praisonaiagents 0.0.157__py3-none-any.whl → 0.0.158__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -716,7 +716,7 @@ Your Goal: {self.goal}
716
716
  error=f"Agent guardrail validation error: {str(e)}"
717
717
  )
718
718
 
719
- def _apply_guardrail_with_retry(self, response_text, prompt, temperature=0.2, tools=None, task_name=None, task_description=None, task_id=None):
719
+ def _apply_guardrail_with_retry(self, response_text, prompt, temperature=1.0, tools=None, task_name=None, task_description=None, task_id=None):
720
720
  """Apply guardrail validation with retry logic.
721
721
 
722
722
  Args:
@@ -859,7 +859,7 @@ Your Goal: {self.goal}"""
859
859
  self._system_prompt_cache[cache_key] = system_prompt
860
860
  return system_prompt
861
861
 
862
- def _build_messages(self, prompt, temperature=0.2, output_json=None, output_pydantic=None, tools=None):
862
+ def _build_messages(self, prompt, temperature=1.0, output_json=None, output_pydantic=None, tools=None):
863
863
  """Build messages list for chat completion.
864
864
 
865
865
  Args:
@@ -1172,7 +1172,7 @@ Your Goal: {self.goal}"""
1172
1172
  reasoning_steps=reasoning_steps
1173
1173
  )
1174
1174
 
1175
- def _chat_completion(self, messages, temperature=0.2, tools=None, stream=True, reasoning_steps=False, task_name=None, task_description=None, task_id=None):
1175
+ def _chat_completion(self, messages, temperature=1.0, tools=None, stream=True, reasoning_steps=False, task_name=None, task_description=None, task_id=None):
1176
1176
  start_time = time.time()
1177
1177
  logging.debug(f"{self.name} sending messages to LLM: {messages}")
1178
1178
 
@@ -1336,7 +1336,7 @@ Your Goal: {self.goal}"""
1336
1336
  # expand=False
1337
1337
  # )
1338
1338
 
1339
- def chat(self, prompt, temperature=0.2, tools=None, output_json=None, output_pydantic=None, reasoning_steps=False, stream=None, task_name=None, task_description=None, task_id=None):
1339
+ def chat(self, prompt, temperature=1.0, tools=None, output_json=None, output_pydantic=None, reasoning_steps=False, stream=None, task_name=None, task_description=None, task_id=None):
1340
1340
  # Reset the final display flag for each new conversation
1341
1341
  self._final_display_shown = False
1342
1342
 
@@ -1694,7 +1694,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
1694
1694
  cleaned = cleaned[:-3].strip()
1695
1695
  return cleaned
1696
1696
 
1697
- async def achat(self, prompt: str, temperature=0.2, tools=None, output_json=None, output_pydantic=None, reasoning_steps=False, task_name=None, task_description=None, task_id=None):
1697
+ async def achat(self, prompt: str, temperature=1.0, tools=None, output_json=None, output_pydantic=None, reasoning_steps=False, task_name=None, task_description=None, task_id=None):
1698
1698
  """Async version of chat method with self-reflection support."""
1699
1699
  # Reset the final display flag for each new conversation
1700
1700
  self._final_display_shown = False
@@ -2046,7 +2046,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
2046
2046
  final_response = await self._openai_client.async_client.chat.completions.create(
2047
2047
  model=self.llm,
2048
2048
  messages=messages,
2049
- temperature=0.2,
2049
+ temperature=1.0,
2050
2050
  stream=True
2051
2051
  )
2052
2052
  full_response_text = ""
@@ -2169,7 +2169,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
2169
2169
  prompt=actual_prompt,
2170
2170
  system_prompt=self._build_system_prompt(tool_param),
2171
2171
  chat_history=self.chat_history,
2172
- temperature=kwargs.get('temperature', 0.2),
2172
+ temperature=kwargs.get('temperature', 1.0),
2173
2173
  tools=tool_param,
2174
2174
  output_json=kwargs.get('output_json'),
2175
2175
  output_pydantic=kwargs.get('output_pydantic'),
@@ -2220,7 +2220,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
2220
2220
  tool_param = tools
2221
2221
 
2222
2222
  # Build messages using the helper method
2223
- messages, original_prompt = self._build_messages(actual_prompt, kwargs.get('temperature', 0.2),
2223
+ messages, original_prompt = self._build_messages(actual_prompt, kwargs.get('temperature', 1.0),
2224
2224
  kwargs.get('output_json'), kwargs.get('output_pydantic'))
2225
2225
 
2226
2226
  # Store chat history length for potential rollback
@@ -2249,7 +2249,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
2249
2249
  completion_args = {
2250
2250
  "model": self.llm,
2251
2251
  "messages": messages,
2252
- "temperature": kwargs.get('temperature', 0.2),
2252
+ "temperature": kwargs.get('temperature', 1.0),
2253
2253
  "stream": True
2254
2254
  }
2255
2255
  if formatted_tools:
@@ -434,7 +434,7 @@ This report contains all agent interactions and outputs from a complete ContextA
434
434
 
435
435
  Provide comprehensive analysis that follows the PRD template principles and enables
436
436
  AI assistants to implement features that perfectly match existing codebase patterns.""",
437
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
437
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
438
438
  verbose=getattr(self, 'verbose', True)
439
439
  )
440
440
 
@@ -515,7 +515,7 @@ codebase style and architecture following PRD template principles."""
515
515
  role="Expert Manual Codebase Analysis Specialist",
516
516
  goal="Perform comprehensive manual codebase analysis following PRD methodology",
517
517
  instructions="""Analyze the codebase samples following PRD template methodology for complete understanding.""",
518
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
518
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
519
519
  verbose=getattr(self, 'verbose', True)
520
520
  )
521
521
 
@@ -566,7 +566,7 @@ Analyze following PRD principles to extract patterns, conventions, and architect
566
566
  6. Design pattern implementations
567
567
  7. Code complexity metrics
568
568
  8. API and interface patterns""",
569
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
569
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
570
570
  verbose=getattr(self, 'verbose', True)
571
571
  )
572
572
 
@@ -624,7 +624,7 @@ Extract comprehensive patterns that follow PRD template principles for implement
624
624
 
625
625
  For each pattern, provide the pattern name, where it's used, and how to replicate it
626
626
  following PRD template principles.""",
627
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
627
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
628
628
  verbose=getattr(self, 'verbose', True)
629
629
  )
630
630
 
@@ -674,7 +674,7 @@ patterns and best practices for first-try success."""
674
674
  goal="Analyze testing patterns for comprehensive validation framework design",
675
675
  instructions="""Analyze testing patterns to understand validation approaches and create
676
676
  comprehensive test frameworks following PRD methodology.""",
677
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
677
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
678
678
  verbose=getattr(self, 'verbose', True)
679
679
  )
680
680
 
@@ -801,7 +801,7 @@ Extract testing patterns for validation framework creation following PRD princip
801
801
  Confidence level for one-pass implementation
802
802
 
803
803
  Generate PRPs following this EXACT structure for first-try implementation success.""",
804
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
804
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
805
805
  verbose=getattr(self, 'verbose', True)
806
806
  )
807
807
 
@@ -850,7 +850,7 @@ on the first try following PRD template principles."""
850
850
  6. CODE QUALITY: Complexity analysis, maintainability
851
851
  7. DOCUMENTATION VALIDATION: Documentation completeness
852
852
  8. DEPENDENCY VALIDATION: Dependency analysis and security""",
853
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
853
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
854
854
  verbose=getattr(self, 'verbose', True)
855
855
  )
856
856
 
@@ -897,7 +897,7 @@ following PRD template principles."""
897
897
  instructions="""Compile all available documentation following PRD methodology including:
898
898
  README files, API documentation, setup guides, architecture docs, and any other
899
899
  relevant documentation that provides context for implementation.""",
900
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
900
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
901
901
  verbose=getattr(self, 'verbose', True)
902
902
  )
903
903
 
@@ -943,7 +943,7 @@ following PRD template principles."""
943
943
  instructions="""Analyze integration points following PRD methodology including:
944
944
  APIs, databases, external services, configuration points, and any other
945
945
  integration requirements that affect implementation.""",
946
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
946
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
947
947
  verbose=getattr(self, 'verbose', True)
948
948
  )
949
949
 
@@ -1004,7 +1004,7 @@ following PRD template principles."""
1004
1004
  8. DOCUMENTATION UPDATES: Documentation to create/update
1005
1005
  9. INTEGRATION STEPS: How to integrate with existing systems
1006
1006
  10. VALIDATION CHECKPOINTS: Validation steps at each phase""",
1007
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
1007
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
1008
1008
  verbose=getattr(self, 'verbose', True)
1009
1009
  )
1010
1010
 
@@ -1302,7 +1302,7 @@ Every agent interaction has been saved for full audit trail and reproducibility.
1302
1302
  GOAL: [extracted implementation goal]
1303
1303
 
1304
1304
  Be precise and extract only what is explicitly mentioned or clearly implied.""",
1305
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
1305
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
1306
1306
  verbose=getattr(self, 'verbose', True)
1307
1307
  )
1308
1308
 
@@ -1536,7 +1536,7 @@ Note: Detailed function/class metadata not available due to content access limit
1536
1536
  5. Documentation topics
1537
1537
 
1538
1538
  Make the output easy for a file selection agent to understand which files contain what functionality.""",
1539
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
1539
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
1540
1540
  verbose=getattr(self, 'verbose', True)
1541
1541
  )
1542
1542
 
@@ -1770,7 +1770,7 @@ Focus on creating clear, structured metadata that will help with intelligent fil
1770
1770
  ["README.md", "src/auth/login.py", "config/settings.py", ...]
1771
1771
 
1772
1772
  Maximum 50 files for efficient analysis.""",
1773
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
1773
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
1774
1774
  verbose=getattr(self, 'verbose', True)
1775
1775
  )
1776
1776
 
@@ -1923,7 +1923,7 @@ Maximum 50 files.""".format(goal=goal)
1923
1923
  8. EXAMPLES: Similar features that can guide {goal} implementation
1924
1924
 
1925
1925
  Since these files were pre-selected for relevance, provide deep analysis of how each contributes to implementing: {goal}""",
1926
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
1926
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
1927
1927
  verbose=getattr(self, 'verbose', True)
1928
1928
  )
1929
1929
 
@@ -2024,7 +2024,7 @@ Since these files were pre-selected for relevance, explain how each contributes
2024
2024
  - Success criteria for {goal}
2025
2025
 
2026
2026
  Focus everything on successfully implementing: {goal}""",
2027
- llm=self.llm if hasattr(self, 'llm') else "gpt-4o-mini",
2027
+ llm=self.llm if hasattr(self, 'llm') else "gpt-5-nano",
2028
2028
  verbose=getattr(self, 'verbose', True)
2029
2029
  )
2030
2030
 
@@ -2303,13 +2303,13 @@ def create_context_agent(llm: Optional[Union[str, Any]] = None, **kwargs) -> Con
2303
2303
  Factory function to create a ContextAgent following Context Engineering and PRD methodology.
2304
2304
 
2305
2305
  Args:
2306
- llm: Language model to use (e.g., "gpt-4o-mini", "claude-3-haiku")
2306
+ llm: Language model to use (e.g., "gpt-5-nano", "claude-3-haiku")
2307
2307
  **kwargs: Additional arguments to pass to ContextAgent constructor
2308
2308
 
2309
2309
  Returns:
2310
2310
  ContextAgent: Configured ContextAgent for comprehensive context generation following PRD principles
2311
2311
  """
2312
2312
  if llm is None:
2313
- llm = "gpt-4o-mini"
2313
+ llm = "gpt-5-nano"
2314
2314
 
2315
2315
  return ContextAgent(llm=llm, **kwargs)
@@ -44,7 +44,7 @@ class RouterAgent(Agent):
44
44
  # Initialize model router
45
45
  self.model_router = model_router or ModelRouter()
46
46
  self.routing_strategy = routing_strategy
47
- self.fallback_model = fallback_model or os.getenv('OPENAI_MODEL_NAME', 'gpt-4o-mini')
47
+ self.fallback_model = fallback_model or os.getenv('OPENAI_MODEL_NAME', 'gpt-5-nano')
48
48
 
49
49
  # Process models configuration
50
50
  self.available_models = self._process_models_config(models)
@@ -62,7 +62,7 @@ class LLM:
62
62
  # OpenAI
63
63
  "gpt-4": 6144, # 8,192 actual
64
64
  "gpt-4o": 96000, # 128,000 actual
65
- "gpt-4o-mini": 96000, # 128,000 actual
65
+ "gpt-5-nano": 96000, # 128,000 actual
66
66
  "gpt-4-turbo": 96000, # 128,000 actual
67
67
  "o1-preview": 96000, # 128,000 actual
68
68
  "o1-mini": 96000, # 128,000 actual
@@ -7,7 +7,7 @@ This module defines which models support specific features like structured outpu
7
7
  MODELS_SUPPORTING_STRUCTURED_OUTPUTS = {
8
8
  # OpenAI models
9
9
  "gpt-4o",
10
- "gpt-4o-mini",
10
+ "gpt-5-nano",
11
11
  "gpt-4-turbo",
12
12
  "gpt-4-turbo-preview",
13
13
  "gpt-4-turbo-2024-04-09",
@@ -46,7 +46,7 @@ MODELS_SUPPORTING_STRUCTURED_OUTPUTS = {
46
46
  MODELS_NOT_SUPPORTING_STRUCTURED_OUTPUTS = {
47
47
  # Audio preview models
48
48
  "gpt-4o-audio-preview",
49
- "gpt-4o-mini-audio-preview",
49
+ "gpt-5-nano-audio-preview",
50
50
 
51
51
  # Legacy o1 models (don't support system messages either)
52
52
  "o1-preview-2024-09-12",
@@ -51,7 +51,7 @@ class ModelRouter:
51
51
  DEFAULT_MODELS = [
52
52
  # Lightweight/cheap models for simple tasks
53
53
  ModelProfile(
54
- name="gpt-4o-mini",
54
+ name="gpt-5-nano",
55
55
  provider="openai",
56
56
  complexity_range=(TaskComplexity.SIMPLE, TaskComplexity.MODERATE),
57
57
  cost_per_1k_tokens=0.00075, # Average of $0.00015 input, $0.0006 output
@@ -567,7 +567,7 @@ class OpenAIClient:
567
567
  self,
568
568
  messages: List[Dict],
569
569
  model: str,
570
- temperature: float = 0.7,
570
+ temperature: float = 1.0,
571
571
  tools: Optional[List[Dict]] = None,
572
572
  start_time: Optional[float] = None,
573
573
  console: Optional[Console] = None,
@@ -654,7 +654,7 @@ class OpenAIClient:
654
654
  self,
655
655
  messages: List[Dict],
656
656
  model: str,
657
- temperature: float = 0.7,
657
+ temperature: float = 1.0,
658
658
  tools: Optional[List[Dict]] = None,
659
659
  start_time: Optional[float] = None,
660
660
  console: Optional[Console] = None,
@@ -741,7 +741,7 @@ class OpenAIClient:
741
741
  self,
742
742
  messages: List[Dict[str, Any]],
743
743
  model: str = "gpt-4o",
744
- temperature: float = 0.7,
744
+ temperature: float = 1.0,
745
745
  stream: bool = False,
746
746
  tools: Optional[List[Dict[str, Any]]] = None,
747
747
  tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
@@ -786,7 +786,7 @@ class OpenAIClient:
786
786
  self,
787
787
  messages: List[Dict[str, Any]],
788
788
  model: str = "gpt-4o",
789
- temperature: float = 0.7,
789
+ temperature: float = 1.0,
790
790
  stream: bool = False,
791
791
  tools: Optional[List[Dict[str, Any]]] = None,
792
792
  tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
@@ -831,7 +831,7 @@ class OpenAIClient:
831
831
  self,
832
832
  messages: List[Dict[str, Any]],
833
833
  model: str = "gpt-4o",
834
- temperature: float = 0.7,
834
+ temperature: float = 1.0,
835
835
  tools: Optional[List[Any]] = None,
836
836
  execute_tool_fn: Optional[Callable] = None,
837
837
  stream: bool = True,
@@ -1009,7 +1009,7 @@ class OpenAIClient:
1009
1009
  self,
1010
1010
  messages: List[Dict[str, Any]],
1011
1011
  model: str = "gpt-4o",
1012
- temperature: float = 0.7,
1012
+ temperature: float = 1.0,
1013
1013
  tools: Optional[List[Any]] = None,
1014
1014
  execute_tool_fn: Optional[Callable] = None,
1015
1015
  stream: bool = True,
@@ -1190,7 +1190,7 @@ class OpenAIClient:
1190
1190
  self,
1191
1191
  messages: List[Dict[str, Any]],
1192
1192
  model: str = "gpt-4o",
1193
- temperature: float = 0.7,
1193
+ temperature: float = 1.0,
1194
1194
  tools: Optional[List[Any]] = None,
1195
1195
  execute_tool_fn: Optional[Callable] = None,
1196
1196
  reasoning_steps: bool = False,
@@ -1335,7 +1335,7 @@ class OpenAIClient:
1335
1335
  messages: List[Dict[str, Any]],
1336
1336
  response_format: BaseModel,
1337
1337
  model: str = "gpt-4o",
1338
- temperature: float = 0.7,
1338
+ temperature: float = 1.0,
1339
1339
  **kwargs
1340
1340
  ) -> Any:
1341
1341
  """
@@ -1369,7 +1369,7 @@ class OpenAIClient:
1369
1369
  messages: List[Dict[str, Any]],
1370
1370
  response_format: BaseModel,
1371
1371
  model: str = "gpt-4o",
1372
- temperature: float = 0.7,
1372
+ temperature: float = 1.0,
1373
1373
  **kwargs
1374
1374
  ) -> Any:
1375
1375
  """
@@ -155,7 +155,7 @@ class MCP:
155
155
  # Method 1: Using command and args separately
156
156
  agent = Agent(
157
157
  instructions="You are a helpful assistant...",
158
- llm="gpt-4o-mini",
158
+ llm="gpt-5-nano",
159
159
  tools=MCP(
160
160
  command="/path/to/python",
161
161
  args=["/path/to/app.py"]
@@ -165,14 +165,14 @@ class MCP:
165
165
  # Method 2: Using a single command string
166
166
  agent = Agent(
167
167
  instructions="You are a helpful assistant...",
168
- llm="gpt-4o-mini",
168
+ llm="gpt-5-nano",
169
169
  tools=MCP("/path/to/python /path/to/app.py")
170
170
  )
171
171
 
172
172
  # Method 3: Using an SSE endpoint
173
173
  agent = Agent(
174
174
  instructions="You are a helpful assistant...",
175
- llm="gpt-4o-mini",
175
+ llm="gpt-5-nano",
176
176
  tools=MCP("http://localhost:8080/sse")
177
177
  )
178
178
 
@@ -514,7 +514,7 @@ class MCP:
514
514
  """Convert the MCP tool to an OpenAI-compatible tool definition.
515
515
 
516
516
  This method is specifically invoked by the Agent class when using
517
- provider/model format (e.g., "openai/gpt-4o-mini").
517
+ provider/model format (e.g., "openai/gpt-5-nano").
518
518
 
519
519
  Returns:
520
520
  dict or list: OpenAI-compatible tool definition(s)
@@ -1442,7 +1442,7 @@ class Memory:
1442
1442
  import litellm
1443
1443
 
1444
1444
  # Convert model name if it's in litellm format
1445
- model_name = llm or "gpt-4o-mini"
1445
+ model_name = llm or "gpt-5-nano"
1446
1446
 
1447
1447
  response = litellm.completion(
1448
1448
  model=model_name,
@@ -1459,7 +1459,7 @@ class Memory:
1459
1459
  client = OpenAI()
1460
1460
 
1461
1461
  response = client.chat.completions.create(
1462
- model=llm or "gpt-4o-mini",
1462
+ model=llm or "gpt-5-nano",
1463
1463
  messages=[{
1464
1464
  "role": "user",
1465
1465
  "content": custom_prompt or default_prompt
@@ -322,7 +322,7 @@ class Task:
322
322
  if hasattr(self.agent.llm_instance, 'model'):
323
323
  llm_model = self.agent.llm_instance.model
324
324
  else:
325
- llm_model = "gpt-4o-mini" # Default fallback
325
+ llm_model = "gpt-5-nano" # Default fallback
326
326
  elif hasattr(self.agent, 'llm') and self.agent.llm:
327
327
  # For standard model strings
328
328
  llm_model = self.agent.llm
@@ -27,7 +27,7 @@ class GenerateCOT:
27
27
  def __init__(
28
28
  self,
29
29
  qa_pairs: Optional[Dict[str, str]] = None,
30
- model: str = "gpt-4o-mini",
30
+ model: str = "gpt-5-nano",
31
31
  api_key: Optional[str] = None,
32
32
  max_attempts: int = 3,
33
33
  verbose: bool = True,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: praisonaiagents
3
- Version: 0.0.157
3
+ Version: 0.0.158
4
4
  Summary: Praison AI agents for completing complex tasks with Self Reflection Agents
5
5
  Author: Mervin Praison
6
6
  Requires-Python: >=3.10
@@ -6,11 +6,11 @@ praisonaiagents/flow_display.py,sha256=E84J_H3h8L-AqL_F1JzEUInQYdjmIEuNL1LZr4__H
6
6
  praisonaiagents/main.py,sha256=NuAmE-ZrH4X0O9ysNA2AfxEQ8APPssO_ZR_f7h97QOo,17370
7
7
  praisonaiagents/session.py,sha256=FHWButPBaFGA4x1U_2gImroQChHnFy231_aAa_n5KOQ,20364
8
8
  praisonaiagents/agent/__init__.py,sha256=KBqW_augD-HcaV3FL88gUmhDCpwnSTavGENi7RqneTo,505
9
- praisonaiagents/agent/agent.py,sha256=sJ_mMp2v8ZCok32G-wzO71HEtjuBqlrEPttUXQgiui8,148240
10
- praisonaiagents/agent/context_agent.py,sha256=zNI2Waghn5eo8g3QM1Dc7ZNSr2xw41D87GIK81FjW-Y,107489
9
+ praisonaiagents/agent/agent.py,sha256=7XOTEEfxqL55Ps9n-fbjhD9GwS0NRg57GSQbEBQe-ug,148240
10
+ praisonaiagents/agent/context_agent.py,sha256=sv2zJuxrzdyV5ZhOwbGTxvSGSJNCJbL_cr4HBWejEYs,107472
11
11
  praisonaiagents/agent/handoff.py,sha256=Saq0chqfvC6Zf5UbXvmctybbehqnotrXn72JsS-76Q0,13099
12
12
  praisonaiagents/agent/image_agent.py,sha256=xKDhW8T1Y3e15lQpY6N2pdvBNJmAoWDibJa4BYa-Njs,10205
13
- praisonaiagents/agent/router_agent.py,sha256=a_b6w5Ti05gvK80uKGMIcT14fiCTKv8rCQPCWAUfIiE,12713
13
+ praisonaiagents/agent/router_agent.py,sha256=QT-ii5yw_PlxiwC7g9QTBQui4-qMuL-S8Jslv3SILuU,12712
14
14
  praisonaiagents/agents/__init__.py,sha256=_1d6Pqyk9EoBSo7E68sKyd1jDRlN1vxvVIRpoMc0Jcw,168
15
15
  praisonaiagents/agents/agents.py,sha256=sGXnRwBa49DhL7jMDE12IRcstpEg-QrkNyXw0K8BiRU,70995
16
16
  praisonaiagents/agents/autoagents.py,sha256=v5pJfTgHnFzG5K2gHwfRA0nZ7Ikptir6hUNvOZ--E44,20777
@@ -21,20 +21,20 @@ praisonaiagents/knowledge/__init__.py,sha256=xL1Eh-a3xsHyIcU4foOWF-JdWYIYBALJH9b
21
21
  praisonaiagents/knowledge/chunking.py,sha256=G6wyHa7_8V0_7VpnrrUXbEmUmptlT16ISJYaxmkSgmU,7678
22
22
  praisonaiagents/knowledge/knowledge.py,sha256=tog38b0SjFMoLuFBo0M1zHl9Dzzxa9YRv9FO7OZSpns,30587
23
23
  praisonaiagents/llm/__init__.py,sha256=SqdU1pRqPrR6jZeWYyDeTvmZKCACywk0v4P0k5Fuowk,1107
24
- praisonaiagents/llm/llm.py,sha256=C4C1xrR_qgInbgF1I-YhgPLI1C1YYI-5u3vn6Gp8sVc,184239
25
- praisonaiagents/llm/model_capabilities.py,sha256=cxOvZcjZ_PIEpUYKn3S2FMyypfOSfbGpx4vmV7Y5vhI,3967
26
- praisonaiagents/llm/model_router.py,sha256=Jy2pShlkLxqXF3quz-MRB3-6L9vaUSgUrf2YJs_Tsg0,13995
27
- praisonaiagents/llm/openai_client.py,sha256=Qn4z_ld8IYe-R8yKDRuek_4CP8lCJz2blJIRTm-mfDg,59882
24
+ praisonaiagents/llm/llm.py,sha256=zGklQ7KHV9PKkuUwhf-9QrIFyaNyslT7rTJlfzDtrIA,184238
25
+ praisonaiagents/llm/model_capabilities.py,sha256=C3VeXP5RZCSOh_UsPzI2Iq-AWjjECSjLOF0sgZbMKAg,3965
26
+ praisonaiagents/llm/model_router.py,sha256=1DNBgTK7kM_YhN_B75ZMef24vGycPtFoVmaI_mMoO7w,13994
27
+ praisonaiagents/llm/openai_client.py,sha256=VSGRv-eSQgt-DCBhwnYX6lUXPeWrMOwBQY9xF4CIh3s,59882
28
28
  praisonaiagents/mcp/__init__.py,sha256=ibbqe3_7XB7VrIcUcetkZiUZS1fTVvyMy_AqCSFG8qc,240
29
- praisonaiagents/mcp/mcp.py,sha256=ChaSwLCcFBB9b8eNuj0DoKbK1EqpyF1T_7xz0FX-5-A,23264
29
+ praisonaiagents/mcp/mcp.py,sha256=9aHtTlfC90qItdL3eZlbgLzhqXVlUBvnKSTMzNRBP0M,23260
30
30
  praisonaiagents/mcp/mcp_http_stream.py,sha256=TDFWMJMo8VqLXtXCW73REpmkU3t9n7CAGMa9b4dhI-c,23366
31
31
  praisonaiagents/mcp/mcp_sse.py,sha256=KO10tAgZ5vSKeRhkJIZcdJ0ZmhRybS39i1KybWt4D7M,9128
32
32
  praisonaiagents/memory/__init__.py,sha256=aEFdhgtTqDdMhc_JCWM-f4XI9cZIj7Wz5g_MUa-0amg,397
33
- praisonaiagents/memory/memory.py,sha256=B2DMuvvr4W_EnrpoN16K73qSqYdduqhMcV8ASzyh2L8,65116
33
+ praisonaiagents/memory/memory.py,sha256=8DEYUbipWjW3e2CrescrMT6w4rhkPvb-PmvLrgnHJX8,65114
34
34
  praisonaiagents/process/__init__.py,sha256=lkYbL7Hn5a0ldvJtkdH23vfIIZLIcanK-65C0MwaorY,52
35
35
  praisonaiagents/process/process.py,sha256=wXKZ2Z26vB9osmVbD5xqkUlUQRvWEpvL8j9hiuiHrQ0,78246
36
36
  praisonaiagents/task/__init__.py,sha256=VL5hXVmyGjINb34AalxpBMl-YW9m5EDcRkMTKkSSl7c,80
37
- praisonaiagents/task/task.py,sha256=j1KgaqeMfVm7lcO3puyIjX1r8Uf5GHtTRvd4NlK5Vk8,24203
37
+ praisonaiagents/task/task.py,sha256=y_7DwLbdexqimfpQIFh-IaLWSsPb85jHQiAx1fun3J4,24202
38
38
  praisonaiagents/telemetry/__init__.py,sha256=HtJxYIPPsYpE92CE4zpyrzYMIy5qxVIxkw_2GCgUq_k,6483
39
39
  praisonaiagents/telemetry/integration.py,sha256=nhLkp8AnitKlumMxQj8aNt5DkoeKukPA6u6bHbsk8wA,23205
40
40
  praisonaiagents/telemetry/performance_cli.py,sha256=8OGeqqE5yAQk1mAqz2fYCd6VeNPLRlUM9oTkJA6ge-E,15456
@@ -66,8 +66,8 @@ praisonaiagents/tools/wikipedia_tools.py,sha256=pGko-f33wqXgxJTv8db7TbizY5XnzBQR
66
66
  praisonaiagents/tools/xml_tools.py,sha256=iYTMBEk5l3L3ryQ1fkUnNVYK-Nnua2Kx2S0dxNMMs1A,17122
67
67
  praisonaiagents/tools/yaml_tools.py,sha256=uogAZrhXV9O7xvspAtcTfpKSQYL2nlOTvCQXN94-G9A,14215
68
68
  praisonaiagents/tools/yfinance_tools.py,sha256=s2PBj_1v7oQnOobo2fDbQBACEHl61ftG4beG6Z979ZE,8529
69
- praisonaiagents/tools/train/data/generatecot.py,sha256=H6bNh-E2hqL5MW6kX3hqZ05g9ETKN2-kudSjiuU_SD8,19403
70
- praisonaiagents-0.0.157.dist-info/METADATA,sha256=Ww1hB8QIFxzqu7UXFL7B5OscEFYl8UIGPnR8FuiUFLU,2146
71
- praisonaiagents-0.0.157.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
72
- praisonaiagents-0.0.157.dist-info/top_level.txt,sha256=_HsRddrJ23iDx5TTqVUVvXG2HeHBL5voshncAMDGjtA,16
73
- praisonaiagents-0.0.157.dist-info/RECORD,,
69
+ praisonaiagents/tools/train/data/generatecot.py,sha256=8yacncfYgIbPPwOROp9EGVV0FTKD8tiRu5TDIPnQf38,19402
70
+ praisonaiagents-0.0.158.dist-info/METADATA,sha256=4JfTMaavglQTAfgEcONvyF_lRVydk6YDEM95WvWsthU,2146
71
+ praisonaiagents-0.0.158.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
72
+ praisonaiagents-0.0.158.dist-info/top_level.txt,sha256=_HsRddrJ23iDx5TTqVUVvXG2HeHBL5voshncAMDGjtA,16
73
+ praisonaiagents-0.0.158.dist-info/RECORD,,