praisonaiagents 0.0.157__py3-none-any.whl → 0.0.158__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- praisonaiagents/agent/agent.py +9 -9
- praisonaiagents/agent/context_agent.py +17 -17
- praisonaiagents/agent/router_agent.py +1 -1
- praisonaiagents/llm/llm.py +1 -1
- praisonaiagents/llm/model_capabilities.py +2 -2
- praisonaiagents/llm/model_router.py +1 -1
- praisonaiagents/llm/openai_client.py +9 -9
- praisonaiagents/mcp/mcp.py +4 -4
- praisonaiagents/memory/memory.py +2 -2
- praisonaiagents/task/task.py +1 -1
- praisonaiagents/tools/train/data/generatecot.py +1 -1
- {praisonaiagents-0.0.157.dist-info → praisonaiagents-0.0.158.dist-info}/METADATA +1 -1
- {praisonaiagents-0.0.157.dist-info → praisonaiagents-0.0.158.dist-info}/RECORD +15 -15
- {praisonaiagents-0.0.157.dist-info → praisonaiagents-0.0.158.dist-info}/WHEEL +0 -0
- {praisonaiagents-0.0.157.dist-info → praisonaiagents-0.0.158.dist-info}/top_level.txt +0 -0
praisonaiagents/agent/agent.py
CHANGED
@@ -716,7 +716,7 @@ Your Goal: {self.goal}
|
|
716
716
|
error=f"Agent guardrail validation error: {str(e)}"
|
717
717
|
)
|
718
718
|
|
719
|
-
def _apply_guardrail_with_retry(self, response_text, prompt, temperature=0
|
719
|
+
def _apply_guardrail_with_retry(self, response_text, prompt, temperature=1.0, tools=None, task_name=None, task_description=None, task_id=None):
|
720
720
|
"""Apply guardrail validation with retry logic.
|
721
721
|
|
722
722
|
Args:
|
@@ -859,7 +859,7 @@ Your Goal: {self.goal}"""
|
|
859
859
|
self._system_prompt_cache[cache_key] = system_prompt
|
860
860
|
return system_prompt
|
861
861
|
|
862
|
-
def _build_messages(self, prompt, temperature=0
|
862
|
+
def _build_messages(self, prompt, temperature=1.0, output_json=None, output_pydantic=None, tools=None):
|
863
863
|
"""Build messages list for chat completion.
|
864
864
|
|
865
865
|
Args:
|
@@ -1172,7 +1172,7 @@ Your Goal: {self.goal}"""
|
|
1172
1172
|
reasoning_steps=reasoning_steps
|
1173
1173
|
)
|
1174
1174
|
|
1175
|
-
def _chat_completion(self, messages, temperature=0
|
1175
|
+
def _chat_completion(self, messages, temperature=1.0, tools=None, stream=True, reasoning_steps=False, task_name=None, task_description=None, task_id=None):
|
1176
1176
|
start_time = time.time()
|
1177
1177
|
logging.debug(f"{self.name} sending messages to LLM: {messages}")
|
1178
1178
|
|
@@ -1336,7 +1336,7 @@ Your Goal: {self.goal}"""
|
|
1336
1336
|
# expand=False
|
1337
1337
|
# )
|
1338
1338
|
|
1339
|
-
def chat(self, prompt, temperature=0
|
1339
|
+
def chat(self, prompt, temperature=1.0, tools=None, output_json=None, output_pydantic=None, reasoning_steps=False, stream=None, task_name=None, task_description=None, task_id=None):
|
1340
1340
|
# Reset the final display flag for each new conversation
|
1341
1341
|
self._final_display_shown = False
|
1342
1342
|
|
@@ -1694,7 +1694,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
1694
1694
|
cleaned = cleaned[:-3].strip()
|
1695
1695
|
return cleaned
|
1696
1696
|
|
1697
|
-
async def achat(self, prompt: str, temperature=0
|
1697
|
+
async def achat(self, prompt: str, temperature=1.0, tools=None, output_json=None, output_pydantic=None, reasoning_steps=False, task_name=None, task_description=None, task_id=None):
|
1698
1698
|
"""Async version of chat method with self-reflection support."""
|
1699
1699
|
# Reset the final display flag for each new conversation
|
1700
1700
|
self._final_display_shown = False
|
@@ -2046,7 +2046,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
2046
2046
|
final_response = await self._openai_client.async_client.chat.completions.create(
|
2047
2047
|
model=self.llm,
|
2048
2048
|
messages=messages,
|
2049
|
-
temperature=0
|
2049
|
+
temperature=1.0,
|
2050
2050
|
stream=True
|
2051
2051
|
)
|
2052
2052
|
full_response_text = ""
|
@@ -2169,7 +2169,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
2169
2169
|
prompt=actual_prompt,
|
2170
2170
|
system_prompt=self._build_system_prompt(tool_param),
|
2171
2171
|
chat_history=self.chat_history,
|
2172
|
-
temperature=kwargs.get('temperature', 0
|
2172
|
+
temperature=kwargs.get('temperature', 1.0),
|
2173
2173
|
tools=tool_param,
|
2174
2174
|
output_json=kwargs.get('output_json'),
|
2175
2175
|
output_pydantic=kwargs.get('output_pydantic'),
|
@@ -2220,7 +2220,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
2220
2220
|
tool_param = tools
|
2221
2221
|
|
2222
2222
|
# Build messages using the helper method
|
2223
|
-
messages, original_prompt = self._build_messages(actual_prompt, kwargs.get('temperature', 0
|
2223
|
+
messages, original_prompt = self._build_messages(actual_prompt, kwargs.get('temperature', 1.0),
|
2224
2224
|
kwargs.get('output_json'), kwargs.get('output_pydantic'))
|
2225
2225
|
|
2226
2226
|
# Store chat history length for potential rollback
|
@@ -2249,7 +2249,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
2249
2249
|
completion_args = {
|
2250
2250
|
"model": self.llm,
|
2251
2251
|
"messages": messages,
|
2252
|
-
"temperature": kwargs.get('temperature', 0
|
2252
|
+
"temperature": kwargs.get('temperature', 1.0),
|
2253
2253
|
"stream": True
|
2254
2254
|
}
|
2255
2255
|
if formatted_tools:
|
@@ -434,7 +434,7 @@ This report contains all agent interactions and outputs from a complete ContextA
|
|
434
434
|
|
435
435
|
Provide comprehensive analysis that follows the PRD template principles and enables
|
436
436
|
AI assistants to implement features that perfectly match existing codebase patterns.""",
|
437
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
437
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
438
438
|
verbose=getattr(self, 'verbose', True)
|
439
439
|
)
|
440
440
|
|
@@ -515,7 +515,7 @@ codebase style and architecture following PRD template principles."""
|
|
515
515
|
role="Expert Manual Codebase Analysis Specialist",
|
516
516
|
goal="Perform comprehensive manual codebase analysis following PRD methodology",
|
517
517
|
instructions="""Analyze the codebase samples following PRD template methodology for complete understanding.""",
|
518
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
518
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
519
519
|
verbose=getattr(self, 'verbose', True)
|
520
520
|
)
|
521
521
|
|
@@ -566,7 +566,7 @@ Analyze following PRD principles to extract patterns, conventions, and architect
|
|
566
566
|
6. Design pattern implementations
|
567
567
|
7. Code complexity metrics
|
568
568
|
8. API and interface patterns""",
|
569
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
569
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
570
570
|
verbose=getattr(self, 'verbose', True)
|
571
571
|
)
|
572
572
|
|
@@ -624,7 +624,7 @@ Extract comprehensive patterns that follow PRD template principles for implement
|
|
624
624
|
|
625
625
|
For each pattern, provide the pattern name, where it's used, and how to replicate it
|
626
626
|
following PRD template principles.""",
|
627
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
627
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
628
628
|
verbose=getattr(self, 'verbose', True)
|
629
629
|
)
|
630
630
|
|
@@ -674,7 +674,7 @@ patterns and best practices for first-try success."""
|
|
674
674
|
goal="Analyze testing patterns for comprehensive validation framework design",
|
675
675
|
instructions="""Analyze testing patterns to understand validation approaches and create
|
676
676
|
comprehensive test frameworks following PRD methodology.""",
|
677
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
677
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
678
678
|
verbose=getattr(self, 'verbose', True)
|
679
679
|
)
|
680
680
|
|
@@ -801,7 +801,7 @@ Extract testing patterns for validation framework creation following PRD princip
|
|
801
801
|
Confidence level for one-pass implementation
|
802
802
|
|
803
803
|
Generate PRPs following this EXACT structure for first-try implementation success.""",
|
804
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
804
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
805
805
|
verbose=getattr(self, 'verbose', True)
|
806
806
|
)
|
807
807
|
|
@@ -850,7 +850,7 @@ on the first try following PRD template principles."""
|
|
850
850
|
6. CODE QUALITY: Complexity analysis, maintainability
|
851
851
|
7. DOCUMENTATION VALIDATION: Documentation completeness
|
852
852
|
8. DEPENDENCY VALIDATION: Dependency analysis and security""",
|
853
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
853
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
854
854
|
verbose=getattr(self, 'verbose', True)
|
855
855
|
)
|
856
856
|
|
@@ -897,7 +897,7 @@ following PRD template principles."""
|
|
897
897
|
instructions="""Compile all available documentation following PRD methodology including:
|
898
898
|
README files, API documentation, setup guides, architecture docs, and any other
|
899
899
|
relevant documentation that provides context for implementation.""",
|
900
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
900
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
901
901
|
verbose=getattr(self, 'verbose', True)
|
902
902
|
)
|
903
903
|
|
@@ -943,7 +943,7 @@ following PRD template principles."""
|
|
943
943
|
instructions="""Analyze integration points following PRD methodology including:
|
944
944
|
APIs, databases, external services, configuration points, and any other
|
945
945
|
integration requirements that affect implementation.""",
|
946
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
946
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
947
947
|
verbose=getattr(self, 'verbose', True)
|
948
948
|
)
|
949
949
|
|
@@ -1004,7 +1004,7 @@ following PRD template principles."""
|
|
1004
1004
|
8. DOCUMENTATION UPDATES: Documentation to create/update
|
1005
1005
|
9. INTEGRATION STEPS: How to integrate with existing systems
|
1006
1006
|
10. VALIDATION CHECKPOINTS: Validation steps at each phase""",
|
1007
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
1007
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
1008
1008
|
verbose=getattr(self, 'verbose', True)
|
1009
1009
|
)
|
1010
1010
|
|
@@ -1302,7 +1302,7 @@ Every agent interaction has been saved for full audit trail and reproducibility.
|
|
1302
1302
|
GOAL: [extracted implementation goal]
|
1303
1303
|
|
1304
1304
|
Be precise and extract only what is explicitly mentioned or clearly implied.""",
|
1305
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
1305
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
1306
1306
|
verbose=getattr(self, 'verbose', True)
|
1307
1307
|
)
|
1308
1308
|
|
@@ -1536,7 +1536,7 @@ Note: Detailed function/class metadata not available due to content access limit
|
|
1536
1536
|
5. Documentation topics
|
1537
1537
|
|
1538
1538
|
Make the output easy for a file selection agent to understand which files contain what functionality.""",
|
1539
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
1539
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
1540
1540
|
verbose=getattr(self, 'verbose', True)
|
1541
1541
|
)
|
1542
1542
|
|
@@ -1770,7 +1770,7 @@ Focus on creating clear, structured metadata that will help with intelligent fil
|
|
1770
1770
|
["README.md", "src/auth/login.py", "config/settings.py", ...]
|
1771
1771
|
|
1772
1772
|
Maximum 50 files for efficient analysis.""",
|
1773
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
1773
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
1774
1774
|
verbose=getattr(self, 'verbose', True)
|
1775
1775
|
)
|
1776
1776
|
|
@@ -1923,7 +1923,7 @@ Maximum 50 files.""".format(goal=goal)
|
|
1923
1923
|
8. EXAMPLES: Similar features that can guide {goal} implementation
|
1924
1924
|
|
1925
1925
|
Since these files were pre-selected for relevance, provide deep analysis of how each contributes to implementing: {goal}""",
|
1926
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
1926
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
1927
1927
|
verbose=getattr(self, 'verbose', True)
|
1928
1928
|
)
|
1929
1929
|
|
@@ -2024,7 +2024,7 @@ Since these files were pre-selected for relevance, explain how each contributes
|
|
2024
2024
|
- Success criteria for {goal}
|
2025
2025
|
|
2026
2026
|
Focus everything on successfully implementing: {goal}""",
|
2027
|
-
llm=self.llm if hasattr(self, 'llm') else "gpt-
|
2027
|
+
llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
|
2028
2028
|
verbose=getattr(self, 'verbose', True)
|
2029
2029
|
)
|
2030
2030
|
|
@@ -2303,13 +2303,13 @@ def create_context_agent(llm: Optional[Union[str, Any]] = None, **kwargs) -> Con
|
|
2303
2303
|
Factory function to create a ContextAgent following Context Engineering and PRD methodology.
|
2304
2304
|
|
2305
2305
|
Args:
|
2306
|
-
llm: Language model to use (e.g., "gpt-
|
2306
|
+
llm: Language model to use (e.g., "gpt-5-nano", "claude-3-haiku")
|
2307
2307
|
**kwargs: Additional arguments to pass to ContextAgent constructor
|
2308
2308
|
|
2309
2309
|
Returns:
|
2310
2310
|
ContextAgent: Configured ContextAgent for comprehensive context generation following PRD principles
|
2311
2311
|
"""
|
2312
2312
|
if llm is None:
|
2313
|
-
llm = "gpt-
|
2313
|
+
llm = "gpt-5-nano"
|
2314
2314
|
|
2315
2315
|
return ContextAgent(llm=llm, **kwargs)
|
@@ -44,7 +44,7 @@ class RouterAgent(Agent):
|
|
44
44
|
# Initialize model router
|
45
45
|
self.model_router = model_router or ModelRouter()
|
46
46
|
self.routing_strategy = routing_strategy
|
47
|
-
self.fallback_model = fallback_model or os.getenv('OPENAI_MODEL_NAME', 'gpt-
|
47
|
+
self.fallback_model = fallback_model or os.getenv('OPENAI_MODEL_NAME', 'gpt-5-nano')
|
48
48
|
|
49
49
|
# Process models configuration
|
50
50
|
self.available_models = self._process_models_config(models)
|
praisonaiagents/llm/llm.py
CHANGED
@@ -62,7 +62,7 @@ class LLM:
|
|
62
62
|
# OpenAI
|
63
63
|
"gpt-4": 6144, # 8,192 actual
|
64
64
|
"gpt-4o": 96000, # 128,000 actual
|
65
|
-
"gpt-
|
65
|
+
"gpt-5-nano": 96000, # 128,000 actual
|
66
66
|
"gpt-4-turbo": 96000, # 128,000 actual
|
67
67
|
"o1-preview": 96000, # 128,000 actual
|
68
68
|
"o1-mini": 96000, # 128,000 actual
|
@@ -7,7 +7,7 @@ This module defines which models support specific features like structured outpu
|
|
7
7
|
MODELS_SUPPORTING_STRUCTURED_OUTPUTS = {
|
8
8
|
# OpenAI models
|
9
9
|
"gpt-4o",
|
10
|
-
"gpt-
|
10
|
+
"gpt-5-nano",
|
11
11
|
"gpt-4-turbo",
|
12
12
|
"gpt-4-turbo-preview",
|
13
13
|
"gpt-4-turbo-2024-04-09",
|
@@ -46,7 +46,7 @@ MODELS_SUPPORTING_STRUCTURED_OUTPUTS = {
|
|
46
46
|
MODELS_NOT_SUPPORTING_STRUCTURED_OUTPUTS = {
|
47
47
|
# Audio preview models
|
48
48
|
"gpt-4o-audio-preview",
|
49
|
-
"gpt-
|
49
|
+
"gpt-5-nano-audio-preview",
|
50
50
|
|
51
51
|
# Legacy o1 models (don't support system messages either)
|
52
52
|
"o1-preview-2024-09-12",
|
@@ -51,7 +51,7 @@ class ModelRouter:
|
|
51
51
|
DEFAULT_MODELS = [
|
52
52
|
# Lightweight/cheap models for simple tasks
|
53
53
|
ModelProfile(
|
54
|
-
name="gpt-
|
54
|
+
name="gpt-5-nano",
|
55
55
|
provider="openai",
|
56
56
|
complexity_range=(TaskComplexity.SIMPLE, TaskComplexity.MODERATE),
|
57
57
|
cost_per_1k_tokens=0.00075, # Average of $0.00015 input, $0.0006 output
|
@@ -567,7 +567,7 @@ class OpenAIClient:
|
|
567
567
|
self,
|
568
568
|
messages: List[Dict],
|
569
569
|
model: str,
|
570
|
-
temperature: float = 0
|
570
|
+
temperature: float = 1.0,
|
571
571
|
tools: Optional[List[Dict]] = None,
|
572
572
|
start_time: Optional[float] = None,
|
573
573
|
console: Optional[Console] = None,
|
@@ -654,7 +654,7 @@ class OpenAIClient:
|
|
654
654
|
self,
|
655
655
|
messages: List[Dict],
|
656
656
|
model: str,
|
657
|
-
temperature: float = 0
|
657
|
+
temperature: float = 1.0,
|
658
658
|
tools: Optional[List[Dict]] = None,
|
659
659
|
start_time: Optional[float] = None,
|
660
660
|
console: Optional[Console] = None,
|
@@ -741,7 +741,7 @@ class OpenAIClient:
|
|
741
741
|
self,
|
742
742
|
messages: List[Dict[str, Any]],
|
743
743
|
model: str = "gpt-4o",
|
744
|
-
temperature: float = 0
|
744
|
+
temperature: float = 1.0,
|
745
745
|
stream: bool = False,
|
746
746
|
tools: Optional[List[Dict[str, Any]]] = None,
|
747
747
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
@@ -786,7 +786,7 @@ class OpenAIClient:
|
|
786
786
|
self,
|
787
787
|
messages: List[Dict[str, Any]],
|
788
788
|
model: str = "gpt-4o",
|
789
|
-
temperature: float = 0
|
789
|
+
temperature: float = 1.0,
|
790
790
|
stream: bool = False,
|
791
791
|
tools: Optional[List[Dict[str, Any]]] = None,
|
792
792
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
@@ -831,7 +831,7 @@ class OpenAIClient:
|
|
831
831
|
self,
|
832
832
|
messages: List[Dict[str, Any]],
|
833
833
|
model: str = "gpt-4o",
|
834
|
-
temperature: float = 0
|
834
|
+
temperature: float = 1.0,
|
835
835
|
tools: Optional[List[Any]] = None,
|
836
836
|
execute_tool_fn: Optional[Callable] = None,
|
837
837
|
stream: bool = True,
|
@@ -1009,7 +1009,7 @@ class OpenAIClient:
|
|
1009
1009
|
self,
|
1010
1010
|
messages: List[Dict[str, Any]],
|
1011
1011
|
model: str = "gpt-4o",
|
1012
|
-
temperature: float = 0
|
1012
|
+
temperature: float = 1.0,
|
1013
1013
|
tools: Optional[List[Any]] = None,
|
1014
1014
|
execute_tool_fn: Optional[Callable] = None,
|
1015
1015
|
stream: bool = True,
|
@@ -1190,7 +1190,7 @@ class OpenAIClient:
|
|
1190
1190
|
self,
|
1191
1191
|
messages: List[Dict[str, Any]],
|
1192
1192
|
model: str = "gpt-4o",
|
1193
|
-
temperature: float = 0
|
1193
|
+
temperature: float = 1.0,
|
1194
1194
|
tools: Optional[List[Any]] = None,
|
1195
1195
|
execute_tool_fn: Optional[Callable] = None,
|
1196
1196
|
reasoning_steps: bool = False,
|
@@ -1335,7 +1335,7 @@ class OpenAIClient:
|
|
1335
1335
|
messages: List[Dict[str, Any]],
|
1336
1336
|
response_format: BaseModel,
|
1337
1337
|
model: str = "gpt-4o",
|
1338
|
-
temperature: float = 0
|
1338
|
+
temperature: float = 1.0,
|
1339
1339
|
**kwargs
|
1340
1340
|
) -> Any:
|
1341
1341
|
"""
|
@@ -1369,7 +1369,7 @@ class OpenAIClient:
|
|
1369
1369
|
messages: List[Dict[str, Any]],
|
1370
1370
|
response_format: BaseModel,
|
1371
1371
|
model: str = "gpt-4o",
|
1372
|
-
temperature: float = 0
|
1372
|
+
temperature: float = 1.0,
|
1373
1373
|
**kwargs
|
1374
1374
|
) -> Any:
|
1375
1375
|
"""
|
praisonaiagents/mcp/mcp.py
CHANGED
@@ -155,7 +155,7 @@ class MCP:
|
|
155
155
|
# Method 1: Using command and args separately
|
156
156
|
agent = Agent(
|
157
157
|
instructions="You are a helpful assistant...",
|
158
|
-
llm="gpt-
|
158
|
+
llm="gpt-5-nano",
|
159
159
|
tools=MCP(
|
160
160
|
command="/path/to/python",
|
161
161
|
args=["/path/to/app.py"]
|
@@ -165,14 +165,14 @@ class MCP:
|
|
165
165
|
# Method 2: Using a single command string
|
166
166
|
agent = Agent(
|
167
167
|
instructions="You are a helpful assistant...",
|
168
|
-
llm="gpt-
|
168
|
+
llm="gpt-5-nano",
|
169
169
|
tools=MCP("/path/to/python /path/to/app.py")
|
170
170
|
)
|
171
171
|
|
172
172
|
# Method 3: Using an SSE endpoint
|
173
173
|
agent = Agent(
|
174
174
|
instructions="You are a helpful assistant...",
|
175
|
-
llm="gpt-
|
175
|
+
llm="gpt-5-nano",
|
176
176
|
tools=MCP("http://localhost:8080/sse")
|
177
177
|
)
|
178
178
|
|
@@ -514,7 +514,7 @@ class MCP:
|
|
514
514
|
"""Convert the MCP tool to an OpenAI-compatible tool definition.
|
515
515
|
|
516
516
|
This method is specifically invoked by the Agent class when using
|
517
|
-
provider/model format (e.g., "openai/gpt-
|
517
|
+
provider/model format (e.g., "openai/gpt-5-nano").
|
518
518
|
|
519
519
|
Returns:
|
520
520
|
dict or list: OpenAI-compatible tool definition(s)
|
praisonaiagents/memory/memory.py
CHANGED
@@ -1442,7 +1442,7 @@ class Memory:
|
|
1442
1442
|
import litellm
|
1443
1443
|
|
1444
1444
|
# Convert model name if it's in litellm format
|
1445
|
-
model_name = llm or "gpt-
|
1445
|
+
model_name = llm or "gpt-5-nano"
|
1446
1446
|
|
1447
1447
|
response = litellm.completion(
|
1448
1448
|
model=model_name,
|
@@ -1459,7 +1459,7 @@ class Memory:
|
|
1459
1459
|
client = OpenAI()
|
1460
1460
|
|
1461
1461
|
response = client.chat.completions.create(
|
1462
|
-
model=llm or "gpt-
|
1462
|
+
model=llm or "gpt-5-nano",
|
1463
1463
|
messages=[{
|
1464
1464
|
"role": "user",
|
1465
1465
|
"content": custom_prompt or default_prompt
|
praisonaiagents/task/task.py
CHANGED
@@ -322,7 +322,7 @@ class Task:
|
|
322
322
|
if hasattr(self.agent.llm_instance, 'model'):
|
323
323
|
llm_model = self.agent.llm_instance.model
|
324
324
|
else:
|
325
|
-
llm_model = "gpt-
|
325
|
+
llm_model = "gpt-5-nano" # Default fallback
|
326
326
|
elif hasattr(self.agent, 'llm') and self.agent.llm:
|
327
327
|
# For standard model strings
|
328
328
|
llm_model = self.agent.llm
|
@@ -6,11 +6,11 @@ praisonaiagents/flow_display.py,sha256=E84J_H3h8L-AqL_F1JzEUInQYdjmIEuNL1LZr4__H
|
|
6
6
|
praisonaiagents/main.py,sha256=NuAmE-ZrH4X0O9ysNA2AfxEQ8APPssO_ZR_f7h97QOo,17370
|
7
7
|
praisonaiagents/session.py,sha256=FHWButPBaFGA4x1U_2gImroQChHnFy231_aAa_n5KOQ,20364
|
8
8
|
praisonaiagents/agent/__init__.py,sha256=KBqW_augD-HcaV3FL88gUmhDCpwnSTavGENi7RqneTo,505
|
9
|
-
praisonaiagents/agent/agent.py,sha256=
|
10
|
-
praisonaiagents/agent/context_agent.py,sha256=
|
9
|
+
praisonaiagents/agent/agent.py,sha256=7XOTEEfxqL55Ps9n-fbjhD9GwS0NRg57GSQbEBQe-ug,148240
|
10
|
+
praisonaiagents/agent/context_agent.py,sha256=sv2zJuxrzdyV5ZhOwbGTxvSGSJNCJbL_cr4HBWejEYs,107472
|
11
11
|
praisonaiagents/agent/handoff.py,sha256=Saq0chqfvC6Zf5UbXvmctybbehqnotrXn72JsS-76Q0,13099
|
12
12
|
praisonaiagents/agent/image_agent.py,sha256=xKDhW8T1Y3e15lQpY6N2pdvBNJmAoWDibJa4BYa-Njs,10205
|
13
|
-
praisonaiagents/agent/router_agent.py,sha256=
|
13
|
+
praisonaiagents/agent/router_agent.py,sha256=QT-ii5yw_PlxiwC7g9QTBQui4-qMuL-S8Jslv3SILuU,12712
|
14
14
|
praisonaiagents/agents/__init__.py,sha256=_1d6Pqyk9EoBSo7E68sKyd1jDRlN1vxvVIRpoMc0Jcw,168
|
15
15
|
praisonaiagents/agents/agents.py,sha256=sGXnRwBa49DhL7jMDE12IRcstpEg-QrkNyXw0K8BiRU,70995
|
16
16
|
praisonaiagents/agents/autoagents.py,sha256=v5pJfTgHnFzG5K2gHwfRA0nZ7Ikptir6hUNvOZ--E44,20777
|
@@ -21,20 +21,20 @@ praisonaiagents/knowledge/__init__.py,sha256=xL1Eh-a3xsHyIcU4foOWF-JdWYIYBALJH9b
|
|
21
21
|
praisonaiagents/knowledge/chunking.py,sha256=G6wyHa7_8V0_7VpnrrUXbEmUmptlT16ISJYaxmkSgmU,7678
|
22
22
|
praisonaiagents/knowledge/knowledge.py,sha256=tog38b0SjFMoLuFBo0M1zHl9Dzzxa9YRv9FO7OZSpns,30587
|
23
23
|
praisonaiagents/llm/__init__.py,sha256=SqdU1pRqPrR6jZeWYyDeTvmZKCACywk0v4P0k5Fuowk,1107
|
24
|
-
praisonaiagents/llm/llm.py,sha256=
|
25
|
-
praisonaiagents/llm/model_capabilities.py,sha256=
|
26
|
-
praisonaiagents/llm/model_router.py,sha256=
|
27
|
-
praisonaiagents/llm/openai_client.py,sha256=
|
24
|
+
praisonaiagents/llm/llm.py,sha256=zGklQ7KHV9PKkuUwhf-9QrIFyaNyslT7rTJlfzDtrIA,184238
|
25
|
+
praisonaiagents/llm/model_capabilities.py,sha256=C3VeXP5RZCSOh_UsPzI2Iq-AWjjECSjLOF0sgZbMKAg,3965
|
26
|
+
praisonaiagents/llm/model_router.py,sha256=1DNBgTK7kM_YhN_B75ZMef24vGycPtFoVmaI_mMoO7w,13994
|
27
|
+
praisonaiagents/llm/openai_client.py,sha256=VSGRv-eSQgt-DCBhwnYX6lUXPeWrMOwBQY9xF4CIh3s,59882
|
28
28
|
praisonaiagents/mcp/__init__.py,sha256=ibbqe3_7XB7VrIcUcetkZiUZS1fTVvyMy_AqCSFG8qc,240
|
29
|
-
praisonaiagents/mcp/mcp.py,sha256=
|
29
|
+
praisonaiagents/mcp/mcp.py,sha256=9aHtTlfC90qItdL3eZlbgLzhqXVlUBvnKSTMzNRBP0M,23260
|
30
30
|
praisonaiagents/mcp/mcp_http_stream.py,sha256=TDFWMJMo8VqLXtXCW73REpmkU3t9n7CAGMa9b4dhI-c,23366
|
31
31
|
praisonaiagents/mcp/mcp_sse.py,sha256=KO10tAgZ5vSKeRhkJIZcdJ0ZmhRybS39i1KybWt4D7M,9128
|
32
32
|
praisonaiagents/memory/__init__.py,sha256=aEFdhgtTqDdMhc_JCWM-f4XI9cZIj7Wz5g_MUa-0amg,397
|
33
|
-
praisonaiagents/memory/memory.py,sha256=
|
33
|
+
praisonaiagents/memory/memory.py,sha256=8DEYUbipWjW3e2CrescrMT6w4rhkPvb-PmvLrgnHJX8,65114
|
34
34
|
praisonaiagents/process/__init__.py,sha256=lkYbL7Hn5a0ldvJtkdH23vfIIZLIcanK-65C0MwaorY,52
|
35
35
|
praisonaiagents/process/process.py,sha256=wXKZ2Z26vB9osmVbD5xqkUlUQRvWEpvL8j9hiuiHrQ0,78246
|
36
36
|
praisonaiagents/task/__init__.py,sha256=VL5hXVmyGjINb34AalxpBMl-YW9m5EDcRkMTKkSSl7c,80
|
37
|
-
praisonaiagents/task/task.py,sha256=
|
37
|
+
praisonaiagents/task/task.py,sha256=y_7DwLbdexqimfpQIFh-IaLWSsPb85jHQiAx1fun3J4,24202
|
38
38
|
praisonaiagents/telemetry/__init__.py,sha256=HtJxYIPPsYpE92CE4zpyrzYMIy5qxVIxkw_2GCgUq_k,6483
|
39
39
|
praisonaiagents/telemetry/integration.py,sha256=nhLkp8AnitKlumMxQj8aNt5DkoeKukPA6u6bHbsk8wA,23205
|
40
40
|
praisonaiagents/telemetry/performance_cli.py,sha256=8OGeqqE5yAQk1mAqz2fYCd6VeNPLRlUM9oTkJA6ge-E,15456
|
@@ -66,8 +66,8 @@ praisonaiagents/tools/wikipedia_tools.py,sha256=pGko-f33wqXgxJTv8db7TbizY5XnzBQR
|
|
66
66
|
praisonaiagents/tools/xml_tools.py,sha256=iYTMBEk5l3L3ryQ1fkUnNVYK-Nnua2Kx2S0dxNMMs1A,17122
|
67
67
|
praisonaiagents/tools/yaml_tools.py,sha256=uogAZrhXV9O7xvspAtcTfpKSQYL2nlOTvCQXN94-G9A,14215
|
68
68
|
praisonaiagents/tools/yfinance_tools.py,sha256=s2PBj_1v7oQnOobo2fDbQBACEHl61ftG4beG6Z979ZE,8529
|
69
|
-
praisonaiagents/tools/train/data/generatecot.py,sha256=
|
70
|
-
praisonaiagents-0.0.
|
71
|
-
praisonaiagents-0.0.
|
72
|
-
praisonaiagents-0.0.
|
73
|
-
praisonaiagents-0.0.
|
69
|
+
praisonaiagents/tools/train/data/generatecot.py,sha256=8yacncfYgIbPPwOROp9EGVV0FTKD8tiRu5TDIPnQf38,19402
|
70
|
+
praisonaiagents-0.0.158.dist-info/METADATA,sha256=4JfTMaavglQTAfgEcONvyF_lRVydk6YDEM95WvWsthU,2146
|
71
|
+
praisonaiagents-0.0.158.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
72
|
+
praisonaiagents-0.0.158.dist-info/top_level.txt,sha256=_HsRddrJ23iDx5TTqVUVvXG2HeHBL5voshncAMDGjtA,16
|
73
|
+
praisonaiagents-0.0.158.dist-info/RECORD,,
|
File without changes
|
File without changes
|