process-gpt-agent-sdk 0.3.11__py3-none-any.whl → 0.3.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of process-gpt-agent-sdk might be problematic. Click here for more details.

@@ -0,0 +1,410 @@
1
+ Metadata-Version: 2.4
2
+ Name: process-gpt-agent-sdk
3
+ Version: 0.3.12
4
+ Summary: Supabase 기반 이벤트/작업 폴링으로 A2A AgentExecutor를 실행하는 SDK
5
+ License: MIT
6
+ Project-URL: Homepage, https://github.com/your-org/process-gpt-agent-sdk
7
+ Project-URL: Issues, https://github.com/your-org/process-gpt-agent-sdk/issues
8
+ Keywords: agent,a2a,supabase,workflow,sdk,processgpt
9
+ Classifier: Programming Language :: Python :: 3
10
+ Classifier: Programming Language :: Python :: 3 :: Only
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Operating System :: OS Independent
13
+ Requires-Python: >=3.9
14
+ Description-Content-Type: text/markdown
15
+ Requires-Dist: supabase>=2.0.0
16
+ Requires-Dist: python-dotenv>=1.0.0
17
+ Requires-Dist: click>=8.0.0
18
+ Requires-Dist: asyncio-mqtt>=0.13.0
19
+ Requires-Dist: jsonschema>=4.0.0
20
+ Requires-Dist: structlog>=23.0.0
21
+ Requires-Dist: typing-extensions>=4.0.0
22
+ Requires-Dist: python-dateutil>=2.8.0
23
+ Requires-Dist: a2a-sdk==0.3.0
24
+
25
+ # ProcessGPT Agent Framework
26
+ ## A2A SDK 연동을 위한 경량 에이전트 서버 프레임워크
27
+
28
+ Supabase 기반의 프로세스 작업(Todolist)을 폴링하고, A2A 규격 이벤트를 통해 작업 상태/결과를 기록하는 **경량 에이전트 서버 프레임워크**입니다.
29
+
30
+ ### 📋 요구사항
31
+ - **런타임**: Python 3.9+ (권장: Python 3.11)
32
+ - **데이터베이스**: Supabase (PostgreSQL) + 제공된 RPC/테이블
33
+ - **이벤트 규격**: A2A `TaskStatusUpdateEvent` / `TaskArtifactUpdateEvent`
34
+
35
+ ## 📊 이벤트 타입별 저장 테이블 및 특징
36
+
37
+ ### 1. TaskStatusUpdateEvent (작업 상태 이벤트)
38
+ - **저장 테이블**: `events`
39
+ - **용도**: 작업 진행 상황, 사용자 입력 요청, 에러 알림 등
40
+ - **저장 데이터**: 메시지 래퍼를 제거한 순수 payload만 `data` 컬럼에 JSON으로 저장
41
+
42
+ ```python
43
+ # 예시 코드
44
+ event_queue.enqueue_event(
45
+ TaskStatusUpdateEvent(
46
+ status={
47
+ "state": TaskState.working, # working, input_required, completed 등
48
+ "message": new_agent_text_message("진행 중입니다", context_id, task_id),
49
+ },
50
+ final=False,
51
+ contextId=context_id,
52
+ taskId=task_id,
53
+ metadata={"event_type": "task_started"} # events.event_type에 저장
54
+ )
55
+ )
56
+ ```
57
+
58
+ **특별 규칙**:
59
+ - `state=input_required`일 때는 자동으로 `event_type=human_asked`로 저장됨
60
+ - 메시지는 `new_agent_text_message()` 유틸 함수로 생성
61
+
62
+ ### 2. TaskArtifactUpdateEvent (작업 결과 이벤트)
63
+ - **저장 테이블**: `todolist` (output 컬럼)
64
+ - **용도**: 최종 작업 결과물 전송
65
+ - **저장 데이터**: 아티팩트 래퍼를 제거한 순수 payload만 `output` 컬럼에 JSON으로 저장
66
+
67
+ ```python
68
+ # 예시 코드
69
+ artifact = new_text_artifact(
70
+ name="처리결과",
71
+ description="작업 완료 결과",
72
+ text="실제 결과 데이터"
73
+ )
74
+ event_queue.enqueue_event(
75
+ TaskArtifactUpdateEvent(
76
+ artifact=artifact,
77
+ lastChunk=True, # 최종 결과면 True
78
+ contextId=context_id,
79
+ taskId=task_id,
80
+ )
81
+ )
82
+ ```
83
+
84
+ **특별 규칙**:
85
+ - `lastChunk=True` 또는 `final=True`일 때만 최종 저장됨 (`p_final=true`)
86
+ - 아티팩트는 `new_text_artifact()` 유틸 함수로 생성
87
+
88
+ ## 🔄 데이터 흐름과 값 전달 방식
89
+
90
+ ### 전체 흐름
91
+ 1. **작업 폴링**: 서버가 Supabase `todolist` 테이블에서 새 작업을 가져옴
92
+ 2. **컨텍스트 준비**: `RequestContext`에 작업 정보와 사용자 입력을 담음
93
+ 3. **익스큐터 실행**: 사용자가 구현한 `AgentExecutor.execute()` 메서드 호출
94
+ 4. **이벤트 전송**: 익스큐터에서 진행 상황과 결과를 이벤트로 전송
95
+ 5. **데이터 저장**: 이벤트 타입에 따라 적절한 테이블에 저장
96
+
97
+ ### 값 전달 과정
98
+ ```python
99
+ # 1. 서버에서 작업 정보 가져오기
100
+ row = context.get_context_data()["row"] # todolist 테이블의 한 행
101
+ context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id") # 프로세스 ID
102
+ task_id = row.get("id") # 작업 ID
103
+ user_input = context.get_user_input() # 사용자가 입력한 내용
104
+
105
+ # 2. 메시지/아티팩트 생성시 JSON 문자열로 변환
106
+ payload = {"result": "처리 완료"}
107
+ message_text = json.dumps(payload, ensure_ascii=False) # 중요: JSON 문자열로!
108
+
109
+ # 3. 서버가 자동으로 래퍼 제거 후 순수 payload만 저장
110
+ # events.data 또는 todolist.output에 {"result": "처리 완료"}만 저장됨
111
+ ```
112
+
113
+ ## 🚀 빠른 시작 가이드
114
+
115
+ ### 1단계: 설치
116
+ ```bash
117
+ # 패키지 설치
118
+ pip install -e .
119
+
120
+ # 또는 requirements.txt 사용
121
+ pip install -r requirements.txt
122
+ ```
123
+
124
+ ### 2단계: 환경 설정
125
+ `.env` 파일 생성:
126
+ ```env
127
+ SUPABASE_URL=your_supabase_project_url
128
+ SUPABASE_KEY=your_supabase_anon_key
129
+ ENV=dev
130
+ ```
131
+
132
+ ### 3단계: 서버 구현 방법
133
+ 서버는 이렇게 만드세요:
134
+
135
+ ```python
136
+ # my_server.py
137
+ import asyncio
138
+ from dotenv import load_dotenv
139
+ from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
140
+ from my_executor import MyExecutor # 아래에서 구현할 익스큐터
141
+
142
+ async def main():
143
+ load_dotenv()
144
+
145
+ server = ProcessGPTAgentServer(
146
+ agent_executor=MyExecutor(), # 여러분이 구현할 익스큐터
147
+ agent_type="my-agent" # Supabase todolist.agent_orch와 매칭되어야 함
148
+ )
149
+ server.polling_interval = 3 # 3초마다 새 작업 확인
150
+
151
+ print("서버 시작!")
152
+ await server.run()
153
+
154
+ if __name__ == "__main__":
155
+ try:
156
+ asyncio.run(main())
157
+ except KeyboardInterrupt:
158
+ print("서버 종료")
159
+ ```
160
+
161
+ ### 4단계: 익스큐터 구현 방법
162
+ 익스큐터는 이렇게 만드세요:
163
+
164
+ ```python
165
+ # my_executor.py
166
+ import asyncio
167
+ import json
168
+ from typing_extensions import override
169
+ from a2a.server.agent_execution import AgentExecutor, RequestContext
170
+ from a2a.server.events import EventQueue
171
+ from a2a.types import TaskStatusUpdateEvent, TaskState, TaskArtifactUpdateEvent
172
+ from a2a.utils import new_agent_text_message, new_text_artifact
173
+
174
+ class MyExecutor(AgentExecutor):
175
+ @override
176
+ async def execute(self, context: RequestContext, event_queue: EventQueue) -> None:
177
+ # 1. 작업 정보 가져오기
178
+ row = context.get_context_data()["row"]
179
+ context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id")
180
+ task_id = row.get("id")
181
+ user_input = context.get_user_input() # 사용자가 입력한 내용
182
+
183
+ print(f"처리할 작업: {user_input}")
184
+
185
+ # 2. 작업 시작 알림 (events 테이블에 저장됨)
186
+ event_queue.enqueue_event(
187
+ TaskStatusUpdateEvent(
188
+ status={
189
+ "state": TaskState.working,
190
+ "message": new_agent_text_message("작업 시작", context_id, task_id),
191
+ },
192
+ final=False,
193
+ contextId=context_id,
194
+ taskId=task_id,
195
+ metadata={"event_type": "task_started"}
196
+ )
197
+ )
198
+
199
+ # 3. 실제 작업 수행 (여기에 여러분의 로직 작성)
200
+ await asyncio.sleep(2)
201
+ result_data = {"status": "완료", "input": user_input, "output": "처리 결과"}
202
+
203
+ # 4. 최종 결과 전송 (todolist.output에 저장됨)
204
+ artifact = new_text_artifact(
205
+ name="처리결과",
206
+ description="작업 완료 결과",
207
+ text=json.dumps(result_data, ensure_ascii=False) # JSON 문자열로!
208
+ )
209
+ event_queue.enqueue_event(
210
+ TaskArtifactUpdateEvent(
211
+ artifact=artifact,
212
+ lastChunk=True, # 중요: 최종 결과면 True
213
+ contextId=context_id,
214
+ taskId=task_id,
215
+ )
216
+ )
217
+
218
+ @override
219
+ async def cancel(self, context: RequestContext, event_queue: EventQueue) -> None:
220
+ pass # 취소 로직 (필요시 구현)
221
+ ```
222
+
223
+ ### 5단계: 실행
224
+ ```bash
225
+ python my_server.py
226
+ ```
227
+
228
+ ## 🤝 Human-in-the-Loop (사용자 입력 요청) 패턴
229
+
230
+ 사용자 입력이 필요할 때:
231
+
232
+ ```python
233
+ # 사용자 입력 요청
234
+ question_data = {
235
+ "question": "어떤 방식으로 처리할까요?",
236
+ "options": ["방식A", "방식B", "방식C"]
237
+ }
238
+
239
+ event_queue.enqueue_event(
240
+ TaskStatusUpdateEvent(
241
+ status={
242
+ "state": TaskState.input_required, # 이 상태가 중요!
243
+ "message": new_agent_text_message(
244
+ json.dumps(question_data, ensure_ascii=False),
245
+ context_id, task_id
246
+ ),
247
+ },
248
+ final=True,
249
+ contextId=context_id,
250
+ taskId=task_id,
251
+ metadata={"job_id": f"job-{task_id}"} # job_id 필수
252
+ )
253
+ )
254
+ # 자동으로 events 테이블에 event_type=human_asked로 저장됨
255
+ ```
256
+
257
+ ## 📋 체크리스트 (실패 없는 통합을 위한)
258
+
259
+ ### 필수 설정
260
+ - [ ] `.env`에 `SUPABASE_URL`, `SUPABASE_KEY` 설정
261
+ - [ ] `requirements.txt` 설치 완료
262
+ - [ ] Supabase에서 제공 SQL(`database_schema.sql`, `function.sql`) 적용
263
+
264
+ ### 코드 구현
265
+ - [ ] 서버에서 `agent_type`이 Supabase `todolist.agent_orch`와 매칭됨
266
+ - [ ] 익스큐터에서 `contextId`, `taskId`를 올바르게 설정
267
+ - [ ] 상태 이벤트는 `new_agent_text_message()`로 생성
268
+ - [ ] 최종 결과는 `new_text_artifact()` + `lastChunk=True`로 전송
269
+ - [ ] HITL 요청시 `TaskState.input_required` 사용
270
+
271
+ ## 🚨 자주 발생하는 문제
272
+
273
+ ### 1. 설치 문제
274
+ **증상**: `ModuleNotFoundError`
275
+ ```bash
276
+ # 해결
277
+ pip install -e .
278
+ pip install a2a-sdk==0.3.0 --force-reinstall
279
+ ```
280
+
281
+ ### 2. 작업이 폴링되지 않음
282
+ **원인**: Supabase 연결 문제
283
+ **해결**:
284
+ - `.env` 파일 위치 확인 (프로젝트 루트)
285
+ - URL/Key 재확인
286
+ - `agent_type`이 todolist.agent_orch와 매칭되는지 확인
287
+
288
+ ### 3. 이벤트가 저장되지 않음
289
+ **원인**: 테이블/함수 누락
290
+ **해결**:
291
+ - `database_schema.sql`, `function.sql` 실행 확인
292
+ - Supabase 테이블 권한 확인
293
+
294
+ ### 4. 결과가 래퍼와 함께 저장됨
295
+ **원인**: JSON 문자열 변환 누락
296
+ ```python
297
+ # 올바른 방법
298
+ text=json.dumps(data, ensure_ascii=False) # JSON 문자열로!
299
+
300
+ # 잘못된 방법
301
+ text=data # 딕셔너리 직접 전달 (X)
302
+ ```
303
+
304
+ ## 📚 샘플 코드 (간단 버전)
305
+
306
+ ### 기본 서버
307
+ ```python
308
+ # sample_server/minimal_server.py
309
+ import asyncio
310
+ from dotenv import load_dotenv
311
+ from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
312
+ from sample_server.minimal_executor import MinimalExecutor
313
+
314
+ async def main():
315
+ load_dotenv()
316
+ server = ProcessGPTAgentServer(
317
+ agent_executor=MinimalExecutor(),
318
+ agent_type="crewai-action"
319
+ )
320
+ server.polling_interval = 3
321
+ await server.run()
322
+
323
+ if __name__ == "__main__":
324
+ try:
325
+ asyncio.run(main())
326
+ except KeyboardInterrupt:
327
+ pass
328
+ ```
329
+
330
+ ### 기본 익스큐터
331
+ ```python
332
+ # sample_server/minimal_executor.py
333
+ import asyncio
334
+ import json
335
+ from typing_extensions import override
336
+ from a2a.server.agent_execution import AgentExecutor, RequestContext
337
+ from a2a.server.events import EventQueue
338
+ from a2a.types import TaskStatusUpdateEvent, TaskState, TaskArtifactUpdateEvent
339
+ from a2a.utils import new_agent_text_message, new_text_artifact
340
+
341
+ class MinimalExecutor(AgentExecutor):
342
+ @override
343
+ async def execute(self, context: RequestContext, event_queue: EventQueue) -> None:
344
+ row = context.get_context_data()["row"]
345
+ context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id")
346
+ task_id = row.get("id")
347
+ user_input = context.get_user_input()
348
+
349
+ # 진행 상태
350
+ event_queue.enqueue_event(
351
+ TaskStatusUpdateEvent(
352
+ status={
353
+ "state": TaskState.working,
354
+ "message": new_agent_text_message("처리중", context_id, task_id),
355
+ },
356
+ final=False,
357
+ contextId=context_id,
358
+ taskId=task_id,
359
+ metadata={"event_type": "task_started"}
360
+ )
361
+ )
362
+
363
+ await asyncio.sleep(1)
364
+
365
+ # 최종 결과
366
+ result = {"input": user_input, "output": "처리 완료"}
367
+ artifact = new_text_artifact(
368
+ name="결과",
369
+ description="처리 결과",
370
+ text=json.dumps(result, ensure_ascii=False)
371
+ )
372
+ event_queue.enqueue_event(
373
+ TaskArtifactUpdateEvent(
374
+ artifact=artifact,
375
+ lastChunk=True,
376
+ contextId=context_id,
377
+ taskId=task_id,
378
+ )
379
+ )
380
+
381
+ @override
382
+ async def cancel(self, context: RequestContext, event_queue: EventQueue) -> None:
383
+ pass
384
+ ```
385
+
386
+ ## 🔧 실행 방법
387
+
388
+ ### 개발 환경에서 실행
389
+ ```bash
390
+ python sample_server/minimal_server.py
391
+ ```
392
+
393
+ ### 실제 사용시
394
+ ```bash
395
+ python my_server.py
396
+ ```
397
+
398
+ ---
399
+
400
+ ## 📚 레퍼런스
401
+
402
+ ### 주요 함수들
403
+ - `ProcessGPTAgentServer.run()`: 서버 시작
404
+ - `new_agent_text_message(text, context_id, task_id)`: 상태 메시지 생성
405
+ - `new_text_artifact(name, desc, text)`: 결과 아티팩트 생성
406
+
407
+ ### 이벤트 저장 규칙
408
+ - **TaskStatusUpdateEvent** → `events` 테이블 (`data` 컬럼)
409
+ - **TaskArtifactUpdateEvent** → `todolist` 테이블 (`output` 컬럼)
410
+ - 래퍼 자동 제거 후 순수 payload만 저장
@@ -0,0 +1,6 @@
1
+ processgpt_agent_sdk/database.py,sha256=k219S54XwQoGJcKYq6Zr0f7j-Dtrp-v7SpLMRnIgHCI,18979
2
+ processgpt_agent_sdk/processgpt_agent_framework.py,sha256=YE5JB4TyRkYFYxRMRfo-SyXb5JuFZwaNtNaxFNd9PXA,16894
3
+ process_gpt_agent_sdk-0.3.12.dist-info/METADATA,sha256=x5kNRsZ9J0jaCmYmWEhQiuDeiXqH_vgjaDkZ8jizLSE,13600
4
+ process_gpt_agent_sdk-0.3.12.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
5
+ process_gpt_agent_sdk-0.3.12.dist-info/top_level.txt,sha256=Xe6zrj3_3Vv7d0pl5RRtenVUckwOVBVLQn2P03j5REo,21
6
+ process_gpt_agent_sdk-0.3.12.dist-info/RECORD,,
@@ -17,7 +17,7 @@ from a2a.types import (
17
17
  )
18
18
 
19
19
  # DB 어댑터 사용
20
- from database import (
20
+ from .database import (
21
21
  initialize_db,
22
22
  polling_pending_todos,
23
23
  record_event,
@@ -1,336 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: process-gpt-agent-sdk
3
- Version: 0.3.11
4
- Summary: Supabase 기반 이벤트/작업 폴링으로 A2A AgentExecutor를 실행하는 SDK
5
- License: MIT
6
- Project-URL: Homepage, https://github.com/your-org/process-gpt-agent-sdk
7
- Project-URL: Issues, https://github.com/your-org/process-gpt-agent-sdk/issues
8
- Keywords: agent,a2a,supabase,workflow,sdk,processgpt
9
- Classifier: Programming Language :: Python :: 3
10
- Classifier: Programming Language :: Python :: 3 :: Only
11
- Classifier: License :: OSI Approved :: MIT License
12
- Classifier: Operating System :: OS Independent
13
- Requires-Python: >=3.9
14
- Description-Content-Type: text/markdown
15
- Requires-Dist: supabase>=2.0.0
16
- Requires-Dist: python-dotenv>=1.0.0
17
- Requires-Dist: click>=8.0.0
18
- Requires-Dist: asyncio-mqtt>=0.13.0
19
- Requires-Dist: jsonschema>=4.0.0
20
- Requires-Dist: structlog>=23.0.0
21
- Requires-Dist: typing-extensions>=4.0.0
22
- Requires-Dist: python-dateutil>=2.8.0
23
- Requires-Dist: a2a-sdk==0.3.0
24
-
25
- # ProcessGPT Agent Framework (A2A SDK 연동 가이드)
26
-
27
- 이 저장소는 Supabase 기반의 프로세스 작업(Todolist)을 폴링하고, A2A 규격 이벤트를 통해 작업 상태/결과를 기록하는 **경량 에이전트 서버 프레임워크**입니다. 최소 구현으로 빠르게 통합하고, 필요하면 커스터마이즈할 수 있습니다.
28
-
29
- - 런타임: Python 3.10+
30
- - 저장소 의존: Supabase(Postgres) + 제공된 RPC/테이블
31
- - 이벤트 규격: A2A `TaskStatusUpdateEvent` / `TaskArtifactUpdateEvent`
32
-
33
-
34
- ## 아키텍처 한눈에 보기
35
- ```mermaid
36
- flowchart LR
37
- subgraph Supabase
38
- A[Todolist] --- B[Events]
39
- A -.RPC.-> C[(save_task_result)]
40
- D[(fetch_pending_task)] --> A
41
- end
42
-
43
- subgraph Agent Server
44
- E[ProcessGPTAgentServer] -->|polls| D
45
- E --> F[ProcessGPTRequestContext]
46
- E --> G[ProcessGPTEventQueue]
47
- H[Your AgentExecutor]
48
- F --> H
49
- H -->|A2A Events| G
50
- end
51
-
52
- G -->|TaskStatusUpdateEvent| B
53
- G -->|TaskArtifactUpdateEvent| A
54
- ```
55
-
56
- - 서버는 주기적으로 Todolist를 폴링하여 새 작업을 가져옵니다.
57
- - 사용자 구현 `AgentExecutor`가 요청을 처리하고, A2A 이벤트를 큐에 전달합니다.
58
- - 이벤트 큐는 상태 이벤트를 `events` 테이블에, 아티팩트 이벤트를 `todolist.output`에 저장합니다.
59
-
60
-
61
- ## 엔드-투-엔드 시퀀스(정상 흐름)
62
- ```mermaid
63
- sequenceDiagram
64
- participant SB as Supabase
65
- participant SRV as ProcessGPTAgentServer
66
- participant CTX as RequestContext
67
- participant EXE as Your AgentExecutor
68
- participant EQ as ProcessGPTEventQueue
69
-
70
- SRV->>SB: RPC fetch_pending_task
71
- SB-->>SRV: todolist row
72
- SRV->>CTX: prepare_context()
73
- SRV->>EXE: execute(context, event_queue)
74
- EXE->>EQ: TaskStatusUpdateEvent (state=working)
75
- EQ->>SB: INSERT events (data=payload)
76
- EXE->>EQ: TaskArtifactUpdateEvent (lastChunk=true, artifact)
77
- EQ->>SB: RPC save_task_result (output=payload, p_final=true)
78
- SRV->>EQ: task_done()
79
- EQ->>SB: INSERT events (crew_completed)
80
- ```
81
-
82
-
83
- ## Human-in-the-loop(HITL) 시퀀스
84
- ```mermaid
85
- sequenceDiagram
86
- participant EXE as Your AgentExecutor
87
- participant EQ as ProcessGPTEventQueue
88
- participant SB as Supabase
89
- participant UI as Operator UI
90
-
91
- EXE->>EQ: TaskStatusUpdateEvent (state=input_required)
92
- Note right of EXE: event_type 전송 생략 가능
93
- EQ->>SB: INSERT events (event_type=human_asked, data=질문 payload)
94
- UI->>SB: INSERT events (event_type=human_response, data=사용자 응답)
95
- EXE-->>SB: 선택: fetch_human_response_sync(job_id)
96
- ```
97
-
98
-
99
- ## 친절한 시작 가이드(5분 컷)
100
- 1) 가상환경 + 설치
101
- ```bash
102
- uv venv --python 3.11.9
103
- uv pip install -r requirements.txt
104
- source .venv/Scripts/activate
105
- ```
106
-
107
- 2) .env 준비
108
- - SUPABASE_URL, SUPABASE_KEY 필수
109
- - ENV=dev (개발 환경에서 권장)
110
-
111
- 3) 샘플 서버 실행
112
- ```bash
113
- python sample_server/minimal_server.py | cat
114
- ```
115
-
116
- 4) 이벤트 전송 패턴 이해
117
- - 진행 상태: `TaskStatusUpdateEvent(state=working)` + `new_agent_text_message(text, contextId, taskId)`
118
- - 사용자 입력 요청(HITL): `TaskState.input_required`만 보내면 event_type은 자동 `human_asked`
119
- - 결과물: `TaskArtifactUpdateEvent(lastChunk=True)` + `new_text_artifact(name, desc, text)`
120
-
121
- 5) 저장물 확인 포인트
122
- - `events` 테이블: data에는 래퍼 제거된 순수 payload 저장
123
- - `todolist.output`: 순수 payload 저장, 최종 청크면 `p_final=true`
124
-
125
-
126
- ## 샘플 서버 실행 코드 (친절 버전)
127
- ### A. 가장 간단한 서버(minimal)
128
- ```python
129
- # sample_server/minimal_server.py
130
- import os
131
- import sys
132
- import asyncio
133
- from dotenv import load_dotenv
134
-
135
- # 패키지 루트 경로 추가 (샘플에서만)
136
- sys.path.append(os.path.dirname(os.path.dirname(__file__)))
137
-
138
- from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
139
- from sample_server.minimal_executor import MinimalExecutor
140
-
141
- async def main():
142
- load_dotenv()
143
- # agent_type은 Supabase의 todolist.agent_orch와 매칭되어야 함
144
- server = ProcessGPTAgentServer(agent_executor=MinimalExecutor(), agent_type="crewai-action")
145
- server.polling_interval = 3 # 초
146
- await server.run()
147
-
148
- if __name__ == "__main__":
149
- try:
150
- asyncio.run(main())
151
- except KeyboardInterrupt:
152
- pass
153
- ```
154
-
155
- - Windows
156
- ```bash
157
- python sample_server/minimal_server.py
158
- ```
159
- - macOS/Linux
160
- ```bash
161
- python3 sample_server/minimal_server.py
162
- ```
163
-
164
- ### B. CLI 옵션이 있는 서버 예시
165
- ```python
166
- # sample_server/crew_ai_dr_agent_server.py
167
- import os
168
- import sys
169
- import asyncio
170
- import click
171
- from dotenv import load_dotenv
172
-
173
- # 패키지 루트 경로 추가 (샘플에서만)
174
- sys.path.append(os.path.dirname(os.path.dirname(__file__)))
175
-
176
- from processgpt_agent_sdk.processgpt_agent_framework import ProcessGPTAgentServer
177
- from sample_server.crew_ai_dr_agent_executor import CrewAIDeepResearchAgentExecutor
178
-
179
- load_dotenv()
180
-
181
- @click.command()
182
- @click.option('--agent-type', default='crew-ai-dr', help='Agent type identifier')
183
- @click.option('--polling-interval', default=5, help='Polling interval in seconds')
184
- def cli_main(agent_type: str, polling_interval: int):
185
- """ProcessGPT Agent Server for CrewAI Deep Research Agent"""
186
-
187
- agent_executor = CrewAIDeepResearchAgentExecutor()
188
- server = ProcessGPTAgentServer(agent_executor=agent_executor, agent_type=agent_type)
189
- server.polling_interval = polling_interval
190
-
191
- print(f"Starting ProcessGPT Agent Server...")
192
- print(f"Agent Type: {agent_type}")
193
- print(f"Polling Interval: {polling_interval} seconds")
194
- print("Press Ctrl+C to stop")
195
-
196
- try:
197
- asyncio.run(server.run())
198
- except KeyboardInterrupt:
199
- print("\nShutting down server...")
200
- server.stop()
201
- except Exception as e:
202
- print(f"Server error: {e}")
203
- sys.exit(1)
204
-
205
- if __name__ == "__main__":
206
- cli_main()
207
- ```
208
-
209
- - 실행
210
- - Windows
211
- ```bash
212
- python sample_server/crew_ai_dr_agent_server.py --agent-type crew-ai-dr --polling-interval 3
213
- ```
214
- - macOS/Linux
215
- ```bash
216
- python3 sample_server/crew_ai_dr_agent_server.py --agent-type crew-ai-dr --polling-interval 3
217
- ```
218
-
219
-
220
- ## 최소 예시(익스큐터)
221
- ```python
222
- # sample_server/minimal_executor.py (요약)
223
- import asyncio
224
- import json
225
- from typing_extensions import override
226
- from a2a.server.agent_execution import AgentExecutor, RequestContext
227
- from a2a.server.events import EventQueue
228
- from a2a.types import TaskStatusUpdateEvent, TaskState, TaskArtifactUpdateEvent
229
- from a2a.utils import new_agent_text_message, new_text_artifact
230
-
231
- class MinimalExecutor(AgentExecutor):
232
- @override
233
- async def execute(self, context: RequestContext, event_queue: EventQueue) -> None:
234
- row = context.get_context_data()["row"]
235
- context_id = row.get("root_proc_inst_id") or row.get("proc_inst_id")
236
- task_id = row.get("id")
237
-
238
- payload = {"order_process_activity_order_request_form": {"orderer_name": "안치윤","product_name": "금형세트","order_quantity": "50"}}
239
-
240
- # 1) 진행 상태 이벤트
241
- event_queue.enqueue_event(
242
- TaskStatusUpdateEvent(
243
- status={
244
- "state": TaskState.working,
245
- "message": new_agent_text_message(
246
- json.dumps(payload, ensure_ascii=False),
247
- context_id,
248
- task_id,
249
- ),
250
- },
251
- final=False,
252
- contextId=context_id,
253
- taskId=task_id,
254
- metadata={"crew_type": "action", "event_type": "task_started", "job_id": "job-demo-0001"},
255
- )
256
- )
257
-
258
- await asyncio.sleep(0.1)
259
-
260
- # 2) HITL: 사용자 입력 요청 (event_type 생략해도 자동 human_asked)
261
- event_queue.enqueue_event(
262
- TaskStatusUpdateEvent(
263
- status={
264
- "state": TaskState.input_required,
265
- "message": new_agent_text_message(
266
- json.dumps(payload, ensure_ascii=False),
267
- context_id,
268
- task_id,
269
- ),
270
- },
271
- final=True,
272
- contextId=context_id,
273
- taskId=task_id,
274
- metadata={"crew_type": "action", "job_id": "job-demo-0001"},
275
- )
276
- )
277
-
278
- await asyncio.sleep(0.1)
279
-
280
- # 3) 최종 아티팩트
281
- artifact = new_text_artifact(
282
- name="current_result",
283
- description="Result of request to agent.",
284
- text=json.dumps(payload, ensure_ascii=False),
285
- )
286
- event_queue.enqueue_event(
287
- TaskArtifactUpdateEvent(
288
- artifact=artifact,
289
- lastChunk=True,
290
- contextId=context_id,
291
- taskId=task_id,
292
- )
293
- )
294
- ```
295
-
296
-
297
- ## 서버가 해주는 일(정확한 규칙)
298
- - 메시지/아티팩트 래퍼 제거 → `parts[0].text|content|data` → `root.*` → `top-level` 순서로 텍스트만 추출 후 JSON 파싱하여 저장
299
- - `TaskStatusUpdateEvent` 수신 시
300
- - `status.state == input_required`면 `event_type=human_asked`로 저장(명시값보다 우선)
301
- - 그 외 상태는 `metadata.event_type` 저장(없으면 NULL)
302
- - `TaskArtifactUpdateEvent` 수신 시
303
- - `final` 또는 `lastChunk`가 참이면 최종 저장(`p_final=true`)
304
-
305
-
306
- ## 체크리스트(실패 없는 통합을 위한)
307
- - [ ] .env에 `SUPABASE_URL`, `SUPABASE_KEY` 설정했는가?
308
- - [ ] `requirements.txt` 설치 완료했는가?
309
- - [ ] Supabase에서 제공 SQL(`database_schema.sql`, `function.sql`) 적용했는가?
310
- - [ ] 익스큐터에서 `contextId`, `taskId`를 todolist의 `proc_inst_id`, `id`로 매핑했는가?
311
- - [ ] 상태 이벤트는 `new_agent_text_message`로 만들고 있는가?
312
- - [ ] 최종 아티팩트는 `new_text_artifact` + `lastChunk=True`로 보내고 있는가?
313
- - [ ] HITL 요청은 `TaskState.input_required`만 보내고 있는가?(event_type 생략 가능)
314
-
315
-
316
- ## 트러블슈팅
317
- - 이벤트 미기록
318
- - Supabase URL/Key 재확인, 테이블/권한 확인
319
- - 최종 아티팩트가 최종으로 저장되지 않음
320
- - 익스큐터에서 `lastChunk=True` 또는 `final=True`로 보냈는지 확인
321
- - payload가 래퍼와 같이 저장됨
322
- - 메시지에 `parts[0].text` 또는 `parts[0].root.text`에 JSON 문자열이 들어있는지 확인
323
- - 휴먼인더루프 이벤트 타입 미지정
324
- - `input_required` 상태면 자동 `human_asked`로 저장됨
325
-
326
-
327
- ## 레퍼런스
328
- - 이벤트 유틸: `new_agent_text_message`, `new_text_artifact`
329
- - 서버 진입점: `ProcessGPTAgentServer.run()`
330
- - 컨텍스트 확장: `ProcessGPTRequestContext.prepare_context()`
331
- - 이벤트 저장: `ProcessGPTEventQueue.enqueue_event(event)` → `database.record_event`/`save_task_result`
332
- - 휴먼 응답 조회: `database.fetch_human_response_sync(job_id)`
333
-
334
-
335
- ## 라이선스
336
- 해당 저장소의 라이선스 정책을 따릅니다.
@@ -1,6 +0,0 @@
1
- processgpt_agent_sdk/database.py,sha256=k219S54XwQoGJcKYq6Zr0f7j-Dtrp-v7SpLMRnIgHCI,18979
2
- processgpt_agent_sdk/processgpt_agent_framework.py,sha256=rTX9K-S6G_ZyzGUfIQClmJpoARqT4I51HicNw3i4y4g,16893
3
- process_gpt_agent_sdk-0.3.11.dist-info/METADATA,sha256=SMr1AKnwSkRiYlByB1MjPVLFs-Y003lb8CnoKle9dY8,12201
4
- process_gpt_agent_sdk-0.3.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
5
- process_gpt_agent_sdk-0.3.11.dist-info/top_level.txt,sha256=Xe6zrj3_3Vv7d0pl5RRtenVUckwOVBVLQn2P03j5REo,21
6
- process_gpt_agent_sdk-0.3.11.dist-info/RECORD,,