']
|
|
141
|
+
|
|
142
|
+
if 'lr_steps' in ckpt:
|
|
143
|
+
self._steps = ckpt['lr_steps']
|
|
144
|
+
|
|
145
|
+
if 'cosine_annealing_base_lr' in ckpt:
|
|
146
|
+
self._cosine_annealing_base_lr = ckpt['cosine_annealing_base_lr']
|
|
147
|
+
|
|
148
|
+
if 't_cur' in ckpt:
|
|
149
|
+
self.T_cur = ckpt['t_cur']
|
|
150
|
+
|
|
151
|
+
if 'cycle' in ckpt:
|
|
152
|
+
self.cycle = ckpt['cycle']
|
|
153
|
+
|
|
154
|
+
self._update_lr()
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class NoneLRScheduler(LRScheduler):
|
|
158
|
+
def __init__(self, initial_lr):
|
|
159
|
+
self._current_lr = initial_lr
|
|
160
|
+
|
|
161
|
+
@property
|
|
162
|
+
def cur_steps(self):
|
|
163
|
+
return -1
|
|
164
|
+
|
|
165
|
+
@property
|
|
166
|
+
def cur_lr(self):
|
|
167
|
+
return self._current_lr
|
|
168
|
+
|
|
169
|
+
def step(self): ...
|
|
170
|
+
|
|
171
|
+
def can_clip_grad(self):
|
|
172
|
+
return True
|
|
173
|
+
|
|
174
|
+
def get_ckpt_dict(self) -> dict:
|
|
175
|
+
return {'cur_lr': self._current_lr}
|
|
176
|
+
|
|
177
|
+
def restore_ckpt_dict(self, ckpt: dict):
|
|
178
|
+
if 'cur_lr' in ckpt:
|
|
179
|
+
self._current_lr = ckpt['cur_lr']
|