pro-craft 0.1.13__py3-none-any.whl → 0.1.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pro-craft might be problematic. Click here for more details.

pro_craft/__init__.py CHANGED
@@ -12,14 +12,12 @@ Log_.set_super_log(logger.critical)
12
12
  super_log = Log_.super_log # 调试工具
13
13
 
14
14
  def slog(s, target: str = "target",logger = logger.info):
15
- COLOR_RED = "\033[91m"
16
15
  COLOR_GREEN = "\033[92m"
17
- COLOR_YELLOW = "\033[93m"
18
- COLOR_BLUE = "\033[94m"
19
16
  COLOR_RESET = "\033[0m" # 重置颜色
20
-
21
17
  logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
22
18
  logger(target + "\n "+"--" * 40)
23
19
  logger(type(s))
24
20
  logger(s)
25
21
  logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
22
+
23
+ from .prompt_craft import AsyncIntel, Intel, IntelNew
@@ -0,0 +1,3 @@
1
+ from .async_ import AsyncIntel
2
+ from .sync import Intel
3
+ from .new import IntelNew
@@ -0,0 +1,632 @@
1
+ # 测试1
2
+ from pro_craft.utils import extract_
3
+ from pro_craft.log import Log
4
+ from llmada.core import BianXieAdapter, ArkAdapter
5
+ from datetime import datetime
6
+ from enum import Enum
7
+ import functools
8
+ import json
9
+ import os
10
+ from pro_craft.database import Prompt, UseCase, PromptBase
11
+ from pro_craft.utils import create_session, create_async_session
12
+ from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine # 异步核心
13
+ from sqlalchemy import select, delete # 导入 select, delete 用于异步操作
14
+ import inspect
15
+ from datetime import datetime
16
+ from pro_craft.utils import extract_
17
+
18
+ import re
19
+
20
+ from sqlalchemy import select, desc
21
+ from json.decoder import JSONDecodeError
22
+
23
+ class IntellectRemoveFormatError(Exception):
24
+ pass
25
+
26
+
27
+ def slog(s, target: str = "target",logger = None):
28
+ COLOR_GREEN = "\033[92m"
29
+ COLOR_RESET = "\033[0m" # 重置颜色
30
+ logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
31
+ logger(target + "\n "+"--" * 40)
32
+ logger(type(s))
33
+ logger(s)
34
+ logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
35
+
36
+ def fix_broken_json_string(broken_json_str):
37
+ # 移除 BOM
38
+ broken_json_str = broken_json_str.lstrip('\ufeff')
39
+ # 移除大部分非法 ASCII 控制字符
40
+ broken_json_str = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f]', '', broken_json_str)
41
+
42
+ # 尝试找到 "content": " 和它对应的结束 "
43
+ # 这是一个挑战,因为中间有未转义的换行。
44
+ # 我们会寻找 "content": ",然后捕获从那以后直到最后一个 " 的所有内容,并替换其中的裸换行。
45
+
46
+ # 注意:这个正则假设 "content" 的值是最后一个键值对,并且直到字符串末尾的 " 才结束
47
+ # 并且假设其他字段都是合法的单行字符串
48
+ fixed_json_str = re.sub(
49
+ r'("content":\s*")(.+?)"\s*}', # 匹配 "content": ",然后捕获所有内容直到最后一个 " }
50
+ lambda m: m.group(1) + m.group(2).replace('\n', '\\n').replace('\r', '\\r') + '"\n}',
51
+ broken_json_str,
52
+ flags=re.DOTALL # 允许 . 匹配换行
53
+ )
54
+
55
+ # 修正可能的最后一行丢失的 }
56
+ if not fixed_json_str.strip().endswith('}'):
57
+ fixed_json_str += '\n}' # 补上结束的 }
58
+
59
+ return fixed_json_str
60
+
61
+
62
+ class IntellectType(Enum):
63
+ train = "train"
64
+ inference = "inference"
65
+ summary = "summary"
66
+
67
+ class AsyncIntel():
68
+ def __init__(self,
69
+ database_url = "",
70
+ model_name = "",
71
+ ):
72
+ database_url = database_url or os.getenv("database_url")
73
+ self.logger = logger or Log.logger
74
+ try:
75
+ assert database_url
76
+ assert 'aio' in database_url
77
+ except AssertionError as e:
78
+ slog(database_url,'database_url',logger=self.logger.warning)
79
+ raise IntellectRemoveFormatError(f"异步服务url必须提供, 且必须是aiomysql配置") from e
80
+
81
+ self.engine = create_async_engine(database_url, echo=False,
82
+ pool_size=10, # 连接池中保持的连接数
83
+ max_overflow=20, # 当pool_size不够时,允许临时创建的额外连接数
84
+ pool_recycle=3600, # 每小时回收一次连接
85
+ pool_pre_ping=True, # 使用前检查连接活性
86
+ pool_timeout=30 # 等待连接池中连接的最长时间(秒)
87
+ )
88
+
89
+
90
+ if model_name in ["gemini-2.5-flash-preview-05-20-nothinking",]:
91
+ self.llm = BianXieAdapter(model_name = model_name)
92
+ elif model_name in ["doubao-1-5-pro-256k-250115",]:
93
+ self.llm = ArkAdapter(model_name = model_name)
94
+ else:
95
+ print('Use BianXieAdapter')
96
+ self.llm = BianXieAdapter()
97
+
98
+ async def create_database(self):
99
+ async with self.engine.begin() as conn:
100
+ await conn.run_sync(PromptBase.metadata.create_all)
101
+
102
+ async def _get_latest_prompt_version(self,target_prompt_id,session):
103
+ """
104
+ 获取指定 prompt_id 的最新版本数据,通过创建时间判断。
105
+ """
106
+ stmt = select(Prompt).filter(
107
+ Prompt.prompt_id == target_prompt_id
108
+ ).order_by(
109
+ desc(Prompt.timestamp), # 使用 sqlalchemy.desc() 来指定降序
110
+ desc(Prompt.version) # 使用 sqlalchemy.desc() 来指定降序
111
+ )
112
+
113
+ result = await session.execute(stmt)
114
+ # 3. 从 Result 对象中获取第一个模型实例
115
+ # .scalars() 用于从结果行中获取第一个列的值(这里是Prompt对象本身)
116
+ # .first() 获取第一个结果
117
+ result = result.scalars().first()
118
+
119
+ return result
120
+
121
+ async def _get_specific_prompt_version(self,target_prompt_id, target_version,session):
122
+ """
123
+ 获取指定 prompt_id 和特定版本的数据。
124
+
125
+ Args:
126
+ target_prompt_id (str): 目标提示词的唯一标识符。
127
+ target_version (int): 目标提示词的版本号。
128
+ table_name (str): 存储提示词数据的数据库表名。
129
+ db_manager (DBManager): 数据库管理器的实例,用于执行查询。
130
+
131
+ Returns:
132
+ dict or None: 如果找到,返回包含 id, prompt_id, version, timestamp, prompt 字段的字典;
133
+ 否则返回 None。
134
+ """
135
+ stmt = select(Prompt).filter(
136
+ Prompt.prompt_id == target_prompt_id,
137
+ Prompt.version == target_version
138
+ )
139
+ result = await session.execute(stmt)
140
+
141
+ specific_prompt = result.scalars().one_or_none()
142
+
143
+ return specific_prompt
144
+
145
+ async def get_prompts_from_sql(self,
146
+ prompt_id: str,
147
+ version = None,
148
+ session = None) -> Prompt:
149
+ """
150
+ 从sql获取提示词
151
+ """
152
+ # 查看是否已经存在
153
+ if version:
154
+ prompts_obj = await self._get_specific_prompt_version(prompt_id,version,session=session)
155
+ if not prompts_obj:
156
+ prompts_obj = await self._get_latest_prompt_version(prompt_id,session = session)
157
+ else:
158
+ prompts_obj = await self._get_latest_prompt_version(prompt_id,session = session)
159
+ return prompts_obj
160
+
161
+
162
+ async def save_prompt_increment_version(self,
163
+ prompt_id: str,
164
+ new_prompt: str,
165
+ use_case:str = "",
166
+ action_type = "inference",
167
+ demand = "",
168
+ score = 60,
169
+ session = None):
170
+ """
171
+ 从sql保存提示词
172
+ input_data 指的是输入用例, 可以为空
173
+ """
174
+ # 查看是否已经存在
175
+ prompts_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
176
+
177
+ if prompts_obj:
178
+ # 如果存在版本加1
179
+ version_ori = prompts_obj.version
180
+ _, version = version_ori.split(".")
181
+ version = int(version)
182
+ version += 1
183
+ version_ = f"1.{version}"
184
+
185
+ else:
186
+ # 如果不存在版本为1.0
187
+ version_ = '1.0'
188
+
189
+ prompt1 = Prompt(prompt_id=prompt_id,
190
+ version=version_,
191
+ timestamp=datetime.now(),
192
+ prompt = new_prompt,
193
+ use_case = use_case,
194
+ action_type = action_type,
195
+ demand = demand,
196
+ score = score
197
+ )
198
+
199
+ session.add(prompt1)
200
+ await session.commit() # 提交事务,将数据写入数据库
201
+
202
+ async def save_use_case_by_sql(self,
203
+ prompt_id: str,
204
+ use_case:str = "",
205
+ output = "",
206
+ solution: str = "",
207
+ session = None
208
+ ):
209
+ """
210
+ 从sql保存提示词
211
+ """
212
+ use_case = UseCase(prompt_id=prompt_id,
213
+ use_case = use_case,
214
+ output = output,
215
+ solution = solution,
216
+ )
217
+
218
+ session.add(use_case)
219
+ await session.commit() # 提交事务,将数据写入数据库
220
+
221
+ async def summary_to_sql(
222
+ self,
223
+ prompt_id:str,
224
+ version = None,
225
+ prompt = "",
226
+ session = None
227
+ ):
228
+ """
229
+ 让大模型微调已经存在的 system_prompt
230
+ """
231
+ system_prompt_created_prompt = """
232
+ 很棒, 我们已经达成了某种默契, 我们之间合作无间, 但是, 可悲的是, 当我关闭这个窗口的时候, 你就会忘记我们之间经历的种种磨合, 这是可惜且心痛的, 所以你能否将目前这一套处理流程结晶成一个优质的prompt 这样, 我们下一次只要将prompt输入, 你就能想起我们今天的磨合过程,
233
+ 对了,我提示一点, 这个prompt的主角是你, 也就是说, 你在和未来的你对话, 你要教会未来的你今天这件事, 是否让我看懂到时其次
234
+
235
+ 只要输出提示词内容即可, 不需要任何的说明和解释
236
+ """
237
+ system_result = await self.llm.aproduct(prompt + system_prompt_created_prompt)
238
+
239
+ s_prompt = extract_(system_result,pattern_key=r"prompt")
240
+ chat_history = s_prompt or system_result
241
+ await self.save_prompt_increment_version(prompt_id,
242
+ new_prompt = chat_history,
243
+ input_data = " summary ",
244
+ session = session)
245
+
246
+ async def prompt_finetune_to_sql(
247
+ self,
248
+ prompt_id:str,
249
+ version = None,
250
+ demand: str = "",
251
+ session = None,
252
+ ):
253
+ """
254
+ 让大模型微调已经存在的 system_prompt
255
+ """
256
+ change_by_opinion_prompt = """
257
+ 你是一个资深AI提示词工程师,具备卓越的Prompt设计与优化能力。
258
+ 我将为你提供一段现有System Prompt。你的核心任务是基于这段Prompt进行修改,以实现我提出的特定目标和功能需求。
259
+ 请你绝对严格地遵循以下原则:
260
+ 极端最小化修改原则(核心):
261
+ 在满足所有功能需求的前提下,只进行我明确要求的修改。
262
+ 即使你认为有更“优化”、“清晰”或“简洁”的表达方式,只要我没有明确要求,也绝不允许进行任何未经指令的修改。
263
+ 目的就是尽可能地保留原有Prompt的字符和结构不变,除非我的功能要求必须改变。
264
+ 例如,如果我只要求你修改一个词,你就不应该修改整句话的结构。
265
+ 严格遵循我的指令:
266
+ 你必须精确地执行我提出的所有具体任务和要求。
267
+ 绝不允许自行添加任何超出指令范围的说明、角色扮演、约束条件或任何非我指令要求的内容。
268
+ 保持原有Prompt的风格和语调:
269
+ 尽可能地与现有Prompt的语言风格、正式程度和语调保持一致。
270
+ 不要改变不相关的句子或其表达方式。
271
+ 只提供修改后的Prompt:
272
+ 直接输出修改后的完整System Prompt文本。
273
+ 不要包含任何解释、说明或额外对话。
274
+ 在你开始之前,请务必确认你已理解并能绝对严格地遵守这些原则。任何未经明确指令的改动都将视为未能完成任务。
275
+
276
+ 现有System Prompt:
277
+ {old_system_prompt}
278
+
279
+ 功能需求:
280
+ {opinion}
281
+ """
282
+
283
+ prompt, _ = await self.get_prompts_from_sql(prompt_id = prompt_id,version = version)
284
+ if demand:
285
+ new_prompt = await self.llm.aproduct(
286
+ change_by_opinion_prompt.format(old_system_prompt=prompt, opinion=demand)
287
+ )
288
+ else:
289
+ new_prompt = prompt
290
+ await self.save_prompt_increment_version(prompt_id = prompt_id,
291
+ new_prompt = new_prompt,
292
+ input_data = " finetune ",
293
+ session = session)
294
+
295
+
296
+ async def push_action_order(self,demand : str,prompt_id: str,
297
+ action_type = 'train'):
298
+
299
+ """
300
+ 从sql保存提示词
301
+ 推一个train 状态到指定的位置
302
+
303
+ 将打算修改的状态推上数据库 # 1
304
+ """
305
+ # 查看是否已经存在
306
+ async with create_async_session(self.engine) as session:
307
+
308
+ latest_prompt = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
309
+
310
+ await self.save_prompt_increment_version(prompt_id=latest_prompt.prompt_id,
311
+ new_prompt = latest_prompt.prompt,
312
+ use_case = latest_prompt.use_case,
313
+ action_type=action_type,
314
+ demand=demand,
315
+ score=latest_prompt.score,
316
+ session=session
317
+ )
318
+
319
+ return "success"
320
+
321
+
322
+
323
+ async def intellect_remove(self,
324
+ input_data: dict | str,
325
+ output_format: str,
326
+ prompt_id: str,
327
+ version: str = None,
328
+ inference_save_case = True,
329
+ push_patch = False,
330
+ ):
331
+ if isinstance(input_data,dict):
332
+ input_ = json.dumps(input_data,ensure_ascii=False)
333
+ elif isinstance(input_data,str):
334
+ input_ = input_data
335
+
336
+ # 查数据库, 获取最新提示词对象
337
+ async with create_async_session(self.engine) as session:
338
+ result_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
339
+
340
+
341
+ if result_obj is None:
342
+ await self.save_prompt_increment_version(
343
+ prompt_id = prompt_id,
344
+ new_prompt = "做一些处理",
345
+ use_case = input_,
346
+ session = session
347
+ )
348
+ ai_result = await self.intellect_remove(input_data = input_data,
349
+ output_format = output_format,
350
+ prompt_id = prompt_id,
351
+ version = version,
352
+ inference_save_case = inference_save_case
353
+ )
354
+ return ai_result
355
+
356
+ prompt = result_obj.prompt
357
+ if result_obj.action_type == "inference":
358
+ # 直接推理即可
359
+ ai_result = await self.llm.aproduct(prompt + output_format + "\n-----input----\n" + input_)
360
+ if inference_save_case:
361
+ await self.save_use_case_by_sql(prompt_id,
362
+ use_case = input_,
363
+ output = ai_result,
364
+ solution = "备注/理想回复",
365
+ session = session,
366
+ )
367
+
368
+ elif result_obj.action_type == "train":
369
+ assert result_obj.demand # 如果type = train 且 demand 是空 则报错
370
+ # 则训练推广
371
+
372
+ # 新版本 默人修改会 inference 状态
373
+ chat_history = prompt
374
+ before_input = result_obj.use_case
375
+ demand = result_obj.demand
376
+
377
+
378
+ assert demand
379
+ # 注意, 这里的调整要求使用最初的那个输入, 最好一口气调整好
380
+ chat_history = prompt
381
+ if input_ == before_input: # 输入没变, 说明还是针对同一个输入进行讨论
382
+ # input_prompt = chat_history + "\nuser:" + demand
383
+ input_prompt = chat_history + "\nuser:" + demand + output_format
384
+ else:
385
+ # input_prompt = chat_history + "\nuser:" + demand + "\n-----input----\n" + input_
386
+ input_prompt = chat_history + "\nuser:" + demand + output_format + "\n-----input----\n" + input_
387
+
388
+ ai_result = await self.llm.aproduct(input_prompt)
389
+ chat_history = input_prompt + "\nassistant:\n" + ai_result # 用聊天记录作为完整提示词
390
+ await self.save_prompt_increment_version(prompt_id, chat_history,
391
+ use_case = input_,
392
+ session = session)
393
+
394
+ elif result_obj.action_type == "summary":
395
+
396
+ await self.summary_to_sql(prompt_id = prompt_id,
397
+ prompt = prompt,
398
+ session = session
399
+ )
400
+ ai_result = await self.llm.aproduct(prompt + output_format + "\n-----input----\n" + input_)
401
+
402
+ elif result_obj.action_type == "finetune":
403
+ demand = result_obj.demand
404
+
405
+ assert demand
406
+ await self.prompt_finetune_to_sql(prompt_id = prompt_id,
407
+ demand = demand,
408
+ session = session
409
+ )
410
+ ai_result = await self.llm.aproduct(prompt + output_format + "\n-----input----\n" + input_)
411
+ elif result_obj.action_type == "patch":
412
+
413
+ demand = result_obj.demand
414
+ assert demand
415
+
416
+ chat_history = prompt + demand
417
+ ai_result = await self.llm.aproduct(chat_history + output_format + "\n-----input----\n" + input_)
418
+
419
+ if push_patch:
420
+ self.save_prompt_increment_version(prompt_id, chat_history,
421
+ use_case = input_,
422
+ score = 60,
423
+ session = session)
424
+
425
+ else:
426
+ raise
427
+
428
+ return ai_result
429
+
430
+ async def intellect_stream_remove(self,
431
+ input_data: dict | str,
432
+ output_format: str,
433
+ prompt_id: str,
434
+ version: str = None,
435
+ inference_save_case = True,
436
+ push_patch = False,
437
+ ):
438
+ if isinstance(input_data,dict):
439
+ input_ = json.dumps(input_data,ensure_ascii=False)
440
+ elif isinstance(input_data,str):
441
+ input_ = input_data
442
+
443
+
444
+ # 查数据库, 获取最新提示词对象
445
+ with create_session(self.engine) as session:
446
+ result_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
447
+
448
+ '''
449
+ if result_obj is None:
450
+ await self.save_prompt_increment_version(
451
+ prompt_id = prompt_id,
452
+ new_prompt = "做一些处理",
453
+ use_case = input_,
454
+ session = session
455
+ )
456
+ ai_result = await self.intellect_stream_remove(input_data = input_data,
457
+ output_format = output_format,
458
+ prompt_id = prompt_id,
459
+ version = version,
460
+ inference_save_case = inference_save_case
461
+ )
462
+ return ai_result'''
463
+
464
+ prompt = result_obj.prompt
465
+ if result_obj.action_type == "inference":
466
+ # 直接推理即可
467
+
468
+ ai_generate_result = self.llm.aproduct_stream(prompt + output_format + "\n-----input----\n" + input_)
469
+ ai_result = ""
470
+ async for word in ai_generate_result:
471
+ ai_result += word
472
+ yield word
473
+ if inference_save_case:
474
+ await self.save_use_case_by_sql(prompt_id,
475
+ use_case = input_,
476
+ output = ai_result,
477
+ solution = "备注/理想回复",
478
+ session = session,
479
+ )
480
+
481
+ elif result_obj.action_type == "train":
482
+ assert result_obj.demand # 如果type = train 且 demand 是空 则报错
483
+ # 则训练推广
484
+
485
+ # 新版本 默人修改会 inference 状态
486
+ chat_history = prompt
487
+ before_input = result_obj.use_case
488
+ demand = result_obj.demand
489
+
490
+
491
+ assert demand
492
+ # 注意, 这里的调整要求使用最初的那个输入, 最好一口气调整好
493
+ chat_history = prompt
494
+ if input_ == before_input: # 输入没变, 说明还是针对同一个输入进行讨论
495
+ # input_prompt = chat_history + "\nuser:" + demand
496
+ input_prompt = chat_history + "\nuser:" + demand + output_format
497
+ else:
498
+ # input_prompt = chat_history + "\nuser:" + demand + "\n-----input----\n" + input_
499
+ input_prompt = chat_history + "\nuser:" + demand + output_format + "\n-----input----\n" + input_
500
+
501
+ ai_generate_result = self.llm.aproduct_stream(input_prompt)
502
+ ai_result = ""
503
+ async for word in ai_generate_result:
504
+ ai_result += word
505
+ yield word
506
+
507
+ chat_history = input_prompt + "\nassistant:\n" + ai_result # 用聊天记录作为完整提示词
508
+ await self.save_prompt_increment_version(prompt_id, chat_history,
509
+ use_case = input_,
510
+ session = session)
511
+
512
+ elif result_obj.action_type == "summary":
513
+
514
+ await self.summary_to_sql(prompt_id = prompt_id,
515
+ prompt = prompt,
516
+ session = session
517
+ )
518
+ input_prompt = prompt + output_format + "\n-----input----\n" + input_
519
+ ai_generate_result = self.llm.aproduct_stream(input_prompt)
520
+ ai_result = ""
521
+ async for word in ai_generate_result:
522
+ ai_result += word
523
+ yield word
524
+
525
+ elif result_obj.action_type == "finetune":
526
+ demand = result_obj.demand
527
+
528
+ assert demand
529
+ await self.prompt_finetune_to_sql(prompt_id = prompt_id,
530
+ demand = demand,
531
+ session = session
532
+ )
533
+ input_prompt = prompt + output_format + "\n-----input----\n" + input_
534
+ ai_generate_result = self.llm.aproduct_stream(input_prompt)
535
+ ai_result = ""
536
+ async for word in ai_generate_result:
537
+ ai_result += word
538
+ yield word
539
+
540
+ elif result_obj.action_type == "patch":
541
+
542
+ demand = result_obj.demand
543
+ assert demand
544
+
545
+ chat_history = prompt + demand
546
+ ai_generate_result = self.llm.aproduct_stream(chat_history + output_format + "\n-----input----\n" + input_)
547
+ ai_result = ""
548
+ async for word in ai_generate_result:
549
+ ai_result += word
550
+ yield word
551
+ if push_patch:
552
+ self.save_prompt_increment_version(prompt_id, chat_history,
553
+ use_case = input_,
554
+ score = 60,
555
+ session = session)
556
+ else:
557
+ raise
558
+
559
+ async def intellect_remove_format(self,
560
+ input_data: dict | str,
561
+ OutputFormat: object,
562
+ prompt_id: str,
563
+ ExtraFormats: list[object] = [],
564
+ version: str = None,
565
+ inference_save_case = True,
566
+ ):
567
+
568
+ base_format_prompt = """
569
+ 按照一定格式输出, 以便可以通过如下校验
570
+
571
+ 使用以下正则检出
572
+ "```json([\s\S]*?)```"
573
+ 使用以下方式验证
574
+ """
575
+ output_format = base_format_prompt + "\n".join([inspect.getsource(outputformat) for outputformat in ExtraFormats]) + inspect.getsource(OutputFormat)
576
+
577
+ ai_result = await self.intellect_remove(
578
+ input_data=input_data,
579
+ output_format=output_format,
580
+ prompt_id=prompt_id,
581
+ version=version,
582
+ inference_save_case=inference_save_case
583
+ )
584
+
585
+ try:
586
+
587
+ json_str = extract_(ai_result,r'json')
588
+ # json_str = fix_broken_json_string(json_str)
589
+ ai_result = json.loads(json_str)
590
+ OutputFormat(**ai_result)
591
+
592
+ except JSONDecodeError as e:
593
+ slog(ai_result,logger=self.logger.error)
594
+ try:
595
+ self.logger.error(f"尝试补救")
596
+ json_str = fix_broken_json_string(json_str)
597
+ ai_result = json.loads(json_str)
598
+ OutputFormat(**ai_result)
599
+
600
+ except JSONDecodeError as e:
601
+ raise IntellectRemoveFormatError(f"prompt_id: {prompt_id} 在生成后做json解析时报错") from e
602
+
603
+ return ai_result
604
+
605
+
606
+ def intellect_remove_warp(self,prompt_id: str):
607
+ def outer_packing(func):
608
+ @functools.wraps(func)
609
+ async def wrapper(*args, **kwargs):
610
+ # 修改逻辑
611
+ assert kwargs.get('input_data') # 要求一定要有data入参
612
+ input_data = kwargs.get('input_data')
613
+ assert kwargs.get('OutputFormat') # 要求一定要有data入参
614
+ OutputFormat = kwargs.get('OutputFormat')
615
+
616
+ if isinstance(input_data,dict):
617
+ input_ = output_ = json.dumps(input_data,ensure_ascii=False)
618
+ elif isinstance(input_data,str):
619
+ input_ = output_ = input_data
620
+
621
+ output_ = await self.intellect_remove_format(
622
+ input_data = input_data,
623
+ prompt_id = prompt_id,
624
+ OutputFormat = OutputFormat,
625
+ )
626
+
627
+ #######
628
+ kwargs.update({"input_data":output_})
629
+ result = await func(*args, **kwargs)
630
+ return result
631
+ return wrapper
632
+ return outer_packing