pqlattice 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pqlattice/__init__.py +6 -0
- pqlattice/_backends/__init__.py +0 -0
- pqlattice/_backends/_fast.py +75 -0
- pqlattice/_backends/_native.py +33 -0
- pqlattice/_backends/_protocol.py +15 -0
- pqlattice/_utils.py +201 -0
- pqlattice/integer/__init__.py +8 -0
- pqlattice/integer/_integer.py +55 -0
- pqlattice/integer/_modintring.py +246 -0
- pqlattice/integer/_modring.py +165 -0
- pqlattice/integer/_primality.py +78 -0
- pqlattice/integer/_primes.py +57 -0
- pqlattice/lattice/__init__.py +44 -0
- pqlattice/lattice/_bkz.py +87 -0
- pqlattice/lattice/_cvp.py +62 -0
- pqlattice/lattice/_embeddings.py +149 -0
- pqlattice/lattice/_gso.py +43 -0
- pqlattice/lattice/_hkz.py +20 -0
- pqlattice/lattice/_lattice.py +137 -0
- pqlattice/lattice/_lll.py +93 -0
- pqlattice/lattice/_svp.py +89 -0
- pqlattice/lattice/embeddings.py +3 -0
- pqlattice/linalg/__init__.py +37 -0
- pqlattice/linalg/_linalg.py +306 -0
- pqlattice/linalg/_modint.py +209 -0
- pqlattice/linalg/_utils.py +167 -0
- pqlattice/polynomial/__init__.py +5 -0
- pqlattice/polynomial/_modpolyqring.py +185 -0
- pqlattice/polynomial/_modpolyring.py +267 -0
- pqlattice/polynomial/_poly.py +250 -0
- pqlattice/polynomial/poly.py +3 -0
- pqlattice/py.typed +0 -0
- pqlattice/random/__init__.py +7 -0
- pqlattice/random/_distribution.py +303 -0
- pqlattice/random/_lattice.py +53 -0
- pqlattice/random/_lwe.py +109 -0
- pqlattice/random/_lwr.py +41 -0
- pqlattice/random/_prime.py +53 -0
- pqlattice/random/distribution.py +3 -0
- pqlattice/settings.py +66 -0
- pqlattice/typing/__init__.py +4 -0
- pqlattice/typing/_types.py +18 -0
- pqlattice/typing/_types_validator.py +57 -0
- pqlattice-0.1.2.dist-info/METADATA +33 -0
- pqlattice-0.1.2.dist-info/RECORD +47 -0
- pqlattice-0.1.2.dist-info/WHEEL +4 -0
- pqlattice-0.1.2.dist-info/licenses/LICENSE +7 -0
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from functools import reduce
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from .._utils import as_integer
|
|
7
|
+
from ..linalg._linalg import det
|
|
8
|
+
from ..linalg._utils import norm2, per_row_norm
|
|
9
|
+
from ..typing import SquareMatrix, Vector, validate_aliases
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@validate_aliases
|
|
13
|
+
def volume(lattice_basis: SquareMatrix) -> int:
|
|
14
|
+
"""_summary_
|
|
15
|
+
|
|
16
|
+
Parameters
|
|
17
|
+
----------
|
|
18
|
+
lattice_basis : SquareMatrix
|
|
19
|
+
_description_
|
|
20
|
+
|
|
21
|
+
Returns
|
|
22
|
+
-------
|
|
23
|
+
int
|
|
24
|
+
_description_
|
|
25
|
+
"""
|
|
26
|
+
return abs(det(lattice_basis))
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@validate_aliases
|
|
30
|
+
def rank(lattice_basis: SquareMatrix) -> int:
|
|
31
|
+
"""_summary_
|
|
32
|
+
|
|
33
|
+
Parameters
|
|
34
|
+
----------
|
|
35
|
+
lattice_basis : SquareMatrix
|
|
36
|
+
_description_
|
|
37
|
+
|
|
38
|
+
Returns
|
|
39
|
+
-------
|
|
40
|
+
int
|
|
41
|
+
_description_
|
|
42
|
+
"""
|
|
43
|
+
return lattice_basis.shape[0]
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
@validate_aliases
|
|
47
|
+
def discriminant(lattice_basis: SquareMatrix) -> int:
|
|
48
|
+
"""_summary_
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
lattice_basis : SquareMatrix
|
|
53
|
+
_description_
|
|
54
|
+
|
|
55
|
+
Returns
|
|
56
|
+
-------
|
|
57
|
+
int
|
|
58
|
+
_description_
|
|
59
|
+
"""
|
|
60
|
+
v = volume(lattice_basis)
|
|
61
|
+
return v * v
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@validate_aliases
|
|
65
|
+
def hadamard_ratio(lattice_basis: SquareMatrix) -> float:
|
|
66
|
+
"""_summary_
|
|
67
|
+
|
|
68
|
+
Parameters
|
|
69
|
+
----------
|
|
70
|
+
lattice_basis : SquareMatrix
|
|
71
|
+
_description_
|
|
72
|
+
|
|
73
|
+
Returns
|
|
74
|
+
-------
|
|
75
|
+
float
|
|
76
|
+
_description_
|
|
77
|
+
"""
|
|
78
|
+
return (volume(lattice_basis) / reduce(lambda a, b: a * b, per_row_norm(lattice_basis))) ** (1 / rank(lattice_basis))
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@validate_aliases
|
|
82
|
+
def gaussian_heuristic(lattice_basis: SquareMatrix) -> float:
|
|
83
|
+
"""_summary_
|
|
84
|
+
|
|
85
|
+
Parameters
|
|
86
|
+
----------
|
|
87
|
+
lattice_basis : SquareMatrix
|
|
88
|
+
_description_
|
|
89
|
+
|
|
90
|
+
Returns
|
|
91
|
+
-------
|
|
92
|
+
float
|
|
93
|
+
_description_
|
|
94
|
+
"""
|
|
95
|
+
n = rank(lattice_basis)
|
|
96
|
+
return math.sqrt(n / (2 * math.pi * math.e)) * (volume(lattice_basis) ** (1 / n))
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
@validate_aliases
|
|
100
|
+
def glr_2dim(lattice_basis: SquareMatrix) -> SquareMatrix:
|
|
101
|
+
"""_summary_
|
|
102
|
+
|
|
103
|
+
Parameters
|
|
104
|
+
----------
|
|
105
|
+
lattice_basis : SquareMatrix
|
|
106
|
+
_description_
|
|
107
|
+
|
|
108
|
+
Returns
|
|
109
|
+
-------
|
|
110
|
+
SquareMatrix
|
|
111
|
+
_description_
|
|
112
|
+
|
|
113
|
+
Raises
|
|
114
|
+
------
|
|
115
|
+
ValueError
|
|
116
|
+
_description_
|
|
117
|
+
"""
|
|
118
|
+
if lattice_basis.shape != (2, 2):
|
|
119
|
+
raise ValueError("Lattice has to have rank 2 for gaussian reduction")
|
|
120
|
+
|
|
121
|
+
w1: Vector = lattice_basis[0]
|
|
122
|
+
w2: Vector = lattice_basis[1]
|
|
123
|
+
|
|
124
|
+
v1 = w1.astype(float)
|
|
125
|
+
v2 = w2.astype(float)
|
|
126
|
+
if norm2(v1) > norm2(v2):
|
|
127
|
+
v1, v2 = v2, v1
|
|
128
|
+
|
|
129
|
+
while norm2(v2) > norm2(v1):
|
|
130
|
+
m = np.rint(np.dot(v1, v2) / np.dot(v1, v1))
|
|
131
|
+
if m == 0:
|
|
132
|
+
return as_integer([v1, v2])
|
|
133
|
+
v2 = v2 - m * v1
|
|
134
|
+
if norm2(v1) > norm2(v2):
|
|
135
|
+
v1, v2 = v2, v1
|
|
136
|
+
|
|
137
|
+
return np.array([v1, v2])
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
from fractions import Fraction
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
from .._utils import as_integer
|
|
6
|
+
from ..typing import Matrix, SquareMatrix, validate_aliases
|
|
7
|
+
from ._gso import gso, project_coeffs
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@validate_aliases
|
|
11
|
+
def lll(lattice_basis: Matrix, delta: float = 0.99) -> Matrix:
|
|
12
|
+
"""_summary_
|
|
13
|
+
|
|
14
|
+
Parameters
|
|
15
|
+
----------
|
|
16
|
+
lattice_basis : Matrix
|
|
17
|
+
_description_
|
|
18
|
+
delta : float, optional
|
|
19
|
+
_description_, by default 0.99
|
|
20
|
+
|
|
21
|
+
Returns
|
|
22
|
+
-------
|
|
23
|
+
Matrix
|
|
24
|
+
_description_
|
|
25
|
+
"""
|
|
26
|
+
rows, _ = lattice_basis.shape
|
|
27
|
+
B: Matrix = as_integer(lattice_basis)
|
|
28
|
+
while True:
|
|
29
|
+
B_star, _ = gso(B)
|
|
30
|
+
# Reduction Step
|
|
31
|
+
for i in range(1, rows):
|
|
32
|
+
for j in range(i - 1, -1, -1):
|
|
33
|
+
c_ij = round(project_coeffs(B_star[j], B[i]))
|
|
34
|
+
assert isinstance(c_ij, int)
|
|
35
|
+
B[i] = B[i] - c_ij * B[j]
|
|
36
|
+
# Swap step
|
|
37
|
+
exists = False
|
|
38
|
+
for i in range(rows - 1):
|
|
39
|
+
u = project_coeffs(B_star[i], B[i + 1])
|
|
40
|
+
r = u * B_star[i] + B_star[i + 1]
|
|
41
|
+
if delta * np.dot(B_star[i], B_star[i]) > np.dot(r, r):
|
|
42
|
+
B[[i, i + 1]] = B[[i + 1, i]]
|
|
43
|
+
exists = True
|
|
44
|
+
break
|
|
45
|
+
if not exists:
|
|
46
|
+
break
|
|
47
|
+
return B
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@validate_aliases
|
|
51
|
+
def is_size_reduced(lattice_basis: SquareMatrix) -> bool:
|
|
52
|
+
"""_summary_
|
|
53
|
+
|
|
54
|
+
Parameters
|
|
55
|
+
----------
|
|
56
|
+
lattice_basis : SquareMatrix
|
|
57
|
+
_description_
|
|
58
|
+
|
|
59
|
+
Returns
|
|
60
|
+
-------
|
|
61
|
+
bool
|
|
62
|
+
_description_
|
|
63
|
+
"""
|
|
64
|
+
_, U = gso(lattice_basis)
|
|
65
|
+
return bool(np.all(np.triu(U, 1) <= Fraction(1, 2)))
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
@validate_aliases
|
|
69
|
+
def lovasz_condition(lattice_basis: SquareMatrix, delta: float) -> bool:
|
|
70
|
+
norm2 = lambda a: np.sum(a * a, axis=1) # type: ignore
|
|
71
|
+
G, U = gso(lattice_basis)
|
|
72
|
+
lhs = delta * norm2(G[:-1])
|
|
73
|
+
rhs = norm2(G[1:] + np.diag(U, 1)[:, np.newaxis] * G[:-1])
|
|
74
|
+
return bool(np.all(lhs <= rhs))
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@validate_aliases
|
|
78
|
+
def is_lll_reduced(lattice_basis: SquareMatrix, delta: float = 0.99) -> bool:
|
|
79
|
+
"""_summary_
|
|
80
|
+
|
|
81
|
+
Parameters
|
|
82
|
+
----------
|
|
83
|
+
lattice_basis : SquareMatrix
|
|
84
|
+
_description_
|
|
85
|
+
delta : float, optional
|
|
86
|
+
_description_, by default 0.99
|
|
87
|
+
|
|
88
|
+
Returns
|
|
89
|
+
-------
|
|
90
|
+
bool
|
|
91
|
+
_description_
|
|
92
|
+
"""
|
|
93
|
+
return is_size_reduced(lattice_basis) and lovasz_condition(lattice_basis, delta)
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
from fractions import Fraction
|
|
2
|
+
|
|
3
|
+
from .._utils import as_integer, as_rational
|
|
4
|
+
from ..typing import SquareMatrix, Vector, validate_aliases
|
|
5
|
+
from ._gso import gso
|
|
6
|
+
from ._lll import lll
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@validate_aliases
|
|
10
|
+
def schnorr_euchner_svp(mu: SquareMatrix, B: Vector) -> Vector:
|
|
11
|
+
n = len(B)
|
|
12
|
+
best_norm: Fraction = B[0]
|
|
13
|
+
best_coeffs: Vector = as_integer([1] + [0] * (n - 1))
|
|
14
|
+
|
|
15
|
+
r: Vector = as_rational([0] * (n + 1))
|
|
16
|
+
c: Vector = as_rational([0] * n)
|
|
17
|
+
x: Vector = as_integer([0] * n)
|
|
18
|
+
v: Vector = as_rational([0] * n)
|
|
19
|
+
|
|
20
|
+
last_move = [0] * n
|
|
21
|
+
k = n - 1
|
|
22
|
+
|
|
23
|
+
r[n] = Fraction(0)
|
|
24
|
+
v[n - 1] = Fraction(0)
|
|
25
|
+
c[n - 1] = Fraction(0)
|
|
26
|
+
x[n - 1] = 0
|
|
27
|
+
last_move[n - 1] = 0
|
|
28
|
+
|
|
29
|
+
while True:
|
|
30
|
+
y: Fraction = x[k] - c[k]
|
|
31
|
+
current_norm: Fraction = r[k + 1] + (y * y * B[k])
|
|
32
|
+
# print(f"{k=}: {current_norm=:.5f}, {best_norm=:.5f}")
|
|
33
|
+
if current_norm < best_norm:
|
|
34
|
+
if k == 0:
|
|
35
|
+
if current_norm > 0:
|
|
36
|
+
best_norm = current_norm
|
|
37
|
+
best_coeffs = x.copy()
|
|
38
|
+
|
|
39
|
+
k += 1
|
|
40
|
+
last_move[k] += 1
|
|
41
|
+
|
|
42
|
+
step_sign = -1 if (last_move[k] % 2 == 0) else 1
|
|
43
|
+
step_mag = (last_move[k] + 1) // 2
|
|
44
|
+
x[k] = round(c[k]) + (step_sign * step_mag)
|
|
45
|
+
|
|
46
|
+
else:
|
|
47
|
+
k -= 1
|
|
48
|
+
center_val = Fraction(0)
|
|
49
|
+
for j in range(k + 1, n):
|
|
50
|
+
center_val += mu[j][k] * x[j]
|
|
51
|
+
|
|
52
|
+
c[k] = -center_val
|
|
53
|
+
x[k] = round(c[k])
|
|
54
|
+
last_move[k] = 0
|
|
55
|
+
r[k + 1] = current_norm
|
|
56
|
+
else:
|
|
57
|
+
k += 1
|
|
58
|
+
if k == n:
|
|
59
|
+
break
|
|
60
|
+
|
|
61
|
+
last_move[k] += 1
|
|
62
|
+
step_sign = -1 if (last_move[k] % 2 == 0) else 1
|
|
63
|
+
step_mag = (last_move[k] + 1) // 2
|
|
64
|
+
|
|
65
|
+
x[k] = round(c[k]) + (step_sign * step_mag)
|
|
66
|
+
|
|
67
|
+
return best_coeffs
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
@validate_aliases
|
|
71
|
+
def shortest_vector(lattice_basis: SquareMatrix) -> Vector:
|
|
72
|
+
"""_summary_
|
|
73
|
+
|
|
74
|
+
Parameters
|
|
75
|
+
----------
|
|
76
|
+
lattice_basis : SquareMatrix
|
|
77
|
+
_description_
|
|
78
|
+
|
|
79
|
+
Returns
|
|
80
|
+
-------
|
|
81
|
+
Vector
|
|
82
|
+
_description_
|
|
83
|
+
"""
|
|
84
|
+
B = lll(lattice_basis)
|
|
85
|
+
B_star, U = gso(B)
|
|
86
|
+
B_norms2 = as_rational([sum(x * x for x in v) for v in B_star])
|
|
87
|
+
mu = U.T
|
|
88
|
+
coeffs = schnorr_euchner_svp(mu, B_norms2)
|
|
89
|
+
return coeffs @ B
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
from .. import settings
|
|
2
|
+
from ..typing import Matrix, SquareMatrix
|
|
3
|
+
from ._linalg import cofactor, cofactor_matrix, det, left_kernel, left_nullity, minor, rank, right_kernel, right_nullity
|
|
4
|
+
from ._modint import mod_left_kernel, mod_left_nullity, mod_matinv, mod_ref, mod_right_kernel, mod_right_nullity, mod_rref
|
|
5
|
+
from ._utils import norm, norm2, per_row_norm, per_row_norm2, row_add, row_scale, row_swap
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def hnf(matrix: SquareMatrix) -> tuple[Matrix, SquareMatrix]:
|
|
9
|
+
return settings.get_backend().hnf(matrix)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
__all__ = [
|
|
13
|
+
"hnf",
|
|
14
|
+
"det",
|
|
15
|
+
"left_kernel",
|
|
16
|
+
"right_kernel",
|
|
17
|
+
"left_nullity",
|
|
18
|
+
"right_nullity",
|
|
19
|
+
"rank",
|
|
20
|
+
"minor",
|
|
21
|
+
"cofactor",
|
|
22
|
+
"cofactor_matrix",
|
|
23
|
+
"norm",
|
|
24
|
+
"norm2",
|
|
25
|
+
"per_row_norm",
|
|
26
|
+
"per_row_norm2",
|
|
27
|
+
"row_add",
|
|
28
|
+
"row_scale",
|
|
29
|
+
"row_swap",
|
|
30
|
+
"mod_ref",
|
|
31
|
+
"mod_rref",
|
|
32
|
+
"mod_right_kernel",
|
|
33
|
+
"mod_left_kernel",
|
|
34
|
+
"mod_left_nullity",
|
|
35
|
+
"mod_right_nullity",
|
|
36
|
+
"mod_matinv",
|
|
37
|
+
]
|
|
@@ -0,0 +1,306 @@
|
|
|
1
|
+
from functools import reduce
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
from .._utils import as_integer
|
|
6
|
+
from ..typing import Matrix, SquareMatrix, Vector, validate_aliases
|
|
7
|
+
from ._utils import row_add, row_scale, row_swap
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@validate_aliases
|
|
11
|
+
def hnf(A: Matrix) -> tuple[Matrix, SquareMatrix]:
|
|
12
|
+
"""_summary_
|
|
13
|
+
|
|
14
|
+
Parameters
|
|
15
|
+
----------
|
|
16
|
+
A : Matrix
|
|
17
|
+
_description_
|
|
18
|
+
|
|
19
|
+
Returns
|
|
20
|
+
-------
|
|
21
|
+
tuple[Matrix, SquareMatrix]
|
|
22
|
+
_description_
|
|
23
|
+
"""
|
|
24
|
+
H, U, _ = _hnf(A)
|
|
25
|
+
return H, U
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@validate_aliases
|
|
29
|
+
def _hnf(a: Matrix) -> tuple[Matrix, SquareMatrix, int]:
|
|
30
|
+
H = np.array(a, dtype=object)
|
|
31
|
+
m, n = H.shape
|
|
32
|
+
U = np.eye(m, dtype=object)
|
|
33
|
+
pivot_row = 0
|
|
34
|
+
pivot_col = 0
|
|
35
|
+
det_U = 1
|
|
36
|
+
|
|
37
|
+
while pivot_row < m and pivot_col < n:
|
|
38
|
+
# pivot selection
|
|
39
|
+
if np.all(H[pivot_row:, pivot_col] == 0):
|
|
40
|
+
pivot_col += 1
|
|
41
|
+
continue
|
|
42
|
+
|
|
43
|
+
candidates = [(abs(H[i, pivot_col]), i) for i in range(pivot_row, m) if H[i, pivot_col] != 0]
|
|
44
|
+
_, best_row = min(candidates)
|
|
45
|
+
|
|
46
|
+
row_swap(H, pivot_row, best_row)
|
|
47
|
+
row_swap(U, pivot_row, best_row)
|
|
48
|
+
det_U *= -1
|
|
49
|
+
|
|
50
|
+
# clear below pivot
|
|
51
|
+
for i in range(pivot_row + 1, m):
|
|
52
|
+
while H[i, pivot_col] != 0:
|
|
53
|
+
factor = H[i, pivot_col] // H[pivot_row, pivot_col]
|
|
54
|
+
|
|
55
|
+
row_add(H, i, pivot_row, -factor)
|
|
56
|
+
row_add(U, i, pivot_row, -factor)
|
|
57
|
+
|
|
58
|
+
if H[i, pivot_col] != 0:
|
|
59
|
+
row_swap(H, pivot_row, i)
|
|
60
|
+
row_swap(U, pivot_row, i)
|
|
61
|
+
det_U *= -1
|
|
62
|
+
|
|
63
|
+
if H[pivot_row, pivot_col] < 0:
|
|
64
|
+
row_scale(H, pivot_row, -1)
|
|
65
|
+
row_scale(U, pivot_row, -1)
|
|
66
|
+
det_U *= -1
|
|
67
|
+
|
|
68
|
+
pivot_val = H[pivot_row, pivot_col]
|
|
69
|
+
|
|
70
|
+
for i in range(pivot_row):
|
|
71
|
+
factor = H[i, pivot_col] // pivot_val
|
|
72
|
+
row_add(H, i, pivot_row, -factor)
|
|
73
|
+
row_add(U, i, pivot_row, -factor)
|
|
74
|
+
|
|
75
|
+
pivot_row += 1
|
|
76
|
+
pivot_col += 1
|
|
77
|
+
|
|
78
|
+
return H, U, det_U
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@validate_aliases
|
|
82
|
+
def right_image(A: Matrix) -> Matrix:
|
|
83
|
+
"""
|
|
84
|
+
_summary_
|
|
85
|
+
|
|
86
|
+
Parameters
|
|
87
|
+
----------
|
|
88
|
+
A : Matrix
|
|
89
|
+
_description_
|
|
90
|
+
|
|
91
|
+
Returns
|
|
92
|
+
-------
|
|
93
|
+
Matrix
|
|
94
|
+
_description_
|
|
95
|
+
"""
|
|
96
|
+
return left_image(A.T).T
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
@validate_aliases
|
|
100
|
+
def left_image(A: Matrix) -> Matrix:
|
|
101
|
+
"""
|
|
102
|
+
_summary_
|
|
103
|
+
|
|
104
|
+
Parameters
|
|
105
|
+
----------
|
|
106
|
+
A : Matrix
|
|
107
|
+
_description_
|
|
108
|
+
|
|
109
|
+
Returns
|
|
110
|
+
-------
|
|
111
|
+
Matrix
|
|
112
|
+
_description_
|
|
113
|
+
"""
|
|
114
|
+
H, _ = hnf(A)
|
|
115
|
+
|
|
116
|
+
m, _ = H.shape
|
|
117
|
+
k = 0
|
|
118
|
+
for i in range(m):
|
|
119
|
+
if np.all(H[i] == 0):
|
|
120
|
+
k = i
|
|
121
|
+
break
|
|
122
|
+
|
|
123
|
+
return as_integer(H[:k])
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
@validate_aliases
|
|
127
|
+
def left_kernel(A: Matrix):
|
|
128
|
+
"""
|
|
129
|
+
{x : xA = 0}
|
|
130
|
+
|
|
131
|
+
Parameters
|
|
132
|
+
----------
|
|
133
|
+
A : Matrix
|
|
134
|
+
_description_
|
|
135
|
+
|
|
136
|
+
Returns
|
|
137
|
+
-------
|
|
138
|
+
_type_
|
|
139
|
+
_description_
|
|
140
|
+
"""
|
|
141
|
+
H, U = hnf(A)
|
|
142
|
+
kernel_basis: list[Vector] = []
|
|
143
|
+
|
|
144
|
+
m, _ = H.shape
|
|
145
|
+
for i in range(m):
|
|
146
|
+
if np.all(H[i] == 0):
|
|
147
|
+
kernel_basis.append(U[i])
|
|
148
|
+
|
|
149
|
+
return np.array(kernel_basis, dtype=object)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
@validate_aliases
|
|
153
|
+
def right_kernel(A: Matrix) -> Matrix:
|
|
154
|
+
"""
|
|
155
|
+
{x : Ax = 0}
|
|
156
|
+
|
|
157
|
+
Parameters
|
|
158
|
+
----------
|
|
159
|
+
A : Matrix
|
|
160
|
+
_description_
|
|
161
|
+
|
|
162
|
+
Returns
|
|
163
|
+
-------
|
|
164
|
+
Matrix
|
|
165
|
+
_description_
|
|
166
|
+
"""
|
|
167
|
+
return left_kernel(A.T)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
@validate_aliases
|
|
171
|
+
def left_nullity(a: Matrix) -> int:
|
|
172
|
+
"""_summary_
|
|
173
|
+
|
|
174
|
+
Parameters
|
|
175
|
+
----------
|
|
176
|
+
a : Matrix
|
|
177
|
+
_description_
|
|
178
|
+
|
|
179
|
+
Returns
|
|
180
|
+
-------
|
|
181
|
+
int
|
|
182
|
+
_description_
|
|
183
|
+
"""
|
|
184
|
+
kernel = left_kernel(a)
|
|
185
|
+
return kernel.shape[0]
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
@validate_aliases
|
|
189
|
+
def right_nullity(a: Matrix) -> int:
|
|
190
|
+
"""_summary_
|
|
191
|
+
|
|
192
|
+
Parameters
|
|
193
|
+
----------
|
|
194
|
+
a : Matrix
|
|
195
|
+
_description_
|
|
196
|
+
|
|
197
|
+
Returns
|
|
198
|
+
-------
|
|
199
|
+
int
|
|
200
|
+
_description_
|
|
201
|
+
"""
|
|
202
|
+
kernel = right_kernel(a)
|
|
203
|
+
return kernel.shape[0]
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def rank(a: Matrix) -> int:
|
|
207
|
+
"""_summary_
|
|
208
|
+
|
|
209
|
+
Parameters
|
|
210
|
+
----------
|
|
211
|
+
a : Matrix
|
|
212
|
+
_description_
|
|
213
|
+
|
|
214
|
+
Returns
|
|
215
|
+
-------
|
|
216
|
+
int
|
|
217
|
+
_description_
|
|
218
|
+
"""
|
|
219
|
+
m, n = a.shape
|
|
220
|
+
l_rank = m - left_nullity(a)
|
|
221
|
+
r_rank = n - right_nullity(a)
|
|
222
|
+
assert l_rank == r_rank
|
|
223
|
+
return l_rank
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
@validate_aliases
|
|
227
|
+
def det(A: SquareMatrix) -> int:
|
|
228
|
+
"""_summary_
|
|
229
|
+
|
|
230
|
+
Parameters
|
|
231
|
+
----------
|
|
232
|
+
A : SquareMatrix
|
|
233
|
+
_description_
|
|
234
|
+
|
|
235
|
+
Returns
|
|
236
|
+
-------
|
|
237
|
+
int
|
|
238
|
+
_description_
|
|
239
|
+
"""
|
|
240
|
+
H, _, det_U = _hnf(A)
|
|
241
|
+
|
|
242
|
+
return reduce(lambda a, b: a * b, np.diagonal(H), 1) * det_U
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
@validate_aliases
|
|
246
|
+
def minor(A: SquareMatrix, i: int, j: int) -> int:
|
|
247
|
+
"""_summary_
|
|
248
|
+
|
|
249
|
+
Parameters
|
|
250
|
+
----------
|
|
251
|
+
A : SquareMatrix
|
|
252
|
+
_description_
|
|
253
|
+
i : int
|
|
254
|
+
_description_
|
|
255
|
+
j : int
|
|
256
|
+
_description_
|
|
257
|
+
|
|
258
|
+
Returns
|
|
259
|
+
-------
|
|
260
|
+
int
|
|
261
|
+
_description_
|
|
262
|
+
"""
|
|
263
|
+
return det(np.delete(np.delete(A, i, axis=0), j, axis=1))
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
@validate_aliases
|
|
267
|
+
def cofactor(A: SquareMatrix, i: int, j: int) -> int:
|
|
268
|
+
"""_summary_
|
|
269
|
+
|
|
270
|
+
Parameters
|
|
271
|
+
----------
|
|
272
|
+
A : SquareMatrix
|
|
273
|
+
_description_
|
|
274
|
+
i : int
|
|
275
|
+
_description_
|
|
276
|
+
j : int
|
|
277
|
+
_description_
|
|
278
|
+
|
|
279
|
+
Returns
|
|
280
|
+
-------
|
|
281
|
+
int
|
|
282
|
+
_description_
|
|
283
|
+
"""
|
|
284
|
+
return minor(A, i, j) * ((-1) ** (i + 1 + j + 1))
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
@validate_aliases
|
|
288
|
+
def cofactor_matrix(A: SquareMatrix) -> SquareMatrix:
|
|
289
|
+
"""_summary_
|
|
290
|
+
|
|
291
|
+
Parameters
|
|
292
|
+
----------
|
|
293
|
+
A : SquareMatrix
|
|
294
|
+
_description_
|
|
295
|
+
|
|
296
|
+
Returns
|
|
297
|
+
-------
|
|
298
|
+
SquareMatrix
|
|
299
|
+
_description_
|
|
300
|
+
"""
|
|
301
|
+
n = A.shape[0]
|
|
302
|
+
C = np.zeros((n, n), dtype=object)
|
|
303
|
+
for i in range(n):
|
|
304
|
+
for j in range(n):
|
|
305
|
+
C[i, j] = cofactor(A, i, j)
|
|
306
|
+
return C
|