prefect-client 2.16.8__py3-none-any.whl → 2.16.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. prefect/_internal/compatibility/experimental.py +9 -8
  2. prefect/_internal/concurrency/api.py +23 -42
  3. prefect/_internal/concurrency/waiters.py +25 -22
  4. prefect/_internal/pydantic/__init__.py +12 -3
  5. prefect/_internal/pydantic/_base_model.py +7 -4
  6. prefect/_internal/pydantic/_compat.py +39 -453
  7. prefect/_internal/pydantic/_flags.py +2 -0
  8. prefect/_internal/pydantic/_types.py +8 -0
  9. prefect/_internal/pydantic/utilities/__init__.py +0 -0
  10. prefect/_internal/pydantic/utilities/model_construct.py +56 -0
  11. prefect/_internal/pydantic/utilities/model_copy.py +55 -0
  12. prefect/_internal/pydantic/utilities/model_dump.py +136 -0
  13. prefect/_internal/pydantic/utilities/model_dump_json.py +112 -0
  14. prefect/_internal/pydantic/utilities/model_fields.py +50 -0
  15. prefect/_internal/pydantic/utilities/model_json_schema.py +82 -0
  16. prefect/_internal/pydantic/utilities/model_rebuild.py +80 -0
  17. prefect/_internal/pydantic/utilities/model_validate.py +75 -0
  18. prefect/_internal/pydantic/utilities/model_validate_json.py +68 -0
  19. prefect/_internal/pydantic/utilities/type_adapter.py +71 -0
  20. prefect/_internal/schemas/bases.py +1 -17
  21. prefect/_internal/schemas/validators.py +425 -4
  22. prefect/blocks/kubernetes.py +7 -3
  23. prefect/client/cloud.py +1 -1
  24. prefect/client/orchestration.py +8 -8
  25. prefect/client/schemas/actions.py +348 -285
  26. prefect/client/schemas/objects.py +47 -126
  27. prefect/client/schemas/responses.py +231 -57
  28. prefect/concurrency/events.py +2 -2
  29. prefect/context.py +2 -1
  30. prefect/deployments/base.py +4 -3
  31. prefect/deployments/runner.py +7 -25
  32. prefect/deprecated/packaging/base.py +5 -6
  33. prefect/deprecated/packaging/docker.py +19 -25
  34. prefect/deprecated/packaging/file.py +10 -5
  35. prefect/deprecated/packaging/orion.py +9 -4
  36. prefect/deprecated/packaging/serializers.py +8 -58
  37. prefect/engine.py +23 -22
  38. prefect/events/actions.py +16 -1
  39. prefect/events/related.py +4 -4
  40. prefect/events/schemas/automations.py +13 -2
  41. prefect/events/schemas/deployment_triggers.py +73 -5
  42. prefect/events/schemas/events.py +1 -1
  43. prefect/flows.py +3 -0
  44. prefect/infrastructure/provisioners/ecs.py +1 -0
  45. prefect/logging/configuration.py +2 -2
  46. prefect/pydantic/__init__.py +48 -2
  47. prefect/pydantic/main.py +2 -2
  48. prefect/serializers.py +6 -31
  49. prefect/settings.py +39 -16
  50. prefect/software/python.py +3 -5
  51. prefect/utilities/callables.py +1 -1
  52. prefect/utilities/collections.py +2 -1
  53. prefect/utilities/schema_tools/validation.py +2 -2
  54. prefect/workers/base.py +19 -10
  55. prefect/workers/block.py +3 -7
  56. prefect/workers/process.py +2 -5
  57. {prefect_client-2.16.8.dist-info → prefect_client-2.16.9.dist-info}/METADATA +3 -2
  58. {prefect_client-2.16.8.dist-info → prefect_client-2.16.9.dist-info}/RECORD +61 -50
  59. prefect/_internal/schemas/transformations.py +0 -106
  60. {prefect_client-2.16.8.dist-info → prefect_client-2.16.9.dist-info}/LICENSE +0 -0
  61. {prefect_client-2.16.8.dist-info → prefect_client-2.16.9.dist-info}/WHEEL +0 -0
  62. {prefect_client-2.16.8.dist-info → prefect_client-2.16.9.dist-info}/top_level.txt +0 -0
@@ -1,320 +1,15 @@
1
- from typing import Any, Dict, Generic, Literal, Optional, Set, Type, TypeVar, Union
2
-
3
- from typing_extensions import Self, TypeAlias
4
-
5
- from prefect._internal.pydantic._flags import (
6
- HAS_PYDANTIC_V2,
7
- USE_PYDANTIC_V2,
8
- )
9
- from prefect.logging.loggers import get_logger
10
-
11
1
  from ._base_model import BaseModel as PydanticBaseModel
12
-
13
- IncEx: TypeAlias = "Union[Set[int], Set[str], Dict[int, Any], Dict[str, Any], None]"
14
- logger = get_logger("prefect._internal.pydantic")
15
-
16
- T = TypeVar("T")
17
- B = TypeVar("B", bound=PydanticBaseModel)
18
-
19
- if HAS_PYDANTIC_V2:
20
- from pydantic import (
21
- TypeAdapter as BaseTypeAdapter,
22
- )
23
- from pydantic import (
24
- parse_obj_as, # type: ignore
25
- )
26
- from pydantic.json_schema import GenerateJsonSchema # type: ignore
27
- else:
28
- from pydantic import parse_obj_as # type: ignore
29
-
30
- if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
31
- TypeAdapter = BaseTypeAdapter # type: ignore
32
-
33
- else:
34
-
35
- class TypeAdapter(Generic[T]):
36
- def __init__(self, type_: Union[T, Type[T]]) -> None:
37
- self.type_ = type_
38
-
39
- def validate_python(
40
- self,
41
- __object: Any,
42
- /,
43
- *,
44
- strict: Optional[bool] = None,
45
- from_attributes: Optional[bool] = None,
46
- context: Optional[Dict[str, Any]] = None,
47
- ) -> Any:
48
- return parse_obj_as(self.type_, __object) # type: ignore
49
-
50
-
51
- # BaseModel methods and definitions
52
-
53
-
54
- def model_copy(
55
- model_instance: PydanticBaseModel,
56
- *,
57
- update: Optional[Dict[str, Any]] = None,
58
- deep: bool = False,
59
- ) -> PydanticBaseModel:
60
- """Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#model_copy
61
-
62
- Returns a copy of the model.
63
-
64
- Args:
65
- update: Values to change/add in the new model. Note: the data is not validated
66
- before creating the new model. You should trust this data.
67
- deep: Set to `True` to make a deep copy of the model.
68
-
69
- Returns:
70
- New model instance.
71
- """
72
- if not hasattr(model_instance, "copy") and not hasattr(
73
- model_instance, "model_copy"
74
- ):
75
- raise TypeError("Expected a Pydantic model instance")
76
-
77
- if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
78
- return model_instance.model_copy(update=update, deep=deep)
79
-
80
- return model_instance.copy(update=update, deep=deep) # type: ignore
81
-
82
-
83
- def model_dump_json(
84
- model_instance: PydanticBaseModel,
85
- *,
86
- indent: Optional[int] = None,
87
- include: IncEx = None,
88
- exclude: IncEx = None,
89
- by_alias: bool = False,
90
- exclude_unset: bool = False,
91
- exclude_defaults: bool = False,
92
- exclude_none: bool = False,
93
- round_trip: bool = False,
94
- warnings: bool = True,
95
- ) -> str:
96
- """
97
- Generate a JSON representation of the model, optionally specifying which fields to include or exclude.
98
-
99
- Args:
100
- indent: If provided, the number of spaces to indent the JSON output.
101
- include: A list of fields to include in the output.
102
- exclude: A list of fields to exclude from the output.
103
- by_alias: Whether to use the field's alias in the dictionary key if defined.
104
- exclude_unset: Whether to exclude fields that have not been explicitly set.
105
- exclude_defaults: Whether to exclude fields that are set to their default value.
106
- exclude_none: Whether to exclude fields that have a value of `None`.
107
- round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
108
- warnings: Whether to log warnings when invalid fields are encountered.
109
-
110
- Returns:
111
- A JSON representation of the model.
112
- """
113
- if not hasattr(model_instance, "json") and not hasattr(
114
- model_instance, "model_dump_json"
115
- ):
116
- raise TypeError("Expected a Pydantic model instance")
117
-
118
- if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
119
- return model_instance.model_dump_json(
120
- indent=indent,
121
- include=include,
122
- exclude=exclude,
123
- by_alias=by_alias,
124
- exclude_unset=exclude_unset,
125
- exclude_defaults=exclude_defaults,
126
- exclude_none=exclude_none,
127
- round_trip=round_trip,
128
- warnings=warnings,
129
- )
130
-
131
- return model_instance.json( # type: ignore
132
- include=include,
133
- exclude=exclude,
134
- by_alias=by_alias,
135
- exclude_unset=exclude_unset,
136
- exclude_defaults=exclude_defaults,
137
- exclude_none=exclude_none,
138
- )
139
-
140
-
141
- def model_dump(
142
- model_instance: PydanticBaseModel,
143
- *,
144
- mode: Union[Literal["json", "python"], str] = "python",
145
- include: IncEx = None,
146
- exclude: IncEx = None,
147
- by_alias: bool = False,
148
- exclude_unset: bool = False,
149
- exclude_defaults: bool = False,
150
- exclude_none: bool = False,
151
- round_trip: bool = False,
152
- warnings: bool = True,
153
- ) -> Dict[str, Any]:
154
- """
155
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
156
-
157
- Args:
158
- mode: The mode in which `to_python` should run.
159
- If mode is 'json', the output will only contain JSON serializable types.
160
- If mode is 'python', the output may contain non-JSON-serializable Python objects.
161
- include: A list of fields to include in the output.
162
- exclude: A list of fields to exclude from the output.
163
- by_alias: Whether to use the field's alias in the dictionary key if defined.
164
- exclude_unset: Whether to exclude fields that have not been explicitly set.
165
- exclude_defaults: Whether to exclude fields that are set to their default value.
166
- exclude_none: Whether to exclude fields that have a value of `None`.
167
- round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
168
- warnings: Whether to log warnings when invalid fields are encountered.
169
-
170
- Returns:
171
- A dictionary representation of the model.
172
- """
173
- if not hasattr(model_instance, "dict") and not hasattr(
174
- model_instance, "model_dump"
175
- ):
176
- raise TypeError("Expected a Pydantic model instance")
177
-
178
- if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
179
- return model_instance.model_dump(
180
- mode=mode,
181
- include=include,
182
- exclude=exclude,
183
- by_alias=by_alias,
184
- exclude_unset=exclude_unset,
185
- exclude_defaults=exclude_defaults,
186
- exclude_none=exclude_none,
187
- round_trip=round_trip,
188
- warnings=warnings,
189
- )
190
-
191
- return getattr(model_instance, "dict")(
192
- include=include,
193
- exclude=exclude,
194
- by_alias=by_alias,
195
- exclude_unset=exclude_unset,
196
- exclude_defaults=exclude_defaults,
197
- exclude_none=exclude_none,
198
- )
199
-
200
-
201
- DEFAULT_REF_TEMPLATE = "#/$defs/{model}"
202
- JsonSchemaMode = Literal["validation", "serialization"]
203
-
204
-
205
- def model_json_schema(
206
- model: Type[PydanticBaseModel],
207
- *,
208
- by_alias: bool = True,
209
- ref_template: str = DEFAULT_REF_TEMPLATE,
210
- schema_generator: Any = None,
211
- mode: JsonSchemaMode = "validation",
212
- ) -> Dict[str, Any]:
213
- """
214
- Generates a JSON schema for a model class.
215
-
216
- Parameters
217
- ----------
218
- by_alias : bool, optional
219
- Whether to use attribute aliases or not, by default True
220
- ref_template : str, optional
221
- The reference template, by default DEFAULT_REF_TEMPLATE
222
- schema_generator : type[GenerateEmptySchemaForUserClasses], optional
223
- To override the logic used to generate the JSON schema, as a subclass of GenerateEmptySchemaForUserClasses with your desired modifications, by default GenerateEmptySchemaForUserClasses
224
- mode : JsonSchemaMode, optional
225
- The mode in which to generate the schema, by default 'validation'
226
-
227
- Returns
228
- -------
229
- dict[str, Any]
230
- The JSON schema for the given model class.
231
- """
232
- if not hasattr(model, "schema") and not hasattr(model, "model_json_schema"):
233
- raise TypeError("Expected a Pydantic model type")
234
-
235
- if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
236
- schema_generator = GenerateJsonSchema # type: ignore
237
- return model.model_json_schema(
238
- by_alias=by_alias,
239
- ref_template=ref_template,
240
- schema_generator=schema_generator,
241
- mode=mode,
242
- )
243
-
244
- return model.schema( # type: ignore
245
- by_alias=by_alias,
246
- ref_template=ref_template,
247
- )
248
-
249
-
250
- def model_validate(
251
- model: Type[B],
252
- obj: Any,
253
- *,
254
- strict: Optional[bool] = False,
255
- from_attributes: Optional[bool] = False,
256
- context: Optional[Dict[str, Any]] = None,
257
- ) -> B:
258
- """Validate a pydantic model instance.
259
-
260
- Args:
261
- obj: The object to validate.
262
- strict: Whether to enforce types strictly.
263
- from_attributes: Whether to extract data from object attributes.
264
- context: Additional context to pass to the validator.
265
-
266
- Raises:
267
- ValidationError: If the object could not be validated.
268
-
269
- Returns:
270
- The validated model instance.
271
- """
272
- if not hasattr(model, "parse_obj") and not hasattr(model, "model_validate"):
273
- raise TypeError("Expected a Pydantic model type")
274
-
275
- if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
276
- return model.model_validate(
277
- obj=obj,
278
- strict=strict,
279
- from_attributes=from_attributes,
280
- context=context,
281
- )
282
-
283
- return getattr(model, "parse_obj")(obj)
284
-
285
-
286
- def model_validate_json(
287
- model: Type[B],
288
- json_data: Union[str, bytes, bytearray],
289
- *,
290
- strict: Optional[bool] = False,
291
- context: Optional[Dict[str, Any]] = None,
292
- ) -> B:
293
- """Validate the given JSON data against the Pydantic model.
294
-
295
- Args:
296
- json_data: The JSON data to validate.
297
- strict: Whether to enforce types strictly.
298
- context: Extra variables to pass to the validator.
299
-
300
- Returns:
301
- The validated Pydantic model.
302
-
303
- Raises:
304
- ValueError: If `json_data` is not a JSON string.
305
- """
306
- if not hasattr(model, "parse_raw") and not hasattr(model, "model_validate_json"):
307
- raise TypeError("Expected a Pydantic model type")
308
-
309
- if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
310
- return model.model_validate_json(
311
- json_data=json_data,
312
- strict=strict,
313
- context=context,
314
- )
315
-
316
- return getattr(model, "parse_raw")(json_data)
317
-
2
+ from ._base_model import Field, FieldInfo
3
+ from ._flags import HAS_PYDANTIC_V2, USE_PYDANTIC_V2
4
+ from .utilities.model_construct import ModelConstructMixin, model_construct
5
+ from .utilities.model_copy import ModelCopyMixin, model_copy
6
+ from .utilities.model_dump import ModelDumpMixin, model_dump
7
+ from .utilities.model_dump_json import ModelDumpJsonMixin, model_dump_json
8
+ from .utilities.model_fields import ModelFieldMixin
9
+ from .utilities.model_json_schema import ModelJsonSchemaMixin, model_json_schema
10
+ from .utilities.model_validate import ModelValidateMixin, model_validate
11
+ from .utilities.model_validate_json import ModelValidateJsonMixin, model_validate_json
12
+ from .utilities.type_adapter import TypeAdapter, validate_python
318
13
 
319
14
  if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
320
15
  # In this case, there's no functionality to add, so we just alias the Pydantic v2 BaseModel
@@ -323,142 +18,33 @@ if HAS_PYDANTIC_V2 and USE_PYDANTIC_V2:
323
18
 
324
19
  else:
325
20
  # In this case, we're working with a Pydantic v1 model, so we need to add Pydantic v2 functionality
326
- class BaseModel(PydanticBaseModel):
327
- def model_dump(
328
- self: "BaseModel",
329
- *,
330
- mode: str = "python",
331
- include: IncEx = None,
332
- exclude: IncEx = None,
333
- by_alias: bool = False,
334
- exclude_unset: bool = False,
335
- exclude_defaults: bool = False,
336
- exclude_none: bool = False,
337
- round_trip: bool = False,
338
- warnings: bool = True,
339
- ) -> Dict[str, Any]:
340
- return model_dump(
341
- self,
342
- mode=mode,
343
- include=include,
344
- exclude=exclude,
345
- by_alias=by_alias,
346
- exclude_unset=exclude_unset,
347
- exclude_defaults=exclude_defaults,
348
- exclude_none=exclude_none,
349
- round_trip=round_trip,
350
- warnings=warnings,
351
- )
352
-
353
- def model_dump_json(
354
- self,
355
- *,
356
- indent: Optional[int] = None,
357
- include: Optional[IncEx] = None,
358
- exclude: Optional[IncEx] = None,
359
- by_alias: bool = False,
360
- exclude_unset: bool = False,
361
- exclude_defaults: bool = False,
362
- exclude_none: bool = False,
363
- round_trip: bool = False,
364
- warnings: bool = True,
365
- ) -> str:
366
- return model_dump_json(
367
- model_instance=self,
368
- indent=indent,
369
- include=include,
370
- exclude=exclude,
371
- by_alias=by_alias,
372
- exclude_unset=exclude_unset,
373
- exclude_defaults=exclude_defaults,
374
- exclude_none=exclude_none,
375
- round_trip=round_trip,
376
- warnings=warnings,
377
- )
378
-
379
- def model_copy(
380
- self: "Self",
381
- *,
382
- update: Optional[Dict[str, Any]] = None,
383
- deep: bool = False,
384
- ) -> "Self":
385
- return super().model_copy(update=update, deep=deep)
386
-
387
- @classmethod
388
- def model_json_schema(
389
- cls,
390
- by_alias: bool = True,
391
- ref_template: str = DEFAULT_REF_TEMPLATE,
392
- schema_generator: Any = None,
393
- mode: JsonSchemaMode = "validation",
394
- ) -> Dict[str, Any]:
395
- return model_json_schema(
396
- cls,
397
- by_alias=by_alias,
398
- ref_template=ref_template,
399
- schema_generator=schema_generator,
400
- mode=mode,
401
- )
402
-
403
- @classmethod
404
- def model_validate(
405
- cls: Type["Self"],
406
- obj: Any,
407
- *,
408
- strict: Optional[bool] = False,
409
- from_attributes: Optional[bool] = False,
410
- context: Optional[Dict[str, Any]] = None,
411
- ) -> "Self":
412
- return model_validate(
413
- cls,
414
- obj,
415
- strict=strict,
416
- from_attributes=from_attributes,
417
- context=context,
418
- )
419
-
420
- @classmethod
421
- def model_validate_json(
422
- cls: Type["Self"],
423
- json_data: Union[str, bytes, bytearray],
424
- *,
425
- strict: Optional[bool] = False,
426
- context: Optional[Dict[str, Any]] = None,
427
- ) -> "Self":
428
- return model_validate_json(
429
- cls,
430
- json_data,
431
- strict=strict,
432
- context=context,
433
- )
434
-
435
-
436
- # TypeAdapter methods and definitions
437
-
438
-
439
- def validate_python(
440
- type_: Union[T, Type[T]],
441
- __object: Any,
442
- /,
443
- *,
444
- strict: Optional[bool] = None,
445
- from_attributes: Optional[bool] = None,
446
- context: Optional[Dict[str, Any]] = None,
447
- ) -> T:
448
- """Validate a Python object against the model.
449
-
450
- Args:
451
- type_: The type to validate against.
452
- __object: The Python object to validate against the model.
453
- strict: Whether to strictly check types.
454
- from_attributes: Whether to extract data from object attributes.
455
- context: Additional context to pass to the validator.
21
+ # TODO: Find a smarter way of attaching these methods so that they don't need to be redefined
22
+
23
+ class BaseModel(
24
+ ModelConstructMixin,
25
+ ModelCopyMixin,
26
+ ModelDumpMixin,
27
+ ModelDumpJsonMixin,
28
+ ModelJsonSchemaMixin,
29
+ ModelValidateMixin,
30
+ ModelValidateJsonMixin,
31
+ ModelFieldMixin,
32
+ PydanticBaseModel,
33
+ ):
34
+ pass
456
35
 
457
- !!! note
458
- When using `TypeAdapter` with a Pydantic `dataclass`, the use of the `from_attributes`
459
- argument is not supported.
460
36
 
461
- Returns:
462
- The validated object.
463
- """
464
- return TypeAdapter(type_).validate_python(__object)
37
+ __all__ = [
38
+ "model_construct",
39
+ "model_copy",
40
+ "model_dump",
41
+ "model_dump_json",
42
+ "model_json_schema",
43
+ "model_validate",
44
+ "model_validate_json",
45
+ "TypeAdapter",
46
+ "validate_python",
47
+ "BaseModel",
48
+ "Field",
49
+ "FieldInfo",
50
+ ]
@@ -11,5 +11,7 @@ USE_PYDANTIC_V2 = os.environ.get(
11
11
  "PREFECT_EXPERIMENTAL_ENABLE_PYDANTIC_V2_INTERNALS", False
12
12
  ) in {"1", "true", "True"}
13
13
 
14
+ USE_V2_MODELS = HAS_PYDANTIC_V2 and USE_PYDANTIC_V2
15
+
14
16
  # Set to True if Pydantic v2 is present but not enabled, indicating deprecation warnings may occur.
15
17
  EXPECT_DEPRECATION_WARNINGS = HAS_PYDANTIC_V2 and not USE_PYDANTIC_V2
@@ -0,0 +1,8 @@
1
+ from typing import Any, Dict, Literal, Set, Union
2
+
3
+ from typing_extensions import TypeAlias
4
+
5
+ IncEx: TypeAlias = "Union[Set[int], Set[str], Dict[int, Any], Dict[str, Any], None]"
6
+
7
+ DEFAULT_REF_TEMPLATE = "#/$defs/{model}"
8
+ JsonSchemaMode = Literal["validation", "serialization"]
File without changes
@@ -0,0 +1,56 @@
1
+ import typing
2
+
3
+ from typing_extensions import Self
4
+
5
+ from prefect._internal.pydantic._base_model import BaseModel
6
+ from prefect._internal.pydantic._flags import USE_V2_MODELS
7
+
8
+ T = typing.TypeVar("T", bound="BaseModel")
9
+
10
+
11
+ def model_construct(
12
+ model: typing.Type[T],
13
+ _fields_set: typing.Optional[typing.Set[str]] = None,
14
+ **values: typing.Any,
15
+ ) -> T:
16
+ """Creates a new instance of the `model` class with validated data.
17
+
18
+ Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data.
19
+ Default values are respected, but no other validation is performed.
20
+
21
+ Args:
22
+ _fields_set: The set of field names accepted for the Model instance.
23
+ values: Trusted or pre-validated data dictionary.
24
+
25
+ Returns:
26
+ A new instance of the `model` class with validated data.
27
+ """
28
+ if USE_V2_MODELS:
29
+ return model.model_construct(_fields_set=_fields_set, **values)
30
+ else:
31
+ return getattr(model, "construct")(**values)
32
+
33
+
34
+ class ModelConstructMixin(BaseModel):
35
+ @classmethod
36
+ def model_construct(
37
+ cls: typing.Type["Self"],
38
+ _fields_set: typing.Optional[typing.Set[str]] = None,
39
+ **values: typing.Any,
40
+ ) -> "Self":
41
+ """Creates a new instance of the `model` class with validated data.
42
+
43
+ Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data.
44
+ Default values are respected, but no other validation is performed.
45
+
46
+ Args:
47
+ _fields_set: The set of field names accepted for the Model instance.
48
+ values: Trusted or pre-validated data dictionary.
49
+
50
+ Returns:
51
+ A new instance of the `model` class with validated data.
52
+ """
53
+ return model_construct(cls, _fields_set=_fields_set, **values)
54
+
55
+
56
+ __all__ = ["model_construct", "ModelConstructMixin"]
@@ -0,0 +1,55 @@
1
+ import typing
2
+
3
+ from typing_extensions import Self
4
+
5
+ from prefect._internal.pydantic._base_model import BaseModel
6
+ from prefect._internal.pydantic._flags import USE_V2_MODELS
7
+
8
+ T = typing.TypeVar("T", bound="BaseModel")
9
+
10
+
11
+ def model_copy( # type: ignore[no-redef]
12
+ model_instance: T,
13
+ *,
14
+ update: typing.Optional[typing.Dict[str, typing.Any]] = None,
15
+ deep: bool = False,
16
+ ) -> T:
17
+ """
18
+ Returns a copy of the model.
19
+
20
+ Args:
21
+ update: Values to change/add in the new model. Note: the data is not validated
22
+ before creating the new model. You should trust this data.
23
+ deep: Set to `True` to make a deep copy of the model.
24
+
25
+ Returns:
26
+ New model instance.
27
+ """
28
+ if USE_V2_MODELS:
29
+ return model_instance.model_copy(update=update, deep=deep)
30
+ else:
31
+ return getattr(model_instance, "copy")(update=update, deep=deep)
32
+
33
+
34
+ class ModelCopyMixin(BaseModel):
35
+ def model_copy(
36
+ self: "Self",
37
+ *,
38
+ update: typing.Optional[typing.Dict[str, typing.Any]] = None,
39
+ deep: bool = False,
40
+ ) -> "Self":
41
+ """
42
+ Returns a copy of the model.
43
+
44
+ Args:
45
+ update: Values to change/add in the new model. Note: the data is not validated
46
+ before creating the new model. You should trust this data.
47
+ deep: Set to `True` to make a deep copy of the model.
48
+
49
+ Returns:
50
+ New model instance.
51
+ """
52
+ return model_copy(self, update=update, deep=deep)
53
+
54
+
55
+ __all__ = ["model_copy"]