power-grid-model 1.10.74__py3-none-win_amd64.whl → 1.12.119__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of power-grid-model might be problematic. Click here for more details.

Files changed (67) hide show
  1. power_grid_model/__init__.py +54 -29
  2. power_grid_model/_core/__init__.py +3 -3
  3. power_grid_model/_core/buffer_handling.py +507 -478
  4. power_grid_model/_core/data_handling.py +195 -141
  5. power_grid_model/_core/data_types.py +142 -0
  6. power_grid_model/_core/dataset_definitions.py +109 -109
  7. power_grid_model/_core/enum.py +226 -0
  8. power_grid_model/_core/error_handling.py +215 -202
  9. power_grid_model/_core/errors.py +134 -0
  10. power_grid_model/_core/index_integer.py +17 -17
  11. power_grid_model/_core/options.py +71 -69
  12. power_grid_model/_core/power_grid_core.py +577 -597
  13. power_grid_model/_core/power_grid_dataset.py +545 -528
  14. power_grid_model/_core/power_grid_meta.py +262 -244
  15. power_grid_model/_core/power_grid_model.py +1025 -692
  16. power_grid_model/_core/power_grid_model_c/__init__.py +3 -0
  17. power_grid_model/_core/power_grid_model_c/bin/power_grid_model_c.dll +0 -0
  18. power_grid_model/_core/power_grid_model_c/get_pgm_dll_path.py +63 -0
  19. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/basics.h +251 -0
  20. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/buffer.h +108 -0
  21. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/dataset.h +332 -0
  22. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/dataset_definitions.h +1060 -0
  23. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/handle.h +111 -0
  24. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/meta_data.h +189 -0
  25. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/model.h +130 -0
  26. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/options.h +142 -0
  27. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c/serialization.h +118 -0
  28. power_grid_model/_core/power_grid_model_c/include/power_grid_model_c.h +36 -0
  29. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/basics.hpp +65 -0
  30. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/buffer.hpp +61 -0
  31. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/dataset.hpp +224 -0
  32. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/handle.hpp +108 -0
  33. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/meta_data.hpp +84 -0
  34. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/model.hpp +63 -0
  35. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/options.hpp +52 -0
  36. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/serialization.hpp +124 -0
  37. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp/utils.hpp +81 -0
  38. power_grid_model/_core/power_grid_model_c/include/power_grid_model_cpp.hpp +19 -0
  39. power_grid_model/_core/power_grid_model_c/lib/cmake/power_grid_model/power_grid_modelConfig.cmake +37 -0
  40. power_grid_model/_core/power_grid_model_c/lib/cmake/power_grid_model/power_grid_modelConfigVersion.cmake +65 -0
  41. power_grid_model/_core/power_grid_model_c/lib/cmake/power_grid_model/power_grid_modelTargets-release.cmake +19 -0
  42. power_grid_model/_core/power_grid_model_c/lib/cmake/power_grid_model/power_grid_modelTargets.cmake +144 -0
  43. power_grid_model/_core/power_grid_model_c/lib/power_grid_model_c.lib +0 -0
  44. power_grid_model/_core/power_grid_model_c/share/LICENSE +292 -0
  45. power_grid_model/_core/power_grid_model_c/share/README.md +15 -0
  46. power_grid_model/_core/serialization.py +319 -317
  47. power_grid_model/_core/typing.py +20 -0
  48. power_grid_model/{_utils.py → _core/utils.py} +798 -783
  49. power_grid_model/data_types.py +321 -319
  50. power_grid_model/enum.py +27 -214
  51. power_grid_model/errors.py +37 -123
  52. power_grid_model/typing.py +43 -48
  53. power_grid_model/utils.py +529 -400
  54. power_grid_model/validation/__init__.py +25 -14
  55. power_grid_model/validation/_rules.py +1167 -904
  56. power_grid_model/validation/_validation.py +1172 -980
  57. power_grid_model/validation/assertions.py +93 -92
  58. power_grid_model/validation/errors.py +602 -520
  59. power_grid_model/validation/utils.py +313 -318
  60. {power_grid_model-1.10.74.dist-info → power_grid_model-1.12.119.dist-info}/METADATA +162 -171
  61. power_grid_model-1.12.119.dist-info/RECORD +65 -0
  62. {power_grid_model-1.10.74.dist-info → power_grid_model-1.12.119.dist-info}/WHEEL +1 -1
  63. power_grid_model-1.12.119.dist-info/entry_points.txt +3 -0
  64. power_grid_model/_core/_power_grid_core.dll +0 -0
  65. power_grid_model-1.10.74.dist-info/RECORD +0 -32
  66. power_grid_model-1.10.74.dist-info/top_level.txt +0 -1
  67. {power_grid_model-1.10.74.dist-info → power_grid_model-1.12.119.dist-info}/licenses/LICENSE +0 -0
@@ -1,141 +1,195 @@
1
- # SPDX-FileCopyrightText: Contributors to the Power Grid Model project <powergridmodel@lfenergy.org>
2
- #
3
- # SPDX-License-Identifier: MPL-2.0
4
-
5
- """
6
- Data handling
7
- """
8
-
9
- import numpy as np
10
-
11
- from power_grid_model._core.dataset_definitions import ComponentType, DatasetType
12
- from power_grid_model._core.power_grid_dataset import CConstDataset, CMutableDataset
13
- from power_grid_model._core.power_grid_meta import initialize_array, power_grid_meta_data
14
- from power_grid_model._utils import process_data_filter
15
- from power_grid_model.data_types import Dataset, SingleDataset
16
- from power_grid_model.enum import CalculationType, ComponentAttributeFilterOptions
17
- from power_grid_model.errors import PowerGridUnreachableHitError
18
- from power_grid_model.typing import ComponentAttributeMapping
19
-
20
-
21
- def get_output_type(*, calculation_type: CalculationType, symmetric: bool) -> DatasetType:
22
- """
23
- Get the output type based on the provided arguments.
24
-
25
- Args:
26
- calculation_type:
27
- request the output type for a specific calculation type (power_flow, state_estimation, ...)
28
- symmetric:
29
- True: three-phase symmetric calculation, even for asymmetric loads/generations
30
- False: three-phase asymmetric calculation
31
-
32
- Returns:
33
- the output type that fits the format requested by the output type
34
- """
35
- if calculation_type in (CalculationType.power_flow, CalculationType.state_estimation):
36
- return DatasetType.sym_output if symmetric else DatasetType.asym_output
37
-
38
- if calculation_type == CalculationType.short_circuit:
39
- return DatasetType.sc_output
40
-
41
- raise NotImplementedError()
42
-
43
-
44
- def prepare_input_view(input_data: SingleDataset) -> CConstDataset:
45
- """
46
- Create a view of the input data in a format compatible with the PGM core libary.
47
-
48
- Args:
49
- input_data:
50
- the input data to create the view from
51
-
52
- Returns:
53
- instance of CConstDataset ready to be fed into C API
54
- """
55
- return CConstDataset(input_data, dataset_type=DatasetType.input)
56
-
57
-
58
- def prepare_update_view(update_data: Dataset) -> CConstDataset:
59
- """
60
- Create a view of the update data, or an empty view if not provided, in a format compatible with the PGM core libary.
61
-
62
- Args:
63
- update_data:
64
- the update data to create the view from. Defaults to None
65
-
66
- Returns:
67
- instance of CConstDataset ready to be fed into C API
68
- """
69
- return CConstDataset(update_data, dataset_type=DatasetType.update)
70
-
71
-
72
- def prepare_output_view(output_data: Dataset, output_type: DatasetType) -> CMutableDataset:
73
- """
74
- create a view of the output data in a format compatible with the PGM core libary.
75
-
76
- Args:
77
- output_data:
78
- the output data to create the view from
79
- output_type:
80
- the output type of the output_data
81
-
82
- Returns:
83
- instance of CMutableDataset ready to be fed into C API
84
- """
85
- return CMutableDataset(output_data, dataset_type=output_type)
86
-
87
-
88
- def create_output_data(
89
- output_component_types: ComponentAttributeMapping,
90
- output_type: DatasetType,
91
- all_component_count: dict[ComponentType, int],
92
- is_batch: bool,
93
- batch_size: int,
94
- ) -> Dataset:
95
- """
96
- Create the output dataset based on component and batch size from the model; and output attributes requested by user.
97
-
98
- Args:
99
- output_component_types:
100
- the output components the user seeks to extract
101
- output_type:
102
- the type of output that the user will see (as per the calculation options)
103
- all_component_count:
104
- the amount of components in the grid (as per the input data)
105
- is_batch:
106
- if the dataset is batch
107
- batch_size:
108
- the batch size
109
-
110
- Returns:
111
- Dataset: output dataset
112
- """
113
- processed_output_types = process_data_filter(output_type, output_component_types, list(all_component_count.keys()))
114
-
115
- all_component_count = {k: v for k, v in all_component_count.items() if k in processed_output_types}
116
-
117
- # create result dataset
118
- result_dict: Dataset = {}
119
-
120
- for name, count in all_component_count.items():
121
- # shape
122
- if is_batch:
123
- shape: tuple[int] | tuple[int, int] = (batch_size, count)
124
- else:
125
- shape = (count,)
126
-
127
- requested_component = processed_output_types[name]
128
- dtype = power_grid_meta_data[output_type][name].dtype
129
- if dtype.names is None:
130
- raise PowerGridUnreachableHitError
131
- if requested_component is None:
132
- result_dict[name] = initialize_array(output_type, name, shape=shape, empty=True)
133
- elif requested_component in [
134
- ComponentAttributeFilterOptions.everything,
135
- ComponentAttributeFilterOptions.relevant,
136
- ]:
137
- result_dict[name] = {attr: np.empty(shape, dtype=dtype[attr]) for attr in dtype.names}
138
- elif isinstance(requested_component, list | set):
139
- result_dict[name] = {attr: np.empty(shape, dtype=dtype[attr]) for attr in requested_component}
140
-
141
- return result_dict
1
+ # SPDX-FileCopyrightText: Contributors to the Power Grid Model project <powergridmodel@lfenergy.org>
2
+ #
3
+ # SPDX-License-Identifier: MPL-2.0
4
+
5
+ """
6
+ Data handling
7
+ """
8
+
9
+ from typing import Literal, overload
10
+
11
+ import numpy as np
12
+
13
+ from power_grid_model._core.data_types import (
14
+ BatchDataset,
15
+ Dataset,
16
+ DenseBatchArray,
17
+ SingleArray,
18
+ SingleColumnarData,
19
+ SingleDataset,
20
+ )
21
+ from power_grid_model._core.dataset_definitions import ComponentType, ComponentTypeVar, DatasetType
22
+ from power_grid_model._core.enum import CalculationType, ComponentAttributeFilterOptions
23
+ from power_grid_model._core.errors import PowerGridUnreachableHitError
24
+ from power_grid_model._core.power_grid_dataset import CConstDataset, CMutableDataset
25
+ from power_grid_model._core.power_grid_meta import initialize_array, power_grid_meta_data
26
+ from power_grid_model._core.typing import ComponentAttributeMapping, ComponentAttributeMappingDict
27
+ from power_grid_model._core.utils import process_data_filter
28
+ from power_grid_model.data_types import DenseBatchColumnarData
29
+
30
+
31
+ def get_output_type(*, calculation_type: CalculationType, symmetric: bool) -> DatasetType:
32
+ """
33
+ Get the output type based on the provided arguments.
34
+
35
+ Args:
36
+ calculation_type:
37
+ request the output type for a specific calculation type (power_flow, state_estimation, ...)
38
+ symmetric:
39
+ True: three-phase symmetric calculation, even for asymmetric loads/generations
40
+ False: three-phase asymmetric calculation
41
+
42
+ Returns:
43
+ the output type that fits the format requested by the output type
44
+ """
45
+ if calculation_type in (CalculationType.power_flow, CalculationType.state_estimation):
46
+ return DatasetType.sym_output if symmetric else DatasetType.asym_output
47
+
48
+ if calculation_type == CalculationType.short_circuit:
49
+ return DatasetType.sc_output
50
+
51
+ raise NotImplementedError
52
+
53
+
54
+ def prepare_input_view(input_data: SingleDataset) -> CConstDataset:
55
+ """
56
+ Create a view of the input data in a format compatible with the PGM core libary.
57
+
58
+ Args:
59
+ input_data:
60
+ the input data to create the view from
61
+
62
+ Returns:
63
+ instance of CConstDataset ready to be fed into C API
64
+ """
65
+ return CConstDataset(input_data, dataset_type=DatasetType.input)
66
+
67
+
68
+ def prepare_update_view(update_data: Dataset) -> CConstDataset:
69
+ """
70
+ Create a view of the update data, or an empty view if not provided, in a format compatible with the PGM core libary.
71
+
72
+ Args:
73
+ update_data:
74
+ the update data to create the view from. Defaults to None
75
+
76
+ Returns:
77
+ instance of CConstDataset ready to be fed into C API
78
+ """
79
+ return CConstDataset(update_data, dataset_type=DatasetType.update)
80
+
81
+
82
+ def prepare_output_view(output_data: Dataset, output_type: DatasetType) -> CMutableDataset:
83
+ """
84
+ create a view of the output data in a format compatible with the PGM core libary.
85
+
86
+ Args:
87
+ output_data:
88
+ the output data to create the view from
89
+ output_type:
90
+ the output type of the output_data
91
+
92
+ Returns:
93
+ instance of CMutableDataset ready to be fed into C API
94
+ """
95
+ return CMutableDataset(output_data, dataset_type=output_type)
96
+
97
+
98
+ @overload
99
+ def create_output_data(
100
+ output_component_types: None | set[ComponentTypeVar] | list[ComponentTypeVar],
101
+ output_type: DatasetType,
102
+ all_component_count: dict[ComponentType, int],
103
+ is_batch: Literal[False],
104
+ batch_size: int,
105
+ ) -> dict[ComponentType, SingleArray]: ...
106
+ @overload
107
+ def create_output_data(
108
+ output_component_types: None | set[ComponentTypeVar] | list[ComponentTypeVar],
109
+ output_type: DatasetType,
110
+ all_component_count: dict[ComponentType, int],
111
+ is_batch: Literal[True],
112
+ batch_size: int,
113
+ ) -> dict[ComponentType, DenseBatchArray]: ...
114
+ @overload
115
+ def create_output_data(
116
+ output_component_types: ComponentAttributeFilterOptions,
117
+ output_type: DatasetType,
118
+ all_component_count: dict[ComponentType, int],
119
+ is_batch: Literal[False],
120
+ batch_size: int,
121
+ ) -> dict[ComponentType, SingleColumnarData]: ...
122
+ @overload
123
+ def create_output_data(
124
+ output_component_types: ComponentAttributeFilterOptions,
125
+ output_type: DatasetType,
126
+ all_component_count: dict[ComponentType, int],
127
+ is_batch: Literal[True],
128
+ batch_size: int,
129
+ ) -> dict[ComponentType, DenseBatchColumnarData]: ...
130
+ @overload
131
+ def create_output_data(
132
+ output_component_types: ComponentAttributeMappingDict,
133
+ output_type: DatasetType,
134
+ all_component_count: dict[ComponentType, int],
135
+ is_batch: Literal[False],
136
+ batch_size: int,
137
+ ) -> SingleDataset: ...
138
+ @overload
139
+ def create_output_data(
140
+ output_component_types: ComponentAttributeMappingDict,
141
+ output_type: DatasetType,
142
+ all_component_count: dict[ComponentType, int],
143
+ is_batch: Literal[True],
144
+ batch_size: int,
145
+ ) -> BatchDataset: ...
146
+ def create_output_data(
147
+ output_component_types: ComponentAttributeMapping,
148
+ output_type: DatasetType,
149
+ all_component_count: dict[ComponentType, int],
150
+ is_batch: bool,
151
+ batch_size: int,
152
+ ) -> Dataset:
153
+ """
154
+ Create the output dataset based on component and batch size from the model; and output attributes requested by user.
155
+
156
+ Args:
157
+ output_component_types (ComponentAttributeMapping):
158
+ the output components the user seeks to extract
159
+ output_type:
160
+ the type of output that the user will see (as per the calculation options)
161
+ all_component_count:
162
+ the amount of components in the grid (as per the input data)
163
+ is_batch:
164
+ if the dataset is batch
165
+ batch_size:
166
+ the batch size
167
+
168
+ Returns:
169
+ Dataset: output dataset
170
+ """
171
+ processed_output_types = process_data_filter(output_type, output_component_types, list(all_component_count.keys()))
172
+
173
+ all_component_count = {k: v for k, v in all_component_count.items() if k in processed_output_types}
174
+
175
+ # create result dataset
176
+ result_dict: Dataset = {}
177
+
178
+ for name, count in all_component_count.items():
179
+ shape: tuple[int, int] | int = (batch_size, count) if is_batch else count
180
+
181
+ requested_component = processed_output_types[name]
182
+ dtype = power_grid_meta_data[output_type][name].dtype
183
+ if dtype.names is None:
184
+ raise PowerGridUnreachableHitError
185
+ if requested_component is None:
186
+ result_dict[name] = initialize_array(output_type, name, shape=shape, empty=True)
187
+ elif requested_component in [
188
+ ComponentAttributeFilterOptions.everything,
189
+ ComponentAttributeFilterOptions.relevant,
190
+ ]:
191
+ result_dict[name] = {attr: np.empty(shape=shape, dtype=dtype[attr]) for attr in dtype.names}
192
+ elif isinstance(requested_component, list | set):
193
+ result_dict[name] = {attr: np.empty(shape=shape, dtype=dtype[attr]) for attr in requested_component}
194
+
195
+ return result_dict
@@ -0,0 +1,142 @@
1
+ # SPDX-FileCopyrightText: Contributors to the Power Grid Model project <powergridmodel@lfenergy.org>
2
+ #
3
+ # SPDX-License-Identifier: MPL-2.0
4
+
5
+ """
6
+ Data types involving PGM datasets.
7
+
8
+ Data types for library-internal use. In an attempt to clarify type hints, some types
9
+ have been defined and explained in this file.
10
+ """
11
+
12
+ from typing import TypedDict, TypeVar
13
+
14
+ import numpy as np
15
+
16
+ from power_grid_model._core.dataset_definitions import ComponentType, ComponentTypeVar
17
+
18
+ type SingleArray = np.ndarray
19
+
20
+ type AttributeType = str
21
+
22
+ type SingleColumn = np.ndarray
23
+ type DenseBatchArray = np.ndarray
24
+
25
+ SingleColumnarData = dict[AttributeType, SingleColumn]
26
+
27
+ _SingleComponentData = TypeVar("_SingleComponentData", SingleArray, SingleColumnarData) # deduction helper
28
+ SingleComponentData = SingleArray | SingleColumnarData
29
+
30
+ SingleRowBasedDataset = dict[ComponentTypeVar, SingleArray]
31
+ SingleColumnarDataset = dict[ComponentTypeVar, SingleColumnarData]
32
+ SingleDataset = dict[ComponentTypeVar, _SingleComponentData]
33
+
34
+ BatchList = list[SingleDataset]
35
+
36
+ type BatchColumn = np.ndarray
37
+
38
+ DenseBatchColumnarData = dict[AttributeType, BatchColumn]
39
+
40
+ type IndexPointer = np.ndarray
41
+
42
+
43
+ class SparseBatchColumnarData(TypedDict):
44
+ """
45
+ Sparse batch columnar data is a dictionary containing the keys `indptr` and `data`.
46
+
47
+ - data: a :class:`SingleColumnarData`. The exact supported attribute columns depend on the component type.
48
+ - indptr: an :class:`IndexPointer` representing the start and end indices for each batch scenario.
49
+
50
+ - Examples:
51
+
52
+ - structure: {"indptr": :class:`IndexPointer`, "data": :class:`SingleColumnarData`}
53
+ - concrete example: {"indptr": [0, 2, 2, 3], "data": {"id": [0, 1, 0], "status": [1, 1, 0]}}
54
+
55
+ - the scenario 0 sets the status of components with ids 0 and 1 to 1
56
+ (and keeps defaults for other components)
57
+ - scenario 1 keeps the default values for all components
58
+ - scenario 2 sets the status of component with id 0 to 0 (and keeps defaults for other components)
59
+ """
60
+
61
+ indptr: IndexPointer
62
+ data: SingleColumnarData
63
+
64
+
65
+ class SparseBatchArray(TypedDict):
66
+ """
67
+ A sparse batch array is a dictionary containing the keys `indptr` and `data`.
68
+
69
+ - data: a :class:`SingleArray`. The exact dtype depends on the type of component.
70
+ - indptr: an :class:`IndexPointer` representing the start and end indices for each batch scenario.
71
+
72
+ - Examples:
73
+
74
+ - structure: {"indptr": :class:`IndexPointer`, "data": :class:`SingleArray`}
75
+ - concrete example: {"indptr": [0, 2, 2, 3], "data": [(0, 1, 1), (1, 1, 1), (0, 0, 0)]}
76
+
77
+ - the scenario 0 sets the statuses of components with ids 0 and 1 to 1
78
+ (and keeps defaults for other components)
79
+ - scenario 1 keeps the default values for all components
80
+ - scenario 2 sets the statuses of component with id 0 to 0 (and keeps defaults for other components)
81
+ """
82
+
83
+ indptr: IndexPointer
84
+ data: SingleArray
85
+
86
+
87
+ SparseBatchData = SparseBatchArray | SparseBatchColumnarData
88
+
89
+ type SparseDataComponentType = str
90
+
91
+ BatchColumnarData = DenseBatchColumnarData | SparseBatchColumnarData
92
+
93
+ ColumnarData = SingleColumnarData | BatchColumnarData
94
+ BatchArray = DenseBatchArray | SparseBatchArray
95
+
96
+
97
+ BatchComponentData = BatchArray | BatchColumnarData
98
+
99
+ _BatchComponentData = TypeVar("_BatchComponentData", BatchArray, BatchColumnarData) # deduction helper
100
+
101
+
102
+ BatchDataset = dict[ComponentTypeVar, _BatchComponentData]
103
+
104
+
105
+ DataArray = SingleArray | BatchArray
106
+
107
+
108
+ _ComponentData = TypeVar("_ComponentData", SingleComponentData, BatchComponentData) # deduction helper
109
+ ComponentData = DataArray | ColumnarData
110
+
111
+ Dataset = dict[ComponentTypeVar, _ComponentData]
112
+
113
+
114
+ DenseBatchData = DenseBatchArray | DenseBatchColumnarData
115
+
116
+ # overloads that only match on latest PGM type
117
+ SingleRowBasedOutputDataset = dict[ComponentType, SingleArray]
118
+ SingleColumnarOutputDataset = dict[ComponentType, SingleColumnarData]
119
+ SingleOutputDataset = dict[ComponentType, SingleComponentData]
120
+ DenseBatchRowBasedOutputDataset = dict[ComponentType, DenseBatchArray]
121
+ DenseBatchColumnarOutputDataset = dict[ComponentType, DenseBatchColumnarData]
122
+ DenseBatchOutputDataset = dict[ComponentType, DenseBatchData]
123
+ OutputDataset = dict[ComponentType, ComponentData]
124
+
125
+
126
+ NominalValue = int
127
+
128
+ RealValue = float
129
+
130
+ AsymValue = tuple[RealValue, RealValue, RealValue]
131
+
132
+ AttributeValue = RealValue | NominalValue | AsymValue
133
+
134
+ Component = dict[AttributeType, AttributeValue | str]
135
+
136
+ ComponentList = list[Component]
137
+
138
+ SinglePythonDataset = dict[ComponentTypeVar, ComponentList]
139
+
140
+ BatchPythonDataset = list[SinglePythonDataset]
141
+
142
+ PythonDataset = SinglePythonDataset | BatchPythonDataset