praisonaiagents 0.0.120__py3-none-any.whl → 0.0.121__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- praisonaiagents/agents/autoagents.py +15 -8
- praisonaiagents/llm/llm.py +137 -120
- {praisonaiagents-0.0.120.dist-info → praisonaiagents-0.0.121.dist-info}/METADATA +1 -1
- {praisonaiagents-0.0.120.dist-info → praisonaiagents-0.0.121.dist-info}/RECORD +6 -6
- {praisonaiagents-0.0.120.dist-info → praisonaiagents-0.0.121.dist-info}/WHEEL +0 -0
- {praisonaiagents-0.0.120.dist-info → praisonaiagents-0.0.121.dist-info}/top_level.txt +0 -0
@@ -13,7 +13,7 @@ import logging
|
|
13
13
|
import os
|
14
14
|
from pydantic import BaseModel, ConfigDict
|
15
15
|
from ..main import display_instruction, display_tool_call, display_interaction
|
16
|
-
from ..llm import get_openai_client, LLM
|
16
|
+
from ..llm import get_openai_client, LLM, OpenAIClient
|
17
17
|
import json
|
18
18
|
|
19
19
|
# Define Pydantic models for structured output
|
@@ -109,6 +109,8 @@ class AutoAgents(PraisonAIAgents):
|
|
109
109
|
self.max_execution_time = max_execution_time
|
110
110
|
self.max_iter = max_iter
|
111
111
|
self.reflect_llm = reflect_llm
|
112
|
+
self.base_url = base_url
|
113
|
+
self.api_key = api_key
|
112
114
|
|
113
115
|
# Display initial instruction
|
114
116
|
if self.verbose:
|
@@ -246,7 +248,11 @@ Return the configuration in a structured JSON format matching the AutoAgentsConf
|
|
246
248
|
try:
|
247
249
|
# Check if we have OpenAI API and the model supports structured output
|
248
250
|
if self.llm and (self.llm.startswith('gpt-') or self.llm.startswith('o1-') or self.llm.startswith('o3-')):
|
249
|
-
client
|
251
|
+
# Create a new client instance if custom parameters are provided
|
252
|
+
if self.api_key or self.base_url:
|
253
|
+
client = OpenAIClient(api_key=self.api_key, base_url=self.base_url)
|
254
|
+
else:
|
255
|
+
client = get_openai_client()
|
250
256
|
use_openai_structured = True
|
251
257
|
except:
|
252
258
|
# If OpenAI client is not available, we'll use the LLM class
|
@@ -254,15 +260,14 @@ Return the configuration in a structured JSON format matching the AutoAgentsConf
|
|
254
260
|
|
255
261
|
if use_openai_structured and client:
|
256
262
|
# Use OpenAI's structured output for OpenAI models (backward compatibility)
|
257
|
-
|
258
|
-
model=self.llm,
|
259
|
-
response_format=AutoAgentsConfig,
|
263
|
+
config = client.parse_structured_output(
|
260
264
|
messages=[
|
261
265
|
{"role": "system", "content": "You are a helpful assistant designed to generate AI agent configurations."},
|
262
266
|
{"role": "user", "content": prompt}
|
263
|
-
]
|
267
|
+
],
|
268
|
+
response_format=AutoAgentsConfig,
|
269
|
+
model=self.llm
|
264
270
|
)
|
265
|
-
config = response.choices[0].message.parsed
|
266
271
|
else:
|
267
272
|
# Use LLM class for all other providers (Gemini, Anthropic, etc.)
|
268
273
|
llm_instance = LLM(
|
@@ -350,7 +355,9 @@ Return the configuration in a structured JSON format matching the AutoAgentsConf
|
|
350
355
|
max_rpm=self.max_rpm,
|
351
356
|
max_execution_time=self.max_execution_time,
|
352
357
|
max_iter=self.max_iter,
|
353
|
-
reflect_llm=self.reflect_llm
|
358
|
+
reflect_llm=self.reflect_llm,
|
359
|
+
base_url=self.base_url,
|
360
|
+
api_key=self.api_key
|
354
361
|
)
|
355
362
|
agents.append(agent)
|
356
363
|
|
praisonaiagents/llm/llm.py
CHANGED
@@ -746,6 +746,7 @@ class LLM:
|
|
746
746
|
)
|
747
747
|
if delta.content:
|
748
748
|
live.update(display_generating(response_text, current_time))
|
749
|
+
|
749
750
|
else:
|
750
751
|
# Non-verbose streaming
|
751
752
|
for chunk in litellm.completion(
|
@@ -759,9 +760,12 @@ class LLM:
|
|
759
760
|
):
|
760
761
|
if chunk and chunk.choices and chunk.choices[0].delta:
|
761
762
|
delta = chunk.choices[0].delta
|
762
|
-
|
763
|
-
|
764
|
-
|
763
|
+
if delta.content:
|
764
|
+
response_text += delta.content
|
765
|
+
|
766
|
+
# Capture tool calls from streaming chunks if provider supports it
|
767
|
+
if formatted_tools and self._supports_streaming_tools():
|
768
|
+
tool_calls = self._process_tool_calls_from_stream(delta, tool_calls)
|
765
769
|
|
766
770
|
response_text = response_text.strip()
|
767
771
|
|
@@ -802,20 +806,7 @@ class LLM:
|
|
802
806
|
# Handle tool calls - Sequential tool calling logic
|
803
807
|
if tool_calls and execute_tool_fn:
|
804
808
|
# Convert tool_calls to a serializable format for all providers
|
805
|
-
serializable_tool_calls =
|
806
|
-
for tc in tool_calls:
|
807
|
-
if isinstance(tc, dict):
|
808
|
-
serializable_tool_calls.append(tc) # Already a dict
|
809
|
-
else:
|
810
|
-
# Convert object to dict
|
811
|
-
serializable_tool_calls.append({
|
812
|
-
"id": tc.id,
|
813
|
-
"type": getattr(tc, 'type', "function"),
|
814
|
-
"function": {
|
815
|
-
"name": tc.function.name,
|
816
|
-
"arguments": tc.function.arguments
|
817
|
-
}
|
818
|
-
})
|
809
|
+
serializable_tool_calls = self._serialize_tool_calls(tool_calls)
|
819
810
|
messages.append({
|
820
811
|
"role": "assistant",
|
821
812
|
"content": response_text,
|
@@ -826,20 +817,8 @@ class LLM:
|
|
826
817
|
tool_results = [] # Store all tool results
|
827
818
|
for tool_call in tool_calls:
|
828
819
|
# Handle both object and dict access patterns
|
829
|
-
|
830
|
-
|
831
|
-
function_name, arguments, tool_call_id = self._parse_tool_call_arguments(tool_call, is_ollama)
|
832
|
-
else:
|
833
|
-
# Handle object-style tool calls
|
834
|
-
try:
|
835
|
-
function_name = tool_call.function.name
|
836
|
-
arguments = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
837
|
-
tool_call_id = tool_call.id
|
838
|
-
except (json.JSONDecodeError, AttributeError) as e:
|
839
|
-
logging.error(f"Error parsing object-style tool call: {e}")
|
840
|
-
function_name = "unknown_function"
|
841
|
-
arguments = {}
|
842
|
-
tool_call_id = f"tool_{id(tool_call)}"
|
820
|
+
is_ollama = self._is_ollama_provider()
|
821
|
+
function_name, arguments, tool_call_id = self._extract_tool_call_info(tool_call, is_ollama)
|
843
822
|
|
844
823
|
logging.debug(f"[TOOL_EXEC_DEBUG] About to execute tool {function_name} with args: {arguments}")
|
845
824
|
tool_result = execute_tool_fn(function_name, arguments)
|
@@ -1367,6 +1346,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
1367
1346
|
if delta.content:
|
1368
1347
|
print("\033[K", end="\r")
|
1369
1348
|
print(f"Generating... {time.time() - start_time:.1f}s", end="\r")
|
1349
|
+
|
1370
1350
|
else:
|
1371
1351
|
# Non-verbose streaming
|
1372
1352
|
async for chunk in await litellm.acompletion(
|
@@ -1380,9 +1360,12 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
1380
1360
|
):
|
1381
1361
|
if chunk and chunk.choices and chunk.choices[0].delta:
|
1382
1362
|
delta = chunk.choices[0].delta
|
1383
|
-
|
1384
|
-
|
1385
|
-
|
1363
|
+
if delta.content:
|
1364
|
+
response_text += delta.content
|
1365
|
+
|
1366
|
+
# Capture tool calls from streaming chunks if provider supports it
|
1367
|
+
if formatted_tools and self._supports_streaming_tools():
|
1368
|
+
tool_calls = self._process_tool_calls_from_stream(delta, tool_calls)
|
1386
1369
|
|
1387
1370
|
response_text = response_text.strip()
|
1388
1371
|
|
@@ -1417,20 +1400,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
1417
1400
|
|
1418
1401
|
if tool_calls:
|
1419
1402
|
# Convert tool_calls to a serializable format for all providers
|
1420
|
-
serializable_tool_calls =
|
1421
|
-
for tc in tool_calls:
|
1422
|
-
if isinstance(tc, dict):
|
1423
|
-
serializable_tool_calls.append(tc) # Already a dict
|
1424
|
-
else:
|
1425
|
-
# Convert object to dict
|
1426
|
-
serializable_tool_calls.append({
|
1427
|
-
"id": tc.id,
|
1428
|
-
"type": getattr(tc, 'type', "function"),
|
1429
|
-
"function": {
|
1430
|
-
"name": tc.function.name,
|
1431
|
-
"arguments": tc.function.arguments
|
1432
|
-
}
|
1433
|
-
})
|
1403
|
+
serializable_tool_calls = self._serialize_tool_calls(tool_calls)
|
1434
1404
|
messages.append({
|
1435
1405
|
"role": "assistant",
|
1436
1406
|
"content": response_text,
|
@@ -1440,20 +1410,8 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
1440
1410
|
tool_results = [] # Store all tool results
|
1441
1411
|
for tool_call in tool_calls:
|
1442
1412
|
# Handle both object and dict access patterns
|
1443
|
-
|
1444
|
-
|
1445
|
-
function_name, arguments, tool_call_id = self._parse_tool_call_arguments(tool_call, is_ollama)
|
1446
|
-
else:
|
1447
|
-
# Handle object-style tool calls
|
1448
|
-
try:
|
1449
|
-
function_name = tool_call.function.name
|
1450
|
-
arguments = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
1451
|
-
tool_call_id = tool_call.id
|
1452
|
-
except (json.JSONDecodeError, AttributeError) as e:
|
1453
|
-
logging.error(f"Error parsing object-style tool call: {e}")
|
1454
|
-
function_name = "unknown_function"
|
1455
|
-
arguments = {}
|
1456
|
-
tool_call_id = f"tool_{id(tool_call)}"
|
1413
|
+
is_ollama = self._is_ollama_provider()
|
1414
|
+
function_name, arguments, tool_call_id = self._extract_tool_call_info(tool_call, is_ollama)
|
1457
1415
|
|
1458
1416
|
tool_result = await execute_tool_fn(function_name, arguments)
|
1459
1417
|
tool_results.append(tool_result) # Store the result
|
@@ -1899,6 +1857,90 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
1899
1857
|
|
1900
1858
|
return params
|
1901
1859
|
|
1860
|
+
def _prepare_response_logging(self, temperature: float, stream: bool, verbose: bool, markdown: bool, **kwargs) -> Optional[Dict[str, Any]]:
|
1861
|
+
"""Prepare debug logging information for response methods"""
|
1862
|
+
if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
|
1863
|
+
debug_info = {
|
1864
|
+
"model": self.model,
|
1865
|
+
"timeout": self.timeout,
|
1866
|
+
"temperature": temperature,
|
1867
|
+
"top_p": self.top_p,
|
1868
|
+
"n": self.n,
|
1869
|
+
"max_tokens": self.max_tokens,
|
1870
|
+
"presence_penalty": self.presence_penalty,
|
1871
|
+
"frequency_penalty": self.frequency_penalty,
|
1872
|
+
"stream": stream,
|
1873
|
+
"verbose": verbose,
|
1874
|
+
"markdown": markdown,
|
1875
|
+
"kwargs": str(kwargs)
|
1876
|
+
}
|
1877
|
+
return debug_info
|
1878
|
+
return None
|
1879
|
+
|
1880
|
+
def _process_streaming_chunk(self, chunk) -> Optional[str]:
|
1881
|
+
"""Extract content from a streaming chunk"""
|
1882
|
+
if chunk and chunk.choices and chunk.choices[0].delta.content:
|
1883
|
+
return chunk.choices[0].delta.content
|
1884
|
+
return None
|
1885
|
+
|
1886
|
+
def _process_tool_calls_from_stream(self, delta, tool_calls: List[Dict]) -> List[Dict]:
|
1887
|
+
"""Process tool calls from streaming delta chunks.
|
1888
|
+
|
1889
|
+
This handles the accumulation of tool call data from streaming chunks,
|
1890
|
+
building up the complete tool call information incrementally.
|
1891
|
+
"""
|
1892
|
+
if hasattr(delta, 'tool_calls') and delta.tool_calls:
|
1893
|
+
for tc in delta.tool_calls:
|
1894
|
+
if tc.index >= len(tool_calls):
|
1895
|
+
tool_calls.append({
|
1896
|
+
"id": tc.id,
|
1897
|
+
"type": "function",
|
1898
|
+
"function": {"name": "", "arguments": ""}
|
1899
|
+
})
|
1900
|
+
if tc.function.name:
|
1901
|
+
tool_calls[tc.index]["function"]["name"] = tc.function.name
|
1902
|
+
if tc.function.arguments:
|
1903
|
+
tool_calls[tc.index]["function"]["arguments"] += tc.function.arguments
|
1904
|
+
return tool_calls
|
1905
|
+
|
1906
|
+
def _serialize_tool_calls(self, tool_calls) -> List[Dict]:
|
1907
|
+
"""Convert tool calls to a serializable format for all providers."""
|
1908
|
+
serializable_tool_calls = []
|
1909
|
+
for tc in tool_calls:
|
1910
|
+
if isinstance(tc, dict):
|
1911
|
+
serializable_tool_calls.append(tc) # Already a dict
|
1912
|
+
else:
|
1913
|
+
# Convert object to dict
|
1914
|
+
serializable_tool_calls.append({
|
1915
|
+
"id": tc.id,
|
1916
|
+
"type": getattr(tc, 'type', "function"),
|
1917
|
+
"function": {
|
1918
|
+
"name": tc.function.name,
|
1919
|
+
"arguments": tc.function.arguments
|
1920
|
+
}
|
1921
|
+
})
|
1922
|
+
return serializable_tool_calls
|
1923
|
+
|
1924
|
+
def _extract_tool_call_info(self, tool_call, is_ollama: bool = False) -> tuple:
|
1925
|
+
"""Extract function name, arguments, and tool_call_id from a tool call.
|
1926
|
+
|
1927
|
+
Handles both dict and object formats for tool calls.
|
1928
|
+
"""
|
1929
|
+
if isinstance(tool_call, dict):
|
1930
|
+
return self._parse_tool_call_arguments(tool_call, is_ollama)
|
1931
|
+
else:
|
1932
|
+
# Handle object-style tool calls
|
1933
|
+
try:
|
1934
|
+
function_name = tool_call.function.name
|
1935
|
+
arguments = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
1936
|
+
tool_call_id = tool_call.id
|
1937
|
+
except (json.JSONDecodeError, AttributeError) as e:
|
1938
|
+
logging.error(f"Error parsing object-style tool call: {e}")
|
1939
|
+
function_name = "unknown_function"
|
1940
|
+
arguments = {}
|
1941
|
+
tool_call_id = f"tool_{id(tool_call)}"
|
1942
|
+
return function_name, arguments, tool_call_id
|
1943
|
+
|
1902
1944
|
# Response without tool calls
|
1903
1945
|
def response(
|
1904
1946
|
self,
|
@@ -1946,42 +1988,29 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
1946
1988
|
)
|
1947
1989
|
|
1948
1990
|
# Get response from LiteLLM
|
1991
|
+
response_text = ""
|
1992
|
+
completion_params = self._build_completion_params(
|
1993
|
+
messages=messages,
|
1994
|
+
temperature=temperature,
|
1995
|
+
stream=stream,
|
1996
|
+
**kwargs
|
1997
|
+
)
|
1998
|
+
|
1949
1999
|
if stream:
|
1950
|
-
response_text = ""
|
1951
2000
|
if verbose:
|
1952
2001
|
with Live(display_generating("", start_time), console=console or self.console, refresh_per_second=4) as live:
|
1953
|
-
for chunk in litellm.completion(
|
1954
|
-
|
1955
|
-
|
1956
|
-
temperature=temperature,
|
1957
|
-
stream=True,
|
1958
|
-
**kwargs
|
1959
|
-
)
|
1960
|
-
):
|
1961
|
-
if chunk and chunk.choices and chunk.choices[0].delta.content:
|
1962
|
-
content = chunk.choices[0].delta.content
|
2002
|
+
for chunk in litellm.completion(**completion_params):
|
2003
|
+
content = self._process_streaming_chunk(chunk)
|
2004
|
+
if content:
|
1963
2005
|
response_text += content
|
1964
2006
|
live.update(display_generating(response_text, start_time))
|
1965
2007
|
else:
|
1966
|
-
for chunk in litellm.completion(
|
1967
|
-
|
1968
|
-
|
1969
|
-
|
1970
|
-
stream=True,
|
1971
|
-
**kwargs
|
1972
|
-
)
|
1973
|
-
):
|
1974
|
-
if chunk and chunk.choices and chunk.choices[0].delta.content:
|
1975
|
-
response_text += chunk.choices[0].delta.content
|
2008
|
+
for chunk in litellm.completion(**completion_params):
|
2009
|
+
content = self._process_streaming_chunk(chunk)
|
2010
|
+
if content:
|
2011
|
+
response_text += content
|
1976
2012
|
else:
|
1977
|
-
response = litellm.completion(
|
1978
|
-
**self._build_completion_params(
|
1979
|
-
messages=messages,
|
1980
|
-
temperature=temperature,
|
1981
|
-
stream=False,
|
1982
|
-
**kwargs
|
1983
|
-
)
|
1984
|
-
)
|
2013
|
+
response = litellm.completion(**completion_params)
|
1985
2014
|
response_text = response.choices[0].message.content.strip()
|
1986
2015
|
|
1987
2016
|
if verbose:
|
@@ -2022,6 +2051,7 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
2022
2051
|
|
2023
2052
|
logger.debug("Using asynchronous response function")
|
2024
2053
|
|
2054
|
+
|
2025
2055
|
# Log all self values when in debug mode
|
2026
2056
|
self._log_llm_config(
|
2027
2057
|
'Async response method',
|
@@ -2046,42 +2076,29 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
2046
2076
|
)
|
2047
2077
|
|
2048
2078
|
# Get response from LiteLLM
|
2079
|
+
response_text = ""
|
2080
|
+
completion_params = self._build_completion_params(
|
2081
|
+
messages=messages,
|
2082
|
+
temperature=temperature,
|
2083
|
+
stream=stream,
|
2084
|
+
**kwargs
|
2085
|
+
)
|
2086
|
+
|
2049
2087
|
if stream:
|
2050
|
-
response_text = ""
|
2051
2088
|
if verbose:
|
2052
2089
|
with Live(display_generating("", start_time), console=console or self.console, refresh_per_second=4) as live:
|
2053
|
-
async for chunk in await litellm.acompletion(
|
2054
|
-
|
2055
|
-
|
2056
|
-
temperature=temperature,
|
2057
|
-
stream=True,
|
2058
|
-
**kwargs
|
2059
|
-
)
|
2060
|
-
):
|
2061
|
-
if chunk and chunk.choices and chunk.choices[0].delta.content:
|
2062
|
-
content = chunk.choices[0].delta.content
|
2090
|
+
async for chunk in await litellm.acompletion(**completion_params):
|
2091
|
+
content = self._process_streaming_chunk(chunk)
|
2092
|
+
if content:
|
2063
2093
|
response_text += content
|
2064
2094
|
live.update(display_generating(response_text, start_time))
|
2065
2095
|
else:
|
2066
|
-
async for chunk in await litellm.acompletion(
|
2067
|
-
|
2068
|
-
|
2069
|
-
|
2070
|
-
stream=True,
|
2071
|
-
**kwargs
|
2072
|
-
)
|
2073
|
-
):
|
2074
|
-
if chunk and chunk.choices and chunk.choices[0].delta.content:
|
2075
|
-
response_text += chunk.choices[0].delta.content
|
2096
|
+
async for chunk in await litellm.acompletion(**completion_params):
|
2097
|
+
content = self._process_streaming_chunk(chunk)
|
2098
|
+
if content:
|
2099
|
+
response_text += content
|
2076
2100
|
else:
|
2077
|
-
response = await litellm.acompletion(
|
2078
|
-
**self._build_completion_params(
|
2079
|
-
messages=messages,
|
2080
|
-
temperature=temperature,
|
2081
|
-
stream=False,
|
2082
|
-
**kwargs
|
2083
|
-
)
|
2084
|
-
)
|
2101
|
+
response = await litellm.acompletion(**completion_params)
|
2085
2102
|
response_text = response.choices[0].message.content.strip()
|
2086
2103
|
|
2087
2104
|
if verbose:
|
@@ -8,7 +8,7 @@ praisonaiagents/agent/handoff.py,sha256=Saq0chqfvC6Zf5UbXvmctybbehqnotrXn72JsS-7
|
|
8
8
|
praisonaiagents/agent/image_agent.py,sha256=-5MXG594HVwSpFMcidt16YBp7udtik-Cp7eXlzLE1fY,8696
|
9
9
|
praisonaiagents/agents/__init__.py,sha256=_1d6Pqyk9EoBSo7E68sKyd1jDRlN1vxvVIRpoMc0Jcw,168
|
10
10
|
praisonaiagents/agents/agents.py,sha256=WnptTEMSDMAM30Ka6rOAu6rBD-ZLev3qphb1a3BbP1g,63301
|
11
|
-
praisonaiagents/agents/autoagents.py,sha256=
|
11
|
+
praisonaiagents/agents/autoagents.py,sha256=gLzNsYkvefY667p3xbbvgEBLu4VzEZeyh3a_3yxt1e8,16478
|
12
12
|
praisonaiagents/guardrails/__init__.py,sha256=HA8zhp-KRHTxo0194MUwXOUJjPyjOu7E3d7xUIKYVVY,310
|
13
13
|
praisonaiagents/guardrails/guardrail_result.py,sha256=2K1WIYRyT_s1H6vBGa-7HEHzXCFIyZXZVY4f0hnQyWc,1352
|
14
14
|
praisonaiagents/guardrails/llm_guardrail.py,sha256=MTTqmYDdZX-18QN9T17T5P_6H2qnV8GVgymJufW1WuM,3277
|
@@ -16,7 +16,7 @@ praisonaiagents/knowledge/__init__.py,sha256=xL1Eh-a3xsHyIcU4foOWF-JdWYIYBALJH9b
|
|
16
16
|
praisonaiagents/knowledge/chunking.py,sha256=G6wyHa7_8V0_7VpnrrUXbEmUmptlT16ISJYaxmkSgmU,7678
|
17
17
|
praisonaiagents/knowledge/knowledge.py,sha256=OKPar-XGyAp1ndmbOOdCgqFnTCqpOThYVSIZRxZyP58,15683
|
18
18
|
praisonaiagents/llm/__init__.py,sha256=6lTeQ8jWi1-KiwjCDCmkHo2e-bRLq2dP0s5iJWqjO3s,1421
|
19
|
-
praisonaiagents/llm/llm.py,sha256=
|
19
|
+
praisonaiagents/llm/llm.py,sha256=8cDahPVMPI882J0psA1cXreJGXvO33eSOpMNy7FLCS4,107383
|
20
20
|
praisonaiagents/llm/openai_client.py,sha256=0JvjCDHoH8I8kIt5vvObARkGdVaPWdTIv_FoEQ5EQPA,48973
|
21
21
|
praisonaiagents/mcp/__init__.py,sha256=ibbqe3_7XB7VrIcUcetkZiUZS1fTVvyMy_AqCSFG8qc,240
|
22
22
|
praisonaiagents/mcp/mcp.py,sha256=-fFx4MHffnN2woLnnV7Pzx3-1SFkn2j8Gp5F5ZIwKJ0,19698
|
@@ -53,7 +53,7 @@ praisonaiagents/tools/xml_tools.py,sha256=iYTMBEk5l3L3ryQ1fkUnNVYK-Nnua2Kx2S0dxN
|
|
53
53
|
praisonaiagents/tools/yaml_tools.py,sha256=uogAZrhXV9O7xvspAtcTfpKSQYL2nlOTvCQXN94-G9A,14215
|
54
54
|
praisonaiagents/tools/yfinance_tools.py,sha256=s2PBj_1v7oQnOobo2fDbQBACEHl61ftG4beG6Z979ZE,8529
|
55
55
|
praisonaiagents/tools/train/data/generatecot.py,sha256=H6bNh-E2hqL5MW6kX3hqZ05g9ETKN2-kudSjiuU_SD8,19403
|
56
|
-
praisonaiagents-0.0.
|
57
|
-
praisonaiagents-0.0.
|
58
|
-
praisonaiagents-0.0.
|
59
|
-
praisonaiagents-0.0.
|
56
|
+
praisonaiagents-0.0.121.dist-info/METADATA,sha256=okAbJt5iVUK3GgBI66uk_0sKZSSs2orSgKepbSpQb-8,1669
|
57
|
+
praisonaiagents-0.0.121.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
58
|
+
praisonaiagents-0.0.121.dist-info/top_level.txt,sha256=_HsRddrJ23iDx5TTqVUVvXG2HeHBL5voshncAMDGjtA,16
|
59
|
+
praisonaiagents-0.0.121.dist-info/RECORD,,
|
File without changes
|
File without changes
|