power-grid-model 1.12.58__py3-none-win_amd64.whl → 1.12.60__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of power-grid-model might be problematic. Click here for more details.

Files changed (59) hide show
  1. power_grid_model/__init__.py +54 -54
  2. power_grid_model/_core/__init__.py +3 -3
  3. power_grid_model/_core/buffer_handling.py +493 -493
  4. power_grid_model/_core/data_handling.py +141 -141
  5. power_grid_model/_core/data_types.py +132 -132
  6. power_grid_model/_core/dataset_definitions.py +109 -109
  7. power_grid_model/_core/enum.py +226 -226
  8. power_grid_model/_core/error_handling.py +206 -206
  9. power_grid_model/_core/errors.py +130 -130
  10. power_grid_model/_core/index_integer.py +17 -17
  11. power_grid_model/_core/options.py +71 -71
  12. power_grid_model/_core/power_grid_core.py +563 -563
  13. power_grid_model/_core/power_grid_dataset.py +535 -535
  14. power_grid_model/_core/power_grid_meta.py +243 -243
  15. power_grid_model/_core/power_grid_model.py +686 -686
  16. power_grid_model/_core/power_grid_model_c/__init__.py +3 -3
  17. power_grid_model/_core/power_grid_model_c/bin/power_grid_model_c.dll +0 -0
  18. power_grid_model/_core/power_grid_model_c/get_pgm_dll_path.py +63 -63
  19. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/basics.h +255 -255
  20. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/buffer.h +108 -108
  21. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/dataset.h +316 -316
  22. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/dataset_definitions.h +1052 -1052
  23. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/handle.h +99 -99
  24. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/meta_data.h +189 -189
  25. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/model.h +125 -125
  26. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/options.h +142 -142
  27. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/serialization.h +118 -118
  28. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c.h +36 -36
  29. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/basics.hpp +65 -65
  30. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/buffer.hpp +61 -61
  31. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/dataset.hpp +220 -220
  32. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/handle.hpp +108 -108
  33. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/meta_data.hpp +84 -84
  34. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/model.hpp +63 -63
  35. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/options.hpp +52 -52
  36. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/serialization.hpp +124 -124
  37. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/utils.hpp +81 -81
  38. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp.hpp +19 -19
  39. power_grid_model/_core/power_grid_model_c/lib/cmake/power_grid_model/power_grid_modelConfigVersion.cmake +3 -3
  40. power_grid_model/_core/serialization.py +317 -317
  41. power_grid_model/_core/typing.py +20 -20
  42. power_grid_model/_core/utils.py +798 -798
  43. power_grid_model/data_types.py +321 -321
  44. power_grid_model/enum.py +27 -27
  45. power_grid_model/errors.py +37 -37
  46. power_grid_model/typing.py +43 -43
  47. power_grid_model/utils.py +473 -473
  48. power_grid_model/validation/__init__.py +25 -25
  49. power_grid_model/validation/_rules.py +1171 -1171
  50. power_grid_model/validation/_validation.py +1172 -1172
  51. power_grid_model/validation/assertions.py +93 -93
  52. power_grid_model/validation/errors.py +602 -602
  53. power_grid_model/validation/utils.py +313 -313
  54. {power_grid_model-1.12.58.dist-info → power_grid_model-1.12.60.dist-info}/METADATA +1 -1
  55. power_grid_model-1.12.60.dist-info/RECORD +65 -0
  56. power_grid_model-1.12.58.dist-info/RECORD +0 -65
  57. {power_grid_model-1.12.58.dist-info → power_grid_model-1.12.60.dist-info}/WHEEL +0 -0
  58. {power_grid_model-1.12.58.dist-info → power_grid_model-1.12.60.dist-info}/entry_points.txt +0 -0
  59. {power_grid_model-1.12.58.dist-info → power_grid_model-1.12.60.dist-info}/licenses/LICENSE +0 -0
@@ -1,1172 +1,1172 @@
1
- # SPDX-FileCopyrightText: Contributors to the Power Grid Model project <powergridmodel@lfenergy.org>
2
- #
3
- # SPDX-License-Identifier: MPL-2.0
4
-
5
- """
6
- Power Grid Model Validation Functions.
7
-
8
- Although all functions are 'public', you probably only need validate_input_data() and validate_batch_data().
9
-
10
- """
11
-
12
- import copy
13
- from collections.abc import Sized as ABCSized
14
- from itertools import chain
15
- from typing import Literal
16
-
17
- import numpy as np
18
-
19
- from power_grid_model._core.dataset_definitions import ComponentType, DatasetType, _map_to_component_types
20
- from power_grid_model._core.power_grid_meta import power_grid_meta_data
21
- from power_grid_model._core.utils import (
22
- compatibility_convert_row_columnar_dataset as _compatibility_convert_row_columnar_dataset,
23
- convert_batch_dataset_to_batch_list as _convert_batch_dataset_to_batch_list,
24
- )
25
- from power_grid_model.data_types import BatchDataset, Dataset, SingleDataset
26
- from power_grid_model.enum import (
27
- AngleMeasurementType,
28
- Branch3Side,
29
- BranchSide,
30
- CalculationType,
31
- FaultPhase,
32
- FaultType,
33
- LoadGenType,
34
- MeasuredTerminalType,
35
- WindingType,
36
- )
37
- from power_grid_model.validation._rules import (
38
- all_between as _all_between,
39
- all_between_or_at as _all_between_or_at,
40
- all_boolean as _all_boolean,
41
- all_cross_unique as _all_cross_unique,
42
- all_enabled_identical as _all_enabled_identical,
43
- all_finite as _all_finite,
44
- all_greater_or_equal as _all_greater_or_equal,
45
- all_greater_than_or_equal_to_zero as _all_greater_than_or_equal_to_zero,
46
- all_greater_than_zero as _all_greater_than_zero,
47
- all_in_valid_values as _all_in_valid_values,
48
- all_less_than as _all_less_than,
49
- all_not_two_values_equal as _all_not_two_values_equal,
50
- all_not_two_values_zero as _all_not_two_values_zero,
51
- all_same_current_angle_measurement_type_on_terminal as _all_same_current_angle_measurement_type_on_terminal,
52
- all_same_sensor_type_on_same_terminal as _all_same_sensor_type_on_same_terminal,
53
- all_unique as _all_unique,
54
- all_valid_associated_enum_values as _all_valid_associated_enum_values,
55
- all_valid_clocks as _all_valid_clocks,
56
- all_valid_enum_values as _all_valid_enum_values,
57
- all_valid_fault_phases as _all_valid_fault_phases,
58
- all_valid_ids as _all_valid_ids,
59
- any_voltage_angle_measurement_if_global_current_measurement as _any_voltage_angle_measurement_if_global_current_measurement, # noqa: E501
60
- ids_valid_in_update_data_set as _ids_valid_in_update_data_set,
61
- no_strict_subset_missing as _no_strict_subset_missing,
62
- none_missing as _none_missing,
63
- not_all_missing as _not_all_missing,
64
- valid_p_q_sigma as _valid_p_q_sigma,
65
- )
66
- from power_grid_model.validation.errors import (
67
- IdNotInDatasetError,
68
- InvalidIdError,
69
- MissingValueError,
70
- MultiComponentNotUniqueError,
71
- ValidationError,
72
- )
73
- from power_grid_model.validation.utils import _update_input_data
74
-
75
-
76
- def validate_input_data(
77
- input_data: SingleDataset, calculation_type: CalculationType | None = None, symmetric: bool = True
78
- ) -> list[ValidationError] | None:
79
- """
80
- Validates the entire input dataset:
81
-
82
- 1. Is the data structure correct? (checking data types and numpy array shapes)
83
- 2. Are all required values provided? (checking NaNs)
84
- 3. Are all ID's unique? (checking object identifiers across all components)
85
- 4. Are the supplied values valid? (checking limits and other logic as described in "Graph Data Model")
86
-
87
- Args:
88
- input_data: A power-grid-model input dataset
89
- calculation_type: Supply a calculation method, to allow missing values for unused fields
90
- symmetric: A boolean to state whether input data will be used for a symmetric or asymmetric calculation
91
-
92
- Returns:
93
- None if the data is valid, or a list containing all validation errors.
94
-
95
- Raises:
96
- Error: KeyError | TypeError | ValueError: if the data structure is invalid.
97
- """
98
- input_data = _map_to_component_types(input_data)
99
-
100
- # Convert to row based if in columnar or mixed format format
101
- row_input_data = _compatibility_convert_row_columnar_dataset(input_data, None, DatasetType.input)
102
-
103
- # A deep copy is made of the input data, since default values will be added in the validation process
104
- input_data_copy = copy.deepcopy(row_input_data)
105
-
106
- assert_valid_data_structure(input_data_copy, DatasetType.input)
107
-
108
- errors: list[ValidationError] = []
109
- errors += validate_required_values(input_data_copy, calculation_type, symmetric)
110
- errors += validate_unique_ids_across_components(input_data_copy)
111
- errors += validate_values(input_data_copy, calculation_type)
112
- return errors if errors else None
113
-
114
-
115
- def validate_batch_data(
116
- input_data: SingleDataset,
117
- update_data: BatchDataset,
118
- calculation_type: CalculationType | None = None,
119
- symmetric: bool = True,
120
- ) -> dict[int, list[ValidationError]] | None:
121
- """
122
- The input dataset is validated:
123
-
124
- 1. Is the data structure correct? (checking data types and numpy array shapes)
125
- 2. Are all input data ID's unique? (checking object identifiers across all components)
126
-
127
- For each batch the update data is validated:
128
- 3. Is the update data structure correct? (checking data types and numpy array shapes)
129
- 4. Are all update ID's valid? (checking object identifiers across update and input data)
130
-
131
- Then (for each batch independently) the input dataset is updated with the batch's update data and validated:
132
- 5. Are all required values provided? (checking NaNs)
133
- 6. Are the supplied values valid? (checking limits and other logic as described in "Graph Data Model")
134
-
135
- Args:
136
- input_data: A power-grid-model input dataset
137
- update_data: A power-grid-model update dataset (one or more batches)
138
- calculation_type: Supply a calculation method, to allow missing values for unused fields
139
- symmetric: A boolean to state whether input data will be used for a symmetric or asymmetric calculation
140
-
141
- Returns:
142
- None if the data is valid, or a dictionary containing all validation errors,
143
- where the key is the batch number (0-indexed).
144
-
145
- Raises:
146
- Error: KeyError | TypeError | ValueError: if the data structure is invalid.
147
- """
148
- input_data = _map_to_component_types(input_data)
149
- update_data = _map_to_component_types(update_data)
150
-
151
- # Convert to row based if in columnar or mixed format
152
- row_input_data = _compatibility_convert_row_columnar_dataset(input_data, None, DatasetType.input)
153
-
154
- # A deep copy is made of the input data, since default values will be added in the validation process
155
- input_data_copy = copy.deepcopy(row_input_data)
156
- assert_valid_data_structure(input_data_copy, DatasetType.input)
157
-
158
- input_errors: list[ValidationError] = list(validate_unique_ids_across_components(input_data_copy))
159
-
160
- batch_data = _convert_batch_dataset_to_batch_list(update_data, DatasetType.update)
161
-
162
- errors = {}
163
- for batch, batch_update_data in enumerate(batch_data):
164
- row_update_data = _compatibility_convert_row_columnar_dataset(batch_update_data, None, DatasetType.update)
165
- assert_valid_data_structure(row_update_data, DatasetType.update)
166
- id_errors: list[IdNotInDatasetError | InvalidIdError] = validate_ids(row_update_data, input_data_copy)
167
-
168
- batch_errors = input_errors + id_errors
169
-
170
- if not id_errors:
171
- merged_data = _update_input_data(input_data_copy, row_update_data)
172
- batch_errors += validate_required_values(merged_data, calculation_type, symmetric)
173
- batch_errors += validate_values(merged_data, calculation_type)
174
-
175
- if batch_errors:
176
- errors[batch] = batch_errors
177
-
178
- return errors if errors else None
179
-
180
-
181
- def assert_valid_data_structure(data: Dataset, data_type: DatasetType) -> None:
182
- """
183
- Checks if all component names are valid and if the data inside the component matches the required Numpy
184
- structured array as defined in the Power Grid Model meta data.
185
-
186
- Args:
187
- data: A power-grid-model input/update dataset
188
- data_type: 'input' or 'update'
189
-
190
- Raises:
191
- Error: KeyError, TypeError
192
-
193
- """
194
- if data_type not in {DatasetType.input, DatasetType.update}:
195
- raise KeyError(f"Unexpected data type '{data_type}' (should be 'input' or 'update')")
196
-
197
- component_dtype = {component: meta.dtype for component, meta in power_grid_meta_data[data_type].items()}
198
- for component, array in data.items():
199
- # Check if component name is valid
200
- if component not in component_dtype:
201
- raise KeyError(f"Unknown component '{component}' in {data_type} data.")
202
-
203
- # Check if component definition is as expected
204
- dtype = component_dtype[component]
205
- if isinstance(array, np.ndarray):
206
- if array.dtype != dtype:
207
- if not hasattr(array.dtype, "names") or not array.dtype.names:
208
- raise TypeError(
209
- f"Unexpected Numpy array ({array.dtype}) for '{component}' {data_type} data "
210
- "(should be a Numpy structured array)."
211
- )
212
- raise TypeError(
213
- f"Unexpected Numpy structured array; (expected = {dtype}, actual = {array.dtype}). "
214
- f"For component '{component}'."
215
- )
216
- else:
217
- raise TypeError(
218
- f"Unexpected data type {type(array).__name__} for '{component}' {data_type} data "
219
- "(should be a Numpy structured array)."
220
- )
221
-
222
-
223
- def validate_unique_ids_across_components(data: SingleDataset) -> list[MultiComponentNotUniqueError]:
224
- """
225
- Checks if all ids in the input dataset are unique
226
-
227
- Args:
228
- data: A power-grid-model input dataset
229
-
230
- Returns:
231
- An empty list if all ids are unique, or a list of MultiComponentNotUniqueErrors for all components that
232
- have non-unique ids
233
- """
234
- return _all_cross_unique(data, [(component, "id") for component in data])
235
-
236
-
237
- def validate_ids(update_data: SingleDataset, input_data: SingleDataset) -> list[IdNotInDatasetError | InvalidIdError]:
238
- """
239
- Checks if all ids of the components in the update data:
240
- - exist and match those in the input data
241
- - are not present but qualifies for optional id
242
-
243
- This function should be called for every update dataset in a batch set
244
-
245
- Args:
246
- update_data: A single update dataset
247
- input_data: Input dataset
248
-
249
- Returns:
250
- An empty list if all update data ids are valid, or a list of IdNotInDatasetErrors or InvalidIdError for
251
- all update components that have invalid ids
252
-
253
- """
254
- errors = (
255
- _ids_valid_in_update_data_set(update_data, input_data, component, DatasetType.update)
256
- for component in update_data
257
- )
258
- return list(chain(*errors))
259
-
260
-
261
- def validate_required_values( # noqa: PLR0915
262
- data: SingleDataset, calculation_type: CalculationType | None = None, symmetric: bool = True
263
- ) -> list[MissingValueError]:
264
- """
265
- Checks if all required data is available.
266
-
267
- Args:
268
- data: A power-grid-model input dataset
269
- calculation_type: Supply a calculation method, to allow missing values for unused fields
270
- symmetric: A boolean to state whether input data will be used for a symmetric or asymmetric calculation
271
-
272
- Returns:
273
- An empty list if all required data is available, or a list of MissingValueErrors.
274
- """
275
- # Base
276
- required: dict[ComponentType | str, list[str]] = {"base": ["id"]}
277
-
278
- # Nodes
279
- required[ComponentType.node] = required["base"] + ["u_rated"]
280
-
281
- # Branches
282
- required["branch"] = required["base"] + ["from_node", "to_node", "from_status", "to_status"]
283
- required[ComponentType.link] = required["branch"].copy()
284
- required[ComponentType.line] = required["branch"] + ["r1", "x1", "c1", "tan1"]
285
- required[ComponentType.asym_line] = required["branch"] + [
286
- "r_aa",
287
- "r_ba",
288
- "r_bb",
289
- "r_ca",
290
- "r_cb",
291
- "r_cc",
292
- "x_aa",
293
- "x_ba",
294
- "x_bb",
295
- "x_ca",
296
- "x_cb",
297
- "x_cc",
298
- ]
299
- required[ComponentType.transformer] = required["branch"] + [
300
- "u1",
301
- "u2",
302
- "sn",
303
- "uk",
304
- "pk",
305
- "i0",
306
- "p0",
307
- "winding_from",
308
- "winding_to",
309
- "clock",
310
- "tap_side",
311
- "tap_min",
312
- "tap_max",
313
- "tap_size",
314
- ]
315
- # Branch3
316
- required["branch3"] = required["base"] + ["node_1", "node_2", "node_3", "status_1", "status_2", "status_3"]
317
- required[ComponentType.three_winding_transformer] = required["branch3"] + [
318
- "u1",
319
- "u2",
320
- "u3",
321
- "sn_1",
322
- "sn_2",
323
- "sn_3",
324
- "uk_12",
325
- "uk_13",
326
- "uk_23",
327
- "pk_12",
328
- "pk_13",
329
- "pk_23",
330
- "i0",
331
- "p0",
332
- "winding_1",
333
- "winding_2",
334
- "winding_3",
335
- "clock_12",
336
- "clock_13",
337
- "tap_side",
338
- "tap_min",
339
- "tap_max",
340
- "tap_size",
341
- ]
342
-
343
- # Regulators
344
- required["regulator"] = required["base"] + ["regulated_object", "status"]
345
- required[ComponentType.transformer_tap_regulator] = required["regulator"]
346
- if calculation_type is None or calculation_type == CalculationType.power_flow:
347
- required[ComponentType.transformer_tap_regulator] += ["control_side", "u_set", "u_band"]
348
-
349
- # Appliances
350
- required["appliance"] = required["base"] + ["node", "status"]
351
- required[ComponentType.source] = required["appliance"].copy()
352
- if calculation_type is None or calculation_type == CalculationType.power_flow:
353
- required[ComponentType.source] += ["u_ref"]
354
- required[ComponentType.shunt] = required["appliance"] + ["g1", "b1"]
355
- required["generic_load_gen"] = required["appliance"] + ["type"]
356
- if calculation_type is None or calculation_type == CalculationType.power_flow:
357
- required["generic_load_gen"] += ["p_specified", "q_specified"]
358
- required[ComponentType.sym_load] = required["generic_load_gen"].copy()
359
- required[ComponentType.asym_load] = required["generic_load_gen"].copy()
360
- required[ComponentType.sym_gen] = required["generic_load_gen"].copy()
361
- required[ComponentType.asym_gen] = required["generic_load_gen"].copy()
362
-
363
- # Sensors
364
- required["sensor"] = required["base"] + ["measured_object"]
365
- required["voltage_sensor"] = required["sensor"].copy()
366
- required["power_sensor"] = required["sensor"] + ["measured_terminal_type"]
367
- required["current_sensor"] = required["sensor"] + ["measured_terminal_type", "angle_measurement_type"]
368
- if calculation_type is None or calculation_type == CalculationType.state_estimation:
369
- required["voltage_sensor"] += ["u_sigma", "u_measured"]
370
- required["power_sensor"] += ["p_measured", "q_measured"] # power_sigma, p_sigma and q_sigma are checked later
371
- required["current_sensor"] += ["i_sigma", "i_angle_sigma", "i_measured", "i_angle_measured"]
372
- required[ComponentType.sym_voltage_sensor] = required["voltage_sensor"].copy()
373
- required[ComponentType.asym_voltage_sensor] = required["voltage_sensor"].copy()
374
- required[ComponentType.sym_current_sensor] = required["current_sensor"].copy()
375
- required[ComponentType.asym_current_sensor] = required["current_sensor"].copy()
376
-
377
- # Different requirements for individual sensors. Avoid shallow copy.
378
- for sensor_type in (ComponentType.sym_power_sensor, ComponentType.asym_power_sensor):
379
- required[sensor_type] = required["power_sensor"].copy()
380
-
381
- # Faults
382
- required[ComponentType.fault] = required["base"] + ["fault_object"]
383
- asym_sc = False
384
- if calculation_type is None or calculation_type == CalculationType.short_circuit:
385
- required[ComponentType.fault] += ["status", "fault_type"]
386
- if ComponentType.fault in data:
387
- for elem in data[ComponentType.fault]["fault_type"]:
388
- if elem not in (FaultType.three_phase, FaultType.nan):
389
- asym_sc = True
390
- break
391
-
392
- if not symmetric or asym_sc:
393
- required[ComponentType.line] += ["r0", "x0", "c0", "tan0"]
394
- required[ComponentType.shunt] += ["g0", "b0"]
395
-
396
- errors = _validate_required_in_data(data, required)
397
-
398
- if calculation_type is None or calculation_type == CalculationType.state_estimation:
399
- errors += _validate_required_power_sigma_or_p_q_sigma(data, ComponentType.sym_power_sensor)
400
- errors += _validate_required_power_sigma_or_p_q_sigma(data, ComponentType.asym_power_sensor)
401
-
402
- return errors
403
-
404
-
405
- def _validate_required_in_data(data: SingleDataset, required: dict[ComponentType | str, list[str]]):
406
- """
407
- Checks if all required data is available.
408
-
409
- Args:
410
- data: A power-grid-model input dataset
411
- required: a list of required fields (a list of str), per component when applicaple (a list of str or str lists)
412
-
413
- Returns:
414
- An empty list if all required data is available, or a list of MissingValueErrors.
415
- """
416
-
417
- def is_valid_component(data, component):
418
- return (
419
- not (isinstance(data[component], np.ndarray) and data[component].size == 0)
420
- and data[component] is not None
421
- and isinstance(data[component], ABCSized)
422
- )
423
-
424
- results: list[MissingValueError] = []
425
-
426
- for component in data:
427
- if is_valid_component(data, component):
428
- items = required.get(component, [])
429
- results += _none_missing(data, component, items)
430
-
431
- return results
432
-
433
-
434
- def _validate_required_power_sigma_or_p_q_sigma(
435
- data: SingleDataset,
436
- power_sensor: Literal[ComponentType.sym_power_sensor, ComponentType.asym_power_sensor],
437
- ) -> list[MissingValueError]:
438
- """
439
- Check that either `p_sigma` and `q_sigma` are all provided, or that `power_sigma` is provided.
440
-
441
- Args:
442
- data: SingleDataset, pgm data
443
- sensor: the power sensor type, either ComponentType.sym_power_sensor or ComponentType.asym_power_sensor
444
- """
445
- result: list[MissingValueError] = []
446
-
447
- if power_sensor in data:
448
- sensor_data = data[power_sensor]
449
- p_sigma = sensor_data["p_sigma"]
450
- q_sigma = sensor_data["q_sigma"]
451
-
452
- asym_axes = tuple(range(sensor_data.ndim, p_sigma.ndim))
453
- all_pq_sigma_missing_mask = np.all(np.isnan(p_sigma), axis=asym_axes) & np.all(
454
- np.isnan(q_sigma), axis=asym_axes
455
- )
456
-
457
- result += _validate_required_in_data(
458
- {power_sensor: sensor_data[all_pq_sigma_missing_mask]}, required={power_sensor: ["power_sigma"]}
459
- )
460
- result += _validate_required_in_data(
461
- {power_sensor: sensor_data[~all_pq_sigma_missing_mask]}, required={power_sensor: ["p_sigma", "q_sigma"]}
462
- )
463
-
464
- return result
465
-
466
-
467
- def validate_values(data: SingleDataset, calculation_type: CalculationType | None = None) -> list[ValidationError]:
468
- """
469
- For each component supplied in the data, call the appropriate validation function
470
-
471
- Args:
472
- data: A power-grid-model input dataset
473
- calculation_type: Supply a calculation method, to allow missing values for unused fields
474
-
475
- Returns:
476
- An empty list if all required data is valid, or a list of ValidationErrors.
477
-
478
- """
479
- errors: list[ValidationError] = list(
480
- _all_finite(
481
- data=data,
482
- exceptions={
483
- ComponentType.sym_power_sensor: ["power_sigma", "p_sigma", "q_sigma"],
484
- ComponentType.asym_power_sensor: ["power_sigma", "p_sigma", "q_sigma"],
485
- ComponentType.sym_voltage_sensor: ["u_sigma"],
486
- ComponentType.asym_voltage_sensor: ["u_sigma"],
487
- ComponentType.sym_current_sensor: ["i_sigma", "i_angle_sigma"],
488
- ComponentType.asym_current_sensor: ["i_sigma", "i_angle_sigma"],
489
- },
490
- )
491
- )
492
-
493
- component_validators = {
494
- ComponentType.node: validate_node,
495
- ComponentType.line: validate_line,
496
- ComponentType.asym_line: validate_asym_line,
497
- ComponentType.link: lambda d: validate_branch(d, ComponentType.link),
498
- ComponentType.generic_branch: validate_generic_branch,
499
- ComponentType.transformer: validate_transformer,
500
- ComponentType.three_winding_transformer: validate_three_winding_transformer,
501
- ComponentType.source: validate_source,
502
- ComponentType.sym_load: lambda d: validate_generic_load_gen(d, ComponentType.sym_load),
503
- ComponentType.sym_gen: lambda d: validate_generic_load_gen(d, ComponentType.sym_gen),
504
- ComponentType.asym_load: lambda d: validate_generic_load_gen(d, ComponentType.asym_load),
505
- ComponentType.asym_gen: lambda d: validate_generic_load_gen(d, ComponentType.asym_gen),
506
- ComponentType.shunt: validate_shunt,
507
- }
508
-
509
- for component, validator in component_validators.items():
510
- if component in data:
511
- errors += validator(data)
512
-
513
- if calculation_type in (None, CalculationType.state_estimation):
514
- if ComponentType.sym_voltage_sensor in data:
515
- errors += validate_generic_voltage_sensor(data, ComponentType.sym_voltage_sensor)
516
- if ComponentType.asym_voltage_sensor in data:
517
- errors += validate_generic_voltage_sensor(data, ComponentType.asym_voltage_sensor)
518
- if ComponentType.sym_power_sensor in data:
519
- errors += validate_generic_power_sensor(data, ComponentType.sym_power_sensor)
520
- if ComponentType.asym_power_sensor in data:
521
- errors += validate_generic_power_sensor(data, ComponentType.asym_power_sensor)
522
- if ComponentType.sym_current_sensor in data:
523
- errors += validate_generic_current_sensor(data, ComponentType.sym_current_sensor)
524
- if ComponentType.asym_current_sensor in data:
525
- errors += validate_generic_current_sensor(data, ComponentType.asym_current_sensor)
526
-
527
- errors += validate_no_mixed_sensors_on_same_terminal(data)
528
-
529
- if calculation_type in (None, CalculationType.short_circuit) and ComponentType.fault in data:
530
- errors += validate_fault(data)
531
-
532
- if calculation_type in (None, CalculationType.power_flow) and ComponentType.transformer_tap_regulator in data:
533
- errors += validate_transformer_tap_regulator(data)
534
-
535
- return errors
536
-
537
-
538
- def validate_base(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
539
- errors: list[ValidationError] = list(_all_unique(data, component, "id"))
540
- return errors
541
-
542
-
543
- def validate_node(data: SingleDataset) -> list[ValidationError]:
544
- errors = validate_base(data, ComponentType.node)
545
- errors += _all_greater_than_zero(data, ComponentType.node, "u_rated")
546
- return errors
547
-
548
-
549
- def validate_branch(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
550
- errors = validate_base(data, component)
551
- errors += _all_valid_ids(data, component, "from_node", ComponentType.node)
552
- errors += _all_valid_ids(data, component, "to_node", ComponentType.node)
553
- errors += _all_not_two_values_equal(data, component, "to_node", "from_node")
554
- errors += _all_boolean(data, component, "from_status")
555
- errors += _all_boolean(data, component, "to_status")
556
- return errors
557
-
558
-
559
- def validate_line(data: SingleDataset) -> list[ValidationError]:
560
- errors = validate_branch(data, ComponentType.line)
561
- errors += _all_not_two_values_zero(data, ComponentType.line, "r1", "x1")
562
- errors += _all_not_two_values_zero(data, ComponentType.line, "r0", "x0")
563
- errors += _all_greater_than_zero(data, ComponentType.line, "i_n")
564
- return errors
565
-
566
-
567
- def validate_asym_line(data: SingleDataset) -> list[ValidationError]:
568
- errors = validate_branch(data, ComponentType.asym_line)
569
- errors += _all_greater_than_zero(data, ComponentType.asym_line, "i_n")
570
- required_fields = ["r_aa", "r_ba", "r_bb", "r_ca", "r_cb", "r_cc", "x_aa", "x_ba", "x_bb", "x_ca", "x_cb", "x_cc"]
571
- optional_r_matrix_fields = ["r_na", "r_nb", "r_nc", "r_nn"]
572
- optional_x_matrix_fields = ["x_na", "x_nb", "x_nc", "x_nn"]
573
- required_c_matrix_fields = ["c_aa", "c_ba", "c_bb", "c_ca", "c_cb", "c_cc"]
574
- c_fields = ["c0", "c1"]
575
- for field in (
576
- required_fields + optional_r_matrix_fields + optional_x_matrix_fields + required_c_matrix_fields + c_fields
577
- ):
578
- errors += _all_greater_than_zero(data, ComponentType.asym_line, field)
579
-
580
- errors += _no_strict_subset_missing(
581
- data, optional_r_matrix_fields + optional_x_matrix_fields, ComponentType.asym_line
582
- )
583
- errors += _no_strict_subset_missing(data, required_c_matrix_fields, ComponentType.asym_line)
584
- errors += _no_strict_subset_missing(data, c_fields, ComponentType.asym_line)
585
- errors += _not_all_missing(data, required_c_matrix_fields + c_fields, ComponentType.asym_line)
586
-
587
- return errors
588
-
589
-
590
- def validate_generic_branch(data: SingleDataset) -> list[ValidationError]:
591
- errors = validate_branch(data, ComponentType.generic_branch)
592
- errors += _all_greater_than_zero(data, ComponentType.generic_branch, "k")
593
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.generic_branch, "sn")
594
- return errors
595
-
596
-
597
- def validate_transformer(data: SingleDataset) -> list[ValidationError]:
598
- errors = validate_branch(data, ComponentType.transformer)
599
- errors += _all_greater_than_zero(data, ComponentType.transformer, "u1")
600
- errors += _all_greater_than_zero(data, ComponentType.transformer, "u2")
601
- errors += _all_greater_than_zero(data, ComponentType.transformer, "sn")
602
- errors += _all_greater_or_equal(data, ComponentType.transformer, "uk", "pk/sn")
603
- errors += _all_between(data, ComponentType.transformer, "uk", 0, 1)
604
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer, "pk")
605
- errors += _all_greater_or_equal(data, ComponentType.transformer, "i0", "p0/sn")
606
- errors += _all_less_than(data, ComponentType.transformer, "i0", 1)
607
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer, "p0")
608
- errors += _all_valid_enum_values(data, ComponentType.transformer, "winding_from", WindingType)
609
- errors += _all_valid_enum_values(data, ComponentType.transformer, "winding_to", WindingType)
610
- errors += _all_between_or_at(data, ComponentType.transformer, "clock", -12, 12)
611
- errors += _all_valid_clocks(data, ComponentType.transformer, "clock", "winding_from", "winding_to")
612
- errors += _all_valid_enum_values(data, ComponentType.transformer, "tap_side", BranchSide)
613
- errors += _all_between_or_at(
614
- data, ComponentType.transformer, "tap_pos", "tap_min", "tap_max", data[ComponentType.transformer]["tap_nom"], 0
615
- )
616
- errors += _all_between_or_at(data, ComponentType.transformer, "tap_nom", "tap_min", "tap_max", 0)
617
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer, "tap_size")
618
- errors += _all_greater_or_equal(
619
- data, ComponentType.transformer, "uk_min", "pk_min/sn", data[ComponentType.transformer]["uk"]
620
- )
621
- errors += _all_between(data, ComponentType.transformer, "uk_min", 0, 1, data[ComponentType.transformer]["uk"])
622
- errors += _all_greater_or_equal(
623
- data, ComponentType.transformer, "uk_max", "pk_max/sn", data[ComponentType.transformer]["uk"]
624
- )
625
- errors += _all_between(data, ComponentType.transformer, "uk_max", 0, 1, data[ComponentType.transformer]["uk"])
626
- errors += _all_greater_than_or_equal_to_zero(
627
- data, ComponentType.transformer, "pk_min", data[ComponentType.transformer]["pk"]
628
- )
629
- errors += _all_greater_than_or_equal_to_zero(
630
- data, ComponentType.transformer, "pk_max", data[ComponentType.transformer]["pk"]
631
- )
632
- return errors
633
-
634
-
635
- def validate_branch3(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
636
- errors = validate_base(data, component)
637
- errors += _all_valid_ids(data, component, "node_1", ComponentType.node)
638
- errors += _all_valid_ids(data, component, "node_2", ComponentType.node)
639
- errors += _all_valid_ids(data, component, "node_3", ComponentType.node)
640
- errors += _all_not_two_values_equal(data, component, "node_1", "node_2")
641
- errors += _all_not_two_values_equal(data, component, "node_1", "node_3")
642
- errors += _all_not_two_values_equal(data, component, "node_2", "node_3")
643
- errors += _all_boolean(data, component, "status_1")
644
- errors += _all_boolean(data, component, "status_2")
645
- errors += _all_boolean(data, component, "status_3")
646
- return errors
647
-
648
-
649
- def validate_three_winding_transformer(data: SingleDataset) -> list[ValidationError]: # noqa: PLR0915
650
- errors = validate_branch3(data, ComponentType.three_winding_transformer)
651
- errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "u1")
652
- errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "u2")
653
- errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "u3")
654
- errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "sn_1")
655
- errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "sn_2")
656
- errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "sn_3")
657
- errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_12", "pk_12/sn_1")
658
- errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_12", "pk_12/sn_2")
659
- errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_13", "pk_13/sn_1")
660
- errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_13", "pk_13/sn_3")
661
- errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_23", "pk_23/sn_2")
662
- errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_23", "pk_23/sn_3")
663
- errors += _all_between(data, ComponentType.three_winding_transformer, "uk_12", 0, 1)
664
- errors += _all_between(data, ComponentType.three_winding_transformer, "uk_13", 0, 1)
665
- errors += _all_between(data, ComponentType.three_winding_transformer, "uk_23", 0, 1)
666
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "pk_12")
667
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "pk_13")
668
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "pk_23")
669
- errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "i0", "p0/sn_1")
670
- errors += _all_less_than(data, ComponentType.three_winding_transformer, "i0", 1)
671
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "p0")
672
- errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "winding_1", WindingType)
673
- errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "winding_2", WindingType)
674
- errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "winding_3", WindingType)
675
- errors += _all_between_or_at(data, ComponentType.three_winding_transformer, "clock_12", -12, 12)
676
- errors += _all_between_or_at(data, ComponentType.three_winding_transformer, "clock_13", -12, 12)
677
- errors += _all_valid_clocks(data, ComponentType.three_winding_transformer, "clock_12", "winding_1", "winding_2")
678
- errors += _all_valid_clocks(data, ComponentType.three_winding_transformer, "clock_13", "winding_1", "winding_3")
679
- errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "tap_side", Branch3Side)
680
- errors += _all_between_or_at(
681
- data,
682
- ComponentType.three_winding_transformer,
683
- "tap_pos",
684
- "tap_min",
685
- "tap_max",
686
- data[ComponentType.three_winding_transformer]["tap_nom"],
687
- 0,
688
- )
689
- errors += _all_between_or_at(data, ComponentType.three_winding_transformer, "tap_nom", "tap_min", "tap_max", 0)
690
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "tap_size")
691
- errors += _all_greater_or_equal(
692
- data,
693
- ComponentType.three_winding_transformer,
694
- "uk_12_min",
695
- "pk_12_min/sn_1",
696
- data[ComponentType.three_winding_transformer]["uk_12"],
697
- )
698
- errors += _all_greater_or_equal(
699
- data,
700
- ComponentType.three_winding_transformer,
701
- "uk_12_min",
702
- "pk_12_min/sn_2",
703
- data[ComponentType.three_winding_transformer]["uk_12"],
704
- )
705
- errors += _all_greater_or_equal(
706
- data,
707
- ComponentType.three_winding_transformer,
708
- "uk_13_min",
709
- "pk_13_min/sn_1",
710
- data[ComponentType.three_winding_transformer]["uk_13"],
711
- )
712
- errors += _all_greater_or_equal(
713
- data,
714
- ComponentType.three_winding_transformer,
715
- "uk_13_min",
716
- "pk_13_min/sn_3",
717
- data[ComponentType.three_winding_transformer]["uk_13"],
718
- )
719
- errors += _all_greater_or_equal(
720
- data,
721
- ComponentType.three_winding_transformer,
722
- "uk_23_min",
723
- "pk_23_min/sn_2",
724
- data[ComponentType.three_winding_transformer]["uk_23"],
725
- )
726
- errors += _all_greater_or_equal(
727
- data,
728
- ComponentType.three_winding_transformer,
729
- "uk_23_min",
730
- "pk_23_min/sn_3",
731
- data[ComponentType.three_winding_transformer]["uk_23"],
732
- )
733
- errors += _all_between(
734
- data,
735
- ComponentType.three_winding_transformer,
736
- "uk_12_min",
737
- 0,
738
- 1,
739
- data[ComponentType.three_winding_transformer]["uk_12"],
740
- )
741
- errors += _all_between(
742
- data,
743
- ComponentType.three_winding_transformer,
744
- "uk_13_min",
745
- 0,
746
- 1,
747
- data[ComponentType.three_winding_transformer]["uk_13"],
748
- )
749
- errors += _all_between(
750
- data,
751
- ComponentType.three_winding_transformer,
752
- "uk_23_min",
753
- 0,
754
- 1,
755
- data[ComponentType.three_winding_transformer]["uk_23"],
756
- )
757
- errors += _all_greater_or_equal(
758
- data,
759
- ComponentType.three_winding_transformer,
760
- "uk_12_max",
761
- "pk_12_max/sn_1",
762
- data[ComponentType.three_winding_transformer]["uk_12"],
763
- )
764
- errors += _all_greater_or_equal(
765
- data,
766
- ComponentType.three_winding_transformer,
767
- "uk_12_max",
768
- "pk_12_max/sn_2",
769
- data[ComponentType.three_winding_transformer]["uk_12"],
770
- )
771
- errors += _all_greater_or_equal(
772
- data,
773
- ComponentType.three_winding_transformer,
774
- "uk_13_max",
775
- "pk_13_max/sn_1",
776
- data[ComponentType.three_winding_transformer]["uk_13"],
777
- )
778
- errors += _all_greater_or_equal(
779
- data,
780
- ComponentType.three_winding_transformer,
781
- "uk_13_max",
782
- "pk_13_max/sn_3",
783
- data[ComponentType.three_winding_transformer]["uk_13"],
784
- )
785
- errors += _all_greater_or_equal(
786
- data,
787
- ComponentType.three_winding_transformer,
788
- "uk_23_max",
789
- "pk_23_max/sn_2",
790
- data[ComponentType.three_winding_transformer]["uk_23"],
791
- )
792
- errors += _all_greater_or_equal(
793
- data,
794
- ComponentType.three_winding_transformer,
795
- "uk_23_max",
796
- "pk_23_max/sn_3",
797
- data[ComponentType.three_winding_transformer]["uk_23"],
798
- )
799
- errors += _all_between(
800
- data,
801
- ComponentType.three_winding_transformer,
802
- "uk_12_max",
803
- 0,
804
- 1,
805
- data[ComponentType.three_winding_transformer]["uk_12"],
806
- )
807
- errors += _all_between(
808
- data,
809
- ComponentType.three_winding_transformer,
810
- "uk_13_max",
811
- 0,
812
- 1,
813
- data[ComponentType.three_winding_transformer]["uk_13"],
814
- )
815
- errors += _all_between(
816
- data,
817
- ComponentType.three_winding_transformer,
818
- "uk_23_max",
819
- 0,
820
- 1,
821
- data[ComponentType.three_winding_transformer]["uk_23"],
822
- )
823
- errors += _all_greater_than_or_equal_to_zero(
824
- data,
825
- ComponentType.three_winding_transformer,
826
- "pk_12_min",
827
- data[ComponentType.three_winding_transformer]["pk_12"],
828
- )
829
- errors += _all_greater_than_or_equal_to_zero(
830
- data,
831
- ComponentType.three_winding_transformer,
832
- "pk_13_min",
833
- data[ComponentType.three_winding_transformer]["pk_13"],
834
- )
835
- errors += _all_greater_than_or_equal_to_zero(
836
- data,
837
- ComponentType.three_winding_transformer,
838
- "pk_23_min",
839
- data[ComponentType.three_winding_transformer]["pk_23"],
840
- )
841
- errors += _all_greater_than_or_equal_to_zero(
842
- data,
843
- ComponentType.three_winding_transformer,
844
- "pk_12_max",
845
- data[ComponentType.three_winding_transformer]["pk_12"],
846
- )
847
- errors += _all_greater_than_or_equal_to_zero(
848
- data,
849
- ComponentType.three_winding_transformer,
850
- "pk_13_max",
851
- data[ComponentType.three_winding_transformer]["pk_13"],
852
- )
853
- errors += _all_greater_than_or_equal_to_zero(
854
- data,
855
- ComponentType.three_winding_transformer,
856
- "pk_23_max",
857
- data[ComponentType.three_winding_transformer]["pk_23"],
858
- )
859
- return errors
860
-
861
-
862
- def validate_appliance(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
863
- errors = validate_base(data, component)
864
- errors += _all_boolean(data, component, "status")
865
- errors += _all_valid_ids(data, component, "node", ComponentType.node)
866
- return errors
867
-
868
-
869
- def validate_source(data: SingleDataset) -> list[ValidationError]:
870
- errors = validate_appliance(data, ComponentType.source)
871
- errors += _all_greater_than_zero(data, ComponentType.source, "u_ref")
872
- errors += _all_greater_than_zero(data, ComponentType.source, "sk")
873
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.source, "rx_ratio")
874
- errors += _all_greater_than_zero(data, ComponentType.source, "z01_ratio")
875
- return errors
876
-
877
-
878
- def validate_generic_load_gen(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
879
- errors = validate_appliance(data, component)
880
- errors += _all_valid_enum_values(data, component, "type", LoadGenType)
881
- return errors
882
-
883
-
884
- def validate_shunt(data: SingleDataset) -> list[ValidationError]:
885
- return validate_appliance(data, ComponentType.shunt)
886
-
887
-
888
- def validate_generic_voltage_sensor(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
889
- errors = validate_base(data, component)
890
- errors += _all_greater_than_zero(data, component, "u_sigma")
891
- errors += _all_greater_than_zero(data, component, "u_measured")
892
- errors += _all_valid_ids(data, component, "measured_object", ComponentType.node)
893
- return errors
894
-
895
-
896
- def validate_generic_power_sensor(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
897
- errors = validate_base(data, component)
898
- errors += _all_greater_than_zero(data, component, "power_sigma")
899
- errors += _all_valid_enum_values(data, component, "measured_terminal_type", MeasuredTerminalType)
900
- errors += _all_valid_ids(
901
- data,
902
- component,
903
- field="measured_object",
904
- ref_components=[
905
- ComponentType.node,
906
- ComponentType.line,
907
- ComponentType.asym_line,
908
- ComponentType.generic_branch,
909
- ComponentType.transformer,
910
- ComponentType.three_winding_transformer,
911
- ComponentType.source,
912
- ComponentType.shunt,
913
- ComponentType.sym_load,
914
- ComponentType.asym_load,
915
- ComponentType.sym_gen,
916
- ComponentType.asym_gen,
917
- ],
918
- )
919
- errors += _all_valid_ids(
920
- data,
921
- component,
922
- field="measured_object",
923
- ref_components=[
924
- ComponentType.line,
925
- ComponentType.asym_line,
926
- ComponentType.generic_branch,
927
- ComponentType.transformer,
928
- ],
929
- measured_terminal_type=MeasuredTerminalType.branch_from,
930
- )
931
- errors += _all_valid_ids(
932
- data,
933
- component,
934
- field="measured_object",
935
- ref_components=[
936
- ComponentType.line,
937
- ComponentType.asym_line,
938
- ComponentType.generic_branch,
939
- ComponentType.transformer,
940
- ],
941
- measured_terminal_type=MeasuredTerminalType.branch_to,
942
- )
943
- errors += _all_valid_ids(
944
- data,
945
- component,
946
- field="measured_object",
947
- ref_components=ComponentType.source,
948
- measured_terminal_type=MeasuredTerminalType.source,
949
- )
950
- errors += _all_valid_ids(
951
- data,
952
- component,
953
- field="measured_object",
954
- ref_components=ComponentType.shunt,
955
- measured_terminal_type=MeasuredTerminalType.shunt,
956
- )
957
- errors += _all_valid_ids(
958
- data,
959
- component,
960
- field="measured_object",
961
- ref_components=[ComponentType.sym_load, ComponentType.asym_load],
962
- measured_terminal_type=MeasuredTerminalType.load,
963
- )
964
- errors += _all_valid_ids(
965
- data,
966
- component,
967
- field="measured_object",
968
- ref_components=[ComponentType.sym_gen, ComponentType.asym_gen],
969
- measured_terminal_type=MeasuredTerminalType.generator,
970
- )
971
- errors += _all_valid_ids(
972
- data,
973
- component,
974
- field="measured_object",
975
- ref_components=ComponentType.three_winding_transformer,
976
- measured_terminal_type=MeasuredTerminalType.branch3_1,
977
- )
978
- errors += _all_valid_ids(
979
- data,
980
- component,
981
- field="measured_object",
982
- ref_components=ComponentType.three_winding_transformer,
983
- measured_terminal_type=MeasuredTerminalType.branch3_2,
984
- )
985
- errors += _all_valid_ids(
986
- data,
987
- component,
988
- field="measured_object",
989
- ref_components=ComponentType.three_winding_transformer,
990
- measured_terminal_type=MeasuredTerminalType.branch3_3,
991
- )
992
- errors += _all_valid_ids(
993
- data,
994
- component,
995
- field="measured_object",
996
- ref_components=ComponentType.node,
997
- measured_terminal_type=MeasuredTerminalType.node,
998
- )
999
- if component in (ComponentType.sym_power_sensor, ComponentType.asym_power_sensor):
1000
- errors += _valid_p_q_sigma(data, component)
1001
-
1002
- return errors
1003
-
1004
-
1005
- def validate_generic_current_sensor(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
1006
- errors = validate_base(data, component)
1007
- errors += _all_greater_than_zero(data, component, "i_sigma")
1008
- errors += _all_greater_than_zero(data, component, "i_angle_sigma")
1009
- errors += _all_valid_enum_values(data, component, "measured_terminal_type", MeasuredTerminalType)
1010
- errors += _all_valid_enum_values(data, component, "angle_measurement_type", AngleMeasurementType)
1011
- errors += _all_in_valid_values(
1012
- data,
1013
- component,
1014
- "measured_terminal_type",
1015
- [
1016
- MeasuredTerminalType.branch_from,
1017
- MeasuredTerminalType.branch_to,
1018
- MeasuredTerminalType.branch3_1,
1019
- MeasuredTerminalType.branch3_2,
1020
- MeasuredTerminalType.branch3_3,
1021
- ],
1022
- )
1023
- errors += _all_valid_ids(
1024
- data,
1025
- component,
1026
- field="measured_object",
1027
- ref_components=[
1028
- ComponentType.line,
1029
- ComponentType.asym_line,
1030
- ComponentType.generic_branch,
1031
- ComponentType.transformer,
1032
- ComponentType.three_winding_transformer,
1033
- ],
1034
- )
1035
- errors += _all_valid_ids(
1036
- data,
1037
- component,
1038
- field="measured_object",
1039
- ref_components=[
1040
- ComponentType.line,
1041
- ComponentType.asym_line,
1042
- ComponentType.generic_branch,
1043
- ComponentType.transformer,
1044
- ],
1045
- measured_terminal_type=MeasuredTerminalType.branch_from,
1046
- )
1047
- errors += _all_valid_ids(
1048
- data,
1049
- component,
1050
- field="measured_object",
1051
- ref_components=[
1052
- ComponentType.line,
1053
- ComponentType.asym_line,
1054
- ComponentType.generic_branch,
1055
- ComponentType.transformer,
1056
- ],
1057
- measured_terminal_type=MeasuredTerminalType.branch_to,
1058
- )
1059
- errors += _all_valid_ids(
1060
- data,
1061
- component,
1062
- field="measured_object",
1063
- ref_components=ComponentType.three_winding_transformer,
1064
- measured_terminal_type=MeasuredTerminalType.branch3_1,
1065
- )
1066
- errors += _all_valid_ids(
1067
- data,
1068
- component,
1069
- field="measured_object",
1070
- ref_components=ComponentType.three_winding_transformer,
1071
- measured_terminal_type=MeasuredTerminalType.branch3_2,
1072
- )
1073
- errors += _all_valid_ids(
1074
- data,
1075
- component,
1076
- field="measured_object",
1077
- ref_components=ComponentType.three_winding_transformer,
1078
- measured_terminal_type=MeasuredTerminalType.branch3_3,
1079
- )
1080
- errors += _all_same_current_angle_measurement_type_on_terminal(
1081
- data,
1082
- component,
1083
- measured_object_field="measured_object",
1084
- measured_terminal_type_field="measured_terminal_type",
1085
- angle_measurement_type_field="angle_measurement_type",
1086
- )
1087
- errors += _any_voltage_angle_measurement_if_global_current_measurement(
1088
- data,
1089
- component,
1090
- angle_measurement_type_filter=("angle_measurement_type", AngleMeasurementType.global_angle),
1091
- voltage_sensor_u_angle_measured={
1092
- ComponentType.sym_voltage_sensor: "u_angle_measured",
1093
- ComponentType.asym_voltage_sensor: "u_angle_measured",
1094
- },
1095
- )
1096
-
1097
- return errors
1098
-
1099
-
1100
- def validate_fault(data: SingleDataset) -> list[ValidationError]:
1101
- errors = validate_base(data, ComponentType.fault)
1102
- errors += _all_boolean(data, ComponentType.fault, "status")
1103
- errors += _all_valid_enum_values(data, ComponentType.fault, "fault_type", FaultType)
1104
- errors += _all_valid_enum_values(data, ComponentType.fault, "fault_phase", FaultPhase)
1105
- errors += _all_valid_fault_phases(data, ComponentType.fault, "fault_type", "fault_phase")
1106
- errors += _all_valid_ids(data, ComponentType.fault, field="fault_object", ref_components=ComponentType.node)
1107
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.fault, "r_f")
1108
- errors += _all_enabled_identical(data, ComponentType.fault, "fault_type", "status")
1109
- errors += _all_enabled_identical(data, ComponentType.fault, "fault_phase", "status")
1110
- return errors
1111
-
1112
-
1113
- def validate_regulator(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
1114
- errors = validate_base(data, component)
1115
- errors += _all_valid_ids(
1116
- data,
1117
- component,
1118
- field="regulated_object",
1119
- ref_components=[ComponentType.transformer, ComponentType.three_winding_transformer],
1120
- )
1121
- return errors
1122
-
1123
-
1124
- def validate_transformer_tap_regulator(data: SingleDataset) -> list[ValidationError]:
1125
- errors = validate_regulator(data, ComponentType.transformer_tap_regulator)
1126
- errors += _all_boolean(data, ComponentType.transformer_tap_regulator, "status")
1127
- errors += _all_unique(data, ComponentType.transformer_tap_regulator, "regulated_object")
1128
- errors += _all_valid_enum_values(
1129
- data, ComponentType.transformer_tap_regulator, "control_side", [BranchSide, Branch3Side]
1130
- )
1131
- errors += _all_valid_associated_enum_values(
1132
- data,
1133
- ComponentType.transformer_tap_regulator,
1134
- "control_side",
1135
- "regulated_object",
1136
- [ComponentType.transformer],
1137
- [BranchSide],
1138
- )
1139
- errors += _all_valid_associated_enum_values(
1140
- data,
1141
- ComponentType.transformer_tap_regulator,
1142
- "control_side",
1143
- "regulated_object",
1144
- [ComponentType.three_winding_transformer],
1145
- [Branch3Side],
1146
- )
1147
- errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer_tap_regulator, "u_set")
1148
- errors += _all_greater_than_zero(data, ComponentType.transformer_tap_regulator, "u_band")
1149
- errors += _all_greater_than_or_equal_to_zero(
1150
- data, ComponentType.transformer_tap_regulator, "line_drop_compensation_r", 0.0
1151
- )
1152
- errors += _all_greater_than_or_equal_to_zero(
1153
- data, ComponentType.transformer_tap_regulator, "line_drop_compensation_x", 0.0
1154
- )
1155
- return errors
1156
-
1157
-
1158
- def validate_no_mixed_sensors_on_same_terminal(data: SingleDataset) -> list[ValidationError]:
1159
- errors: list[ValidationError] = []
1160
-
1161
- for power_sensor in [ComponentType.sym_power_sensor, ComponentType.asym_power_sensor]:
1162
- for current_sensor in [ComponentType.sym_current_sensor, ComponentType.asym_current_sensor]:
1163
- if power_sensor in data and current_sensor in data:
1164
- errors += _all_same_sensor_type_on_same_terminal(
1165
- data,
1166
- power_sensor_type=power_sensor,
1167
- current_sensor_type=current_sensor,
1168
- measured_object_field="measured_object",
1169
- measured_terminal_type_field="measured_terminal_type",
1170
- )
1171
-
1172
- return errors
1
+ # SPDX-FileCopyrightText: Contributors to the Power Grid Model project <powergridmodel@lfenergy.org>
2
+ #
3
+ # SPDX-License-Identifier: MPL-2.0
4
+
5
+ """
6
+ Power Grid Model Validation Functions.
7
+
8
+ Although all functions are 'public', you probably only need validate_input_data() and validate_batch_data().
9
+
10
+ """
11
+
12
+ import copy
13
+ from collections.abc import Sized as ABCSized
14
+ from itertools import chain
15
+ from typing import Literal
16
+
17
+ import numpy as np
18
+
19
+ from power_grid_model._core.dataset_definitions import ComponentType, DatasetType, _map_to_component_types
20
+ from power_grid_model._core.power_grid_meta import power_grid_meta_data
21
+ from power_grid_model._core.utils import (
22
+ compatibility_convert_row_columnar_dataset as _compatibility_convert_row_columnar_dataset,
23
+ convert_batch_dataset_to_batch_list as _convert_batch_dataset_to_batch_list,
24
+ )
25
+ from power_grid_model.data_types import BatchDataset, Dataset, SingleDataset
26
+ from power_grid_model.enum import (
27
+ AngleMeasurementType,
28
+ Branch3Side,
29
+ BranchSide,
30
+ CalculationType,
31
+ FaultPhase,
32
+ FaultType,
33
+ LoadGenType,
34
+ MeasuredTerminalType,
35
+ WindingType,
36
+ )
37
+ from power_grid_model.validation._rules import (
38
+ all_between as _all_between,
39
+ all_between_or_at as _all_between_or_at,
40
+ all_boolean as _all_boolean,
41
+ all_cross_unique as _all_cross_unique,
42
+ all_enabled_identical as _all_enabled_identical,
43
+ all_finite as _all_finite,
44
+ all_greater_or_equal as _all_greater_or_equal,
45
+ all_greater_than_or_equal_to_zero as _all_greater_than_or_equal_to_zero,
46
+ all_greater_than_zero as _all_greater_than_zero,
47
+ all_in_valid_values as _all_in_valid_values,
48
+ all_less_than as _all_less_than,
49
+ all_not_two_values_equal as _all_not_two_values_equal,
50
+ all_not_two_values_zero as _all_not_two_values_zero,
51
+ all_same_current_angle_measurement_type_on_terminal as _all_same_current_angle_measurement_type_on_terminal,
52
+ all_same_sensor_type_on_same_terminal as _all_same_sensor_type_on_same_terminal,
53
+ all_unique as _all_unique,
54
+ all_valid_associated_enum_values as _all_valid_associated_enum_values,
55
+ all_valid_clocks as _all_valid_clocks,
56
+ all_valid_enum_values as _all_valid_enum_values,
57
+ all_valid_fault_phases as _all_valid_fault_phases,
58
+ all_valid_ids as _all_valid_ids,
59
+ any_voltage_angle_measurement_if_global_current_measurement as _any_voltage_angle_measurement_if_global_current_measurement, # noqa: E501
60
+ ids_valid_in_update_data_set as _ids_valid_in_update_data_set,
61
+ no_strict_subset_missing as _no_strict_subset_missing,
62
+ none_missing as _none_missing,
63
+ not_all_missing as _not_all_missing,
64
+ valid_p_q_sigma as _valid_p_q_sigma,
65
+ )
66
+ from power_grid_model.validation.errors import (
67
+ IdNotInDatasetError,
68
+ InvalidIdError,
69
+ MissingValueError,
70
+ MultiComponentNotUniqueError,
71
+ ValidationError,
72
+ )
73
+ from power_grid_model.validation.utils import _update_input_data
74
+
75
+
76
+ def validate_input_data(
77
+ input_data: SingleDataset, calculation_type: CalculationType | None = None, symmetric: bool = True
78
+ ) -> list[ValidationError] | None:
79
+ """
80
+ Validates the entire input dataset:
81
+
82
+ 1. Is the data structure correct? (checking data types and numpy array shapes)
83
+ 2. Are all required values provided? (checking NaNs)
84
+ 3. Are all ID's unique? (checking object identifiers across all components)
85
+ 4. Are the supplied values valid? (checking limits and other logic as described in "Graph Data Model")
86
+
87
+ Args:
88
+ input_data: A power-grid-model input dataset
89
+ calculation_type: Supply a calculation method, to allow missing values for unused fields
90
+ symmetric: A boolean to state whether input data will be used for a symmetric or asymmetric calculation
91
+
92
+ Returns:
93
+ None if the data is valid, or a list containing all validation errors.
94
+
95
+ Raises:
96
+ Error: KeyError | TypeError | ValueError: if the data structure is invalid.
97
+ """
98
+ input_data = _map_to_component_types(input_data)
99
+
100
+ # Convert to row based if in columnar or mixed format format
101
+ row_input_data = _compatibility_convert_row_columnar_dataset(input_data, None, DatasetType.input)
102
+
103
+ # A deep copy is made of the input data, since default values will be added in the validation process
104
+ input_data_copy = copy.deepcopy(row_input_data)
105
+
106
+ assert_valid_data_structure(input_data_copy, DatasetType.input)
107
+
108
+ errors: list[ValidationError] = []
109
+ errors += validate_required_values(input_data_copy, calculation_type, symmetric)
110
+ errors += validate_unique_ids_across_components(input_data_copy)
111
+ errors += validate_values(input_data_copy, calculation_type)
112
+ return errors if errors else None
113
+
114
+
115
+ def validate_batch_data(
116
+ input_data: SingleDataset,
117
+ update_data: BatchDataset,
118
+ calculation_type: CalculationType | None = None,
119
+ symmetric: bool = True,
120
+ ) -> dict[int, list[ValidationError]] | None:
121
+ """
122
+ The input dataset is validated:
123
+
124
+ 1. Is the data structure correct? (checking data types and numpy array shapes)
125
+ 2. Are all input data ID's unique? (checking object identifiers across all components)
126
+
127
+ For each batch the update data is validated:
128
+ 3. Is the update data structure correct? (checking data types and numpy array shapes)
129
+ 4. Are all update ID's valid? (checking object identifiers across update and input data)
130
+
131
+ Then (for each batch independently) the input dataset is updated with the batch's update data and validated:
132
+ 5. Are all required values provided? (checking NaNs)
133
+ 6. Are the supplied values valid? (checking limits and other logic as described in "Graph Data Model")
134
+
135
+ Args:
136
+ input_data: A power-grid-model input dataset
137
+ update_data: A power-grid-model update dataset (one or more batches)
138
+ calculation_type: Supply a calculation method, to allow missing values for unused fields
139
+ symmetric: A boolean to state whether input data will be used for a symmetric or asymmetric calculation
140
+
141
+ Returns:
142
+ None if the data is valid, or a dictionary containing all validation errors,
143
+ where the key is the batch number (0-indexed).
144
+
145
+ Raises:
146
+ Error: KeyError | TypeError | ValueError: if the data structure is invalid.
147
+ """
148
+ input_data = _map_to_component_types(input_data)
149
+ update_data = _map_to_component_types(update_data)
150
+
151
+ # Convert to row based if in columnar or mixed format
152
+ row_input_data = _compatibility_convert_row_columnar_dataset(input_data, None, DatasetType.input)
153
+
154
+ # A deep copy is made of the input data, since default values will be added in the validation process
155
+ input_data_copy = copy.deepcopy(row_input_data)
156
+ assert_valid_data_structure(input_data_copy, DatasetType.input)
157
+
158
+ input_errors: list[ValidationError] = list(validate_unique_ids_across_components(input_data_copy))
159
+
160
+ batch_data = _convert_batch_dataset_to_batch_list(update_data, DatasetType.update)
161
+
162
+ errors = {}
163
+ for batch, batch_update_data in enumerate(batch_data):
164
+ row_update_data = _compatibility_convert_row_columnar_dataset(batch_update_data, None, DatasetType.update)
165
+ assert_valid_data_structure(row_update_data, DatasetType.update)
166
+ id_errors: list[IdNotInDatasetError | InvalidIdError] = validate_ids(row_update_data, input_data_copy)
167
+
168
+ batch_errors = input_errors + id_errors
169
+
170
+ if not id_errors:
171
+ merged_data = _update_input_data(input_data_copy, row_update_data)
172
+ batch_errors += validate_required_values(merged_data, calculation_type, symmetric)
173
+ batch_errors += validate_values(merged_data, calculation_type)
174
+
175
+ if batch_errors:
176
+ errors[batch] = batch_errors
177
+
178
+ return errors if errors else None
179
+
180
+
181
+ def assert_valid_data_structure(data: Dataset, data_type: DatasetType) -> None:
182
+ """
183
+ Checks if all component names are valid and if the data inside the component matches the required Numpy
184
+ structured array as defined in the Power Grid Model meta data.
185
+
186
+ Args:
187
+ data: A power-grid-model input/update dataset
188
+ data_type: 'input' or 'update'
189
+
190
+ Raises:
191
+ Error: KeyError, TypeError
192
+
193
+ """
194
+ if data_type not in {DatasetType.input, DatasetType.update}:
195
+ raise KeyError(f"Unexpected data type '{data_type}' (should be 'input' or 'update')")
196
+
197
+ component_dtype = {component: meta.dtype for component, meta in power_grid_meta_data[data_type].items()}
198
+ for component, array in data.items():
199
+ # Check if component name is valid
200
+ if component not in component_dtype:
201
+ raise KeyError(f"Unknown component '{component}' in {data_type} data.")
202
+
203
+ # Check if component definition is as expected
204
+ dtype = component_dtype[component]
205
+ if isinstance(array, np.ndarray):
206
+ if array.dtype != dtype:
207
+ if not hasattr(array.dtype, "names") or not array.dtype.names:
208
+ raise TypeError(
209
+ f"Unexpected Numpy array ({array.dtype}) for '{component}' {data_type} data "
210
+ "(should be a Numpy structured array)."
211
+ )
212
+ raise TypeError(
213
+ f"Unexpected Numpy structured array; (expected = {dtype}, actual = {array.dtype}). "
214
+ f"For component '{component}'."
215
+ )
216
+ else:
217
+ raise TypeError(
218
+ f"Unexpected data type {type(array).__name__} for '{component}' {data_type} data "
219
+ "(should be a Numpy structured array)."
220
+ )
221
+
222
+
223
+ def validate_unique_ids_across_components(data: SingleDataset) -> list[MultiComponentNotUniqueError]:
224
+ """
225
+ Checks if all ids in the input dataset are unique
226
+
227
+ Args:
228
+ data: A power-grid-model input dataset
229
+
230
+ Returns:
231
+ An empty list if all ids are unique, or a list of MultiComponentNotUniqueErrors for all components that
232
+ have non-unique ids
233
+ """
234
+ return _all_cross_unique(data, [(component, "id") for component in data])
235
+
236
+
237
+ def validate_ids(update_data: SingleDataset, input_data: SingleDataset) -> list[IdNotInDatasetError | InvalidIdError]:
238
+ """
239
+ Checks if all ids of the components in the update data:
240
+ - exist and match those in the input data
241
+ - are not present but qualifies for optional id
242
+
243
+ This function should be called for every update dataset in a batch set
244
+
245
+ Args:
246
+ update_data: A single update dataset
247
+ input_data: Input dataset
248
+
249
+ Returns:
250
+ An empty list if all update data ids are valid, or a list of IdNotInDatasetErrors or InvalidIdError for
251
+ all update components that have invalid ids
252
+
253
+ """
254
+ errors = (
255
+ _ids_valid_in_update_data_set(update_data, input_data, component, DatasetType.update)
256
+ for component in update_data
257
+ )
258
+ return list(chain(*errors))
259
+
260
+
261
+ def validate_required_values( # noqa: PLR0915
262
+ data: SingleDataset, calculation_type: CalculationType | None = None, symmetric: bool = True
263
+ ) -> list[MissingValueError]:
264
+ """
265
+ Checks if all required data is available.
266
+
267
+ Args:
268
+ data: A power-grid-model input dataset
269
+ calculation_type: Supply a calculation method, to allow missing values for unused fields
270
+ symmetric: A boolean to state whether input data will be used for a symmetric or asymmetric calculation
271
+
272
+ Returns:
273
+ An empty list if all required data is available, or a list of MissingValueErrors.
274
+ """
275
+ # Base
276
+ required: dict[ComponentType | str, list[str]] = {"base": ["id"]}
277
+
278
+ # Nodes
279
+ required[ComponentType.node] = required["base"] + ["u_rated"]
280
+
281
+ # Branches
282
+ required["branch"] = required["base"] + ["from_node", "to_node", "from_status", "to_status"]
283
+ required[ComponentType.link] = required["branch"].copy()
284
+ required[ComponentType.line] = required["branch"] + ["r1", "x1", "c1", "tan1"]
285
+ required[ComponentType.asym_line] = required["branch"] + [
286
+ "r_aa",
287
+ "r_ba",
288
+ "r_bb",
289
+ "r_ca",
290
+ "r_cb",
291
+ "r_cc",
292
+ "x_aa",
293
+ "x_ba",
294
+ "x_bb",
295
+ "x_ca",
296
+ "x_cb",
297
+ "x_cc",
298
+ ]
299
+ required[ComponentType.transformer] = required["branch"] + [
300
+ "u1",
301
+ "u2",
302
+ "sn",
303
+ "uk",
304
+ "pk",
305
+ "i0",
306
+ "p0",
307
+ "winding_from",
308
+ "winding_to",
309
+ "clock",
310
+ "tap_side",
311
+ "tap_min",
312
+ "tap_max",
313
+ "tap_size",
314
+ ]
315
+ # Branch3
316
+ required["branch3"] = required["base"] + ["node_1", "node_2", "node_3", "status_1", "status_2", "status_3"]
317
+ required[ComponentType.three_winding_transformer] = required["branch3"] + [
318
+ "u1",
319
+ "u2",
320
+ "u3",
321
+ "sn_1",
322
+ "sn_2",
323
+ "sn_3",
324
+ "uk_12",
325
+ "uk_13",
326
+ "uk_23",
327
+ "pk_12",
328
+ "pk_13",
329
+ "pk_23",
330
+ "i0",
331
+ "p0",
332
+ "winding_1",
333
+ "winding_2",
334
+ "winding_3",
335
+ "clock_12",
336
+ "clock_13",
337
+ "tap_side",
338
+ "tap_min",
339
+ "tap_max",
340
+ "tap_size",
341
+ ]
342
+
343
+ # Regulators
344
+ required["regulator"] = required["base"] + ["regulated_object", "status"]
345
+ required[ComponentType.transformer_tap_regulator] = required["regulator"]
346
+ if calculation_type is None or calculation_type == CalculationType.power_flow:
347
+ required[ComponentType.transformer_tap_regulator] += ["control_side", "u_set", "u_band"]
348
+
349
+ # Appliances
350
+ required["appliance"] = required["base"] + ["node", "status"]
351
+ required[ComponentType.source] = required["appliance"].copy()
352
+ if calculation_type is None or calculation_type == CalculationType.power_flow:
353
+ required[ComponentType.source] += ["u_ref"]
354
+ required[ComponentType.shunt] = required["appliance"] + ["g1", "b1"]
355
+ required["generic_load_gen"] = required["appliance"] + ["type"]
356
+ if calculation_type is None or calculation_type == CalculationType.power_flow:
357
+ required["generic_load_gen"] += ["p_specified", "q_specified"]
358
+ required[ComponentType.sym_load] = required["generic_load_gen"].copy()
359
+ required[ComponentType.asym_load] = required["generic_load_gen"].copy()
360
+ required[ComponentType.sym_gen] = required["generic_load_gen"].copy()
361
+ required[ComponentType.asym_gen] = required["generic_load_gen"].copy()
362
+
363
+ # Sensors
364
+ required["sensor"] = required["base"] + ["measured_object"]
365
+ required["voltage_sensor"] = required["sensor"].copy()
366
+ required["power_sensor"] = required["sensor"] + ["measured_terminal_type"]
367
+ required["current_sensor"] = required["sensor"] + ["measured_terminal_type", "angle_measurement_type"]
368
+ if calculation_type is None or calculation_type == CalculationType.state_estimation:
369
+ required["voltage_sensor"] += ["u_sigma", "u_measured"]
370
+ required["power_sensor"] += ["p_measured", "q_measured"] # power_sigma, p_sigma and q_sigma are checked later
371
+ required["current_sensor"] += ["i_sigma", "i_angle_sigma", "i_measured", "i_angle_measured"]
372
+ required[ComponentType.sym_voltage_sensor] = required["voltage_sensor"].copy()
373
+ required[ComponentType.asym_voltage_sensor] = required["voltage_sensor"].copy()
374
+ required[ComponentType.sym_current_sensor] = required["current_sensor"].copy()
375
+ required[ComponentType.asym_current_sensor] = required["current_sensor"].copy()
376
+
377
+ # Different requirements for individual sensors. Avoid shallow copy.
378
+ for sensor_type in (ComponentType.sym_power_sensor, ComponentType.asym_power_sensor):
379
+ required[sensor_type] = required["power_sensor"].copy()
380
+
381
+ # Faults
382
+ required[ComponentType.fault] = required["base"] + ["fault_object"]
383
+ asym_sc = False
384
+ if calculation_type is None or calculation_type == CalculationType.short_circuit:
385
+ required[ComponentType.fault] += ["status", "fault_type"]
386
+ if ComponentType.fault in data:
387
+ for elem in data[ComponentType.fault]["fault_type"]:
388
+ if elem not in (FaultType.three_phase, FaultType.nan):
389
+ asym_sc = True
390
+ break
391
+
392
+ if not symmetric or asym_sc:
393
+ required[ComponentType.line] += ["r0", "x0", "c0", "tan0"]
394
+ required[ComponentType.shunt] += ["g0", "b0"]
395
+
396
+ errors = _validate_required_in_data(data, required)
397
+
398
+ if calculation_type is None or calculation_type == CalculationType.state_estimation:
399
+ errors += _validate_required_power_sigma_or_p_q_sigma(data, ComponentType.sym_power_sensor)
400
+ errors += _validate_required_power_sigma_or_p_q_sigma(data, ComponentType.asym_power_sensor)
401
+
402
+ return errors
403
+
404
+
405
+ def _validate_required_in_data(data: SingleDataset, required: dict[ComponentType | str, list[str]]):
406
+ """
407
+ Checks if all required data is available.
408
+
409
+ Args:
410
+ data: A power-grid-model input dataset
411
+ required: a list of required fields (a list of str), per component when applicaple (a list of str or str lists)
412
+
413
+ Returns:
414
+ An empty list if all required data is available, or a list of MissingValueErrors.
415
+ """
416
+
417
+ def is_valid_component(data, component):
418
+ return (
419
+ not (isinstance(data[component], np.ndarray) and data[component].size == 0)
420
+ and data[component] is not None
421
+ and isinstance(data[component], ABCSized)
422
+ )
423
+
424
+ results: list[MissingValueError] = []
425
+
426
+ for component in data:
427
+ if is_valid_component(data, component):
428
+ items = required.get(component, [])
429
+ results += _none_missing(data, component, items)
430
+
431
+ return results
432
+
433
+
434
+ def _validate_required_power_sigma_or_p_q_sigma(
435
+ data: SingleDataset,
436
+ power_sensor: Literal[ComponentType.sym_power_sensor, ComponentType.asym_power_sensor],
437
+ ) -> list[MissingValueError]:
438
+ """
439
+ Check that either `p_sigma` and `q_sigma` are all provided, or that `power_sigma` is provided.
440
+
441
+ Args:
442
+ data: SingleDataset, pgm data
443
+ sensor: the power sensor type, either ComponentType.sym_power_sensor or ComponentType.asym_power_sensor
444
+ """
445
+ result: list[MissingValueError] = []
446
+
447
+ if power_sensor in data:
448
+ sensor_data = data[power_sensor]
449
+ p_sigma = sensor_data["p_sigma"]
450
+ q_sigma = sensor_data["q_sigma"]
451
+
452
+ asym_axes = tuple(range(sensor_data.ndim, p_sigma.ndim))
453
+ all_pq_sigma_missing_mask = np.all(np.isnan(p_sigma), axis=asym_axes) & np.all(
454
+ np.isnan(q_sigma), axis=asym_axes
455
+ )
456
+
457
+ result += _validate_required_in_data(
458
+ {power_sensor: sensor_data[all_pq_sigma_missing_mask]}, required={power_sensor: ["power_sigma"]}
459
+ )
460
+ result += _validate_required_in_data(
461
+ {power_sensor: sensor_data[~all_pq_sigma_missing_mask]}, required={power_sensor: ["p_sigma", "q_sigma"]}
462
+ )
463
+
464
+ return result
465
+
466
+
467
+ def validate_values(data: SingleDataset, calculation_type: CalculationType | None = None) -> list[ValidationError]:
468
+ """
469
+ For each component supplied in the data, call the appropriate validation function
470
+
471
+ Args:
472
+ data: A power-grid-model input dataset
473
+ calculation_type: Supply a calculation method, to allow missing values for unused fields
474
+
475
+ Returns:
476
+ An empty list if all required data is valid, or a list of ValidationErrors.
477
+
478
+ """
479
+ errors: list[ValidationError] = list(
480
+ _all_finite(
481
+ data=data,
482
+ exceptions={
483
+ ComponentType.sym_power_sensor: ["power_sigma", "p_sigma", "q_sigma"],
484
+ ComponentType.asym_power_sensor: ["power_sigma", "p_sigma", "q_sigma"],
485
+ ComponentType.sym_voltage_sensor: ["u_sigma"],
486
+ ComponentType.asym_voltage_sensor: ["u_sigma"],
487
+ ComponentType.sym_current_sensor: ["i_sigma", "i_angle_sigma"],
488
+ ComponentType.asym_current_sensor: ["i_sigma", "i_angle_sigma"],
489
+ },
490
+ )
491
+ )
492
+
493
+ component_validators = {
494
+ ComponentType.node: validate_node,
495
+ ComponentType.line: validate_line,
496
+ ComponentType.asym_line: validate_asym_line,
497
+ ComponentType.link: lambda d: validate_branch(d, ComponentType.link),
498
+ ComponentType.generic_branch: validate_generic_branch,
499
+ ComponentType.transformer: validate_transformer,
500
+ ComponentType.three_winding_transformer: validate_three_winding_transformer,
501
+ ComponentType.source: validate_source,
502
+ ComponentType.sym_load: lambda d: validate_generic_load_gen(d, ComponentType.sym_load),
503
+ ComponentType.sym_gen: lambda d: validate_generic_load_gen(d, ComponentType.sym_gen),
504
+ ComponentType.asym_load: lambda d: validate_generic_load_gen(d, ComponentType.asym_load),
505
+ ComponentType.asym_gen: lambda d: validate_generic_load_gen(d, ComponentType.asym_gen),
506
+ ComponentType.shunt: validate_shunt,
507
+ }
508
+
509
+ for component, validator in component_validators.items():
510
+ if component in data:
511
+ errors += validator(data)
512
+
513
+ if calculation_type in (None, CalculationType.state_estimation):
514
+ if ComponentType.sym_voltage_sensor in data:
515
+ errors += validate_generic_voltage_sensor(data, ComponentType.sym_voltage_sensor)
516
+ if ComponentType.asym_voltage_sensor in data:
517
+ errors += validate_generic_voltage_sensor(data, ComponentType.asym_voltage_sensor)
518
+ if ComponentType.sym_power_sensor in data:
519
+ errors += validate_generic_power_sensor(data, ComponentType.sym_power_sensor)
520
+ if ComponentType.asym_power_sensor in data:
521
+ errors += validate_generic_power_sensor(data, ComponentType.asym_power_sensor)
522
+ if ComponentType.sym_current_sensor in data:
523
+ errors += validate_generic_current_sensor(data, ComponentType.sym_current_sensor)
524
+ if ComponentType.asym_current_sensor in data:
525
+ errors += validate_generic_current_sensor(data, ComponentType.asym_current_sensor)
526
+
527
+ errors += validate_no_mixed_sensors_on_same_terminal(data)
528
+
529
+ if calculation_type in (None, CalculationType.short_circuit) and ComponentType.fault in data:
530
+ errors += validate_fault(data)
531
+
532
+ if calculation_type in (None, CalculationType.power_flow) and ComponentType.transformer_tap_regulator in data:
533
+ errors += validate_transformer_tap_regulator(data)
534
+
535
+ return errors
536
+
537
+
538
+ def validate_base(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
539
+ errors: list[ValidationError] = list(_all_unique(data, component, "id"))
540
+ return errors
541
+
542
+
543
+ def validate_node(data: SingleDataset) -> list[ValidationError]:
544
+ errors = validate_base(data, ComponentType.node)
545
+ errors += _all_greater_than_zero(data, ComponentType.node, "u_rated")
546
+ return errors
547
+
548
+
549
+ def validate_branch(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
550
+ errors = validate_base(data, component)
551
+ errors += _all_valid_ids(data, component, "from_node", ComponentType.node)
552
+ errors += _all_valid_ids(data, component, "to_node", ComponentType.node)
553
+ errors += _all_not_two_values_equal(data, component, "to_node", "from_node")
554
+ errors += _all_boolean(data, component, "from_status")
555
+ errors += _all_boolean(data, component, "to_status")
556
+ return errors
557
+
558
+
559
+ def validate_line(data: SingleDataset) -> list[ValidationError]:
560
+ errors = validate_branch(data, ComponentType.line)
561
+ errors += _all_not_two_values_zero(data, ComponentType.line, "r1", "x1")
562
+ errors += _all_not_two_values_zero(data, ComponentType.line, "r0", "x0")
563
+ errors += _all_greater_than_zero(data, ComponentType.line, "i_n")
564
+ return errors
565
+
566
+
567
+ def validate_asym_line(data: SingleDataset) -> list[ValidationError]:
568
+ errors = validate_branch(data, ComponentType.asym_line)
569
+ errors += _all_greater_than_zero(data, ComponentType.asym_line, "i_n")
570
+ required_fields = ["r_aa", "r_ba", "r_bb", "r_ca", "r_cb", "r_cc", "x_aa", "x_ba", "x_bb", "x_ca", "x_cb", "x_cc"]
571
+ optional_r_matrix_fields = ["r_na", "r_nb", "r_nc", "r_nn"]
572
+ optional_x_matrix_fields = ["x_na", "x_nb", "x_nc", "x_nn"]
573
+ required_c_matrix_fields = ["c_aa", "c_ba", "c_bb", "c_ca", "c_cb", "c_cc"]
574
+ c_fields = ["c0", "c1"]
575
+ for field in (
576
+ required_fields + optional_r_matrix_fields + optional_x_matrix_fields + required_c_matrix_fields + c_fields
577
+ ):
578
+ errors += _all_greater_than_zero(data, ComponentType.asym_line, field)
579
+
580
+ errors += _no_strict_subset_missing(
581
+ data, optional_r_matrix_fields + optional_x_matrix_fields, ComponentType.asym_line
582
+ )
583
+ errors += _no_strict_subset_missing(data, required_c_matrix_fields, ComponentType.asym_line)
584
+ errors += _no_strict_subset_missing(data, c_fields, ComponentType.asym_line)
585
+ errors += _not_all_missing(data, required_c_matrix_fields + c_fields, ComponentType.asym_line)
586
+
587
+ return errors
588
+
589
+
590
+ def validate_generic_branch(data: SingleDataset) -> list[ValidationError]:
591
+ errors = validate_branch(data, ComponentType.generic_branch)
592
+ errors += _all_greater_than_zero(data, ComponentType.generic_branch, "k")
593
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.generic_branch, "sn")
594
+ return errors
595
+
596
+
597
+ def validate_transformer(data: SingleDataset) -> list[ValidationError]:
598
+ errors = validate_branch(data, ComponentType.transformer)
599
+ errors += _all_greater_than_zero(data, ComponentType.transformer, "u1")
600
+ errors += _all_greater_than_zero(data, ComponentType.transformer, "u2")
601
+ errors += _all_greater_than_zero(data, ComponentType.transformer, "sn")
602
+ errors += _all_greater_or_equal(data, ComponentType.transformer, "uk", "pk/sn")
603
+ errors += _all_between(data, ComponentType.transformer, "uk", 0, 1)
604
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer, "pk")
605
+ errors += _all_greater_or_equal(data, ComponentType.transformer, "i0", "p0/sn")
606
+ errors += _all_less_than(data, ComponentType.transformer, "i0", 1)
607
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer, "p0")
608
+ errors += _all_valid_enum_values(data, ComponentType.transformer, "winding_from", WindingType)
609
+ errors += _all_valid_enum_values(data, ComponentType.transformer, "winding_to", WindingType)
610
+ errors += _all_between_or_at(data, ComponentType.transformer, "clock", -12, 12)
611
+ errors += _all_valid_clocks(data, ComponentType.transformer, "clock", "winding_from", "winding_to")
612
+ errors += _all_valid_enum_values(data, ComponentType.transformer, "tap_side", BranchSide)
613
+ errors += _all_between_or_at(
614
+ data, ComponentType.transformer, "tap_pos", "tap_min", "tap_max", data[ComponentType.transformer]["tap_nom"], 0
615
+ )
616
+ errors += _all_between_or_at(data, ComponentType.transformer, "tap_nom", "tap_min", "tap_max", 0)
617
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer, "tap_size")
618
+ errors += _all_greater_or_equal(
619
+ data, ComponentType.transformer, "uk_min", "pk_min/sn", data[ComponentType.transformer]["uk"]
620
+ )
621
+ errors += _all_between(data, ComponentType.transformer, "uk_min", 0, 1, data[ComponentType.transformer]["uk"])
622
+ errors += _all_greater_or_equal(
623
+ data, ComponentType.transformer, "uk_max", "pk_max/sn", data[ComponentType.transformer]["uk"]
624
+ )
625
+ errors += _all_between(data, ComponentType.transformer, "uk_max", 0, 1, data[ComponentType.transformer]["uk"])
626
+ errors += _all_greater_than_or_equal_to_zero(
627
+ data, ComponentType.transformer, "pk_min", data[ComponentType.transformer]["pk"]
628
+ )
629
+ errors += _all_greater_than_or_equal_to_zero(
630
+ data, ComponentType.transformer, "pk_max", data[ComponentType.transformer]["pk"]
631
+ )
632
+ return errors
633
+
634
+
635
+ def validate_branch3(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
636
+ errors = validate_base(data, component)
637
+ errors += _all_valid_ids(data, component, "node_1", ComponentType.node)
638
+ errors += _all_valid_ids(data, component, "node_2", ComponentType.node)
639
+ errors += _all_valid_ids(data, component, "node_3", ComponentType.node)
640
+ errors += _all_not_two_values_equal(data, component, "node_1", "node_2")
641
+ errors += _all_not_two_values_equal(data, component, "node_1", "node_3")
642
+ errors += _all_not_two_values_equal(data, component, "node_2", "node_3")
643
+ errors += _all_boolean(data, component, "status_1")
644
+ errors += _all_boolean(data, component, "status_2")
645
+ errors += _all_boolean(data, component, "status_3")
646
+ return errors
647
+
648
+
649
+ def validate_three_winding_transformer(data: SingleDataset) -> list[ValidationError]: # noqa: PLR0915
650
+ errors = validate_branch3(data, ComponentType.three_winding_transformer)
651
+ errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "u1")
652
+ errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "u2")
653
+ errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "u3")
654
+ errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "sn_1")
655
+ errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "sn_2")
656
+ errors += _all_greater_than_zero(data, ComponentType.three_winding_transformer, "sn_3")
657
+ errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_12", "pk_12/sn_1")
658
+ errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_12", "pk_12/sn_2")
659
+ errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_13", "pk_13/sn_1")
660
+ errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_13", "pk_13/sn_3")
661
+ errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_23", "pk_23/sn_2")
662
+ errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "uk_23", "pk_23/sn_3")
663
+ errors += _all_between(data, ComponentType.three_winding_transformer, "uk_12", 0, 1)
664
+ errors += _all_between(data, ComponentType.three_winding_transformer, "uk_13", 0, 1)
665
+ errors += _all_between(data, ComponentType.three_winding_transformer, "uk_23", 0, 1)
666
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "pk_12")
667
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "pk_13")
668
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "pk_23")
669
+ errors += _all_greater_or_equal(data, ComponentType.three_winding_transformer, "i0", "p0/sn_1")
670
+ errors += _all_less_than(data, ComponentType.three_winding_transformer, "i0", 1)
671
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "p0")
672
+ errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "winding_1", WindingType)
673
+ errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "winding_2", WindingType)
674
+ errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "winding_3", WindingType)
675
+ errors += _all_between_or_at(data, ComponentType.three_winding_transformer, "clock_12", -12, 12)
676
+ errors += _all_between_or_at(data, ComponentType.three_winding_transformer, "clock_13", -12, 12)
677
+ errors += _all_valid_clocks(data, ComponentType.three_winding_transformer, "clock_12", "winding_1", "winding_2")
678
+ errors += _all_valid_clocks(data, ComponentType.three_winding_transformer, "clock_13", "winding_1", "winding_3")
679
+ errors += _all_valid_enum_values(data, ComponentType.three_winding_transformer, "tap_side", Branch3Side)
680
+ errors += _all_between_or_at(
681
+ data,
682
+ ComponentType.three_winding_transformer,
683
+ "tap_pos",
684
+ "tap_min",
685
+ "tap_max",
686
+ data[ComponentType.three_winding_transformer]["tap_nom"],
687
+ 0,
688
+ )
689
+ errors += _all_between_or_at(data, ComponentType.three_winding_transformer, "tap_nom", "tap_min", "tap_max", 0)
690
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.three_winding_transformer, "tap_size")
691
+ errors += _all_greater_or_equal(
692
+ data,
693
+ ComponentType.three_winding_transformer,
694
+ "uk_12_min",
695
+ "pk_12_min/sn_1",
696
+ data[ComponentType.three_winding_transformer]["uk_12"],
697
+ )
698
+ errors += _all_greater_or_equal(
699
+ data,
700
+ ComponentType.three_winding_transformer,
701
+ "uk_12_min",
702
+ "pk_12_min/sn_2",
703
+ data[ComponentType.three_winding_transformer]["uk_12"],
704
+ )
705
+ errors += _all_greater_or_equal(
706
+ data,
707
+ ComponentType.three_winding_transformer,
708
+ "uk_13_min",
709
+ "pk_13_min/sn_1",
710
+ data[ComponentType.three_winding_transformer]["uk_13"],
711
+ )
712
+ errors += _all_greater_or_equal(
713
+ data,
714
+ ComponentType.three_winding_transformer,
715
+ "uk_13_min",
716
+ "pk_13_min/sn_3",
717
+ data[ComponentType.three_winding_transformer]["uk_13"],
718
+ )
719
+ errors += _all_greater_or_equal(
720
+ data,
721
+ ComponentType.three_winding_transformer,
722
+ "uk_23_min",
723
+ "pk_23_min/sn_2",
724
+ data[ComponentType.three_winding_transformer]["uk_23"],
725
+ )
726
+ errors += _all_greater_or_equal(
727
+ data,
728
+ ComponentType.three_winding_transformer,
729
+ "uk_23_min",
730
+ "pk_23_min/sn_3",
731
+ data[ComponentType.three_winding_transformer]["uk_23"],
732
+ )
733
+ errors += _all_between(
734
+ data,
735
+ ComponentType.three_winding_transformer,
736
+ "uk_12_min",
737
+ 0,
738
+ 1,
739
+ data[ComponentType.three_winding_transformer]["uk_12"],
740
+ )
741
+ errors += _all_between(
742
+ data,
743
+ ComponentType.three_winding_transformer,
744
+ "uk_13_min",
745
+ 0,
746
+ 1,
747
+ data[ComponentType.three_winding_transformer]["uk_13"],
748
+ )
749
+ errors += _all_between(
750
+ data,
751
+ ComponentType.three_winding_transformer,
752
+ "uk_23_min",
753
+ 0,
754
+ 1,
755
+ data[ComponentType.three_winding_transformer]["uk_23"],
756
+ )
757
+ errors += _all_greater_or_equal(
758
+ data,
759
+ ComponentType.three_winding_transformer,
760
+ "uk_12_max",
761
+ "pk_12_max/sn_1",
762
+ data[ComponentType.three_winding_transformer]["uk_12"],
763
+ )
764
+ errors += _all_greater_or_equal(
765
+ data,
766
+ ComponentType.three_winding_transformer,
767
+ "uk_12_max",
768
+ "pk_12_max/sn_2",
769
+ data[ComponentType.three_winding_transformer]["uk_12"],
770
+ )
771
+ errors += _all_greater_or_equal(
772
+ data,
773
+ ComponentType.three_winding_transformer,
774
+ "uk_13_max",
775
+ "pk_13_max/sn_1",
776
+ data[ComponentType.three_winding_transformer]["uk_13"],
777
+ )
778
+ errors += _all_greater_or_equal(
779
+ data,
780
+ ComponentType.three_winding_transformer,
781
+ "uk_13_max",
782
+ "pk_13_max/sn_3",
783
+ data[ComponentType.three_winding_transformer]["uk_13"],
784
+ )
785
+ errors += _all_greater_or_equal(
786
+ data,
787
+ ComponentType.three_winding_transformer,
788
+ "uk_23_max",
789
+ "pk_23_max/sn_2",
790
+ data[ComponentType.three_winding_transformer]["uk_23"],
791
+ )
792
+ errors += _all_greater_or_equal(
793
+ data,
794
+ ComponentType.three_winding_transformer,
795
+ "uk_23_max",
796
+ "pk_23_max/sn_3",
797
+ data[ComponentType.three_winding_transformer]["uk_23"],
798
+ )
799
+ errors += _all_between(
800
+ data,
801
+ ComponentType.three_winding_transformer,
802
+ "uk_12_max",
803
+ 0,
804
+ 1,
805
+ data[ComponentType.three_winding_transformer]["uk_12"],
806
+ )
807
+ errors += _all_between(
808
+ data,
809
+ ComponentType.three_winding_transformer,
810
+ "uk_13_max",
811
+ 0,
812
+ 1,
813
+ data[ComponentType.three_winding_transformer]["uk_13"],
814
+ )
815
+ errors += _all_between(
816
+ data,
817
+ ComponentType.three_winding_transformer,
818
+ "uk_23_max",
819
+ 0,
820
+ 1,
821
+ data[ComponentType.three_winding_transformer]["uk_23"],
822
+ )
823
+ errors += _all_greater_than_or_equal_to_zero(
824
+ data,
825
+ ComponentType.three_winding_transformer,
826
+ "pk_12_min",
827
+ data[ComponentType.three_winding_transformer]["pk_12"],
828
+ )
829
+ errors += _all_greater_than_or_equal_to_zero(
830
+ data,
831
+ ComponentType.three_winding_transformer,
832
+ "pk_13_min",
833
+ data[ComponentType.three_winding_transformer]["pk_13"],
834
+ )
835
+ errors += _all_greater_than_or_equal_to_zero(
836
+ data,
837
+ ComponentType.three_winding_transformer,
838
+ "pk_23_min",
839
+ data[ComponentType.three_winding_transformer]["pk_23"],
840
+ )
841
+ errors += _all_greater_than_or_equal_to_zero(
842
+ data,
843
+ ComponentType.three_winding_transformer,
844
+ "pk_12_max",
845
+ data[ComponentType.three_winding_transformer]["pk_12"],
846
+ )
847
+ errors += _all_greater_than_or_equal_to_zero(
848
+ data,
849
+ ComponentType.three_winding_transformer,
850
+ "pk_13_max",
851
+ data[ComponentType.three_winding_transformer]["pk_13"],
852
+ )
853
+ errors += _all_greater_than_or_equal_to_zero(
854
+ data,
855
+ ComponentType.three_winding_transformer,
856
+ "pk_23_max",
857
+ data[ComponentType.three_winding_transformer]["pk_23"],
858
+ )
859
+ return errors
860
+
861
+
862
+ def validate_appliance(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
863
+ errors = validate_base(data, component)
864
+ errors += _all_boolean(data, component, "status")
865
+ errors += _all_valid_ids(data, component, "node", ComponentType.node)
866
+ return errors
867
+
868
+
869
+ def validate_source(data: SingleDataset) -> list[ValidationError]:
870
+ errors = validate_appliance(data, ComponentType.source)
871
+ errors += _all_greater_than_zero(data, ComponentType.source, "u_ref")
872
+ errors += _all_greater_than_zero(data, ComponentType.source, "sk")
873
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.source, "rx_ratio")
874
+ errors += _all_greater_than_zero(data, ComponentType.source, "z01_ratio")
875
+ return errors
876
+
877
+
878
+ def validate_generic_load_gen(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
879
+ errors = validate_appliance(data, component)
880
+ errors += _all_valid_enum_values(data, component, "type", LoadGenType)
881
+ return errors
882
+
883
+
884
+ def validate_shunt(data: SingleDataset) -> list[ValidationError]:
885
+ return validate_appliance(data, ComponentType.shunt)
886
+
887
+
888
+ def validate_generic_voltage_sensor(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
889
+ errors = validate_base(data, component)
890
+ errors += _all_greater_than_zero(data, component, "u_sigma")
891
+ errors += _all_greater_than_zero(data, component, "u_measured")
892
+ errors += _all_valid_ids(data, component, "measured_object", ComponentType.node)
893
+ return errors
894
+
895
+
896
+ def validate_generic_power_sensor(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
897
+ errors = validate_base(data, component)
898
+ errors += _all_greater_than_zero(data, component, "power_sigma")
899
+ errors += _all_valid_enum_values(data, component, "measured_terminal_type", MeasuredTerminalType)
900
+ errors += _all_valid_ids(
901
+ data,
902
+ component,
903
+ field="measured_object",
904
+ ref_components=[
905
+ ComponentType.node,
906
+ ComponentType.line,
907
+ ComponentType.asym_line,
908
+ ComponentType.generic_branch,
909
+ ComponentType.transformer,
910
+ ComponentType.three_winding_transformer,
911
+ ComponentType.source,
912
+ ComponentType.shunt,
913
+ ComponentType.sym_load,
914
+ ComponentType.asym_load,
915
+ ComponentType.sym_gen,
916
+ ComponentType.asym_gen,
917
+ ],
918
+ )
919
+ errors += _all_valid_ids(
920
+ data,
921
+ component,
922
+ field="measured_object",
923
+ ref_components=[
924
+ ComponentType.line,
925
+ ComponentType.asym_line,
926
+ ComponentType.generic_branch,
927
+ ComponentType.transformer,
928
+ ],
929
+ measured_terminal_type=MeasuredTerminalType.branch_from,
930
+ )
931
+ errors += _all_valid_ids(
932
+ data,
933
+ component,
934
+ field="measured_object",
935
+ ref_components=[
936
+ ComponentType.line,
937
+ ComponentType.asym_line,
938
+ ComponentType.generic_branch,
939
+ ComponentType.transformer,
940
+ ],
941
+ measured_terminal_type=MeasuredTerminalType.branch_to,
942
+ )
943
+ errors += _all_valid_ids(
944
+ data,
945
+ component,
946
+ field="measured_object",
947
+ ref_components=ComponentType.source,
948
+ measured_terminal_type=MeasuredTerminalType.source,
949
+ )
950
+ errors += _all_valid_ids(
951
+ data,
952
+ component,
953
+ field="measured_object",
954
+ ref_components=ComponentType.shunt,
955
+ measured_terminal_type=MeasuredTerminalType.shunt,
956
+ )
957
+ errors += _all_valid_ids(
958
+ data,
959
+ component,
960
+ field="measured_object",
961
+ ref_components=[ComponentType.sym_load, ComponentType.asym_load],
962
+ measured_terminal_type=MeasuredTerminalType.load,
963
+ )
964
+ errors += _all_valid_ids(
965
+ data,
966
+ component,
967
+ field="measured_object",
968
+ ref_components=[ComponentType.sym_gen, ComponentType.asym_gen],
969
+ measured_terminal_type=MeasuredTerminalType.generator,
970
+ )
971
+ errors += _all_valid_ids(
972
+ data,
973
+ component,
974
+ field="measured_object",
975
+ ref_components=ComponentType.three_winding_transformer,
976
+ measured_terminal_type=MeasuredTerminalType.branch3_1,
977
+ )
978
+ errors += _all_valid_ids(
979
+ data,
980
+ component,
981
+ field="measured_object",
982
+ ref_components=ComponentType.three_winding_transformer,
983
+ measured_terminal_type=MeasuredTerminalType.branch3_2,
984
+ )
985
+ errors += _all_valid_ids(
986
+ data,
987
+ component,
988
+ field="measured_object",
989
+ ref_components=ComponentType.three_winding_transformer,
990
+ measured_terminal_type=MeasuredTerminalType.branch3_3,
991
+ )
992
+ errors += _all_valid_ids(
993
+ data,
994
+ component,
995
+ field="measured_object",
996
+ ref_components=ComponentType.node,
997
+ measured_terminal_type=MeasuredTerminalType.node,
998
+ )
999
+ if component in (ComponentType.sym_power_sensor, ComponentType.asym_power_sensor):
1000
+ errors += _valid_p_q_sigma(data, component)
1001
+
1002
+ return errors
1003
+
1004
+
1005
+ def validate_generic_current_sensor(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
1006
+ errors = validate_base(data, component)
1007
+ errors += _all_greater_than_zero(data, component, "i_sigma")
1008
+ errors += _all_greater_than_zero(data, component, "i_angle_sigma")
1009
+ errors += _all_valid_enum_values(data, component, "measured_terminal_type", MeasuredTerminalType)
1010
+ errors += _all_valid_enum_values(data, component, "angle_measurement_type", AngleMeasurementType)
1011
+ errors += _all_in_valid_values(
1012
+ data,
1013
+ component,
1014
+ "measured_terminal_type",
1015
+ [
1016
+ MeasuredTerminalType.branch_from,
1017
+ MeasuredTerminalType.branch_to,
1018
+ MeasuredTerminalType.branch3_1,
1019
+ MeasuredTerminalType.branch3_2,
1020
+ MeasuredTerminalType.branch3_3,
1021
+ ],
1022
+ )
1023
+ errors += _all_valid_ids(
1024
+ data,
1025
+ component,
1026
+ field="measured_object",
1027
+ ref_components=[
1028
+ ComponentType.line,
1029
+ ComponentType.asym_line,
1030
+ ComponentType.generic_branch,
1031
+ ComponentType.transformer,
1032
+ ComponentType.three_winding_transformer,
1033
+ ],
1034
+ )
1035
+ errors += _all_valid_ids(
1036
+ data,
1037
+ component,
1038
+ field="measured_object",
1039
+ ref_components=[
1040
+ ComponentType.line,
1041
+ ComponentType.asym_line,
1042
+ ComponentType.generic_branch,
1043
+ ComponentType.transformer,
1044
+ ],
1045
+ measured_terminal_type=MeasuredTerminalType.branch_from,
1046
+ )
1047
+ errors += _all_valid_ids(
1048
+ data,
1049
+ component,
1050
+ field="measured_object",
1051
+ ref_components=[
1052
+ ComponentType.line,
1053
+ ComponentType.asym_line,
1054
+ ComponentType.generic_branch,
1055
+ ComponentType.transformer,
1056
+ ],
1057
+ measured_terminal_type=MeasuredTerminalType.branch_to,
1058
+ )
1059
+ errors += _all_valid_ids(
1060
+ data,
1061
+ component,
1062
+ field="measured_object",
1063
+ ref_components=ComponentType.three_winding_transformer,
1064
+ measured_terminal_type=MeasuredTerminalType.branch3_1,
1065
+ )
1066
+ errors += _all_valid_ids(
1067
+ data,
1068
+ component,
1069
+ field="measured_object",
1070
+ ref_components=ComponentType.three_winding_transformer,
1071
+ measured_terminal_type=MeasuredTerminalType.branch3_2,
1072
+ )
1073
+ errors += _all_valid_ids(
1074
+ data,
1075
+ component,
1076
+ field="measured_object",
1077
+ ref_components=ComponentType.three_winding_transformer,
1078
+ measured_terminal_type=MeasuredTerminalType.branch3_3,
1079
+ )
1080
+ errors += _all_same_current_angle_measurement_type_on_terminal(
1081
+ data,
1082
+ component,
1083
+ measured_object_field="measured_object",
1084
+ measured_terminal_type_field="measured_terminal_type",
1085
+ angle_measurement_type_field="angle_measurement_type",
1086
+ )
1087
+ errors += _any_voltage_angle_measurement_if_global_current_measurement(
1088
+ data,
1089
+ component,
1090
+ angle_measurement_type_filter=("angle_measurement_type", AngleMeasurementType.global_angle),
1091
+ voltage_sensor_u_angle_measured={
1092
+ ComponentType.sym_voltage_sensor: "u_angle_measured",
1093
+ ComponentType.asym_voltage_sensor: "u_angle_measured",
1094
+ },
1095
+ )
1096
+
1097
+ return errors
1098
+
1099
+
1100
+ def validate_fault(data: SingleDataset) -> list[ValidationError]:
1101
+ errors = validate_base(data, ComponentType.fault)
1102
+ errors += _all_boolean(data, ComponentType.fault, "status")
1103
+ errors += _all_valid_enum_values(data, ComponentType.fault, "fault_type", FaultType)
1104
+ errors += _all_valid_enum_values(data, ComponentType.fault, "fault_phase", FaultPhase)
1105
+ errors += _all_valid_fault_phases(data, ComponentType.fault, "fault_type", "fault_phase")
1106
+ errors += _all_valid_ids(data, ComponentType.fault, field="fault_object", ref_components=ComponentType.node)
1107
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.fault, "r_f")
1108
+ errors += _all_enabled_identical(data, ComponentType.fault, "fault_type", "status")
1109
+ errors += _all_enabled_identical(data, ComponentType.fault, "fault_phase", "status")
1110
+ return errors
1111
+
1112
+
1113
+ def validate_regulator(data: SingleDataset, component: ComponentType) -> list[ValidationError]:
1114
+ errors = validate_base(data, component)
1115
+ errors += _all_valid_ids(
1116
+ data,
1117
+ component,
1118
+ field="regulated_object",
1119
+ ref_components=[ComponentType.transformer, ComponentType.three_winding_transformer],
1120
+ )
1121
+ return errors
1122
+
1123
+
1124
+ def validate_transformer_tap_regulator(data: SingleDataset) -> list[ValidationError]:
1125
+ errors = validate_regulator(data, ComponentType.transformer_tap_regulator)
1126
+ errors += _all_boolean(data, ComponentType.transformer_tap_regulator, "status")
1127
+ errors += _all_unique(data, ComponentType.transformer_tap_regulator, "regulated_object")
1128
+ errors += _all_valid_enum_values(
1129
+ data, ComponentType.transformer_tap_regulator, "control_side", [BranchSide, Branch3Side]
1130
+ )
1131
+ errors += _all_valid_associated_enum_values(
1132
+ data,
1133
+ ComponentType.transformer_tap_regulator,
1134
+ "control_side",
1135
+ "regulated_object",
1136
+ [ComponentType.transformer],
1137
+ [BranchSide],
1138
+ )
1139
+ errors += _all_valid_associated_enum_values(
1140
+ data,
1141
+ ComponentType.transformer_tap_regulator,
1142
+ "control_side",
1143
+ "regulated_object",
1144
+ [ComponentType.three_winding_transformer],
1145
+ [Branch3Side],
1146
+ )
1147
+ errors += _all_greater_than_or_equal_to_zero(data, ComponentType.transformer_tap_regulator, "u_set")
1148
+ errors += _all_greater_than_zero(data, ComponentType.transformer_tap_regulator, "u_band")
1149
+ errors += _all_greater_than_or_equal_to_zero(
1150
+ data, ComponentType.transformer_tap_regulator, "line_drop_compensation_r", 0.0
1151
+ )
1152
+ errors += _all_greater_than_or_equal_to_zero(
1153
+ data, ComponentType.transformer_tap_regulator, "line_drop_compensation_x", 0.0
1154
+ )
1155
+ return errors
1156
+
1157
+
1158
+ def validate_no_mixed_sensors_on_same_terminal(data: SingleDataset) -> list[ValidationError]:
1159
+ errors: list[ValidationError] = []
1160
+
1161
+ for power_sensor in [ComponentType.sym_power_sensor, ComponentType.asym_power_sensor]:
1162
+ for current_sensor in [ComponentType.sym_current_sensor, ComponentType.asym_current_sensor]:
1163
+ if power_sensor in data and current_sensor in data:
1164
+ errors += _all_same_sensor_type_on_same_terminal(
1165
+ data,
1166
+ power_sensor_type=power_sensor,
1167
+ current_sensor_type=current_sensor,
1168
+ measured_object_field="measured_object",
1169
+ measured_terminal_type_field="measured_terminal_type",
1170
+ )
1171
+
1172
+ return errors