polyleven 0.8__cp38-cp38-win_amd64.whl → 0.9.0__cp38-cp38-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,6 +2,7 @@ Copyright (c) 2021 Fujimoto Seiji <fujimoto@ceptord.net>
2
2
  Copyright (c) 2021 Max Bachmann <kontakt@maxbachmann.de>
3
3
  Copyright (c) 2022 Nick Mazuk
4
4
  Copyright (c) 2022 Michael Weiss <code@mweiss.ch>
5
+ Copyright (c) 2024 Alex Morgan <lexyym@gmail.com>
5
6
 
6
7
  Permission is hereby granted, free of charge, to any person obtaining a copy
7
8
  of this software and associated documentation files (the "Software"), to deal
@@ -1,130 +1,124 @@
1
- Metadata-Version: 2.1
2
- Name: polyleven
3
- Version: 0.8
4
- Summary: A fast C-implemented library for Levenshtein distance
5
- Home-page: https://ceptord.net/
6
- Author: Fujimoto Seiji
7
- Author-email: fujimoto@ceptord.net
8
- License: MIT License
9
- Project-URL: Documentation, https://ceptord.net/
10
- Project-URL: GitHub Mirror, https://github.com/fujimotos/polyleven
11
- Keywords: Levenshtein distance
12
- Classifier: Development Status :: 5 - Production/Stable
13
- Classifier: Operating System :: OS Independent
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: C
16
- Classifier: License :: OSI Approved :: MIT License
17
- Requires-Python: >=3.4
18
- Description-Content-Type: text/x-rst
19
- License-File: LICENSE
20
-
21
- ==============================================
22
- Polyleven -- Fast Pythonic Levenshtein Library
23
- ==============================================
24
-
25
- :Website: https://ceptord.net/
26
- :Latest Release: v0.8 (2022-10-02)
27
- :License: MIT License
28
-
29
- 1. Introduction
30
- ===============
31
-
32
- polyleven is a Pythonic Levenshtein distance library that:
33
-
34
- - Is *fast* independent of input types, and hence can be used for
35
- both short (like English words) and long input types (like DNA
36
- sequences).
37
-
38
- - Can be used readily in a manner not covered by restrictive
39
- licenses such as GPL, hence can be used freely in private codes.
40
-
41
- - Supports Python 3.x.
42
-
43
- 2. How to install
44
- =================
45
-
46
- The official package is available on PyPI::
47
-
48
- $ pip install polyleven
49
-
50
- 3. How to use
51
- =============
52
-
53
- Polyleven provides a single interface function ``levenshtein()``. You
54
- can use this function to measure the similarity of two strings.
55
-
56
- >>> from polyleven import levenshtein
57
- >>> levenshtein('aaa', 'ccc')
58
- 3
59
-
60
- If you only care about distances under a certain threshold, you can
61
- pass the max threshold to the third argument.
62
-
63
- >>> levenshtein('acc', 'ccc', 1)
64
- 1
65
- >>> levenshtein('aaa', 'ccc', 1)
66
- 2
67
-
68
- In general, you can gain a noticeable speed boost with threshold
69
- :math:`k < 3`.
70
-
71
- 4. Benchmark
72
- ============
73
-
74
- 4.1 English Words
75
- ------------------
76
-
77
- To compare Polyleven with other Pythonic edit distance libraries,
78
- a million word pairs was generated from `SCOWL`_.
79
-
80
- .. _SCOWL: http://wordlist.aspell.net/
81
-
82
- Each library was measured how long it takes to evaluate all of
83
- these words. The following table summarises the result:
84
-
85
- ============================== ============ ================
86
- Function Name TIME[sec] SPEED[pairs/s]
87
- ============================== ============ ================
88
- edlib 4.763 208216
89
- editdistance 1.943 510450
90
- jellyfish.levenshtein_distance 0.722 1374081
91
- distance.levenshtein 0.623 1591396
92
- Levenshtein.distance 0.500 1982764
93
- polyleven.levenshtein 0.431 2303420
94
- ============================== ============ ================
95
-
96
- 4.2. Longer Inputs
97
- ------------------
98
-
99
- To evaluate the efficiency for longer inputs, I created 5000 pairs
100
- of random strings of size 16, 32, 64, 128, 256, 512 and 1024.
101
-
102
- Each library was measured how fast it can process these entries. [#fn1]_
103
-
104
- ============ ===== ===== ===== ===== ===== ===== ======
105
- Library N=16 N=32 N=64 N=128 N=256 N=512 N=1024
106
- ============ ===== ===== ===== ===== ===== ===== ======
107
- edlib 0.040 0.063 0.094 0.205 0.432 0.908 2.089
108
- editdistance 0.027 0.049 0.086 0.178 0.336 0.740 58.139
109
- jellyfish 0.009 0.032 0.118 0.470 1.874 8.877 42.848
110
- distance 0.007 0.029 0.109 0.431 1.726 6.950 27.998
111
- Levenshtein 0.006 0.022 0.085 0.336 1.328 5.286 21.097
112
- polyleven 0.003 0.005 0.010 0.043 0.149 0.550 2.109
113
- ============ ===== ===== ===== ===== ===== ===== ======
114
-
115
- 3.3. List of Libraries
116
- ----------------------
117
-
118
- ============ ======= ==========================================
119
- Library Version URL
120
- ============ ======= ==========================================
121
- edlib v1.2.1 https://github.com/Martinsos/edlib
122
- editdistance v0.4 https://github.com/aflc/editdistance
123
- jellyfish v0.5.6 https://github.com/jamesturk/jellyfish
124
- distance v0.1.3 https://github.com/doukremt/distance
125
- Levenshtein v0.12 https://github.com/ztane/python-Levenshtein
126
- polyleven v0.3 https://github.com/fujimotos/polyleven
127
- ============ ======= ==========================================
128
-
129
- .. [#fn1] Measured using Python 3.5.3 on Debian Jessie with Intel Core
130
- i3-4010U (1.70GHz)
1
+ Metadata-Version: 2.1
2
+ Name: polyleven
3
+ Version: 0.9.0
4
+ Summary: A fast C-implemented library for Levenshtein distance
5
+ Maintainer-email: Fujimoto Seiji <fujimoto@ceptord.net>
6
+ Project-URL: github, https://github.com/fujimotos/polyleven
7
+ Keywords: Levenshtein distance
8
+ Classifier: Development Status :: 5 - Production/Stable
9
+ Classifier: Operating System :: OS Independent
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: C
12
+ Requires-Python: >=3.8
13
+ Description-Content-Type: text/x-rst
14
+ License-File: LICENSE
15
+
16
+ ==============================================
17
+ Polyleven -- Fast Pythonic Levenshtein Library
18
+ ==============================================
19
+
20
+ :License: MIT License
21
+
22
+ 1. Introduction
23
+ ===============
24
+
25
+ polyleven is a Pythonic Levenshtein distance library that:
26
+
27
+ - Is *fast* independent of input types, and hence can be used for
28
+ both short (like English words) and long input types (like DNA
29
+ sequences).
30
+
31
+ - Is *stand-alone* depending only on core Python packages (such as
32
+ ``setuptools`` for installation).
33
+
34
+ - Can be used readily in a manner not covered by restrictive
35
+ licenses such as GPL, hence can be used freely in private codes.
36
+
37
+ 2. How to install
38
+ =================
39
+
40
+ The official package is available on PyPI::
41
+
42
+ $ pip install polyleven
43
+
44
+ 3. How to use
45
+ =============
46
+
47
+ Polyleven provides a single interface function ``levenshtein()``. You
48
+ can use this function to measure the similarity of two strings.
49
+
50
+ >>> from polyleven import levenshtein
51
+ >>> levenshtein('aaa', 'ccc')
52
+ 3
53
+
54
+ If you only care about distances under a certain threshold, you can
55
+ pass the max threshold to the third argument.
56
+
57
+ >>> levenshtein('acc', 'ccc', 1)
58
+ 1
59
+ >>> levenshtein('aaa', 'ccc', 1)
60
+ 2
61
+
62
+ In general, you can gain a noticeable speed boost with threshold
63
+ :math:`k < 3`.
64
+
65
+ 4. Benchmark
66
+ ============
67
+
68
+ 4.1 English Words
69
+ ------------------
70
+
71
+ To compare Polyleven with other Pythonic edit distance libraries,
72
+ a million word pairs was generated from `SCOWL`_.
73
+
74
+ .. _SCOWL: http://wordlist.aspell.net/
75
+
76
+ Each library was measured how long it takes to evaluate all of
77
+ these words. The following table summarises the result:
78
+
79
+ ============================== ============ ================
80
+ Function Name TIME[sec] SPEED[pairs/s]
81
+ ============================== ============ ================
82
+ edlib 4.763 208216
83
+ editdistance 1.943 510450
84
+ jellyfish.levenshtein_distance 0.722 1374081
85
+ distance.levenshtein 0.623 1591396
86
+ Levenshtein.distance 0.500 1982764
87
+ polyleven.levenshtein 0.431 2303420
88
+ ============================== ============ ================
89
+
90
+ 4.2. Longer Inputs
91
+ ------------------
92
+
93
+ To evaluate the efficiency for longer inputs, I created 5000 pairs
94
+ of random strings of size 16, 32, 64, 128, 256, 512 and 1024.
95
+
96
+ Each library was measured how fast it can process these entries. [#fn1]_
97
+
98
+ ============ ===== ===== ===== ===== ===== ===== ======
99
+ Library N=16 N=32 N=64 N=128 N=256 N=512 N=1024
100
+ ============ ===== ===== ===== ===== ===== ===== ======
101
+ edlib 0.040 0.063 0.094 0.205 0.432 0.908 2.089
102
+ editdistance 0.027 0.049 0.086 0.178 0.336 0.740 58.139
103
+ jellyfish 0.009 0.032 0.118 0.470 1.874 8.877 42.848
104
+ distance 0.007 0.029 0.109 0.431 1.726 6.950 27.998
105
+ Levenshtein 0.006 0.022 0.085 0.336 1.328 5.286 21.097
106
+ polyleven 0.003 0.005 0.010 0.043 0.149 0.550 2.109
107
+ ============ ===== ===== ===== ===== ===== ===== ======
108
+
109
+ 3.3. List of Libraries
110
+ ----------------------
111
+
112
+ ============ ======= ==========================================
113
+ Library Version URL
114
+ ============ ======= ==========================================
115
+ edlib v1.2.1 https://github.com/Martinsos/edlib
116
+ editdistance v0.4 https://github.com/aflc/editdistance
117
+ jellyfish v0.5.6 https://github.com/jamesturk/jellyfish
118
+ distance v0.1.3 https://github.com/doukremt/distance
119
+ Levenshtein v0.12 https://github.com/ztane/python-Levenshtein
120
+ polyleven v0.3 https://github.com/fujimotos/polyleven
121
+ ============ ======= ==========================================
122
+
123
+ .. [#fn1] Measured using Python 3.5.3 on Debian Jessie with Intel Core
124
+ i3-4010U (1.70GHz)
@@ -0,0 +1,6 @@
1
+ polyleven.cp38-win_amd64.pyd,sha256=qrLQfusGHMoKT0G0sAwv3cNJ1Ln4GfZrgbPNb6SApps,14336
2
+ polyleven-0.9.0.dist-info/LICENSE,sha256=zHJkqcEUmifgyZZt-C_c99aiyTKj0CwqqhZrhoN_5UU,1293
3
+ polyleven-0.9.0.dist-info/METADATA,sha256=HiNnyI9c1fyTCqi2M-KUi5FaL4rYaNB1RSvSvUNVeU4,4433
4
+ polyleven-0.9.0.dist-info/WHEEL,sha256=rTcqimtzpX3smAWAhGmiRSWAxTY4PqYPNE-p4kscHDQ,99
5
+ polyleven-0.9.0.dist-info/top_level.txt,sha256=12GbQ6DLcEtqgc30L3CguDVut0T-AYu2LoAm0fY4-cY,21
6
+ polyleven-0.9.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.37.1)
2
+ Generator: setuptools (75.3.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp38-cp38-win_amd64
5
5
 
@@ -0,0 +1,2 @@
1
+ polyleven
2
+ wheelhouse
Binary file
@@ -1,6 +0,0 @@
1
- polyleven.cp38-win_amd64.pyd,sha256=nnQe5AWSnN3tZljfXSS4BhAGz58KJhn_0iEge3r1i4Q,14336
2
- polyleven-0.8.dist-info/LICENSE,sha256=b_7rLdReW-_Bj1D0M7xcb5qG9KZuLSDeOB3Vqwk3Z1Q,1242
3
- polyleven-0.8.dist-info/METADATA,sha256=XEutlMdLtn6kTOhXgyvOKE6kvhNCoI9qoUcJdhcac_c,4455
4
- polyleven-0.8.dist-info/WHEEL,sha256=M2GQ3lde8oJhlQPj2wbRvnqE3cuovPJasri5X5aCmck,100
5
- polyleven-0.8.dist-info/top_level.txt,sha256=v9yjpvGjpSenYL_Mbe2BIS_vq01x_pd07i352hs88RQ,10
6
- polyleven-0.8.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- polyleven