polars-runtime-compat 1.34.0b3__cp39-abi3-win_arm64.whl → 1.34.0b4__cp39-abi3-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of polars-runtime-compat might be problematic. Click here for more details.

Files changed (203) hide show
  1. _polars_runtime_compat/_polars_runtime_compat.pyd +0 -0
  2. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/METADATA +1 -1
  3. polars_runtime_compat-1.34.0b4.dist-info/RECORD +6 -0
  4. polars/__init__.py +0 -528
  5. polars/_cpu_check.py +0 -265
  6. polars/_dependencies.py +0 -355
  7. polars/_plr.py +0 -99
  8. polars/_plr.pyi +0 -2496
  9. polars/_reexport.py +0 -23
  10. polars/_typing.py +0 -478
  11. polars/_utils/__init__.py +0 -37
  12. polars/_utils/async_.py +0 -102
  13. polars/_utils/cache.py +0 -176
  14. polars/_utils/cloud.py +0 -40
  15. polars/_utils/constants.py +0 -29
  16. polars/_utils/construction/__init__.py +0 -46
  17. polars/_utils/construction/dataframe.py +0 -1397
  18. polars/_utils/construction/other.py +0 -72
  19. polars/_utils/construction/series.py +0 -560
  20. polars/_utils/construction/utils.py +0 -118
  21. polars/_utils/convert.py +0 -224
  22. polars/_utils/deprecation.py +0 -406
  23. polars/_utils/getitem.py +0 -457
  24. polars/_utils/logging.py +0 -11
  25. polars/_utils/nest_asyncio.py +0 -264
  26. polars/_utils/parquet.py +0 -15
  27. polars/_utils/parse/__init__.py +0 -12
  28. polars/_utils/parse/expr.py +0 -242
  29. polars/_utils/polars_version.py +0 -19
  30. polars/_utils/pycapsule.py +0 -53
  31. polars/_utils/scan.py +0 -27
  32. polars/_utils/serde.py +0 -63
  33. polars/_utils/slice.py +0 -215
  34. polars/_utils/udfs.py +0 -1251
  35. polars/_utils/unstable.py +0 -63
  36. polars/_utils/various.py +0 -782
  37. polars/_utils/wrap.py +0 -25
  38. polars/api.py +0 -370
  39. polars/catalog/__init__.py +0 -0
  40. polars/catalog/unity/__init__.py +0 -19
  41. polars/catalog/unity/client.py +0 -733
  42. polars/catalog/unity/models.py +0 -152
  43. polars/config.py +0 -1571
  44. polars/convert/__init__.py +0 -25
  45. polars/convert/general.py +0 -1046
  46. polars/convert/normalize.py +0 -261
  47. polars/dataframe/__init__.py +0 -5
  48. polars/dataframe/_html.py +0 -186
  49. polars/dataframe/frame.py +0 -12582
  50. polars/dataframe/group_by.py +0 -1067
  51. polars/dataframe/plotting.py +0 -257
  52. polars/datatype_expr/__init__.py +0 -5
  53. polars/datatype_expr/array.py +0 -56
  54. polars/datatype_expr/datatype_expr.py +0 -304
  55. polars/datatype_expr/list.py +0 -18
  56. polars/datatype_expr/struct.py +0 -69
  57. polars/datatypes/__init__.py +0 -122
  58. polars/datatypes/_parse.py +0 -195
  59. polars/datatypes/_utils.py +0 -48
  60. polars/datatypes/classes.py +0 -1213
  61. polars/datatypes/constants.py +0 -11
  62. polars/datatypes/constructor.py +0 -172
  63. polars/datatypes/convert.py +0 -366
  64. polars/datatypes/group.py +0 -130
  65. polars/exceptions.py +0 -230
  66. polars/expr/__init__.py +0 -7
  67. polars/expr/array.py +0 -964
  68. polars/expr/binary.py +0 -346
  69. polars/expr/categorical.py +0 -306
  70. polars/expr/datetime.py +0 -2620
  71. polars/expr/expr.py +0 -11272
  72. polars/expr/list.py +0 -1408
  73. polars/expr/meta.py +0 -444
  74. polars/expr/name.py +0 -321
  75. polars/expr/string.py +0 -3045
  76. polars/expr/struct.py +0 -357
  77. polars/expr/whenthen.py +0 -185
  78. polars/functions/__init__.py +0 -193
  79. polars/functions/aggregation/__init__.py +0 -33
  80. polars/functions/aggregation/horizontal.py +0 -298
  81. polars/functions/aggregation/vertical.py +0 -341
  82. polars/functions/as_datatype.py +0 -848
  83. polars/functions/business.py +0 -138
  84. polars/functions/col.py +0 -384
  85. polars/functions/datatype.py +0 -121
  86. polars/functions/eager.py +0 -524
  87. polars/functions/escape_regex.py +0 -29
  88. polars/functions/lazy.py +0 -2751
  89. polars/functions/len.py +0 -68
  90. polars/functions/lit.py +0 -210
  91. polars/functions/random.py +0 -22
  92. polars/functions/range/__init__.py +0 -19
  93. polars/functions/range/_utils.py +0 -15
  94. polars/functions/range/date_range.py +0 -303
  95. polars/functions/range/datetime_range.py +0 -370
  96. polars/functions/range/int_range.py +0 -348
  97. polars/functions/range/linear_space.py +0 -311
  98. polars/functions/range/time_range.py +0 -287
  99. polars/functions/repeat.py +0 -301
  100. polars/functions/whenthen.py +0 -353
  101. polars/interchange/__init__.py +0 -10
  102. polars/interchange/buffer.py +0 -77
  103. polars/interchange/column.py +0 -190
  104. polars/interchange/dataframe.py +0 -230
  105. polars/interchange/from_dataframe.py +0 -328
  106. polars/interchange/protocol.py +0 -303
  107. polars/interchange/utils.py +0 -170
  108. polars/io/__init__.py +0 -64
  109. polars/io/_utils.py +0 -317
  110. polars/io/avro.py +0 -49
  111. polars/io/clipboard.py +0 -36
  112. polars/io/cloud/__init__.py +0 -17
  113. polars/io/cloud/_utils.py +0 -80
  114. polars/io/cloud/credential_provider/__init__.py +0 -17
  115. polars/io/cloud/credential_provider/_builder.py +0 -520
  116. polars/io/cloud/credential_provider/_providers.py +0 -618
  117. polars/io/csv/__init__.py +0 -9
  118. polars/io/csv/_utils.py +0 -38
  119. polars/io/csv/batched_reader.py +0 -142
  120. polars/io/csv/functions.py +0 -1495
  121. polars/io/database/__init__.py +0 -6
  122. polars/io/database/_arrow_registry.py +0 -70
  123. polars/io/database/_cursor_proxies.py +0 -147
  124. polars/io/database/_executor.py +0 -578
  125. polars/io/database/_inference.py +0 -314
  126. polars/io/database/_utils.py +0 -144
  127. polars/io/database/functions.py +0 -516
  128. polars/io/delta.py +0 -499
  129. polars/io/iceberg/__init__.py +0 -3
  130. polars/io/iceberg/_utils.py +0 -697
  131. polars/io/iceberg/dataset.py +0 -556
  132. polars/io/iceberg/functions.py +0 -151
  133. polars/io/ipc/__init__.py +0 -8
  134. polars/io/ipc/functions.py +0 -514
  135. polars/io/json/__init__.py +0 -3
  136. polars/io/json/read.py +0 -101
  137. polars/io/ndjson.py +0 -332
  138. polars/io/parquet/__init__.py +0 -17
  139. polars/io/parquet/field_overwrites.py +0 -140
  140. polars/io/parquet/functions.py +0 -722
  141. polars/io/partition.py +0 -491
  142. polars/io/plugins.py +0 -187
  143. polars/io/pyarrow_dataset/__init__.py +0 -5
  144. polars/io/pyarrow_dataset/anonymous_scan.py +0 -109
  145. polars/io/pyarrow_dataset/functions.py +0 -79
  146. polars/io/scan_options/__init__.py +0 -5
  147. polars/io/scan_options/_options.py +0 -59
  148. polars/io/scan_options/cast_options.py +0 -126
  149. polars/io/spreadsheet/__init__.py +0 -6
  150. polars/io/spreadsheet/_utils.py +0 -52
  151. polars/io/spreadsheet/_write_utils.py +0 -647
  152. polars/io/spreadsheet/functions.py +0 -1323
  153. polars/lazyframe/__init__.py +0 -9
  154. polars/lazyframe/engine_config.py +0 -61
  155. polars/lazyframe/frame.py +0 -8564
  156. polars/lazyframe/group_by.py +0 -669
  157. polars/lazyframe/in_process.py +0 -42
  158. polars/lazyframe/opt_flags.py +0 -333
  159. polars/meta/__init__.py +0 -14
  160. polars/meta/build.py +0 -33
  161. polars/meta/index_type.py +0 -27
  162. polars/meta/thread_pool.py +0 -50
  163. polars/meta/versions.py +0 -120
  164. polars/ml/__init__.py +0 -0
  165. polars/ml/torch.py +0 -213
  166. polars/ml/utilities.py +0 -30
  167. polars/plugins.py +0 -155
  168. polars/py.typed +0 -0
  169. polars/pyproject.toml +0 -103
  170. polars/schema.py +0 -265
  171. polars/selectors.py +0 -3117
  172. polars/series/__init__.py +0 -5
  173. polars/series/array.py +0 -776
  174. polars/series/binary.py +0 -254
  175. polars/series/categorical.py +0 -246
  176. polars/series/datetime.py +0 -2275
  177. polars/series/list.py +0 -1087
  178. polars/series/plotting.py +0 -191
  179. polars/series/series.py +0 -9197
  180. polars/series/string.py +0 -2367
  181. polars/series/struct.py +0 -154
  182. polars/series/utils.py +0 -191
  183. polars/sql/__init__.py +0 -7
  184. polars/sql/context.py +0 -677
  185. polars/sql/functions.py +0 -139
  186. polars/string_cache.py +0 -185
  187. polars/testing/__init__.py +0 -13
  188. polars/testing/asserts/__init__.py +0 -9
  189. polars/testing/asserts/frame.py +0 -231
  190. polars/testing/asserts/series.py +0 -219
  191. polars/testing/asserts/utils.py +0 -12
  192. polars/testing/parametric/__init__.py +0 -33
  193. polars/testing/parametric/profiles.py +0 -107
  194. polars/testing/parametric/strategies/__init__.py +0 -22
  195. polars/testing/parametric/strategies/_utils.py +0 -14
  196. polars/testing/parametric/strategies/core.py +0 -615
  197. polars/testing/parametric/strategies/data.py +0 -452
  198. polars/testing/parametric/strategies/dtype.py +0 -436
  199. polars/testing/parametric/strategies/legacy.py +0 -169
  200. polars/type_aliases.py +0 -24
  201. polars_runtime_compat-1.34.0b3.dist-info/RECORD +0 -203
  202. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/WHEEL +0 -0
  203. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/licenses/LICENSE +0 -0
@@ -1,193 +0,0 @@
1
- from polars.functions.aggregation import (
2
- all,
3
- all_horizontal,
4
- any,
5
- any_horizontal,
6
- cum_sum,
7
- cum_sum_horizontal,
8
- max,
9
- max_horizontal,
10
- mean_horizontal,
11
- min,
12
- min_horizontal,
13
- sum,
14
- sum_horizontal,
15
- )
16
- from polars.functions.as_datatype import (
17
- concat_arr,
18
- concat_list,
19
- concat_str,
20
- duration,
21
- format,
22
- struct,
23
- )
24
- from polars.functions.as_datatype import date_ as date
25
- from polars.functions.as_datatype import datetime_ as datetime
26
- from polars.functions.as_datatype import time_ as time
27
- from polars.functions.business import business_day_count
28
- from polars.functions.col import col
29
- from polars.functions.datatype import dtype_of, self_dtype, struct_with_fields
30
- from polars.functions.eager import align_frames, concat
31
- from polars.functions.escape_regex import escape_regex
32
- from polars.functions.lazy import (
33
- _row_encode,
34
- approx_n_unique,
35
- arctan2,
36
- arctan2d,
37
- arg_sort_by,
38
- arg_where,
39
- coalesce,
40
- collect_all,
41
- collect_all_async,
42
- corr,
43
- count,
44
- cov,
45
- cum_count,
46
- cum_fold,
47
- cum_reduce,
48
- element,
49
- exclude,
50
- explain_all,
51
- field,
52
- first,
53
- fold,
54
- from_epoch,
55
- groups,
56
- head,
57
- implode,
58
- last,
59
- map_batches,
60
- map_groups,
61
- mean,
62
- median,
63
- n_unique,
64
- nth,
65
- quantile,
66
- reduce,
67
- rolling_corr,
68
- rolling_cov,
69
- row_index,
70
- select,
71
- sql_expr,
72
- std,
73
- tail,
74
- var,
75
- )
76
- from polars.functions.len import len
77
- from polars.functions.lit import lit
78
- from polars.functions.random import set_random_seed
79
- from polars.functions.range import (
80
- arange,
81
- date_range,
82
- date_ranges,
83
- datetime_range,
84
- datetime_ranges,
85
- int_range,
86
- int_ranges,
87
- linear_space,
88
- linear_spaces,
89
- time_range,
90
- time_ranges,
91
- )
92
- from polars.functions.repeat import ones, repeat, zeros
93
- from polars.functions.whenthen import when
94
-
95
- __all__ = [
96
- # polars.functions.aggregation
97
- "all",
98
- "any",
99
- "cum_sum",
100
- "max",
101
- "min",
102
- "sum",
103
- "all_horizontal",
104
- "any_horizontal",
105
- "cum_sum_horizontal",
106
- "max_horizontal",
107
- "min_horizontal",
108
- "sum_horizontal",
109
- # polars.functions.datatype
110
- "dtype_of",
111
- "self_dtype",
112
- "struct_with_fields",
113
- # polars.functions.eager
114
- "align_frames",
115
- "approx_n_unique",
116
- "arg_where",
117
- "concat",
118
- "date_range",
119
- "date_ranges",
120
- "datetime_range",
121
- "datetime_ranges",
122
- "element",
123
- "ones",
124
- "repeat",
125
- "time_range",
126
- "time_ranges",
127
- "zeros",
128
- # polars.functions.lazy
129
- "_row_encode",
130
- "arange",
131
- "arctan2",
132
- "arctan2d",
133
- "arg_sort_by",
134
- "business_day_count",
135
- "coalesce",
136
- "col",
137
- "collect_all",
138
- "collect_all_async",
139
- "concat_arr",
140
- "concat_list",
141
- "concat_str",
142
- "corr",
143
- "count",
144
- "cov",
145
- "cum_count",
146
- "cum_fold",
147
- "cum_reduce",
148
- "date", # named date_, see import above
149
- "datetime", # named datetime_, see import above
150
- "duration",
151
- "exclude",
152
- "explain_all",
153
- "field",
154
- "first",
155
- "fold",
156
- "format",
157
- "from_epoch",
158
- "groups",
159
- "head",
160
- "implode",
161
- "int_range",
162
- "int_ranges",
163
- "last",
164
- "linear_space",
165
- "linear_spaces",
166
- "lit",
167
- "map_batches",
168
- "map_groups",
169
- "mean",
170
- "mean_horizontal",
171
- "median",
172
- "n_unique",
173
- "nth",
174
- "quantile",
175
- "reduce",
176
- "rolling_corr",
177
- "rolling_cov",
178
- "row_index",
179
- "select",
180
- "set_random_seed",
181
- "std",
182
- "struct",
183
- "tail",
184
- "time",
185
- "var",
186
- # polars.functions.len
187
- "len",
188
- # polars.functions.whenthen
189
- "when",
190
- "sql_expr",
191
- # polars.functions.escape_regex
192
- "escape_regex",
193
- ]
@@ -1,33 +0,0 @@
1
- from polars.functions.aggregation.horizontal import (
2
- all_horizontal,
3
- any_horizontal,
4
- cum_sum_horizontal,
5
- max_horizontal,
6
- mean_horizontal,
7
- min_horizontal,
8
- sum_horizontal,
9
- )
10
- from polars.functions.aggregation.vertical import (
11
- all,
12
- any,
13
- cum_sum,
14
- max,
15
- min,
16
- sum,
17
- )
18
-
19
- __all__ = [
20
- "all",
21
- "all_horizontal",
22
- "any",
23
- "any_horizontal",
24
- "cum_sum",
25
- "cum_sum_horizontal",
26
- "max",
27
- "max_horizontal",
28
- "mean_horizontal",
29
- "min",
30
- "min_horizontal",
31
- "sum",
32
- "sum_horizontal",
33
- ]
@@ -1,298 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import contextlib
4
- from typing import TYPE_CHECKING
5
-
6
- import polars.functions as F
7
- from polars._utils.parse import parse_into_list_of_expressions
8
- from polars._utils.wrap import wrap_expr
9
-
10
- with contextlib.suppress(ImportError): # Module not available when building docs
11
- import polars._plr as plr
12
-
13
- if TYPE_CHECKING:
14
- from collections.abc import Iterable
15
-
16
- from polars import Expr
17
- from polars._typing import IntoExpr
18
-
19
-
20
- def all_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
21
- """
22
- Compute the bitwise AND horizontally across columns.
23
-
24
- Parameters
25
- ----------
26
- *exprs
27
- Column(s) to use in the aggregation. Accepts expression input. Strings are
28
- parsed as column names, other non-expression inputs are parsed as literals.
29
-
30
- Notes
31
- -----
32
- `Kleene logic`_ is used to deal with nulls: if the column contains any null values
33
- and no `False` values, the output is null.
34
-
35
- .. _Kleene logic: https://en.wikipedia.org/wiki/Three-valued_logic
36
-
37
- Examples
38
- --------
39
- >>> df = pl.DataFrame(
40
- ... {
41
- ... "a": [False, False, True, True, False, None],
42
- ... "b": [False, True, True, None, None, None],
43
- ... "c": ["u", "v", "w", "x", "y", "z"],
44
- ... }
45
- ... )
46
- >>> df.with_columns(all=pl.all_horizontal("a", "b"))
47
- shape: (6, 4)
48
- ┌───────┬───────┬─────┬───────┐
49
- │ a ┆ b ┆ c ┆ all │
50
- │ --- ┆ --- ┆ --- ┆ --- │
51
- │ bool ┆ bool ┆ str ┆ bool │
52
- ╞═══════╪═══════╪═════╪═══════╡
53
- │ false ┆ false ┆ u ┆ false │
54
- │ false ┆ true ┆ v ┆ false │
55
- │ true ┆ true ┆ w ┆ true │
56
- │ true ┆ null ┆ x ┆ null │
57
- │ false ┆ null ┆ y ┆ false │
58
- │ null ┆ null ┆ z ┆ null │
59
- └───────┴───────┴─────┴───────┘
60
- """
61
- pyexprs = parse_into_list_of_expressions(*exprs)
62
- return wrap_expr(plr.all_horizontal(pyexprs))
63
-
64
-
65
- def any_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
66
- """
67
- Compute the bitwise OR horizontally across columns.
68
-
69
- Parameters
70
- ----------
71
- *exprs
72
- Column(s) to use in the aggregation. Accepts expression input. Strings are
73
- parsed as column names, other non-expression inputs are parsed as literals.
74
-
75
- Notes
76
- -----
77
- `Kleene logic`_ is used to deal with nulls: if the column contains any null values
78
- and no `True` values, the output is null.
79
-
80
- .. _Kleene logic: https://en.wikipedia.org/wiki/Three-valued_logic
81
-
82
- Examples
83
- --------
84
- >>> df = pl.DataFrame(
85
- ... {
86
- ... "a": [False, False, True, True, False, None],
87
- ... "b": [False, True, True, None, None, None],
88
- ... "c": ["u", "v", "w", "x", "y", "z"],
89
- ... }
90
- ... )
91
- >>> df.with_columns(any=pl.any_horizontal("a", "b"))
92
- shape: (6, 4)
93
- ┌───────┬───────┬─────┬───────┐
94
- │ a ┆ b ┆ c ┆ any │
95
- │ --- ┆ --- ┆ --- ┆ --- │
96
- │ bool ┆ bool ┆ str ┆ bool │
97
- ╞═══════╪═══════╪═════╪═══════╡
98
- │ false ┆ false ┆ u ┆ false │
99
- │ false ┆ true ┆ v ┆ true │
100
- │ true ┆ true ┆ w ┆ true │
101
- │ true ┆ null ┆ x ┆ true │
102
- │ false ┆ null ┆ y ┆ null │
103
- │ null ┆ null ┆ z ┆ null │
104
- └───────┴───────┴─────┴───────┘
105
- """
106
- pyexprs = parse_into_list_of_expressions(*exprs)
107
- return wrap_expr(plr.any_horizontal(pyexprs))
108
-
109
-
110
- def max_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
111
- """
112
- Get the maximum value horizontally across columns.
113
-
114
- Parameters
115
- ----------
116
- *exprs
117
- Column(s) to use in the aggregation. Accepts expression input. Strings are
118
- parsed as column names, other non-expression inputs are parsed as literals.
119
-
120
- Examples
121
- --------
122
- >>> df = pl.DataFrame(
123
- ... {
124
- ... "a": [1, 8, 3],
125
- ... "b": [4, 5, None],
126
- ... "c": ["x", "y", "z"],
127
- ... }
128
- ... )
129
- >>> df.with_columns(max=pl.max_horizontal("a", "b"))
130
- shape: (3, 4)
131
- ┌─────┬──────┬─────┬─────┐
132
- │ a ┆ b ┆ c ┆ max │
133
- │ --- ┆ --- ┆ --- ┆ --- │
134
- │ i64 ┆ i64 ┆ str ┆ i64 │
135
- ╞═════╪══════╪═════╪═════╡
136
- │ 1 ┆ 4 ┆ x ┆ 4 │
137
- │ 8 ┆ 5 ┆ y ┆ 8 │
138
- │ 3 ┆ null ┆ z ┆ 3 │
139
- └─────┴──────┴─────┴─────┘
140
- """
141
- pyexprs = parse_into_list_of_expressions(*exprs)
142
- return wrap_expr(plr.max_horizontal(pyexprs))
143
-
144
-
145
- def min_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
146
- """
147
- Get the minimum value horizontally across columns.
148
-
149
- Parameters
150
- ----------
151
- *exprs
152
- Column(s) to use in the aggregation. Accepts expression input. Strings are
153
- parsed as column names, other non-expression inputs are parsed as literals.
154
-
155
- Examples
156
- --------
157
- >>> df = pl.DataFrame(
158
- ... {
159
- ... "a": [1, 8, 3],
160
- ... "b": [4, 5, None],
161
- ... "c": ["x", "y", "z"],
162
- ... }
163
- ... )
164
- >>> df.with_columns(min=pl.min_horizontal("a", "b"))
165
- shape: (3, 4)
166
- ┌─────┬──────┬─────┬─────┐
167
- │ a ┆ b ┆ c ┆ min │
168
- │ --- ┆ --- ┆ --- ┆ --- │
169
- │ i64 ┆ i64 ┆ str ┆ i64 │
170
- ╞═════╪══════╪═════╪═════╡
171
- │ 1 ┆ 4 ┆ x ┆ 1 │
172
- │ 8 ┆ 5 ┆ y ┆ 5 │
173
- │ 3 ┆ null ┆ z ┆ 3 │
174
- └─────┴──────┴─────┴─────┘
175
- """
176
- pyexprs = parse_into_list_of_expressions(*exprs)
177
- return wrap_expr(plr.min_horizontal(pyexprs))
178
-
179
-
180
- def sum_horizontal(
181
- *exprs: IntoExpr | Iterable[IntoExpr], ignore_nulls: bool = True
182
- ) -> Expr:
183
- """
184
- Sum all values horizontally across columns.
185
-
186
- Parameters
187
- ----------
188
- *exprs
189
- Column(s) to use in the aggregation. Accepts expression input. Strings are
190
- parsed as column names, other non-expression inputs are parsed as literals.
191
- ignore_nulls
192
- Ignore null values (default).
193
- If set to `False`, any null value in the input will lead to a null output.
194
-
195
- Examples
196
- --------
197
- >>> df = pl.DataFrame(
198
- ... {
199
- ... "a": [1, 8, 3],
200
- ... "b": [4, 5, None],
201
- ... "c": ["x", "y", "z"],
202
- ... }
203
- ... )
204
- >>> df.with_columns(sum=pl.sum_horizontal("a", "b"))
205
- shape: (3, 4)
206
- ┌─────┬──────┬─────┬─────┐
207
- │ a ┆ b ┆ c ┆ sum │
208
- │ --- ┆ --- ┆ --- ┆ --- │
209
- │ i64 ┆ i64 ┆ str ┆ i64 │
210
- ╞═════╪══════╪═════╪═════╡
211
- │ 1 ┆ 4 ┆ x ┆ 5 │
212
- │ 8 ┆ 5 ┆ y ┆ 13 │
213
- │ 3 ┆ null ┆ z ┆ 3 │
214
- └─────┴──────┴─────┴─────┘
215
- """
216
- pyexprs = parse_into_list_of_expressions(*exprs)
217
- return wrap_expr(plr.sum_horizontal(pyexprs, ignore_nulls))
218
-
219
-
220
- def mean_horizontal(
221
- *exprs: IntoExpr | Iterable[IntoExpr], ignore_nulls: bool = True
222
- ) -> Expr:
223
- """
224
- Compute the mean of all values horizontally across columns.
225
-
226
- Parameters
227
- ----------
228
- *exprs
229
- Column(s) to use in the aggregation. Accepts expression input. Strings are
230
- parsed as column names, other non-expression inputs are parsed as literals.
231
- ignore_nulls
232
- Ignore null values (default).
233
- If set to `False`, any null value in the input will lead to a null output.
234
-
235
- Examples
236
- --------
237
- >>> df = pl.DataFrame(
238
- ... {
239
- ... "a": [1, 8, 3],
240
- ... "b": [4, 5, None],
241
- ... "c": ["x", "y", "z"],
242
- ... }
243
- ... )
244
- >>> df.with_columns(mean=pl.mean_horizontal("a", "b"))
245
- shape: (3, 4)
246
- ┌─────┬──────┬─────┬──────┐
247
- │ a ┆ b ┆ c ┆ mean │
248
- │ --- ┆ --- ┆ --- ┆ --- │
249
- │ i64 ┆ i64 ┆ str ┆ f64 │
250
- ╞═════╪══════╪═════╪══════╡
251
- │ 1 ┆ 4 ┆ x ┆ 2.5 │
252
- │ 8 ┆ 5 ┆ y ┆ 6.5 │
253
- │ 3 ┆ null ┆ z ┆ 3.0 │
254
- └─────┴──────┴─────┴──────┘
255
- """
256
- pyexprs = parse_into_list_of_expressions(*exprs)
257
- return wrap_expr(plr.mean_horizontal(pyexprs, ignore_nulls))
258
-
259
-
260
- def cum_sum_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
261
- """
262
- Cumulatively sum all values horizontally across columns.
263
-
264
- Parameters
265
- ----------
266
- *exprs
267
- Column(s) to use in the aggregation. Accepts expression input. Strings are
268
- parsed as column names, other non-expression inputs are parsed as literals.
269
-
270
- Examples
271
- --------
272
- >>> df = pl.DataFrame(
273
- ... {
274
- ... "a": [1, 8, 3],
275
- ... "b": [4, 5, None],
276
- ... "c": ["x", "y", "z"],
277
- ... }
278
- ... )
279
- >>> df.with_columns(pl.cum_sum_horizontal("a", "b"))
280
- shape: (3, 4)
281
- ┌─────┬──────┬─────┬───────────┐
282
- │ a ┆ b ┆ c ┆ cum_sum │
283
- │ --- ┆ --- ┆ --- ┆ --- │
284
- │ i64 ┆ i64 ┆ str ┆ struct[2] │
285
- ╞═════╪══════╪═════╪═══════════╡
286
- │ 1 ┆ 4 ┆ x ┆ {1,5} │
287
- │ 8 ┆ 5 ┆ y ┆ {8,13} │
288
- │ 3 ┆ null ┆ z ┆ {3,null} │
289
- └─────┴──────┴─────┴───────────┘
290
- """
291
- pyexprs = parse_into_list_of_expressions(*exprs)
292
- exprs_wrapped = [wrap_expr(e) for e in pyexprs]
293
-
294
- return F.cum_fold(
295
- F.lit(0).cast(F.dtype_of(F.sum_horizontal(list(exprs)))),
296
- lambda a, b: a + b,
297
- exprs_wrapped,
298
- ).alias("cum_sum")