prediction-market-agent-tooling 0.56.0.dev1860__py3-none-any.whl → 0.56.0.dev1861__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -49,8 +49,7 @@ def db_cache(
49
49
  api_keys: APIKeys | None = None,
50
50
  ignore_args: Sequence[str] | None = None,
51
51
  ignore_arg_types: Sequence[type] | None = None,
52
- ) -> Callable[[FunctionT], FunctionT]:
53
- ...
52
+ ) -> Callable[[FunctionT], FunctionT]: ...
54
53
 
55
54
 
56
55
  @overload
@@ -62,8 +61,7 @@ def db_cache(
62
61
  api_keys: APIKeys | None = None,
63
62
  ignore_args: Sequence[str] | None = None,
64
63
  ignore_arg_types: Sequence[type] | None = None,
65
- ) -> FunctionT:
66
- ...
64
+ ) -> FunctionT: ...
67
65
 
68
66
 
69
67
  def db_cache(
@@ -190,7 +188,7 @@ def db_cache(
190
188
  if is_pydantic_model:
191
189
  # If the output contains any Pydantic models, we need to initialise them.
192
190
  try:
193
- return convert_return_type_to_pydantic(
191
+ return convert_cached_output_to_pydantic(
194
192
  return_type, cached_result.result
195
193
  )
196
194
  except ValueError as e:
@@ -314,7 +312,7 @@ def convert_pydantic_to_dict(value: Any) -> Any:
314
312
  return value
315
313
 
316
314
 
317
- def convert_return_type_to_pydantic(return_type: Any, data: Any) -> Any:
315
+ def convert_cached_output_to_pydantic(return_type: Any, data: Any) -> Any:
318
316
  """
319
317
  Used to initialize Pydantic models from anything cached that was originally a Pydantic model in the output. Including models in nested structures.
320
318
  """
@@ -330,7 +328,7 @@ def convert_return_type_to_pydantic(return_type: Any, data: Any) -> Any:
330
328
  # Convert the dictionary to a Pydantic model
331
329
  return return_type(
332
330
  **{
333
- k: convert_return_type_to_pydantic(
331
+ k: convert_cached_output_to_pydantic(
334
332
  getattr(return_type, k, None), v
335
333
  )
336
334
  for k, v in data.items()
@@ -343,9 +341,9 @@ def convert_return_type_to_pydantic(return_type: Any, data: Any) -> Any:
343
341
  elif origin is dict:
344
342
  key_type, value_type = args
345
343
  return {
346
- convert_return_type_to_pydantic(
344
+ convert_cached_output_to_pydantic(
347
345
  key_type, k
348
- ): convert_return_type_to_pydantic(value_type, v)
346
+ ): convert_cached_output_to_pydantic(value_type, v)
349
347
  for k, v in data.items()
350
348
  }
351
349
  else:
@@ -357,7 +355,7 @@ def convert_return_type_to_pydantic(return_type: Any, data: Any) -> Any:
357
355
  if origin in {list, tuple}:
358
356
  item_type = args[0]
359
357
  converted_items = [
360
- convert_return_type_to_pydantic(item_type, item) for item in data
358
+ convert_cached_output_to_pydantic(item_type, item) for item in data
361
359
  ]
362
360
  return type(data)(converted_items)
363
361
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: prediction-market-agent-tooling
3
- Version: 0.56.0.dev1860
3
+ Version: 0.56.0.dev1861
4
4
  Summary: Tools to benchmark, deploy and monitor prediction market agents.
5
5
  Author: Gnosis
6
6
  Requires-Python: >=3.10,<3.12
@@ -69,7 +69,7 @@ prediction_market_agent_tooling/tools/betting_strategies/market_moving.py,sha256
69
69
  prediction_market_agent_tooling/tools/betting_strategies/minimum_bet_to_win.py,sha256=-FUSuQQgjcWSSnoFxnlAyTeilY6raJABJVM2QKkFqAY,438
70
70
  prediction_market_agent_tooling/tools/betting_strategies/stretch_bet_between.py,sha256=THMXwFlskvzbjnX_OiYtDSzI8XVFyULWfP2525_9UGc,429
71
71
  prediction_market_agent_tooling/tools/betting_strategies/utils.py,sha256=kpIb-ci67Vc1Yqqaa-_S4OUkbhWSIYog4_Iwp69HU_k,97
72
- prediction_market_agent_tooling/tools/caches/db_cache.py,sha256=QkhtNTs7sjwBhBJpkF_dWO5UZBE8Z1FT03WXskpakQg,13847
72
+ prediction_market_agent_tooling/tools/caches/db_cache.py,sha256=AEU-DQ19sS3ZZJKljM9ydRoa07duFhTTzG-vadYRsJg,13851
73
73
  prediction_market_agent_tooling/tools/caches/inmemory_cache.py,sha256=tGHHd9HCiE_hCCtPtloHZQdDfBuiow9YsqJNYi2Tx_0,499
74
74
  prediction_market_agent_tooling/tools/contract.py,sha256=s3yo8IbXTcvAJcPfLM0_NbgaEsWwLsPmyVnOgyjq_xI,20919
75
75
  prediction_market_agent_tooling/tools/costs.py,sha256=EaAJ7v9laD4VEV3d8B44M4u3_oEO_H16jRVCdoZ93Uw,954
@@ -97,8 +97,8 @@ prediction_market_agent_tooling/tools/tavily/tavily_models.py,sha256=5ldQs1pZe6u
97
97
  prediction_market_agent_tooling/tools/tavily/tavily_search.py,sha256=Kw2mXNkMTYTEe1MBSTqhQmLoeXtgb6CkmHlcAJvhtqE,3809
98
98
  prediction_market_agent_tooling/tools/utils.py,sha256=W-9SqeCKd51BYMRhDjYPQ7lfNO_zE9EvYpmu2r5WXGA,7163
99
99
  prediction_market_agent_tooling/tools/web3_utils.py,sha256=44W8siSLNQxeib98bbwAe7V5C609NHNlUuxwuWIRDiY,11838
100
- prediction_market_agent_tooling-0.56.0.dev1860.dist-info/LICENSE,sha256=6or154nLLU6bELzjh0mCreFjt0m2v72zLi3yHE0QbeE,7650
101
- prediction_market_agent_tooling-0.56.0.dev1860.dist-info/METADATA,sha256=D5iUZsQ2RbKbhyVvKEtc9A40BfZTJaJWoEqjLreNF_Q,8114
102
- prediction_market_agent_tooling-0.56.0.dev1860.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
103
- prediction_market_agent_tooling-0.56.0.dev1860.dist-info/entry_points.txt,sha256=m8PukHbeH5g0IAAmOf_1Ahm-sGAMdhSSRQmwtpmi2s8,81
104
- prediction_market_agent_tooling-0.56.0.dev1860.dist-info/RECORD,,
100
+ prediction_market_agent_tooling-0.56.0.dev1861.dist-info/LICENSE,sha256=6or154nLLU6bELzjh0mCreFjt0m2v72zLi3yHE0QbeE,7650
101
+ prediction_market_agent_tooling-0.56.0.dev1861.dist-info/METADATA,sha256=QYG8yvGAGGGW0yESTAYImxorjN1Js8wV3U-20MD2dw8,8114
102
+ prediction_market_agent_tooling-0.56.0.dev1861.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
103
+ prediction_market_agent_tooling-0.56.0.dev1861.dist-info/entry_points.txt,sha256=m8PukHbeH5g0IAAmOf_1Ahm-sGAMdhSSRQmwtpmi2s8,81
104
+ prediction_market_agent_tooling-0.56.0.dev1861.dist-info/RECORD,,