prediction-market-agent-tooling 0.21.0__py3-none-any.whl → 0.22.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -5,7 +5,6 @@ import time
5
5
  import typing as t
6
6
  from datetime import datetime, timedelta
7
7
 
8
- from loguru import logger
9
8
  from pydantic import BaseModel, BeforeValidator
10
9
  from typing_extensions import Annotated
11
10
 
@@ -24,6 +23,7 @@ from prediction_market_agent_tooling.deploy.gcp.utils import (
24
23
  gcp_resolve_api_keys_secrets,
25
24
  )
26
25
  from prediction_market_agent_tooling.gtypes import Probability
26
+ from prediction_market_agent_tooling.loggers import logger
27
27
  from prediction_market_agent_tooling.markets.agent_market import (
28
28
  AgentMarket,
29
29
  FilterBy,
@@ -0,0 +1,54 @@
1
+ import sys
2
+ import typing as t
3
+ from enum import Enum
4
+
5
+ from loguru import logger
6
+ from pydantic_settings import BaseSettings, SettingsConfigDict
7
+
8
+ if t.TYPE_CHECKING:
9
+ from loguru import Logger
10
+
11
+
12
+ class LogFormat(str, Enum):
13
+ DEFAULT = "default"
14
+ GCP = "gcp"
15
+
16
+
17
+ class LogConfig(BaseSettings):
18
+ model_config = SettingsConfigDict(
19
+ env_file=".env", env_file_encoding="utf-8", extra="ignore"
20
+ )
21
+
22
+ LOG_FORMAT: LogFormat = LogFormat.DEFAULT
23
+
24
+
25
+ GCP_LOG_FORMAT = "{level:<.1}{time:MMDD HH:mm:ss.SSSSSS} {process} {name}:{line}] {message} | {extra}"
26
+
27
+
28
+ def patch_logger(logger: "Logger") -> None:
29
+ config = LogConfig()
30
+
31
+ if config.LOG_FORMAT == LogFormat.GCP:
32
+ format_ = GCP_LOG_FORMAT
33
+
34
+ elif config.LOG_FORMAT == LogFormat.DEFAULT:
35
+ format_ = None
36
+
37
+ else:
38
+ raise ValueError(f"Unknown log format: {config.LOG_FORMAT}")
39
+
40
+ if format_ is not None:
41
+ logger.remove()
42
+ logger.add(
43
+ sys.stdout,
44
+ format=format_,
45
+ level="DEBUG", # Can be the lowest level, higher ones will use by default this one.
46
+ colorize=True,
47
+ )
48
+
49
+ logger.info(f"Patched logger for {config.LOG_FORMAT.value} format.")
50
+
51
+
52
+ if not getattr(logger, "_patched", False):
53
+ patch_logger(logger)
54
+ logger._patched = True # type: ignore[attr-defined] # Hacky way to store a flag on the logger object, to not patch it multiple times.
@@ -3,9 +3,9 @@ from datetime import datetime
3
3
 
4
4
  import requests
5
5
  import tenacity
6
- from loguru import logger
7
6
 
8
7
  from prediction_market_agent_tooling.gtypes import Mana, SecretStr
8
+ from prediction_market_agent_tooling.loggers import logger
9
9
  from prediction_market_agent_tooling.markets.data_models import (
10
10
  BetAmount,
11
11
  Currency,
@@ -2,7 +2,6 @@ import sys
2
2
  import typing as t
3
3
  from datetime import datetime
4
4
 
5
- from loguru import logger
6
5
  from web3 import Web3
7
6
  from web3.constants import HASH_ZERO
8
7
 
@@ -18,6 +17,7 @@ from prediction_market_agent_tooling.gtypes import (
18
17
  xDai,
19
18
  xdai_type,
20
19
  )
20
+ from prediction_market_agent_tooling.loggers import logger
21
21
  from prediction_market_agent_tooling.markets.agent_market import (
22
22
  AgentMarket,
23
23
  FilterBy,
@@ -1,4 +1,3 @@
1
- from loguru import logger
2
1
  from web3 import Web3
3
2
 
4
3
  from prediction_market_agent_tooling.config import PrivateCredentials
@@ -9,6 +8,7 @@ from prediction_market_agent_tooling.gtypes import (
9
8
  Wei,
10
9
  xDai,
11
10
  )
11
+ from prediction_market_agent_tooling.loggers import logger
12
12
  from prediction_market_agent_tooling.markets.data_models import Resolution
13
13
  from prediction_market_agent_tooling.markets.manifold.utils import (
14
14
  find_resolution_on_manifold,
@@ -4,10 +4,10 @@ from datetime import datetime
4
4
 
5
5
  import tenacity
6
6
  from eth_typing import ChecksumAddress
7
- from loguru import logger
8
7
  from subgrounds import FieldPath, Subgrounds
9
8
 
10
9
  from prediction_market_agent_tooling.gtypes import HexAddress, HexBytes, Wei, wei_type
10
+ from prediction_market_agent_tooling.loggers import logger
11
11
  from prediction_market_agent_tooling.markets.agent_market import FilterBy, SortBy
12
12
  from prediction_market_agent_tooling.markets.omen.data_models import (
13
13
  OMEN_FALSE_OUTCOME,
@@ -10,10 +10,10 @@ import typing as t
10
10
  from datetime import datetime
11
11
 
12
12
  import requests
13
- from loguru import logger
14
13
  from pydantic import BaseModel, field_validator
15
14
 
16
15
  from prediction_market_agent_tooling.gtypes import USDC, HexAddress
16
+ from prediction_market_agent_tooling.loggers import logger
17
17
  from prediction_market_agent_tooling.markets.data_models import Resolution
18
18
 
19
19
  POLYMARKET_BASE_URL = "https://polymarket.com"
@@ -8,7 +8,6 @@ import numpy as np
8
8
  import pandas as pd
9
9
  import streamlit as st
10
10
  from google.cloud.functions_v2.types.functions import Function
11
- from loguru import logger
12
11
  from pydantic import BaseModel, field_validator
13
12
 
14
13
  from prediction_market_agent_tooling.config import APIKeys
@@ -22,6 +21,7 @@ from prediction_market_agent_tooling.deploy.gcp.utils import (
22
21
  list_gcp_cronjobs,
23
22
  list_gcp_functions,
24
23
  )
24
+ from prediction_market_agent_tooling.loggers import logger
25
25
  from prediction_market_agent_tooling.markets.agent_market import AgentMarket
26
26
  from prediction_market_agent_tooling.markets.data_models import Resolution, ResolvedBet
27
27
  from prediction_market_agent_tooling.tools.parallelism import par_map
@@ -2,9 +2,9 @@ import typing as t
2
2
  from functools import reduce
3
3
 
4
4
  import numpy as np
5
- from loguru import logger
6
5
 
7
6
  from prediction_market_agent_tooling.gtypes import Probability, wei_type, xDai
7
+ from prediction_market_agent_tooling.loggers import logger
8
8
  from prediction_market_agent_tooling.markets.omen.data_models import OmenMarket
9
9
  from prediction_market_agent_tooling.markets.omen.omen import OmenAgentMarket
10
10
  from prediction_market_agent_tooling.tools.utils import check_not_none
@@ -2,9 +2,9 @@ import typing as t
2
2
 
3
3
  import tenacity
4
4
  from googleapiclient.discovery import build
5
- from loguru import logger
6
5
 
7
6
  from prediction_market_agent_tooling.config import APIKeys
7
+ from prediction_market_agent_tooling.loggers import logger
8
8
  from prediction_market_agent_tooling.tools.cache import persistent_inmemory_cache
9
9
 
10
10
 
@@ -1,5 +1,4 @@
1
- from langchain.prompts import ChatPromptTemplate
2
- from langchain_openai import ChatOpenAI
1
+ from loguru import logger
3
2
 
4
3
  from prediction_market_agent_tooling.tools.cache import persistent_inmemory_cache
5
4
 
@@ -38,6 +37,13 @@ def is_predictable_binary(
38
37
  """
39
38
  Evaluate if the question is actually answerable.
40
39
  """
40
+ try:
41
+ from langchain.prompts import ChatPromptTemplate
42
+ from langchain_openai import ChatOpenAI
43
+ except ImportError:
44
+ logger.info("langchain not installed, skipping is_predictable_binary")
45
+ return True
46
+
41
47
  llm = ChatOpenAI(model=engine, temperature=0.0)
42
48
 
43
49
  prompt = ChatPromptTemplate.from_template(template=prompt_template)
@@ -5,7 +5,6 @@ from gnosis.eth.constants import NULL_ADDRESS
5
5
  from gnosis.eth.contracts import get_safe_V1_4_1_contract
6
6
  from gnosis.safe.proxy_factory import ProxyFactoryV141
7
7
  from gnosis.safe.safe import Safe
8
- from loguru import logger
9
8
  from safe_cli.safe_addresses import (
10
9
  get_default_fallback_handler_address,
11
10
  get_proxy_factory_address,
@@ -14,6 +13,7 @@ from safe_cli.safe_addresses import (
14
13
  )
15
14
  from web3.types import Wei
16
15
 
16
+ from prediction_market_agent_tooling.loggers import logger
17
17
  from prediction_market_agent_tooling.tools.hexbytes_custom import HexBytes
18
18
  from prediction_market_agent_tooling.tools.web3_utils import wei_to_xdai
19
19
 
@@ -6,7 +6,6 @@ from typing import Any, NoReturn, Optional, Type, TypeVar, cast
6
6
 
7
7
  import pytz
8
8
  import requests
9
- from loguru import logger
10
9
  from pydantic import BaseModel, ValidationError
11
10
  from scipy.stats import entropy
12
11
 
@@ -15,6 +14,7 @@ from prediction_market_agent_tooling.gtypes import (
15
14
  Probability,
16
15
  SecretStr,
17
16
  )
17
+ from prediction_market_agent_tooling.loggers import logger
18
18
 
19
19
  T = TypeVar("T")
20
20
 
@@ -5,7 +5,6 @@ from eth_account import Account
5
5
  from eth_typing import URI
6
6
  from gnosis.eth import EthereumClient
7
7
  from gnosis.safe.safe import Safe
8
- from loguru import logger
9
8
  from pydantic.types import SecretStr
10
9
  from web3 import Web3
11
10
  from web3.constants import HASH_ZERO
@@ -21,6 +20,7 @@ from prediction_market_agent_tooling.gtypes import (
21
20
  xDai,
22
21
  xdai_type,
23
22
  )
23
+ from prediction_market_agent_tooling.loggers import logger
24
24
 
25
25
  ONE_NONCE = Nonce(1)
26
26
  ONE_XDAI = xdai_type(1)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: prediction-market-agent-tooling
3
- Version: 0.21.0
3
+ Version: 0.22.0
4
4
  Summary: Tools to benchmark, deploy and monitor prediction market agents.
5
5
  Author: Gnosis
6
6
  Requires-Python: >=3.10,<3.12
@@ -32,7 +32,7 @@ Requires-Dist: pydantic (>=2.6.1,<3.0.0)
32
32
  Requires-Dist: pydantic-settings (>=2.1.0,<3.0.0)
33
33
  Requires-Dist: safe-cli (>=1.0.0,<2.0.0)
34
34
  Requires-Dist: safe-eth-py (>=6.0.0b14,<7.0.0)
35
- Requires-Dist: scikit-learn (>=1.4.0,<2.0.0)
35
+ Requires-Dist: scikit-learn (>=1.3.1,<2.0.0)
36
36
  Requires-Dist: streamlit (>=1.31.0,<2.0.0)
37
37
  Requires-Dist: subgrounds (>=1.8.1,<2.0.0)
38
38
  Requires-Dist: tabulate (>=0.9.0,<0.10.0)
@@ -12,60 +12,61 @@ prediction_market_agent_tooling/benchmark/agents.py,sha256=HPIFJvackW110ch3Ukktb
12
12
  prediction_market_agent_tooling/benchmark/benchmark.py,sha256=xiHKzZx5GHSsDerFHMZ9j_LXAXnSaITSvv67iPe3MEU,21095
13
13
  prediction_market_agent_tooling/benchmark/utils.py,sha256=iS1BzyXcCMfMm1Rx--1QCH0pHvBTblTndcDQFbTUJ2s,2897
14
14
  prediction_market_agent_tooling/config.py,sha256=FI8feNLmA0QYmN-llvyDh3c6tN2ZGl7Eerw1e27v51A,4757
15
- prediction_market_agent_tooling/deploy/agent.py,sha256=aXlrfOymjvLdpxgF88XsFBsPnCG0Q3-EqreV1WYqxro,9985
15
+ prediction_market_agent_tooling/deploy/agent.py,sha256=OxSL1w51GumyBUxN2cx6VPgvf8NWsq3-7wAy9g3hsFA,10018
16
16
  prediction_market_agent_tooling/deploy/agent_example.py,sha256=KaTJm43cwbBZR2BmTEyB1ohChAqwYlBUqaaVumsWQe4,891
17
17
  prediction_market_agent_tooling/deploy/constants.py,sha256=M5ty8URipYMGe_G-RzxRydK3AFL6CyvmqCraJUrLBnE,82
18
18
  prediction_market_agent_tooling/deploy/gcp/deploy.py,sha256=CYUgnfy-9XVk04kkxA_5yp0GE9Mw5caYqlFUZQ2j3ks,3739
19
19
  prediction_market_agent_tooling/deploy/gcp/kubernetes_models.py,sha256=qYIHRxQLac3yxtZ8ChikiPG9O1aUQucHW0muTSm1nto,2627
20
20
  prediction_market_agent_tooling/deploy/gcp/utils.py,sha256=oyW0jgrUT2Tr49c7GlpcMsYNQjoCSOcWis3q-MmVAhU,6089
21
21
  prediction_market_agent_tooling/gtypes.py,sha256=xGSJXw12hzp8LwvQ956l01GiZMWd07MZTYqo8CXVeLY,2417
22
+ prediction_market_agent_tooling/loggers.py,sha256=wIsV7DoB9XOWJKElSvP4ZeUqC0rArCMQS28wcZIYkww,1403
22
23
  prediction_market_agent_tooling/markets/agent_market.py,sha256=qeuIXEujziDu_gQPvMiHsGSejhkPQtHhO_E7l16NOL0,5997
23
24
  prediction_market_agent_tooling/markets/categorize.py,sha256=yTd-lDMPW4ESDSzmxeLLBuzLX0FggOF7Vbswh7295o0,941
24
25
  prediction_market_agent_tooling/markets/data_models.py,sha256=uODY3aoFp8YYeLAUcrzMk1yU8pIKsTLobB9xIEGTmKs,1170
25
26
  prediction_market_agent_tooling/markets/manifold/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
- prediction_market_agent_tooling/markets/manifold/api.py,sha256=K79zWSqBs3rpkZwpp6moKkPBB81p5jWn1wFuk-rLVi4,7274
27
+ prediction_market_agent_tooling/markets/manifold/api.py,sha256=m6qOzDiyQfxj62Eo_SzzQLkX4ijpi8KtQKGd4CpKAsk,7307
27
28
  prediction_market_agent_tooling/markets/manifold/data_models.py,sha256=2DZIxwtDp-PH0UWTGiktMFIGAAQoVutI07UsxjNyTyE,5296
28
29
  prediction_market_agent_tooling/markets/manifold/manifold.py,sha256=DJZ88r5BGtAugUw5SIyDfzK1S70titba_fwT7OYXuAY,3896
29
30
  prediction_market_agent_tooling/markets/manifold/utils.py,sha256=cPPFWXm3vCYH1jy7_ctJZuQH9ZDaPL4_AgAYzGWkoow,513
30
31
  prediction_market_agent_tooling/markets/markets.py,sha256=TXo2qNmjUXhbTK0d-V7hW_aaJDpqP9RWHxm7mayhI0o,3042
31
32
  prediction_market_agent_tooling/markets/omen/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
33
  prediction_market_agent_tooling/markets/omen/data_models.py,sha256=g6A_DQ54m-_3XQO02AM4NliDycsgYvg8hgpt8Dri5cg,14111
33
- prediction_market_agent_tooling/markets/omen/omen.py,sha256=TbyZ39rcMsM1xpsW1CtHJSKBN3CIufN-O0RwGKW1IyQ,31823
34
+ prediction_market_agent_tooling/markets/omen/omen.py,sha256=GZEMVVTT53XLCnDgg3BzvAHMYv-7u4Diy_RgB6J_F8M,31856
34
35
  prediction_market_agent_tooling/markets/omen/omen_contracts.py,sha256=cHL-VYQDzLWLtqS_4l91HGaKAOKoFjXHN76OYfIU2T0,20537
35
- prediction_market_agent_tooling/markets/omen/omen_resolving.py,sha256=uAUUn-8jXgaP-xiWTDfBnSYAd2ORlD7Himry0SzPZz4,9034
36
- prediction_market_agent_tooling/markets/omen/omen_subgraph_handler.py,sha256=F2JyAYqCR4REOnFB2cngbngh7ib7SMt0VtFw7mGt2Yc,22266
36
+ prediction_market_agent_tooling/markets/omen/omen_resolving.py,sha256=WbVAQyhFlwFCk1wncs3Uf2PM6YZ9hV7pUbkFIGGu8iw,9067
37
+ prediction_market_agent_tooling/markets/omen/omen_subgraph_handler.py,sha256=QZWwkqvOqQ-b15jidwTNsn1K64x3FY_Un-l6A6g3Twg,22299
37
38
  prediction_market_agent_tooling/markets/polymarket/api.py,sha256=p1JkqL9kF8C04qbmqFzF0hgtzD5kN3yup2hYOjxazQ4,4188
38
39
  prediction_market_agent_tooling/markets/polymarket/data_models.py,sha256=srTl8-0FM76AGLRDWzjLpf46ikWloaBCgkn0XqZoKCI,4248
39
- prediction_market_agent_tooling/markets/polymarket/data_models_web.py,sha256=ueL_sNYZO5vC8fTsqp7xfjNa7eJQVYkm_kM50HSoQbY,10854
40
+ prediction_market_agent_tooling/markets/polymarket/data_models_web.py,sha256=qop9lK4-3VfEJ9SuSCJdYPhjMqP4g6F5FpHziJv8HDY,10887
40
41
  prediction_market_agent_tooling/markets/polymarket/polymarket.py,sha256=zqGfiUOH9f7jmDcQAt30wrHyfmqLMNwCYtotsxFoJmA,2678
41
42
  prediction_market_agent_tooling/markets/polymarket/utils.py,sha256=Gwd2kOK_DrsjtyqgO6ob8oK7tjsB1Yo-Hf7IS5UGnio,1960
42
43
  prediction_market_agent_tooling/monitor/langfuse/langfuse_wrapper.py,sha256=b6T69YB1x8kSUvW9uRFuSWPLOrXzapZG7m5O5SU0QTQ,895
43
44
  prediction_market_agent_tooling/monitor/markets/manifold.py,sha256=GdYpgRX1GahDi-75Mr53jgtEg6nWcs_rHDUkg4o_7dQ,3352
44
45
  prediction_market_agent_tooling/monitor/markets/omen.py,sha256=cYyKdX4qhGo-VqsboOyWHmMyFsdcX899RrHH5oMEwRI,3503
45
46
  prediction_market_agent_tooling/monitor/markets/polymarket.py,sha256=j_CHY03LAhg84p-TpwbkuzzIdd5YUWapW3hk7U79Phs,1879
46
- prediction_market_agent_tooling/monitor/monitor.py,sha256=zTluK6Ha_pis6JWd8SF8Pbu_OJLpRBv0T3PVLQKc1ds,13354
47
+ prediction_market_agent_tooling/monitor/monitor.py,sha256=elvCqCASCd3fOnM7f2kajb_Oy3RMUmGh88jzpworrEU,13387
47
48
  prediction_market_agent_tooling/monitor/monitor_app.py,sha256=rDxgdDJqSK0ARx0TJFMkS76npkHZJz0__Rp0xTpiRok,4611
48
49
  prediction_market_agent_tooling/monitor/monitor_settings.py,sha256=Xiozs3AsufuJ04JOe1vjUri-IAMWHjjmc2ugGGiHNH4,947
49
50
  prediction_market_agent_tooling/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
51
  prediction_market_agent_tooling/tools/balances.py,sha256=efDKEe-SsuSmGWKuGNiuHEWCGuCrcwjrCdTz1iKFtqw,749
51
52
  prediction_market_agent_tooling/tools/betting_strategies/kelly_criterion.py,sha256=IbhQPoKsQnjnag_n_wAL12n8QdCe7tAMRNV2QS8yYxY,3520
52
- prediction_market_agent_tooling/tools/betting_strategies/market_moving.py,sha256=0qPFA0hNzgUKt49xovwwFaSYrunFgpWZ0Di1Lo3g5qw,4367
53
+ prediction_market_agent_tooling/tools/betting_strategies/market_moving.py,sha256=wtrHVQRuA0uDx06z0OxQLYbswuOpHQ1UyCWwLCrD_oM,4400
53
54
  prediction_market_agent_tooling/tools/betting_strategies/minimum_bet_to_win.py,sha256=-FUSuQQgjcWSSnoFxnlAyTeilY6raJABJVM2QKkFqAY,438
54
55
  prediction_market_agent_tooling/tools/betting_strategies/stretch_bet_between.py,sha256=THMXwFlskvzbjnX_OiYtDSzI8XVFyULWfP2525_9UGc,429
55
56
  prediction_market_agent_tooling/tools/cache.py,sha256=tGHHd9HCiE_hCCtPtloHZQdDfBuiow9YsqJNYi2Tx_0,499
56
57
  prediction_market_agent_tooling/tools/contract.py,sha256=FTC5povNDOyTWJNKieCmoMkUK25_sHcTQkBuCVWh5Ck,7290
57
58
  prediction_market_agent_tooling/tools/costs.py,sha256=EaAJ7v9laD4VEV3d8B44M4u3_oEO_H16jRVCdoZ93Uw,954
58
59
  prediction_market_agent_tooling/tools/gnosis_rpc.py,sha256=_MYSoyOR2MgAJkop1ERf8RhLum-M8S6OjaAsaqUW41w,203
59
- prediction_market_agent_tooling/tools/google.py,sha256=P-ifiMk7bxQdU1ceON9apcZlw4rLHeOcYwxdeE4Of6Q,1761
60
+ prediction_market_agent_tooling/tools/google.py,sha256=SfVDxb3oEOUK8mpd0l3mTX9ybrdrTPNM6HjfJ7kfNjA,1794
60
61
  prediction_market_agent_tooling/tools/hexbytes_custom.py,sha256=Bp94qgPjvjWf1Vb4lNzGFDXRdThw1rJ91vL6r2PWq5E,2096
61
- prediction_market_agent_tooling/tools/is_predictable.py,sha256=MkElDkQRd2K3ZoAbqwk9WZluhqGDgx4vdt5cq_DoAz8,2618
62
+ prediction_market_agent_tooling/tools/is_predictable.py,sha256=QqcJ2k05oBnd-8JkkSMr9_FT-yZICmzUA41gSxJeP98,2793
62
63
  prediction_market_agent_tooling/tools/parallelism.py,sha256=8mgkF5sBwFGS5GMvlpzam82Y3p2swPYuNsywpQuy-a4,1508
63
- prediction_market_agent_tooling/tools/safe.py,sha256=gNgcY6ugckx3DbupR8VBezDgh1dZXpc8oZlPerZ3Atg,5162
64
+ prediction_market_agent_tooling/tools/safe.py,sha256=h0xOO0eNtitClf0fPkn-0oTc6A_bflDTee98V_aiV-A,5195
64
65
  prediction_market_agent_tooling/tools/singleton.py,sha256=CiIELUiI-OeS7U7eeHEt0rnVhtQGzwoUdAgn_7u_GBM,729
65
- prediction_market_agent_tooling/tools/utils.py,sha256=6MRfLr5xGPEQGobLz_eCsE_p-XaAeOCcmygwgNCIvqE,5044
66
- prediction_market_agent_tooling/tools/web3_utils.py,sha256=-IAt12kudrx0BaW_IFQu2nAsJJXVGn8hNH43xjQeIw4,9822
67
- prediction_market_agent_tooling-0.21.0.dist-info/LICENSE,sha256=6or154nLLU6bELzjh0mCreFjt0m2v72zLi3yHE0QbeE,7650
68
- prediction_market_agent_tooling-0.21.0.dist-info/METADATA,sha256=NrR68zmn_Jvo1NDjMCTY5M68_trW-omEFqZY8eZaNOo,5563
69
- prediction_market_agent_tooling-0.21.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
70
- prediction_market_agent_tooling-0.21.0.dist-info/entry_points.txt,sha256=m8PukHbeH5g0IAAmOf_1Ahm-sGAMdhSSRQmwtpmi2s8,81
71
- prediction_market_agent_tooling-0.21.0.dist-info/RECORD,,
66
+ prediction_market_agent_tooling/tools/utils.py,sha256=zkmwPi3YisgZDPCeNwaRbL8sInOYOkvFgFY4Q8PbEo4,5077
67
+ prediction_market_agent_tooling/tools/web3_utils.py,sha256=cboATXNmEdn5RmPbVblHOwOdUMKBYrUK3GiI6i6Vzxo,9855
68
+ prediction_market_agent_tooling-0.22.0.dist-info/LICENSE,sha256=6or154nLLU6bELzjh0mCreFjt0m2v72zLi3yHE0QbeE,7650
69
+ prediction_market_agent_tooling-0.22.0.dist-info/METADATA,sha256=0hbWI60DDcdP3a4am9cGdGHx4J86DcH8gYmQ4oyAxfo,5563
70
+ prediction_market_agent_tooling-0.22.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
71
+ prediction_market_agent_tooling-0.22.0.dist-info/entry_points.txt,sha256=m8PukHbeH5g0IAAmOf_1Ahm-sGAMdhSSRQmwtpmi2s8,81
72
+ prediction_market_agent_tooling-0.22.0.dist-info/RECORD,,