prediction-market-agent-tooling 0.33.0__py3-none-any.whl → 0.34.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- prediction_market_agent_tooling/markets/manifold/data_models.py +1 -1
- prediction_market_agent_tooling/monitor/monitor.py +36 -5
- {prediction_market_agent_tooling-0.33.0.dist-info → prediction_market_agent_tooling-0.34.0.dist-info}/METADATA +2 -2
- {prediction_market_agent_tooling-0.33.0.dist-info → prediction_market_agent_tooling-0.34.0.dist-info}/RECORD +7 -7
- {prediction_market_agent_tooling-0.33.0.dist-info → prediction_market_agent_tooling-0.34.0.dist-info}/LICENSE +0 -0
- {prediction_market_agent_tooling-0.33.0.dist-info → prediction_market_agent_tooling-0.34.0.dist-info}/WHEEL +0 -0
- {prediction_market_agent_tooling-0.33.0.dist-info → prediction_market_agent_tooling-0.34.0.dist-info}/entry_points.txt +0 -0
@@ -79,7 +79,7 @@ class ManifoldMarket(BaseModel):
|
|
79
79
|
"""
|
80
80
|
Clip the timestamp to the maximum valid timestamp.
|
81
81
|
"""
|
82
|
-
max_timestamp = (datetime.max - timedelta(
|
82
|
+
max_timestamp = (datetime.max - timedelta(days=1)).timestamp()
|
83
83
|
value = int(min(value / 1000, max_timestamp))
|
84
84
|
return datetime.fromtimestamp(value)
|
85
85
|
|
@@ -185,7 +185,7 @@ def monitor_agent(agent: DeployedAgent) -> None:
|
|
185
185
|
col3.markdown(f"Public ID: `{agent.public_id}`")
|
186
186
|
|
187
187
|
show_agent_bets = st.checkbox(
|
188
|
-
"Show resolved bets", value=False, key=f"{agent.name}_show_bets"
|
188
|
+
"Show resolved bets statistics", value=False, key=f"{agent.name}_show_bets"
|
189
189
|
)
|
190
190
|
if not show_agent_bets:
|
191
191
|
return
|
@@ -203,16 +203,43 @@ def monitor_agent(agent: DeployedAgent) -> None:
|
|
203
203
|
"Is Correct": [bet.is_correct for bet in agent_bets],
|
204
204
|
"Profit": [round(bet.profit.amount, 2) for bet in agent_bets],
|
205
205
|
}
|
206
|
-
|
206
|
+
|
207
|
+
# Time column to use for x-axes and sorting
|
208
|
+
x_axis_column = st.selectbox(
|
209
|
+
"X-axis column",
|
210
|
+
["Created Time", "Resolved Time"],
|
211
|
+
key=f"{agent.name}_x_axis_column",
|
212
|
+
)
|
213
|
+
|
214
|
+
bets_df = pd.DataFrame(bets_info).sort_values(by=x_axis_column, ascending=False)
|
215
|
+
bets_df["x-axis-day"] = bets_df[x_axis_column].dt.date
|
207
216
|
|
208
217
|
# Metrics
|
209
218
|
col1, col2 = st.columns(2)
|
210
219
|
col1.metric(label="Number of bets", value=f"{len(agent_bets)}")
|
211
220
|
col2.metric(label="% Correct", value=f"{100 * bets_df['Is Correct'].mean():.2f}%")
|
212
221
|
|
222
|
+
# Chart of grouped accuracy per day
|
223
|
+
per_day_accuracy = bets_df.groupby("x-axis-day")["Is Correct"].mean()
|
224
|
+
per_day_accuracy_chart = (
|
225
|
+
alt.Chart(per_day_accuracy.reset_index())
|
226
|
+
.encode(
|
227
|
+
x=alt.X("x-axis-day", axis=alt.Axis(format="%Y-%m-%d"), title=None),
|
228
|
+
y=alt.Y("Is Correct", axis=alt.Axis(format=".2f")),
|
229
|
+
)
|
230
|
+
.interactive()
|
231
|
+
)
|
232
|
+
st.altair_chart(
|
233
|
+
per_day_accuracy_chart.mark_line()
|
234
|
+
+ per_day_accuracy_chart.transform_loess("x-axis-day", "Is Correct").mark_line(
|
235
|
+
color="red", strokeDash=[5, 5]
|
236
|
+
),
|
237
|
+
use_container_width=True,
|
238
|
+
)
|
239
|
+
|
213
240
|
# Chart of cumulative profit per day
|
214
241
|
profit_info = {
|
215
|
-
"Time": bets_df[
|
242
|
+
"Time": bets_df[x_axis_column],
|
216
243
|
"Cumulative Profit": bets_df["Profit"].astype(float),
|
217
244
|
}
|
218
245
|
profit_df = pd.DataFrame(profit_info)
|
@@ -233,8 +260,12 @@ def monitor_agent(agent: DeployedAgent) -> None:
|
|
233
260
|
)
|
234
261
|
|
235
262
|
# Table of resolved bets
|
236
|
-
st.
|
237
|
-
|
263
|
+
show_bet_history = st.checkbox(
|
264
|
+
"Show resolved bet history", value=False, key=f"{agent.name}_show_bet_history"
|
265
|
+
)
|
266
|
+
if show_bet_history:
|
267
|
+
st.subheader("Resolved Bet History")
|
268
|
+
st.table(bets_df.drop(columns=["x-axis-day"]))
|
238
269
|
|
239
270
|
|
240
271
|
def monitor_market(
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: prediction-market-agent-tooling
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.34.0
|
4
4
|
Summary: Tools to benchmark, deploy and monitor prediction market agents.
|
5
5
|
Author: Gnosis
|
6
6
|
Requires-Python: >=3.10,<3.12
|
@@ -35,7 +35,7 @@ Requires-Dist: streamlit (>=1.31.0,<2.0.0)
|
|
35
35
|
Requires-Dist: subgrounds (>=1.8.1,<2.0.0)
|
36
36
|
Requires-Dist: tabulate (>=0.9.0,<0.10.0)
|
37
37
|
Requires-Dist: tqdm (>=4.66.2,<5.0.0)
|
38
|
-
Requires-Dist: typer (>=0.
|
38
|
+
Requires-Dist: typer (>=0.12.3,<0.13.0)
|
39
39
|
Requires-Dist: types-pytz (>=2024.1.0.20240203,<2025.0.0.0)
|
40
40
|
Requires-Dist: types-requests (>=2.31.0.0,<3.0.0.0)
|
41
41
|
Requires-Dist: web3 (>=6.15.1,<7.0.0)
|
@@ -25,7 +25,7 @@ prediction_market_agent_tooling/markets/categorize.py,sha256=yTd-lDMPW4ESDSzmxeL
|
|
25
25
|
prediction_market_agent_tooling/markets/data_models.py,sha256=uODY3aoFp8YYeLAUcrzMk1yU8pIKsTLobB9xIEGTmKs,1170
|
26
26
|
prediction_market_agent_tooling/markets/manifold/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
27
27
|
prediction_market_agent_tooling/markets/manifold/api.py,sha256=m6qOzDiyQfxj62Eo_SzzQLkX4ijpi8KtQKGd4CpKAsk,7307
|
28
|
-
prediction_market_agent_tooling/markets/manifold/data_models.py,sha256=
|
28
|
+
prediction_market_agent_tooling/markets/manifold/data_models.py,sha256=Iw-ajDPYhtfcTfN45nJN_kZShfWcWe9mgzexSWnQCCQ,5295
|
29
29
|
prediction_market_agent_tooling/markets/manifold/manifold.py,sha256=EwRL06E2Y_ZAzr8efwS5yD6p6rnykrcBhqmNDUGZ8Aw,4075
|
30
30
|
prediction_market_agent_tooling/markets/manifold/utils.py,sha256=cPPFWXm3vCYH1jy7_ctJZuQH9ZDaPL4_AgAYzGWkoow,513
|
31
31
|
prediction_market_agent_tooling/markets/markets.py,sha256=w05Oo7yCA2axpCw69Q9y4i9Gcdpht0u5bZGbWqld3rU,2964
|
@@ -44,7 +44,7 @@ prediction_market_agent_tooling/monitor/langfuse/langfuse_wrapper.py,sha256=b6T6
|
|
44
44
|
prediction_market_agent_tooling/monitor/markets/manifold.py,sha256=GdYpgRX1GahDi-75Mr53jgtEg6nWcs_rHDUkg4o_7dQ,3352
|
45
45
|
prediction_market_agent_tooling/monitor/markets/omen.py,sha256=jOLPnIbDU9syjnYtHfOb2xa6-Ize3vbplgh-8WWkuT4,3323
|
46
46
|
prediction_market_agent_tooling/monitor/markets/polymarket.py,sha256=I9z9aO1wncyGI3a09ihrw17JkeBKjAuMmC0I9pl_9o4,1781
|
47
|
-
prediction_market_agent_tooling/monitor/monitor.py,sha256=
|
47
|
+
prediction_market_agent_tooling/monitor/monitor.py,sha256=uJdaEpGWp4VcejoQLF0uOxhV75AhrXNyWPVG38gBeOo,14505
|
48
48
|
prediction_market_agent_tooling/monitor/monitor_app.py,sha256=rDxgdDJqSK0ARx0TJFMkS76npkHZJz0__Rp0xTpiRok,4611
|
49
49
|
prediction_market_agent_tooling/monitor/monitor_settings.py,sha256=Xiozs3AsufuJ04JOe1vjUri-IAMWHjjmc2ugGGiHNH4,947
|
50
50
|
prediction_market_agent_tooling/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -66,8 +66,8 @@ prediction_market_agent_tooling/tools/singleton.py,sha256=CiIELUiI-OeS7U7eeHEt0r
|
|
66
66
|
prediction_market_agent_tooling/tools/streamlit_user_login.py,sha256=NXEqfjT9Lc9QtliwSGRASIz1opjQ7Btme43H4qJbzgE,3010
|
67
67
|
prediction_market_agent_tooling/tools/utils.py,sha256=zkmwPi3YisgZDPCeNwaRbL8sInOYOkvFgFY4Q8PbEo4,5077
|
68
68
|
prediction_market_agent_tooling/tools/web3_utils.py,sha256=cboATXNmEdn5RmPbVblHOwOdUMKBYrUK3GiI6i6Vzxo,9855
|
69
|
-
prediction_market_agent_tooling-0.
|
70
|
-
prediction_market_agent_tooling-0.
|
71
|
-
prediction_market_agent_tooling-0.
|
72
|
-
prediction_market_agent_tooling-0.
|
73
|
-
prediction_market_agent_tooling-0.
|
69
|
+
prediction_market_agent_tooling-0.34.0.dist-info/LICENSE,sha256=6or154nLLU6bELzjh0mCreFjt0m2v72zLi3yHE0QbeE,7650
|
70
|
+
prediction_market_agent_tooling-0.34.0.dist-info/METADATA,sha256=Ih-qmKV0wWypWJv0ABswvSd1VSPOJBQwDiXw714KSx0,7515
|
71
|
+
prediction_market_agent_tooling-0.34.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
72
|
+
prediction_market_agent_tooling-0.34.0.dist-info/entry_points.txt,sha256=m8PukHbeH5g0IAAmOf_1Ahm-sGAMdhSSRQmwtpmi2s8,81
|
73
|
+
prediction_market_agent_tooling-0.34.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|