pro-craft 0.1.9__py3-none-any.whl → 0.1.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pro-craft might be problematic. Click here for more details.

@@ -379,7 +379,16 @@ class Intel():
379
379
  prompt_id: str,
380
380
  version: str = None,
381
381
  inference_save_case = True,
382
+ push_patch = False,
382
383
  ):
384
+ """
385
+ 使用指南:
386
+ 1 训练, 使用单一例子做大量的沟通来奠定基础
387
+ 2 总结, 将沟通好的总结成完整提示词
388
+ 3 推理, 使用部署
389
+ 4 微调, 针对一些格式性的, 问题进行微调
390
+ 5 补丁, 微调无法解决的问题, 可以尝试使用补丁来解决
391
+ """
383
392
  if isinstance(input_data,dict):
384
393
  input_ = json.dumps(input_data,ensure_ascii=False)
385
394
  elif isinstance(input_data,str):
@@ -459,8 +468,18 @@ class Intel():
459
468
  session = session
460
469
  )
461
470
  ai_result = self.llm.product(prompt + output_format + "\n-----input----\n" + input_)
462
- elif result_obj.action_type == "devide":
463
- pass
471
+ elif result_obj.action_type == "patch":
472
+
473
+ demand = result_obj.demand
474
+ assert demand
475
+
476
+ chat_history = prompt + demand
477
+ ai_result = self.llm.product(chat_history + output_format + "\n-----input----\n" + input_)
478
+ if push_patch:
479
+ self.save_prompt_increment_version(prompt_id, chat_history,
480
+ use_case = input_,
481
+ score = 60,
482
+ session = session)
464
483
  else:
465
484
  raise
466
485
 
@@ -470,20 +489,25 @@ class Intel():
470
489
 
471
490
  def intellect_remove_format(self,
472
491
  input_data: dict | str,
473
- OutputFormat: object,
474
492
  prompt_id: str,
493
+ OutputFormat: object = None,
494
+ ExtraFormats: list[object] = [],
475
495
  version: str = None,
476
496
  inference_save_case = True,
477
497
  ):
478
-
479
- base_format_prompt = """
498
+
499
+ if OutputFormat:
500
+ base_format_prompt = """
480
501
  按照一定格式输出, 以便可以通过如下校验
481
502
 
482
503
  使用以下正则检出
483
504
  "```json([\s\S]*?)```"
484
505
  使用以下方式验证
485
506
  """
486
- output_format = base_format_prompt + inspect.getsource(OutputFormat)
507
+ output_format = base_format_prompt + "\n".join([inspect.getsource(outputformat) for outputformat in ExtraFormats]) + inspect.getsource(OutputFormat)
508
+
509
+ else:
510
+ output_format = ""
487
511
 
488
512
  ai_result = self.intellect_remove(
489
513
  input_data=input_data,
@@ -493,21 +517,26 @@ class Intel():
493
517
  inference_save_case=inference_save_case
494
518
  )
495
519
 
496
- try:
497
- ai_result = json.loads(extract_(ai_result,r'json'))
498
- OutputFormat(**ai_result)
499
- except ValidationError as e:
500
- log_ = "记忆卡片合并 - 大模型生成的格式未通过校验"
501
- logger.error(log_)
502
- logger.error(f"错误类型: {type(e)}")
503
- logger.error(f"错误信息: {e}")
504
- logger.error(f"错误详情 (errors()): {e.errors()}")
505
- logger.error(f"错误详情 (json()): {e.json(indent=2)}")
506
- raise ValidationError(log_)
507
-
520
+ if OutputFormat:
521
+ try:
522
+ ai_result = json.loads(extract_(ai_result,r'json'))
523
+ OutputFormat(**ai_result)
524
+ except ValidationError as e:
525
+ log_ = "记忆卡片合并 - 大模型生成的格式未通过校验"
526
+ logger.error(log_)
527
+ logger.error(f"错误类型: {type(e)}")
528
+ logger.error(f"错误信息: {e}")
529
+ logger.error(f"错误详情 (errors()): {e.errors()}")
530
+ logger.error(f"错误详情 (json()): {e.json(indent=2)}")
531
+ raise ValidationError(log_)
532
+ else:
533
+ try:
534
+ assert isinstance(ai_result,str)
535
+ except AssertionError as e:
536
+ logger.error("错误了问题")
537
+
508
538
  return ai_result
509
539
 
510
-
511
540
  def intellect_remove_warp(self,prompt_id: str):
512
541
  def outer_packing(func):
513
542
  @functools.wraps(func)
@@ -536,3 +565,48 @@ class Intel():
536
565
  return wrapper
537
566
  return outer_packing
538
567
 
568
+ def biger(self,tasks):
569
+ """
570
+ 编写以下任务
571
+ 任务1 从输入文本中提取知识片段
572
+ 任务2 将知识片段总结为知识点
573
+ 任务3 将知识点添加标签
574
+ 任务4 为知识点打分1-10分
575
+ """
576
+
577
+ system_prompt = """
578
+ 根据需求, 以这个为模板, 编写这个程序
579
+
580
+ from procraft.prompt_helper import Intel, IntellectType
581
+ intels = Intel()
582
+
583
+ task_1 = "素材提取-从文本中提取素材"
584
+
585
+ class Varit(BaseModel):
586
+ material : str
587
+ protagonist: str
588
+
589
+ task_2 = "素材提取-验证素材的正确性"
590
+
591
+ class Varit2(BaseModel):
592
+ material : str
593
+ real : str
594
+
595
+ result0 = "输入"
596
+
597
+ result1 = await intels.aintellect_remove_format(input_data = result0,
598
+ OutputFormat = Varit,
599
+ prompt_id = task_1,
600
+ version = None,
601
+ inference_save_case = True)
602
+
603
+ result2 = await intels.aintellect_remove_format(input_data = result1,
604
+ OutputFormat = Varit2,
605
+ prompt_id = task_2,
606
+ version = None,
607
+ inference_save_case = True)
608
+
609
+ print(result2)
610
+
611
+ """
612
+ return self.llm.product(system_prompt + tasks)
@@ -26,6 +26,10 @@ logger = Log.logger
26
26
  editing_log = logger.debug
27
27
  import re
28
28
 
29
+ from sqlalchemy import select, desc
30
+
31
+
32
+
29
33
  def fix_broken_json_string(broken_json_str):
30
34
  # 移除 BOM
31
35
  broken_json_str = broken_json_str.lstrip('\ufeff')
@@ -64,26 +68,16 @@ class AsyncIntel():
64
68
  ):
65
69
  database_url = database_url or os.getenv("database_url")
66
70
  assert database_url
67
- self.engine = create_engine(database_url, echo=False, # echo=True 仍然会打印所有执行的 SQL 语句
71
+
72
+ # async_engine
73
+ self.async_engine = create_async_engine(database_url, echo=True,
68
74
  pool_size=10, # 连接池中保持的连接数
69
75
  max_overflow=20, # 当pool_size不够时,允许临时创建的额外连接数
70
76
  pool_recycle=3600, # 每小时回收一次连接
71
77
  pool_pre_ping=True, # 使用前检查连接活性
72
78
  pool_timeout=30 # 等待连接池中连接的最长时间(秒)
73
- )
74
-
75
- # async_engine
76
- # self.async_engine = create_async_engine(database_url, echo=False,
77
- # pool_size=10, # 连接池中保持的连接数
78
- # max_overflow=20, # 当pool_size不够时,允许临时创建的额外连接数
79
- # pool_recycle=3600, # 每小时回收一次连接
80
- # pool_pre_ping=True, # 使用前检查连接活性
81
- # pool_timeout=30 # 等待连接池中连接的最长时间(秒)
82
- # )
83
-
84
-
85
- PromptBase.metadata.create_all(self.engine)
86
-
79
+ )
80
+
87
81
  if model_name in ["gemini-2.5-flash-preview-05-20-nothinking",]:
88
82
  self.llm = BianXieAdapter(model_name = model_name)
89
83
  elif model_name in ["doubao-1-5-pro-256k-250115",]:
@@ -92,18 +86,26 @@ class AsyncIntel():
92
86
  print('Use BianXieAdapter')
93
87
  self.llm = BianXieAdapter()
94
88
 
89
+ async def create_database(self):
90
+ async with self.async_engine.begin() as conn:
91
+ await conn.run_sync(PromptBase.metadata.create_all)
95
92
 
96
93
  async def _aget_latest_prompt_version(self,target_prompt_id,session):
97
94
  """
98
95
  获取指定 prompt_id 的最新版本数据,通过创建时间判断。
99
96
  """
100
-
101
- result = session.query(Prompt).filter(
97
+ stmt = select(Prompt).filter(
102
98
  Prompt.prompt_id == target_prompt_id
103
99
  ).order_by(
104
- Prompt.timestamp.desc(),
105
- Prompt.version.desc()
106
- ).first()
100
+ desc(Prompt.timestamp), # 使用 sqlalchemy.desc() 来指定降序
101
+ desc(Prompt.version) # 使用 sqlalchemy.desc() 来指定降序
102
+ )
103
+
104
+ result = await session.execute(stmt)
105
+ # 3. 从 Result 对象中获取第一个模型实例
106
+ # .scalars() 用于从结果行中获取第一个列的值(这里是Prompt对象本身)
107
+ # .first() 获取第一个结果
108
+ result = result.scalars().first()
107
109
 
108
110
  if result:
109
111
  editing_log(f"找到 prompt_id '{target_prompt_id}' 的最新版本 (基于时间): {result.version}")
@@ -111,7 +113,6 @@ class AsyncIntel():
111
113
  editing_log(f"未找到 prompt_id '{target_prompt_id}' 的任何版本。")
112
114
  return result
113
115
 
114
-
115
116
  async def _aget_specific_prompt_version(self,target_prompt_id, target_version,session):
116
117
  """
117
118
  获取指定 prompt_id 和特定版本的数据。
@@ -126,16 +127,19 @@ class AsyncIntel():
126
127
  dict or None: 如果找到,返回包含 id, prompt_id, version, timestamp, prompt 字段的字典;
127
128
  否则返回 None。
128
129
  """
130
+ stmt = select(Prompt).filter(
131
+ Prompt.prompt_id == target_prompt_id,
132
+ Prompt.version == target_version
133
+ )
134
+ result = await session.execute(stmt)
129
135
 
130
- result = await session.query(Prompt).filter(
131
- Prompt.prompt_id == target_prompt_id,
132
- Prompt.version == target_version
133
- ).first() # 因为 (prompt_id, version) 是唯一的,所以 first() 足够
134
- if result:
136
+ specific_prompt = result.scalars().one_or_none()
137
+
138
+ if specific_prompt:
135
139
  editing_log(f"找到 prompt_id '{target_prompt_id}', 版本 '{target_version}' 的提示词数据。")
136
140
  else:
137
141
  editing_log(f"未找到 prompt_id '{target_prompt_id}', 版本 '{target_version}' 的提示词数据。")
138
- return result
142
+ return specific_prompt
139
143
 
140
144
  async def aget_prompts_from_sql(self,
141
145
  prompt_id: str,
@@ -192,7 +196,7 @@ class AsyncIntel():
192
196
  )
193
197
 
194
198
  session.add(prompt1)
195
- session.commit() # 提交事务,将数据写入数据库
199
+ await session.commit() # 提交事务,将数据写入数据库
196
200
 
197
201
  async def asave_use_case_by_sql(self,
198
202
  prompt_id: str,
@@ -211,7 +215,7 @@ class AsyncIntel():
211
215
  )
212
216
 
213
217
  session.add(use_case)
214
- session.commit() # 提交事务,将数据写入数据库
218
+ await session.commit() # 提交事务,将数据写入数据库
215
219
 
216
220
  async def summary_to_sql(
217
221
  self,
@@ -298,8 +302,8 @@ class AsyncIntel():
298
302
  将打算修改的状态推上数据库 # 1
299
303
  """
300
304
  # 查看是否已经存在
301
- # async with create_async_session(self.async_engine) as session:
302
- with create_session(self.engine) as session:
305
+ async with create_async_session(self.async_engine) as session:
306
+
303
307
  latest_prompt = await self.aget_prompts_from_sql(prompt_id=prompt_id,session=session)
304
308
 
305
309
  await self.asave_prompt_increment_version(prompt_id=latest_prompt.prompt_id,
@@ -321,15 +325,15 @@ class AsyncIntel():
321
325
  prompt_id: str,
322
326
  version: str = None,
323
327
  inference_save_case = True,
328
+ push_patch = False,
324
329
  ):
325
330
  if isinstance(input_data,dict):
326
331
  input_ = json.dumps(input_data,ensure_ascii=False)
327
332
  elif isinstance(input_data,str):
328
333
  input_ = input_data
329
-
330
334
 
331
335
  # 查数据库, 获取最新提示词对象
332
- with create_session(self.engine) as session:
336
+ async with create_async_session(self.async_engine) as session:
333
337
  result_obj = await self.aget_prompts_from_sql(prompt_id=prompt_id,session=session)
334
338
 
335
339
 
@@ -403,12 +407,23 @@ class AsyncIntel():
403
407
  session = session
404
408
  )
405
409
  ai_result = await self.llm.aproduct(prompt + output_format + "\n-----input----\n" + input_)
406
- elif result_obj.action_type == "devide":
407
- pass
410
+ elif result_obj.action_type == "patch":
411
+
412
+ demand = result_obj.demand
413
+ assert demand
414
+
415
+ chat_history = prompt + demand
416
+ ai_result = await self.llm.aproduct(chat_history + output_format + "\n-----input----\n" + input_)
417
+
418
+ if push_patch:
419
+ self.save_prompt_increment_version(prompt_id, chat_history,
420
+ use_case = input_,
421
+ score = 60,
422
+ session = session)
423
+
408
424
  else:
409
425
  raise
410
426
 
411
-
412
427
  return ai_result
413
428
 
414
429
  async def aintellect_stream_remove(self,
@@ -417,6 +432,7 @@ class AsyncIntel():
417
432
  prompt_id: str,
418
433
  version: str = None,
419
434
  inference_save_case = True,
435
+ push_patch = False,
420
436
  ):
421
437
  if isinstance(input_data,dict):
422
438
  input_ = json.dumps(input_data,ensure_ascii=False)
@@ -425,7 +441,7 @@ class AsyncIntel():
425
441
 
426
442
 
427
443
  # 查数据库, 获取最新提示词对象
428
- with create_session(self.engine) as session:
444
+ with create_session(self.async_engine) as session:
429
445
  result_obj = await self.aget_prompts_from_sql(prompt_id=prompt_id,session=session)
430
446
 
431
447
  '''
@@ -520,8 +536,22 @@ class AsyncIntel():
520
536
  ai_result += word
521
537
  yield word
522
538
 
523
- elif result_obj.action_type == "devide":
524
- pass
539
+ elif result_obj.action_type == "patch":
540
+
541
+ demand = result_obj.demand
542
+ assert demand
543
+
544
+ chat_history = prompt + demand
545
+ ai_generate_result = self.llm.aproduct_stream(chat_history + output_format + "\n-----input----\n" + input_)
546
+ ai_result = ""
547
+ async for word in ai_generate_result:
548
+ ai_result += word
549
+ yield word
550
+ if push_patch:
551
+ self.save_prompt_increment_version(prompt_id, chat_history,
552
+ use_case = input_,
553
+ score = 60,
554
+ session = session)
525
555
  else:
526
556
  raise
527
557
 
@@ -0,0 +1,529 @@
1
+ # 测试1
2
+
3
+ from pro_craft.utils import extract_
4
+ from pro_craft.log import Log
5
+ from pro_craft.database import Prompt, UseCase, PromptBase
6
+ from pro_craft.utils import create_session, create_async_session
7
+ from llmada.core import BianXieAdapter, ArkAdapter
8
+ from datetime import datetime
9
+ from enum import Enum
10
+ import functools
11
+ import json
12
+ import os
13
+ from sqlalchemy import create_engine
14
+ from pro_craft.database import SyncMetadata
15
+ import inspect
16
+ from pydantic import BaseModel, Field, ValidationError, field_validator
17
+ from datetime import datetime, timedelta
18
+ logger = Log.logger
19
+ editing_log = logger.debug
20
+
21
+ BATCH_SIZE = 1000
22
+
23
+ def get_last_sync_time(target_session) -> datetime:
24
+ """从目标数据库获取上次同步时间"""
25
+ metadata_entry = target_session.query(SyncMetadata).filter_by(table_name="sync_metadata").first()
26
+ if metadata_entry:
27
+ return metadata_entry.last_sync_time
28
+ return datetime(1970, 1, 1) # 默认一个很早的时间
29
+
30
+ def update_last_sync_time(target_session, new_sync_time: datetime):
31
+ """更新目标数据库的上次同步时间"""
32
+ metadata_entry = target_session.query(SyncMetadata).filter_by(table_name="sync_metadata").first()
33
+ if metadata_entry:
34
+ metadata_entry.last_sync_time = new_sync_time
35
+ else:
36
+ # 如果不存在,则创建
37
+ new_metadata = SyncMetadata(table_name="sync_metadata", last_sync_time=new_sync_time)
38
+ target_session.add(new_metadata)
39
+ target_session.commit()
40
+ print(f"Updated last sync time to: {new_sync_time}")
41
+
42
+
43
+
44
+ class IntellectType(Enum):
45
+ train = "train"
46
+ inference = "inference"
47
+ summary = "summary"
48
+
49
+ class Intel():
50
+ def __init__(self,
51
+ database_url = "",
52
+ model_name = "",
53
+ ):
54
+ database_url = database_url or os.getenv("database_url")
55
+ assert database_url
56
+ self.engine = create_engine(database_url, echo=False, # echo=True 仍然会打印所有执行的 SQL 语句
57
+ pool_size=10, # 连接池中保持的连接数
58
+ max_overflow=20, # 当pool_size不够时,允许临时创建的额外连接数
59
+ pool_recycle=3600, # 每小时回收一次连接
60
+ pool_pre_ping=True, # 使用前检查连接活性
61
+ pool_timeout=30 # 等待连接池中连接的最长时间(秒)
62
+ )
63
+
64
+ PromptBase.metadata.create_all(self.engine)
65
+
66
+ if model_name in ["gemini-2.5-flash-preview-05-20-nothinking",]:
67
+ self.llm = BianXieAdapter(model_name = model_name)
68
+ elif model_name in ["doubao-1-5-pro-256k-250115",]:
69
+ self.llm = ArkAdapter(model_name = model_name)
70
+ else:
71
+ print('Use BianXieAdapter')
72
+ self.llm = BianXieAdapter()
73
+
74
+
75
+ def _get_latest_prompt_version(self,target_prompt_id,session):
76
+ """
77
+ 获取指定 prompt_id 的最新版本数据,通过创建时间判断。
78
+ """
79
+
80
+ result = session.query(Prompt).filter(
81
+ Prompt.prompt_id == target_prompt_id
82
+ ).order_by(
83
+ Prompt.timestamp.desc(),
84
+ Prompt.version.desc()
85
+ ).first()
86
+
87
+ if result:
88
+ editing_log(f"找到 prompt_id '{target_prompt_id}' 的最新版本 (基于时间): {result.version}")
89
+ else:
90
+ editing_log(f"未找到 prompt_id '{target_prompt_id}' 的任何版本。")
91
+ return result
92
+
93
+ def _get_specific_prompt_version(self,target_prompt_id, target_version,session):
94
+ """
95
+ 获取指定 prompt_id 和特定版本的数据。
96
+
97
+ Args:
98
+ target_prompt_id (str): 目标提示词的唯一标识符。
99
+ target_version (int): 目标提示词的版本号。
100
+ table_name (str): 存储提示词数据的数据库表名。
101
+ db_manager (DBManager): 数据库管理器的实例,用于执行查询。
102
+
103
+ Returns:
104
+ dict or None: 如果找到,返回包含 id, prompt_id, version, timestamp, prompt 字段的字典;
105
+ 否则返回 None。
106
+ """
107
+
108
+ result = session.query(Prompt).filter(
109
+ Prompt.prompt_id == target_prompt_id,
110
+ Prompt.version == target_version
111
+ ).first() # 因为 (prompt_id, version) 是唯一的,所以 first() 足够
112
+ if result:
113
+ editing_log(f"找到 prompt_id '{target_prompt_id}', 版本 '{target_version}' 的提示词数据。")
114
+ else:
115
+ editing_log(f"未找到 prompt_id '{target_prompt_id}', 版本 '{target_version}' 的提示词数据。")
116
+ return result
117
+
118
+
119
+ def sync_prompt_data_to_database(self,database_url:str):
120
+ target_engine = create_engine(database_url, echo=False)
121
+ # PromptBase.metadata.create_all(target_engine,tables=[SyncMetadata.__table__])
122
+ PromptBase.metadata.create_all(target_engine)
123
+
124
+ with create_session(self.engine) as source_session:
125
+ with create_session(target_engine) as target_session:
126
+ last_sync_time = get_last_sync_time(target_session)
127
+ print(f"Starting sync for sync_metadata from: {last_sync_time}")
128
+
129
+
130
+ processed_count = 0
131
+ current_batch_max_updated_at = last_sync_time
132
+
133
+ while True:
134
+ records_to_sync = source_session.query(Prompt)\
135
+ .filter(Prompt.timestamp > last_sync_time)\
136
+ .order_by(Prompt.timestamp.asc(), Prompt.id.asc())\
137
+ .limit(BATCH_SIZE)\
138
+ .all()
139
+ if not records_to_sync:
140
+ break # 没有更多记录了
141
+
142
+ # 准备要插入或更新到目标数据库的数据
143
+ for record in records_to_sync:
144
+ # 查找目标数据库中是否存在该ID的记录
145
+ # 这里的 `User` 模型会对应到 target_db.users
146
+ target_prompt = target_session.query(Prompt).filter_by(id=record.id).first()
147
+
148
+ if target_prompt:
149
+ # 如果存在,则更新
150
+ target_prompt.prompt_id = record.prompt_id
151
+ target_prompt.version = record.version
152
+ target_prompt.timestamp = record.timestamp
153
+ target_prompt.prompt = record.prompt
154
+ target_prompt.use_case = record.use_case
155
+ target_prompt.action_type = record.action_type
156
+ target_prompt.demand = record.demand
157
+ target_prompt.score = record.score
158
+ target_prompt.is_deleted = record.is_deleted
159
+ else:
160
+ # 如果不存在,则添加新记录
161
+ # 注意:这里需要创建一个新的User实例,而不是直接添加源数据库的record对象
162
+ new_user = Prompt(
163
+ prompt_id=record.prompt_id,
164
+ version=record.version,
165
+ timestamp=record.timestamp,
166
+ prompt = record.prompt,
167
+ use_case = record.use_case,
168
+ action_type = record.action_type,
169
+ demand = record.demand,
170
+ score = record.score,
171
+ is_deleted = record.is_deleted
172
+ )
173
+ target_session.add(new_user)
174
+
175
+ # 记录当前批次最大的 updated_at
176
+ if record.timestamp > current_batch_max_updated_at:
177
+ current_batch_max_updated_at = record.timestamp
178
+
179
+ target_session.commit() # 提交当前批次的变更
180
+ processed_count += len(records_to_sync)
181
+ print(f"Processed {len(records_to_sync)} records. Total processed: {processed_count}")
182
+
183
+ # 更新 last_sync_time,为确保下次查询从正确的时间点开始,
184
+ # 可以使用当前批次中最大的 updated_at + 1微秒,以避免重复查询同一时间戳的记录。
185
+ # 更严谨的做法是,如果 updated_at 相同,则使用 ID 进行辅助排序,并记录 ID。
186
+ # 为了简化,这里直接使用 updated_at
187
+ last_sync_time = current_batch_max_updated_at + timedelta(microseconds=1)
188
+
189
+ if len(records_to_sync) < BATCH_SIZE: # 如果查询到的记录数小于批次大小,说明已经处理完所有符合条件的记录
190
+ break
191
+
192
+ if processed_count > 0:
193
+ # 最终更新last_sync_time到数据库,确保记录的是所有已处理记录中最新的一个
194
+ update_last_sync_time(target_session, current_batch_max_updated_at + timedelta(microseconds=1))
195
+ else:
196
+ print("No new records to sync.")
197
+
198
+
199
+ def get_prompts_from_sql(self,
200
+ prompt_id: str,
201
+ version = None,
202
+ session = None) -> Prompt:
203
+ """
204
+ 从sql获取提示词
205
+ """
206
+ # 查看是否已经存在
207
+ if version:
208
+ prompts_obj = self._get_specific_prompt_version(prompt_id,version,session=session)
209
+ if not prompts_obj:
210
+ prompts_obj = self._get_latest_prompt_version(prompt_id,session = session)
211
+ else:
212
+ prompts_obj = self._get_latest_prompt_version(prompt_id,session = session)
213
+ return prompts_obj
214
+
215
+
216
+ def save_prompt_increment_version(self,
217
+ prompt_id: str,
218
+ new_prompt: str,
219
+ use_case:str = "",
220
+ action_type = "inference",
221
+ demand = "",
222
+ score = 60,
223
+ session = None):
224
+ """
225
+ 从sql保存提示词
226
+ input_data 指的是输入用例, 可以为空
227
+ """
228
+ # 查看是否已经存在
229
+ prompts_obj = self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
230
+
231
+ if prompts_obj:
232
+ # 如果存在版本加1
233
+ version_ori = prompts_obj.version
234
+ _, version = version_ori.split(".")
235
+ version = int(version)
236
+ version += 1
237
+ version_ = f"1.{version}"
238
+
239
+ else:
240
+ # 如果不存在版本为1.0
241
+ version_ = '1.0'
242
+
243
+ prompt1 = Prompt(prompt_id=prompt_id,
244
+ version=version_,
245
+ timestamp=datetime.now(),
246
+ prompt = new_prompt,
247
+ use_case = use_case,
248
+ action_type = action_type,
249
+ demand = demand,
250
+ score = score
251
+ )
252
+
253
+ session.add(prompt1)
254
+ session.commit() # 提交事务,将数据写入数据库
255
+
256
+ def save_use_case_by_sql(self,
257
+ prompt_id: str,
258
+ use_case:str = "",
259
+ output = "",
260
+ solution: str = "",
261
+ session = None
262
+ ):
263
+ """
264
+ 从sql保存提示词
265
+ """
266
+ use_case = UseCase(prompt_id=prompt_id,
267
+ use_case = use_case,
268
+ output = output,
269
+ solution = solution,
270
+ )
271
+
272
+ session.add(use_case)
273
+ session.commit() # 提交事务,将数据写入数据库
274
+
275
+ def summary_to_sql(
276
+ self,
277
+ prompt_id:str,
278
+ version = None,
279
+ prompt = "",
280
+ session = None
281
+ ):
282
+ """
283
+ 让大模型微调已经存在的 system_prompt
284
+ """
285
+ system_prompt_created_prompt = """
286
+ 很棒, 我们已经达成了某种默契, 我们之间合作无间, 但是, 可悲的是, 当我关闭这个窗口的时候, 你就会忘记我们之间经历的种种磨合, 这是可惜且心痛的, 所以你能否将目前这一套处理流程结晶成一个优质的prompt 这样, 我们下一次只要将prompt输入, 你就能想起我们今天的磨合过程,
287
+ 对了,我提示一点, 这个prompt的主角是你, 也就是说, 你在和未来的你对话, 你要教会未来的你今天这件事, 是否让我看懂到时其次
288
+
289
+ 只要输出提示词内容即可, 不需要任何的说明和解释
290
+ """
291
+ system_result = self.llm.product(prompt + system_prompt_created_prompt)
292
+
293
+ s_prompt = extract_(system_result,pattern_key=r"prompt")
294
+ chat_history = s_prompt or system_result
295
+ self.save_prompt_increment_version(prompt_id,
296
+ new_prompt = chat_history,
297
+ use_case = " summary ",
298
+ session = session)
299
+
300
+ def prompt_finetune_to_sql(
301
+ self,
302
+ prompt_id:str,
303
+ version = None,
304
+ demand: str = "",
305
+ session = None,
306
+ ):
307
+ """
308
+ 让大模型微调已经存在的 system_prompt
309
+ """
310
+ change_by_opinion_prompt = """
311
+ 你是一个资深AI提示词工程师,具备卓越的Prompt设计与优化能力。
312
+ 我将为你提供一段现有System Prompt。你的核心任务是基于这段Prompt进行修改,以实现我提出的特定目标和功能需求。
313
+ 请你绝对严格地遵循以下原则:
314
+ 极端最小化修改原则(核心):
315
+ 在满足所有功能需求的前提下,只进行我明确要求的修改。
316
+ 即使你认为有更“优化”、“清晰”或“简洁”的表达方式,只要我没有明确要求,也绝不允许进行任何未经指令的修改。
317
+ 目的就是尽可能地保留原有Prompt的字符和结构不变,除非我的功能要求必须改变。
318
+ 例如,如果我只要求你修改一个词,你就不应该修改整句话的结构。
319
+ 严格遵循我的指令:
320
+ 你必须精确地执行我提出的所有具体任务和要求。
321
+ 绝不允许自行添加任何超出指令范围的说明、角色扮演、约束条件或任何非我指令要求的内容。
322
+ 保持原有Prompt的风格和语调:
323
+ 尽可能地与现有Prompt的语言风格、正式程度和语调保持一致。
324
+ 不要改变不相关的句子或其表达方式。
325
+ 只提供修改后的Prompt:
326
+ 直接输出修改后的完整System Prompt文本。
327
+ 不要包含任何解释、说明或额外对话。
328
+ 在你开始之前,请务必确认你已理解并能绝对严格地遵守这些原则。任何未经明确指令的改动都将视为未能完成任务。
329
+
330
+ 现有System Prompt:
331
+ {old_system_prompt}
332
+
333
+ 功能需求:
334
+ {opinion}
335
+ """
336
+ prompts_obj = self.get_prompts_from_sql(prompt_id = prompt_id,version = version,session = session)
337
+
338
+ if demand:
339
+ new_prompt = self.llm.product(
340
+ change_by_opinion_prompt.format(old_system_prompt=prompts_obj.prompt, opinion=demand)
341
+ )
342
+ else:
343
+ new_prompt = prompts_obj.prompt
344
+ self.save_prompt_increment_version(prompt_id = prompt_id,
345
+ new_prompt = new_prompt,
346
+ use_case = " finetune ",
347
+ session = session)
348
+
349
+ def push_action_order(self,
350
+ prompt_id: str,
351
+ demand : str,
352
+ action_type = 'train'):
353
+
354
+ """
355
+ 从sql保存提示词
356
+ 推一个train 状态到指定的位置
357
+
358
+ 将打算修改的状态推上数据库 # 1
359
+ """
360
+ # 查看是否已经存在
361
+ with create_session(self.engine) as session:
362
+ latest_prompt = self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
363
+
364
+ self.save_prompt_increment_version(prompt_id=latest_prompt.prompt_id,
365
+ new_prompt = latest_prompt.prompt,
366
+ use_case = latest_prompt.use_case,
367
+ action_type=action_type,
368
+ demand=demand,
369
+ score=latest_prompt.score,
370
+ session=session
371
+ )
372
+
373
+ return "success"
374
+
375
+
376
+ def intellect_remove(self,
377
+ input_data: dict | str,
378
+ output_format: str,
379
+ prompt_id: str,
380
+ version: str = None,
381
+ inference_save_case = True,
382
+ push_patch = False,
383
+ ):
384
+ """
385
+ # output_format 单独使用一个大模型处理
386
+ 使用指南:
387
+ 1 训练, 使用单一例子做大量的沟通来奠定基础
388
+ 2 总结, 将沟通好的总结成完整提示词
389
+ 3 推理, 使用部署
390
+ 4 微调, 针对一些格式性的, 问题进行微调
391
+ 5 补丁, 微调无法解决的问题, 可以尝试使用补丁来解决
392
+ """
393
+ if isinstance(input_data,dict):
394
+ input_ = json.dumps(input_data,ensure_ascii=False)
395
+ elif isinstance(input_data,str):
396
+ input_ = input_data
397
+
398
+
399
+ # 查数据库, 获取最新提示词对象
400
+ with create_session(self.engine) as session:
401
+ result_obj = self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
402
+
403
+ prompt = result_obj.prompt
404
+ if result_obj.action_type == "inference":
405
+ # 直接推理即可
406
+ ai_result = self.llm.product(prompt + "\n-----input----\n" + input_)
407
+ if inference_save_case:
408
+ self.save_use_case_by_sql(prompt_id,
409
+ use_case = input_,
410
+ output = ai_result,
411
+ solution = "备注/理想回复",
412
+ session = session,
413
+ )
414
+
415
+ elif result_obj.action_type == "train":
416
+ assert result_obj.demand # 如果type = train 且 demand 是空 则报错
417
+ # 则训练推广
418
+
419
+ # 新版本 默人修改会 inference 状态
420
+ chat_history = prompt
421
+ before_input = result_obj.use_case
422
+ demand = result_obj.demand
423
+
424
+
425
+ assert demand
426
+ # 注意, 这里的调整要求使用最初的那个输入, 最好一口气调整好
427
+ chat_history = prompt
428
+ if input_ == before_input: # 输入没变, 说明还是针对同一个输入进行讨论
429
+ # input_prompt = chat_history + "\nuser:" + demand
430
+ input_prompt = chat_history + "\nuser:" + demand
431
+ else:
432
+ # input_prompt = chat_history + "\nuser:" + demand + "\n-----input----\n" + input_
433
+ input_prompt = chat_history + "\nuser:" + demand + "\n-----input----\n" + input_
434
+
435
+ ai_result = self.llm.product(input_prompt)
436
+ chat_history = input_prompt + "\nassistant:\n" + ai_result # 用聊天记录作为完整提示词
437
+ self.save_prompt_increment_version(prompt_id, chat_history,
438
+ use_case = input_,
439
+ score = 60,
440
+ session = session)
441
+
442
+ elif result_obj.action_type == "summary":
443
+ self.summary_to_sql(prompt_id = prompt_id,
444
+ prompt = prompt,
445
+ session = session
446
+ )
447
+ ai_result = self.llm.product(prompt + "\n-----input----\n" + input_)
448
+
449
+ elif result_obj.action_type == "finetune":
450
+ demand = result_obj.demand
451
+
452
+ assert demand
453
+ self.prompt_finetune_to_sql(prompt_id = prompt_id,
454
+ demand = demand,
455
+ session = session
456
+ )
457
+ ai_result = self.llm.product(prompt + "\n-----input----\n" + input_)
458
+ elif result_obj.action_type == "patch":
459
+
460
+ demand = result_obj.demand
461
+ assert demand
462
+
463
+ chat_history = prompt + demand
464
+ ai_result = self.llm.product(chat_history + "\n-----input----\n" + input_)
465
+ if push_patch:
466
+ self.save_prompt_increment_version(prompt_id, chat_history,
467
+ use_case = input_,
468
+ score = 60,
469
+ session = session)
470
+ else:
471
+ raise
472
+
473
+ system_prompt = """
474
+ 对数据的数据,进行整理, 不改变其文本内容, 只将其整合成特定的形式
475
+ """
476
+ ai_result = self.llm.product(system_prompt + ai_result + output_format)
477
+
478
+ return ai_result
479
+
480
+
481
+ def intellect_remove_format(self,
482
+ input_data: dict | str,
483
+ prompt_id: str,
484
+ OutputFormat: object = None,
485
+ ExtraFormats: list[object] = [],
486
+ version: str = None,
487
+ inference_save_case = True,
488
+ ):
489
+
490
+ if OutputFormat:
491
+ base_format_prompt = """
492
+ 按照一定格式输出, 以便可以通过如下校验
493
+
494
+ 使用以下正则检出
495
+ "```json([\s\S]*?)```"
496
+ 使用以下方式验证
497
+ """
498
+ output_format = base_format_prompt + "\n".join([inspect.getsource(outputformat) for outputformat in ExtraFormats]) + inspect.getsource(OutputFormat)
499
+
500
+ else:
501
+ output_format = ""
502
+
503
+ ai_result = self.intellect_remove(
504
+ input_data=input_data,
505
+ output_format=output_format,
506
+ prompt_id=prompt_id,
507
+ version=version,
508
+ inference_save_case=inference_save_case
509
+ )
510
+
511
+ if OutputFormat:
512
+ try:
513
+ ai_result = json.loads(extract_(ai_result,r'json'))
514
+ OutputFormat(**ai_result)
515
+ except ValidationError as e:
516
+ log_ = "记忆卡片合并 - 大模型生成的格式未通过校验"
517
+ logger.error(log_)
518
+ logger.error(f"错误类型: {type(e)}")
519
+ logger.error(f"错误信息: {e}")
520
+ logger.error(f"错误详情 (errors()): {e.errors()}")
521
+ logger.error(f"错误详情 (json()): {e.json(indent=2)}")
522
+ raise ValidationError(log_)
523
+ else:
524
+ try:
525
+ assert isinstance(ai_result,str)
526
+ except AssertionError as e:
527
+ logger.error("错误了问题")
528
+
529
+ return ai_result
pro_craft/utils.py CHANGED
@@ -150,7 +150,7 @@ async def create_async_session(async_engine):
150
150
  session = Session()
151
151
  try:
152
152
  yield session
153
- await session.commit() # 在成功的情况下自动提交事务
153
+ # await session.commit() # 在成功的情况下自动提交事务
154
154
 
155
155
  except Exception as e:
156
156
  print(f"An error occurred: {e}")
@@ -1,9 +1,10 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pro-craft
3
- Version: 0.1.9
3
+ Version: 0.1.11
4
4
  Summary: Add your description here
5
5
  Requires-Python: >=3.12
6
6
  Description-Content-Type: text/markdown
7
+ Requires-Dist: aiomysql>=0.2.0
7
8
  Requires-Dist: anyio>=4.11.0
8
9
  Requires-Dist: db-help>=0.2.2
9
10
  Requires-Dist: fastapi>=0.119.0
@@ -4,10 +4,11 @@ pro_craft/designer.py,sha256=3gyCqrjcw61sHzDjUPKhL1LOAE8xWLLbNT8NlK2mFLc,4739
4
4
  pro_craft/evals.py,sha256=1T86jur4k3cLk43j1GyAW4JS0nPNfl6P0ZOQmu-SgpA,1928
5
5
  pro_craft/file_manager.py,sha256=2j7lCt9L4mtvAy8_76ibTthXLwKKmVatWIB3DSvQM7U,3805
6
6
  pro_craft/log.py,sha256=MZf9jCZsiRoAq8v4FxVnJqeSXxgzAiiKf7mxz6bFtwM,4263
7
- pro_craft/prompt_helper.py,sha256=SFIhju0Y3rRdb-T1WocUgz7qCocq1Ja2zlaEZo1RM3o,23832
8
- pro_craft/prompt_helper_async.py,sha256=Cpm9G6c4nD3-4gjByIf9aoFvmqnetnn02RGI6fmh8aA,26726
7
+ pro_craft/prompt_helper.py,sha256=GClPsomdGdo6FXlp8VdiQy8GaBtj3oLeq2oFw0RiM3k,26592
8
+ pro_craft/prompt_helper_async.py,sha256=Ej0JXwev0FmPSoOE5iEXtZxQ3pXoqcaulyyUuC7WyC4,27859
9
+ pro_craft/prompt_helper_new.py,sha256=DV871XElJmHDO2xis1mC1f3QFvq3ll81VGGD9aj0Eiw,23542
9
10
  pro_craft/server.py,sha256=fPAosQIU0d7gxICiALl8u6QwbLI4cawVFyoRYebRES0,2827
10
- pro_craft/utils.py,sha256=27A3CFhbRsEAP5GY6oxAz2M-beiIuPgCNSjQUyzOVW0,5685
11
+ pro_craft/utils.py,sha256=cpvwk68mD9hYY8WCq2JXzfrrXqpshiscz_OSav4tC7U,5687
11
12
  pro_craft/code_helper/coder.py,sha256=NXglF1KiPtGe4HZN0MZvFJ8p9Iyd5kzIt72DQGgRwXA,24715
12
13
  pro_craft/server/__main__.py,sha256=LDTERPMe7RKj3eifVRo9aO9fNXdd16W5Hzr1APd04T0,4227
13
14
  pro_craft/server/models.py,sha256=CiUK8e73Bl7fo7ZbnwNTLYLeD4pb1fHMzWR13d3Y6vs,112
@@ -17,7 +18,7 @@ pro_craft/server/mcp/math.py,sha256=OOzGXx64nK4bOVlu33PtVddcCQ9ilqA3Em9yxjSX9cg,
17
18
  pro_craft/server/mcp/resource.py,sha256=z94jP3qZofO-1lZCM3TuOfLajw41HARs1ojXab1ymas,776
18
19
  pro_craft/server/mcp/weather.py,sha256=RAGuf4sgjlTQSfRRZ1Fo18JnuMQRS_Db9p6AqBQrl8E,455
19
20
  pro_craft/server/router/recommended.py,sha256=IAZFdmb8HSl2_TOJeuv5uOKIX47XyX4p4sEwxG-0vt0,9968
20
- pro_craft-0.1.9.dist-info/METADATA,sha256=FL2qNamudhOHu_VlUv8aax44i7P169qMOVLBHYjADio,1768
21
- pro_craft-0.1.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
22
- pro_craft-0.1.9.dist-info/top_level.txt,sha256=yqYDHArnYMWpeCxkmGRwlL6sJtxiOUnYylLDx9EOgFg,10
23
- pro_craft-0.1.9.dist-info/RECORD,,
21
+ pro_craft-0.1.11.dist-info/METADATA,sha256=Delq6mCu7BWJGL6LhC5054iGNkXnRGsiLaD6apL6m1w,1800
22
+ pro_craft-0.1.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
23
+ pro_craft-0.1.11.dist-info/top_level.txt,sha256=yqYDHArnYMWpeCxkmGRwlL6sJtxiOUnYylLDx9EOgFg,10
24
+ pro_craft-0.1.11.dist-info/RECORD,,