process-gpt-agent-sdk 0.2.7__py3-none-any.whl → 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of process-gpt-agent-sdk might be problematic. Click here for more details.
- process_gpt_agent_sdk-0.2.9.dist-info/METADATA +1026 -0
- process_gpt_agent_sdk-0.2.9.dist-info/RECORD +19 -0
- processgpt_agent_sdk/__init__.py +11 -7
- processgpt_agent_sdk/core/database.py +464 -464
- processgpt_agent_sdk/server.py +313 -292
- processgpt_agent_sdk/simulator.py +231 -0
- processgpt_agent_sdk/tools/human_query_tool.py +211 -211
- processgpt_agent_sdk/tools/knowledge_tools.py +206 -206
- processgpt_agent_sdk/tools/safe_tool_loader.py +209 -209
- processgpt_agent_sdk/utils/context_manager.py +45 -45
- processgpt_agent_sdk/utils/crewai_event_listener.py +205 -205
- processgpt_agent_sdk/utils/event_handler.py +72 -72
- processgpt_agent_sdk/utils/logger.py +73 -39
- processgpt_agent_sdk/utils/summarizer.py +146 -146
- process_gpt_agent_sdk-0.2.7.dist-info/METADATA +0 -378
- process_gpt_agent_sdk-0.2.7.dist-info/RECORD +0 -18
- {process_gpt_agent_sdk-0.2.7.dist-info → process_gpt_agent_sdk-0.2.9.dist-info}/WHEEL +0 -0
- {process_gpt_agent_sdk-0.2.7.dist-info → process_gpt_agent_sdk-0.2.9.dist-info}/top_level.txt +0 -0
|
@@ -1,206 +1,206 @@
|
|
|
1
|
-
import os
|
|
2
|
-
from typing import Optional, List, Type
|
|
3
|
-
from pydantic import BaseModel, Field, PrivateAttr, field_validator
|
|
4
|
-
from crewai.tools import BaseTool
|
|
5
|
-
from dotenv import load_dotenv
|
|
6
|
-
from mem0 import Memory
|
|
7
|
-
import requests
|
|
8
|
-
from ..utils.logger import write_log_message, handle_application_error
|
|
9
|
-
|
|
10
|
-
# ============================================================================
|
|
11
|
-
# 설정 및 초기화
|
|
12
|
-
# ============================================================================
|
|
13
|
-
|
|
14
|
-
load_dotenv()
|
|
15
|
-
|
|
16
|
-
DB_USER = os.getenv("DB_USER")
|
|
17
|
-
DB_PASSWORD = os.getenv("DB_PASSWORD")
|
|
18
|
-
DB_HOST = os.getenv("DB_HOST")
|
|
19
|
-
DB_PORT = os.getenv("DB_PORT")
|
|
20
|
-
DB_NAME = os.getenv("DB_NAME")
|
|
21
|
-
|
|
22
|
-
CONNECTION_STRING = None
|
|
23
|
-
if all([DB_USER, DB_PASSWORD, DB_HOST, DB_PORT, DB_NAME]):
|
|
24
|
-
CONNECTION_STRING = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
|
|
25
|
-
else:
|
|
26
|
-
write_log_message("mem0 연결 문자열이 설정되지 않았습니다(DB_* env). 기능은 제한될 수 있습니다.")
|
|
27
|
-
|
|
28
|
-
# ============================================================================
|
|
29
|
-
# 스키마 정의
|
|
30
|
-
# ============================================================================
|
|
31
|
-
|
|
32
|
-
class KnowledgeQuerySchema(BaseModel):
|
|
33
|
-
query: str = Field(..., description="검색할 지식 쿼리")
|
|
34
|
-
|
|
35
|
-
@field_validator('query', mode='before')
|
|
36
|
-
@classmethod
|
|
37
|
-
def validate_query(cls, v):
|
|
38
|
-
import json
|
|
39
|
-
if isinstance(v, dict):
|
|
40
|
-
for k in ("description", "query", "q", "text", "message"):
|
|
41
|
-
if k in v and v[k]:
|
|
42
|
-
return str(v[k])
|
|
43
|
-
return "" if not v else json.dumps(v, ensure_ascii=False)
|
|
44
|
-
return v if isinstance(v, str) else str(v)
|
|
45
|
-
|
|
46
|
-
# ============================================================================
|
|
47
|
-
# 지식 검색 도구
|
|
48
|
-
# ============================================================================
|
|
49
|
-
|
|
50
|
-
class Mem0Tool(BaseTool):
|
|
51
|
-
"""Supabase 기반 mem0 지식 검색 도구 - 에이전트별"""
|
|
52
|
-
name: str = "mem0"
|
|
53
|
-
description: str = (
|
|
54
|
-
"🧠 에이전트별 개인 지식 저장소 검색 도구\n\n"
|
|
55
|
-
"🚨 필수 검색 순서: 작업 전 반드시 피드백부터 검색!\n\n"
|
|
56
|
-
"저장된 정보:\n"
|
|
57
|
-
"🔴 과거 동일한 작업에 대한 피드백 및 교훈 (최우선 검색 대상)\n"
|
|
58
|
-
"🔴 과거 실패 사례 및 개선 방안\n"
|
|
59
|
-
"• 객관적 정보 (사람명, 수치, 날짜, 사물 등)\n"
|
|
60
|
-
"검색 목적:\n"
|
|
61
|
-
"- 작업지시사항을 올바르게 수행하기 위해 필요한 정보(매개변수, 제약, 의존성)와\n"
|
|
62
|
-
" 안전 수행을 위한 피드백/주의사항을 찾기 위함\n"
|
|
63
|
-
"- 과거 실패 경험을 통한 실수 방지\n"
|
|
64
|
-
"- 정확한 객관적 정보 조회\n\n"
|
|
65
|
-
"사용 지침:\n"
|
|
66
|
-
"- 현재 작업 맥락(사용자 요청, 시스템/도구 출력, 최근 단계)을 근거로 자연어의 완전한 문장으로 질의하세요.\n"
|
|
67
|
-
"- 핵심 키워드 + 엔터티(고객명, 테이블명, 날짜 등) + 제약(환경/범위)을 조합하세요.\n"
|
|
68
|
-
"- 동의어/영문 용어를 섞어 2~3개의 표현으로 재질의하여 누락을 줄이세요.\n"
|
|
69
|
-
"- 필요한 경우 좁은 쿼리 → 넓은 쿼리 순서로 반복 검색하세요. (필요 시 기간/버전 범위 명시)\n"
|
|
70
|
-
"- 동일 정보를 다른 표현으로 재질의하며, 최신/가장 관련 결과를 우선 검토하세요.\n\n"
|
|
71
|
-
"⚡ 핵심: 어떤 작업이든 시작 전에, 해당 작업을 안전하게 수행하기 위한 피드백/주의사항과\n"
|
|
72
|
-
" 필수 매개변수를 먼저 질의하여 확보하세요!"
|
|
73
|
-
)
|
|
74
|
-
args_schema: Type[KnowledgeQuerySchema] = KnowledgeQuerySchema
|
|
75
|
-
_tenant_id: Optional[str] = PrivateAttr()
|
|
76
|
-
_user_id: Optional[str] = PrivateAttr()
|
|
77
|
-
_namespace: Optional[str] = PrivateAttr()
|
|
78
|
-
_memory: Optional[Memory] = PrivateAttr(default=None)
|
|
79
|
-
|
|
80
|
-
def __init__(self, tenant_id: str = None, user_id: str = None, **kwargs):
|
|
81
|
-
super().__init__(**kwargs)
|
|
82
|
-
self._tenant_id = tenant_id
|
|
83
|
-
self._user_id = user_id
|
|
84
|
-
self._namespace = user_id
|
|
85
|
-
self._memory = self._initialize_memory()
|
|
86
|
-
write_log_message(f"Mem0Tool 초기화: user_id={self._user_id}, namespace={self._namespace}")
|
|
87
|
-
|
|
88
|
-
def _initialize_memory(self) -> Optional[Memory]:
|
|
89
|
-
"""Memory 인스턴스 초기화 - 에이전트별"""
|
|
90
|
-
if not CONNECTION_STRING:
|
|
91
|
-
return None
|
|
92
|
-
config = {
|
|
93
|
-
"vector_store": {
|
|
94
|
-
"provider": "supabase",
|
|
95
|
-
"config": {
|
|
96
|
-
"connection_string": CONNECTION_STRING,
|
|
97
|
-
"collection_name": "memories",
|
|
98
|
-
"index_method": "hnsw",
|
|
99
|
-
"index_measure": "cosine_distance"
|
|
100
|
-
}
|
|
101
|
-
}
|
|
102
|
-
}
|
|
103
|
-
return Memory.from_config(config_dict=config)
|
|
104
|
-
|
|
105
|
-
def _run(self, query: str) -> str:
|
|
106
|
-
"""지식 검색 및 결과 반환 - 에이전트별 메모리에서"""
|
|
107
|
-
if not query:
|
|
108
|
-
return "검색할 쿼리를 입력해주세요."
|
|
109
|
-
if not self._user_id:
|
|
110
|
-
return "개인지식 검색 비활성화: user_id 없음"
|
|
111
|
-
if not self._memory:
|
|
112
|
-
return "mem0 비활성화: DB 연결 정보(DB_*)가 설정되지 않았습니다."
|
|
113
|
-
|
|
114
|
-
try:
|
|
115
|
-
write_log_message(f"에이전트별 검색 시작: user_id={self._user_id}, query='{query}'")
|
|
116
|
-
results = self._memory.search(query, user_id=self._user_id)
|
|
117
|
-
hits = results.get("results", [])
|
|
118
|
-
|
|
119
|
-
THRESHOLD = 0.5
|
|
120
|
-
MIN_RESULTS = 5
|
|
121
|
-
hits_sorted = sorted(hits, key=lambda x: x.get("score", 0), reverse=True)
|
|
122
|
-
filtered_hits = [h for h in hits_sorted if h.get("score", 0) >= THRESHOLD]
|
|
123
|
-
if len(filtered_hits) < MIN_RESULTS:
|
|
124
|
-
filtered_hits = hits_sorted[:MIN_RESULTS]
|
|
125
|
-
hits = filtered_hits
|
|
126
|
-
|
|
127
|
-
write_log_message(f"에이전트별 검색 결과: {len(hits)}개 항목 발견")
|
|
128
|
-
|
|
129
|
-
if not hits:
|
|
130
|
-
return f"'{query}'에 대한 개인 지식이 없습니다."
|
|
131
|
-
|
|
132
|
-
return self._format_results(hits)
|
|
133
|
-
|
|
134
|
-
except Exception as e:
|
|
135
|
-
handle_application_error("지식검색오류", e, raise_error=False)
|
|
136
|
-
return f"지식검색오류: {e}"
|
|
137
|
-
|
|
138
|
-
def _format_results(self, hits: List[dict]) -> str:
|
|
139
|
-
"""검색 결과 포맷팅"""
|
|
140
|
-
items = []
|
|
141
|
-
for idx, hit in enumerate(hits, start=1):
|
|
142
|
-
memory_text = hit.get("memory", "")
|
|
143
|
-
score = hit.get("score", 0)
|
|
144
|
-
items.append(f"개인지식 {idx} (관련도: {score:.2f})\n{memory_text}")
|
|
145
|
-
|
|
146
|
-
return "\n\n".join(items)
|
|
147
|
-
|
|
148
|
-
# ============================================================================
|
|
149
|
-
# 사내 문서 검색 (memento) 도구
|
|
150
|
-
# ============================================================================
|
|
151
|
-
|
|
152
|
-
class MementoQuerySchema(BaseModel):
|
|
153
|
-
query: str = Field(..., description="검색 키워드 또는 질문")
|
|
154
|
-
|
|
155
|
-
class MementoTool(BaseTool):
|
|
156
|
-
"""사내 문서 검색을 수행하는 도구"""
|
|
157
|
-
name: str = "memento"
|
|
158
|
-
description: str = (
|
|
159
|
-
"🔒 보안 민감한 사내 문서 검색 도구\n\n"
|
|
160
|
-
"저장된 정보:\n"
|
|
161
|
-
"• 보안 민감한 사내 기밀 문서\n"
|
|
162
|
-
"• 대용량 사내 문서 및 정책 자료\n"
|
|
163
|
-
"• 객관적이고 정확한 회사 내부 지식\n"
|
|
164
|
-
"• 업무 프로세스, 규정, 기술 문서\n\n"
|
|
165
|
-
"검색 목적:\n"
|
|
166
|
-
"- 작업지시사항을 올바르게 수행하기 위한 회사 정책/규정/프로세스/매뉴얼 확보\n"
|
|
167
|
-
"- 최신 버전의 표준과 가이드라인 확인\n\n"
|
|
168
|
-
"사용 지침:\n"
|
|
169
|
-
"- 현재 작업/요청과 직접 연결된 문맥을 담아 자연어의 완전한 문장으로 질의하세요.\n"
|
|
170
|
-
"- 문서 제목/버전/담당조직/기간/환경(프로덕션·스테이징·모듈 등) 조건을 명확히 포함하세요.\n"
|
|
171
|
-
"- 약어·정식명칭, 한·영 용어를 함께 사용해 2~3회 재질의하며 누락을 줄이세요.\n"
|
|
172
|
-
"- 처음엔 좁게, 필요 시 점진적으로 범위를 넓혀 검색하세요.\n\n"
|
|
173
|
-
"⚠️ 보안 민감 정보 포함 - 적절한 권한과 용도로만 사용"
|
|
174
|
-
)
|
|
175
|
-
args_schema: Type[MementoQuerySchema] = MementoQuerySchema
|
|
176
|
-
_tenant_id: str = PrivateAttr()
|
|
177
|
-
|
|
178
|
-
def __init__(self, tenant_id: str = "localhost", **kwargs):
|
|
179
|
-
super().__init__(**kwargs)
|
|
180
|
-
self._tenant_id = tenant_id
|
|
181
|
-
write_log_message(f"MementoTool 초기화: tenant_id={self._tenant_id}")
|
|
182
|
-
|
|
183
|
-
def _run(self, query: str) -> str:
|
|
184
|
-
try:
|
|
185
|
-
write_log_message(f"Memento 문서 검색 시작: tenant_id='{self._tenant_id}', query='{query}'")
|
|
186
|
-
response = requests.post(
|
|
187
|
-
"http://memento.process-gpt.io/retrieve",
|
|
188
|
-
json={"query": query, "options": {"tenant_id": self._tenant_id}}
|
|
189
|
-
)
|
|
190
|
-
if response.status_code != 200:
|
|
191
|
-
return f"API 오류: {response.status_code}"
|
|
192
|
-
data = response.json()
|
|
193
|
-
if not data.get("response"):
|
|
194
|
-
return f"테넌트 '{self._tenant_id}'에서 '{query}' 검색 결과가 없습니다."
|
|
195
|
-
results = []
|
|
196
|
-
docs = data.get("response", [])
|
|
197
|
-
write_log_message(f"Memento 검색 결과 개수: {len(docs)}")
|
|
198
|
-
for doc in docs:
|
|
199
|
-
fname = doc.get('metadata', {}).get('file_name', 'unknown')
|
|
200
|
-
idx = doc.get('metadata', {}).get('chunk_index', 'unknown')
|
|
201
|
-
content = doc.get('page_content', '')
|
|
202
|
-
results.append(f"📄 파일: {fname} (청크 #{idx})\n내용: {content}\n---")
|
|
203
|
-
return f"테넌트 '{self._tenant_id}'에서 '{query}' 검색 결과:\n\n" + "\n".join(results)
|
|
204
|
-
except Exception as e:
|
|
205
|
-
handle_application_error("문서검색오류", e, raise_error=False)
|
|
206
|
-
return f"문서검색오류: {e}"
|
|
1
|
+
import os
|
|
2
|
+
from typing import Optional, List, Type
|
|
3
|
+
from pydantic import BaseModel, Field, PrivateAttr, field_validator
|
|
4
|
+
from crewai.tools import BaseTool
|
|
5
|
+
from dotenv import load_dotenv
|
|
6
|
+
from mem0 import Memory
|
|
7
|
+
import requests
|
|
8
|
+
from ..utils.logger import write_log_message, handle_application_error
|
|
9
|
+
|
|
10
|
+
# ============================================================================
|
|
11
|
+
# 설정 및 초기화
|
|
12
|
+
# ============================================================================
|
|
13
|
+
|
|
14
|
+
load_dotenv()
|
|
15
|
+
|
|
16
|
+
DB_USER = os.getenv("DB_USER")
|
|
17
|
+
DB_PASSWORD = os.getenv("DB_PASSWORD")
|
|
18
|
+
DB_HOST = os.getenv("DB_HOST")
|
|
19
|
+
DB_PORT = os.getenv("DB_PORT")
|
|
20
|
+
DB_NAME = os.getenv("DB_NAME")
|
|
21
|
+
|
|
22
|
+
CONNECTION_STRING = None
|
|
23
|
+
if all([DB_USER, DB_PASSWORD, DB_HOST, DB_PORT, DB_NAME]):
|
|
24
|
+
CONNECTION_STRING = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
|
|
25
|
+
else:
|
|
26
|
+
write_log_message("mem0 연결 문자열이 설정되지 않았습니다(DB_* env). 기능은 제한될 수 있습니다.")
|
|
27
|
+
|
|
28
|
+
# ============================================================================
|
|
29
|
+
# 스키마 정의
|
|
30
|
+
# ============================================================================
|
|
31
|
+
|
|
32
|
+
class KnowledgeQuerySchema(BaseModel):
|
|
33
|
+
query: str = Field(..., description="검색할 지식 쿼리")
|
|
34
|
+
|
|
35
|
+
@field_validator('query', mode='before')
|
|
36
|
+
@classmethod
|
|
37
|
+
def validate_query(cls, v):
|
|
38
|
+
import json
|
|
39
|
+
if isinstance(v, dict):
|
|
40
|
+
for k in ("description", "query", "q", "text", "message"):
|
|
41
|
+
if k in v and v[k]:
|
|
42
|
+
return str(v[k])
|
|
43
|
+
return "" if not v else json.dumps(v, ensure_ascii=False)
|
|
44
|
+
return v if isinstance(v, str) else str(v)
|
|
45
|
+
|
|
46
|
+
# ============================================================================
|
|
47
|
+
# 지식 검색 도구
|
|
48
|
+
# ============================================================================
|
|
49
|
+
|
|
50
|
+
class Mem0Tool(BaseTool):
|
|
51
|
+
"""Supabase 기반 mem0 지식 검색 도구 - 에이전트별"""
|
|
52
|
+
name: str = "mem0"
|
|
53
|
+
description: str = (
|
|
54
|
+
"🧠 에이전트별 개인 지식 저장소 검색 도구\n\n"
|
|
55
|
+
"🚨 필수 검색 순서: 작업 전 반드시 피드백부터 검색!\n\n"
|
|
56
|
+
"저장된 정보:\n"
|
|
57
|
+
"🔴 과거 동일한 작업에 대한 피드백 및 교훈 (최우선 검색 대상)\n"
|
|
58
|
+
"🔴 과거 실패 사례 및 개선 방안\n"
|
|
59
|
+
"• 객관적 정보 (사람명, 수치, 날짜, 사물 등)\n"
|
|
60
|
+
"검색 목적:\n"
|
|
61
|
+
"- 작업지시사항을 올바르게 수행하기 위해 필요한 정보(매개변수, 제약, 의존성)와\n"
|
|
62
|
+
" 안전 수행을 위한 피드백/주의사항을 찾기 위함\n"
|
|
63
|
+
"- 과거 실패 경험을 통한 실수 방지\n"
|
|
64
|
+
"- 정확한 객관적 정보 조회\n\n"
|
|
65
|
+
"사용 지침:\n"
|
|
66
|
+
"- 현재 작업 맥락(사용자 요청, 시스템/도구 출력, 최근 단계)을 근거로 자연어의 완전한 문장으로 질의하세요.\n"
|
|
67
|
+
"- 핵심 키워드 + 엔터티(고객명, 테이블명, 날짜 등) + 제약(환경/범위)을 조합하세요.\n"
|
|
68
|
+
"- 동의어/영문 용어를 섞어 2~3개의 표현으로 재질의하여 누락을 줄이세요.\n"
|
|
69
|
+
"- 필요한 경우 좁은 쿼리 → 넓은 쿼리 순서로 반복 검색하세요. (필요 시 기간/버전 범위 명시)\n"
|
|
70
|
+
"- 동일 정보를 다른 표현으로 재질의하며, 최신/가장 관련 결과를 우선 검토하세요.\n\n"
|
|
71
|
+
"⚡ 핵심: 어떤 작업이든 시작 전에, 해당 작업을 안전하게 수행하기 위한 피드백/주의사항과\n"
|
|
72
|
+
" 필수 매개변수를 먼저 질의하여 확보하세요!"
|
|
73
|
+
)
|
|
74
|
+
args_schema: Type[KnowledgeQuerySchema] = KnowledgeQuerySchema
|
|
75
|
+
_tenant_id: Optional[str] = PrivateAttr()
|
|
76
|
+
_user_id: Optional[str] = PrivateAttr()
|
|
77
|
+
_namespace: Optional[str] = PrivateAttr()
|
|
78
|
+
_memory: Optional[Memory] = PrivateAttr(default=None)
|
|
79
|
+
|
|
80
|
+
def __init__(self, tenant_id: str = None, user_id: str = None, **kwargs):
|
|
81
|
+
super().__init__(**kwargs)
|
|
82
|
+
self._tenant_id = tenant_id
|
|
83
|
+
self._user_id = user_id
|
|
84
|
+
self._namespace = user_id
|
|
85
|
+
self._memory = self._initialize_memory()
|
|
86
|
+
write_log_message(f"Mem0Tool 초기화: user_id={self._user_id}, namespace={self._namespace}")
|
|
87
|
+
|
|
88
|
+
def _initialize_memory(self) -> Optional[Memory]:
|
|
89
|
+
"""Memory 인스턴스 초기화 - 에이전트별"""
|
|
90
|
+
if not CONNECTION_STRING:
|
|
91
|
+
return None
|
|
92
|
+
config = {
|
|
93
|
+
"vector_store": {
|
|
94
|
+
"provider": "supabase",
|
|
95
|
+
"config": {
|
|
96
|
+
"connection_string": CONNECTION_STRING,
|
|
97
|
+
"collection_name": "memories",
|
|
98
|
+
"index_method": "hnsw",
|
|
99
|
+
"index_measure": "cosine_distance"
|
|
100
|
+
}
|
|
101
|
+
}
|
|
102
|
+
}
|
|
103
|
+
return Memory.from_config(config_dict=config)
|
|
104
|
+
|
|
105
|
+
def _run(self, query: str) -> str:
|
|
106
|
+
"""지식 검색 및 결과 반환 - 에이전트별 메모리에서"""
|
|
107
|
+
if not query:
|
|
108
|
+
return "검색할 쿼리를 입력해주세요."
|
|
109
|
+
if not self._user_id:
|
|
110
|
+
return "개인지식 검색 비활성화: user_id 없음"
|
|
111
|
+
if not self._memory:
|
|
112
|
+
return "mem0 비활성화: DB 연결 정보(DB_*)가 설정되지 않았습니다."
|
|
113
|
+
|
|
114
|
+
try:
|
|
115
|
+
write_log_message(f"에이전트별 검색 시작: user_id={self._user_id}, query='{query}'")
|
|
116
|
+
results = self._memory.search(query, user_id=self._user_id)
|
|
117
|
+
hits = results.get("results", [])
|
|
118
|
+
|
|
119
|
+
THRESHOLD = 0.5
|
|
120
|
+
MIN_RESULTS = 5
|
|
121
|
+
hits_sorted = sorted(hits, key=lambda x: x.get("score", 0), reverse=True)
|
|
122
|
+
filtered_hits = [h for h in hits_sorted if h.get("score", 0) >= THRESHOLD]
|
|
123
|
+
if len(filtered_hits) < MIN_RESULTS:
|
|
124
|
+
filtered_hits = hits_sorted[:MIN_RESULTS]
|
|
125
|
+
hits = filtered_hits
|
|
126
|
+
|
|
127
|
+
write_log_message(f"에이전트별 검색 결과: {len(hits)}개 항목 발견")
|
|
128
|
+
|
|
129
|
+
if not hits:
|
|
130
|
+
return f"'{query}'에 대한 개인 지식이 없습니다."
|
|
131
|
+
|
|
132
|
+
return self._format_results(hits)
|
|
133
|
+
|
|
134
|
+
except Exception as e:
|
|
135
|
+
handle_application_error("지식검색오류", e, raise_error=False)
|
|
136
|
+
return f"지식검색오류: {e}"
|
|
137
|
+
|
|
138
|
+
def _format_results(self, hits: List[dict]) -> str:
|
|
139
|
+
"""검색 결과 포맷팅"""
|
|
140
|
+
items = []
|
|
141
|
+
for idx, hit in enumerate(hits, start=1):
|
|
142
|
+
memory_text = hit.get("memory", "")
|
|
143
|
+
score = hit.get("score", 0)
|
|
144
|
+
items.append(f"개인지식 {idx} (관련도: {score:.2f})\n{memory_text}")
|
|
145
|
+
|
|
146
|
+
return "\n\n".join(items)
|
|
147
|
+
|
|
148
|
+
# ============================================================================
|
|
149
|
+
# 사내 문서 검색 (memento) 도구
|
|
150
|
+
# ============================================================================
|
|
151
|
+
|
|
152
|
+
class MementoQuerySchema(BaseModel):
|
|
153
|
+
query: str = Field(..., description="검색 키워드 또는 질문")
|
|
154
|
+
|
|
155
|
+
class MementoTool(BaseTool):
|
|
156
|
+
"""사내 문서 검색을 수행하는 도구"""
|
|
157
|
+
name: str = "memento"
|
|
158
|
+
description: str = (
|
|
159
|
+
"🔒 보안 민감한 사내 문서 검색 도구\n\n"
|
|
160
|
+
"저장된 정보:\n"
|
|
161
|
+
"• 보안 민감한 사내 기밀 문서\n"
|
|
162
|
+
"• 대용량 사내 문서 및 정책 자료\n"
|
|
163
|
+
"• 객관적이고 정확한 회사 내부 지식\n"
|
|
164
|
+
"• 업무 프로세스, 규정, 기술 문서\n\n"
|
|
165
|
+
"검색 목적:\n"
|
|
166
|
+
"- 작업지시사항을 올바르게 수행하기 위한 회사 정책/규정/프로세스/매뉴얼 확보\n"
|
|
167
|
+
"- 최신 버전의 표준과 가이드라인 확인\n\n"
|
|
168
|
+
"사용 지침:\n"
|
|
169
|
+
"- 현재 작업/요청과 직접 연결된 문맥을 담아 자연어의 완전한 문장으로 질의하세요.\n"
|
|
170
|
+
"- 문서 제목/버전/담당조직/기간/환경(프로덕션·스테이징·모듈 등) 조건을 명확히 포함하세요.\n"
|
|
171
|
+
"- 약어·정식명칭, 한·영 용어를 함께 사용해 2~3회 재질의하며 누락을 줄이세요.\n"
|
|
172
|
+
"- 처음엔 좁게, 필요 시 점진적으로 범위를 넓혀 검색하세요.\n\n"
|
|
173
|
+
"⚠️ 보안 민감 정보 포함 - 적절한 권한과 용도로만 사용"
|
|
174
|
+
)
|
|
175
|
+
args_schema: Type[MementoQuerySchema] = MementoQuerySchema
|
|
176
|
+
_tenant_id: str = PrivateAttr()
|
|
177
|
+
|
|
178
|
+
def __init__(self, tenant_id: str = "localhost", **kwargs):
|
|
179
|
+
super().__init__(**kwargs)
|
|
180
|
+
self._tenant_id = tenant_id
|
|
181
|
+
write_log_message(f"MementoTool 초기화: tenant_id={self._tenant_id}")
|
|
182
|
+
|
|
183
|
+
def _run(self, query: str) -> str:
|
|
184
|
+
try:
|
|
185
|
+
write_log_message(f"Memento 문서 검색 시작: tenant_id='{self._tenant_id}', query='{query}'")
|
|
186
|
+
response = requests.post(
|
|
187
|
+
"http://memento.process-gpt.io/retrieve",
|
|
188
|
+
json={"query": query, "options": {"tenant_id": self._tenant_id}}
|
|
189
|
+
)
|
|
190
|
+
if response.status_code != 200:
|
|
191
|
+
return f"API 오류: {response.status_code}"
|
|
192
|
+
data = response.json()
|
|
193
|
+
if not data.get("response"):
|
|
194
|
+
return f"테넌트 '{self._tenant_id}'에서 '{query}' 검색 결과가 없습니다."
|
|
195
|
+
results = []
|
|
196
|
+
docs = data.get("response", [])
|
|
197
|
+
write_log_message(f"Memento 검색 결과 개수: {len(docs)}")
|
|
198
|
+
for doc in docs:
|
|
199
|
+
fname = doc.get('metadata', {}).get('file_name', 'unknown')
|
|
200
|
+
idx = doc.get('metadata', {}).get('chunk_index', 'unknown')
|
|
201
|
+
content = doc.get('page_content', '')
|
|
202
|
+
results.append(f"📄 파일: {fname} (청크 #{idx})\n내용: {content}\n---")
|
|
203
|
+
return f"테넌트 '{self._tenant_id}'에서 '{query}' 검색 결과:\n\n" + "\n".join(results)
|
|
204
|
+
except Exception as e:
|
|
205
|
+
handle_application_error("문서검색오류", e, raise_error=False)
|
|
206
|
+
return f"문서검색오류: {e}"
|