pro-craft 0.1.34__py3-none-any.whl → 0.1.35__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pro-craft might be problematic. Click here for more details.
- pro_craft/prompt_craft/async_.py +99 -141
- {pro_craft-0.1.34.dist-info → pro_craft-0.1.35.dist-info}/METADATA +1 -1
- {pro_craft-0.1.34.dist-info → pro_craft-0.1.35.dist-info}/RECORD +5 -6
- pro_craft/prompt_craft/async_ copy.py +0 -1000
- {pro_craft-0.1.34.dist-info → pro_craft-0.1.35.dist-info}/WHEEL +0 -0
- {pro_craft-0.1.34.dist-info → pro_craft-0.1.35.dist-info}/top_level.txt +0 -0
pro_craft/prompt_craft/async_.py
CHANGED
|
@@ -25,7 +25,9 @@ from datetime import datetime, timedelta
|
|
|
25
25
|
from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine, async_sessionmaker
|
|
26
26
|
from sqlalchemy import select, and_ # 引入 select 和 and_
|
|
27
27
|
from sqlalchemy.orm import class_mapper # 用于检查对象是否是持久化的
|
|
28
|
-
|
|
28
|
+
import tqdm
|
|
29
|
+
from tqdm.asyncio import tqdm
|
|
30
|
+
import pandas as pd
|
|
29
31
|
|
|
30
32
|
class IntellectRemoveFormatError(Exception):
|
|
31
33
|
pass
|
|
@@ -166,6 +168,8 @@ class AsyncIntel():
|
|
|
166
168
|
self.llm = ArkAdapter(model_name = model_name)
|
|
167
169
|
else:
|
|
168
170
|
raise Exception("error llm name")
|
|
171
|
+
|
|
172
|
+
self.df = pd.DataFrame({"name":[],'status':[],"score":[],"total":[],"bad_case":[]})
|
|
169
173
|
|
|
170
174
|
async def create_specific_database(self):
|
|
171
175
|
tables_to_create_names = ["ai_prompts","ai_usecase"]
|
|
@@ -570,7 +574,7 @@ class AsyncIntel():
|
|
|
570
574
|
use_case = input_,
|
|
571
575
|
timestamp = datetime.now(),
|
|
572
576
|
output = ai_result,
|
|
573
|
-
solution =
|
|
577
|
+
solution = output_format,
|
|
574
578
|
faired_time = 0,
|
|
575
579
|
session = session,
|
|
576
580
|
)
|
|
@@ -678,140 +682,7 @@ class AsyncIntel():
|
|
|
678
682
|
raise
|
|
679
683
|
|
|
680
684
|
return ai_result
|
|
681
|
-
|
|
682
|
-
async def intellect_stream_remove(self,
|
|
683
|
-
input_data: dict | str,
|
|
684
|
-
output_format: str,
|
|
685
|
-
prompt_id: str,
|
|
686
|
-
version: str = None,
|
|
687
|
-
inference_save_case = True,
|
|
688
|
-
push_patch = False,
|
|
689
|
-
):
|
|
690
|
-
if isinstance(input_data,dict):
|
|
691
|
-
input_ = json.dumps(input_data,ensure_ascii=False)
|
|
692
|
-
elif isinstance(input_data,str):
|
|
693
|
-
input_ = input_data
|
|
694
|
-
|
|
695
685
|
|
|
696
|
-
# 查数据库, 获取最新提示词对象
|
|
697
|
-
with create_session(self.engine) as session:
|
|
698
|
-
result_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
|
|
699
|
-
|
|
700
|
-
'''
|
|
701
|
-
if result_obj is None:
|
|
702
|
-
await self.save_prompt_increment_version(
|
|
703
|
-
prompt_id = prompt_id,
|
|
704
|
-
new_prompt = "做一些处理",
|
|
705
|
-
use_case = input_,
|
|
706
|
-
session = session
|
|
707
|
-
)
|
|
708
|
-
ai_result = await self.intellect_stream_remove(input_data = input_data,
|
|
709
|
-
output_format = output_format,
|
|
710
|
-
prompt_id = prompt_id,
|
|
711
|
-
version = version,
|
|
712
|
-
inference_save_case = inference_save_case
|
|
713
|
-
)
|
|
714
|
-
return ai_result'''
|
|
715
|
-
|
|
716
|
-
prompt = result_obj.prompt
|
|
717
|
-
if result_obj.action_type == "inference":
|
|
718
|
-
# 直接推理即可
|
|
719
|
-
|
|
720
|
-
ai_generate_result = self.llm.aproduct_stream(prompt + output_format + "\n-----input----\n" + input_)
|
|
721
|
-
ai_result = ""
|
|
722
|
-
async for word in ai_generate_result:
|
|
723
|
-
ai_result += word
|
|
724
|
-
yield word
|
|
725
|
-
if inference_save_case:
|
|
726
|
-
await self.save_use_case_by_sql(prompt_id,
|
|
727
|
-
use_case = input_,
|
|
728
|
-
timestamp = datetime.now(),
|
|
729
|
-
output = ai_result,
|
|
730
|
-
solution = "备注/理想回复",
|
|
731
|
-
faired_time = 0,
|
|
732
|
-
session = session,
|
|
733
|
-
)
|
|
734
|
-
|
|
735
|
-
elif result_obj.action_type == "train":
|
|
736
|
-
assert result_obj.demand # 如果type = train 且 demand 是空 则报错
|
|
737
|
-
# 则训练推广
|
|
738
|
-
|
|
739
|
-
# 新版本 默人修改会 inference 状态
|
|
740
|
-
chat_history = prompt
|
|
741
|
-
before_input = result_obj.use_case
|
|
742
|
-
demand = result_obj.demand
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
assert demand
|
|
746
|
-
# 注意, 这里的调整要求使用最初的那个输入, 最好一口气调整好
|
|
747
|
-
chat_history = prompt
|
|
748
|
-
if input_ == before_input: # 输入没变, 说明还是针对同一个输入进行讨论
|
|
749
|
-
# input_prompt = chat_history + "\nuser:" + demand
|
|
750
|
-
input_prompt = chat_history + "\nuser:" + demand + output_format
|
|
751
|
-
else:
|
|
752
|
-
# input_prompt = chat_history + "\nuser:" + demand + "\n-----input----\n" + input_
|
|
753
|
-
input_prompt = chat_history + "\nuser:" + demand + output_format + "\n-----input----\n" + input_
|
|
754
|
-
|
|
755
|
-
ai_generate_result = self.llm.aproduct_stream(input_prompt)
|
|
756
|
-
ai_result = ""
|
|
757
|
-
async for word in ai_generate_result:
|
|
758
|
-
ai_result += word
|
|
759
|
-
yield word
|
|
760
|
-
|
|
761
|
-
chat_history = input_prompt + "\nassistant:\n" + ai_result # 用聊天记录作为完整提示词
|
|
762
|
-
await self.save_prompt_increment_version(prompt_id, chat_history,
|
|
763
|
-
use_case = input_,
|
|
764
|
-
score = 60,
|
|
765
|
-
session = session)
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
elif result_obj.action_type == "summary":
|
|
769
|
-
|
|
770
|
-
await self.summary_to_sql(prompt_id = prompt_id,
|
|
771
|
-
prompt = prompt,
|
|
772
|
-
session = session
|
|
773
|
-
)
|
|
774
|
-
input_prompt = prompt + output_format + "\n-----input----\n" + input_
|
|
775
|
-
ai_generate_result = self.llm.aproduct_stream(input_prompt)
|
|
776
|
-
ai_result = ""
|
|
777
|
-
async for word in ai_generate_result:
|
|
778
|
-
ai_result += word
|
|
779
|
-
yield word
|
|
780
|
-
|
|
781
|
-
elif result_obj.action_type == "finetune":
|
|
782
|
-
demand = result_obj.demand
|
|
783
|
-
|
|
784
|
-
assert demand
|
|
785
|
-
await self.prompt_finetune_to_sql(prompt_id = prompt_id,
|
|
786
|
-
demand = demand,
|
|
787
|
-
session = session
|
|
788
|
-
)
|
|
789
|
-
input_prompt = prompt + output_format + "\n-----input----\n" + input_
|
|
790
|
-
ai_generate_result = self.llm.aproduct_stream(input_prompt)
|
|
791
|
-
ai_result = ""
|
|
792
|
-
async for word in ai_generate_result:
|
|
793
|
-
ai_result += word
|
|
794
|
-
yield word
|
|
795
|
-
|
|
796
|
-
elif result_obj.action_type == "patch":
|
|
797
|
-
|
|
798
|
-
demand = result_obj.demand
|
|
799
|
-
assert demand
|
|
800
|
-
|
|
801
|
-
chat_history = prompt + demand
|
|
802
|
-
ai_generate_result = self.llm.aproduct_stream(chat_history + output_format + "\n-----input----\n" + input_)
|
|
803
|
-
ai_result = ""
|
|
804
|
-
async for word in ai_generate_result:
|
|
805
|
-
ai_result += word
|
|
806
|
-
yield word
|
|
807
|
-
if push_patch:
|
|
808
|
-
self.save_prompt_increment_version(prompt_id, chat_history,
|
|
809
|
-
use_case = input_,
|
|
810
|
-
score = 60,
|
|
811
|
-
session = session)
|
|
812
|
-
else:
|
|
813
|
-
raise
|
|
814
|
-
|
|
815
686
|
async def intellect_remove_format(self,
|
|
816
687
|
input_data: dict | str,
|
|
817
688
|
OutputFormat: object,
|
|
@@ -861,7 +732,16 @@ class AsyncIntel():
|
|
|
861
732
|
|
|
862
733
|
except Exception as e:
|
|
863
734
|
raise Exception(f"Error {prompt_id} : {e}") from e
|
|
864
|
-
|
|
735
|
+
|
|
736
|
+
# finally:
|
|
737
|
+
# await self.save_use_case_by_sql(prompt_id,
|
|
738
|
+
# use_case = input_data,
|
|
739
|
+
# timestamp = datetime.now(),
|
|
740
|
+
# output = ai_result,
|
|
741
|
+
# solution = output_format,
|
|
742
|
+
# faired_time = 1,
|
|
743
|
+
# session = session,
|
|
744
|
+
# )
|
|
865
745
|
return ai_result
|
|
866
746
|
|
|
867
747
|
async def intellect_remove_formats(self,
|
|
@@ -928,7 +808,8 @@ class AsyncIntel():
|
|
|
928
808
|
prompt_id: str,
|
|
929
809
|
ExtraFormats: list[object] = [],
|
|
930
810
|
version: str = None,
|
|
931
|
-
MIN_SUCCESS_RATE = 80.0
|
|
811
|
+
MIN_SUCCESS_RATE = 80.0,
|
|
812
|
+
ConTent_Function = None,
|
|
932
813
|
):
|
|
933
814
|
|
|
934
815
|
async with create_async_session(self.engine) as session:
|
|
@@ -958,6 +839,8 @@ class AsyncIntel():
|
|
|
958
839
|
# TODO base_eval
|
|
959
840
|
# TODO 人类评价 eval
|
|
960
841
|
# TODO llm 评价 eval
|
|
842
|
+
if ConTent_Function:
|
|
843
|
+
ConTent_Function()
|
|
961
844
|
result_cases.append({"type":"Successful","case":use_case.use_case,"reply":f"pass"})
|
|
962
845
|
use_case.output = "Successful"
|
|
963
846
|
except IntellectRemoveFormatError as e:
|
|
@@ -969,7 +852,7 @@ class AsyncIntel():
|
|
|
969
852
|
await session.commit()
|
|
970
853
|
|
|
971
854
|
tasks = []
|
|
972
|
-
for use_case in use_cases:
|
|
855
|
+
for use_case in tqdm.tqdm(use_cases):
|
|
973
856
|
tasks.append(
|
|
974
857
|
evals_func(
|
|
975
858
|
use_case = use_case,
|
|
@@ -979,7 +862,8 @@ class AsyncIntel():
|
|
|
979
862
|
version = version
|
|
980
863
|
)
|
|
981
864
|
)
|
|
982
|
-
await
|
|
865
|
+
await tqdm.gather(*tasks,total=len(tasks))
|
|
866
|
+
# await asyncio.gather(*tasks, return_exceptions=False)
|
|
983
867
|
|
|
984
868
|
|
|
985
869
|
successful_assertions = 0
|
|
@@ -993,8 +877,82 @@ class AsyncIntel():
|
|
|
993
877
|
success_rate = (successful_assertions / total_assertions) * 100
|
|
994
878
|
|
|
995
879
|
if success_rate >= MIN_SUCCESS_RATE:
|
|
996
|
-
return "通过", success_rate, total_assertions, json.dumps(bad_case,ensure_ascii=False),
|
|
880
|
+
return "通过", success_rate, str(total_assertions), json.dumps(bad_case,ensure_ascii=False),
|
|
997
881
|
else:
|
|
998
|
-
return "未通过",success_rate, total_assertions, json.dumps(bad_case,ensure_ascii=False),
|
|
882
|
+
return "未通过",success_rate, str(total_assertions), json.dumps(bad_case,ensure_ascii=False),
|
|
883
|
+
|
|
884
|
+
|
|
885
|
+
|
|
886
|
+
def draw_data(self):
|
|
887
|
+
df = self.df
|
|
888
|
+
# --- 可视化部分 ---
|
|
889
|
+
fig = go.Figure()
|
|
890
|
+
|
|
891
|
+
# 为每个条形图动态设置颜色
|
|
892
|
+
colors = []
|
|
893
|
+
for status_val in df['status']:
|
|
894
|
+
if status_val == '通过':
|
|
895
|
+
colors.append('mediumseagreen') # 通过为绿色
|
|
896
|
+
else: # 假设其他所有状态都视为“未通过”
|
|
897
|
+
colors.append('lightcoral') # 未通过为红色
|
|
898
|
+
|
|
899
|
+
fig.add_trace(go.Bar(
|
|
900
|
+
y=df['name'], # Y轴显示项目名称
|
|
901
|
+
x=df['score'], # X轴显示通过百分比 (score列现在代表通过百分比)
|
|
902
|
+
orientation='h', # 设置为横向
|
|
903
|
+
name='通过率', # 这个 name 可能会在图例中显示
|
|
904
|
+
marker_color=colors, # !!! 这里根据 status 动态设置颜色 !!!
|
|
905
|
+
text=df['score'].apply(lambda x: f'{x:.2f}%'), # 在条形图上显示百分比文本
|
|
906
|
+
textposition='inside',
|
|
907
|
+
insidetextanchor='middle',
|
|
908
|
+
hovertemplate="<b>prompt:</b> %{y}<br><b>状态:</b> " + df['status'] + "<br><b>总量:</b> "+ df['total'] + "<br><b>通过百分比:</b> %{x:.2f}%<extra></extra>"
|
|
909
|
+
))
|
|
910
|
+
|
|
911
|
+
# 添加一个辅助的条形图作为背景,表示总的100%
|
|
912
|
+
fig.add_trace(go.Bar(
|
|
913
|
+
y=df['name'],
|
|
914
|
+
x=[100] * len(df), # 所有项目都填充到100%
|
|
915
|
+
orientation='h',
|
|
916
|
+
name='总计',
|
|
917
|
+
marker_color='lightgray', # 背景用灰色
|
|
918
|
+
hoverinfo='none', # 不显示hover信息
|
|
919
|
+
opacity=0.5, # 设置透明度
|
|
920
|
+
showlegend=False # 不显示图例
|
|
921
|
+
))
|
|
922
|
+
|
|
923
|
+
fig.update_layout(
|
|
924
|
+
title='各项目/批次通过百分比及状态',
|
|
925
|
+
xaxis=dict(
|
|
926
|
+
title='通过百分比 (%)',
|
|
927
|
+
range=[0, 100], # X轴范围0-100
|
|
928
|
+
tickvals=[0, 25, 50, 75, 100],
|
|
929
|
+
showgrid=True,
|
|
930
|
+
gridcolor='lightgray'
|
|
931
|
+
),
|
|
932
|
+
yaxis=dict(
|
|
933
|
+
title='项目/批次',
|
|
934
|
+
autorange="reversed"
|
|
935
|
+
),
|
|
936
|
+
barmode='overlay', # 仍使用 overlay 模式,因为背景条是独立的
|
|
937
|
+
hovermode="y unified",
|
|
938
|
+
margin=dict(l=100, r=20, t=60, b=50),
|
|
939
|
+
height=400 + len(df) * 30
|
|
940
|
+
)
|
|
941
|
+
|
|
942
|
+
fig.show()
|
|
943
|
+
pass
|
|
944
|
+
|
|
945
|
+
async def _evals(self,prompt_id, OutputFormat, ExtraFormats_list = [],**kwargs):
|
|
946
|
+
|
|
947
|
+
status,score, total, bad_case = await self.intellect_remove_format_eval(
|
|
948
|
+
prompt_id=prompt_id,
|
|
949
|
+
OutputFormat = OutputFormat,
|
|
950
|
+
ExtraFormats = ExtraFormats_list,
|
|
951
|
+
version = None,
|
|
952
|
+
**kwargs
|
|
953
|
+
)
|
|
954
|
+
self.df.loc[len(self.df)] = {"name":prompt_id,
|
|
955
|
+
'status':status,"score":score,
|
|
956
|
+
"total":total,"bad_case":bad_case}
|
|
999
957
|
|
|
1000
958
|
# 整体测试d, 测试未通过d, 大模型调整再测试, 依旧不通过, 大模型裂变, 仍不通过, 互换人力
|
|
@@ -6,15 +6,14 @@ pro_craft/utils.py,sha256=R1DFkS4dsm5dIhg8lLTgBBvItvIYyyojROdh-ykqiYk,5250
|
|
|
6
6
|
pro_craft/code_helper/coder.py,sha256=L6pRQr0pYRIHrMFZ4-pO_tZf1koxgGgF3L7Vl-GIyjM,24687
|
|
7
7
|
pro_craft/code_helper/designer.py,sha256=3gyCqrjcw61sHzDjUPKhL1LOAE8xWLLbNT8NlK2mFLc,4739
|
|
8
8
|
pro_craft/prompt_craft/__init__.py,sha256=83ruWO1Oci-DWvdVhPqcQrgdZTNfbmK72VQCkWASk7A,80
|
|
9
|
-
pro_craft/prompt_craft/async_
|
|
10
|
-
pro_craft/prompt_craft/async_.py,sha256=jWnSwvnz4kA7YaeDnG-_ppQIy_SQ1GlTd7e7BJOXdwE,44368
|
|
9
|
+
pro_craft/prompt_craft/async_.py,sha256=egt_C0SSWSHJ0MhcHMLTDEePPzfslA57x_A6BAZVPUE,41702
|
|
11
10
|
pro_craft/prompt_craft/new.py,sha256=ULjGGl95vmHrOs7XECJGlaqj1NE9BypE5WnFYhGugRY,25903
|
|
12
11
|
pro_craft/prompt_craft/sync.py,sha256=4bms8Qvzq5QqgwHWwiyjrcl7hdkSqE7Kne5s3Ex8bBU,26217
|
|
13
12
|
pro_craft/server/mcp/__init__.py,sha256=4dbl-lFcm0r2tkOP04OxqiZG2jR-rqF181qi2AfU6UA,123
|
|
14
13
|
pro_craft/server/mcp/prompt.py,sha256=OZrsyUfSQMOY_KX7dWthW209adz5JfELsQ0ODfuQR44,1245
|
|
15
14
|
pro_craft/server/router/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
16
15
|
pro_craft/server/router/prompt.py,sha256=Wa4FfYRL6oeyA3F-79pmPeIH0Vo8wSEv7RH1lP6jXck,2907
|
|
17
|
-
pro_craft-0.1.
|
|
18
|
-
pro_craft-0.1.
|
|
19
|
-
pro_craft-0.1.
|
|
20
|
-
pro_craft-0.1.
|
|
16
|
+
pro_craft-0.1.35.dist-info/METADATA,sha256=fG6de7HZSZdzh75n5_nurl6jv-udfwWcQ1oXzYqNenk,1689
|
|
17
|
+
pro_craft-0.1.35.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
18
|
+
pro_craft-0.1.35.dist-info/top_level.txt,sha256=yqYDHArnYMWpeCxkmGRwlL6sJtxiOUnYylLDx9EOgFg,10
|
|
19
|
+
pro_craft-0.1.35.dist-info/RECORD,,
|
|
@@ -1,1000 +0,0 @@
|
|
|
1
|
-
# 测试1
|
|
2
|
-
from pro_craft.utils import extract_
|
|
3
|
-
from pro_craft import logger as pro_craft_logger
|
|
4
|
-
from llmada.core import BianXieAdapter, ArkAdapter
|
|
5
|
-
from datetime import datetime
|
|
6
|
-
from enum import Enum
|
|
7
|
-
import functools
|
|
8
|
-
import json
|
|
9
|
-
import os
|
|
10
|
-
from pro_craft.database import Prompt, UseCase, PromptBase
|
|
11
|
-
from pro_craft.utils import create_session, create_async_session
|
|
12
|
-
from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine # 异步核心
|
|
13
|
-
from sqlalchemy import select, delete # 导入 select, delete 用于异步操作
|
|
14
|
-
import inspect
|
|
15
|
-
from datetime import datetime
|
|
16
|
-
from pro_craft.utils import extract_
|
|
17
|
-
import asyncio
|
|
18
|
-
import re
|
|
19
|
-
from pydantic import BaseModel, ValidationError, field_validator
|
|
20
|
-
from sqlalchemy import select, desc
|
|
21
|
-
from json.decoder import JSONDecodeError
|
|
22
|
-
from pro_craft.database import SyncMetadata
|
|
23
|
-
from datetime import datetime, timedelta
|
|
24
|
-
from datetime import datetime, timedelta
|
|
25
|
-
from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine, async_sessionmaker
|
|
26
|
-
from sqlalchemy import select, and_ # 引入 select 和 and_
|
|
27
|
-
from sqlalchemy.orm import class_mapper # 用于检查对象是否是持久化的
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
class IntellectRemoveFormatError(Exception):
|
|
31
|
-
pass
|
|
32
|
-
|
|
33
|
-
class IntellectRemoveError(Exception):
|
|
34
|
-
pass
|
|
35
|
-
|
|
36
|
-
BATCH_SIZE = 100
|
|
37
|
-
MIN_SUCCESS_RATE = 00.0 # 这里定义通过阈值, 高于该比例则通过
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def slog(s, target: str = "target",logger = None):
|
|
41
|
-
COLOR_GREEN = "\033[92m"
|
|
42
|
-
COLOR_RESET = "\033[0m" # 重置颜色
|
|
43
|
-
logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
|
|
44
|
-
logger(target + "\n "+"--" * 40)
|
|
45
|
-
logger(type(s))
|
|
46
|
-
logger(s)
|
|
47
|
-
logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
|
|
48
|
-
|
|
49
|
-
def fix_broken_json_string(broken_json_str):
|
|
50
|
-
# 移除 BOM
|
|
51
|
-
broken_json_str = broken_json_str.lstrip('\ufeff')
|
|
52
|
-
# 移除大部分非法 ASCII 控制字符
|
|
53
|
-
broken_json_str = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f]', '', broken_json_str)
|
|
54
|
-
|
|
55
|
-
# 尝试找到 "content": " 和它对应的结束 "
|
|
56
|
-
# 这是一个挑战,因为中间有未转义的换行。
|
|
57
|
-
# 我们会寻找 "content": ",然后捕获从那以后直到最后一个 " 的所有内容,并替换其中的裸换行。
|
|
58
|
-
|
|
59
|
-
# 注意:这个正则假设 "content" 的值是最后一个键值对,并且直到字符串末尾的 " 才结束
|
|
60
|
-
# 并且假设其他字段都是合法的单行字符串
|
|
61
|
-
fixed_json_str = re.sub(
|
|
62
|
-
r'("content":\s*")(.+?)"\s*}', # 匹配 "content": ",然后捕获所有内容直到最后一个 " }
|
|
63
|
-
lambda m: m.group(1) + m.group(2).replace('\n', '\\n').replace('\r', '\\r') + '"\n}',
|
|
64
|
-
broken_json_str,
|
|
65
|
-
flags=re.DOTALL # 允许 . 匹配换行
|
|
66
|
-
)
|
|
67
|
-
|
|
68
|
-
# 修正可能的最后一行丢失的 }
|
|
69
|
-
if not fixed_json_str.strip().endswith('}'):
|
|
70
|
-
fixed_json_str += '\n}' # 补上结束的 }
|
|
71
|
-
|
|
72
|
-
return fixed_json_str
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
# def get_last_sync_time(target_session) -> datetime:
|
|
76
|
-
# """从目标数据库获取上次同步时间"""
|
|
77
|
-
# metadata_entry = target_session.query(SyncMetadata).filter_by(table_name="sync_metadata").first()
|
|
78
|
-
# if metadata_entry:
|
|
79
|
-
# return metadata_entry.last_sync_time
|
|
80
|
-
# return datetime(1970, 1, 1) # 默认一个很早的时间
|
|
81
|
-
|
|
82
|
-
# def update_last_sync_time(target_session, new_sync_time: datetime):
|
|
83
|
-
# """更新目标数据库的上次同步时间"""
|
|
84
|
-
# metadata_entry = target_session.query(SyncMetadata).filter_by(table_name="sync_metadata").first()
|
|
85
|
-
# if metadata_entry:
|
|
86
|
-
# metadata_entry.last_sync_time = new_sync_time
|
|
87
|
-
# else:
|
|
88
|
-
# # 如果不存在,则创建
|
|
89
|
-
# new_metadata = SyncMetadata(table_name="sync_metadata", last_sync_time=new_sync_time)
|
|
90
|
-
# target_session.add(new_metadata)
|
|
91
|
-
# target_session.commit()
|
|
92
|
-
# print(f"Updated last sync time to: {new_sync_time}")
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
async def get_last_sync_time(target_session: AsyncSession) -> datetime:
|
|
96
|
-
"""从目标数据库获取上次同步时间"""
|
|
97
|
-
# 修正点:使用 select() 和 execute()
|
|
98
|
-
result = await target_session.execute(
|
|
99
|
-
select(SyncMetadata).filter_by(table_name="ai_sync_metadata")
|
|
100
|
-
)
|
|
101
|
-
metadata_entry = result.scalar_one_or_none() # 获取单个对象或 None
|
|
102
|
-
|
|
103
|
-
if metadata_entry:
|
|
104
|
-
return metadata_entry.last_sync_time
|
|
105
|
-
return datetime(1970, 1, 1) # 默认一个很早的时间
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
# from your_module import SyncMetadata # 假设 SyncMetadata 已导入
|
|
109
|
-
# from sqlalchemy import select # 确保引入 select
|
|
110
|
-
|
|
111
|
-
async def update_last_sync_time(target_session: AsyncSession, new_sync_time: datetime):
|
|
112
|
-
"""更新目标数据库的上次同步时间"""
|
|
113
|
-
# 修正点:使用 select() 和 execute()
|
|
114
|
-
result = await target_session.execute(
|
|
115
|
-
select(SyncMetadata).filter_by(table_name="ai_sync_metadata")
|
|
116
|
-
)
|
|
117
|
-
metadata_entry = result.scalar_one_or_none()
|
|
118
|
-
|
|
119
|
-
if metadata_entry:
|
|
120
|
-
metadata_entry.last_sync_time = new_sync_time
|
|
121
|
-
else:
|
|
122
|
-
# 如果不存在,则创建
|
|
123
|
-
new_metadata = SyncMetadata(table_name="ai_sync_metadata", last_sync_time=new_sync_time)
|
|
124
|
-
target_session.add(new_metadata)
|
|
125
|
-
|
|
126
|
-
# 异步提交事务
|
|
127
|
-
await target_session.commit() # TODO
|
|
128
|
-
print(f"Updated last sync time to: {new_sync_time}")
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
class IntellectType(Enum):
|
|
136
|
-
train = "train"
|
|
137
|
-
inference = "inference"
|
|
138
|
-
summary = "summary"
|
|
139
|
-
|
|
140
|
-
class AsyncIntel():
|
|
141
|
-
def __init__(self,
|
|
142
|
-
database_url = "",
|
|
143
|
-
model_name = "",
|
|
144
|
-
logger = None,
|
|
145
|
-
):
|
|
146
|
-
database_url = database_url or os.getenv("database_url")
|
|
147
|
-
self.logger = logger or pro_craft_logger
|
|
148
|
-
try:
|
|
149
|
-
assert database_url
|
|
150
|
-
assert 'aio' in database_url
|
|
151
|
-
except AssertionError as e:
|
|
152
|
-
slog(database_url,'database_url',logger=self.logger.warning)
|
|
153
|
-
raise IntellectRemoveFormatError(f"异步服务url必须提供, 且必须是aiomysql配置") from e
|
|
154
|
-
|
|
155
|
-
self.engine = create_async_engine(database_url, echo=False,
|
|
156
|
-
pool_size=10, # 连接池中保持的连接数
|
|
157
|
-
max_overflow=20, # 当pool_size不够时,允许临时创建的额外连接数
|
|
158
|
-
pool_recycle=3600, # 每小时回收一次连接
|
|
159
|
-
pool_pre_ping=True, # 使用前检查连接活性
|
|
160
|
-
pool_timeout=30 # 等待连接池中连接的最长时间(秒)
|
|
161
|
-
)
|
|
162
|
-
|
|
163
|
-
if model_name in ["gemini-2.5-flash-preview-05-20-nothinking",]:
|
|
164
|
-
self.llm = BianXieAdapter(model_name = model_name)
|
|
165
|
-
elif model_name in ["doubao-1-5-pro-256k-250115","doubao-1-5-pro-32k-250115"]:
|
|
166
|
-
self.llm = ArkAdapter(model_name = model_name)
|
|
167
|
-
else:
|
|
168
|
-
raise Exception("error llm name")
|
|
169
|
-
|
|
170
|
-
async def create_specific_database(self):
|
|
171
|
-
tables_to_create_names = ["ai_prompts","ai_usecase"]
|
|
172
|
-
async with self.engine.begin() as conn:
|
|
173
|
-
# 从 metadata 中获取对应的 Table 对象
|
|
174
|
-
specific_database_objects = []
|
|
175
|
-
for table_name in tables_to_create_names:
|
|
176
|
-
if table_name in PromptBase.metadata.tables:
|
|
177
|
-
specific_database_objects.append(PromptBase.metadata.tables[table_name])
|
|
178
|
-
else:
|
|
179
|
-
print(f"Warning: Table '{table_name}' not found in metadata.")
|
|
180
|
-
|
|
181
|
-
if specific_database_objects:
|
|
182
|
-
await conn.run_sync(PromptBase.metadata.create_all, tables=specific_database_objects)
|
|
183
|
-
else:
|
|
184
|
-
print("No specific tables to create.")
|
|
185
|
-
|
|
186
|
-
async def create_database(self,engine):
|
|
187
|
-
async with engine.begin() as conn:
|
|
188
|
-
await conn.run_sync(PromptBase.metadata.create_all)
|
|
189
|
-
|
|
190
|
-
async def _get_latest_prompt_version(self,target_prompt_id,session):
|
|
191
|
-
"""
|
|
192
|
-
获取指定 prompt_id 的最新版本数据,通过创建时间判断。
|
|
193
|
-
"""
|
|
194
|
-
stmt = select(Prompt).filter(
|
|
195
|
-
Prompt.prompt_id == target_prompt_id
|
|
196
|
-
).order_by(
|
|
197
|
-
desc(Prompt.timestamp), # 使用 sqlalchemy.desc() 来指定降序
|
|
198
|
-
desc(Prompt.version) # 使用 sqlalchemy.desc() 来指定降序
|
|
199
|
-
)
|
|
200
|
-
|
|
201
|
-
result = await session.execute(stmt)
|
|
202
|
-
# 3. 从 Result 对象中获取第一个模型实例
|
|
203
|
-
# .scalars() 用于从结果行中获取第一个列的值(这里是Prompt对象本身)
|
|
204
|
-
# .first() 获取第一个结果
|
|
205
|
-
result = result.scalars().first()
|
|
206
|
-
|
|
207
|
-
return result
|
|
208
|
-
|
|
209
|
-
async def _get_specific_prompt_version(self,target_prompt_id, target_version,session):
|
|
210
|
-
"""
|
|
211
|
-
获取指定 prompt_id 和特定版本的数据。
|
|
212
|
-
|
|
213
|
-
Args:
|
|
214
|
-
target_prompt_id (str): 目标提示词的唯一标识符。
|
|
215
|
-
target_version (int): 目标提示词的版本号。
|
|
216
|
-
table_name (str): 存储提示词数据的数据库表名。
|
|
217
|
-
db_manager (DBManager): 数据库管理器的实例,用于执行查询。
|
|
218
|
-
|
|
219
|
-
Returns:
|
|
220
|
-
dict or None: 如果找到,返回包含 id, prompt_id, version, timestamp, prompt 字段的字典;
|
|
221
|
-
否则返回 None。
|
|
222
|
-
"""
|
|
223
|
-
stmt = select(Prompt).filter(
|
|
224
|
-
Prompt.prompt_id == target_prompt_id,
|
|
225
|
-
Prompt.version == target_version
|
|
226
|
-
)
|
|
227
|
-
result = await session.execute(stmt)
|
|
228
|
-
|
|
229
|
-
specific_prompt = result.scalars().one_or_none()
|
|
230
|
-
|
|
231
|
-
return specific_prompt
|
|
232
|
-
|
|
233
|
-
async def sync_prompt_data_to_database(self,database_url:str):
|
|
234
|
-
target_engine = create_async_engine(database_url, echo=False)
|
|
235
|
-
await self.create_database(target_engine)
|
|
236
|
-
async with create_async_session(self.engine) as source_session:
|
|
237
|
-
async with create_async_session(target_engine) as target_session:
|
|
238
|
-
|
|
239
|
-
last_sync_time = await get_last_sync_time(target_session)
|
|
240
|
-
print(f"Starting sync for sync_metadata from: {last_sync_time}")
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
processed_count = 0
|
|
244
|
-
#2 next_sync_watermark = last_sync_time
|
|
245
|
-
current_batch_max_updated_at = last_sync_time
|
|
246
|
-
|
|
247
|
-
while True:
|
|
248
|
-
source_results = await source_session.execute(
|
|
249
|
-
select(Prompt)
|
|
250
|
-
.filter(Prompt.timestamp > last_sync_time)
|
|
251
|
-
.order_by(Prompt.timestamp.asc(), Prompt.id.asc())
|
|
252
|
-
.limit(BATCH_SIZE)
|
|
253
|
-
)
|
|
254
|
-
records_to_sync = source_results.scalars().all()
|
|
255
|
-
if not records_to_sync:
|
|
256
|
-
print("没有更多记录了")
|
|
257
|
-
break # 没有更多记录了
|
|
258
|
-
|
|
259
|
-
#2 max_timestamp_in_batch = datetime(1970, 1, 1) # 初始化为最早时间
|
|
260
|
-
|
|
261
|
-
# 准备要插入或更新到目标数据库的数据
|
|
262
|
-
for record in records_to_sync:
|
|
263
|
-
# 查找目标数据库中是否存在该ID的记录
|
|
264
|
-
# 这里的 `User` 模型会对应到 target_db.users
|
|
265
|
-
target_prompt_result = await target_session.execute(
|
|
266
|
-
select(Prompt).filter_by(id=record.id) # 假设 prompt_id 是唯一标识符
|
|
267
|
-
)
|
|
268
|
-
target_prompt = target_prompt_result.scalar_one_or_none()
|
|
269
|
-
|
|
270
|
-
if target_prompt:
|
|
271
|
-
# 如果存在,则更新
|
|
272
|
-
target_prompt.prompt_id = record.prompt_id
|
|
273
|
-
target_prompt.version = record.version
|
|
274
|
-
target_prompt.timestamp = record.timestamp
|
|
275
|
-
target_prompt.prompt = record.prompt
|
|
276
|
-
target_prompt.use_case = record.use_case
|
|
277
|
-
target_prompt.action_type = record.action_type
|
|
278
|
-
target_prompt.demand = record.demand
|
|
279
|
-
target_prompt.score = record.score
|
|
280
|
-
target_prompt.is_deleted = record.is_deleted
|
|
281
|
-
else:
|
|
282
|
-
# 如果不存在,则添加新记录
|
|
283
|
-
# 注意:这里需要创建一个新的User实例,而不是直接添加源数据库的record对象
|
|
284
|
-
new_prompt = Prompt(
|
|
285
|
-
prompt_id=record.prompt_id,
|
|
286
|
-
version=record.version,
|
|
287
|
-
timestamp=record.timestamp,
|
|
288
|
-
prompt = record.prompt,
|
|
289
|
-
use_case = record.use_case,
|
|
290
|
-
action_type = record.action_type,
|
|
291
|
-
demand = record.demand,
|
|
292
|
-
score = record.score,
|
|
293
|
-
is_deleted = record.is_deleted
|
|
294
|
-
)
|
|
295
|
-
target_session.add(new_prompt)
|
|
296
|
-
|
|
297
|
-
# 记录当前批次最大的 updated_at
|
|
298
|
-
#2
|
|
299
|
-
# if record.timestamp > max_timestamp_in_batch:
|
|
300
|
-
# max_timestamp_in_batch = record.timestamp
|
|
301
|
-
if record.timestamp > current_batch_max_updated_at:
|
|
302
|
-
current_batch_max_updated_at = record.timestamp
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
await target_session.commit()
|
|
306
|
-
processed_count += len(records_to_sync)
|
|
307
|
-
print(f"Processed {len(records_to_sync)} records. Total processed: {processed_count}")
|
|
308
|
-
|
|
309
|
-
#2 next_sync_watermark = max_timestamp_in_batch + timedelta(microseconds=1)
|
|
310
|
-
last_sync_time = current_batch_max_updated_at + timedelta(microseconds=1)
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
if len(records_to_sync) < BATCH_SIZE: # 如果查询到的记录数小于批次大小,说明已经处理完所有符合条件的记录
|
|
314
|
-
break
|
|
315
|
-
|
|
316
|
-
if processed_count > 0:
|
|
317
|
-
# 最终更新last_sync_time到数据库,确保记录的是所有已处理记录中最新的一个
|
|
318
|
-
await update_last_sync_time(target_session, current_batch_max_updated_at + timedelta(microseconds=1))
|
|
319
|
-
|
|
320
|
-
#2 await update_last_sync_time(target_session, next_sync_watermark)
|
|
321
|
-
|
|
322
|
-
await target_session.commit() # 确保最终的 metadata 更新也被提交
|
|
323
|
-
else:
|
|
324
|
-
print("No new records to sync.")
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
async def get_prompts_from_sql(self,
|
|
328
|
-
prompt_id: str,
|
|
329
|
-
version = None,
|
|
330
|
-
session = None) -> Prompt:
|
|
331
|
-
"""
|
|
332
|
-
从sql获取提示词
|
|
333
|
-
"""
|
|
334
|
-
# 查看是否已经存在
|
|
335
|
-
if version:
|
|
336
|
-
prompts_obj = await self._get_specific_prompt_version(prompt_id,version,session=session)
|
|
337
|
-
if not prompts_obj:
|
|
338
|
-
prompts_obj = await self._get_latest_prompt_version(prompt_id,session = session)
|
|
339
|
-
else:
|
|
340
|
-
prompts_obj = await self._get_latest_prompt_version(prompt_id,session = session)
|
|
341
|
-
return prompts_obj
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
async def save_prompt_increment_version(self,
|
|
345
|
-
prompt_id: str,
|
|
346
|
-
new_prompt: str,
|
|
347
|
-
use_case:str = "",
|
|
348
|
-
action_type = "inference",
|
|
349
|
-
demand = "",
|
|
350
|
-
score = 60,
|
|
351
|
-
session = None):
|
|
352
|
-
"""
|
|
353
|
-
从sql保存提示词
|
|
354
|
-
input_data 指的是输入用例, 可以为空
|
|
355
|
-
"""
|
|
356
|
-
# 查看是否已经存在
|
|
357
|
-
prompts_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
|
|
358
|
-
|
|
359
|
-
if prompts_obj:
|
|
360
|
-
# 如果存在版本加1
|
|
361
|
-
version_ori = prompts_obj.version
|
|
362
|
-
_, version = version_ori.split(".")
|
|
363
|
-
version = int(version)
|
|
364
|
-
version += 1
|
|
365
|
-
version_ = f"1.{version}"
|
|
366
|
-
|
|
367
|
-
else:
|
|
368
|
-
# 如果不存在版本为1.0
|
|
369
|
-
version_ = '1.0'
|
|
370
|
-
|
|
371
|
-
prompt1 = Prompt(prompt_id=prompt_id,
|
|
372
|
-
version=version_,
|
|
373
|
-
timestamp=datetime.now(),
|
|
374
|
-
prompt = new_prompt,
|
|
375
|
-
use_case = use_case,
|
|
376
|
-
action_type = action_type,
|
|
377
|
-
demand = demand,
|
|
378
|
-
score = score
|
|
379
|
-
)
|
|
380
|
-
|
|
381
|
-
session.add(prompt1)
|
|
382
|
-
await session.commit() # 提交事务,将数据写入数据库
|
|
383
|
-
|
|
384
|
-
async def get_use_case_by_sql(self,
|
|
385
|
-
target_prompt_id: str,
|
|
386
|
-
session = None
|
|
387
|
-
):
|
|
388
|
-
"""
|
|
389
|
-
从sql保存提示词
|
|
390
|
-
"""
|
|
391
|
-
stmt = select(UseCase).filter(UseCase.is_deleted == 0,
|
|
392
|
-
UseCase.prompt_id == target_prompt_id)
|
|
393
|
-
|
|
394
|
-
result = await session.execute(stmt)
|
|
395
|
-
# use_case = result.scalars().one_or_none()
|
|
396
|
-
use_case = result.scalars().all()
|
|
397
|
-
return use_case
|
|
398
|
-
|
|
399
|
-
async def save_use_case_by_sql(self,
|
|
400
|
-
prompt_id: str,
|
|
401
|
-
use_case:str = "",
|
|
402
|
-
timestamp = "",
|
|
403
|
-
output = "",
|
|
404
|
-
solution: str = "",
|
|
405
|
-
faired_time = 0,
|
|
406
|
-
session = None
|
|
407
|
-
):
|
|
408
|
-
|
|
409
|
-
"""
|
|
410
|
-
从sql保存提示词
|
|
411
|
-
"""
|
|
412
|
-
#TODO 存之前保证数据库中相同的prompt_id中没有重复的use_case
|
|
413
|
-
use_cases = await self.get_use_case_by_sql(target_prompt_id = prompt_id,
|
|
414
|
-
session = session)
|
|
415
|
-
for use_case_old in use_cases:
|
|
416
|
-
if use_case == use_case_old.use_case:
|
|
417
|
-
print("用例已经存在")
|
|
418
|
-
return
|
|
419
|
-
|
|
420
|
-
use_case = UseCase(prompt_id=prompt_id,
|
|
421
|
-
use_case = use_case,
|
|
422
|
-
timestamp = timestamp,
|
|
423
|
-
output = output,
|
|
424
|
-
solution = solution,
|
|
425
|
-
faired_time = faired_time,
|
|
426
|
-
)
|
|
427
|
-
|
|
428
|
-
session.add(use_case)
|
|
429
|
-
await session.commit() # 提交事务,将数据写入数据库
|
|
430
|
-
|
|
431
|
-
async def summary_to_sql(
|
|
432
|
-
self,
|
|
433
|
-
prompt_id:str,
|
|
434
|
-
version = None,
|
|
435
|
-
prompt = "",
|
|
436
|
-
session = None
|
|
437
|
-
):
|
|
438
|
-
"""
|
|
439
|
-
让大模型微调已经存在的 system_prompt
|
|
440
|
-
"""
|
|
441
|
-
system_prompt_created_prompt = """
|
|
442
|
-
很棒, 我们已经达成了某种默契, 我们之间合作无间, 但是, 可悲的是, 当我关闭这个窗口的时候, 你就会忘记我们之间经历的种种磨合, 这是可惜且心痛的, 所以你能否将目前这一套处理流程结晶成一个优质的prompt 这样, 我们下一次只要将prompt输入, 你就能想起我们今天的磨合过程,
|
|
443
|
-
对了,我提示一点, 这个prompt的主角是你, 也就是说, 你在和未来的你对话, 你要教会未来的你今天这件事, 是否让我看懂到时其次
|
|
444
|
-
|
|
445
|
-
只要输出提示词内容即可, 不需要任何的说明和解释
|
|
446
|
-
"""
|
|
447
|
-
system_result = await self.llm.aproduct(prompt + system_prompt_created_prompt)
|
|
448
|
-
|
|
449
|
-
s_prompt = extract_(system_result,pattern_key=r"prompt")
|
|
450
|
-
chat_history = s_prompt or system_result
|
|
451
|
-
await self.save_prompt_increment_version(prompt_id,
|
|
452
|
-
new_prompt = chat_history,
|
|
453
|
-
use_case = "",
|
|
454
|
-
score = 60,
|
|
455
|
-
session = session)
|
|
456
|
-
|
|
457
|
-
async def prompt_finetune_to_sql(
|
|
458
|
-
self,
|
|
459
|
-
prompt_id:str,
|
|
460
|
-
version = None,
|
|
461
|
-
demand: str = "",
|
|
462
|
-
session = None,
|
|
463
|
-
):
|
|
464
|
-
"""
|
|
465
|
-
让大模型微调已经存在的 system_prompt
|
|
466
|
-
"""
|
|
467
|
-
change_by_opinion_prompt = """
|
|
468
|
-
你是一个资深AI提示词工程师,具备卓越的Prompt设计与优化能力。
|
|
469
|
-
我将为你提供一段现有System Prompt。你的核心任务是基于这段Prompt进行修改,以实现我提出的特定目标和功能需求。
|
|
470
|
-
请你绝对严格地遵循以下原则:
|
|
471
|
-
极端最小化修改原则(核心):
|
|
472
|
-
在满足所有功能需求的前提下,只进行我明确要求的修改。
|
|
473
|
-
即使你认为有更“优化”、“清晰”或“简洁”的表达方式,只要我没有明确要求,也绝不允许进行任何未经指令的修改。
|
|
474
|
-
目的就是尽可能地保留原有Prompt的字符和结构不变,除非我的功能要求必须改变。
|
|
475
|
-
例如,如果我只要求你修改一个词,你就不应该修改整句话的结构。
|
|
476
|
-
严格遵循我的指令:
|
|
477
|
-
你必须精确地执行我提出的所有具体任务和要求。
|
|
478
|
-
绝不允许自行添加任何超出指令范围的说明、角色扮演、约束条件或任何非我指令要求的内容。
|
|
479
|
-
保持原有Prompt的风格和语调:
|
|
480
|
-
尽可能地与现有Prompt的语言风格、正式程度和语调保持一致。
|
|
481
|
-
不要改变不相关的句子或其表达方式。
|
|
482
|
-
只提供修改后的Prompt:
|
|
483
|
-
直接输出修改后的完整System Prompt文本。
|
|
484
|
-
不要包含任何解释、说明或额外对话。
|
|
485
|
-
在你开始之前,请务必确认你已理解并能绝对严格地遵守这些原则。任何未经明确指令的改动都将视为未能完成任务。
|
|
486
|
-
|
|
487
|
-
现有System Prompt:
|
|
488
|
-
{old_system_prompt}
|
|
489
|
-
|
|
490
|
-
功能需求:
|
|
491
|
-
{opinion}
|
|
492
|
-
"""
|
|
493
|
-
|
|
494
|
-
prompt_ = await self.get_prompts_from_sql(prompt_id = prompt_id,version = version,
|
|
495
|
-
session=session)
|
|
496
|
-
if demand:
|
|
497
|
-
new_prompt = await self.llm.aproduct(
|
|
498
|
-
change_by_opinion_prompt.format(old_system_prompt=prompt_.prompt, opinion=demand)
|
|
499
|
-
)
|
|
500
|
-
else:
|
|
501
|
-
new_prompt = prompt_
|
|
502
|
-
await self.save_prompt_increment_version(prompt_id = prompt_id,
|
|
503
|
-
new_prompt = new_prompt,
|
|
504
|
-
use_case = "",
|
|
505
|
-
score = 60,
|
|
506
|
-
session = session)
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
async def push_action_order(self,demand : str,prompt_id: str,
|
|
510
|
-
action_type = 'train'):
|
|
511
|
-
|
|
512
|
-
"""
|
|
513
|
-
从sql保存提示词
|
|
514
|
-
推一个train 状态到指定的位置
|
|
515
|
-
|
|
516
|
-
将打算修改的状态推上数据库 # 1
|
|
517
|
-
"""
|
|
518
|
-
# 查看是否已经存在
|
|
519
|
-
async with create_async_session(self.engine) as session:
|
|
520
|
-
|
|
521
|
-
latest_prompt = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
|
|
522
|
-
if latest_prompt:
|
|
523
|
-
await self.save_prompt_increment_version(prompt_id=latest_prompt.prompt_id,
|
|
524
|
-
new_prompt = latest_prompt.prompt,
|
|
525
|
-
use_case = latest_prompt.use_case,
|
|
526
|
-
action_type=action_type,
|
|
527
|
-
demand=demand,
|
|
528
|
-
score=latest_prompt.score,
|
|
529
|
-
session=session
|
|
530
|
-
)
|
|
531
|
-
return "success"
|
|
532
|
-
else:
|
|
533
|
-
await self.save_prompt_increment_version(prompt_id=prompt_id,
|
|
534
|
-
new_prompt = demand,
|
|
535
|
-
use_case = "init",
|
|
536
|
-
action_type="inference",
|
|
537
|
-
demand=demand,
|
|
538
|
-
score=60,
|
|
539
|
-
session=session
|
|
540
|
-
)
|
|
541
|
-
return "init"
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
async def intellect_remove(self,
|
|
546
|
-
input_data: dict | str,
|
|
547
|
-
output_format: str,
|
|
548
|
-
prompt_id: str,
|
|
549
|
-
version: str = None,
|
|
550
|
-
inference_save_case = True,
|
|
551
|
-
change_case = False,
|
|
552
|
-
):
|
|
553
|
-
if isinstance(input_data,dict):
|
|
554
|
-
input_ = json.dumps(input_data,ensure_ascii=False)
|
|
555
|
-
elif isinstance(input_data,str):
|
|
556
|
-
input_ = input_data
|
|
557
|
-
|
|
558
|
-
# 查数据库, 获取最新提示词对象
|
|
559
|
-
async with create_async_session(self.engine) as session:
|
|
560
|
-
result_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
|
|
561
|
-
if result_obj is None:
|
|
562
|
-
raise IntellectRemoveError("不存在的prompt_id")
|
|
563
|
-
|
|
564
|
-
prompt = result_obj.prompt
|
|
565
|
-
if result_obj.action_type == "inference":
|
|
566
|
-
# 直接推理即可
|
|
567
|
-
ai_result = await self.llm.aproduct(prompt + output_format + "\nuser:" + input_)
|
|
568
|
-
if inference_save_case:
|
|
569
|
-
await self.save_use_case_by_sql(prompt_id,
|
|
570
|
-
use_case = input_,
|
|
571
|
-
timestamp = datetime.now(),
|
|
572
|
-
output = ai_result,
|
|
573
|
-
solution = "备注/理想回复",
|
|
574
|
-
faired_time = 0,
|
|
575
|
-
session = session,
|
|
576
|
-
)
|
|
577
|
-
|
|
578
|
-
elif result_obj.action_type == "train":
|
|
579
|
-
assert result_obj.demand # 如果type = train 且 demand 是空 则报错
|
|
580
|
-
# 则训练推广
|
|
581
|
-
|
|
582
|
-
# 新版本 默人修改会 inference 状态
|
|
583
|
-
chat_history = prompt
|
|
584
|
-
before_input = result_obj.use_case
|
|
585
|
-
demand = result_obj.demand
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
# assert demand
|
|
589
|
-
# # 注意, 这里的调整要求使用最初的那个输入, 最好一口气调整好
|
|
590
|
-
# chat_history = prompt
|
|
591
|
-
# if input_ == before_input: # 输入没变, 说明还是针对同一个输入进行讨论
|
|
592
|
-
# # input_prompt = chat_history + "\nuser:" + demand
|
|
593
|
-
# input_prompt = chat_history + "\nuser:" + demand + output_format
|
|
594
|
-
# else:
|
|
595
|
-
# # input_prompt = chat_history + "\nuser:" + demand + "\n-----input----\n" + input_
|
|
596
|
-
# input_prompt = chat_history + "\nuser:" + demand + output_format + "\n-----input----\n" + input_
|
|
597
|
-
|
|
598
|
-
# ai_result = await self.llm.aproduct(input_prompt)
|
|
599
|
-
# chat_history = input_prompt + "\nassistant:\n" + ai_result # 用聊天记录作为完整提示词
|
|
600
|
-
# await self.save_prompt_increment_version(prompt_id, chat_history,
|
|
601
|
-
# use_case = input_,
|
|
602
|
-
# score = 60,
|
|
603
|
-
# session = session)
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
# version 2
|
|
607
|
-
|
|
608
|
-
# if input_ == before_input:
|
|
609
|
-
# new_prompt = prompt + "\nuser:" + demand
|
|
610
|
-
# else:
|
|
611
|
-
# new_prompt = prompt + "\nuser:" + input_
|
|
612
|
-
|
|
613
|
-
# ai_result = await self.llm.aproduct(new_prompt + output_format)
|
|
614
|
-
|
|
615
|
-
# save_new_prompt = new_prompt + "\nassistant:\n" + ai_result
|
|
616
|
-
|
|
617
|
-
|
|
618
|
-
# await self.save_prompt_increment_version(
|
|
619
|
-
# prompt_id,
|
|
620
|
-
# new_prompt=save_new_prompt,
|
|
621
|
-
# use_case = input_,
|
|
622
|
-
# action_type = "inference",
|
|
623
|
-
# score = 60,
|
|
624
|
-
# session = session)
|
|
625
|
-
|
|
626
|
-
if before_input == "" or change_case is True:
|
|
627
|
-
result_obj.use_case = input_
|
|
628
|
-
await session.commit()
|
|
629
|
-
# 查询上一条, 将before_input 更新位input_
|
|
630
|
-
prompt += input_
|
|
631
|
-
|
|
632
|
-
# 使用更新后的数据进行后续步骤
|
|
633
|
-
new_prompt = prompt + "\nuser:" + demand
|
|
634
|
-
|
|
635
|
-
ai_result = await self.llm.aproduct(new_prompt + output_format)
|
|
636
|
-
|
|
637
|
-
save_new_prompt = new_prompt + "\nassistant:\n" + ai_result
|
|
638
|
-
|
|
639
|
-
|
|
640
|
-
await self.save_prompt_increment_version(
|
|
641
|
-
prompt_id,
|
|
642
|
-
new_prompt=save_new_prompt,
|
|
643
|
-
use_case = input_,
|
|
644
|
-
action_type = "inference",
|
|
645
|
-
score = 60,
|
|
646
|
-
session = session)
|
|
647
|
-
|
|
648
|
-
elif result_obj.action_type == "summary":
|
|
649
|
-
|
|
650
|
-
await self.summary_to_sql(prompt_id = prompt_id,
|
|
651
|
-
prompt = prompt,
|
|
652
|
-
session = session
|
|
653
|
-
)
|
|
654
|
-
ai_result = await self.llm.aproduct(prompt + output_format + "\nuser:" + input_)
|
|
655
|
-
|
|
656
|
-
elif result_obj.action_type == "finetune":
|
|
657
|
-
demand = result_obj.demand
|
|
658
|
-
|
|
659
|
-
assert demand
|
|
660
|
-
await self.prompt_finetune_to_sql(prompt_id = prompt_id,
|
|
661
|
-
demand = demand,
|
|
662
|
-
session = session
|
|
663
|
-
)
|
|
664
|
-
ai_result = await self.llm.aproduct(prompt + output_format + "\nuser:" + input_)
|
|
665
|
-
|
|
666
|
-
elif result_obj.action_type == "patch":
|
|
667
|
-
demand = result_obj.demand
|
|
668
|
-
assert demand
|
|
669
|
-
chat_history = prompt + demand
|
|
670
|
-
ai_result = await self.llm.aproduct(chat_history + output_format + "\nuser:" + input_)
|
|
671
|
-
self.save_prompt_increment_version(prompt_id,
|
|
672
|
-
chat_history,
|
|
673
|
-
use_case = input_,
|
|
674
|
-
score = 60,
|
|
675
|
-
session = session)
|
|
676
|
-
|
|
677
|
-
else:
|
|
678
|
-
raise
|
|
679
|
-
|
|
680
|
-
return ai_result
|
|
681
|
-
|
|
682
|
-
async def intellect_stream_remove(self,
|
|
683
|
-
input_data: dict | str,
|
|
684
|
-
output_format: str,
|
|
685
|
-
prompt_id: str,
|
|
686
|
-
version: str = None,
|
|
687
|
-
inference_save_case = True,
|
|
688
|
-
push_patch = False,
|
|
689
|
-
):
|
|
690
|
-
if isinstance(input_data,dict):
|
|
691
|
-
input_ = json.dumps(input_data,ensure_ascii=False)
|
|
692
|
-
elif isinstance(input_data,str):
|
|
693
|
-
input_ = input_data
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
# 查数据库, 获取最新提示词对象
|
|
697
|
-
with create_session(self.engine) as session:
|
|
698
|
-
result_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
|
|
699
|
-
|
|
700
|
-
'''
|
|
701
|
-
if result_obj is None:
|
|
702
|
-
await self.save_prompt_increment_version(
|
|
703
|
-
prompt_id = prompt_id,
|
|
704
|
-
new_prompt = "做一些处理",
|
|
705
|
-
use_case = input_,
|
|
706
|
-
session = session
|
|
707
|
-
)
|
|
708
|
-
ai_result = await self.intellect_stream_remove(input_data = input_data,
|
|
709
|
-
output_format = output_format,
|
|
710
|
-
prompt_id = prompt_id,
|
|
711
|
-
version = version,
|
|
712
|
-
inference_save_case = inference_save_case
|
|
713
|
-
)
|
|
714
|
-
return ai_result'''
|
|
715
|
-
|
|
716
|
-
prompt = result_obj.prompt
|
|
717
|
-
if result_obj.action_type == "inference":
|
|
718
|
-
# 直接推理即可
|
|
719
|
-
|
|
720
|
-
ai_generate_result = self.llm.aproduct_stream(prompt + output_format + "\n-----input----\n" + input_)
|
|
721
|
-
ai_result = ""
|
|
722
|
-
async for word in ai_generate_result:
|
|
723
|
-
ai_result += word
|
|
724
|
-
yield word
|
|
725
|
-
if inference_save_case:
|
|
726
|
-
await self.save_use_case_by_sql(prompt_id,
|
|
727
|
-
use_case = input_,
|
|
728
|
-
timestamp = datetime.now(),
|
|
729
|
-
output = ai_result,
|
|
730
|
-
solution = "备注/理想回复",
|
|
731
|
-
faired_time = 0,
|
|
732
|
-
session = session,
|
|
733
|
-
)
|
|
734
|
-
|
|
735
|
-
elif result_obj.action_type == "train":
|
|
736
|
-
assert result_obj.demand # 如果type = train 且 demand 是空 则报错
|
|
737
|
-
# 则训练推广
|
|
738
|
-
|
|
739
|
-
# 新版本 默人修改会 inference 状态
|
|
740
|
-
chat_history = prompt
|
|
741
|
-
before_input = result_obj.use_case
|
|
742
|
-
demand = result_obj.demand
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
assert demand
|
|
746
|
-
# 注意, 这里的调整要求使用最初的那个输入, 最好一口气调整好
|
|
747
|
-
chat_history = prompt
|
|
748
|
-
if input_ == before_input: # 输入没变, 说明还是针对同一个输入进行讨论
|
|
749
|
-
# input_prompt = chat_history + "\nuser:" + demand
|
|
750
|
-
input_prompt = chat_history + "\nuser:" + demand + output_format
|
|
751
|
-
else:
|
|
752
|
-
# input_prompt = chat_history + "\nuser:" + demand + "\n-----input----\n" + input_
|
|
753
|
-
input_prompt = chat_history + "\nuser:" + demand + output_format + "\n-----input----\n" + input_
|
|
754
|
-
|
|
755
|
-
ai_generate_result = self.llm.aproduct_stream(input_prompt)
|
|
756
|
-
ai_result = ""
|
|
757
|
-
async for word in ai_generate_result:
|
|
758
|
-
ai_result += word
|
|
759
|
-
yield word
|
|
760
|
-
|
|
761
|
-
chat_history = input_prompt + "\nassistant:\n" + ai_result # 用聊天记录作为完整提示词
|
|
762
|
-
await self.save_prompt_increment_version(prompt_id, chat_history,
|
|
763
|
-
use_case = input_,
|
|
764
|
-
score = 60,
|
|
765
|
-
session = session)
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
elif result_obj.action_type == "summary":
|
|
769
|
-
|
|
770
|
-
await self.summary_to_sql(prompt_id = prompt_id,
|
|
771
|
-
prompt = prompt,
|
|
772
|
-
session = session
|
|
773
|
-
)
|
|
774
|
-
input_prompt = prompt + output_format + "\n-----input----\n" + input_
|
|
775
|
-
ai_generate_result = self.llm.aproduct_stream(input_prompt)
|
|
776
|
-
ai_result = ""
|
|
777
|
-
async for word in ai_generate_result:
|
|
778
|
-
ai_result += word
|
|
779
|
-
yield word
|
|
780
|
-
|
|
781
|
-
elif result_obj.action_type == "finetune":
|
|
782
|
-
demand = result_obj.demand
|
|
783
|
-
|
|
784
|
-
assert demand
|
|
785
|
-
await self.prompt_finetune_to_sql(prompt_id = prompt_id,
|
|
786
|
-
demand = demand,
|
|
787
|
-
session = session
|
|
788
|
-
)
|
|
789
|
-
input_prompt = prompt + output_format + "\n-----input----\n" + input_
|
|
790
|
-
ai_generate_result = self.llm.aproduct_stream(input_prompt)
|
|
791
|
-
ai_result = ""
|
|
792
|
-
async for word in ai_generate_result:
|
|
793
|
-
ai_result += word
|
|
794
|
-
yield word
|
|
795
|
-
|
|
796
|
-
elif result_obj.action_type == "patch":
|
|
797
|
-
|
|
798
|
-
demand = result_obj.demand
|
|
799
|
-
assert demand
|
|
800
|
-
|
|
801
|
-
chat_history = prompt + demand
|
|
802
|
-
ai_generate_result = self.llm.aproduct_stream(chat_history + output_format + "\n-----input----\n" + input_)
|
|
803
|
-
ai_result = ""
|
|
804
|
-
async for word in ai_generate_result:
|
|
805
|
-
ai_result += word
|
|
806
|
-
yield word
|
|
807
|
-
if push_patch:
|
|
808
|
-
self.save_prompt_increment_version(prompt_id, chat_history,
|
|
809
|
-
use_case = input_,
|
|
810
|
-
score = 60,
|
|
811
|
-
session = session)
|
|
812
|
-
else:
|
|
813
|
-
raise
|
|
814
|
-
|
|
815
|
-
async def intellect_remove_format(self,
|
|
816
|
-
input_data: dict | str,
|
|
817
|
-
OutputFormat: object,
|
|
818
|
-
prompt_id: str,
|
|
819
|
-
ExtraFormats: list[object] = [],
|
|
820
|
-
version: str = None,
|
|
821
|
-
inference_save_case = True,
|
|
822
|
-
):
|
|
823
|
-
|
|
824
|
-
base_format_prompt = """
|
|
825
|
-
按照一定格式输出, 以便可以通过如下校验
|
|
826
|
-
|
|
827
|
-
使用以下正则检出
|
|
828
|
-
"```json([\s\S]*?)```"
|
|
829
|
-
使用以下方式验证
|
|
830
|
-
"""
|
|
831
|
-
output_format = base_format_prompt + "\n".join([inspect.getsource(outputformat) for outputformat in ExtraFormats]) + inspect.getsource(OutputFormat)
|
|
832
|
-
|
|
833
|
-
ai_result = await self.intellect_remove(
|
|
834
|
-
input_data=input_data,
|
|
835
|
-
output_format=output_format,
|
|
836
|
-
prompt_id=prompt_id,
|
|
837
|
-
version=version,
|
|
838
|
-
inference_save_case=inference_save_case,
|
|
839
|
-
)
|
|
840
|
-
|
|
841
|
-
try:
|
|
842
|
-
json_str = extract_(ai_result,r'json')
|
|
843
|
-
# json_str = fix_broken_json_string(json_str)
|
|
844
|
-
ai_result = json.loads(json_str)
|
|
845
|
-
OutputFormat(**ai_result)
|
|
846
|
-
|
|
847
|
-
except JSONDecodeError as e:
|
|
848
|
-
slog(ai_result,logger=self.logger.error)
|
|
849
|
-
try:
|
|
850
|
-
self.logger.error(f"尝试补救")
|
|
851
|
-
json_str = fix_broken_json_string(json_str)
|
|
852
|
-
ai_result = json.loads(json_str)
|
|
853
|
-
OutputFormat(**ai_result)
|
|
854
|
-
|
|
855
|
-
except JSONDecodeError as e:
|
|
856
|
-
raise IntellectRemoveFormatError(f"prompt_id: {prompt_id} 生成的内容为无法被Json解析 {e}") from e
|
|
857
|
-
|
|
858
|
-
except ValidationError as e:
|
|
859
|
-
err_info = e.errors()[0]
|
|
860
|
-
raise IntellectRemoveFormatError(f"{err_info["type"]}: 属性:{err_info['loc']}, 发生了如下错误: {err_info['msg']}, 格式校验失败, 当前输入为: {err_info['input']} 请检查") from e
|
|
861
|
-
|
|
862
|
-
except Exception as e:
|
|
863
|
-
raise Exception(f"Error {prompt_id} : {e}") from e
|
|
864
|
-
|
|
865
|
-
return ai_result
|
|
866
|
-
|
|
867
|
-
async def intellect_remove_formats(self,
|
|
868
|
-
input_datas: list[dict | str],
|
|
869
|
-
OutputFormat: object,
|
|
870
|
-
prompt_id: str,
|
|
871
|
-
ExtraFormats: list[object] = [],
|
|
872
|
-
version: str = None,
|
|
873
|
-
inference_save_case = True,
|
|
874
|
-
):
|
|
875
|
-
|
|
876
|
-
async with create_async_session(self.engine) as session:
|
|
877
|
-
prompt_result = await self.get_prompts_from_sql(prompt_id=prompt_id,
|
|
878
|
-
session=session)
|
|
879
|
-
if prompt_result is None:
|
|
880
|
-
raise IntellectRemoveError("不存在的prompt_id")
|
|
881
|
-
if prompt_result.action_type != "inference":
|
|
882
|
-
input_datas = input_datas[:1]
|
|
883
|
-
tasks = []
|
|
884
|
-
for input_data in input_datas:
|
|
885
|
-
tasks.append(
|
|
886
|
-
self.intellect_remove_format(
|
|
887
|
-
input_data = input_data,
|
|
888
|
-
prompt_id = prompt_id,
|
|
889
|
-
OutputFormat = OutputFormat,
|
|
890
|
-
ExtraFormats = ExtraFormats,
|
|
891
|
-
version = version,
|
|
892
|
-
inference_save_case = inference_save_case,
|
|
893
|
-
)
|
|
894
|
-
)
|
|
895
|
-
results = await asyncio.gather(*tasks, return_exceptions=False)
|
|
896
|
-
return results
|
|
897
|
-
|
|
898
|
-
def intellect_remove_warp(self,prompt_id: str):
|
|
899
|
-
def outer_packing(func):
|
|
900
|
-
@functools.wraps(func)
|
|
901
|
-
async def wrapper(*args, **kwargs):
|
|
902
|
-
# 修改逻辑
|
|
903
|
-
assert kwargs.get('input_data') # 要求一定要有data入参
|
|
904
|
-
input_data = kwargs.get('input_data')
|
|
905
|
-
assert kwargs.get('OutputFormat') # 要求一定要有data入参
|
|
906
|
-
OutputFormat = kwargs.get('OutputFormat')
|
|
907
|
-
|
|
908
|
-
if isinstance(input_data,dict):
|
|
909
|
-
input_ = output_ = json.dumps(input_data,ensure_ascii=False)
|
|
910
|
-
elif isinstance(input_data,str):
|
|
911
|
-
input_ = output_ = input_data
|
|
912
|
-
|
|
913
|
-
output_ = await self.intellect_remove_format(
|
|
914
|
-
input_data = input_data,
|
|
915
|
-
prompt_id = prompt_id,
|
|
916
|
-
OutputFormat = OutputFormat,
|
|
917
|
-
)
|
|
918
|
-
|
|
919
|
-
#######
|
|
920
|
-
kwargs.update({"input_data":output_})
|
|
921
|
-
result = await func(*args, **kwargs)
|
|
922
|
-
return result
|
|
923
|
-
return wrapper
|
|
924
|
-
return outer_packing
|
|
925
|
-
|
|
926
|
-
async def intellect_remove_format_eval(self,
|
|
927
|
-
OutputFormat: object,
|
|
928
|
-
prompt_id: str,
|
|
929
|
-
ExtraFormats: list[object] = [],
|
|
930
|
-
version: str = None,
|
|
931
|
-
MIN_SUCCESS_RATE = 80.0
|
|
932
|
-
):
|
|
933
|
-
|
|
934
|
-
async with create_async_session(self.engine) as session:
|
|
935
|
-
use_cases = await self.get_use_case_by_sql(target_prompt_id=prompt_id,session=session)
|
|
936
|
-
prompt_result = await self.get_prompts_from_sql(prompt_id=prompt_id,
|
|
937
|
-
session=session)
|
|
938
|
-
if prompt_result is None:
|
|
939
|
-
raise IntellectRemoveError("不存在的prompt_id")
|
|
940
|
-
if prompt_result.action_type != "inference":
|
|
941
|
-
raise IntellectRemoveError("请在inference模式下使用次类")
|
|
942
|
-
|
|
943
|
-
|
|
944
|
-
total_assertions = len(use_cases)
|
|
945
|
-
result_cases = []
|
|
946
|
-
|
|
947
|
-
async def evals_func(use_case,prompt_id,OutputFormat,ExtraFormats,version):
|
|
948
|
-
try:
|
|
949
|
-
# 这里将参数传入
|
|
950
|
-
await self.intellect_remove_format(
|
|
951
|
-
input_data = use_case.use_case,
|
|
952
|
-
prompt_id = prompt_id,
|
|
953
|
-
OutputFormat = OutputFormat,
|
|
954
|
-
ExtraFormats = ExtraFormats,
|
|
955
|
-
version = version,
|
|
956
|
-
inference_save_case = False,
|
|
957
|
-
)
|
|
958
|
-
# TODO base_eval
|
|
959
|
-
# TODO 人类评价 eval
|
|
960
|
-
# TODO llm 评价 eval
|
|
961
|
-
result_cases.append({"type":"Successful","case":use_case.use_case,"reply":f"pass"})
|
|
962
|
-
use_case.output = "Successful"
|
|
963
|
-
except IntellectRemoveFormatError as e:
|
|
964
|
-
result_cases.append({"type":"FAILED","case":use_case.use_case,"reply":f"{e}"})
|
|
965
|
-
use_case.output = f"{"FAILED"}-{e}"
|
|
966
|
-
except Exception as e: # 捕获其他可能的错误
|
|
967
|
-
result_cases.append({"type":"FAILED","case":use_case.use_case,"reply":f"Exp {e}"})
|
|
968
|
-
use_case.output = f"{"FAILED"}-{e}"
|
|
969
|
-
await session.commit()
|
|
970
|
-
|
|
971
|
-
tasks = []
|
|
972
|
-
for use_case in use_cases:
|
|
973
|
-
tasks.append(
|
|
974
|
-
evals_func(
|
|
975
|
-
use_case = use_case,
|
|
976
|
-
prompt_id = prompt_id,
|
|
977
|
-
OutputFormat = OutputFormat,
|
|
978
|
-
ExtraFormats = ExtraFormats,
|
|
979
|
-
version = version
|
|
980
|
-
)
|
|
981
|
-
)
|
|
982
|
-
await asyncio.gather(*tasks, return_exceptions=False)
|
|
983
|
-
|
|
984
|
-
|
|
985
|
-
successful_assertions = 0
|
|
986
|
-
bad_case = []
|
|
987
|
-
for i in result_cases:
|
|
988
|
-
if i['type'] == "Successful":
|
|
989
|
-
successful_assertions += 1
|
|
990
|
-
else:
|
|
991
|
-
bad_case.append(i)
|
|
992
|
-
|
|
993
|
-
success_rate = (successful_assertions / total_assertions) * 100
|
|
994
|
-
|
|
995
|
-
if success_rate >= MIN_SUCCESS_RATE:
|
|
996
|
-
return "通过", success_rate, total_assertions, json.dumps(bad_case,ensure_ascii=False),
|
|
997
|
-
else:
|
|
998
|
-
return "未通过",success_rate, total_assertions, json.dumps(bad_case,ensure_ascii=False),
|
|
999
|
-
|
|
1000
|
-
# 整体测试d, 测试未通过d, 大模型调整再测试, 依旧不通过, 大模型裂变, 仍不通过, 互换人力
|
|
File without changes
|
|
File without changes
|