praisonaiagents 0.0.99__py3-none-any.whl → 0.0.100__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- praisonaiagents/agent/agent.py +2 -5
- praisonaiagents/guardrails/__init__.py +11 -0
- praisonaiagents/guardrails/guardrail_result.py +43 -0
- praisonaiagents/guardrails/llm_guardrail.py +88 -0
- praisonaiagents/memory/__init__.py +15 -0
- praisonaiagents/memory/memory.py +7 -4
- praisonaiagents/task/task.py +5 -1
- praisonaiagents/tools/searxng_tools.py +94 -0
- {praisonaiagents-0.0.99.dist-info → praisonaiagents-0.0.100.dist-info}/METADATA +1 -1
- {praisonaiagents-0.0.99.dist-info → praisonaiagents-0.0.100.dist-info}/RECORD +12 -7
- {praisonaiagents-0.0.99.dist-info → praisonaiagents-0.0.100.dist-info}/WHEEL +0 -0
- {praisonaiagents-0.0.99.dist-info → praisonaiagents-0.0.100.dist-info}/top_level.txt +0 -0
praisonaiagents/agent/agent.py
CHANGED
@@ -619,12 +619,9 @@ Your Goal: {self.goal}
|
|
619
619
|
while retry_count <= self.max_guardrail_retries:
|
620
620
|
# Create TaskOutput object
|
621
621
|
task_output = TaskOutput(
|
622
|
+
description="Agent response output",
|
622
623
|
raw=current_response,
|
623
|
-
|
624
|
-
pydantic=None,
|
625
|
-
json_dict=None,
|
626
|
-
name=f"{self.name}_output",
|
627
|
-
description="Agent response output"
|
624
|
+
agent=self.name
|
628
625
|
)
|
629
626
|
|
630
627
|
# Process guardrail
|
@@ -0,0 +1,11 @@
|
|
1
|
+
"""
|
2
|
+
Guardrails module for PraisonAI Agents.
|
3
|
+
|
4
|
+
This module provides validation and safety mechanisms for task outputs,
|
5
|
+
including both function-based and LLM-based guardrails.
|
6
|
+
"""
|
7
|
+
|
8
|
+
from .guardrail_result import GuardrailResult
|
9
|
+
from .llm_guardrail import LLMGuardrail
|
10
|
+
|
11
|
+
__all__ = ["GuardrailResult", "LLMGuardrail"]
|
@@ -0,0 +1,43 @@
|
|
1
|
+
"""
|
2
|
+
Guardrail result classes for PraisonAI Agents.
|
3
|
+
|
4
|
+
This module provides the result types for guardrail validation,
|
5
|
+
following the same pattern as CrewAI for consistency.
|
6
|
+
"""
|
7
|
+
|
8
|
+
from typing import Any, Tuple, Union
|
9
|
+
from pydantic import BaseModel, Field
|
10
|
+
from ..main import TaskOutput
|
11
|
+
|
12
|
+
|
13
|
+
class GuardrailResult(BaseModel):
|
14
|
+
"""Result of a guardrail validation."""
|
15
|
+
|
16
|
+
success: bool = Field(description="Whether the guardrail check passed")
|
17
|
+
result: Union[str, TaskOutput, None] = Field(description="The result if modified, or None if unchanged")
|
18
|
+
error: str = Field(default="", description="Error message if validation failed")
|
19
|
+
|
20
|
+
@classmethod
|
21
|
+
def from_tuple(cls, result: Tuple[bool, Any]) -> "GuardrailResult":
|
22
|
+
"""Create a GuardrailResult from a tuple returned by a guardrail function.
|
23
|
+
|
24
|
+
Args:
|
25
|
+
result: Tuple of (success, result_or_error)
|
26
|
+
|
27
|
+
Returns:
|
28
|
+
GuardrailResult: The structured result
|
29
|
+
"""
|
30
|
+
success, data = result
|
31
|
+
|
32
|
+
if success:
|
33
|
+
return cls(
|
34
|
+
success=True,
|
35
|
+
result=data,
|
36
|
+
error=""
|
37
|
+
)
|
38
|
+
else:
|
39
|
+
return cls(
|
40
|
+
success=False,
|
41
|
+
result=None,
|
42
|
+
error=str(data) if data else "Guardrail validation failed"
|
43
|
+
)
|
@@ -0,0 +1,88 @@
|
|
1
|
+
"""
|
2
|
+
LLM-based guardrail implementation for PraisonAI Agents.
|
3
|
+
|
4
|
+
This module provides LLM-powered guardrails that can validate task outputs
|
5
|
+
using natural language descriptions, similar to CrewAI's implementation.
|
6
|
+
"""
|
7
|
+
|
8
|
+
import logging
|
9
|
+
from typing import Any, Tuple, Union, Optional
|
10
|
+
from pydantic import BaseModel
|
11
|
+
from ..main import TaskOutput
|
12
|
+
|
13
|
+
|
14
|
+
class LLMGuardrail:
|
15
|
+
"""An LLM-powered guardrail that validates task outputs using natural language."""
|
16
|
+
|
17
|
+
def __init__(self, description: str, llm: Any = None):
|
18
|
+
"""Initialize the LLM guardrail.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
description: Natural language description of what to validate
|
22
|
+
llm: The LLM instance to use for validation
|
23
|
+
"""
|
24
|
+
self.description = description
|
25
|
+
self.llm = llm
|
26
|
+
self.logger = logging.getLogger(__name__)
|
27
|
+
|
28
|
+
def __call__(self, task_output: TaskOutput) -> Tuple[bool, Union[str, TaskOutput]]:
|
29
|
+
"""Validate the task output using the LLM.
|
30
|
+
|
31
|
+
Args:
|
32
|
+
task_output: The task output to validate
|
33
|
+
|
34
|
+
Returns:
|
35
|
+
Tuple of (success, result) where result is the output or error message
|
36
|
+
"""
|
37
|
+
try:
|
38
|
+
if not self.llm:
|
39
|
+
self.logger.warning("No LLM provided for guardrail validation")
|
40
|
+
return True, task_output
|
41
|
+
|
42
|
+
# Create validation prompt
|
43
|
+
validation_prompt = f"""
|
44
|
+
You are a quality assurance validator. Your task is to evaluate the following output against specific criteria.
|
45
|
+
|
46
|
+
Validation Criteria: {self.description}
|
47
|
+
|
48
|
+
Output to Validate:
|
49
|
+
{task_output.raw}
|
50
|
+
|
51
|
+
Please evaluate if this output meets the criteria. Respond with:
|
52
|
+
1. "PASS" if the output meets all criteria
|
53
|
+
2. "FAIL: [specific reason]" if the output does not meet criteria
|
54
|
+
|
55
|
+
Your response:"""
|
56
|
+
|
57
|
+
# Get LLM response
|
58
|
+
if hasattr(self.llm, 'chat'):
|
59
|
+
# For Agent's LLM interface
|
60
|
+
response = self.llm.chat(validation_prompt, temperature=0.1)
|
61
|
+
elif hasattr(self.llm, 'get_response'):
|
62
|
+
# For custom LLM instances
|
63
|
+
response = self.llm.get_response(validation_prompt, temperature=0.1)
|
64
|
+
elif callable(self.llm):
|
65
|
+
# For simple callable LLMs
|
66
|
+
response = self.llm(validation_prompt)
|
67
|
+
else:
|
68
|
+
self.logger.error(f"Unsupported LLM type: {type(self.llm)}")
|
69
|
+
return True, task_output
|
70
|
+
|
71
|
+
# Parse response
|
72
|
+
response = str(response).strip()
|
73
|
+
|
74
|
+
if response.upper().startswith("PASS"):
|
75
|
+
return True, task_output
|
76
|
+
elif response.upper().startswith("FAIL"):
|
77
|
+
# Extract the reason
|
78
|
+
reason = response[5:].strip(": ")
|
79
|
+
return False, f"Guardrail validation failed: {reason}"
|
80
|
+
else:
|
81
|
+
# Unclear response, log and pass through
|
82
|
+
self.logger.warning(f"Unclear guardrail response: {response}")
|
83
|
+
return True, task_output
|
84
|
+
|
85
|
+
except Exception as e:
|
86
|
+
self.logger.error(f"Error in LLM guardrail validation: {str(e)}")
|
87
|
+
# On error, pass through the original output
|
88
|
+
return True, task_output
|
@@ -0,0 +1,15 @@
|
|
1
|
+
"""
|
2
|
+
Memory module for PraisonAI Agents
|
3
|
+
|
4
|
+
This module provides memory management capabilities including:
|
5
|
+
- Short-term memory (STM) for ephemeral context
|
6
|
+
- Long-term memory (LTM) for persistent knowledge
|
7
|
+
- Entity memory for structured data
|
8
|
+
- User memory for preferences/history
|
9
|
+
- Quality-based storage decisions
|
10
|
+
- Graph memory support via Mem0
|
11
|
+
"""
|
12
|
+
|
13
|
+
from .memory import Memory
|
14
|
+
|
15
|
+
__all__ = ["Memory"]
|
praisonaiagents/memory/memory.py
CHANGED
@@ -910,11 +910,14 @@ class Memory:
|
|
910
910
|
"""
|
911
911
|
|
912
912
|
try:
|
913
|
-
# Use
|
914
|
-
|
913
|
+
# Use LiteLLM for consistency with the rest of the codebase
|
914
|
+
import litellm
|
915
915
|
|
916
|
-
|
917
|
-
|
916
|
+
# Convert model name if it's in litellm format
|
917
|
+
model_name = llm or "gpt-4o-mini"
|
918
|
+
|
919
|
+
response = litellm.completion(
|
920
|
+
model=model_name,
|
918
921
|
messages=[{
|
919
922
|
"role": "user",
|
920
923
|
"content": custom_prompt or default_prompt
|
praisonaiagents/task/task.py
CHANGED
@@ -308,7 +308,11 @@ class Task:
|
|
308
308
|
if self.agent:
|
309
309
|
if getattr(self.agent, '_using_custom_llm', False) and hasattr(self.agent, 'llm_instance'):
|
310
310
|
# For custom LLM instances (like Ollama)
|
311
|
-
|
311
|
+
# Extract the model name from the LLM instance
|
312
|
+
if hasattr(self.agent.llm_instance, 'model'):
|
313
|
+
llm_model = self.agent.llm_instance.model
|
314
|
+
else:
|
315
|
+
llm_model = "gpt-4o-mini" # Default fallback
|
312
316
|
elif hasattr(self.agent, 'llm') and self.agent.llm:
|
313
317
|
# For standard model strings
|
314
318
|
llm_model = self.agent.llm
|
@@ -0,0 +1,94 @@
|
|
1
|
+
"""SearxNG search functionality.
|
2
|
+
|
3
|
+
Usage:
|
4
|
+
from praisonaiagents.tools import searxng_search
|
5
|
+
results = searxng_search("AI news")
|
6
|
+
|
7
|
+
or
|
8
|
+
from praisonaiagents.tools import searxng
|
9
|
+
results = searxng("AI news")
|
10
|
+
"""
|
11
|
+
|
12
|
+
from typing import List, Dict, Optional
|
13
|
+
import logging
|
14
|
+
from importlib import util
|
15
|
+
|
16
|
+
def searxng_search(
|
17
|
+
query: str,
|
18
|
+
max_results: int = 5,
|
19
|
+
searxng_url: Optional[str] = None
|
20
|
+
) -> List[Dict]:
|
21
|
+
"""Perform an internet search using SearxNG instance.
|
22
|
+
|
23
|
+
Args:
|
24
|
+
query: Search query string
|
25
|
+
max_results: Maximum number of results to return
|
26
|
+
searxng_url: SearxNG instance URL (defaults to localhost:32768)
|
27
|
+
|
28
|
+
Returns:
|
29
|
+
List[Dict]: Search results with title, url, and snippet keys
|
30
|
+
Returns error dict on failure
|
31
|
+
"""
|
32
|
+
# Check if requests is available
|
33
|
+
if util.find_spec("requests") is None:
|
34
|
+
error_msg = "SearxNG search requires requests package. Install with: pip install requests"
|
35
|
+
logging.error(error_msg)
|
36
|
+
return [{"error": error_msg}]
|
37
|
+
|
38
|
+
try:
|
39
|
+
import requests
|
40
|
+
|
41
|
+
# Default URL for local SearxNG instance
|
42
|
+
url = searxng_url or "http://localhost:32768/search"
|
43
|
+
|
44
|
+
params = {
|
45
|
+
'q': query,
|
46
|
+
'format': 'json',
|
47
|
+
'engines': 'google,bing,duckduckgo', # Multiple engines
|
48
|
+
'safesearch': '1' # Safe search enabled
|
49
|
+
}
|
50
|
+
|
51
|
+
response = requests.get(url, params=params, timeout=10)
|
52
|
+
response.raise_for_status()
|
53
|
+
|
54
|
+
raw_results = response.json().get('results', [])
|
55
|
+
|
56
|
+
# Standardize to PraisonAI format
|
57
|
+
results = []
|
58
|
+
for i, result in enumerate(raw_results[:max_results]):
|
59
|
+
results.append({
|
60
|
+
"title": result.get("title", ""),
|
61
|
+
"url": result.get("url", ""),
|
62
|
+
"snippet": result.get("content", "")
|
63
|
+
})
|
64
|
+
|
65
|
+
return results
|
66
|
+
|
67
|
+
except requests.exceptions.ConnectionError:
|
68
|
+
error_msg = f"Could not connect to SearxNG at {url}. Ensure SearxNG is running."
|
69
|
+
logging.error(error_msg)
|
70
|
+
return [{"error": error_msg}]
|
71
|
+
except requests.exceptions.Timeout:
|
72
|
+
error_msg = "SearxNG search request timed out"
|
73
|
+
logging.error(error_msg)
|
74
|
+
return [{"error": error_msg}]
|
75
|
+
except requests.exceptions.RequestException as e:
|
76
|
+
error_msg = f"SearxNG search request failed: {e}"
|
77
|
+
logging.error(error_msg)
|
78
|
+
return [{"error": error_msg}]
|
79
|
+
except (ValueError, KeyError) as e:
|
80
|
+
error_msg = f"Error parsing SearxNG response: {e}"
|
81
|
+
logging.error(error_msg)
|
82
|
+
return [{"error": error_msg}]
|
83
|
+
|
84
|
+
def searxng(query: str, max_results: int = 5, searxng_url: Optional[str] = None) -> List[Dict]:
|
85
|
+
"""Alias for searxng_search function."""
|
86
|
+
return searxng_search(query, max_results, searxng_url)
|
87
|
+
|
88
|
+
if __name__ == "__main__":
|
89
|
+
# Example usage
|
90
|
+
results = searxng_search("Python programming")
|
91
|
+
for result in results:
|
92
|
+
print(f"\nTitle: {result.get('title')}")
|
93
|
+
print(f"URL: {result.get('url')}")
|
94
|
+
print(f"Snippet: {result.get('snippet')}")
|
@@ -3,11 +3,14 @@ praisonaiagents/approval.py,sha256=UJ4OhfihpFGR5CAaMphqpSvqdZCHi5w2MGw1MByZ1FQ,9
|
|
3
3
|
praisonaiagents/main.py,sha256=_-XE7_Y7ChvtLQMivfNFrrnAhv4wSSDhH9WJMWlkS0w,16315
|
4
4
|
praisonaiagents/session.py,sha256=CI-ffCiOfmgB-1zFFik9daKCB5Sm41Q9ZOaq1-oSLW8,9250
|
5
5
|
praisonaiagents/agent/__init__.py,sha256=j0T19TVNbfZcClvpbZDDinQxZ0oORgsMrMqx16jZ-bA,128
|
6
|
-
praisonaiagents/agent/agent.py,sha256=
|
6
|
+
praisonaiagents/agent/agent.py,sha256=it38pIYzHQIn2qscIuuvfgWyC9gPLZFj-nN8tDI8x5A,97766
|
7
7
|
praisonaiagents/agent/image_agent.py,sha256=-5MXG594HVwSpFMcidt16YBp7udtik-Cp7eXlzLE1fY,8696
|
8
8
|
praisonaiagents/agents/__init__.py,sha256=_1d6Pqyk9EoBSo7E68sKyd1jDRlN1vxvVIRpoMc0Jcw,168
|
9
9
|
praisonaiagents/agents/agents.py,sha256=C_yDdJB4XUuwKA9DrysAtAj3zSYT0IKtfCT4Pxo0oyI,63309
|
10
10
|
praisonaiagents/agents/autoagents.py,sha256=Lc_b9mO2MeefBrsHkHoqFxEr5iRGrYuzDhslyybXwdw,13649
|
11
|
+
praisonaiagents/guardrails/__init__.py,sha256=HA8zhp-KRHTxo0194MUwXOUJjPyjOu7E3d7xUIKYVVY,310
|
12
|
+
praisonaiagents/guardrails/guardrail_result.py,sha256=2K1WIYRyT_s1H6vBGa-7HEHzXCFIyZXZVY4f0hnQyWc,1352
|
13
|
+
praisonaiagents/guardrails/llm_guardrail.py,sha256=MTTqmYDdZX-18QN9T17T5P_6H2qnV8GVgymJufW1WuM,3277
|
11
14
|
praisonaiagents/knowledge/__init__.py,sha256=xL1Eh-a3xsHyIcU4foOWF-JdWYIYBALJH9bge0Ujuto,246
|
12
15
|
praisonaiagents/knowledge/chunking.py,sha256=G6wyHa7_8V0_7VpnrrUXbEmUmptlT16ISJYaxmkSgmU,7678
|
13
16
|
praisonaiagents/knowledge/knowledge.py,sha256=OKPar-XGyAp1ndmbOOdCgqFnTCqpOThYVSIZRxZyP58,15683
|
@@ -16,11 +19,12 @@ praisonaiagents/llm/llm.py,sha256=hoIxHzo9aNygeOiw9RtoPhpuSCVTUrKPe3OPvsT5qLc,98
|
|
16
19
|
praisonaiagents/mcp/__init__.py,sha256=ibbqe3_7XB7VrIcUcetkZiUZS1fTVvyMy_AqCSFG8qc,240
|
17
20
|
praisonaiagents/mcp/mcp.py,sha256=_gfp8hrSVT9aPqEDDfU8MiCdg0-3dVQpEQUE6AbrJlo,17243
|
18
21
|
praisonaiagents/mcp/mcp_sse.py,sha256=DLh3F_aoVRM1X-7hgIOWOw4FQ1nGmn9YNbQTesykzn4,6792
|
19
|
-
praisonaiagents/memory/
|
22
|
+
praisonaiagents/memory/__init__.py,sha256=aEFdhgtTqDdMhc_JCWM-f4XI9cZIj7Wz5g_MUa-0amg,397
|
23
|
+
praisonaiagents/memory/memory.py,sha256=x6CEMYhgzvlJH6SGKHPLRDt6kF0DVFFSUQbgr1OK3JM,38729
|
20
24
|
praisonaiagents/process/__init__.py,sha256=lkYbL7Hn5a0ldvJtkdH23vfIIZLIcanK-65C0MwaorY,52
|
21
25
|
praisonaiagents/process/process.py,sha256=gxhMXG3s4CzaREyuwE5zxCMx2Wp_b_Wd53tDfkj8Qk8,66567
|
22
26
|
praisonaiagents/task/__init__.py,sha256=VL5hXVmyGjINb34AalxpBMl-YW9m5EDcRkMTKkSSl7c,80
|
23
|
-
praisonaiagents/task/task.py,sha256=
|
27
|
+
praisonaiagents/task/task.py,sha256=imqJ8wzZzVyUSym2EyF2tC-vAsV1UdfI_P3YM5mqAiw,20786
|
24
28
|
praisonaiagents/tools/__init__.py,sha256=Rrgi7_3-yLHpfBB81WUi0-wD_wb_BsukwHVdjDYAF-0,9316
|
25
29
|
praisonaiagents/tools/arxiv_tools.py,sha256=1stb31zTjLTon4jCnpZG5de9rKc9QWgC0leLegvPXWo,10528
|
26
30
|
praisonaiagents/tools/calculator_tools.py,sha256=S1xPT74Geurvjm52QMMIG29zDXVEWJmM6nmyY7yF298,9571
|
@@ -33,6 +37,7 @@ praisonaiagents/tools/json_tools.py,sha256=ApUYNuQ1qnbmYNCxSlx6Tth_H1yo8mhWtZ7Rr
|
|
33
37
|
praisonaiagents/tools/newspaper_tools.py,sha256=NyhojNPeyULBGcAWGOT1X70qVkh3FgZrpH-S7PEmrwI,12667
|
34
38
|
praisonaiagents/tools/pandas_tools.py,sha256=yzCeY4jetKrFIRA15Tr5OQ5d94T8DaSpzglx2UiWfPs,11092
|
35
39
|
praisonaiagents/tools/python_tools.py,sha256=puqLANl5YaG1YG8ixkl_MgWayF7uj5iXUEE15UYwIZE,13513
|
40
|
+
praisonaiagents/tools/searxng_tools.py,sha256=LzxFenzGlSBxnckEPwtEZYemAkU8FUflbFbHf5IZE7o,3159
|
36
41
|
praisonaiagents/tools/shell_tools.py,sha256=6IlnFkNg04tVxQVM_fYgscIWLtcgIikpEi3olB1THuA,9431
|
37
42
|
praisonaiagents/tools/spider_tools.py,sha256=lrZnT1V1BC46We-AzBrDB1Ryifr3KKGmYNntMsScU7w,15094
|
38
43
|
praisonaiagents/tools/test.py,sha256=UHOTNrnMo0_H6I2g48re1WNZkrR7f6z25UnlWxiOSbM,1600
|
@@ -42,7 +47,7 @@ praisonaiagents/tools/xml_tools.py,sha256=iYTMBEk5l3L3ryQ1fkUnNVYK-Nnua2Kx2S0dxN
|
|
42
47
|
praisonaiagents/tools/yaml_tools.py,sha256=uogAZrhXV9O7xvspAtcTfpKSQYL2nlOTvCQXN94-G9A,14215
|
43
48
|
praisonaiagents/tools/yfinance_tools.py,sha256=s2PBj_1v7oQnOobo2fDbQBACEHl61ftG4beG6Z979ZE,8529
|
44
49
|
praisonaiagents/tools/train/data/generatecot.py,sha256=H6bNh-E2hqL5MW6kX3hqZ05g9ETKN2-kudSjiuU_SD8,19403
|
45
|
-
praisonaiagents-0.0.
|
46
|
-
praisonaiagents-0.0.
|
47
|
-
praisonaiagents-0.0.
|
48
|
-
praisonaiagents-0.0.
|
50
|
+
praisonaiagents-0.0.100.dist-info/METADATA,sha256=sP3J1zX6-LWPWRdLHRmy-Ca-ADgUxL3GR1-qsaiFO4Y,1453
|
51
|
+
praisonaiagents-0.0.100.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
52
|
+
praisonaiagents-0.0.100.dist-info/top_level.txt,sha256=_HsRddrJ23iDx5TTqVUVvXG2HeHBL5voshncAMDGjtA,16
|
53
|
+
praisonaiagents-0.0.100.dist-info/RECORD,,
|
File without changes
|
File without changes
|