process-gpt-agent-sdk 0.3.11__py3-none-any.whl → 0.3.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of process-gpt-agent-sdk might be problematic. Click here for more details.
- process_gpt_agent_sdk-0.3.13.dist-info/METADATA +690 -0
- process_gpt_agent_sdk-0.3.13.dist-info/RECORD +7 -0
- processgpt_agent_sdk/__init__.py +48 -0
- processgpt_agent_sdk/database.py +1 -1
- processgpt_agent_sdk/processgpt_agent_framework.py +2 -2
- process_gpt_agent_sdk-0.3.11.dist-info/METADATA +0 -336
- process_gpt_agent_sdk-0.3.11.dist-info/RECORD +0 -6
- {process_gpt_agent_sdk-0.3.11.dist-info → process_gpt_agent_sdk-0.3.13.dist-info}/WHEEL +0 -0
- {process_gpt_agent_sdk-0.3.11.dist-info → process_gpt_agent_sdk-0.3.13.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,690 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: process-gpt-agent-sdk
|
|
3
|
+
Version: 0.3.13
|
|
4
|
+
Summary: Supabase 기반 이벤트/작업 폴링으로 A2A AgentExecutor를 실행하는 SDK
|
|
5
|
+
License: MIT
|
|
6
|
+
Project-URL: Homepage, https://github.com/your-org/process-gpt-agent-sdk
|
|
7
|
+
Project-URL: Issues, https://github.com/your-org/process-gpt-agent-sdk/issues
|
|
8
|
+
Keywords: agent,a2a,supabase,workflow,sdk,processgpt
|
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
|
10
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
|
11
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Requires-Python: >=3.9
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
15
|
+
Requires-Dist: supabase>=2.0.0
|
|
16
|
+
Requires-Dist: python-dotenv>=1.0.0
|
|
17
|
+
Requires-Dist: click>=8.0.0
|
|
18
|
+
Requires-Dist: asyncio-mqtt>=0.13.0
|
|
19
|
+
Requires-Dist: jsonschema>=4.0.0
|
|
20
|
+
Requires-Dist: structlog>=23.0.0
|
|
21
|
+
Requires-Dist: typing-extensions>=4.0.0
|
|
22
|
+
Requires-Dist: python-dateutil>=2.8.0
|
|
23
|
+
Requires-Dist: a2a-sdk==0.3.0
|
|
24
|
+
|
|
25
|
+
# ProcessGPT Agent Framework
|
|
26
|
+
## A2A SDK 연동을 위한 경량 에이전트 서버 프레임워크
|
|
27
|
+
|
|
28
|
+
Supabase 기반의 프로세스 작업(Todolist)을 폴링하고, A2A 규격 이벤트를 통해 작업 상태/결과를 기록하는 **경량 에이전트 서버 프레임워크**입니다.
|
|
29
|
+
|
|
30
|
+
### 📋 요구사항
|
|
31
|
+
- **런타임**: Python 3.9+ (권장: Python 3.11)
|
|
32
|
+
- **데이터베이스**: Supabase (PostgreSQL) + 제공된 RPC/테이블
|
|
33
|
+
- **이벤트 규격**: A2A `TaskStatusUpdateEvent` / `TaskArtifactUpdateEvent`
|
|
34
|
+
|
|
35
|
+
## 📊 이벤트 종류 및 데이터 구조
|
|
36
|
+
|
|
37
|
+
### 🎯 이벤트 타입 (event_type) 종류
|
|
38
|
+
|
|
39
|
+
| event_type | 설명 | 사용 시점 | 자동 설정 여부 |
|
|
40
|
+
|------------|------|-----------|----------------|
|
|
41
|
+
| `task_started` | 작업 시작 | 작업 처리 시작시 | 수동 설정 |
|
|
42
|
+
| `task_completed` | 작업 완료 | 작업 정상 완료시 | 수동 설정 |
|
|
43
|
+
| `crew_completed` | 크루 작업 완료 | 서버가 작업 종료시 | **자동 설정** |
|
|
44
|
+
| `tool_usage_started` | 도구 사용 시작 | 외부 도구/API 호출 시작 | 수동 설정 |
|
|
45
|
+
| `tool_usage_finished` | 도구 사용 완료 | 외부 도구/API 호출 완료 | 수동 설정 |
|
|
46
|
+
| `human_asked` | 사용자 입력 요청 | HITL 패턴 사용시 | **자동 설정** |
|
|
47
|
+
| `human_response` | 사용자 응답 | UI에서 사용자 응답시 | UI가 설정 |
|
|
48
|
+
|
|
49
|
+
### 📋 메타데이터 필드 설명
|
|
50
|
+
|
|
51
|
+
#### crew_type (필수)
|
|
52
|
+
- **의미**: 현재 조직의 크루 이름 또는 행위를 나타냄
|
|
53
|
+
- **예시**: `action`, `report`, `slide`, `analysis`, `research` 등
|
|
54
|
+
- **사용법**: 어떤 종류의 작업인지 분류하는 데 사용
|
|
55
|
+
|
|
56
|
+
```python
|
|
57
|
+
metadata = {
|
|
58
|
+
"crew_type": "action", # 액션 수행 크루
|
|
59
|
+
"event_type": "task_started"
|
|
60
|
+
}
|
|
61
|
+
```
|
|
62
|
+
|
|
63
|
+
#### job_id (중요)
|
|
64
|
+
- **의미**: 하나의 작업 단위를 식별하는 고유 ID
|
|
65
|
+
- **규칙**: **시작과 끝이 반드시 매칭되어야 함**
|
|
66
|
+
- **형식**: `job-{task_id}` 또는 `job-{timestamp}` 등
|
|
67
|
+
|
|
68
|
+
```python
|
|
69
|
+
# 올바른 사용법 - 동일한 job_id 사용
|
|
70
|
+
job_id = f"job-{task_id}"
|
|
71
|
+
|
|
72
|
+
# 작업 시작
|
|
73
|
+
metadata = {"crew_type": "action", "event_type": "task_started", "job_id": job_id}
|
|
74
|
+
|
|
75
|
+
# HITL 요청
|
|
76
|
+
metadata = {"crew_type": "action", "job_id": job_id} # human_asked 자동 설정
|
|
77
|
+
|
|
78
|
+
# 작업 완료
|
|
79
|
+
metadata = {"crew_type": "action", "event_type": "task_completed", "job_id": job_id}
|
|
80
|
+
```
|
|
81
|
+
|
|
82
|
+
### 🔄 이벤트 저장 방식
|
|
83
|
+
|
|
84
|
+
#### 1. TaskStatusUpdateEvent → `events` 테이블
|
|
85
|
+
```python
|
|
86
|
+
event_queue.enqueue_event(
|
|
87
|
+
TaskStatusUpdateEvent(
|
|
88
|
+
status={
|
|
89
|
+
"state": TaskState.working,
|
|
90
|
+
"message": new_agent_text_message("진행 상황 메시지", context_id, task_id),
|
|
91
|
+
},
|
|
92
|
+
final=False,
|
|
93
|
+
contextId=context_id,
|
|
94
|
+
taskId=task_id,
|
|
95
|
+
metadata={
|
|
96
|
+
"crew_type": "action",
|
|
97
|
+
"event_type": "task_started", # events.event_type에 저장
|
|
98
|
+
"job_id": "job-12345"
|
|
99
|
+
}
|
|
100
|
+
)
|
|
101
|
+
)
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
**저장 결과** (events 테이블):
|
|
105
|
+
- `event_type`: "task_started"
|
|
106
|
+
- `data`: "진행 상황 메시지" (래퍼 제거된 순수 텍스트)
|
|
107
|
+
- `metadata`: 전체 metadata JSON
|
|
108
|
+
|
|
109
|
+
#### 2. TaskArtifactUpdateEvent → `todolist.output` 컬럼
|
|
110
|
+
```python
|
|
111
|
+
artifact = new_text_artifact(
|
|
112
|
+
name="처리결과",
|
|
113
|
+
description="작업 완료 결과",
|
|
114
|
+
text=json.dumps({"result": "완료"}, ensure_ascii=False)
|
|
115
|
+
)
|
|
116
|
+
event_queue.enqueue_event(
|
|
117
|
+
TaskArtifactUpdateEvent(
|
|
118
|
+
artifact=artifact,
|
|
119
|
+
lastChunk=True, # 최종 결과
|
|
120
|
+
contextId=context_id,
|
|
121
|
+
taskId=task_id,
|
|
122
|
+
)
|
|
123
|
+
)
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
**저장 결과** (todolist 테이블):
|
|
127
|
+
- `output`: `{"result": "완료"}` (래퍼 제거된 순수 JSON)
|
|
128
|
+
- `p_final`: `true`
|
|
129
|
+
|
|
130
|
+
### ⚠️ 특별 규칙
|
|
131
|
+
|
|
132
|
+
1. **자동 event_type 설정**:
|
|
133
|
+
- `state=input_required` → `event_type=human_asked` (자동)
|
|
134
|
+
- 작업 완료시 → `event_type=crew_completed` (서버가 자동 추가)
|
|
135
|
+
|
|
136
|
+
2. **JSON 문자열 변환 필수**:
|
|
137
|
+
```python
|
|
138
|
+
# 올바른 방법
|
|
139
|
+
text=json.dumps(data, ensure_ascii=False)
|
|
140
|
+
|
|
141
|
+
# 잘못된 방법
|
|
142
|
+
text=data # 딕셔너리 직접 전달 시 래퍼와 함께 저장됨
|
|
143
|
+
```
|
|
144
|
+
|
|
145
|
+
## 🔄 전체 데이터 흐름도
|
|
146
|
+
|
|
147
|
+
```mermaid
|
|
148
|
+
graph TD
|
|
149
|
+
A[Supabase todolist 테이블] -->|폴링| B[ProcessGPTAgentServer]
|
|
150
|
+
B -->|작업 발견| C[RequestContext 생성]
|
|
151
|
+
C -->|컨텍스트 전달| D[AgentExecutor.execute]
|
|
152
|
+
|
|
153
|
+
D -->|진행 상태| E[TaskStatusUpdateEvent]
|
|
154
|
+
D -->|최종 결과| F[TaskArtifactUpdateEvent]
|
|
155
|
+
D -->|HITL 요청| G[TaskStatusUpdateEvent<br/>state=input_required]
|
|
156
|
+
|
|
157
|
+
E -->|래퍼 제거| H[events 테이블<br/>data 컬럼]
|
|
158
|
+
F -->|래퍼 제거| I[todolist.output 컬럼<br/>p_final=true]
|
|
159
|
+
G -->|자동 설정| J[events 테이블<br/>event_type=human_asked]
|
|
160
|
+
|
|
161
|
+
K[Operator UI] -->|사용자 응답| L[events 테이블<br/>event_type=human_response]
|
|
162
|
+
|
|
163
|
+
style E fill:#e1f5fe
|
|
164
|
+
style F fill:#f3e5f5
|
|
165
|
+
style G fill:#fff3e0
|
|
166
|
+
```
|
|
167
|
+
|
|
168
|
+
### 🎯 job_id 생명주기 흐름
|
|
169
|
+
|
|
170
|
+
```mermaid
|
|
171
|
+
sequenceDiagram
|
|
172
|
+
participant S as Server
|
|
173
|
+
participant E as Executor
|
|
174
|
+
participant DB as Supabase
|
|
175
|
+
participant UI as Operator UI
|
|
176
|
+
|
|
177
|
+
Note over E: job_id = "job-12345" 생성
|
|
178
|
+
|
|
179
|
+
E->>DB: TaskStatusUpdateEvent<br/>event_type=task_started<br/>job_id=job-12345
|
|
180
|
+
|
|
181
|
+
E->>DB: TaskStatusUpdateEvent<br/>event_type=tool_usage_started<br/>job_id=job-12345
|
|
182
|
+
|
|
183
|
+
E->>DB: TaskStatusUpdateEvent<br/>event_type=tool_usage_finished<br/>job_id=job-12345
|
|
184
|
+
|
|
185
|
+
alt HITL 필요시
|
|
186
|
+
E->>DB: TaskStatusUpdateEvent<br/>state=input_required<br/>job_id=job-12345
|
|
187
|
+
Note over DB: 자동으로 event_type=human_asked 설정
|
|
188
|
+
|
|
189
|
+
UI->>DB: INSERT events<br/>event_type=human_response<br/>job_id=job-12345
|
|
190
|
+
end
|
|
191
|
+
|
|
192
|
+
E->>DB: TaskArtifactUpdateEvent<br/>lastChunk=true
|
|
193
|
+
|
|
194
|
+
E->>DB: TaskStatusUpdateEvent<br/>event_type=task_completed<br/>job_id=job-12345
|
|
195
|
+
|
|
196
|
+
S->>DB: TaskStatusUpdateEvent<br/>event_type=crew_completed<br/>job_id=job-12345
|
|
197
|
+
|
|
198
|
+
Note over S,UI: 동일한 job_id로 시작부터 끝까지 추적 가능
|
|
199
|
+
```
|
|
200
|
+
|
|
201
|
+
### 💾 데이터 저장 구조
|
|
202
|
+
|
|
203
|
+
#### events 테이블 저장 예시
|
|
204
|
+
```json
|
|
205
|
+
{
|
|
206
|
+
"id": "uuid",
|
|
207
|
+
"event_type": "task_started",
|
|
208
|
+
"data": "작업을 시작합니다", // 래퍼 제거된 순수 메시지
|
|
209
|
+
"metadata": {
|
|
210
|
+
"crew_type": "action",
|
|
211
|
+
"event_type": "task_started",
|
|
212
|
+
"job_id": "job-12345",
|
|
213
|
+
"contextId": "proc-789",
|
|
214
|
+
"taskId": "task-456"
|
|
215
|
+
},
|
|
216
|
+
"created_at": "2024-01-01T00:00:00Z"
|
|
217
|
+
}
|
|
218
|
+
```
|
|
219
|
+
|
|
220
|
+
#### todolist.output 저장 예시
|
|
221
|
+
```json
|
|
222
|
+
{
|
|
223
|
+
"id": "task-456",
|
|
224
|
+
"output": {
|
|
225
|
+
"status": "completed",
|
|
226
|
+
"result": "처리 결과 데이터"
|
|
227
|
+
}, // 래퍼 제거된 순수 아티팩트 데이터
|
|
228
|
+
"p_final": true,
|
|
229
|
+
"updated_at": "2024-01-01T00:05:00Z"
|
|
230
|
+
}
|
|
231
|
+
```
|
|
232
|
+
|
|
233
|
+
### 🔧 값 전달 과정
|
|
234
|
+
```python
|
|
235
|
+
# 1. 서버에서 작업 정보 가져오기
|
|
236
|
+
row = context.get_context_data()["row"] # todolist 테이블의 한 행
|
|
237
|
+
context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id") # 프로세스 ID
|
|
238
|
+
task_id = row.get("id") # 작업 ID
|
|
239
|
+
user_input = context.get_user_input() # 사용자가 입력한 내용
|
|
240
|
+
|
|
241
|
+
# 2. job_id 생성 (작업 전체 추적용)
|
|
242
|
+
job_id = f"job-{task_id}" # 또는 timestamp 기반
|
|
243
|
+
|
|
244
|
+
# 3. 메시지/아티팩트 생성시 JSON 문자열로 변환
|
|
245
|
+
payload = {"result": "처리 완료"}
|
|
246
|
+
message_text = json.dumps(payload, ensure_ascii=False) # 중요: JSON 문자열로!
|
|
247
|
+
|
|
248
|
+
# 4. 메타데이터에 crew_type, job_id 포함
|
|
249
|
+
metadata = {
|
|
250
|
+
"crew_type": "action", # 크루 타입
|
|
251
|
+
"event_type": "task_started", # 이벤트 타입
|
|
252
|
+
"job_id": job_id # 작업 추적 ID
|
|
253
|
+
}
|
|
254
|
+
|
|
255
|
+
# 5. 서버가 자동으로 래퍼 제거 후 순수 payload만 저장
|
|
256
|
+
# events.data 또는 todolist.output에 {"result": "처리 완료"}만 저장됨
|
|
257
|
+
```
|
|
258
|
+
|
|
259
|
+
## 🚀 빠른 시작 가이드
|
|
260
|
+
|
|
261
|
+
### 1단계: 설치
|
|
262
|
+
```bash
|
|
263
|
+
# 패키지 설치
|
|
264
|
+
pip install -e .
|
|
265
|
+
|
|
266
|
+
# 또는 requirements.txt 사용
|
|
267
|
+
pip install -r requirements.txt
|
|
268
|
+
```
|
|
269
|
+
|
|
270
|
+
### 2단계: 환경 설정
|
|
271
|
+
`.env` 파일 생성:
|
|
272
|
+
```env
|
|
273
|
+
SUPABASE_URL=your_supabase_project_url
|
|
274
|
+
SUPABASE_KEY=your_supabase_anon_key
|
|
275
|
+
ENV=dev
|
|
276
|
+
```
|
|
277
|
+
|
|
278
|
+
### 3단계: 서버 구현 방법
|
|
279
|
+
서버는 이렇게 만드세요:
|
|
280
|
+
|
|
281
|
+
```python
|
|
282
|
+
# my_server.py
|
|
283
|
+
import asyncio
|
|
284
|
+
from dotenv import load_dotenv
|
|
285
|
+
from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
|
|
286
|
+
from my_executor import MyExecutor # 아래에서 구현할 익스큐터
|
|
287
|
+
|
|
288
|
+
async def main():
|
|
289
|
+
load_dotenv()
|
|
290
|
+
|
|
291
|
+
server = ProcessGPTAgentServer(
|
|
292
|
+
agent_executor=MyExecutor(), # 여러분이 구현할 익스큐터
|
|
293
|
+
agent_type="my-agent" # Supabase todolist.agent_orch와 매칭되어야 함
|
|
294
|
+
)
|
|
295
|
+
server.polling_interval = 3 # 3초마다 새 작업 확인
|
|
296
|
+
|
|
297
|
+
print("서버 시작!")
|
|
298
|
+
await server.run()
|
|
299
|
+
|
|
300
|
+
if __name__ == "__main__":
|
|
301
|
+
try:
|
|
302
|
+
asyncio.run(main())
|
|
303
|
+
except KeyboardInterrupt:
|
|
304
|
+
print("서버 종료")
|
|
305
|
+
```
|
|
306
|
+
|
|
307
|
+
### 4단계: 익스큐터 구현 방법
|
|
308
|
+
익스큐터는 이렇게 만드세요:
|
|
309
|
+
|
|
310
|
+
```python
|
|
311
|
+
# my_executor.py
|
|
312
|
+
import asyncio
|
|
313
|
+
import json
|
|
314
|
+
from typing_extensions import override
|
|
315
|
+
from a2a.server.agent_execution import AgentExecutor, RequestContext
|
|
316
|
+
from a2a.server.events import EventQueue
|
|
317
|
+
from a2a.types import TaskStatusUpdateEvent, TaskState, TaskArtifactUpdateEvent
|
|
318
|
+
from a2a.utils import new_agent_text_message, new_text_artifact
|
|
319
|
+
|
|
320
|
+
class MyExecutor(AgentExecutor):
|
|
321
|
+
@override
|
|
322
|
+
async def execute(self, context: RequestContext, event_queue: EventQueue) -> None:
|
|
323
|
+
# 1. 작업 정보 가져오기
|
|
324
|
+
row = context.get_context_data()["row"]
|
|
325
|
+
context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id")
|
|
326
|
+
task_id = row.get("id")
|
|
327
|
+
user_input = context.get_user_input() # 사용자가 입력한 내용
|
|
328
|
+
|
|
329
|
+
# 2. job_id 생성 (작업 전체 추적용)
|
|
330
|
+
job_id = f"job-{task_id}"
|
|
331
|
+
|
|
332
|
+
print(f"처리할 작업: {user_input} (job_id: {job_id})")
|
|
333
|
+
|
|
334
|
+
# 3. 작업 시작 알림 (events 테이블에 저장됨)
|
|
335
|
+
event_queue.enqueue_event(
|
|
336
|
+
TaskStatusUpdateEvent(
|
|
337
|
+
status={
|
|
338
|
+
"state": TaskState.working,
|
|
339
|
+
"message": new_agent_text_message("작업 시작", context_id, task_id),
|
|
340
|
+
},
|
|
341
|
+
final=False,
|
|
342
|
+
contextId=context_id,
|
|
343
|
+
taskId=task_id,
|
|
344
|
+
metadata={
|
|
345
|
+
"crew_type": "action", # 크루 타입
|
|
346
|
+
"event_type": "task_started",
|
|
347
|
+
"job_id": job_id # 작업 추적 ID
|
|
348
|
+
}
|
|
349
|
+
)
|
|
350
|
+
)
|
|
351
|
+
|
|
352
|
+
# 4. 실제 작업 수행 (여기에 여러분의 로직 작성)
|
|
353
|
+
await asyncio.sleep(2)
|
|
354
|
+
result_data = {"status": "완료", "input": user_input, "output": "처리 결과"}
|
|
355
|
+
|
|
356
|
+
# 5. 작업 완료 알림
|
|
357
|
+
event_queue.enqueue_event(
|
|
358
|
+
TaskStatusUpdateEvent(
|
|
359
|
+
status={
|
|
360
|
+
"state": TaskState.working,
|
|
361
|
+
"message": new_agent_text_message("작업 완료", context_id, task_id),
|
|
362
|
+
},
|
|
363
|
+
final=False,
|
|
364
|
+
contextId=context_id,
|
|
365
|
+
taskId=task_id,
|
|
366
|
+
metadata={
|
|
367
|
+
"crew_type": "action",
|
|
368
|
+
"event_type": "task_completed",
|
|
369
|
+
"job_id": job_id # 동일한 job_id 사용
|
|
370
|
+
}
|
|
371
|
+
)
|
|
372
|
+
)
|
|
373
|
+
|
|
374
|
+
# 6. 최종 결과 전송 (todolist.output에 저장됨)
|
|
375
|
+
artifact = new_text_artifact(
|
|
376
|
+
name="처리결과",
|
|
377
|
+
description="작업 완료 결과",
|
|
378
|
+
text=json.dumps(result_data, ensure_ascii=False) # JSON 문자열로!
|
|
379
|
+
)
|
|
380
|
+
event_queue.enqueue_event(
|
|
381
|
+
TaskArtifactUpdateEvent(
|
|
382
|
+
artifact=artifact,
|
|
383
|
+
lastChunk=True, # 중요: 최종 결과면 True
|
|
384
|
+
contextId=context_id,
|
|
385
|
+
taskId=task_id,
|
|
386
|
+
)
|
|
387
|
+
)
|
|
388
|
+
|
|
389
|
+
@override
|
|
390
|
+
async def cancel(self, context: RequestContext, event_queue: EventQueue) -> None:
|
|
391
|
+
pass # 취소 로직 (필요시 구현)
|
|
392
|
+
```
|
|
393
|
+
|
|
394
|
+
### 5단계: 실행
|
|
395
|
+
```bash
|
|
396
|
+
python my_server.py
|
|
397
|
+
```
|
|
398
|
+
|
|
399
|
+
## 🤝 Human-in-the-Loop (사용자 입력 요청) 패턴
|
|
400
|
+
|
|
401
|
+
사용자 입력이 필요한 완전한 예시:
|
|
402
|
+
|
|
403
|
+
```python
|
|
404
|
+
class HITLExecutor(AgentExecutor):
|
|
405
|
+
@override
|
|
406
|
+
async def execute(self, context: RequestContext, event_queue: EventQueue) -> None:
|
|
407
|
+
row = context.get_context_data()["row"]
|
|
408
|
+
context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id")
|
|
409
|
+
task_id = row.get("id")
|
|
410
|
+
user_input = context.get_user_input()
|
|
411
|
+
job_id = f"job-{task_id}"
|
|
412
|
+
|
|
413
|
+
# 1. 작업 시작
|
|
414
|
+
event_queue.enqueue_event(
|
|
415
|
+
TaskStatusUpdateEvent(
|
|
416
|
+
status={
|
|
417
|
+
"state": TaskState.working,
|
|
418
|
+
"message": new_agent_text_message("분석을 시작합니다", context_id, task_id),
|
|
419
|
+
},
|
|
420
|
+
final=False,
|
|
421
|
+
contextId=context_id,
|
|
422
|
+
taskId=task_id,
|
|
423
|
+
metadata={
|
|
424
|
+
"crew_type": "analysis", # 분석 크루
|
|
425
|
+
"event_type": "task_started",
|
|
426
|
+
"job_id": job_id
|
|
427
|
+
}
|
|
428
|
+
)
|
|
429
|
+
)
|
|
430
|
+
|
|
431
|
+
await asyncio.sleep(1)
|
|
432
|
+
|
|
433
|
+
# 2. 사용자 입력 요청 (HITL)
|
|
434
|
+
question_data = {
|
|
435
|
+
"question": f"'{user_input}' 작업을 어떤 방식으로 처리할까요?",
|
|
436
|
+
"options": ["빠른 처리", "정밀 분석", "단계별 진행"],
|
|
437
|
+
"context": user_input
|
|
438
|
+
}
|
|
439
|
+
|
|
440
|
+
event_queue.enqueue_event(
|
|
441
|
+
TaskStatusUpdateEvent(
|
|
442
|
+
status={
|
|
443
|
+
"state": TaskState.input_required, # 중요: 자동으로 human_asked 설정됨
|
|
444
|
+
"message": new_agent_text_message(
|
|
445
|
+
json.dumps(question_data, ensure_ascii=False),
|
|
446
|
+
context_id, task_id
|
|
447
|
+
),
|
|
448
|
+
},
|
|
449
|
+
final=True,
|
|
450
|
+
contextId=context_id,
|
|
451
|
+
taskId=task_id,
|
|
452
|
+
metadata={
|
|
453
|
+
"crew_type": "analysis",
|
|
454
|
+
"job_id": job_id # 동일한 job_id 유지
|
|
455
|
+
}
|
|
456
|
+
)
|
|
457
|
+
)
|
|
458
|
+
|
|
459
|
+
# 3. 사용자 응답을 기다리는 로직 (실제 구현에서는 필요)
|
|
460
|
+
# 여기서는 시뮬레이션
|
|
461
|
+
await asyncio.sleep(3)
|
|
462
|
+
|
|
463
|
+
# 4. 사용자 응답 후 작업 완료
|
|
464
|
+
result_data = {
|
|
465
|
+
"original_request": user_input,
|
|
466
|
+
"user_choice": "사용자가 선택한 옵션",
|
|
467
|
+
"result": "HITL 방식으로 처리 완료"
|
|
468
|
+
}
|
|
469
|
+
|
|
470
|
+
# 5. 완료 알림
|
|
471
|
+
event_queue.enqueue_event(
|
|
472
|
+
TaskStatusUpdateEvent(
|
|
473
|
+
status={
|
|
474
|
+
"state": TaskState.working,
|
|
475
|
+
"message": new_agent_text_message("HITL 처리 완료", context_id, task_id),
|
|
476
|
+
},
|
|
477
|
+
final=False,
|
|
478
|
+
contextId=context_id,
|
|
479
|
+
taskId=task_id,
|
|
480
|
+
metadata={
|
|
481
|
+
"crew_type": "analysis",
|
|
482
|
+
"event_type": "task_completed",
|
|
483
|
+
"job_id": job_id # 동일한 job_id로 완료
|
|
484
|
+
}
|
|
485
|
+
)
|
|
486
|
+
)
|
|
487
|
+
|
|
488
|
+
# 6. 최종 결과
|
|
489
|
+
artifact = new_text_artifact(
|
|
490
|
+
name="HITL_결과",
|
|
491
|
+
description="Human-in-the-Loop 처리 결과",
|
|
492
|
+
text=json.dumps(result_data, ensure_ascii=False)
|
|
493
|
+
)
|
|
494
|
+
event_queue.enqueue_event(
|
|
495
|
+
TaskArtifactUpdateEvent(
|
|
496
|
+
artifact=artifact,
|
|
497
|
+
lastChunk=True,
|
|
498
|
+
contextId=context_id,
|
|
499
|
+
taskId=task_id,
|
|
500
|
+
)
|
|
501
|
+
)
|
|
502
|
+
|
|
503
|
+
@override
|
|
504
|
+
async def cancel(self, context: RequestContext, event_queue: EventQueue) -> None:
|
|
505
|
+
pass
|
|
506
|
+
```
|
|
507
|
+
|
|
508
|
+
## 📋 체크리스트 (실패 없는 통합을 위한)
|
|
509
|
+
|
|
510
|
+
### 필수 설정
|
|
511
|
+
- [ ] `.env`에 `SUPABASE_URL`, `SUPABASE_KEY` 설정
|
|
512
|
+
- [ ] `requirements.txt` 설치 완료
|
|
513
|
+
- [ ] Supabase에서 제공 SQL(`database_schema.sql`, `function.sql`) 적용
|
|
514
|
+
|
|
515
|
+
### 코드 구현
|
|
516
|
+
- [ ] 서버에서 `agent_type`이 Supabase `todolist.agent_orch`와 매칭됨
|
|
517
|
+
- [ ] 익스큐터에서 `contextId`, `taskId`를 올바르게 설정
|
|
518
|
+
- [ ] **job_id 생성 및 일관성 유지** (`job-{task_id}` 형식 권장)
|
|
519
|
+
- [ ] **crew_type 설정** (`action`, `report`, `slide` 등 행위별 분류)
|
|
520
|
+
- [ ] 상태 이벤트는 `new_agent_text_message()`로 생성
|
|
521
|
+
- [ ] 최종 결과는 `new_text_artifact()` + `lastChunk=True`로 전송
|
|
522
|
+
- [ ] HITL 요청시 `TaskState.input_required` 사용
|
|
523
|
+
- [ ] **JSON 문자열 변환** (`json.dumps(data, ensure_ascii=False)`)
|
|
524
|
+
|
|
525
|
+
## 🚨 자주 발생하는 문제
|
|
526
|
+
|
|
527
|
+
### 1. 설치 문제
|
|
528
|
+
**증상**: `ModuleNotFoundError`
|
|
529
|
+
```bash
|
|
530
|
+
# 해결
|
|
531
|
+
pip install -e .
|
|
532
|
+
pip install a2a-sdk==0.3.0 --force-reinstall
|
|
533
|
+
```
|
|
534
|
+
|
|
535
|
+
### 2. 작업이 폴링되지 않음
|
|
536
|
+
**원인**: Supabase 연결 문제
|
|
537
|
+
**해결**:
|
|
538
|
+
- `.env` 파일 위치 확인 (프로젝트 루트)
|
|
539
|
+
- URL/Key 재확인
|
|
540
|
+
- `agent_type`이 todolist.agent_orch와 매칭되는지 확인
|
|
541
|
+
|
|
542
|
+
### 3. 이벤트가 저장되지 않음
|
|
543
|
+
**원인**: 테이블/함수 누락
|
|
544
|
+
**해결**:
|
|
545
|
+
- `database_schema.sql`, `function.sql` 실행 확인
|
|
546
|
+
- Supabase 테이블 권한 확인
|
|
547
|
+
|
|
548
|
+
### 4. 결과가 래퍼와 함께 저장됨
|
|
549
|
+
**원인**: JSON 문자열 변환 누락
|
|
550
|
+
```python
|
|
551
|
+
# 올바른 방법
|
|
552
|
+
text=json.dumps(data, ensure_ascii=False) # JSON 문자열로!
|
|
553
|
+
|
|
554
|
+
# 잘못된 방법
|
|
555
|
+
text=data # 딕셔너리 직접 전달 (X)
|
|
556
|
+
```
|
|
557
|
+
|
|
558
|
+
## 📚 샘플 코드 (간단 버전)
|
|
559
|
+
|
|
560
|
+
### 기본 서버
|
|
561
|
+
```python
|
|
562
|
+
# sample_server/minimal_server.py
|
|
563
|
+
import asyncio
|
|
564
|
+
from dotenv import load_dotenv
|
|
565
|
+
from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
|
|
566
|
+
from sample_server.minimal_executor import MinimalExecutor
|
|
567
|
+
|
|
568
|
+
async def main():
|
|
569
|
+
load_dotenv()
|
|
570
|
+
server = ProcessGPTAgentServer(
|
|
571
|
+
agent_executor=MinimalExecutor(),
|
|
572
|
+
agent_type="crewai-action"
|
|
573
|
+
)
|
|
574
|
+
server.polling_interval = 3
|
|
575
|
+
await server.run()
|
|
576
|
+
|
|
577
|
+
if __name__ == "__main__":
|
|
578
|
+
try:
|
|
579
|
+
asyncio.run(main())
|
|
580
|
+
except KeyboardInterrupt:
|
|
581
|
+
pass
|
|
582
|
+
```
|
|
583
|
+
|
|
584
|
+
### 기본 익스큐터
|
|
585
|
+
```python
|
|
586
|
+
# sample_server/minimal_executor.py
|
|
587
|
+
import asyncio
|
|
588
|
+
import json
|
|
589
|
+
from typing_extensions import override
|
|
590
|
+
from a2a.server.agent_execution import AgentExecutor, RequestContext
|
|
591
|
+
from a2a.server.events import EventQueue
|
|
592
|
+
from a2a.types import TaskStatusUpdateEvent, TaskState, TaskArtifactUpdateEvent
|
|
593
|
+
from a2a.utils import new_agent_text_message, new_text_artifact
|
|
594
|
+
|
|
595
|
+
class MinimalExecutor(AgentExecutor):
|
|
596
|
+
@override
|
|
597
|
+
async def execute(self, context: RequestContext, event_queue: EventQueue) -> None:
|
|
598
|
+
row = context.get_context_data()["row"]
|
|
599
|
+
context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id")
|
|
600
|
+
task_id = row.get("id")
|
|
601
|
+
user_input = context.get_user_input()
|
|
602
|
+
|
|
603
|
+
# 진행 상태
|
|
604
|
+
event_queue.enqueue_event(
|
|
605
|
+
TaskStatusUpdateEvent(
|
|
606
|
+
status={
|
|
607
|
+
"state": TaskState.working,
|
|
608
|
+
"message": new_agent_text_message("처리중", context_id, task_id),
|
|
609
|
+
},
|
|
610
|
+
final=False,
|
|
611
|
+
contextId=context_id,
|
|
612
|
+
taskId=task_id,
|
|
613
|
+
metadata={"event_type": "task_started"}
|
|
614
|
+
)
|
|
615
|
+
)
|
|
616
|
+
|
|
617
|
+
await asyncio.sleep(1)
|
|
618
|
+
|
|
619
|
+
# 최종 결과
|
|
620
|
+
result = {"input": user_input, "output": "처리 완료"}
|
|
621
|
+
artifact = new_text_artifact(
|
|
622
|
+
name="결과",
|
|
623
|
+
description="처리 결과",
|
|
624
|
+
text=json.dumps(result, ensure_ascii=False)
|
|
625
|
+
)
|
|
626
|
+
event_queue.enqueue_event(
|
|
627
|
+
TaskArtifactUpdateEvent(
|
|
628
|
+
artifact=artifact,
|
|
629
|
+
lastChunk=True,
|
|
630
|
+
contextId=context_id,
|
|
631
|
+
taskId=task_id,
|
|
632
|
+
)
|
|
633
|
+
)
|
|
634
|
+
|
|
635
|
+
@override
|
|
636
|
+
async def cancel(self, context: RequestContext, event_queue: EventQueue) -> None:
|
|
637
|
+
pass
|
|
638
|
+
```
|
|
639
|
+
|
|
640
|
+
## 🔧 실행 방법
|
|
641
|
+
|
|
642
|
+
### 개발 환경에서 실행
|
|
643
|
+
```bash
|
|
644
|
+
python sample_server/minimal_server.py
|
|
645
|
+
```
|
|
646
|
+
|
|
647
|
+
### 실제 사용시
|
|
648
|
+
```bash
|
|
649
|
+
python my_server.py
|
|
650
|
+
```
|
|
651
|
+
|
|
652
|
+
## 🚀 배포/버전업 (PyPI/TestPyPI)
|
|
653
|
+
|
|
654
|
+
- 사전 준비: PyPI 혹은 TestPyPI 토큰 환경변수 설정
|
|
655
|
+
|
|
656
|
+
macOS/Linux:
|
|
657
|
+
```bash
|
|
658
|
+
# TestPyPI 배포 예시
|
|
659
|
+
export TEST_PYPI_TOKEN="<your_testpypi_token>"
|
|
660
|
+
./release.sh 0.3.13 testpypi
|
|
661
|
+
|
|
662
|
+
# PyPI 배포 예시
|
|
663
|
+
export PYPI_TOKEN="<your_pypi_token>"
|
|
664
|
+
./release.sh 0.3.13 pypi
|
|
665
|
+
```
|
|
666
|
+
|
|
667
|
+
Windows PowerShell:
|
|
668
|
+
```powershell
|
|
669
|
+
# TestPyPI 배포 예시
|
|
670
|
+
$env:TEST_PYPI_TOKEN="<your_testpypi_token>"
|
|
671
|
+
./release.ps1 -Version 0.3.13 -TestPyPI
|
|
672
|
+
|
|
673
|
+
# PyPI 배포 예시
|
|
674
|
+
$env:PYPI_TOKEN="<your_pypi_token>"
|
|
675
|
+
./release.ps1 -Version 0.3.13
|
|
676
|
+
```
|
|
677
|
+
|
|
678
|
+
---
|
|
679
|
+
|
|
680
|
+
## 📚 레퍼런스
|
|
681
|
+
|
|
682
|
+
### 주요 함수들
|
|
683
|
+
- `ProcessGPTAgentServer.run()`: 서버 시작
|
|
684
|
+
- `new_agent_text_message(text, context_id, task_id)`: 상태 메시지 생성
|
|
685
|
+
- `new_text_artifact(name, desc, text)`: 결과 아티팩트 생성
|
|
686
|
+
|
|
687
|
+
### 이벤트 저장 규칙
|
|
688
|
+
- **TaskStatusUpdateEvent** → `events` 테이블 (`data` 컬럼)
|
|
689
|
+
- **TaskArtifactUpdateEvent** → `todolist` 테이블 (`output` 컬럼)
|
|
690
|
+
- 래퍼 자동 제거 후 순수 payload만 저장
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
processgpt_agent_sdk/__init__.py,sha256=-Kwyodop7dRL1qy3UjW06X0vJoDqd2-cVlbesplIUmc,1108
|
|
2
|
+
processgpt_agent_sdk/database.py,sha256=G9nln9QTSfgPf3FfzLKwbXf3esEPz07rWVmzttxKTWE,18989
|
|
3
|
+
processgpt_agent_sdk/processgpt_agent_framework.py,sha256=QnYPV065da3bRL_xOYxaMOqQQUVv6D8CZ9d6cVL0-i4,16909
|
|
4
|
+
process_gpt_agent_sdk-0.3.13.dist-info/METADATA,sha256=NzdFo_djoSoyuEQJFr_-0SD3Cm_scQ72ZgpBt_4_hXw,22736
|
|
5
|
+
process_gpt_agent_sdk-0.3.13.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
6
|
+
process_gpt_agent_sdk-0.3.13.dist-info/top_level.txt,sha256=Xe6zrj3_3Vv7d0pl5RRtenVUckwOVBVLQn2P03j5REo,21
|
|
7
|
+
process_gpt_agent_sdk-0.3.13.dist-info/RECORD,,
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
"""
|
|
2
|
+
ProcessGPT Agent SDK
|
|
3
|
+
|
|
4
|
+
이 패키지는 ProcessGPT 시스템과 통합하기 위한 Agent Framework를 제공합니다.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from .processgpt_agent_framework import (
|
|
8
|
+
ProcessGPTAgentServer,
|
|
9
|
+
ProcessGPTRequestContext,
|
|
10
|
+
ProcessGPTEventQueue,
|
|
11
|
+
TodoListRowContext,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
from .database import (
|
|
15
|
+
initialize_db,
|
|
16
|
+
polling_pending_todos,
|
|
17
|
+
record_event,
|
|
18
|
+
save_task_result,
|
|
19
|
+
update_task_error,
|
|
20
|
+
get_consumer_id,
|
|
21
|
+
fetch_agent_data,
|
|
22
|
+
fetch_all_agents,
|
|
23
|
+
fetch_form_types,
|
|
24
|
+
fetch_tenant_mcp_config,
|
|
25
|
+
fetch_human_users_by_proc_inst_id,
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
__version__ = "0.3.12"
|
|
29
|
+
|
|
30
|
+
__all__ = [
|
|
31
|
+
# Framework classes
|
|
32
|
+
"ProcessGPTAgentServer",
|
|
33
|
+
"ProcessGPTRequestContext",
|
|
34
|
+
"ProcessGPTEventQueue",
|
|
35
|
+
"TodoListRowContext",
|
|
36
|
+
# Database functions
|
|
37
|
+
"initialize_db",
|
|
38
|
+
"polling_pending_todos",
|
|
39
|
+
"record_event",
|
|
40
|
+
"save_task_result",
|
|
41
|
+
"update_task_error",
|
|
42
|
+
"get_consumer_id",
|
|
43
|
+
"fetch_agent_data",
|
|
44
|
+
"fetch_all_agents",
|
|
45
|
+
"fetch_form_types",
|
|
46
|
+
"fetch_tenant_mcp_config",
|
|
47
|
+
"fetch_human_users_by_proc_inst_id",
|
|
48
|
+
]
|
processgpt_agent_sdk/database.py
CHANGED
|
@@ -210,7 +210,7 @@ async def fetch_all_agents() -> List[Dict[str, Any]]:
|
|
|
210
210
|
client = get_db_client()
|
|
211
211
|
return (
|
|
212
212
|
client.table("users")
|
|
213
|
-
.select("id, username, role, goal, persona, tools, profile, model, tenant_id, is_agent")
|
|
213
|
+
.select("id, username, role, goal, persona, tools, profile, model, tenant_id, is_agent, endpoint")
|
|
214
214
|
.eq("is_agent", True)
|
|
215
215
|
.execute()
|
|
216
216
|
)
|
|
@@ -17,7 +17,7 @@ from a2a.types import (
|
|
|
17
17
|
)
|
|
18
18
|
|
|
19
19
|
# DB 어댑터 사용
|
|
20
|
-
from database import (
|
|
20
|
+
from .database import (
|
|
21
21
|
initialize_db,
|
|
22
22
|
polling_pending_todos,
|
|
23
23
|
record_event,
|
|
@@ -388,7 +388,7 @@ class ProcessGPTAgentServer:
|
|
|
388
388
|
async def mark_task_failed(self, todolist_id: str, error_message: str):
|
|
389
389
|
"""태스크 실패 처리 (DB 상태 업데이트)"""
|
|
390
390
|
try:
|
|
391
|
-
await update_task_error(todolist_id)
|
|
391
|
+
await update_task_error(todolist_id, error_message)
|
|
392
392
|
except Exception as e:
|
|
393
393
|
logger.exception(
|
|
394
394
|
"mark_task_failed error (todolist_id=%s): %s",
|
|
@@ -1,336 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: process-gpt-agent-sdk
|
|
3
|
-
Version: 0.3.11
|
|
4
|
-
Summary: Supabase 기반 이벤트/작업 폴링으로 A2A AgentExecutor를 실행하는 SDK
|
|
5
|
-
License: MIT
|
|
6
|
-
Project-URL: Homepage, https://github.com/your-org/process-gpt-agent-sdk
|
|
7
|
-
Project-URL: Issues, https://github.com/your-org/process-gpt-agent-sdk/issues
|
|
8
|
-
Keywords: agent,a2a,supabase,workflow,sdk,processgpt
|
|
9
|
-
Classifier: Programming Language :: Python :: 3
|
|
10
|
-
Classifier: Programming Language :: Python :: 3 :: Only
|
|
11
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
12
|
-
Classifier: Operating System :: OS Independent
|
|
13
|
-
Requires-Python: >=3.9
|
|
14
|
-
Description-Content-Type: text/markdown
|
|
15
|
-
Requires-Dist: supabase>=2.0.0
|
|
16
|
-
Requires-Dist: python-dotenv>=1.0.0
|
|
17
|
-
Requires-Dist: click>=8.0.0
|
|
18
|
-
Requires-Dist: asyncio-mqtt>=0.13.0
|
|
19
|
-
Requires-Dist: jsonschema>=4.0.0
|
|
20
|
-
Requires-Dist: structlog>=23.0.0
|
|
21
|
-
Requires-Dist: typing-extensions>=4.0.0
|
|
22
|
-
Requires-Dist: python-dateutil>=2.8.0
|
|
23
|
-
Requires-Dist: a2a-sdk==0.3.0
|
|
24
|
-
|
|
25
|
-
# ProcessGPT Agent Framework (A2A SDK 연동 가이드)
|
|
26
|
-
|
|
27
|
-
이 저장소는 Supabase 기반의 프로세스 작업(Todolist)을 폴링하고, A2A 규격 이벤트를 통해 작업 상태/결과를 기록하는 **경량 에이전트 서버 프레임워크**입니다. 최소 구현으로 빠르게 통합하고, 필요하면 커스터마이즈할 수 있습니다.
|
|
28
|
-
|
|
29
|
-
- 런타임: Python 3.10+
|
|
30
|
-
- 저장소 의존: Supabase(Postgres) + 제공된 RPC/테이블
|
|
31
|
-
- 이벤트 규격: A2A `TaskStatusUpdateEvent` / `TaskArtifactUpdateEvent`
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
## 아키텍처 한눈에 보기
|
|
35
|
-
```mermaid
|
|
36
|
-
flowchart LR
|
|
37
|
-
subgraph Supabase
|
|
38
|
-
A[Todolist] --- B[Events]
|
|
39
|
-
A -.RPC.-> C[(save_task_result)]
|
|
40
|
-
D[(fetch_pending_task)] --> A
|
|
41
|
-
end
|
|
42
|
-
|
|
43
|
-
subgraph Agent Server
|
|
44
|
-
E[ProcessGPTAgentServer] -->|polls| D
|
|
45
|
-
E --> F[ProcessGPTRequestContext]
|
|
46
|
-
E --> G[ProcessGPTEventQueue]
|
|
47
|
-
H[Your AgentExecutor]
|
|
48
|
-
F --> H
|
|
49
|
-
H -->|A2A Events| G
|
|
50
|
-
end
|
|
51
|
-
|
|
52
|
-
G -->|TaskStatusUpdateEvent| B
|
|
53
|
-
G -->|TaskArtifactUpdateEvent| A
|
|
54
|
-
```
|
|
55
|
-
|
|
56
|
-
- 서버는 주기적으로 Todolist를 폴링하여 새 작업을 가져옵니다.
|
|
57
|
-
- 사용자 구현 `AgentExecutor`가 요청을 처리하고, A2A 이벤트를 큐에 전달합니다.
|
|
58
|
-
- 이벤트 큐는 상태 이벤트를 `events` 테이블에, 아티팩트 이벤트를 `todolist.output`에 저장합니다.
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
## 엔드-투-엔드 시퀀스(정상 흐름)
|
|
62
|
-
```mermaid
|
|
63
|
-
sequenceDiagram
|
|
64
|
-
participant SB as Supabase
|
|
65
|
-
participant SRV as ProcessGPTAgentServer
|
|
66
|
-
participant CTX as RequestContext
|
|
67
|
-
participant EXE as Your AgentExecutor
|
|
68
|
-
participant EQ as ProcessGPTEventQueue
|
|
69
|
-
|
|
70
|
-
SRV->>SB: RPC fetch_pending_task
|
|
71
|
-
SB-->>SRV: todolist row
|
|
72
|
-
SRV->>CTX: prepare_context()
|
|
73
|
-
SRV->>EXE: execute(context, event_queue)
|
|
74
|
-
EXE->>EQ: TaskStatusUpdateEvent (state=working)
|
|
75
|
-
EQ->>SB: INSERT events (data=payload)
|
|
76
|
-
EXE->>EQ: TaskArtifactUpdateEvent (lastChunk=true, artifact)
|
|
77
|
-
EQ->>SB: RPC save_task_result (output=payload, p_final=true)
|
|
78
|
-
SRV->>EQ: task_done()
|
|
79
|
-
EQ->>SB: INSERT events (crew_completed)
|
|
80
|
-
```
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
## Human-in-the-loop(HITL) 시퀀스
|
|
84
|
-
```mermaid
|
|
85
|
-
sequenceDiagram
|
|
86
|
-
participant EXE as Your AgentExecutor
|
|
87
|
-
participant EQ as ProcessGPTEventQueue
|
|
88
|
-
participant SB as Supabase
|
|
89
|
-
participant UI as Operator UI
|
|
90
|
-
|
|
91
|
-
EXE->>EQ: TaskStatusUpdateEvent (state=input_required)
|
|
92
|
-
Note right of EXE: event_type 전송 생략 가능
|
|
93
|
-
EQ->>SB: INSERT events (event_type=human_asked, data=질문 payload)
|
|
94
|
-
UI->>SB: INSERT events (event_type=human_response, data=사용자 응답)
|
|
95
|
-
EXE-->>SB: 선택: fetch_human_response_sync(job_id)
|
|
96
|
-
```
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
## 친절한 시작 가이드(5분 컷)
|
|
100
|
-
1) 가상환경 + 설치
|
|
101
|
-
```bash
|
|
102
|
-
uv venv --python 3.11.9
|
|
103
|
-
uv pip install -r requirements.txt
|
|
104
|
-
source .venv/Scripts/activate
|
|
105
|
-
```
|
|
106
|
-
|
|
107
|
-
2) .env 준비
|
|
108
|
-
- SUPABASE_URL, SUPABASE_KEY 필수
|
|
109
|
-
- ENV=dev (개발 환경에서 권장)
|
|
110
|
-
|
|
111
|
-
3) 샘플 서버 실행
|
|
112
|
-
```bash
|
|
113
|
-
python sample_server/minimal_server.py | cat
|
|
114
|
-
```
|
|
115
|
-
|
|
116
|
-
4) 이벤트 전송 패턴 이해
|
|
117
|
-
- 진행 상태: `TaskStatusUpdateEvent(state=working)` + `new_agent_text_message(text, contextId, taskId)`
|
|
118
|
-
- 사용자 입력 요청(HITL): `TaskState.input_required`만 보내면 event_type은 자동 `human_asked`
|
|
119
|
-
- 결과물: `TaskArtifactUpdateEvent(lastChunk=True)` + `new_text_artifact(name, desc, text)`
|
|
120
|
-
|
|
121
|
-
5) 저장물 확인 포인트
|
|
122
|
-
- `events` 테이블: data에는 래퍼 제거된 순수 payload 저장
|
|
123
|
-
- `todolist.output`: 순수 payload 저장, 최종 청크면 `p_final=true`
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
## 샘플 서버 실행 코드 (친절 버전)
|
|
127
|
-
### A. 가장 간단한 서버(minimal)
|
|
128
|
-
```python
|
|
129
|
-
# sample_server/minimal_server.py
|
|
130
|
-
import os
|
|
131
|
-
import sys
|
|
132
|
-
import asyncio
|
|
133
|
-
from dotenv import load_dotenv
|
|
134
|
-
|
|
135
|
-
# 패키지 루트 경로 추가 (샘플에서만)
|
|
136
|
-
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
|
137
|
-
|
|
138
|
-
from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
|
|
139
|
-
from sample_server.minimal_executor import MinimalExecutor
|
|
140
|
-
|
|
141
|
-
async def main():
|
|
142
|
-
load_dotenv()
|
|
143
|
-
# agent_type은 Supabase의 todolist.agent_orch와 매칭되어야 함
|
|
144
|
-
server = ProcessGPTAgentServer(agent_executor=MinimalExecutor(), agent_type="crewai-action")
|
|
145
|
-
server.polling_interval = 3 # 초
|
|
146
|
-
await server.run()
|
|
147
|
-
|
|
148
|
-
if __name__ == "__main__":
|
|
149
|
-
try:
|
|
150
|
-
asyncio.run(main())
|
|
151
|
-
except KeyboardInterrupt:
|
|
152
|
-
pass
|
|
153
|
-
```
|
|
154
|
-
|
|
155
|
-
- Windows
|
|
156
|
-
```bash
|
|
157
|
-
python sample_server/minimal_server.py
|
|
158
|
-
```
|
|
159
|
-
- macOS/Linux
|
|
160
|
-
```bash
|
|
161
|
-
python3 sample_server/minimal_server.py
|
|
162
|
-
```
|
|
163
|
-
|
|
164
|
-
### B. CLI 옵션이 있는 서버 예시
|
|
165
|
-
```python
|
|
166
|
-
# sample_server/crew_ai_dr_agent_server.py
|
|
167
|
-
import os
|
|
168
|
-
import sys
|
|
169
|
-
import asyncio
|
|
170
|
-
import click
|
|
171
|
-
from dotenv import load_dotenv
|
|
172
|
-
|
|
173
|
-
# 패키지 루트 경로 추가 (샘플에서만)
|
|
174
|
-
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
|
175
|
-
|
|
176
|
-
from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
|
|
177
|
-
from sample_server.crew_ai_dr_agent_executor import CrewAIDeepResearchAgentExecutor
|
|
178
|
-
|
|
179
|
-
load_dotenv()
|
|
180
|
-
|
|
181
|
-
@click.command()
|
|
182
|
-
@click.option('--agent-type', default='crew-ai-dr', help='Agent type identifier')
|
|
183
|
-
@click.option('--polling-interval', default=5, help='Polling interval in seconds')
|
|
184
|
-
def cli_main(agent_type: str, polling_interval: int):
|
|
185
|
-
"""ProcessGPT Agent Server for CrewAI Deep Research Agent"""
|
|
186
|
-
|
|
187
|
-
agent_executor = CrewAIDeepResearchAgentExecutor()
|
|
188
|
-
server = ProcessGPTAgentServer(agent_executor=agent_executor, agent_type=agent_type)
|
|
189
|
-
server.polling_interval = polling_interval
|
|
190
|
-
|
|
191
|
-
print(f"Starting ProcessGPT Agent Server...")
|
|
192
|
-
print(f"Agent Type: {agent_type}")
|
|
193
|
-
print(f"Polling Interval: {polling_interval} seconds")
|
|
194
|
-
print("Press Ctrl+C to stop")
|
|
195
|
-
|
|
196
|
-
try:
|
|
197
|
-
asyncio.run(server.run())
|
|
198
|
-
except KeyboardInterrupt:
|
|
199
|
-
print("\nShutting down server...")
|
|
200
|
-
server.stop()
|
|
201
|
-
except Exception as e:
|
|
202
|
-
print(f"Server error: {e}")
|
|
203
|
-
sys.exit(1)
|
|
204
|
-
|
|
205
|
-
if __name__ == "__main__":
|
|
206
|
-
cli_main()
|
|
207
|
-
```
|
|
208
|
-
|
|
209
|
-
- 실행
|
|
210
|
-
- Windows
|
|
211
|
-
```bash
|
|
212
|
-
python sample_server/crew_ai_dr_agent_server.py --agent-type crew-ai-dr --polling-interval 3
|
|
213
|
-
```
|
|
214
|
-
- macOS/Linux
|
|
215
|
-
```bash
|
|
216
|
-
python3 sample_server/crew_ai_dr_agent_server.py --agent-type crew-ai-dr --polling-interval 3
|
|
217
|
-
```
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
## 최소 예시(익스큐터)
|
|
221
|
-
```python
|
|
222
|
-
# sample_server/minimal_executor.py (요약)
|
|
223
|
-
import asyncio
|
|
224
|
-
import json
|
|
225
|
-
from typing_extensions import override
|
|
226
|
-
from a2a.server.agent_execution import AgentExecutor, RequestContext
|
|
227
|
-
from a2a.server.events import EventQueue
|
|
228
|
-
from a2a.types import TaskStatusUpdateEvent, TaskState, TaskArtifactUpdateEvent
|
|
229
|
-
from a2a.utils import new_agent_text_message, new_text_artifact
|
|
230
|
-
|
|
231
|
-
class MinimalExecutor(AgentExecutor):
|
|
232
|
-
@override
|
|
233
|
-
async def execute(self, context: RequestContext, event_queue: EventQueue) -> None:
|
|
234
|
-
row = context.get_context_data()["row"]
|
|
235
|
-
context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id")
|
|
236
|
-
task_id = row.get("id")
|
|
237
|
-
|
|
238
|
-
payload = {"order_process_activity_order_request_form": {"orderer_name": "안치윤","product_name": "금형세트","order_quantity": "50"}}
|
|
239
|
-
|
|
240
|
-
# 1) 진행 상태 이벤트
|
|
241
|
-
event_queue.enqueue_event(
|
|
242
|
-
TaskStatusUpdateEvent(
|
|
243
|
-
status={
|
|
244
|
-
"state": TaskState.working,
|
|
245
|
-
"message": new_agent_text_message(
|
|
246
|
-
json.dumps(payload, ensure_ascii=False),
|
|
247
|
-
context_id,
|
|
248
|
-
task_id,
|
|
249
|
-
),
|
|
250
|
-
},
|
|
251
|
-
final=False,
|
|
252
|
-
contextId=context_id,
|
|
253
|
-
taskId=task_id,
|
|
254
|
-
metadata={"crew_type": "action", "event_type": "task_started", "job_id": "job-demo-0001"},
|
|
255
|
-
)
|
|
256
|
-
)
|
|
257
|
-
|
|
258
|
-
await asyncio.sleep(0.1)
|
|
259
|
-
|
|
260
|
-
# 2) HITL: 사용자 입력 요청 (event_type 생략해도 자동 human_asked)
|
|
261
|
-
event_queue.enqueue_event(
|
|
262
|
-
TaskStatusUpdateEvent(
|
|
263
|
-
status={
|
|
264
|
-
"state": TaskState.input_required,
|
|
265
|
-
"message": new_agent_text_message(
|
|
266
|
-
json.dumps(payload, ensure_ascii=False),
|
|
267
|
-
context_id,
|
|
268
|
-
task_id,
|
|
269
|
-
),
|
|
270
|
-
},
|
|
271
|
-
final=True,
|
|
272
|
-
contextId=context_id,
|
|
273
|
-
taskId=task_id,
|
|
274
|
-
metadata={"crew_type": "action", "job_id": "job-demo-0001"},
|
|
275
|
-
)
|
|
276
|
-
)
|
|
277
|
-
|
|
278
|
-
await asyncio.sleep(0.1)
|
|
279
|
-
|
|
280
|
-
# 3) 최종 아티팩트
|
|
281
|
-
artifact = new_text_artifact(
|
|
282
|
-
name="current_result",
|
|
283
|
-
description="Result of request to agent.",
|
|
284
|
-
text=json.dumps(payload, ensure_ascii=False),
|
|
285
|
-
)
|
|
286
|
-
event_queue.enqueue_event(
|
|
287
|
-
TaskArtifactUpdateEvent(
|
|
288
|
-
artifact=artifact,
|
|
289
|
-
lastChunk=True,
|
|
290
|
-
contextId=context_id,
|
|
291
|
-
taskId=task_id,
|
|
292
|
-
)
|
|
293
|
-
)
|
|
294
|
-
```
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
## 서버가 해주는 일(정확한 규칙)
|
|
298
|
-
- 메시지/아티팩트 래퍼 제거 → `parts[0].text|content|data` → `root.*` → `top-level` 순서로 텍스트만 추출 후 JSON 파싱하여 저장
|
|
299
|
-
- `TaskStatusUpdateEvent` 수신 시
|
|
300
|
-
- `status.state == input_required`면 `event_type=human_asked`로 저장(명시값보다 우선)
|
|
301
|
-
- 그 외 상태는 `metadata.event_type` 저장(없으면 NULL)
|
|
302
|
-
- `TaskArtifactUpdateEvent` 수신 시
|
|
303
|
-
- `final` 또는 `lastChunk`가 참이면 최종 저장(`p_final=true`)
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
## 체크리스트(실패 없는 통합을 위한)
|
|
307
|
-
- [ ] .env에 `SUPABASE_URL`, `SUPABASE_KEY` 설정했는가?
|
|
308
|
-
- [ ] `requirements.txt` 설치 완료했는가?
|
|
309
|
-
- [ ] Supabase에서 제공 SQL(`database_schema.sql`, `function.sql`) 적용했는가?
|
|
310
|
-
- [ ] 익스큐터에서 `contextId`, `taskId`를 todolist의 `proc_inst_id`, `id`로 매핑했는가?
|
|
311
|
-
- [ ] 상태 이벤트는 `new_agent_text_message`로 만들고 있는가?
|
|
312
|
-
- [ ] 최종 아티팩트는 `new_text_artifact` + `lastChunk=True`로 보내고 있는가?
|
|
313
|
-
- [ ] HITL 요청은 `TaskState.input_required`만 보내고 있는가?(event_type 생략 가능)
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
## 트러블슈팅
|
|
317
|
-
- 이벤트 미기록
|
|
318
|
-
- Supabase URL/Key 재확인, 테이블/권한 확인
|
|
319
|
-
- 최종 아티팩트가 최종으로 저장되지 않음
|
|
320
|
-
- 익스큐터에서 `lastChunk=True` 또는 `final=True`로 보냈는지 확인
|
|
321
|
-
- payload가 래퍼와 같이 저장됨
|
|
322
|
-
- 메시지에 `parts[0].text` 또는 `parts[0].root.text`에 JSON 문자열이 들어있는지 확인
|
|
323
|
-
- 휴먼인더루프 이벤트 타입 미지정
|
|
324
|
-
- `input_required` 상태면 자동 `human_asked`로 저장됨
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
## 레퍼런스
|
|
328
|
-
- 이벤트 유틸: `new_agent_text_message`, `new_text_artifact`
|
|
329
|
-
- 서버 진입점: `ProcessGPTAgentServer.run()`
|
|
330
|
-
- 컨텍스트 확장: `ProcessGPTRequestContext.prepare_context()`
|
|
331
|
-
- 이벤트 저장: `ProcessGPTEventQueue.enqueue_event(event)` → `database.record_event`/`save_task_result`
|
|
332
|
-
- 휴먼 응답 조회: `database.fetch_human_response_sync(job_id)`
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
## 라이선스
|
|
336
|
-
해당 저장소의 라이선스 정책을 따릅니다.
|
|
@@ -1,6 +0,0 @@
|
|
|
1
|
-
processgpt_agent_sdk/database.py,sha256=k219S54XwQoGJcKYq6Zr0f7j-Dtrp-v7SpLMRnIgHCI,18979
|
|
2
|
-
processgpt_agent_sdk/processgpt_agent_framework.py,sha256=rTX9K-S6G_ZyzGUfIQClmJpoARqT4I51HicNw3i4y4g,16893
|
|
3
|
-
process_gpt_agent_sdk-0.3.11.dist-info/METADATA,sha256=SMr1AKnwSkRiYlByB1MjPVLFs-Y003lb8CnoKle9dY8,12201
|
|
4
|
-
process_gpt_agent_sdk-0.3.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
5
|
-
process_gpt_agent_sdk-0.3.11.dist-info/top_level.txt,sha256=Xe6zrj3_3Vv7d0pl5RRtenVUckwOVBVLQn2P03j5REo,21
|
|
6
|
-
process_gpt_agent_sdk-0.3.11.dist-info/RECORD,,
|
|
File without changes
|
{process_gpt_agent_sdk-0.3.11.dist-info → process_gpt_agent_sdk-0.3.13.dist-info}/top_level.txt
RENAMED
|
File without changes
|