prediction-market-agent-tooling 0.33.0__py3-none-any.whl → 0.35.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -79,7 +79,7 @@ class ManifoldMarket(BaseModel):
79
79
  """
80
80
  Clip the timestamp to the maximum valid timestamp.
81
81
  """
82
- max_timestamp = (datetime.max - timedelta(hours=1)).timestamp()
82
+ max_timestamp = (datetime.max - timedelta(days=1)).timestamp()
83
83
  value = int(min(value / 1000, max_timestamp))
84
84
  return datetime.fromtimestamp(value)
85
85
 
@@ -10,6 +10,7 @@ from prediction_market_agent_tooling.gtypes import (
10
10
  ChecksumAddress,
11
11
  HexAddress,
12
12
  HexStr,
13
+ OmenOutcomeToken,
13
14
  OutcomeStr,
14
15
  Probability,
15
16
  Wei,
@@ -54,7 +55,10 @@ from prediction_market_agent_tooling.markets.omen.omen_subgraph_handler import (
54
55
  )
55
56
  from prediction_market_agent_tooling.tools.balances import get_balances
56
57
  from prediction_market_agent_tooling.tools.hexbytes_custom import HexBytes
57
- from prediction_market_agent_tooling.tools.utils import check_not_none
58
+ from prediction_market_agent_tooling.tools.utils import (
59
+ calculate_sell_amount_in_collateral,
60
+ check_not_none,
61
+ )
58
62
  from prediction_market_agent_tooling.tools.web3_utils import (
59
63
  add_fraction,
60
64
  remove_fraction,
@@ -80,6 +84,8 @@ class OmenAgentMarket(AgentMarket):
80
84
  finalized_time: datetime | None
81
85
  created_time: datetime
82
86
  close_time: datetime
87
+ outcome_token_amounts: list[OmenOutcomeToken]
88
+ fee: float # proportion, from 0 to 1
83
89
 
84
90
  INVALID_MARKET_ANSWER: HexStr = HexStr(
85
91
  "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
@@ -155,19 +161,50 @@ class OmenAgentMarket(AgentMarket):
155
161
  web3=web3,
156
162
  )
157
163
 
164
+ def calculate_sell_amount_in_collateral(
165
+ self, amount: TokenAmount, outcome: bool
166
+ ) -> xDai:
167
+ if len(self.outcome_token_amounts) != 2:
168
+ raise ValueError(
169
+ f"Market {self.id} has {len(self.outcome_token_amounts)} "
170
+ f"outcomes. This method only supports binary markets."
171
+ )
172
+ sell_index = self.yes_index if outcome else self.no_index
173
+ other_index = self.no_index if outcome else self.yes_index
174
+ collateral = calculate_sell_amount_in_collateral(
175
+ shares_to_sell=amount.amount,
176
+ holdings=wei_to_xdai(Wei(self.outcome_token_amounts[sell_index])),
177
+ other_holdings=wei_to_xdai(Wei(self.outcome_token_amounts[other_index])),
178
+ fee=self.fee,
179
+ )
180
+ return xDai(collateral)
181
+
158
182
  def sell_tokens(
159
- self, outcome: bool, amount: TokenAmount, auto_withdraw: bool = False
183
+ self,
184
+ outcome: bool,
185
+ amount: TokenAmount,
186
+ auto_withdraw: bool = False,
187
+ api_keys: APIKeys | None = None,
188
+ web3: Web3 | None = None,
160
189
  ) -> None:
161
190
  if not self.can_be_traded():
162
191
  raise ValueError(
163
192
  f"Market {self.id} is not open for trading. Cannot sell tokens."
164
193
  )
194
+
195
+ # Convert from token (i.e. share) number to xDai value of tokens, as
196
+ # this is the expected unit of the argument in the smart contract.
197
+ collateral = self.calculate_sell_amount_in_collateral(
198
+ amount=amount,
199
+ outcome=outcome,
200
+ )
165
201
  binary_omen_sell_outcome_tx(
166
- api_keys=APIKeys(),
167
- amount=xDai(amount.amount),
202
+ amount=collateral,
203
+ api_keys=api_keys if api_keys is not None else APIKeys(),
168
204
  market=self,
169
205
  binary_outcome=outcome,
170
206
  auto_withdraw=auto_withdraw,
207
+ web3=web3,
171
208
  )
172
209
 
173
210
  def was_any_bet_outcome_correct(
@@ -245,6 +282,8 @@ class OmenAgentMarket(AgentMarket):
245
282
  url=model.url,
246
283
  volume=wei_to_xdai(model.collateralVolume),
247
284
  close_time=model.close_time,
285
+ outcome_token_amounts=model.outcomeTokenAmounts,
286
+ fee=float(wei_to_xdai(model.fee)) if model.fee is not None else 0.0,
248
287
  )
249
288
 
250
289
  @staticmethod
@@ -185,7 +185,7 @@ def monitor_agent(agent: DeployedAgent) -> None:
185
185
  col3.markdown(f"Public ID: `{agent.public_id}`")
186
186
 
187
187
  show_agent_bets = st.checkbox(
188
- "Show resolved bets", value=False, key=f"{agent.name}_show_bets"
188
+ "Show resolved bets statistics", value=False, key=f"{agent.name}_show_bets"
189
189
  )
190
190
  if not show_agent_bets:
191
191
  return
@@ -203,16 +203,43 @@ def monitor_agent(agent: DeployedAgent) -> None:
203
203
  "Is Correct": [bet.is_correct for bet in agent_bets],
204
204
  "Profit": [round(bet.profit.amount, 2) for bet in agent_bets],
205
205
  }
206
- bets_df = pd.DataFrame(bets_info).sort_values(by="Resolved Time")
206
+
207
+ # Time column to use for x-axes and sorting
208
+ x_axis_column = st.selectbox(
209
+ "X-axis column",
210
+ ["Created Time", "Resolved Time"],
211
+ key=f"{agent.name}_x_axis_column",
212
+ )
213
+
214
+ bets_df = pd.DataFrame(bets_info).sort_values(by=x_axis_column, ascending=False)
215
+ bets_df["x-axis-day"] = bets_df[x_axis_column].dt.date
207
216
 
208
217
  # Metrics
209
218
  col1, col2 = st.columns(2)
210
219
  col1.metric(label="Number of bets", value=f"{len(agent_bets)}")
211
220
  col2.metric(label="% Correct", value=f"{100 * bets_df['Is Correct'].mean():.2f}%")
212
221
 
222
+ # Chart of grouped accuracy per day
223
+ per_day_accuracy = bets_df.groupby("x-axis-day")["Is Correct"].mean()
224
+ per_day_accuracy_chart = (
225
+ alt.Chart(per_day_accuracy.reset_index())
226
+ .encode(
227
+ x=alt.X("x-axis-day", axis=alt.Axis(format="%Y-%m-%d"), title=None),
228
+ y=alt.Y("Is Correct", axis=alt.Axis(format=".2f")),
229
+ )
230
+ .interactive()
231
+ )
232
+ st.altair_chart(
233
+ per_day_accuracy_chart.mark_line()
234
+ + per_day_accuracy_chart.transform_loess("x-axis-day", "Is Correct").mark_line(
235
+ color="red", strokeDash=[5, 5]
236
+ ),
237
+ use_container_width=True,
238
+ )
239
+
213
240
  # Chart of cumulative profit per day
214
241
  profit_info = {
215
- "Time": bets_df["Resolved Time"],
242
+ "Time": bets_df[x_axis_column],
216
243
  "Cumulative Profit": bets_df["Profit"].astype(float),
217
244
  }
218
245
  profit_df = pd.DataFrame(profit_info)
@@ -233,8 +260,12 @@ def monitor_agent(agent: DeployedAgent) -> None:
233
260
  )
234
261
 
235
262
  # Table of resolved bets
236
- st.subheader("Resolved Bet History")
237
- st.table(bets_df)
263
+ show_bet_history = st.checkbox(
264
+ "Show resolved bet history", value=False, key=f"{agent.name}_show_bet_history"
265
+ )
266
+ if show_bet_history:
267
+ st.subheader("Resolved Bet History")
268
+ st.table(bets_df.drop(columns=["x-axis-day"]))
238
269
 
239
270
 
240
271
  def monitor_market(
@@ -7,6 +7,7 @@ from typing import Any, NoReturn, Optional, Type, TypeVar, cast
7
7
  import pytz
8
8
  import requests
9
9
  from pydantic import BaseModel, ValidationError
10
+ from scipy.optimize import newton
10
11
  from scipy.stats import entropy
11
12
 
12
13
  from prediction_market_agent_tooling.gtypes import (
@@ -173,3 +174,35 @@ def prob_uncertainty(prob: Probability) -> float:
173
174
  - Market's probability is 0.95, so the market is quite certain about YES: prob_uncertainty(0.95) == 0.286
174
175
  """
175
176
  return float(entropy([prob, 1 - prob], base=2))
177
+
178
+
179
+ def calculate_sell_amount_in_collateral(
180
+ shares_to_sell: float,
181
+ holdings: float,
182
+ other_holdings: float,
183
+ fee: float,
184
+ ) -> float:
185
+ """
186
+ Computes the amount of collateral that needs to be sold to get `shares`
187
+ amount of shares. Returns None if the amount can't be computed.
188
+
189
+ Taken from https://github.com/protofire/omen-exchange/blob/29d0ab16bdafa5cc0d37933c1c7608a055400c73/app/src/util/tools/fpmm/trading/index.ts#L99
190
+ Simplified for binary markets.
191
+ """
192
+
193
+ if not (0 <= fee < 1.0):
194
+ raise ValueError("Fee must be between 0 and 1")
195
+
196
+ for v in [shares_to_sell, holdings, other_holdings]:
197
+ if v <= 0:
198
+ raise ValueError("All share args must be greater than 0")
199
+
200
+ def f(r: float) -> float:
201
+ R = r / (1 - fee)
202
+ first_term = other_holdings - R
203
+ second_term = holdings + shares_to_sell - R
204
+ third_term = holdings * other_holdings
205
+ return (first_term * second_term) - third_term
206
+
207
+ amount_to_sell = newton(f, 0)
208
+ return float(amount_to_sell) * 0.999999 # Avoid rounding errors
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: prediction-market-agent-tooling
3
- Version: 0.33.0
3
+ Version: 0.35.0
4
4
  Summary: Tools to benchmark, deploy and monitor prediction market agents.
5
5
  Author: Gnosis
6
6
  Requires-Python: >=3.10,<3.12
@@ -35,7 +35,7 @@ Requires-Dist: streamlit (>=1.31.0,<2.0.0)
35
35
  Requires-Dist: subgrounds (>=1.8.1,<2.0.0)
36
36
  Requires-Dist: tabulate (>=0.9.0,<0.10.0)
37
37
  Requires-Dist: tqdm (>=4.66.2,<5.0.0)
38
- Requires-Dist: typer (>=0.9.0,<0.10.0)
38
+ Requires-Dist: typer (>=0.12.3,<0.13.0)
39
39
  Requires-Dist: types-pytz (>=2024.1.0.20240203,<2025.0.0.0)
40
40
  Requires-Dist: types-requests (>=2.31.0.0,<3.0.0.0)
41
41
  Requires-Dist: web3 (>=6.15.1,<7.0.0)
@@ -25,13 +25,13 @@ prediction_market_agent_tooling/markets/categorize.py,sha256=yTd-lDMPW4ESDSzmxeL
25
25
  prediction_market_agent_tooling/markets/data_models.py,sha256=uODY3aoFp8YYeLAUcrzMk1yU8pIKsTLobB9xIEGTmKs,1170
26
26
  prediction_market_agent_tooling/markets/manifold/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
27
  prediction_market_agent_tooling/markets/manifold/api.py,sha256=m6qOzDiyQfxj62Eo_SzzQLkX4ijpi8KtQKGd4CpKAsk,7307
28
- prediction_market_agent_tooling/markets/manifold/data_models.py,sha256=2DZIxwtDp-PH0UWTGiktMFIGAAQoVutI07UsxjNyTyE,5296
28
+ prediction_market_agent_tooling/markets/manifold/data_models.py,sha256=Iw-ajDPYhtfcTfN45nJN_kZShfWcWe9mgzexSWnQCCQ,5295
29
29
  prediction_market_agent_tooling/markets/manifold/manifold.py,sha256=EwRL06E2Y_ZAzr8efwS5yD6p6rnykrcBhqmNDUGZ8Aw,4075
30
30
  prediction_market_agent_tooling/markets/manifold/utils.py,sha256=cPPFWXm3vCYH1jy7_ctJZuQH9ZDaPL4_AgAYzGWkoow,513
31
31
  prediction_market_agent_tooling/markets/markets.py,sha256=w05Oo7yCA2axpCw69Q9y4i9Gcdpht0u5bZGbWqld3rU,2964
32
32
  prediction_market_agent_tooling/markets/omen/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
33
  prediction_market_agent_tooling/markets/omen/data_models.py,sha256=EXtjmcujx68Xu50BVkYXvLuf_Asx5o65RvFS3ZS6HGs,14405
34
- prediction_market_agent_tooling/markets/omen/omen.py,sha256=9le-tvs-zclHtzpvK7bMVqg2lZV-VZh1c5OB_uAdSiY,32042
34
+ prediction_market_agent_tooling/markets/omen/omen.py,sha256=aJ5CCste61B7q0OD3EjLP8H7AjD_RaBBNyUfnZGh5KM,33597
35
35
  prediction_market_agent_tooling/markets/omen/omen_contracts.py,sha256=eDS8vN4Klv_-Y1wwfIeLDt3twhl9U_AJjPQov0JScb0,19888
36
36
  prediction_market_agent_tooling/markets/omen/omen_resolving.py,sha256=g77QsQ5WnSI2rzBlX87L_EhWMwobkyXyfRhHQmpAdzo,9012
37
37
  prediction_market_agent_tooling/markets/omen/omen_subgraph_handler.py,sha256=RlaQMDF75lo2fos8LUb_OAdrw_ILLOXQLdejzE7tOmA,23053
@@ -44,7 +44,7 @@ prediction_market_agent_tooling/monitor/langfuse/langfuse_wrapper.py,sha256=b6T6
44
44
  prediction_market_agent_tooling/monitor/markets/manifold.py,sha256=GdYpgRX1GahDi-75Mr53jgtEg6nWcs_rHDUkg4o_7dQ,3352
45
45
  prediction_market_agent_tooling/monitor/markets/omen.py,sha256=jOLPnIbDU9syjnYtHfOb2xa6-Ize3vbplgh-8WWkuT4,3323
46
46
  prediction_market_agent_tooling/monitor/markets/polymarket.py,sha256=I9z9aO1wncyGI3a09ihrw17JkeBKjAuMmC0I9pl_9o4,1781
47
- prediction_market_agent_tooling/monitor/monitor.py,sha256=elvCqCASCd3fOnM7f2kajb_Oy3RMUmGh88jzpworrEU,13387
47
+ prediction_market_agent_tooling/monitor/monitor.py,sha256=uJdaEpGWp4VcejoQLF0uOxhV75AhrXNyWPVG38gBeOo,14505
48
48
  prediction_market_agent_tooling/monitor/monitor_app.py,sha256=rDxgdDJqSK0ARx0TJFMkS76npkHZJz0__Rp0xTpiRok,4611
49
49
  prediction_market_agent_tooling/monitor/monitor_settings.py,sha256=Xiozs3AsufuJ04JOe1vjUri-IAMWHjjmc2ugGGiHNH4,947
50
50
  prediction_market_agent_tooling/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -64,10 +64,10 @@ prediction_market_agent_tooling/tools/parallelism.py,sha256=8mgkF5sBwFGS5GMvlpza
64
64
  prediction_market_agent_tooling/tools/safe.py,sha256=h0xOO0eNtitClf0fPkn-0oTc6A_bflDTee98V_aiV-A,5195
65
65
  prediction_market_agent_tooling/tools/singleton.py,sha256=CiIELUiI-OeS7U7eeHEt0rnVhtQGzwoUdAgn_7u_GBM,729
66
66
  prediction_market_agent_tooling/tools/streamlit_user_login.py,sha256=NXEqfjT9Lc9QtliwSGRASIz1opjQ7Btme43H4qJbzgE,3010
67
- prediction_market_agent_tooling/tools/utils.py,sha256=zkmwPi3YisgZDPCeNwaRbL8sInOYOkvFgFY4Q8PbEo4,5077
67
+ prediction_market_agent_tooling/tools/utils.py,sha256=-G22UEbCRm59bm1RWFdeF55hRsaxgwZVAHvK32-Ye1g,6190
68
68
  prediction_market_agent_tooling/tools/web3_utils.py,sha256=cboATXNmEdn5RmPbVblHOwOdUMKBYrUK3GiI6i6Vzxo,9855
69
- prediction_market_agent_tooling-0.33.0.dist-info/LICENSE,sha256=6or154nLLU6bELzjh0mCreFjt0m2v72zLi3yHE0QbeE,7650
70
- prediction_market_agent_tooling-0.33.0.dist-info/METADATA,sha256=m8GpvhogLrDzkiUsfmt5CV1YBhIdTrgn8bRaVb98kqE,7514
71
- prediction_market_agent_tooling-0.33.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
72
- prediction_market_agent_tooling-0.33.0.dist-info/entry_points.txt,sha256=m8PukHbeH5g0IAAmOf_1Ahm-sGAMdhSSRQmwtpmi2s8,81
73
- prediction_market_agent_tooling-0.33.0.dist-info/RECORD,,
69
+ prediction_market_agent_tooling-0.35.0.dist-info/LICENSE,sha256=6or154nLLU6bELzjh0mCreFjt0m2v72zLi3yHE0QbeE,7650
70
+ prediction_market_agent_tooling-0.35.0.dist-info/METADATA,sha256=PGIW673s30z0PdKLKcyhroDIjsBJWwzuZ7S-2bqIzyU,7515
71
+ prediction_market_agent_tooling-0.35.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
72
+ prediction_market_agent_tooling-0.35.0.dist-info/entry_points.txt,sha256=m8PukHbeH5g0IAAmOf_1Ahm-sGAMdhSSRQmwtpmi2s8,81
73
+ prediction_market_agent_tooling-0.35.0.dist-info/RECORD,,