praisonaiagents 0.0.11__py3-none-any.whl → 0.0.13__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- praisonaiagents/agent/agent.py +63 -23
- praisonaiagents/agents/agents.py +81 -1
- praisonaiagents/main.py +64 -15
- praisonaiagents/task/task.py +3 -1
- {praisonaiagents-0.0.11.dist-info → praisonaiagents-0.0.13.dist-info}/METADATA +1 -1
- {praisonaiagents-0.0.11.dist-info → praisonaiagents-0.0.13.dist-info}/RECORD +8 -8
- {praisonaiagents-0.0.11.dist-info → praisonaiagents-0.0.13.dist-info}/WHEEL +0 -0
- {praisonaiagents-0.0.11.dist-info → praisonaiagents-0.0.13.dist-info}/top_level.txt +0 -0
praisonaiagents/agent/agent.py
CHANGED
@@ -140,7 +140,7 @@ class Agent:
|
|
140
140
|
max_rpm: Optional[int] = None,
|
141
141
|
max_execution_time: Optional[int] = None,
|
142
142
|
memory: bool = True,
|
143
|
-
verbose: bool =
|
143
|
+
verbose: bool = True,
|
144
144
|
allow_delegation: bool = False,
|
145
145
|
step_callback: Optional[Any] = None,
|
146
146
|
cache: bool = True,
|
@@ -191,26 +191,44 @@ class Agent:
|
|
191
191
|
self.max_reflect = max_reflect
|
192
192
|
self.min_reflect = min_reflect
|
193
193
|
self.reflect_llm = reflect_llm
|
194
|
+
self.console = Console() # Create a single console instance for the agent
|
195
|
+
|
194
196
|
def execute_tool(self, function_name, arguments):
|
195
197
|
"""
|
196
198
|
Execute a tool dynamically based on the function name and arguments.
|
197
199
|
"""
|
198
200
|
logging.debug(f"{self.name} executing tool {function_name} with arguments: {arguments}")
|
199
201
|
|
200
|
-
# Try to
|
201
|
-
func =
|
202
|
+
# Try to find the function in the agent's tools list first
|
203
|
+
func = None
|
204
|
+
for tool in self.tools:
|
205
|
+
if callable(tool) and getattr(tool, '__name__', '') == function_name:
|
206
|
+
func = tool
|
207
|
+
break
|
208
|
+
|
209
|
+
logging.debug(f"Looking for {function_name} in agent tools: {func is not None}")
|
210
|
+
|
211
|
+
# If not found in tools, try globals and main
|
202
212
|
if not func:
|
203
|
-
|
204
|
-
|
205
|
-
|
213
|
+
func = globals().get(function_name)
|
214
|
+
logging.debug(f"Looking for {function_name} in globals: {func is not None}")
|
215
|
+
|
216
|
+
if not func:
|
217
|
+
import __main__
|
218
|
+
func = getattr(__main__, function_name, None)
|
219
|
+
logging.debug(f"Looking for {function_name} in __main__: {func is not None}")
|
206
220
|
|
207
221
|
if func and callable(func):
|
208
222
|
try:
|
209
223
|
return func(**arguments)
|
210
224
|
except Exception as e:
|
211
|
-
|
225
|
+
error_msg = str(e)
|
226
|
+
logging.error(f"Error executing tool {function_name}: {error_msg}")
|
227
|
+
return {"error": error_msg}
|
212
228
|
|
213
|
-
|
229
|
+
error_msg = f"Tool '{function_name}' is not callable"
|
230
|
+
logging.error(error_msg)
|
231
|
+
return {"error": error_msg}
|
214
232
|
|
215
233
|
def clear_history(self):
|
216
234
|
self.chat_history = []
|
@@ -219,7 +237,6 @@ class Agent:
|
|
219
237
|
return f"Agent(name='{self.name}', role='{self.role}', goal='{self.goal}')"
|
220
238
|
|
221
239
|
def _chat_completion(self, messages, temperature=0.2, tools=None, stream=True):
|
222
|
-
console = Console()
|
223
240
|
start_time = time.time()
|
224
241
|
logging.debug(f"{self.name} sending messages to LLM: {messages}")
|
225
242
|
|
@@ -289,12 +306,24 @@ class Agent:
|
|
289
306
|
stream=True
|
290
307
|
)
|
291
308
|
full_response_text = ""
|
292
|
-
|
309
|
+
|
310
|
+
# Create Live display with proper configuration
|
311
|
+
with Live(
|
312
|
+
display_generating("", start_time),
|
313
|
+
console=self.console,
|
314
|
+
refresh_per_second=4,
|
315
|
+
transient=False, # Changed to False to preserve output
|
316
|
+
vertical_overflow="ellipsis",
|
317
|
+
auto_refresh=True
|
318
|
+
) as live:
|
293
319
|
for chunk in response_stream:
|
294
320
|
if chunk.choices[0].delta.content:
|
295
321
|
full_response_text += chunk.choices[0].delta.content
|
296
322
|
live.update(display_generating(full_response_text, start_time))
|
297
|
-
|
323
|
+
|
324
|
+
# Clear the last generating display with a blank line
|
325
|
+
self.console.print()
|
326
|
+
|
298
327
|
final_response = client.chat.completions.create(
|
299
328
|
model=self.llm,
|
300
329
|
messages=messages,
|
@@ -331,7 +360,11 @@ Your Goal: {self.goal}
|
|
331
360
|
if system_prompt:
|
332
361
|
messages.append({"role": "system", "content": system_prompt})
|
333
362
|
messages.extend(self.chat_history)
|
334
|
-
|
363
|
+
if isinstance(prompt, list):
|
364
|
+
# If we receive a multimodal prompt list, place it directly in the user message
|
365
|
+
messages.append({"role": "user", "content": prompt})
|
366
|
+
else:
|
367
|
+
messages.append({"role": "user", "content": prompt})
|
335
368
|
|
336
369
|
final_response_text = None
|
337
370
|
reflection_count = 0
|
@@ -340,7 +373,14 @@ Your Goal: {self.goal}
|
|
340
373
|
while True:
|
341
374
|
try:
|
342
375
|
if self.verbose:
|
343
|
-
|
376
|
+
# Handle both string and list prompts for instruction display
|
377
|
+
display_text = prompt
|
378
|
+
if isinstance(prompt, list):
|
379
|
+
# Extract text content from multimodal prompt
|
380
|
+
display_text = next((item["text"] for item in prompt if item["type"] == "text"), "")
|
381
|
+
|
382
|
+
if display_text and str(display_text).strip():
|
383
|
+
display_instruction(f"Agent {self.name} is processing prompt: {display_text}", console=self.console)
|
344
384
|
|
345
385
|
response = self._chat_completion(messages, temperature=temperature, tools=tools if tools else None)
|
346
386
|
if not response:
|
@@ -360,13 +400,13 @@ Your Goal: {self.goal}
|
|
360
400
|
arguments = json.loads(tool_call.function.arguments)
|
361
401
|
|
362
402
|
if self.verbose:
|
363
|
-
display_tool_call(f"Agent {self.name} is calling function '{function_name}' with arguments: {arguments}")
|
403
|
+
display_tool_call(f"Agent {self.name} is calling function '{function_name}' with arguments: {arguments}", console=self.console)
|
364
404
|
|
365
405
|
tool_result = self.execute_tool(function_name, arguments)
|
366
406
|
|
367
407
|
if tool_result:
|
368
408
|
if self.verbose:
|
369
|
-
display_tool_call(f"Function '{function_name}' returned: {tool_result}")
|
409
|
+
display_tool_call(f"Function '{function_name}' returned: {tool_result}", console=self.console)
|
370
410
|
messages.append({
|
371
411
|
"role": "tool",
|
372
412
|
"tool_call_id": tool_call.id,
|
@@ -391,7 +431,7 @@ Your Goal: {self.goal}
|
|
391
431
|
self.chat_history.append({"role": "assistant", "content": response_text})
|
392
432
|
if self.verbose:
|
393
433
|
logging.info(f"Agent {self.name} final response: {response_text}")
|
394
|
-
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time)
|
434
|
+
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time, console=self.console)
|
395
435
|
return response_text
|
396
436
|
|
397
437
|
reflection_prompt = f"""
|
@@ -414,26 +454,26 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
414
454
|
reflection_output = reflection_response.choices[0].message.parsed
|
415
455
|
|
416
456
|
if self.verbose:
|
417
|
-
display_self_reflection(f"Agent {self.name} self reflection (using {self.reflect_llm if self.reflect_llm else self.llm}): reflection='{reflection_output.reflection}' satisfactory='{reflection_output.satisfactory}'")
|
457
|
+
display_self_reflection(f"Agent {self.name} self reflection (using {self.reflect_llm if self.reflect_llm else self.llm}): reflection='{reflection_output.reflection}' satisfactory='{reflection_output.satisfactory}'", console=self.console)
|
418
458
|
|
419
459
|
messages.append({"role": "assistant", "content": f"Self Reflection: {reflection_output.reflection} Satisfactory?: {reflection_output.satisfactory}"})
|
420
460
|
|
421
461
|
# Only consider satisfactory after minimum reflections
|
422
462
|
if reflection_output.satisfactory == "yes" and reflection_count >= self.min_reflect - 1:
|
423
463
|
if self.verbose:
|
424
|
-
display_self_reflection("Agent marked the response as satisfactory after meeting minimum reflections")
|
464
|
+
display_self_reflection("Agent marked the response as satisfactory after meeting minimum reflections", console=self.console)
|
425
465
|
self.chat_history.append({"role": "user", "content": prompt})
|
426
466
|
self.chat_history.append({"role": "assistant", "content": response_text})
|
427
|
-
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time)
|
467
|
+
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time, console=self.console)
|
428
468
|
return response_text
|
429
469
|
|
430
470
|
# Check if we've hit max reflections
|
431
471
|
if reflection_count >= self.max_reflect - 1:
|
432
472
|
if self.verbose:
|
433
|
-
display_self_reflection("Maximum reflection count reached, returning current response")
|
473
|
+
display_self_reflection("Maximum reflection count reached, returning current response", console=self.console)
|
434
474
|
self.chat_history.append({"role": "user", "content": prompt})
|
435
475
|
self.chat_history.append({"role": "assistant", "content": response_text})
|
436
|
-
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time)
|
476
|
+
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time, console=self.console)
|
437
477
|
return response_text
|
438
478
|
|
439
479
|
logging.debug(f"{self.name} reflection count {reflection_count + 1}, continuing reflection process")
|
@@ -444,12 +484,12 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
444
484
|
continue # Continue the loop for more reflections
|
445
485
|
|
446
486
|
except Exception as e:
|
447
|
-
display_error(f"Error in parsing self-reflection json {e}. Retrying")
|
487
|
+
display_error(f"Error in parsing self-reflection json {e}. Retrying", console=self.console)
|
448
488
|
logging.error("Reflection parsing failed.", exc_info=True)
|
449
489
|
messages.append({"role": "assistant", "content": f"Self Reflection failed."})
|
450
490
|
reflection_count += 1
|
451
491
|
continue # Continue even after error to try again
|
452
492
|
|
453
493
|
except Exception as e:
|
454
|
-
display_error(f"Error in chat: {e}")
|
494
|
+
display_error(f"Error in chat: {e}", console=self.console)
|
455
495
|
return None
|
praisonaiagents/agents/agents.py
CHANGED
@@ -11,6 +11,33 @@ from ..main import display_error, TaskOutput, error_logs, client
|
|
11
11
|
from ..agent.agent import Agent
|
12
12
|
from ..task.task import Task
|
13
13
|
|
14
|
+
def encode_file_to_base64(file_path: str) -> str:
|
15
|
+
"""Base64-encode a file."""
|
16
|
+
import base64
|
17
|
+
with open(file_path, "rb") as f:
|
18
|
+
return base64.b64encode(f.read()).decode("utf-8")
|
19
|
+
|
20
|
+
def process_video(video_path: str, seconds_per_frame=2):
|
21
|
+
"""Split video into frames (base64-encoded)."""
|
22
|
+
import cv2
|
23
|
+
import base64
|
24
|
+
base64_frames = []
|
25
|
+
video = cv2.VideoCapture(video_path)
|
26
|
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
27
|
+
fps = video.get(cv2.CAP_PROP_FPS)
|
28
|
+
frames_to_skip = int(fps * seconds_per_frame)
|
29
|
+
curr_frame = 0
|
30
|
+
while curr_frame < total_frames:
|
31
|
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
32
|
+
success, frame = video.read()
|
33
|
+
if not success:
|
34
|
+
break
|
35
|
+
_, buffer = cv2.imencode(".jpg", frame)
|
36
|
+
base64_frames.append(base64.b64encode(buffer).decode("utf-8"))
|
37
|
+
curr_frame += frames_to_skip
|
38
|
+
video.release()
|
39
|
+
return base64_frames
|
40
|
+
|
14
41
|
class PraisonAIAgents:
|
15
42
|
def __init__(self, agents, tasks, verbose=0, completion_checker=None, max_retries=5, process="sequential", manager_llm=None):
|
16
43
|
self.agents = agents
|
@@ -58,6 +85,19 @@ class PraisonAIAgents:
|
|
58
85
|
display_error(f"Error: Task with ID {task_id} does not exist")
|
59
86
|
return
|
60
87
|
task = self.tasks[task_id]
|
88
|
+
|
89
|
+
# Only import multimodal dependencies if task has images
|
90
|
+
if task.images and task.status == "not started":
|
91
|
+
try:
|
92
|
+
import cv2
|
93
|
+
import base64
|
94
|
+
from moviepy import VideoFileClip
|
95
|
+
except ImportError as e:
|
96
|
+
display_error(f"Error: Missing required dependencies for image/video processing: {e}")
|
97
|
+
display_error("Please install with: pip install opencv-python moviepy")
|
98
|
+
task.status = "failed"
|
99
|
+
return None
|
100
|
+
|
61
101
|
if task.status == "not started":
|
62
102
|
task.status = "in progress"
|
63
103
|
|
@@ -83,7 +123,47 @@ Expected Output: {task.expected_output}.
|
|
83
123
|
if self.verbose >= 2:
|
84
124
|
logging.info(f"Executing task {task_id}: {task.description} using {executor_agent.name}")
|
85
125
|
logging.debug(f"Starting execution of task {task_id} with prompt:\n{task_prompt}")
|
86
|
-
|
126
|
+
|
127
|
+
if task.images:
|
128
|
+
def _get_multimodal_message(text_prompt, images):
|
129
|
+
content = [{"type": "text", "text": text_prompt}]
|
130
|
+
|
131
|
+
for img in images:
|
132
|
+
# If local file path for a valid image
|
133
|
+
if os.path.exists(img):
|
134
|
+
ext = os.path.splitext(img)[1].lower()
|
135
|
+
# If it's a .mp4, convert to frames
|
136
|
+
if ext == ".mp4":
|
137
|
+
frames = process_video(img, seconds_per_frame=1)
|
138
|
+
content.append({"type": "text", "text": "These are frames from the video."})
|
139
|
+
for f in frames:
|
140
|
+
content.append({
|
141
|
+
"type": "image_url",
|
142
|
+
"image_url": {"url": f"data:image/jpg;base64,{f}"}
|
143
|
+
})
|
144
|
+
else:
|
145
|
+
encoded = encode_file_to_base64(img)
|
146
|
+
content.append({
|
147
|
+
"type": "image_url",
|
148
|
+
"image_url": {
|
149
|
+
"url": f"data:image/{ext.lstrip('.')};base64,{encoded}"
|
150
|
+
}
|
151
|
+
})
|
152
|
+
else:
|
153
|
+
# Treat as a remote URL
|
154
|
+
content.append({
|
155
|
+
"type": "image_url",
|
156
|
+
"image_url": {"url": img}
|
157
|
+
})
|
158
|
+
return content
|
159
|
+
|
160
|
+
agent_output = executor_agent.chat(
|
161
|
+
_get_multimodal_message(task_prompt, task.images),
|
162
|
+
tools=task.tools
|
163
|
+
)
|
164
|
+
else:
|
165
|
+
agent_output = executor_agent.chat(task_prompt, tools=task.tools)
|
166
|
+
|
87
167
|
if agent_output:
|
88
168
|
task_output = TaskOutput(
|
89
169
|
description=task.description,
|
praisonaiagents/main.py
CHANGED
@@ -25,43 +25,92 @@ logging.basicConfig(
|
|
25
25
|
# Global list to store error logs
|
26
26
|
error_logs = []
|
27
27
|
|
28
|
-
def
|
29
|
-
|
30
|
-
if
|
28
|
+
def _clean_display_content(content: str, max_length: int = 20000) -> str:
|
29
|
+
"""Helper function to clean and truncate content for display."""
|
30
|
+
if not content or not str(content).strip():
|
31
|
+
return ""
|
32
|
+
|
33
|
+
content = str(content)
|
34
|
+
# Handle base64 content
|
35
|
+
if "base64" in content:
|
36
|
+
content_parts = []
|
37
|
+
for line in content.split('\n'):
|
38
|
+
if "base64" not in line:
|
39
|
+
content_parts.append(line)
|
40
|
+
content = '\n'.join(content_parts)
|
41
|
+
|
42
|
+
# Truncate if too long
|
43
|
+
if len(content) > max_length:
|
44
|
+
content = content[:max_length] + "..."
|
45
|
+
|
46
|
+
return content.strip()
|
47
|
+
|
48
|
+
def display_interaction(message, response, markdown=True, generation_time=None, console=None):
|
49
|
+
"""Display the interaction between user and assistant."""
|
50
|
+
if console is None:
|
51
|
+
console = Console()
|
52
|
+
if generation_time:
|
31
53
|
console.print(Text(f"Response generated in {generation_time:.1f}s", style="dim"))
|
32
|
-
|
33
|
-
|
54
|
+
|
55
|
+
# Handle multimodal content (list)
|
56
|
+
if isinstance(message, list):
|
57
|
+
# Extract just the text content from the multimodal message
|
58
|
+
text_content = next((item["text"] for item in message if item["type"] == "text"), "")
|
59
|
+
message = text_content
|
60
|
+
|
61
|
+
message = _clean_display_content(str(message))
|
62
|
+
response = _clean_display_content(str(response))
|
34
63
|
|
35
64
|
if markdown:
|
36
65
|
console.print(Panel.fit(Markdown(message), title="Message", border_style="cyan"))
|
37
66
|
console.print(Panel.fit(Markdown(response), title="Response", border_style="cyan"))
|
38
67
|
else:
|
39
68
|
console.print(Panel.fit(Text(message, style="bold green"), title="Message", border_style="cyan"))
|
40
|
-
console.print(Panel.fit(Text(response, style="bold
|
41
|
-
|
42
|
-
def display_self_reflection(message: str):
|
43
|
-
|
69
|
+
console.print(Panel.fit(Text(response, style="bold blue"), title="Response", border_style="cyan"))
|
70
|
+
|
71
|
+
def display_self_reflection(message: str, console=None):
|
72
|
+
if not message or not message.strip():
|
73
|
+
return
|
74
|
+
if console is None:
|
75
|
+
console = Console()
|
76
|
+
message = _clean_display_content(str(message))
|
44
77
|
console.print(Panel.fit(Text(message, style="bold yellow"), title="Self Reflection", border_style="magenta"))
|
45
78
|
|
46
|
-
def display_instruction(message: str):
|
47
|
-
|
79
|
+
def display_instruction(message: str, console=None):
|
80
|
+
if not message or not message.strip():
|
81
|
+
return
|
82
|
+
if console is None:
|
83
|
+
console = Console()
|
84
|
+
message = _clean_display_content(str(message))
|
48
85
|
console.print(Panel.fit(Text(message, style="bold blue"), title="Instruction", border_style="cyan"))
|
49
86
|
|
50
|
-
def display_tool_call(message: str):
|
51
|
-
|
87
|
+
def display_tool_call(message: str, console=None):
|
88
|
+
if not message or not message.strip():
|
89
|
+
return
|
90
|
+
if console is None:
|
91
|
+
console = Console()
|
92
|
+
message = _clean_display_content(str(message))
|
52
93
|
console.print(Panel.fit(Text(message, style="bold cyan"), title="Tool Call", border_style="green"))
|
53
94
|
|
54
|
-
def display_error(message: str):
|
55
|
-
|
95
|
+
def display_error(message: str, console=None):
|
96
|
+
if not message or not message.strip():
|
97
|
+
return
|
98
|
+
if console is None:
|
99
|
+
console = Console()
|
100
|
+
message = _clean_display_content(str(message))
|
56
101
|
console.print(Panel.fit(Text(message, style="bold red"), title="Error", border_style="red"))
|
57
102
|
# Store errors
|
58
103
|
error_logs.append(message)
|
59
104
|
|
60
105
|
def display_generating(content: str = "", start_time: Optional[float] = None):
|
106
|
+
if not content or not str(content).strip():
|
107
|
+
return Panel("", title="", border_style="green") # Return empty panel when no content
|
61
108
|
elapsed_str = ""
|
62
109
|
if start_time is not None:
|
63
110
|
elapsed = time.time() - start_time
|
64
111
|
elapsed_str = f" {elapsed:.1f}s"
|
112
|
+
|
113
|
+
content = _clean_display_content(str(content))
|
65
114
|
return Panel(Markdown(content), title=f"Generating...{elapsed_str}", border_style="green")
|
66
115
|
|
67
116
|
def clean_triple_backticks(text: str) -> str:
|
praisonaiagents/task/task.py
CHANGED
@@ -22,7 +22,8 @@ class Task:
|
|
22
22
|
status: str = "not started",
|
23
23
|
result: Optional[TaskOutput] = None,
|
24
24
|
create_directory: Optional[bool] = False,
|
25
|
-
id: Optional[int] = None
|
25
|
+
id: Optional[int] = None,
|
26
|
+
images: Optional[List[str]] = None
|
26
27
|
):
|
27
28
|
self.description = description
|
28
29
|
self.expected_output = expected_output
|
@@ -40,6 +41,7 @@ class Task:
|
|
40
41
|
self.result = result
|
41
42
|
self.create_directory = create_directory
|
42
43
|
self.id = id
|
44
|
+
self.images = images if images else []
|
43
45
|
|
44
46
|
if self.output_json and self.output_pydantic:
|
45
47
|
raise ValueError("Only one output type can be defined")
|
@@ -1,9 +1,9 @@
|
|
1
1
|
praisonaiagents/__init__.py,sha256=gI8vEabBTRPsE_E8GA5sBMi4sTtJI-YokPrH2Nor-k0,741
|
2
|
-
praisonaiagents/main.py,sha256=
|
2
|
+
praisonaiagents/main.py,sha256=K2OxVKPmo4dNJbSWIsXDi_hm9CRx5O4km_74UGcszhk,5744
|
3
3
|
praisonaiagents/agent/__init__.py,sha256=sKO8wGEXvtCrvV1e834r1Okv0XAqAxqZCqz6hKLiTvA,79
|
4
|
-
praisonaiagents/agent/agent.py,sha256=
|
4
|
+
praisonaiagents/agent/agent.py,sha256=QjzduZ97-gqFiU6O89EIL0fyTAzTa7RwCoLl29S6-7w,21773
|
5
5
|
praisonaiagents/agents/__init__.py,sha256=7RDeQNSqZg5uBjD4M_0p_F6YgfWuDuxPFydPU50kDYc,120
|
6
|
-
praisonaiagents/agents/agents.py,sha256=
|
6
|
+
praisonaiagents/agents/agents.py,sha256=X02q695IeScdZKQQI9xNpaGAPeaLxSC26iIFlI5_E0g,16941
|
7
7
|
praisonaiagents/build/lib/praisonaiagents/__init__.py,sha256=Nqnn8clbgv-5l0PgxcTOldg8mkMKrFn4TvPL-rYUUGg,1
|
8
8
|
praisonaiagents/build/lib/praisonaiagents/main.py,sha256=zDhN5KKtKbfruolDNxlyJkcFlkSt4KQkQTDRfQVAhxc,3960
|
9
9
|
praisonaiagents/build/lib/praisonaiagents/agent/__init__.py,sha256=sKO8wGEXvtCrvV1e834r1Okv0XAqAxqZCqz6hKLiTvA,79
|
@@ -13,8 +13,8 @@ praisonaiagents/build/lib/praisonaiagents/agents/agents.py,sha256=P2FAtlfD3kPib5
|
|
13
13
|
praisonaiagents/build/lib/praisonaiagents/task/__init__.py,sha256=VL5hXVmyGjINb34AalxpBMl-YW9m5EDcRkMTKkSSl7c,80
|
14
14
|
praisonaiagents/build/lib/praisonaiagents/task/task.py,sha256=4Y1qX8OeEFcid2yhAiPYylvHpuDmWORsyNL16_BiVvI,1831
|
15
15
|
praisonaiagents/task/__init__.py,sha256=VL5hXVmyGjINb34AalxpBMl-YW9m5EDcRkMTKkSSl7c,80
|
16
|
-
praisonaiagents/task/task.py,sha256
|
17
|
-
praisonaiagents-0.0.
|
18
|
-
praisonaiagents-0.0.
|
19
|
-
praisonaiagents-0.0.
|
20
|
-
praisonaiagents-0.0.
|
16
|
+
praisonaiagents/task/task.py,sha256=-0GZ8FDo9Sq2Lkwz25Utliuq50FcexwhnZNuQtA3NLw,1922
|
17
|
+
praisonaiagents-0.0.13.dist-info/METADATA,sha256=ErtmhU_c6J52-LFUOvMPsBwQztVGkF529xla0L2YWz4,233
|
18
|
+
praisonaiagents-0.0.13.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
19
|
+
praisonaiagents-0.0.13.dist-info/top_level.txt,sha256=_HsRddrJ23iDx5TTqVUVvXG2HeHBL5voshncAMDGjtA,16
|
20
|
+
praisonaiagents-0.0.13.dist-info/RECORD,,
|
File without changes
|
File without changes
|