pmagpy 4.2.121__py3-none-any.whl → 4.2.124__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pmagpy/convert_2_magic.py +2 -0
- pmagpy/ipmag.py +12 -12
- pmagpy/svei.py +28 -13
- pmagpy/version.py +2 -2
- pmagpy-4.2.124.data/data/data_files/SVEI_demo.ipynb +609 -0
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.124.dist-info}/METADATA +2 -2
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.124.dist-info}/RECORD +941 -969
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.124.dist-info}/WHEEL +1 -1
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.124.dist-info}/entry_points.txt +1 -0
- pmagpy-4.2.121.data/data/data_files/2_5/McMurdo/ages.txt +0 -101
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/ages.txt +0 -12
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/measurements.txt +0 -8905
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/samples.txt +0 -82
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/sites.txt +0 -12
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/specimens.txt +0 -375
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/ages.txt +0 -21
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/measurements.txt +0 -16868
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/samples.txt +0 -166
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/sites.txt +0 -31
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/specimens.txt +0 -692
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/demag_orient.txt +0 -172
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/samples.bak +0 -246
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/sites.bak +0 -41
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/specimens.bak +0 -1065
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/thellier_GUI.log +0 -1
- pmagpy-4.2.121.data/data/data_files/SVEI_demo.ipynb +0 -519
- pmagpy-4.2.121.data/data/data_files/aarm_magic/samples.txt +0 -9
- pmagpy-4.2.121.data/data/data_files/aarm_magic/sites.txt +0 -4
- pmagpy-4.2.121.data/data/data_files/aarm_magic/specimens.txt +0 -9
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/samples.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/sites.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/specimens.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/utrecht_magic/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/testing/my_project/thellier_GUI.log +0 -74
- pmagpy-4.2.121.data/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter.log +0 -330
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_images.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_mailinglist.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/pmag_criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/rmag_hysteresis.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/rmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/2_5/McMurdo/zmab0100049tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/.ipynb_checkpoints/Parsing_data_model-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/extra_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/images.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/new_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/McMurdo/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/.ipynb_checkpoints/ages_from_samples_to_sites-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/ages_from_samples_to_sites.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/magic_contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Megiddo/test_spec.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/contribution_11087_v2.5.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/contribution_11087_v3.0.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/3_0/Osler/stored.json +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/Cont_rot.svg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/aus_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/col_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/eant_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/eur_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/grn_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/ind_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/mad_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/nam_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/neaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/nwaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/par_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/FRPTMP/sac_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/af.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/ages.tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/ant.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/aus.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/aus_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/balt.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/col_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/congo.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/continents.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/eant_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/eur.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/eur_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/finrot_saf.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/globalapwps.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/gond.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/grn.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/grn_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/ib_eur.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/ind.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/ind.bak +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/ind_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/kala.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/lau.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/mad_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/mkcont.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/mkfrp.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/nam.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/nam_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/neaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/nwaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/par_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/plates.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/sac_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/sam.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Continents/waf.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/Z35.sam.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/Z35_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/Z35_er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/Z35_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ErMagicBuilder/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Figures/atrm_meas.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Figures/chartmaker.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Figures/meas15.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Figures/samples.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/PmagPy-cli.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/PmagPy_MagIC.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/PmagPy_calculations.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/PmagPy_introduction.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/PmagPy_online.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/PmagPy_plots_analysis.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/Tel-Hazor_Tel-Megiddo_25.Aug.2016.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/ages_from_samples_to_sites.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/new_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/new_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/new_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/3_0/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/SIOfiles/na_sw.atrm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/SIOfiles/na_sw.cool +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/SIOfiles/na_sw.thel +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/SIOfiles.zip +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_AF.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_thellier.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_thermal.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/Pmag_GUI/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/.ipynb_checkpoints/Editing-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/.ipynb_checkpoints/U1456A-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/.ipynb_checkpoints/discretes-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/Core_depthplot.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/JR6_data/UTESTA.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/JR6_data/UTESTA_fixed.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/KLY4S_data/UTESTA.kly4s +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/SRM_data/srmdiscrete-XXX-UTEST-A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/SRM_data/srmsection-XXX-UTEST-A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/CoreSummary_XXX_UTESTA.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA.kly4s.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA_fixed.jr6.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA_rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/samples-XXX-UTEST-A_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/srmdiscrete-XXX-UTEST-A.csv.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A.csv.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A_er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC3/CoreSummary_XXX_UTESTA.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC3/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC3/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC3/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/UTESTA_MagIC3/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/UTESTA/samples-XXX-UTEST-A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/aarm_magic/aarm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/aarm_magic/arm_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/angle/angle.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/angle/tmp.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/magic_contribution_12152.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/ani_depthplot/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/aniso_magic/dike_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/aniso_magic/dike_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/aniso_magic/sed_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/aniso_magic/sed_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/apwp/apwp_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/atrm_magic/atrm_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/atrm_magic/atrm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/atrm_magic/atrm_measurements3.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/atrm_magic/atrm_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/atrm_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/atrm_magic/orig_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/azdip_magic/azdip_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/b_vdm/b_vdm_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/basemap_magic/basemap_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/biplot_magic/biplot_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/biplot_magic/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/biplot_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/biplot_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/biplot_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/biplot_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/biplot_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/bootams/bootams_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/cart_dir/cart_dir_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/chi_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/chi_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/chi_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/combine_magic/af_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/combine_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/combine_magic/ns_a.mag +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/combine_magic/ns_t.mag +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/combine_magic/therm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/common_mean/common_mean_ex_file1.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/common_mean/common_mean_ex_file2.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_asc_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_asc_magic/_2g_asc/DR3B.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_asc_magic/_2g_asc/OK3_15af.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_asc_magic/_2g_asc/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/165A.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/165B.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/165C.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/60A.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/60B.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/60C.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/70A.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/70C.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/70D.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ab.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1bb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1c.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1db.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1e.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1f.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ga.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ha.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ib.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1jb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1kb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1la.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ma.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29ab.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29bb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29cb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29da.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29db.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29e.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29eb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29f.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29ga.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29gc.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29h.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29ib.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29j.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2c.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2d.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2e.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2f.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2g.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2h.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2i.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3aa.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ba.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ca.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3da.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ea.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3fb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ga.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ha.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4ab.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4bb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4c.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4d.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4eb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4fb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4gb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4ha.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4ia.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/MN1.CSV +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/MN_chr_dir.xls +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn001-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn004-2b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn008-2b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn010-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn014-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn017-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn022-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn026-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn031-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn033-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn034-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn038-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn041-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn042-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn046-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn049-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn056-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn061-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn065-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn067-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn071-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn075-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn078-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn081-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn084-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn087-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn091-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn093-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn096-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn1.saf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn100-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn103-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn105-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn106-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn107-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn109-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn110-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-2.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01b-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01b-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01c-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01c-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01d-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01d-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01e-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01e-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-2.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-3.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-2.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02c-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_magic_example.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/agm_magic/agm_magic_example.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/bgc_magic/15HHA1-2A +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/bgc_magic/15JC4-1A +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/bgc_magic/96MT.05.01 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/bgc_magic/96MT.05.01.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/bgc_magic/BC0-3A +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/bgc_magic/BC0-3A.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/bgc_magic/CA14-TA02.05'a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source.html +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/PaleoMag.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/PaleoMag_002.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/a-95.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/kappa.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/phi.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B.LSQ +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B.sam +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B71 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B72 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B73 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B74 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B75 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B76 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B77 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B78 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B79 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-.sam +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-1a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-2a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-3a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-4a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-5a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-6a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-7a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-8a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-9a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/PI47/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9001-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9001-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9002-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9002-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9003-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9003-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9004-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9004-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9005-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9005-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9006-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9006-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9007-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9007-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9008-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9008-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9009-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9009-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/bl9-1.sam +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/bl9001.dir +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/command +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/cit_magic/sample_formats.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/fla_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/fla_magic/mejia04.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/fla_magic/pa_thermal.fla +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/fla_magic/pt_af.fla +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/generic_magic/generic_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/huji_magic/Massada_AF_HUJI_new_format.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/huji_magic/Massada_AF_all_old_format.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/huji_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/huji_magic/magdelkrum.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/huji_magic/magdelkrum_datafile.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_jr6_magic/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_jr6_magic/test.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_srm_magic/GCR_U1359_B_coresummary.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_srm_magic/IODP_Janus_312_U1256.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_srm_magic/IODP_LIMS_SRMdiscrete_344_1414A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_srm_magic/IODP_LIMS_SRMsection_344_1414A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_srm_magic/SRM_318_U1359_B_A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/iodp_srm_magic/samples_318_U1359_B.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AF.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AF.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AF_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AF_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AF_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AP12.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AP12.tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/AP12.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/SML01.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/SML02.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/SML03.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/SML04.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/SML05.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/SML06.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/SML07.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/TRM.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/TRM.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/TRM_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/TRM_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/TRM_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/jr6_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/k15_magic/k15_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/kly4s_magic/KLY4S_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/ldeo_magic/ldeo_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/CHEV.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/CHEV.livdb_different_delimiters +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/NVPA.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/NVPA.livdb_fifferent_delimiter +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/016-01.livdb_old_delimiters +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/017-03.livdb_old_delimiters +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/16-1.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/perp.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/ATPI_Thellier.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/mini_magic/Peru_rev1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/mini_magic/Peru_rev1_description.rtf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/mst_magic/curie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/IPGP/0110C.PMD +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/IPGP/0210C.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0101a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0102a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0103a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0104a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0105a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0106a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0107a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0108a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0201a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0202a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0203a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0204a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0205a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0206a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0207a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0208c.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/ssDirAll.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/s_magic/s_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/SantaRosa2006.scz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy01.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy02.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy03.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy04.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy05.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy06.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy07.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy08.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy09.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy10.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy11.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy12.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy13.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy13A.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy13B.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy14.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy15.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/santaRosa.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/sio_magic/sio_af_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/sio_magic/sio_thermal_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/sufar_asc_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/sufar_asc_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/sufar_asc_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/sufar_asc_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/sufar_asc_magic/sufar4-asc_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/tdt_magic/Krasa_MGH1.tdt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/tdt_magic/Krasa_MGH1_noAC.tdt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/utrecht_magic/Utrecht_Example.af +0 -0
- {pmagpy-4.2.121.data/data/data_files/aarm_magic → pmagpy-4.2.124.data/data/data_files/convert_2_magic/utrecht_magic}/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/utrecht_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/utrecht_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/utrecht_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_2_magic/utrecht_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_ages/magic_downloaded_rows.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_samples/Iceland_orient.txt_Northern_Iceland.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_samples/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_samples/convert_samples_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/convert_samples/orient_Northern_Iceland.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/Z35.sam.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/Z35_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/Z35_er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/Z35_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/copy_er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/copy_ErMagicBuilder/weird_er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/core_depthplot_fixed.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/core_depthplot/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/curie/curie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dayplot_magic/dayplot_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dayplot_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_eq/di_eq_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_eq/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_eq/tmp1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_geo/di_geo.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_geo/di_geo_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_rot/di_rot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_rot/di_rot_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_rot/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_tilt/di_tilt.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_tilt/di_tilt_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/di_vgp/di_vgp_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dipole_pinc/dipole_pinc_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dipole_plat/dipole_plat_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dir_cart/dir_cart_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/dmag_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/magic_contribution_16338.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/dmag_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eigs_s/eigs_s_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eq_di/eq_di_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eq_di/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_ell/eqarea_ell_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_ell/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_magic/site_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/eqarea_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/etopo20/etopo20data.gz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/etopo20/etopo20lats.gz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/etopo20/etopo20lons.gz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/find_EI/find_EI_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/find_EI/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/fishqq/fishqq_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/fishrot/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest/foldtest_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/magic_contribution_11087.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/foldtest_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/forc_diagram/.ipynb_checkpoints/forc_diagram-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/forc_diagram/conventional_example.forc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/forc_diagram/irforc_exmaple.irforc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/gaussian/gauss.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/ATRM/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/ATRM/generic_ATRM.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/ATRM/generic_ATRM.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/CR/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/CR/generic_CR.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/CR/generic_CR.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/Demag/README.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/Demag/generic_demag.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/PI/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/generic_magic/PI/generic_izzi.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/geomagia/geomagia_sel.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/gobing/gobing_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/gofish/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/gokent/gokent_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/gokent/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/goprinc/goprinc_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/goprinc/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/grab_magic_key/lats +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/hysteresis_magic/hysteresis_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/hysteresis_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/igrf/igrf.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/igrf/igrf_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/incfish/incfish_example_di.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/incfish/incfish_example_inc.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/.ipynb_checkpoints/PmagPy_iodp_HOLE_template-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/.ipynb_checkpoints/U999A-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/Figures/U999A_1.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/Figures/U999A_anisotropy_xmastree.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/ProcessingPmagData.docx +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/Core Summary_18_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/JR6_data/spinner_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/KLY4S_data/ex-kappa_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/SRM_archive_data/srmsection_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/SRM_discrete_data/srmdiscrete_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/Section Summary_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U1999A_xray_disturbance.xlsx +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/Core Summary_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/dscr_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/jr6_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/kly4s_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/kly4s_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/lims_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/lims_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/lims_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_dscr_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/U999A_disturbances.xlsx +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A/samples_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/iodp_magic/U999A.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/irm_unmix/irm_unmix_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/irm_unmix/irm_unmix_example_fit.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/irmaq_magic/U1359A_IRM_coil2.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/irmaq_magic/U1359A_IRM_coil3.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/irmaq_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/k15_magic/k15_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/k15_s/k15_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/kly4s_magic/KLY4S_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lnp_magic/zmab0001193tmp02.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lowrie/lowrie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lowrie/lowrie_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lowrie_magic/lowrie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lowrie_magic/lowrie_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/lowrie_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/SrExample_AF.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/SrExample_AF_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/SrExample_thellier.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/SrExample_thellier_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/SrExample_thermal.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/SrExample_thermal_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_gui/3_0/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_select/AF_BFL_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_select/AF_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_select/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/magic_select/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/measurements_normalize/irm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/measurements_normalize/specimens_weight.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/misc_files/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/misc_files/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/pmag_criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/mk_redo/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/Importing and using the 3.0 data model.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/Intro to MagIC Contributions.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/Intro to MagicDataFrames.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/Py2toPy3.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/Uploading contributions (with validations).ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/Validate Quoted Strings.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/data_model_conversion.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/notebooks/thellier_gui3_0_tester.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/nrm_specimens_magic/magic_contribution_15143.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/nrm_specimens_magic/nrm_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/orientation_magic/orient_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/parse_measurements/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pca/pca_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pca/zeq_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plotXY/plotXY.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plotXY/plotXY.svg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plotXY/plotxy_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plotXY/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plot_cdf/gaussian.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plot_map_pts/Map_PTS.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plot_map_pts/uniform.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/plotdi_a/plotdi_a_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/Directions.tex +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/Directions.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/Intensities.tex +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/Intensities.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/SiteNfo.tex +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/SiteNfo.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pmag_results_extract/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/polemap_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/Map_PTS.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/lon_lat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/nam_180-200.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/nam_panA.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/panA.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/pt_rot.input +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/pt_rot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/pt_rot_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/pt_rot/pt_rot_panA.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/qqplot/gauss.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/quick_hyst/hysteresis_magic_example3.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/quick_hyst2/hysteresis_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/remanence_anisotropy_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/revtest/revtest_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/revtest_magic/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/revtest_magic/revtest_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/revtest_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/s_eigs/s_eigs_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/s_geo/s_geo_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/s_hext/s_geo_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/s_magic/s_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/s_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/s_tilt/s_tilt_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/scalc/scalc_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/scalc_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/scalc_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/scalc_magic/vgp_lat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/site_edit_magic/thellier_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/site_edit_magic/zeq_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/site_edit_magic/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/squish/squish_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/stats/gaussian.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/strip_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/strip_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/strip_magic/sites_with_vgps.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/sundec/sundec_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/__init__.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/empty_dir/blank.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/location_09.Oct.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/location_14.Oct.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/location_16.Aug.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/location_16.Aug.2015_1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/methods/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/__init__.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/er_samples_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/er_sites_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_STDEV-OPT_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_STDEV-OPT_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_STDEV-OPT_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_all.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_specimens_bounds.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/__init__.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/er_samples_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/er_sites_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/my_project_with_errors/something.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/odp_magic/odp_magic_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/validation/Jack-Hills_19.Apr.2020_4.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/validation/Jack-Hills_19.Apr.2020_5.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/validation/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/validation/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/validation/location1_30.Dec.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/testing/validation/location1_30.Dec.2015_1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Megiddo_unpublished_example/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Megiddo_unpublished_example/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/SU1_example/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/SU1_example/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/SU1_example/optimizer_test_groups.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_expeditions.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_test_groups.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_STDEV-OPT_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_STDEV-OPT_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_STDEV-OPT_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_all.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_specimens_bounds.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/Tauxe_2006_example/zmab0094380tmp01.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_GUI/thellier_GUI_full_manual_1_0.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/thellier_magic/zmab0100159tmp01.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/tk03/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/tsunakawa_shaw/raw_data/mc120c-SA4.d +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/uniform/uniform.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/unsquish/unsquish_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/thellier_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/upload.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/upload_dos.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/upload_magic/zeq_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/vdm_b/vdm_b_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/vector_mean/vector_mean_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/vgp_di/vgp_di_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/vgpmap_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/vgpmap_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/watsons_f/watsons_f_example_file1.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/watsons_f/watsons_f_example_file2.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/xpeem_magic/Bryson2019_PVA01-r1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/xpeem_magic/Maurel2020_TeA01Comma-r1onL.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/xpeem_magic/Maurel2020_TeA01TwoSpace-r1onL.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/zeq/zeq_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/zeq_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.124.data}/data/data_files/zeq_magic/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.124.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,609 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": 1,
|
|
6
|
+
"id": "43f84271",
|
|
7
|
+
"metadata": {},
|
|
8
|
+
"outputs": [],
|
|
9
|
+
"source": [
|
|
10
|
+
"import pmagpy.svei as svei\n",
|
|
11
|
+
"import pmagpy.ipmag as ipmag\n",
|
|
12
|
+
"import pandas as pd\n",
|
|
13
|
+
"%matplotlib inline \n",
|
|
14
|
+
"import os"
|
|
15
|
+
]
|
|
16
|
+
},
|
|
17
|
+
{
|
|
18
|
+
"cell_type": "markdown",
|
|
19
|
+
"id": "858aea38",
|
|
20
|
+
"metadata": {},
|
|
21
|
+
"source": [
|
|
22
|
+
"## Before using this notebook:\n",
|
|
23
|
+
"- make a copy this notebook\n",
|
|
24
|
+
"- if you are using the jupyterhub.earthref.org site\n",
|
|
25
|
+
" - Open the link: PmagPy Online-Setup.ipynb\n",
|
|
26
|
+
" - scroll down and click on the cell: !pip install pmagpy --user --upgrade\n",
|
|
27
|
+
" - then scroll down and click on the next cell.\n",
|
|
28
|
+
"- under File, click on Open\n",
|
|
29
|
+
" - click on the link to PmagPy-Online \n",
|
|
30
|
+
" - click on SVEI_demo.ipynb (this notebook)\n",
|
|
31
|
+
" - click on each cell in turn"
|
|
32
|
+
]
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
"cell_type": "markdown",
|
|
36
|
+
"id": "487e297e",
|
|
37
|
+
"metadata": {},
|
|
38
|
+
"source": [
|
|
39
|
+
"## The code used in this notebook is described in the following paper\n",
|
|
40
|
+
"- cite as: \n",
|
|
41
|
+
" - Tauxe, L., Heslop, D., and Gilder, S., Testing paleomagnetic directional distributions against field models for the averaging of secular variation and correcting for inclination shallowing using an updated elongation/inclination approach (SVEI), Journal of Geophysical Research, 25, e2024JB029502, 2024.\n",
|
|
42
|
+
"\n",
|
|
43
|
+
"- URL: dx.doi.org/10.1029/2024JB029502"
|
|
44
|
+
]
|
|
45
|
+
},
|
|
46
|
+
{
|
|
47
|
+
"cell_type": "markdown",
|
|
48
|
+
"id": "bdfd813e",
|
|
49
|
+
"metadata": {},
|
|
50
|
+
"source": [
|
|
51
|
+
"## How to use the SVEI module \n",
|
|
52
|
+
"- testing PSV data sets against a GGP model\n",
|
|
53
|
+
" - GGP models are 'Giant Gaussian Process' models for a statistical description of the geomagnetic field (see Constable and Parker, 1988, https://doi.org/10.1002/jgrb.v93.b10)\n",
|
|
54
|
+
" - SVEI uses the THG24 field model, but other published models are also available. \n",
|
|
55
|
+
"- for correction of inclination shallowing of sedimentary records\n",
|
|
56
|
+
" - inclinations have frequently been corrected using the E/I method described by Tauxe and Kent (2004; https://doi.org/10.1029/145gm08)\n",
|
|
57
|
+
" - Tauxe et al. (2024, https://doi.org/10.1029/2024JB029502) presented an updated approach, referred to as the SVEI method\n",
|
|
58
|
+
" - this notebook illustrates how to use the PmagPy code for the SVEI module\n",
|
|
59
|
+
" \n",
|
|
60
|
+
"- You might find the PmagPy_introduction and PmagPy_MagIC notebooks helpful. "
|
|
61
|
+
]
|
|
62
|
+
},
|
|
63
|
+
{
|
|
64
|
+
"cell_type": "markdown",
|
|
65
|
+
"id": "0a3d2b92",
|
|
66
|
+
"metadata": {},
|
|
67
|
+
"source": [
|
|
68
|
+
"## How to use the SVEI module of PmagPy to test if a data set represents paleosecular variation (PSV)\n",
|
|
69
|
+
"- create a synthetic dataset from a chosen GGP model and test using svei.svei_test()\n",
|
|
70
|
+
"- download the PSV10-24 data compilation from the MagIC database\n",
|
|
71
|
+
"- select a study and GGP model for comparison\n",
|
|
72
|
+
"- run svei.svei_test_varkap() for testing"
|
|
73
|
+
]
|
|
74
|
+
},
|
|
75
|
+
{
|
|
76
|
+
"cell_type": "markdown",
|
|
77
|
+
"id": "2e2ee619",
|
|
78
|
+
"metadata": {},
|
|
79
|
+
"source": [
|
|
80
|
+
"## SVEI in a nutshell\n",
|
|
81
|
+
"- the E/I method used two parameters to characterize directional data (elongation, E, and inclination, I) and compared them to the GGP model TK03.\n",
|
|
82
|
+
"- Tauxe et al., 2024 defined a new GGP model, THG24 to describe global secular variation behavior.\n",
|
|
83
|
+
"- Tauxe et al., 2024 also defined three new parameters (A2D, A2I, V2dec) and also use E for comparison with any of the six GGP models already defined. \n",
|
|
84
|
+
"- A2D and A2I are Anderson-Darling tests of the declinations and inclinations respectively. Are the empirical and model CDFs compatible at the 95% level of confidence? (see paper for details) \n",
|
|
85
|
+
"- V2dec is the declination of the minor eigenvector (V$_2$) of the empirical or simulated data set. For lower latitudes, this is expected to be close to 180 (see Tauxe and Kent, 2004). \n",
|
|
86
|
+
"- E is the elongation, defined as the ratio of the eigenvalues $\\tau_2/\\tau_3$ of the empirical or simulated data. \n",
|
|
87
|
+
"- Compatibility of V2dec and E is determined by comparing the empirical values with the 95% bounds of simulated values from the chosen GGP model. "
|
|
88
|
+
]
|
|
89
|
+
},
|
|
90
|
+
{
|
|
91
|
+
"cell_type": "markdown",
|
|
92
|
+
"id": "8b51b801",
|
|
93
|
+
"metadata": {},
|
|
94
|
+
"source": [
|
|
95
|
+
"## Example of the two Anderson-Darling tests (A2D,A2I), and the V2dec, and E tests for consistency of a dataset with the THG24 GGP model\n",
|
|
96
|
+
"\n",
|
|
97
|
+
"- Step 1:\n",
|
|
98
|
+
" - Specify a latitude, lat, for generating a synthetic data set (here we use 30).\n",
|
|
99
|
+
" - Specify the number of points, N, desired (here we use 100)\n",
|
|
100
|
+
" - Choose a GGP model (here we use THG24)\n",
|
|
101
|
+
" - call the function svei.GGPmodels() to get the model parameters in the GGPmodel dictionary\n",
|
|
102
|
+
"- Step 2:\n",
|
|
103
|
+
" - call the function svei. GGPrand() to draw N directions from the model. These are returned as the declination, inclination array, assigned to di_block in the following. \n",
|
|
104
|
+
" - call the function svei.svei_test with di_block as input.\n"
|
|
105
|
+
]
|
|
106
|
+
},
|
|
107
|
+
{
|
|
108
|
+
"cell_type": "code",
|
|
109
|
+
"execution_count": 2,
|
|
110
|
+
"id": "954aa96c",
|
|
111
|
+
"metadata": {},
|
|
112
|
+
"outputs": [
|
|
113
|
+
{
|
|
114
|
+
"data": {
|
|
115
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEKCAYAAAAPRvR9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACwV0lEQVR4nOydd3wUxRfAvy+hh6agglRRwIKCgGAXK1iwYO+IigV7x58SYu+9F8CCBRELdkFR7BQBAem99w6BkPf74+3BEVMuyd3t7mW++ezn7nb3Zt7OZG73zbwiqorD4XA4HA6Hw+FwOEpPmt8COBwOh8PhcDgcDkeq4BQsh8PhcDgcDofD4YgTTsFyOBwOh8PhcDgcjjjhFCyHw+FwOBwOh8PhiBNOwXI4HA6Hw+FwOByOOOEULIfD4XA4HA6Hw+GIE07BcjgcDofD4XA4HI444RQshyOEiMgwEXmhkON/iUiXZMrkcMQDEakpIjtHb37LVBgisquILBWR+n7L4nCUNUTkCxHpF/XZ3fscgcApWA5HanI/8KiIhGqMi9BPhC8K+pzMuuNU5jAR1NsOjtq/nwi/iTBehMEiVImSIXL+WfGUJciISCMR+VpENgHLgaXetsx7DSyqugR4G8gq6BwRaSMiKiKHF3B8gIj86r2/UkSGi8gKEVklIj8W9L3CEJGuXp2RbaFXzx7FLcvhCBEx3ftEZFae8RHZHilOZXnK2SAi40XkqlJdgSMlCNXDl8PhiJmvgGrAiYmsJAkK0I3ARfEs0FN68lv9i3tdHn2BusAor/5KwACghyotgClA1ygZ6iZAhqDTF9gN6AYcCxzjbUd7r0GnL3BhQattqjoK+Bu4PO8xEakFnAq86e3qAHyItUN7YDLwrYg0LYFcG7D/p92BC4BWwOcikl6CshyOMFCce9992PiI3h4oQZ2Rcg4APgVeEZFzS1COI4VwCpbDEV7KicizIrLS2x6PzNqp6lbsRnO+vyKWDlVWq7Iq5HVtUGWRKlu8z6cDQ1T52/s8CdglSoZFCZAh6LQDLlHV91R1mKr+FL35LZwYt4rIVBHJFpF5IvJw5LiqjgcWAIWZJr0JnC0iVfPsvwjYgilVqOqFqvqCqv6tqpOBa4C1QKcSiK6qukhVF6rqj9gqWwtgLxE5SES+E5FlIrJGRH4RkUPyXPdVIjJFRDZ5ZpDfikg579j+IjLU++5aERkrIkeXQEaHIyZEpIqI9BORdSKyWETuzntOMe99a73xEb2tK4FokXKmqeo9wFTsdx4ReUREJovIRm+16zERqRR1TQ1E5DNvxXqDiEwSkfOijvcSkdne784iEXm7BPI5fMApWA5HeLkQG8OHAFcB3YGboo7/BRyVTIG81aGXRHhIhGUiLBHhCZHtvzUiiAi3ijBVhGwR5onwcAHl5TUZjKX8TiIMF2GlCCtE+FaEfSLlYW3SI8oUr3EBdVUU4RkRFouwSYQ/RDi8OLIUwD7AP1Gf9wcmFt26Kc1MoKLfQhTCQ8C9wMPAfsDZwNw85xQ13voD6UDeme1uwAequr6A71UAKgErIzuizP8ax3oBHhu91/LYLP87wBGYgjsG+EpEant1tAVexJSy5sBxwDdRZb0HLPS+eyDQG9hUTHkcjuLwBHA8cCa2wnsgcGQ+58Xl3ucpRP1K8NVN2BgDWI+N8X2Aa4HzgP9FnfsSUAVbrd8Pu4ev8uo/E7jN+15T4BTs2hwhwClYDkd4WQjcoKqTVHUA8DhwS9TxBUC9yIxzErkQyAEOBa7DbhjRD5WxPKyWpvwM4Bnswa8DsBoYLEIFzATvd7ab7dUtpO7HvHK7YTfyf4BvRHYw4StKlvxYgD2wIsIB2IPr50V8J9W5EXhYRPbyW5C8eCtONwN3qWofb5b6d1V9Kc+pC8CU9fxQ1VXAx0SZCYrIQZhZ0RuFiPAAsI4d/0dWY6aDW/L9Rv7XUR+4HZgHTFHVH1T1HVX9V1UnAddjD4aRlbKG2MPh56o6W1XHqurTqprjHW8EfO/9/kxT1U9U9fdY5XE4ioM3Di8H7lDVb71V48uA3HxOj/Xe96C3Gha9nRJ1fDp2n41VxnIi0hWbNBsKoKr3q+qvqjpLVb/C7n/Rq2uNgF+88TVTVb9R1W+iji0EvlPVOao6UlULDG7lCBbJfvByOBzx4w9V1ajPvwP3i0h1VV2DzVYLNvtdErOHkjJRlV7e+ykiXInNNr4vQuRh9SZV+njnTPNkL3X5AKp8HH2yCJcBa4B2qvwiwmY8s72CKhAhAzPNukKVL719V2P+QD2Ae2KRpQDeAT4U4R9PrnNUyY7x2lOVz7AVrMkiko0prdtQ1eq+SGXsi8k2tIjzNgKVizjnTeAHEdnbU2q6AeNV9c/8ThaRG7HV6eO8MQ2Aqn4CfBKD7Bkisg77HagCjAa6qOpmEdkVCwhwNOb/lu7J39D77vfAbGCmiHwLfAcMUtW13vGngDdE5FKsbT72rsnhSAR7Yqu52+4VqrpORP7J59xY731Psd33McI2hUpVj41RtgdFpDf2O7EZm+x8FUBEzsIm3vYCqmLjLNoH8lnMZ6sTNo4+8Xw2AT7CJp8iY/AbbMKjrN8vQoFTsByO1GVnYFMJbcpLw7g8nxcAu3rvY31YLWn5iLAn9uDYHvNtSvO2hsTOnpiJx6+RHapsFeF37BpikiU/VNkAdC6GLGWB6/wWoBAkxvN2puiIh8OwCYVuIpKJzWT3zrdSU64eAE5U1ZKaBW3AAlvkAovzmCG+hSlWNwOzgGxsXFYAUNW1ItIaM8E6HugJPCQiB6nqAlXtLSL9sWACHYFMEblaVfvgcMSfWMchxH7vW66q00ohU4SIorYBWBiZ+BSRg4EPMDPbmzHTv1MxU0cAVPVNT3k6CbNm+E1EHlbV3qo6V0SaY5N2xwFPYuOsfSEmxY6A4BQshyO8tBcRiVrFOhhYEDXT3QKbsU42ec2WlO3myMW5SZakfIDBwHxs5n8+thoyEe/BMUYicmo+x6L3FSWLIwZU9S2/ZSiEiZjycSzmvF4QLYCfCytIVVVE+mCz0pOwFaN38p4nIrdgkclOUtVfSih3pMqCHiAPx0yMvRVa2Y08ESw9c8AfsFW3TGAJ5gfymnd8KtYmz4nIy8AVgFOwHIlgGvZ7ezAwA0BEMrBxNz3Pucm+9xWkqB0GzFfV+yM7RKRR3pNUdR42pl4TkTux34fe3rFNwJfAl14I+UVeud/F+yIc8cUpWA5HeNkdeEZEXsJsvm9nxxCzR7CjU3oQiPVhtUSIUAtzJu6hyo/evtbs+Fu3mR1NNPJjmnfe4Wy7mZOOBRR5L85iOwARqYj5tO2LKaoTgPf9NofxVnKexXzEsjElqhbQRlVfBotuBrQB/hPVLB/6YSusTwCfqury6IMicjvwIBZdcIqI1PEObVTV1d45Z2A+jMeq6vwSXtoU4CIR+RPzW3wM+5+PyHEKtpL7M7ACMyWsBvwrIpU9+T/CVr92w8ZKvqaODkdp8cwB38RyXC3FrAV6kf9veaz3vmpR4ytC9DgbCvylqj1LKPYUzBfsQsy0sSN5oht6vy1fe+dWx3wgJ3rHumL3rj8xU8dzMSUz7vdOR/xxCpbDEV4iUcn+xB5I3wSeBhCReljghUTkdSoxqqwVwXtYJc/DKi/HoYqVWHLaK0WYC9TD7OGjfXpmAe286IHrgBWqOzpKq7JehJeBR0RYhkW5uxl7kMwb3MBRSkRkX+yBqDrbIyxeCWSJSCdV/dc34Yye2P/WvUB9YDGWXDjCacAcVR1eVEGqulBEvsLMRPMLbtEDM0/9MM/+t9ieL60GFiilPCWnGzZrPgp7WO2Nly7AYxUWaroX5r81HbhCVYeLSAVgJ0+mOlhy6C+wiGcOR6K4DZsM+AQzx3ve+7yNYt77enlbNP2jvrsnxQvAtAOqOlhEHseCLlXGVp16seM9JA27jgZYOoahwK3esVXAndhkRnlM8eqiqjNLKpMjeTgFy+EIIaraIepjfv4rNwH9PNODoFHUw2qJUSVXhHOB54Dx2ErUrbBD4IsnsAfDidhNbw9M6crLnd5rX6Amlii2k2rsUaUcMfMs1r4XR0xcRaQ68C72cNLRP9FAVXOBR7wtP27GTPpiLe/UQo41juH7/bCVsBKfo6pjMT/FaN6JOv4LtmqV33c3Y4mLHY6k4fkdXeJtBXETMdz7YhxnpT7HW/3KuwL2ctTx6wv57qdY4mJHCJEdg5A5HI5UwDMzeltVF/stS1lGhGHAeNXiBXEQQYGzVRmYEMEChohsAA5S1Ql59u+PRcvMyP+b/uNF4+sKPK7uhupw+Iq79zmCgnPGdjhSEFV93N1gAkN3EdaJcFBRJ4rwikhSQ+oHhU3YKmFeahDw5LWqukRVH3PKlcPhP+7e5wgKbgXL4XA4EoQI9dieG2luUfmuRNgV80MCWKhKmQjFKyJvAQdhfld/eLsPwXLJ/KWql/klm8PhcDgcxcUpWA6Hw+HwFRGpifnFdQa2ervTgM+BrpGoXg6Hw+FwhAGnYDkcDocjEIhIU2BvLA/ZxDglAXU4HA6HI6k4HyyHI4CISEsR+V1E/hGRwV5EtcixniIyTUQmi0jcoquJyPVemRNE5LFE1ici94vIOBEZIyLficjuCa6vk1feNBG5Kx5l5im/koj8JSJjvfbL8vbvLCLfi8hU73WnONZZU0QGisgkEflXRA5JcH03ish47/pu8vbFtT5Vnaqqg1X18yApVyKiIrJeRB70WxZHuBGR40RknYjkishxfssTJtw4LFuISDNvrGwVkSv8lqfYqKrb3Oa2gG3ACOAo73034H7v/b7AWKAiFl58OpAeh/qOBoYAFb3Puya4vupR728AXklUfViusOlAE6CCV/6+ce4vAap678tjuckOxpK33uXtvwt4NI51voXlJcK7rpqJqg9ogYW9r4Kl9xgCNC1NfVgo/Yyo9wVu8eyrEl6/AntFfW4GfAYsxZLwfgs0jzp+KZZfag0wz2uncvmU2xQL4vFuEfXfDCwCVgN9IuM0Qdd6HTASSwjeL5/j5wD/Yjl7JgKn5xkHj2J5sZZ71y0F1LOvV89KbxsS73GZp76jgR+9NpyVz/Efvf5c4/1GnJbnu/9geYmWY3mY6hVSVytguFfXPKBXPufMAo7z+387TFtxx2E+338CS9K7FpgEXFLSsuJwLS28OpYBGuO1r8dyN64D3og69krU/nXe2F2bQNkL/Y0oznXGUhYwDO9eF6bNrWA5HMGkOZaEF+B74Ezv/WnAB6qarZZscBrQLg71XQM8oqrZYJHRElmfermOPDKwm0ei6msHTFPVGWr5ez7w6okbakSi/5X3NvXqecvb/xaWuLXUeCuaR2LJpVHVzaq6KlH1Aftg4dI3qGoO8BNwRinr25/tiXL3L2ILGjUx/7DmWPLpv7CHswhVsHw8tbFcU8eSfxLeF7HJlALxVnHv8spojE0UZMUipIjsFst5eVgAPIApcnnLq4flJrsFC8ZyO/CeF6oeoDv2P9ASOAA4BbiqkHrOAnbG2ulzbGxG6tpFRKQE8hfEeuyabi/g+I1AXVWtjl3HuyJS1zs2EeioqjWB3bGH9MISo7+H/X7vDBwFXCMiBeY+c5SYmhQ+DvOyHvPzrIFNgjwrIoeWsKxtiEgNEalYTNm3AAOAy4vxnZaqWtXbtq3oqOrVUfurAu8DH0XJV5LfgcIo8DciH4q6zuKUFSqcguVwBJPxQOSGfDaW5R2gHjtmlp/n7SstzYAjRORPEflJRCIhxRNVHyLyoIjMBS7Estsnqr6EXUM0IpIuImOAJcD3qvonsJuqLgTwXnctpIji0ASbae0rIn+LyBsikpHA+sYDR4pILRGpApyE/U+WuD5VPdpTCiPvC9zidA1xQ1X/UtU3VXWFqm4Bngaai0gt7/jLqjrcU3znA/2Bw6LLEJHzsBWRoUVUdynwpqpOUNWVwP1Y3q188UxHrxGRvygiGXEB1zZILcHp8nwO1wdWqerX3qTCl9hD655Rsj6pqvO8636yIFlVdZWqzlKbohYsuMleUad0A2aKSJaI7FHc68invr9U9R1gRgHHx3mTB2CTI+XxfndVdbGqLog6Pa+seWkM9FfVrao6HfgF2K+Ul+DIQ1HjMJ/zM1V1kqrmer/Pw7FopcUuS0TSPHPP/tj9pXYxZZ+sqm8CE4o8uRh494Ez2T7xBdDPM2G/xgsoVCqK+I3Ie26h11mcssKGU7AcDp8QkSGeT0ve7TTs4aKHiIwCqgGbI1/Lp6iYItUUUV85YCfMrO12YIA3e5yo+lDV/6lqA+zhM5KIt8T1FSZKAsr8b4H2MNUKewhtJyIt4l1HFOWA1sDLqnog9pAbd9+yCKr6L2b69T3wDWZClVPol4qBiPTyFLe8+yuLSK/8vhMwjgQWqWpBDwlHEvWA4a1A3gfcGkPZ+2HtHWEssFv0g5/3sHe8iLwHzAZOAB5i+yQNIvKFiKwqYPsixuscCfwrIqd6EwqnY6Y94wqRtVDFQkRWYWaSz3syA6CqjwLnYUr7SBH5UUQuyft/IiJ3FXJdq2K8rkhZX4jIJszEd5h3vZFjDb3yNmKrkY/lV4bHM8AlIlJeRJpjD/FDiiOLo0QUNQ63ISKVsdQQBSk4+ZYlIk1E5D5gJvAUMBpo6k0oICIXFPb/KCINS3F9P4vIIhEZJCKNCzjnTGzy7eeofadiY+sEYLaIvOf9XuygA8TpN8LhUc5vARyOsoqqFuXgfAKYoydwsrdvHttXs8Ae5hcQA4XVJyLXAIO82eS/RCQXm5FLSH15eA/4EsgsTX2FkIgyC0RVV4nIMKATsFhE6qrqQjFzoyWFfztm5gHzvFlYgIGYgpWo+vBmId8EEJGHPBniVV8m5kewIc/+Kt6x+0pYbsIRkfqYqd8tBRy/DGgLRDtp34+tSs2Voq3gqmK+PBEi76sBy0XkOuAOzMehH3CDqi7LW4iqnlLkxRSBqm4VkbexMVsJm/g5W1Uj+dryk7WqiIj325JfmTW9WfdLMeUw+tgfwB9iQVVOw1bDnhGRQRETKVV9BHiktNfmlXWKiJQHjgP2VtXcqGNzgJoisjOWr21SIUV9AbyNKWLpwH2qWqgpqKN0FDUO8+EVbALg21jKEpGWwLOY7+AHwBmqOjrvd1X1PWx8xJujsByBVTCTui9EpFXUqmuES4G3o8ebtyL3KfCpiNQGLsAmzGqLyGOq+oJ3Xql/IxzbcStYDkcAEc+nwZthuge7GYDZiJ8nIhXFzGaaYrbipeVT4BivzmZY0IRliapPLBx3hFPZ/rCSiPpGAE1FZA8RqYDNin9eyjJ3QMxfpKb3vjL2gDbJq+dS77RLidGmvyhUdREw15sdB/PPmZio+mCH/8mGQBfMzj9e9Qn5ryoeiDmcBxIR2QX4DnhJVd/P5/jp2MP/iRGlR0RaYf8fT8dYzTq2J58m6v1a73UPbPV5DLaSlDBTG7God48BHbDfiKOAN7xrKkjWdQUpVxE8Be0V4G3Z7s8VfTyySjYGU+oS5penqltU9Wugo+TjN6WqKzDzq89E5D+T1J4C9g02KVAJm9zpKCLXJkrmsk5R4zCf8x/Hgi+ck/d/s5CyamIpJKZhillSo5yq6s+63df2Rmzc7xN9jog0wMbk24UUtZztY2knrxxHAnArWA5HMDlfRHp47wcBfQFUdYKIDMAepnOAHqq6tYAyikMfoI+IjMceYC71bjyJqu8RTznIxWatr4bEXJ+q5niz/N9is8l9VDWudu9AXeAtEUnHJq4GqOoXIvI7Zm55OTAH86eLF9cD/T2lcQZwWaTuBNX3sZhZ2hasX1aKyCOlqU9E1mKKlQIzRCT6YScde0B9Jb/v+o1YSPrvgM9V9T9ho0WkE/A6cLKq/hN1qAPmozPHW72qCqSLyL6q2jqfqiZgQSMGeJ9bAosjpkuqeqvXDxdhUReri8g72Cz21Ch5vgaOKOByhqvqiTFcdivgZ1WNmM6NEJE/MYVxTJSskUmRlsTuY5KGzc7Xw1sJ9f7fzgcuwVae3wWO9kxWI9d1N3B3QYWqOf2XhHJs9y3L79iumAKZdwKgCbBVVSMPufNE5APMb/GlEsriKICixmE+52cBJ2JRetfkOVZgWar6k7eydSL2W/ukN6bewnxut3plXAi8WogI+3qroaUl4rsYzSXAb6r6Hz9Db1LzEuBibGW5H3Cnqi6NOicevxGOCBqAUIZuc5vb3Oa2srdhq15dMUX7Bu9zZDsfOMRvGT0584aHro4pES8UcP4x2EzxkfkcqwLUidqewEw8dymgrE5YiPZ9sRnnH7CInwXJ2gbzZ1qGTSYU91rLYYrtw8A73vty3rGjvHJbeZ8P9K7zBO/z1VgI93pYtL0JwNUF1HO89/10rz2fw0x3K3nHL8dW6T7CTKRLm64hzbuWE7FJnUpABe/Y3t7+ylhwi4uwiabW3vEuWHS5NGAXTNkdXUA91bHgJRd459cBfgcezHPeLFyY9oSOw3y+3xOLAFm3gH4rTlm1sZWkv73/212LeS3i/Q/u611XJQpIv4D5MbbyxkpVzMdvMlA+z3mTgW75fL+PN26fB9rEoR8K/I0o7nXGUhYhDdPuuwBuc5vb3Oa2sr1hD+753qCDsOXzYHcp/81Lsw5o6B3/EVuBjT72dQFl9yYqDxbQMLosb98twGIsR1Pfgh7E8pRbAWhXgmvtzfZVxcjWO+r4dZh51Fps5fTWqGOCmRCu8LYd8mBhCteF3vuzMTPadZhT/lfAAVHn7gvsHMc+7JDPdQ3zju2DBbZYiylHIzAfm8h3r8eCGqzHlN0PgEZRx1/By+XnfT7GK2O1d/7rQJU88szCKViJHocXAhPyfD87z7l3x1JWEXK1xMuDWIxraZzP/+OsqONfR8l2DKY8rcdWdz/FAmtEl3eId7xaPnW1w5tMiFM/9M5H9t7esR1+v2K4zgLLijpnGCFUsMQT3hdEZCC2nPmUb0I44obnL/Qy23ObHK2qw3wVyuFwBB4RORvYrKqf5dl/GjZLO9AfybbJsQl7MHtOVe/1UxZHuBGRY4GPsWTqJ6nqjz6LFBrcOCxbeGaNI7DJomtVtZ+/EhUPvxWs/bGElXuo6upCzusH1NYSRjjxInqNV9Xrijo3hrJ6YIkTG3u7JgAPqOUDiZzTk+0mBdlY5Jeeqjq+kHKPxCIOtcFMKy7z85+pJG0uIqdg/kIdsJnNFWqJXR0Oh6NARGQCcIuqfptn/3HAM6qayJD3DofD4XDEFV+jCKo5/s7A7J3DwjzgTiwHTVvMHv5TETkg6pwOmDProdjSbg4wxIsuVBBVsWSeN2J5NsLIXsBCVf1NVRc55crhcMRIE8wEJi/TvGMOh8PhcISGhCpYItJJRIaLyEoRWSEi34rIPnlO+xxzZk5IPd5KzFFY0lb1tsYlrUtVP1PLYj9NVaeo6v8wu+1Dos7pqKp9VXW8p0RejDnGHlZIuV+p6t2eKUxuQecVhYhUE5FcEengfW4gImNF5AUvwllJyx0mIi+JyEMiskxElojIE55ZYKSdnwYaem08q6R1hRER6eO1Sb6rlGI8JyLTRGSciOQXLSy/73WPr6SuvlStL+TXthILyZ+XZmwPR+5wOBwORyhI9ApWBhbtpB22qrMaGOyFFY7wF9BOLHdMIuq5EYvg0xcLpVwXmJtfISLStTgKmFgm+/Ow1affCjm1GtbWK2Mpt5D6YpGvJeZoPE5EDvLkel1Vr9PtYUSLdZ1RXIitxh2KOTrfBJzrHbsRy/sxD2vjg4pZdtjph0X7KogTsQfIpkB3zFctFgp8iBWRzvE+5uoLdX2BubYS8BnwtFgOtkjdzYGnMIduh8PhcDhCQ0IVLFX92Numquo4LHfAHpgiFGEBFhZ190TU4/l2bQY2eGZri7TgvDqrMTOVLYXVJyL7i8g6zL/qFSza0D+FfOVZLEfI78W6sJLJ1xJTII/GVgevUC9LdzHLyY+JqtrLW7kbgEXKOhbAa+e1WP6PRRqVW6EsoKo/U3hC1NPwsqur6h9ATRGpW8pqC3v4LekxV19q1pfsaysud2C/SxNFZK6IzMX8W9cAtydJBofD4XA44kJCg1yIyJ7A/UB7zEQuDVttulBV3/POaQpMAfYvKAhEUQEXiqonnkEuvPoqYKEoawJnAlcCHfKTX0SeAs4DDtd8kr8VUP464LqSBLkQkde9+ioB04H9ClEoCyunH1Ft7rXhZFW9Kuqct4CdVPVU7/NtntyNi1tfKuCtCH6Rn0O+iHyB5a75xfs8FEvyNzKfc7uzfXWgTZUqVfKtb+vWraSn52/1WdJjOTk5lCuXf/7xsljfli1b2Lp1K+XKlSMtLY2tW7dSvlw5yM1la04Oubm5pKmSDmzFbHvLR8rDlnsrRn1Wtmd334ItNZfL53hkwGo+xwW21adAOUtWy2ZV0qI+53jfKxd1rmo5tlKJXBp5pSzHfsYqehItB6ojlEPZBKxGqOZ93gys3fZ5K1NVVeM6SScix2P5XgQYDQxVPyMxAbVr19bGjRv7KUJKMmPpegCa7JLhsyThZdSoUctUdRe/5UgGZWUcunERPgoah/k/acSPwcB8LOrefOyePxELuRghEvihNCsesdQTN7zgDdO8jyM9U7ybscSI2xCRpzFl5+hYlas40BJLfHcbZh54EZZpPB7kXfFSfA6UEiLyZlwHa7//7lR9DXgNICMjQ9evX59IuRx5WLFiBaNGjeLII4/kzz//5H//+x/Dhw+HSZPgscdg4EBYm8ctqEYN2GsvqF8fdtkFate21xo1ICPDtipVtm+VK0OFClCuHJQv/9/X9HRIi9/QUoXXXoMbb/yDLdlHAvfTosXpHH88tGsHe+4JjRqZyJLff2o+iEjcg/Go6vfA9/EutzQ0btyYkSP/Mw8SWPr16wdA165dfZWjKM591Qw6PrzqkCLOTD5haUMRme23DMmiNOMwLP0JwR4XiSRMfZSXgsZhwhQsEamFJe/rEcnz4Dn2562zBbBAVRcnsJ7N2HRtokhj+0R1RK5nMeWqg6pOSmDd0XWmY+15kar+JSL9gV4i0l9Vc4r4uiOxzAMaRH2uj5nHOgLGl19+ySWXXMLIkSM55JBD+PGrr+Dmm+G55yDXiz/Tpg106gSHHWbvi6OZJJmcnK0cdNC1jBnTA2jLaaetoFevqhx4YLBEFpH2mMnxruSZuFHVG3wRKoSE+UElKLg2TC1cfwafVOyjRK5grQSWAVd69vT1gMfZbrkS4QjgmxjKqy4irfLsWwXMiaGeWVggjcZYhukVqporItdhJm17A4jIGcDDwLGqOj8/IUTkEeBLzM+pGnABFljj5KhzXsQiB54OrBSROt6hdaq6zjsnb91VsTDnYA8XDb3rXaGqc2JoH7CIW5Uxfy8ws8lJQDe8FZFYr7MsISKfAm8AX6lqiSM4FsHnwHUi8gFmyrpaVRcmqC5HKTjzzDOpXbs2Bx54IGnLlkHHjjBmjK0uXXkl3HILNGtWZDlBITNzCmPGfExa2rH063cAF19c1W+R/oNnXvwYZhmwgB1Xd301EQwbw4YN81uE0OPaMLVw/Rl8UrGPEmbe5T2ongscgOV3ehG4FwsMAYCIVALOAF6PocgjMNO36O2JWOoBnsBWsSZipogNvf21sWTAEWp4n8tTMHWAd7EgEUOxaHknqurXUedciylfQ4GFUdttUefkrbtt1HVVBrK89/dFTogh+l9LLNDETABVnebJeo+IRK+wxXKdZYn1wIfAPC8MfX7hogtFRN7Hgpg0F5F5InK5iFwtIld7p3yF5Xybhv2/Xxsn2R1xpkqVKpx44ommXHXoYMrVXnvB77/DK6+ERrnKzs5mxIgtPPbYPsB03n77bC6+2G+pCuRG4AZVbaaqHVT16KjtmFgLSVS6BIfDERtuDDocRkKDXBRZuUgP4DRVPcE3IUKEiGQBZwEtnclffBGR6lgY+sswZfcXbFXrI1X1LfGz88FKLmvXrqV///50Ov54GnfvDj/8AC1awJAhsNtufotXLF544UVuv/0FNm36gx49avBC3liipURENqhqXDyxRWQ1cGBpfVVF5EjMSuHtAoLNnARcD5yErSQ/q6rtCyuzbdu2GiYfrNdft/nKK6+80mdJCifIviZhaUMRGaWqbf2WI5pEjEEo3TgMS39CsMdFIglTH+WloHGY6CAXRbEFG2iO2DgJMyt0ylWcUdU1WG6ql0VkP+AK4FXgec+s7xlV/ddPGR2JZ9KkSVxzzTV82q0bjX/4AXbdFb79NjTK1YYNG1i2bBkNGzZk5sxd2bTpOHbfvQYPP+y3ZEXyPpZH7qXSFKKqPxeR329bugTgDxGpKSJ1U8lc98MPPwTC+aASFHxrQ1VYtQrmzYP58+Gjj+CIIyBEfilBHINuTASfRPaRKmRnw4YNNrRWroQtWyAn57/bli22rVgBixfDokUWAOqBB4pfr68KlhctzREjqlrWkvcmHRHZHbsBnIL58Q3EglOME5GeqvqEn/I5EkubNm2YO3IkNY86yna88QbsXuIUfUnn5Zdf5t5772Xy5CkMHXo2cDb/+x9Uq+a3ZEUyF8gSkcOAceSJWKqqT8WpnnrsmGh+nrdvh4e76FQJDRs2JEwMGTLEbxFCT8xtuGQJ/PuvPYmtWwfr19u2YUPB7zduhM2bbduyZfvrli3bj0dTv378L9BfYhqDEL9x6MZE8ImljzZsgF9+MSVp7dodtzVrYOFCWL7chlBkKEW2khjrVapkc6slDejr9wqWw+E7IlIeU6q6Acdjvm+PAe9HBSU5BwsUkhQFS0Q6A50rVqxY5LmO+JGWlkb9/v3tYahzZ9tCRIcOHXjuueeYM6c+Y8fazaFbN7+liokrMLOiQ70tGgXipWDFlC4hOlVC27ZtXZCNssz69fDrrzBunD3FRRSmv/+Gv/7K/8lNxNIxRNIzRKdq2GUXS9FQoYKlZChffvv7ypVtQqd+fahXD/bYI1QTPDFSopQlbhyWTVatgieegLffhrlz/3u8YkWbQKxWDerUgYYNt2dCiX6NvN9tN9vKldu+RTKkRG8772xllibSrlOwHA6bORPgPeAuVR2XzznfY5Exk4KqDgYGZ2RkOJuGJPLB66+T9sILnAOQleW3OMWmTZs2tGnThssus8+XXWazcEFHVfdIUlUpny7hpZfMyvLaa10cnZLy0nPPwfz5XLthA7z00vb0DBHFqUoVU36ysuCQQ+zJrnr17cpUpUrByoEQLJI+Bt2YCD733fcSc+fCvvtey+jRMGOGKVeTJtnwO/54uOoqaNzY3KIbNDAFqHyAQ7U5BasUiEhlYA+giffaCIsOuIv3Wg3Lj7WL9x4sZPxmYAOwHAsxvxR7yJ+BRQCcASxTPyOQlC1uxoJZbCroBFVdifWxI4V5/uGHqbxlC+d07AgHHui3OMVCVRk1ahQNGzbno4/s5yYkq1fJJOXTJQwePBhwD5MlIjsb3nqLwXfeCZs2cW25cnDKKXDeeZb3rmZNpziVnqSPQTcmgsnatdCnD3z4Ifz++2Bv77VkZEDLlrDPPjbszj0X2rXzVdQS4RSsGBGRDOBgoB0WDr0V0JQdQ91vApZgStMyLEdXNhYO/Rzv+HCgApAB1AJaYwpYzTxVLhGRsVhOq9HAL6o6L+4X5gA4GvgU659teH3+vKq6x9SygCo/Z2SwGizfVchYvHgxBx10EN27P8/69dfRpg00LXbCAX8QkecKOx5romEvXUIHoLaIzAMy8dJRqOorWLqEk7B0CRuwqKEpxddff130SY4dUYUXXoD77oNly/h6113h+uuhRw/zcHfETBDHoBsTwSE3F777Dl5/3eJHrV9vq1Bnn/01t98Oe+4JO+2UGvMYTsEqAM8v5zDgROAooA3b22sWMBbLnTQZW3GaASwtaNVJRHYDUNVLCjiega2Q7IElHN4fU+JuxBQyRGQm8DMwBPhaVZeX7iodHpcCd2E5xKKpDFyC+WY5Upz5P/xAvfHj2blWrdD5XgFUq1aNTz75hHfeOQCAM87wWaDisX+ez+WBvbHf3NGxFqKq5xdxXIEexZbOkbosWWLK1f33m+3Ro4+abW0qPOH5gBuDjvwYOdKCYU6YYJ8rV4bzz7fF4WOPLXkgiSDjFKwoPCWnM5b8uCOWkHcL8BfwOLb69IdnLlZcxhR2UFXXY4mSd0jO5yl6B2CJlo8ATsYUglwR+R0YDHyoqrNKIFOZRkR2xnyvBNhJRKLD36djbb3YD9kcyWXlypU0PP54HgVuO/VUczoPGRkZGZx66ul0726fw6RgqerRefd5iejfxH53HTHy7LPPAnDjjTf6LEkIWLwYWrWyWMydO8PAgVChgmvDFMP1p3+oQs+eNm9RpYq933tvOPNMc1eMkIp9VOYVLBFJB44DLsIUqwzsofpj4AtgiKrmXdkoNqp6Uwm/twUY5W3PiEgatpp2irc9AjwiIr9iQRreL6ECWBZZhkUvUmBiPscVM29wpDhpaWk806ABR8+ZA6ed5rc4JeKnn35i7dr6LF26J/Xrm/16mFHVTSLyIPAt8Irf8oSFoUOHAqn1oJIQZsywWYhFi+D7720a3Vu1cm2YWrj+TD7z5sHXX0P//vDTT9ClCzz+ODRpkv/5qdhHZVbBEpFdMNOvq4HGwCpMQXkPGK6qW30TrhBUNRcY4W2ZIrIHcD5wIfAi8IRnA/2Sqo7yT9JQcDS2evUDcCawIurYZmC2qqZUhDFH/tTYsoXr58yx6F/HH++3OMVGVbnsssuoXLkF8Hn0s2LY2QWo6rcQYeLzzz/3W4Tg89lncPbZlnvqqqvguON2OOzaMLVw/Zk8JkyAhx+GAQNseO22mwXi7N4d0tML/l4q9lGZU7BEpClwJ3Ax5ts0zPv8mapm+yhaiVDVmcBDIvIw5rN1FbYa101E/sBWuAZ7ipkjClX9CcBTUucEKWqjy4OVPHJzc/nu2Wc5Eqhy6KFmxxAyRITvv/+erl03AP95Xgw8InJL3l1AXWzi6KvkS+RIWb79Fk4/3fJLffcd7Luv3xI5HKFn7Fi45x744gvLI3XVVXDFFRYNMEUm+4pNmVGwROQA4G7gbGx14k3gBVXNzzQsdHjKwd/A1SJyJxac4WYsOt4ETwH7IKgrc8lGRFoDYzzFsxZQSwr4FVDVmJ3s44XLg5U8Jk2axIkPPEAf4LKjjvJbnBKzxx578s8/9r5DB19FKQnX5/mci6Wv6As8nHxxwssTT1gu9Ntuu81nSQLG+vVmEjhkiCXyHTbMQpblg2vD1ML1Z+JQhV694IEHLBrg7bdbAM4GDYr+bjSp2Ecpr2CJSCPgAWwmdB3wGPCMqiYteIFkSRq2urReM3VyoutT1dXA8yLyMnAu0BN4F7jLU76+DtJqjU+MBOpgYfVHYv5WBWWYL2Rh2xF2GjRowNAmTWgxYwaEVMH6+OOPWbq0MqtXn0T9+vb8GCaSmGg45fn999/9FiF4DBxoT32LFpl3/Ysvmu1SAbg2TC1cfyaGmTPhllvg00/t1vnqq9C8ecnKSsU+SlkFS0TqA59gOau2YorVo8kOACFZIsBA4ASgomTJCuAZ4BHNTKySo6o5QH/PJ+tM4CHgS2CeiNymqh8msv6Aswc2Qx557yijVBPhmJkzbfqtfXu/xSkRDz30EJs37wKcxMEH+y1N7IjIaODYyO+yiJwPfO5FVXWUgI8//thvEYJDbi7ccQc8+STstRd89BGcdVaRX3NtmFq4/owfmzfb4u9nn8Err9gQ697d3pfGFDAV+yjlFCwxO69zgGeB3YC5wGGqOjem72dJDWBXYIZmxsWcbg+gE5ZTCa/s/2FR6z6LQ/lF4pnBfSQinwEvY8E93heRQ4BeqromGXIECVWdnd97R9lj4iefsEiVo/fbD6lUyW9xSsSvv/7K5ZevZPx4OOQQv6UpFq3wkpB6vAr8ieUVdDhKzqefQmYmjBsHHTvCe+/Bzjv7LZXDEVomToSLL4bRo6FiRctjdf/9sIebos6XlFKwPHPA17DVotFYIuAbgP0wRavw72fJkZhDtQATJUuO0EzdlOecPbAEmH9qpq7Ip5i8rOa/pmflgfyNvxNLOSwk/XjgF6xtzhaR61T1Ex/k8Q3PBysm/PDBciSP1954gz7AmrZt/Ral2GzdupVvv/2Wli1b8u+/9QBo185noUpHGXWHjh+PPPIIAHfddZfPkvjIW29ZVtPq1aFfP3sqLEYmU9eGqYXrz9Lz66/m2ytifla9e8c3HlQq9lFKKFjeqtWlwHPYDfoG4CXMd6YGMC/Goh7H8mCBKVEnAYO21ZMlx2BK2zigqWTJwZpZeBhvzdTlkiWXYitHOwEbgJzocgu8riw5C1tt+hN4SDN1S4zXUWCRwAfAV6r6k4j0xWaMB4nI28ANnv9WWaAwv6tonA9WinNbrVqcBxBCBev777/n5JNP5vXX+zBx4mUAHHCAz0I5fGXMmDF+i+AvAweactW+vQW0qFr8KP9lvg1TDNefpWP1astjtdtu8OefUK9e/OtIxT4KvYIlIrWwiICnAT8DXb3Q5WC+V12LUdwaLHpVZKprXZ7jVwE9NVPfkCzpi/k1PV9UoZqpA4ABkiX7YKtpv2qmLizsO5IlhwNvAVWAo7C+urcY1/JfOcyv4c6oz3+JSHvgHizC4tEicnEkfHmKE+5F7a5dbZYWLCbqTjvBfvuZf0H37uZPFCQaN4bZniVm5cqWbfD66y2Wq8/UnzSJ+gBt2vgtSrHp2LEjEydOZNWqXcnOtmauXt1vqYrNySISmdhJAzqKyA5BiFS1yAkph/HBBx/4LYJ/LF0Kl1xiWba//rpEyhWU8TZMQVx/lpytW+GCC2D5cstqkAjlClKzj0KtYHnKwUeYr9WtWHTA0uR7uhr4GmiIRd37Ps/xucBxkiVjgTZAsTKjaab+C/wb+SxZUh4LEb5EM/8jdyu2K3pVgEOLU1fMMqluBnqJyBfAO8APInI38Hgq584Kut9VTHmwjjsO3nnHfgGXLoUffjCfg3fegaFDISOj4O/6Qa9ecM01sG6dme1cfTXUrAnnnuubSCsWLuSTSZM4QYQG++3nmxwlRUTYZ599GDDAPu+/v7/ylJA383x+Mc9nt4rsiI0XX4TsbFvF2mknv6VxOELNihX2SPHVV/D003DMMX5LFC5iN0oOEGJcBwzHVqkOVdWnSqsQaKZO10xtpplaSTP1mnyi/PUGsrEHgo+xHFNIlhwsWfK0ZElXL2pg0deQJXsCU4EJwG+SJXnnnb/Dri0bMyt8u4SXFROq+hfQFlNYHwE+FZGUvUOJSGsRSYt6X+Dmh3yqOlhVu6cXlvq8YkWoU8emlFq1snipw4aZB+pjj20/b/NmuPNOi92dkQEHHWTJNqOZNAlOPRVq1LBZ30MOYVtSpX/+gWOPtaWRatUsc+CPPxb/oqpVM3n32suSZjRtao7oAHfdZfFdK1e2ZZg77oBNUe6Pc+fCaaeZk3qVKrD33hA943XffdCo0fY2ueSSmESa+uOPXKHKP3XqWN0h48UXX2TQoEGMG2efw2YeqKppMWxOuSoG999/P/fff7/fYiSfVatscql9+1InDy6zbZiiuP4sPoMG2W32hRfgyivhhhsSW18q9lHoVrBEpDzwAtAdCzl+iWpMwSZKjWbqOszXa7s8WdICGIqtMq3Hcis9EkNxdwH9gCwsjPulRJkbaqZOkSxpC5wI/KOZOiQOl1AoqrrWC5P8C/AU8LuInKyq0xNdtw+kZh6sFi2gUyf4+GPIyrJ9l10G06dbFK369W06qnNnGDHClKUFC+Dww+Gww+D7721V6a+/bGUMzD6gZUvbV66cKVzR0fYaNzbv1379iidrpUqwxXMrzMiAPn1MWZw40Va3Kla0EEUA115rCtePP5qiNzkqndzHH8MTT8D779sSzpIl8McfMYnQGpgF1D7wwOLJHhCef/552rVrx+rVXYDQrmA54sjkyQlPtRg8VM00esYMeDPvgmjxKZNtmMK4/iwev/1mc5TNmpmlbTKs51Oxj0KlYIlIDWyF5XhMiflfAMzYok33MoCTiU3B2gJUw/qgivd5BzRTJwGT4iBjzHgJiF8QkbHYCt2fInK6qv6STDmSQOrmwdp3X3PuBlOs3n8fZs2Chg1t33XX2fFXX4WXXjKzmowMyxFToYKd06zZ9vJmz4bbbrPpLLAVqGj23BPq1o1dvpwcePddU9Suucb23RvlXti4Mdx9tylNEQVr9mxLENqypX2Ojgs7e7bVf8IJ5nvWsGHMASvKT5lCI9hebsj4999/2bhxIxHrxrCtYDniz7vvvuu3CMnn8cft9+vWW22yp5SUyTZMYVx/xs6//9pca0aGrWI1bpycelOxj0KjYIlIXcxsbm/gclXt45ssWdISeBgz3Xst6tAGzIcrFh7AVuA2ed/pF0cRS42qDheRgzEZh4rI+ankaJ7SebBUt2f8Gz3aPuc1mcnO3m5Q/ffftoIVUa7ycsstcMUVFlTj2GNN0YkoW2D+XrHwv/9ZbNfsbKvr9tu3B7kYOBCeeQamTTMfra1bt6+gAdx4o61qffONyXDGGdun1c4+G5591pSujh1tBe/UU20FrAhG/vILo4HLmjUjYGFBYkJEyMmpwqxZdrlNm/otkcORZHJzzTSwZUtTtBwOR4lYtcpuoenpNgebLOUqVQmFD5aX32o4XtJen5WrysAwLHnw6Zi5YkfMMftGili9kiw5XrLkFSxXV2ugombqKXnzbQUBVZ0KHAyMwhIVX+yzSAlDROqKyH0iMtDb7heR3YtZRicRmSwi00TkP8kcRKSGiAwWkbEiMkFELovfFUQxcaJF6QN7+BAxc8AxY7Zv//5rJnlgClhh9O5tZZ5+utkOHHDA9u8Wh1tusbpnzzYl6rHHLDfNH3/AeefZL/vgwabwPfDAdvNBgMsvh5kzzdxxyhQ49FCTC6BBAzMZfPVVMx+89VZTvtavL1KkwePGcTWQVkqfDT/o2rUrTz31FOPH2+d99zULTkfZplevXvTq1ctvMZLHbbfB+PFw883bJ5ZKSZlrwxTH9WfRTJ1qcxRz51q0wIMPTm79qdhHgb8di0gzzMepKnCcqsbmXJE4dgUqYv466VjC4F81s2ATOhEZBsCeVOd8WlKONOBiIEMzNW/ErEChqitE5ATgM+BtEclQ1Vf8liueiMjx2PXNxXKOAZwN3OqZR34XQxnpmJJ9PJZ3bYSIfK6qE6NO6wFMVNXOIrILMFlE+nuRHOPD+PG2ynPPPfb5wANNgVq0CI4+Ov/vtG5tJnubNxe8itW0qW033GBmfW+8Ad26FU+2WrX+a14IlsGwXr0dzQRn57OoWL+++Vl07w6PPmqrVhElq1IlOPlk2+66ywJd/PqrmQ0WhCo9163jKiC9efPiXYvPrFu3jtWrV5Obm7stFonzv3IAzJ07128Rkseff1p4s+7dYw5sEwtlqg3LAK4/C2fECJvfXLvWDFX8iBaYin0UaAVLRPYAfgAqAB1UdazPIoE9hE8B9sICIHyXT7TB/OnIXqTvEHq9E/8NSRw4VHWdiJyM+b+9LCJbVLX0nsTB4TngDeBGzwcNABF5FngW2CeGMtoB01R1hvfdD7DcbNEKlgLVvMTYVYEVWNLpkpGdbYpTbq6FaR86FB56yFZvbrvNzmnWDC680PJmPfmkKVMrVli0wSZNLHvgtdfCK6/AOeeYGd9OO9kv7j77WGS/224zM7zGjWHxYvjlF4vUFeHYY6FdO3j44ZJdR7NmMH8+9O9v0Qu//db8xqK58UY48UQ7d80aUyIjq079+plfV/v2FgHxww/NF6soe7nFi6m0cSO777yzRU8MEVWrVuWTTz4BzKUOnILlMPr27eu3CMnjrbdscuWJJ+K2egVlrA3LAK4/C+a33+CII2xu9Z13zJjED1KxjwJrIuiZZw3BFJFjA6Jc4eWrOhS4DrgCKDKJj6p2oDePsCvlouLUbQUGJ0rOeKOqm4CzgG+A10XEp2GYEBoDL0QrVx4vgsVAiIF6mPIdYZ63L5oXMGVtAfAPptD9J0iLiHQXkZEiMjInpxD9a8gQC+7QsKEpOZ9/bkkrfv55xxxYffuaad0dd5jv1Cmn2DmNvEurV88+b95sq1wHHgjPP2/2ZunpsHIlXHqpKVtnnGFK0FNPbS9/+nRYWGje7MLp3Nn8sW66ycwPv//ewq5Hk5triYn33ReOP95SykcSLdesaZHDjjjCoih+/LF550YHwsiPGTPoA3xRq1bJZfeJTVEh7KdMsdd9YpkGCCgisrOIvCwiU0RklYisid78ls8RQNatg7fftt+katX8lsbhCB0rV5obdK1aMGeOf8pVqhLIFSwR2RlTrnbFlKt/fBZpBzRTN+AFpZAs2U2ypAewEXhBM3Vt5LysrCzBkhY3PpETD5/KVNawhhWsIIecGcDrPohfYlQ1W0TOxIJyvCMia1T1K7/ligMjgf2xlclo9gf+jrGMgkK8R9MRGAMcg5mWfi8iw1V1hwdIVX0NL3hKRkZG/quj/frFHha9fHkzpYuY0+XHfvtZ+Pb8eO+9wsufNatoGYo65+GH/7sCFokwCKbwFcTpp9tWXGbM4CGgfXY2pxT/276xbt06dtttN55++mm6d+/O1Km2P+QBLt4EDsT+7xfw37HjiJGePXsC8HBJV5TDQq9e5mfZtWvciy4zbVhGcP35X1ThrLNsgu7LL2GXXfyVJxX7KHAKlohUwJL47gl09BLgBhLJknKYz87uQC5walZW1hGzmHVVVap23Zmdm6aRVgOgvfcHsJWtbGHL5kpUujUrK+vtzMzMJb5dRDFR1Q0i0hn4ERggIoer6hifxSo2eRIIvwQ8LSJNgYiP38HANVi+sliYBzSI+lwfe1CM5jLgEW+lbJqIzMSiYgb2fzylmTGDf4GNZ53ltyTFIjs7m+uuu44DDjiA7GybeUxPL3rBLuAcCxyvqn8WeWYhiEgnzKw3HXhDVR/Jc7wG8C428VUOeEJVU8o2Zfny5X6LkHgmTjQfzAsusBXtOFMm2jBBBHEMuv7ckexsc1X+4QcbRscd57dEqdlHgVKwPN+U14AOwEWqOsxXgYqmDrbKVh6gBS3ab2HLrMY0rreOdTqWsVt3YqfHGtP4u7/4q84mNu3amMZahzr1KlGpA/A4cH9WVtbLwH2ZmZmrfLuSYqCqazwl60/gCxFpp6p5lYmgk19y4YfyOe9d4P189udlBNDU8xucD5wHXJDnnDnYg+RwEdkNaA7MKKbcjngxYwblgfIhs62rVasWjz76KGDBIHNzLRVZ+TDGmd/OEmBdaQoITKAZn3nttdeKPinsZGVB5crw3HNx9b2KUCbaMAEEdQy6/tyOKrRqBZMmWVyYaEMRP0nFPgqUggXcBlwK9FbV/n4LEwOLgRWVqVznDM6QZjRLW83q8l/zNVOYIrnklsOSCR+A5b3aij1QtwMe3ZVd9ziGYzY1p/mNgpyblZV1YWZm5jDfrqYYqOoCETkF+AX43FvJClyo+UKI63y/quaIyHXAt9jMXR9VnSAiV3vHXwHuB/qJyD+YYnenqi6LpxyO2Ply5Ej+BO6uX59KfgtTDNavX0/lypVJS0vbZh6YX3DGkPE/4D4RuVRVS6poJT/QjCP5jBoFAwZY1NEQ+k+mOG4MBpznnzfl6tZbLW1cAuYnHB6BUbBE5Cgsee9A4L4iTvcNyZJI9L+lmqnDT8k65ex92ferylSutp71PZ/l2aW55D6HBefYikVAfBCo7BWxFzbDc8ESllT5gA82N6XpFydz8rHVqf7jkVlHjhzO8MM002ZzJEvO9M7fDFyomTo8yZdcIKo6VkQuAj4FngGu9lWgYpCI5MKeP9pXefa9EvV+AZb/zBEARsyZwytAVshCtF977bX89ttvTJ06NVX8rwDuwYLNLBGR2cCW6IOqekAMZeQXaKZ9nnNeAD7HzHerAecWFGgG6A7QsGHD2K4gINzmRRB94oknfJYkAahawvGdd7agOAkipdswscRtDEL8xqHrT+Prry0gb+PG8MgjwVKuUrGPAqFgiUhd4ANgOnB5PtHcko5kyU6Yb87ewBOaqf0lSypg/jKNAKmTVefVa7jmLMz/6ojHMh/7/fGsx2tis7F7YCsZl+CZEHpkABfBtknzClOZ2uZlXq54DudwLMe2rUKV14CukiXVMRO1yLmfATsn8LKLjap+JiKPAXeIyK+q+o7fMpUEESmHzb41xJTibajq274IVcYQgY8+Msfb/D7HlU2b6L12Lb3S05EGDYo+P0B06dKFdu3aAaSSgjUwDmUkJNBM27Ztfb8fFYeNGzf6LULi+O03GDnSHEd2TtytMKXbMLHEbQxC/Mah609LLXnxxRaA948/gpeUPhX7yPcmFpE04B2gBubkHJSQvK8DnbGH7dckS8ZjCYYbAlXTSKMznW8AsoEjMzMzR3vfG8SOob3z84yIKEw52CpXnWyy09/nfS7iItrR7sKsrKxngUXs+INVTbJEYs67lTz+hwWFeEVE/lTVvNH4Ao2I7I2FzN8Da++t2NjYgvVv4BSsrl1h2TL44gu/JdlOv34WDT4vTz8d22TzwoWWgisZLB09mj+BUxo3Dt6dpghOO+20be9TRcFS1aw4FOMCzQAvvhj41Iol55NPbOblwgsTWk1Kt2FiCeQYLOv9qWrPDJs3w++/m5IVNFKxj4KQB+s6zPH/RlUd77cwUezL9pWMrUATLHhBOsDhHJ5bn/rlgMsjypVkyf7AUcTerhOxvFLpADnkMIABZJO9OZfc/r3pvQxL7rsBCwP/QACVK1Q1BzgfTxnxVoPCxDPAKEzJ34DlqmqLzbKd6YdAItJZRF7bunWrH9WXmCpVTFGK3rp3j+27depAxYqJlS/CW337cgOwJWSrVzk5OSxevJjcXLOoSRUFK4KIHCMi14lIDxHpUMyvbws040WjPQ8zRYomEmgGF2gmZKhaEvFOnZzvVXBxYzCADB4Mw4bBo4+mzr0iDPiqYHkrB48CXwJv+ClLPjwLrMciW63DAlq8CUyoTvUpR3KkZpP9VWZm5oewzTdrBMVr06bADoEhNrCBz/isQhpp+2C2x5dgNswtNTMus7wJwfMvugaT9U6fxSkuBwEPqOp6zNyznKqOBu4AnvRDIFUdrKrd09PTYzq/a1fLH/zss5Y3eKedbDVpw4boMuHJJ+0HtmJFqF8fvNQTgOX2bdTIjtWpYxGGiouIfTd6q1IFvvnG8gDvtJNZ9nTsaBHw8n53YDwMxWLg6Dp1uA4o36hRkecGicmTJ1OnTh0GDBjAxo0wd64twDVu7LdkpUNE6onIX8D32O/HXcBQEfnTSzpfJN5ETyTQzL/AgEigmUiwGSzQzKFeoJmhpGCgmZtuuombEuif5BsTJ8K8eRC1gpsoUrYNE0xQx2BZ7s+RI+35oHlzuOIKv6UpmFTsI99WGjzTwL6YEnNFEPyuotFMfVWyZAxmNjYUmATsBOjBHLwhnXQpR7kbo77Skjy+O0BuBhlpDWhAVaqymc0sYhFL2Jb2qjJwNHnChU9mcrnZzNa61O3dm96vZmZmBmllr0BU9UMROR3o7YVmDVSC6EIQbOUKYCnmqDsZM3cITXy24cOhbl0YMsQevM85B5o1265E3X03vPwyPPUUHHkkLF0Kf3tplD/+GJ54At5/H/bfH5YsMTvtCBHzv5kzS/Ywv369mQkecABs3AgPPACdO9szU4W8oyYJtClXjjZg2miI2GWXXXj++edp374906fbvj32CJ2VY348h1kK7KWqMwFEpAnmg/ocEJMnngs0k8J88AGkpdkPhyOwuDEYHH7+2RZ8q1Sx4RPyVB6hw8/b8pWY387FqrrIRznyRbIkTTP1T+BPyZJaWDhREUQO4ICqig7undl7mmTJrsATmK1xDp7P1c7svKkTnbbsxV7V0vIsai1lKT/yIxMtcumuearOBdL+4A85l3NrT2DC1VjUnbBwHZYD42URObKg6EABYzymIM/A7MDvFJGt2P/oND8FKw7Vq5sCVa4c7LMPnH02DB1qCta6deYL9cwz0K2bnb/XXnDIIfZ+9mxTzk44wX6EGzaEtm23l12jhs2AFfUDvX49VK2647516+DMPIaWffuavH/9BYcfXqrLLhGzJ02iBlCzfv3kV14Kdt11V6677jrA3FEgZUw+jgc6RJQrAFWdISI3YBNcjhh55pln/BYh/qjCW2/ZMvjuMS1oloqUbMMyTFnsz759bcWqXj2LDRP0W10q9pEvCpaINAIeAX4EApXvSrJEMHPFrpIli7CZlonAH0DrBjRIq0rVKpvZ/L5kyWuYCV/Ec2QrMOoADkg/gzOabWZz1V/5lclMZjWrqUhFGtKQ9rTnHM5hFKP4gi/Q7UF2cjE/pspTmEI22eSS20uy5D7gZ+B8zdRAh1pR1eUicgdmTtkdeKWIrwSBB7HojmDhor/A/jeXAef4JVRx2XffHVcydt8d/vzT3k+caNnbjz02/++efbaZF+6xh5nvdeoEp5663SfqjDNsK4oqVWDMmP/unz7d0tb8+aetnOXm2jZnTrEuMW50GjyY/YEBQb/r5GHBggWUK1eOXXfdlWme6p8CObAKIwwTNI5E8/fftix/991+S+JwBJ6xY+Haa20+ok+f4CtXqYpfPlhDsIACzwfNNBALHXoO1jZ1gVe9wBInAN2P4IhPAF7l1QOwcOvRbvnp9am/92mc1nIhCyu9yIsylKHMYx5rWcsyljGa0bzKqwxnOG1ow/EcH113Gl6Ewa1s3TqXubl1qFMbM03sCNyc4GuPF4OwgCAviUhcE/omAlX9VlUHee9nqOq+QG1gN1Ud5qtwxSDv6pKIKTFgE8CF0aABTJ4Mr75qK0u33gpt2tiKVHEQsQf+6A3MqmfpUiv/zz/tealcOYtq5AcP1KpFDwjdnadnz560adMGMHNNgD339FGg+DEUeE5EtkUdEZGGmC+sW8EqBj169KBHjx5+ixFfXnvNXpNkHpiSbViGKUv9uX49nHwyZGTAO+9AkyZ+SxQbqdhHSVewROQALPfBJuBjL5FckIhWmARP4dFMzdZMfb8pTRWYu5zl9dmePBiANNI4jdMy1rJW3uGdtDVYxPlylKM2talCFQByyWUoQ/mLvziUQ6nPDg95EV+s7DWsmVKLWpJuQQYr8F9zwsAhIvWBKcDu2LXc5KtAxUBEKotICxFpAWwMoPJfYvbd11ajhhbyqFqpkv0wP/00jBgBEybAr7+Wvu7lyy2gxd13w3HHmfni2rWQk1P6skvKmWvXchSEzgere/fuPPXUU8B2BSvsAS48bsCSs88QkdkiMgvLi1jFO+aIkcqVK1O5cuWiTwwLixfD66/DNdckbbymXBuWccpSf77xBsyfbybkYQqSm4p95IeJ4CPAKuBA4HosalQgkCw5EjgCu7E3x3yqbspzWj0szOjLQBcsQEUGQHOaswu78CEfspGNCMLh3l9FT2+bwhQGM5i1rGUIQ9iP/Ticw/mAD/DqU8wspsICFuzRmtZkkLF2DWu2AmFIFDAf6Ad8CNwIXCUiT6jq3EK/5SMiUhGLZnkVpsgKkC0ir2ERjjYV9v0wUK2aZXDv2dMUrSOPNMVn1Ch7bunXzxSe9u3Nh+rDD21FLOLf88kn9t2hQ4v/jLPTTlC7tj0jNWhgP/633+5fYIbNq1YxdeVKGpYvT7Xatf0RooQcdthh295HFKw9Ar9GXDTe70NrETkey4kjwERVHeKvZOHjiSee8FuE+PLww/Z6/fVJqzLl2rCMU1b6c9MmePFFaN3azAPDRCr2UVJXsETkaOBE4CFVna2qt0U7NfuJZMmhwNdYeOCmwG3Abpqpv+Q5tQqwXjP1N+AA4GLM3yh7H/ZhHeuYxCQAOtCBYzmW6UxnEIMYxjAa05hLuITylGczm3UsY7UpTSlPecV8ve4F1gLlssmuCLAbuz0F7KGZOjXhDVFK1LhDVUdh1yLAfT6LVRQvY1HKrsD6fi/v/RnAS34IlIg8WA8/DHfeCfffb6tIZ55pUY8BataEN9+0H+UWLSyq4KBB2x/eV682E8ItW4pfb1qaKWzjxlnZPXqYDMnKeZWX2SNG0AL4tEYNEy4kqCqjRo1i5cqVqFpgEkiZFSwAVPV7VX1eVZ9zypUDVRgwALp0sR8th8NRILffbrkR77/fb0kckPwVrF5YVu8gRsU7Fs8cEFOijtBMfVGypDy2arVAM3UzsBnPjFAzdTowXbLkU6BfXer+NI95aYpShSoczuGMZSyf8Mm2SuYwh0u4hAM5kL/4S+Yyl0M5lNrUloUs3A/Lu9QF2Lkc5dIAalHrtymZU1YlpRXiiKrOFpGXgOtF5H5VDWoywbOBLqoavZo6Q0SWAB8D3ZItkKoOBgZnZGRcmd/xfv0K/wzQu7dtEdLS4K67bMvL6afbVhBdu9pWGIWdc8wxMD5PsoF163b8nNcgM1EGmrtu2sSHQPuQLf2sXr2atm3b8uSTT3L++bewaZPlW61WzW/JSoaI3AK8pKqbvPcFoqpPJUms0NPdy+z9WsRvKcxMnmzZyk9IblTvlGpDR5noz6++ghdesMiBJ53ktzTFJxX7KGkKlogcCnQAbg6oydVvmF9YFSw31xDJkt2wsN21gTWSJQf3pvcioFX0F70gGL/cnnX71o1sTAOoT33SSWckI3eoZAYzWMEKGtGIv/iLDV76pUqm2+UCRwEXAgNrUGMvIKMTnfKuooWJJ4BrgduxRMRBZD1m2piX+UCgozY6ik+NVassNGTIokNUqlSJTz75hP322y9VzAOvB97CfncLs/9SwClYMVKrVi2/RYgfP/xgr8cck9RqU6oNHSnfn9OmWSTgffe1aMBhJBX7KJkrWD2B5cDrSawzZjRTh0qWnIeZhf2M3fjvxSIJlsdWrW7FEg53ycrKysjMzNwhxlo66YsrU7k+WMALgFxys9kxcAa55CJeLItI4ItNbAIL834j8CVwYAc6fAC0z8zM3EBIUdX5ItIP6CYi96nqQr9lyofngUwR6apqYfBFpDLW/8/7Kpkj7vw7ejRpQLN69bZn9w4BlSpV4nRvmXHECNsXZgVLVffI772jdDwc8VlKBb791pLyJTkUWkq1oSPl+/OuuyA9HT77zFKlhJFU7KOkKFgi0hw4BeilqsUM/Jw8NNPMsiKfJUs2YEpPee91A/A7kA4cgq1yCZZH6dxLuCS3AQ1yBdk0n/koWvkIjpj+AR/sGymzHvWoTW1GMxpAG9Jwy1a2VljGshysPzoDxwpSFQu48VMyrj3BPIb5NF0H/M9nWQAQkc/z7OoAzBeRcd7n/bH+yMCRUjzw5Zd8DyzaffdQKVjz589nwYIFtGrVipkzLSZ/mBWsaETkEuBDVc3Os78CcJ6qvu2PZA7fWL4cvv7aovBImEaqw5E8hgwxf+mbb075nIihI1ke3tcAW4BXk1RfvHgZMxHMBcZhkeZ+xkxaunjnnI2FEW4yilF1MshIa0e7n9aylpGMzNmbvfc9kRNpSlNa05oLuIDVrNbRjKYc5WR/9q+wjnUjtrDlc7Yn1azSiEZXY6tn3ybzghOBqk7HVuWu8B6YgsDyPNvHwGfATG/7HMvntdwvAR2J4cEmTXgPSAtZDqwPP/yQdu3asX79+lQL0Q7QF8uNmJdq3jFHjFx22WVcdtllfotReu66yxwxL7446VWnTBs6gNTtz99+s2BV++wT/hzcqdhHCV/BEpEMoCvwkaouSXR98UQzdT1wlGSJeH5WAGRlZX0MXJiVlXUn0BBb4eJf/q2whjXr29O+0xjGyDd8g6IcyIG0pz0AS9Yvyf444+MFm9hU9wROSK9K1fJ96dsCaImFCAegFa2aKLpekEFJvORE8hK2OtcFLCa9n6hqao1kR8w0XruWxgC77eazJMXjrLPOYq+99qJGjRrMmmX7UmUFC4s2ml9Yk4bA6iTLEmoahCn5TUFs2mTT8ueeC23bJr36lGhDxzZSsT+3brXgmqrwxRcW8CjMpGIfJcNE8FxsZtKXcNfxIFq58ngWC0RxI7by8T9gUy655cYxrtchHPLk+ZzPh3zIV3zFD/xAXeqyQTeweM7ilRX3qdj6LM56qwUtTh3BCGYze4fsajuxE/uzf9pGNg54NPPRNcm5yoTzHTADW830XcHKDxFpAuyLPej9G+Coh44SsnTpUn6ZPp2jgJ3r1PFbnGLRsGFDGjZsCKRODiwR+Qcbbwr8JCLR6afTgUbAV37IFlbuuy/oWTFi4NdfYcUKm573gZRoQ8c2UrE/v/9+ew7usN8HIDX7KBkmghcDU7AofSlBZmbmCOCTrWztVZOaY4HKmPlji+8zv39qOMMHNaAB13It7WhHBSowk5mslJW02afNqJ70HNiCFqdOZGLON3wTXfQWYNPJnLxV0ZwqVAmEv1I8UNVcoA9wpIg08lueaESkuoh8BEwDPsVMBaeKyAARCWkQbEd+jBgxgi6LFzMZQreC9dtvvzFhwgS2boU5c2xfo0CNpBIxEJukEsyM+OOo7V3gSuAi36Rz+MPgwZYo7/jj/ZbE4Qgcublwyy2Wv/L88/2WxlEQCV3BEpH6WNjx3qqJymrjDyMZ+UALWpxxJmfSj35sZWsPzdQ7AH7M/PHMC7Iu6NSIRo+cxEktT2KHpAQnA0unMvWlj/joEkWrevtXAef1oMdhu7DLvYrekJmZGcSIe6XhfeAB4DzMny0oPIsljT6a7RMBhwGvAM8AlydbIBHpDHSu6Fc23hTliNatGQ00L18eauTn8hNcrr32Wpo0acIzzwwiJwfq1oVKlYr+XpBR1SwAEZmFBbkIYgqPUHHRRaaPvvvuuz5LUkJUzTywY0eoWrXo8xNA6NvQsQOp1p+DBsG//1pI9owUCcOVan0EiTcRPB+bmXwvwfUknS/44tgZzNBzOEdO53QGMWgHBfK9zPe+Ab7plNWpy2pWv1uRihXKUW5Ja1pfm0HG1/3pn4P5F3TC8jAd35ve9YC7gc8FeTHpF5VgVHWGiPyOmVcGScE6FThdVYdH7RsmIt2BT/BBwSoq0bCjZFTbsIEDAerUCV1ksq+//pqxY8emjHlgNKr6lt8ypArNmzf3W4TS8dtvMHcuPPCAbyKEvg0dO5BK/blgAVx9teW86trVb2niRyr1UYREK1hdgJGqOi3B9SQVyZKjgMyJTJTv+Z7jOZ561JuQlZVVNTMzc130ud/y7cVYHqw0oMZQhtbSTM3OJBOgs2RJDWB9b3pfDLwGjAIuzMzMzCU1eR94TkSaqupUv4XxqEz+0QJXACFfI3BEM3LYMOYAXULmfwVQt25d6tatS79+9jmFIggiImvJP8gFAKpaPYnihJp7773XbxFKR79+UK0aeDnf/CD0bejYgVTqz169LIPB8OFQPYV+FVOpjyIkTMESkV2B9mCaRIrRFFuZ41d+pRzlZhzN0W1zyPlnz6w9y81gRlXgAc3UJzG/qggKRDtx05ve5bEwxBcBQ4EueZW0FOML4DnMVPIZf0XZxq/A/SJysapugG3RL7NIId9BB/T56CMGAF1C5n9177330rZtW0477bRUjCAIcD07KljlgQOBM7E8g46ywtChcPTRqfX06HDEgQkToE8fW8HaZx+/pXEURSJXsE5iu+NyqvEVZuKWC6T9xE93Hc3RSzew4btLuKT8FKbwF389WD2r+vfAHUA7zBzwN2wFh6ysrKaKXr6VrTcJUnEsY8dNZOIZUzOnrvXropKBqs4UkQlYyPZnfBYnwi3A12xPNKxY2Pz1QEc/BXPEl/uOO44bv/kmdAEu3nzzTbKzsznttNNS1USwX377RWQ0cCzwfFIFCjHnnXceAB98EMhgrYUzc6ZtN93kqxihbkPHf0iV/uzZ0xZ3fbSeTRip0kfRJFrBWgj8ncA6fEEzdYFkyb7AMcAkzdS/ASpmVVzSnvb1DuEQmtGsYi65v6eR9hPw+Va2rksnvRzQLysrqw3QDNDJTN76Iz+yjGXNsBWTW/y6riTyBXCriFRTVd8VSlX9R0SaYquIe2MTA+8C/VV1Y6zliEgnLGBGOvCGqj6SzzkdMMWyPLBMVY8qrfyO2Km9bh21IXQK1oIFC4jECUrBJMOF8SPBmYgJBa1atfJbhJLzxRf2etxxvooR6jZ0/IdU6M8vv7Tgmg89FP6cV/mRCn2Ul4QoWCIiQAfg21SLHhhBM3Ux3mpUhM1svmM4w9/4nd9zW9Bi5qmc+jtmJnlYOulVgc3AIuAf4MU3ebPmPObdjfVDJSD1vPzyZyhwJ3Ao8K2fgohIeWAucKyqvl6KctKBF4HjgXnACBH5XFUnRp1TE8sH10lV53hmtI4kMuDXX6kDHBlCHyzxgnKkqIlgQZwHLIv1ZDfJAXfddZffIpScPn3gwAPNg99HQt2GPhPEMRj2/lyxAs4+G/baC2680W9pEkPY+yg/ErWC1QzYBfg5QeUHEs3U9yRLfsohp9YYxkz4O/PvrYWd3zurdwPgJsxPqwJlp71+B7YCR+CzgqWqW0RkC4U42MdIO2BaJDmxiHwAnAZMjDrnAmCQqs7x6l5SyjodxeTOX3/lCODIEK1gTZ06laeffpqbbrqJxo2bMW8epKVBKiW+j0o4vG0XsBuwM5acPJYy3CRHmJk6FcaMgWee8VsSRwlxYzAx3HUXbN4M/ftDlSp+S+OIlUQlGj7Cey0rCsM2NFPna6aO00wtVLnyzp2LhWmPKLq9JEu6JVTAAKCq67BoiUcUdW6SeB7oKSKlmXCoh62ERZjn7YumGbCTiAwTkVEickl+BYlIdxEZKSIjc3Jy8jvFUUL+3G8/HodQmQjOnz+fAQMGsGrVKubMsTRB9etD+fJ+SxZXIgmHI9sAoBfQohgry9smOVR1MxCZ5Igm5Sc5zjzzTM4880y/xSg+kfw3nTv7KwchbkP/CeQYDHN/fvstvP66uSW2a+e3NIkjzH1UEIlawToYC3s9JUHlpxIHYsEyKmGrWF2BPn4KlCR+Ba4RkXKq6rcWcQSWEHu+iIzHgltsQ1VPjaGM/JIq5V0VKwe0wZz2KwO/i8gfqrrDOFHV17CQ/WRkZKSkia1f7Lpihb0JkYLVoUMHli0zK7khQ2xfqpkHRhIOl5L8Jjna5zmnGVBeRIYB1YBnVfXtvAV5OfC6AzRs2DAOoiWPQw45xG8RSsann8Lhh0OTJn5LEt429J+4jUGI3zgMa3/Onw/dukHTptC7t9/SJJaw9lFhJErBagX8nar+V3FmbNT7DcAffgmSZP7GlMqmwL8+y7IMmzUvDfOAaKOt+sCCfM5ZpqrrgfUi8jMWrdBNRCSBtWvX0nfuXDoCzUPogwUwY4a9ppqCFUFEjgEiDjgTVfWH4nw9n32lnuRo27ZtqO5jt912m98iFJ9Fi2DcOHg0GPnnQ9mGwSBuYxDiNw7D2p+PPgpLlsDvv0PVqn5Lk1jC2keFEXcFyzOzagG8EO+yUxHN1D8kSy4BrsDM5u7zWaRkEVEsW+GzgqWql8WhmBFAUxHZA5iPOedfkOecz4AXvDFSAZvZezoOdTtiYP60ady4eTPvpafTvEYNv8WJmbfffpuRI0fy3HPPpWSIdgBv3AwC9mf7xMTunm/WmRHfxiJwkxxh5WfPm+ColIo3UhZxYzBOLF8Or70GXbpA27Z+S+MoCYlYwWoOVATGJKDslEQzNeJ3UJaYhEVVbEmeaIzJQkTSgFuB07FoRkOA+1R1U3HLUtUcEbkOC9qRDvRR1QkicrV3/BVV/VdEvgHGYWahb6jq+PhcjaMomlWvzjKgcp06IPlNtAaTyZMnM3z4cGB7iPYAWFHFmzeBNUCTiG+GiDQE3gLewFJiFIWb5ABOPdUsmj///HOfJSkGgwbZFH3r1n5LAoS0DYNBIMdgGPvzjTcgO9tyX5UFwthHRZEIBauZ9zopAWU7UgRV3Swi09n+/+IHdwIPYGHjN2I5yGrj2XwXF1X9CktCHb3vlTyfHweLs+BILmlLllALoG5dv0UpFg8++CAPPvggQMquYAGHAAdHlCsAL8LYzVjU0SJxkxzGscce67cIxWPOHPjwQwuVFpDILaFrw4AQ1DEYtv7cssV8rg45BFIwPVS+hK2PYiERClbk1j89AWU7UosZbP9/8YOuwPWq+hJsy9/xqYhc5fwHU49/R47kK+CynXdmZ7+FKSEp7IM1B/PHyEsldnSaLxQ3yQE3hi1RzogR9tqli79yRBG6NgwQQRyDYevP5cth0yZ45D8ZxFKXsPVRLCQiTHsTYJWqrkxA2Y7UYgbQRMQ3e61GwBdRn7/FnHR390ccRyL5a9QobgNWhcj/CuCCCy7gvffeY906WLYMKlaEkMboKIxbgedE5GARSfe2g7FkpLf6K5ojofzxhyV2a9HCb0kcjkCwaDE0awaHHea3JI7SkIgVrMbArASU60g9ZgHVgZ2AFT7UXwEzDQRAVVVENmM+hL4iIp2BzhUr+i5KynBR48acAWTsuaffosRMTk4OkyZNol27dtvMAxs3tufRsCMia9kxwlglLH1Drvc5DUtI3h/7nXDEwIknngjA119/7bMkMaC50LcvnHoqVM5vAdMfQtWGjiIJU39u2QJrVkO3syA93W9pkkeY+ihWEqFg7QIsTkC5jtQj8n9SG38ULICHRWRD1OcKQKaIrI7sUNUbki2Uqg4GBmdkZFyZ7LpTlfQlS+wpPUQ+WOXKlWP06NEAfPaZ7UuhABfX898Qzo5S0jkAiXpjZs1as4e69FK/JdmBULWho0jC1J9Ll1oy+bPP9luS5BKmPoqVRChYtYGpCSjXkXos815r40+I1p+BvMsZvwHRGQ3dA2CKMOSff/gbuD2k9nWpFuBCVfv5LUMqcu211/otQuys9uaxAmYLFao2dBRJWPozN9d+5zMyoGVLv6VJLmHpo+KQKAVrWZFnORyw1Hut7UflqtrBj3od/vDl9On0AW7fbTe/RYmZwYMH8+qrr/LWW28xc2YtIHUULBHZWVVXRN4Xdm7kPEeKsXKFhWbfZRe/JXE4fOevvyAnx37jQ5RJxFEAcbXk9/IKVQdWF3WuwwGs8l5r+iiDo4zwVJUqZpMaIgVr/fr1zJs3j6pVq6bcChawVER29d4vwyZc8m6R/Y4YOe644zjuuOP8FiM21q2Hgw7yW4r/EKo2dBRJGPpTFW67zTIVhOgWFTfC0EfFJd4rWBW812InanWUSbK9VxfJwZFwZPFiKkGo7l7nnXce5513HpCSIdqPYbvv5dF+CpJKnHvuuX6LEBvr19t0fQAVrNC0oSMmwtCfP/wAv/4Khx5dtoJbRAhDHxWXeCtYkQfl7ELPKgYiMgwSZ86V6PKTWU8I22qz9+oULEdi2bCBvuvWkZuezuU1a/otTbFR3e6DlSpBLlT1JwARKQfsB3yqqgv8lSr8XHllSOLiLPUWJk86yV858iE0beiIiaD354YNcOWVsNdesHsZTRIT9D4qCfEO9htZwbpGRIaJyDNxLj+UeIpJK6BVREkp63j/G4O8j+f4KIqjLLB4Mf2Bd8qVC41xu6py0EEH8eabb7J0qd2Ea9a0LZVQ1Rws6Wh5v2VxJJFlS6FGjVBF9XQ4EsFbb9kE2muvpUYKDocR7650EdccxSHypOv+b/IgIp1F5LWtW7f6LUpqsHgxQ4ChIUpmum7dOho0aJCq/ld5+QNo47cQqUCHDh3o0KGD32IUzrJlsH4D1KrltyT5Eoo2dMRM0Pvz9dehVSsIsIgJJ+h9VBLibSIYMQ18VVWfiHPZoUVVOyTLFDEsqOpNIrIbsAj40G95PFkuxsK236uqy0TkMGCBqs5MtjwuD1acWbQIgPQQhWivVq0agwbZIu/779u+FFawXgeeEJGGwChgffRBVR3ti1QhpGvXrn6LUDTDh9tr9WDmjw5FGzpiJsj9+dNP8Pff8PzzoTGuSAhB7qOSkigFK24+NYlWSJKl8CSjnhC2VcSkNG4+eyVBRNoAQ4GZmC/I41j0suOBZsAF/knniAuLF5MJtM7O5jS/ZSkBZWAF6z3v9al8jilQBt2+S0YoHlS++w7SmzgFy5EUgtqf2dlw4YXQuDFcdJHf0vhLUPuoNMRbwdqC3Qwrx7lcR2oS+T/xO+rkE8CzqpopImuj9n8LXOaTTI54sngxbwLr1qwJjYLVrVs3li1bxueff55yAS7yIXVVxySzZcsWAMqXD7BL2x9/wKGtAjtlH4o2dMRMUPvz3Xdh/nz45pvU860tLkHto9IQVwVLVVVEVgCFJo10ODwi/yd+JxFtA1yez/6FQHhiejsKZvFi5oFNF4aE/fffn9WrLaVgCoZoz0sj4Dcv4MU2vAiDhwKzfZEqhBx//PEADBs2zF9BCmLZMvjnH+gUzNUrCEEbOopFEPtz3jy4+WZo3x5OOMFvafwniH1UWuK9ggVmWlU7AeU6Uo/I/8kyX6WAjcBO+ezfG1iSZFkcicDzwSJEPlg333zztvdlwETwR6Au/x1vNbxjzkQwRq644gq/RSicH36ArVthp/x+coNB4NvQUSyC2J+PP24mgu+9F9iF3KQSxD4qLU7BcvjJLt6r3wrWZ0CmiJztfVYRaQw8Cnzsm1SOuLF6/nz+B1y4bBmH+C1MDKgq4t11c3Jgzhzb37ixfzIlGCH/aKK1yBPwwlE4FwXdmePFF6FBg8D6X0EI2tBRLILWn3PmwCuvWAq4FDb7LhZB66N4kIiI+4uAMpoqzVFMIglQFvsqBdyGmSsuBaoAvwDTgFXAPf6J5YgXqxYt4n1gxvpwPKvPmjWLGjVq8PHHHzNnjk347747VKrkt2TxRUQ+F5HPMeXq3chnb/sS+B74zV8pw8WGDRvYsGGD32Lkz4QJ8PPPcOONgZ62D3QbOopN0PrzttvsN/2++/yWJDgErY/iQSJWsGYCp4hImqrmJqB8R+rQBFisqr6OKlVdAxwuIscArbGJh9GqOsQvmUSkM9C5YsW4BeQs0zRasYLlACHJFl+hQgUuvfRS9txzT6ZMsX3Nm/srU4JY7r0KsBIz142wGZvseD3ZQoWZk046CQioL8PAgaZYXXABfD7Lb2kKJNBt6Cg2QerPP/6Ajz6CW2+F/ff3W5rgEKQ+iheJULBmYGHa6wLzE1C+I3XYA/t/8RURaamqY1X1B+AHv+UBlwcrrqxfD2vXQsWKUKOG39LERL169XjuuecA8F5o2tRHgRKEql4GICKzgCdUNRxLjAHmmmuu8VuEghk6FA46COrWBWb5LU2BBLoNHcUmSP3544/2evvt/soRNILUR/EiUQoWWMJWp2A5CmNP4Fe/hQD+FpEJwDvAe6o6z2+BHHFk8WLGAS+WL0/P2bNpHAJHppycHMqVs5/nqVNtX7NmPgqUeO6P/iAidYBTgImq6kwEi8G5557rtwj5s3gxjBgB3br5LUmRBLYNHSUiKP25YgU8/TQccgjs5uIT70BQ+iieJMIH61/vtUUCynakCCJSHQvNPNFvWbBogYOAK4BZIvKjiHTzZHSEnUWLWAB8lp3N+pD4YPXo0YO99toLYJuJYIorWF8C1wOISFVgJJbw+ycRucRPwcLG6tWrt4X3DxQvvmhh00IwUx3YNnSUiKD0Z58+sHQpvPCC35IEj6D0UTxJhII1F7Olb5mAsh2pQ8T6eIyfQgCo6hRVzVTVZsBhwD/AQ8AiERngr3SOUrNoEZ2ARSeeyH777ee3NDFxwgkncNVVVwFlRsFqw3bz3C7AGmBX4EosCE1MiEgnEZksItNE5K5CzjtIRLaKyFmlETqInHbaaZx2WgDTaX/2GRxzDLQI/txrYNswBARxDAahP1Whf39o1w5at/ZVlEAShD6KN3E3EfSSDY8FWsW7bEdK0cp7HeunEHlR1T+BP0WkP/AKcGas3xWRTsCzWM6eN1T1kQLOOwj4AzhXVQeWXmpHoSz2glSGKAfWmWfav112NsyeDWlpKZ0DC6AaFrUT4ATgE1XdIiI/AC/GUoCIpHvnHg/MA0aIyOeqOjGf8x4Fvo2T7IHihhtu8FuE/7JpE0ycCHfc4bckMRHINgwBQR2DQejPESNgzBh4+WW/JQkmQeijeJMIHyyAv4FrRKSCqm5OUB2OcNMGy38VGD89EWkCXABcCOwFDMfMBmP5biBvLA5g0SI+BT7/809ei/JtCio5OTmsW7eOmjVrMn26zXw2aQIVKvgtWUKZAxwmIoOBjkAkJ93OQKxRRtsB01R1BoCIfACcxn/NkK/H8tsdVFqhg0iXLl38FuG/DB1qCd0OP9xvSWIikG0YDgI5Bv3uT1XIzIQqVeDCC30VJbD43UeJIBEmgmCBCyphD9EOR34cAfyqqvklF00qItJDRH4DpmIPdn2Bxqp6jKr2jbGYbTcWb1IhcmPJS+TGsiQOojtiYdEiZgE/zJ1Lenq639IUyb///stOO+3EwIEDy4p5IMBTWJCZediky8/e/iMxk91YqIeZqEeY5+3bhojUA87AVqcLRES6i8hIERm5dOnSGKsPBsuWLWPZMr9zt+fh448tguexx/otSUwEsg3DQdzGoHduXMah3/3544/wzTdw771QrZpvYgQav/soESRKwfrFez0yQeU7QoyI1GX7ClEQuAv7n22lqi1V9TFVLe7KWkIe7nJycoophuM/LFrETcCs119HApzcNEKtWrV47LHHaNOmTVmJIIiqvgocAnQDDo/KoTgduDfGYvLr3LwTOM8Ad6rq1iLkeU1V26pq21122SXG6oPBWWedxVlnBcy17Kuv4OSTQ7MMG8g2DAdxG4MQv3Hod38+/jjsuivcdJNvIgQev/soESTEVkZVF4vIZEzBejQRdThCzRHe68+FnpU8GsZhJa1YN5bCHvRV9TXgNYCMjAzfV/hCz6JF9hoSH6zdd9+d270kKZEVrFTMgZUXVR2JRQ+M3vdlMYqYBzSI+lwfWJDnnLbAB974qw2cJCI5qvppsQUOKLfeeqvfIuzIwoXmB+lFxQwDgWvD8BDIMehnf370ka1ePfQQVKrkmxiBJxXHXCKdEX4ALhWRSqq6KYH1OMJHJ8yh/W+/BBCR1sAYb6b8wCIUntExFBnIG4sDWLyY24DdPv+c2w891G9pimT69OnUrVuXKlWqpPQKlojcArykqpu89wWiqk/FUOQIoKmI7IGZGZ6H+VRGl7MtVIiI9AO+SLXx17lzZ79F2JFXXoH0dAhRnpvAtWF4COQY9LM/n3gCmjd3iYWLIhXHXCIVrC+Aa4CjcA79Dg8RSQNOBr5RVT/t30YCdTBfqJHYalNBq1CxOO4E8sZS5lGFRYuYAWwOSY6NU045hWbNmvHZZ58xebLtS9EVrOuBt4BN3vuCUMxHq1BUNUdErsPuN+lAH1WdICJXe8eL9PlIBRZ5K7Z1grBiu3kzvPkmtGoF++7rtzQxE6g2DBFBHYN+9efEifDXX9CrFwQ8tpLvpOKYS2SX/whsBE7BKViO7bTB8tt84bMcewBLo96XiqDeWMo8q1dDdjaDqlYNTXzcRx99lGrVqrFypVk3VqkCDRv6LVX8iZ5wiH5fyjK/Ar7Ksy/fsaeqXeNRZ9A477zzABg2bJi/ggAMGQLz58P99/stSbEIVBuGjCCOQb/68+mn7dVFDiyaVBxzCVOwVHWjiAwBThORG6Oclh1lm9OBXOAbP4VQ1dnRH4G5+flhiUjMj7ZBvLGUeULmfwVw6qmnAvCLFypo330tD5bDEQt33VVgbtfk8+ij0KhR6J4wA9WGjlLjV3/+/DOceGJqmnjHm1Qcc4letPwQ6AwcRnAixjl8Qsz56ALge1Vd7rc8UcwE6pIndLqI1PKOBT+2tyN/Fi3iX+CmZct4cORI2rZt67dEhTJ79mxWrVrF/vvvz/jxplW1aOGzUAnG+124BEvq3QSb8JgBfAT0D0IqhzDRqVMnv0Uwli61WYJ77glN9MAIgWlDR1zwoz9nzrQgRVfElEnTkYpjLtHzop9hSSLDNX3lSBSHAI2B/j7LkRfhvxH/AKpi/iGOsLJ4MRuB1WlpoQjR/sorr3DQQZZ7c/x427fffj4KlBw+xnLPNcJyXk3AzHbfBgb6KFcomTt3LnPnzi36xETz1VeQmwun5ZcOMNgEpg0dccGP/nzsMZtXCFFsF19JxTGX0BUsVV0nIp8CZ3tmgtmJrC+oiMiw6M+q2sEfSXznIswv71Of5QBARJ7z3irwsIhsiDqcjiUPHpNsuQBEpDPQuWLFin5UnzosWkRr4I/zz4c2wc973q1bNw4//HDS0tKYMMH2pfIKlohcCJwAdFTV7/Mc6wh8LCIXqOp7vggYQi6++GIgAL4MI0ZA1arQsqW/cpSAwLShIy4kuz+3boVBg+DMM1PTfzYRpOKYS0Zck7cws7AuwPtJqM8RQESkKraSOUhV1/otj8f+3qsA+wCbo45tBkYDTyRbKABVHQwMzsjIuNKP+lOGkPlgNW3alKZNm6IK//xj+1J8Besi4NG8yhWAqn4rIo975zgFK0buuecev0WwJ8zPPoPDDrMQ7SEjEG3oiBvJ7s9ffoElSyAFI48njFQcc8lQsIYA04BrKaMKVhlesYrmAqA68JLfgkRQ1aMBRKQvcKOqrvFZJEe8WbSIN4D3+/fnu549SQ/4w96QIUPYa6+9qFy5McuXQ/XqUL++31IllJZAYXfWL4GrkiRLSnDcccf5LQL88QfMmwePPOK3JCUiEG3oiBvJ7s++fW3x1ilYsZOKYy7hsam86IEvA4eLyAGJrs8RPDwn9h7AWOB3n8X5D6p6mVOuUpRFiygH5JYvH3jlauvWrZx44om8+uqr28wD99sPQuA6VhpqAQsLOb4Q2DlJsqQEM2bMYMaMGf4K8dVXtnJ18sn+ylFCAtGGjriRzP7ctAkGDIDzzzclyxEbqTjmkpX6rB/wAHAzcFmS6nQEhw7AAcBVQY0IJiJHA+cDDYEdQl6p6jG+COUoPfPn0xXo2q+fz4LExi+//ELt2rX58kv7nMr+Vx7lgS2FHM/xznHESLdu3QAffRlycmDgQDMPrFnTHxlKie9t6IgryezPUaNg40bo2DHhVaUUqTjmkqJgqeoKEXkN6CEivfPkIHKkPv8DFmFRwQKHiHQFXgE+wZTBz4BmWCSzd30TzFF65s+31xDY2aWnp9O+fXuAHVawygB5A8xEUyWpkqQAWVlZ/grw5psWn/q++/yVoxT43oaOuJLM/nz7bShfHo5x07LFIhXHXLJWsACexPywbgOuT2K9Dh8RkfbAscDtqhrUkOe3Adep6hsishboqaozROQFYJ3PsjlKyoYN5KxYwf7AnV98QVdvhiyoTJo0iWnTpnHcccfxzz+VgDKhYP0M7BnDOY4YOeqoo/wVoE8fOPBAOOccf+UoBb63oSOuJKs/16yxf//zzoOddkpKlSlDKo65pClYqjpXRN4GrhCRR1R1frLqdvjKvcBK4FW/BSmEJlgwFoBsLP8VwAvAMCD1UoyXBebPZy2wf5Uq1NplF7+lKZKnnnqKAQMGsHDhUsaMsX2tWvkpUeJxAYDiz+TJkwFo3rx58itfvRr+/htuuinUzoO+tqEj7iSjP1evhpNOMgvZq1xYnmKTimMumStYAA8CFwNZmKKVDuQG1S/HUTJEJF1Vt4rIUcDJ2IpQUEKz58dyoJr3fj7QAhiHOeBX9kMglwcrDsybx07AgNatQxHO6dlnn+Waa65h2rTybNwIe+wBtWv7LZUjbFzlPd354svw2muwZUuoV6/A5zZ0xJ1k9Of998Nvv0HPnuZ+6CgeqTjmkqpgqepMEXkJuEFEfsOCXtzM9tUDR8gRkUrAXyLyAXA6prA866tQRTMcS3b6DzAAeE5EjsdMG/+TnycZuDxYcSBE/lcAlStX5sADD6RvX/vctq2/8jjCyUMPPeRf5e+9B/vvH/p/Xl/b0BF3Et2fixfDiy9Cly7g/nVKRiqOuWSvYIGtYvUA3gRm+lC/I7FUA6Zj/Qxwp6pu9FGeWLgOqOS9fxiLXHYYpmw94JdQjlIybx63Az8PG8affstSBKNGjeKHH37g6quvZsQIW0w96CCfhXKEkkMPPdSfiseNgzFj4AlfcrPHFd/a0JEQEt2fr79u4dn/97+EVpPSpOKYS3gerLyo6jIseSTAHarqVq9SCFVdClyKmd2tAp7xU55YUNUVqrrAe5+rqo+q6qmqepuqrvJZPEdJmTePfYHD997bb0mK5KeffuKOO+5ARBg50vaFfBHA4RPjx49n/Pjxya/4gw+gXDm49NLk1x1nfGtDR0JIZH/m5lrgzEMPtdgujpKRimPOjxUsgHOA0cCTIvK1qq73SQ5HYsjCkoMeoqqb/RYmP0Qk5uSlqroikbI4EsS8eZZ077rr/JakSG655RauuOIKKlSoytixtq9NG39lcoST67z/96T7Mvz6K7RunRKOg761oSMhJLI/Bw+GWbOgd+9Qx3XxnVQcc74oWKq6RUSuwXxfMoE7/JDDEX9E5EDgBuA1VQ2yZdYyoKjgKuKdk554cRzxZvikScwALtl9d8Jw36tevTqjRsHmzdC8OVSv7rdEyUVEdsOCIO0J3Kuqy0TkMGCBqjpz8hh5/PHHk1/pli3w119w9dXJrzsB+NKGjoSRqP7cvBnuuQd22QUuvDAhVZQZUnHM+bWChar+IiKvA7eKyKeq+ptfsjjig4hUxJIJLwZ6+ixOURzttwCOxPLWnDkMBi5t0MBvUYrk0UcfpVmzZixZcgZQ9swDRaQNMBTzy90PeBybBDkeS/p9gX/ShYuD/HDe++MPc0JJkfBpvrShI2Ekqj/vuQfGj4c33jDrWEfJScUx5/e/xK3YDfRtEWmlqi6pa7i5DwtxfrKqrvRbmMJQ1Z/8lsGRQDZv5qWNG+klAnXq+C1Nkbz66qt06tSJzZtNwUrBe01RPAE8q6qZXrLvCN+CWXo6YmOMl0StVTKTqH31lb0ed1zy6kwgvrShI2Ekoj9nz4ZnnoETToCA57APBak45nxVsFR1rYh0BX4EngRceraQIiJHArdjpoFf+S1PcSjKH8sPHyyXB6uULFhABaBh3bqhmFqcMWMGOTk57LOPfT7kEH/l8YE2wOX57F8I7JZkWULNTTfdBCTRl2HJEnjuOcs1V7NmcupMMElvQ0dCiXd/5uaaUlWxIrz6qvO9igepOOZ8f/JQ1Z9E5HHgDhH5SVXf81smR/HwfCc+wMKz3+azOCWhKH+spPtguTxYpSN3xgweAjrWqkVYFoMWLizHtGnme9W6td/SJJ2NwE757N8bWBJrISLSCcu7lw68oaqP5Dl+IXCn93EdcI2qji2RxAHlmWeeSW6FWVmwcSM8/HBy600gSW/DFCKIYzDe/fnCC/DDD5ZXu3HjuBZdZknFMee7guVxD3Ao8LqIjFHViX4L5IgNESkHvI89HHVS1bVFfCWI5PXHKg8cCFyD/W86QsbKCRO4F6heoULgFayRI0fy9ttvs9dedwN1OPLIUCy6xZvPgEwROdv7rCLSGHgU+DiWAkQkHXgRMzufB4wQkc/z3E9mAkep6koRORF4DWgfp2sIBEk1sdmwAfr3h7PPhv32S169CSaVzJSSSVDHYDz7MycHHnwQjj4arrgibsWWeVJxzAXiNu5FFTwX+Bv4WEQOVtXVfsvliIkHMAXlMlUd57cwJaEAf6whIjIDuAJwq6oho9bSpWwCckPgEzJlyhT69u3LySdblsqjy2b4lduAr4ClQBXgF8w08Fdin+RoB0xT1RkAIvIBcBqw7eEuTzClP4D6pZY8YIwYMQJIktP4L7/A6tUpF0ItqW2YWgRyDMazP3/80axiX3nFmQbGk1Qcc4FQsABUdYGnZH0PfCQiJ6vqFr/lchSMiFyGLfW/qqr9fBYnEYwBjvRbCEcJmDmTigDNmvktSZFccMEFnHfe+dtMTcqigqWqa4DDReQYoDWQBowuZiL6esDcqM/zKHxm/HLg6/wOiEh3oDtAw4YNiyGC/9x+++1AEnwZVOGpp6BaNTj88MTWlWSS1oapR9zGIMRvHMazP199FXbeGU48sdRFOaJIxTEXGAULQFWHeQOqD/C8iFyjqkXlKnL4gIgcjS3tfw9c77M4cUdEqgI3sePNwhESRo4bx5fATbvsQg2/hYmBWbOEuXNhp52gZUu/pUk+ItJSVceq6g/ADyUtJp99+d4/vN+vy4F8NQNVfQ37faNt27ahuge98MILyano5pvh22/hySftiTOFSFobph5xG4MQv3EYr/6cMwc++QRuvx0qVYpLkQ6PVBxzgVKwAFS1r4g0xfIozQUe9FkkRx5EpCUwCJgCnB32lUYvLHT0j7dgZkrrgZhtX4Lo3FtWGTF7Nr2B6+oH3wKse/fu5OYeAVzMUUdBWprfEvnC3yIyAXgHeE9V55WgjHlAdNKz+sCCvCeJyAHAG8CJqrq8JMIGmRYtWiS+ElV491044gi44YbE15dkktKGqUkgx2C8+vPFF80s8Npr41KcI4pUHHOBU7A87sEG6QMislZVn/NbIIchIs2xVat1wEkp4it3XZ7PuZgvyJ+x5vMKqnNvmWTTJq5ZvZor09JID/iPdm5uLiNHjiQ7uxEAxx7rs0D+sTc2mXEF8JCIDMeUrYGe+WAsjACaisgewHzgPPIkKBaRhtjk0MWqOiVewgeJ334zF5dDDz00cZWMHQvLl8M556RkRJaktGFqEsgxWNr+zM2Fr7+Gl16C006DkFkNh4JUHHOB/GVU1VzPvycDeFZE1qlqH7/lKikiMiz6s6p28EeS0uH9aA7BVnuOU9XZPosUF1T1rTgUE0jn3jLJ9OkAlGvSBMqX91mYwklLS+PXX0dTu7Z9Pu00f+XxC+9BKxOLJNgeU7YeAl4QkS9U9ZwYysgRkeuw5MTpQB9VnSAiV3vHXwF6AbWAl8Q81HNUtW1CLson7r77biDBvgzPP282Umeckbg6fCQpbZiCBHUMlrY/b7sNnn4aGjWyCIKO+JOKYy6QChZsG6jnY+F73xCRCt7gdPiAiDQDhgJVgQ6qOtlnkeKOl3B4V8zBfhsxpg1IiIN9hQoVYqjasQOTJ9MPWF2hAjf6LUsMfPedRbtu2xYaNCj6/FRHVf8E/hSR/sArwJnF+O5XWDTC6H2vRL2/AlslS1leffXVxFawdq05opx+OtSrl9i6fCLhbZjCBHEMlqY/x4415er442HwYEsu7Ig/qTjmAqtgAahqtoicDnwEvCwi1VT1cZ/FKjZhXbGK4NlLf4cpHkenmt+QiBwI9AX2j+zCVukir7EkGk6Ig31GRkaoHOwDweTJfAXMWbEi8ArWueeey6RJTYEHUnUxoFiISBPMpOhCYC9gOCmuEMWb5s2bJ7aCnj1h5Uq45JLE1uMjCW9DR1IpaX+qwq23Qo0a8MYbTrlKJKk45gKtYAGo6iYR6QK8CzzmrTL8T1VzfRatTCAiR2CriBsws8BJPouUCPpg9uI3AospQDEqgkA695ZJpkxhAKCZmX5LUiiqStWq1Zk2LQOwBYGyioj0wJSq9sB4bMKjv6rO91WwEPLTT5bW76ijjop/4UuXwptvwllnpXSc6oS2oSPplLQ/33sPhg6FZ591fleJJhXHXOAVLNiWiPgCYBVwF7CniFyqqhv9lSy1EZGLgDeBWUAnVZ3pr0QJoykWDXFaKcoIpHNvWWTOuHFUAnbde2+/RSkUEeGii16nTx9L17XPPn5L5Ct3Ae8DV6nqP34LE2YyvYmFhPgyfPopbNoEd95Z5KlhJqFt6Eg6JenPZcvg6qvhgAPgqqsSJJhjG6k45kKhYAGo6lbPUXIa8CjQUEROV9VFPouWcohIGuZw3gsYBpypqit8FSqx/ALsg/1vlYigOveWOVS59p9/WAV8U68eVf2WpwCys7NZuHAh77zTCBDOPNPC/5ZhGrqch/GhT58ExYMaMwa6d4fGjaF168TUERAS1oYOXyhuf2Znw0kn2VxC//7ONDAZpOKYC42CBeDdgB8XkemYyeDfInKuqv7ss2gpg2eC+Q5wEtAPm1He7KtQiedyLJBKE8w8aYe8XrH+fwXRubfMsXgxV23ZwpxKlai6115+S1MgI0aM4IgjjqBSpS+Ak+na1W+Jko+ItAbGeObeB0ohGqaqjk6aYCGnSZMm8S905UpLLAyW/yrFk7UlpA0dvlHc/hw0CEaMgIcegoBn+kgZUnHMhUrBiqCqg7xQvgOBH0SkJ/Ck88sqHSJyEBZQpC5wLfBKGZlVbgq0AjrmcyzWIBeOIDB2LJ0BDjoo0EtCe+65Jxde+DL9+7fn0EPNRLAMMhKoAyzx3kcCy+TFjcFiMGTIEACOO+64+BSoCh06wLhxFp79sMPiU26AiXsbOnylOP05erQt1O67r4VndySHVBxzoVSwAFT1H08heAN4DDheRLqp6jyfRQsdIlIO84HIxAIzHK6qI/yVKqm8ioWgf5iSB7lwBIFx45gC1N17b6r5LUsh1KlTl7//vhqAa6/1WRj/2ANL6B1574gDDzzwABDHB5Xnnzfl6qGH4Lq8OdlTk7i3ocNXYu3P0aPh4IMtauCAAYFPo5hSpOKYC62CBaCqa0TkXCz57VPAeBG5Hng3svLi5c9KdRO3mBGRdDCfNu9zM+BtLHrXB0CPFPe3yo/6wEmqOt1vQSKISGegc0Vn/F0sNo4eTXPgoaVL6em3MIXwzDO/MXFic3bfvRZnn+23NP6QJ1G5AnPzWzH3gsM4YuSdd96JT0G5uaZc3XwzHHUU3HJLfMoNAXFrQ0cgiLU/Bw6ELVvgl18gBaOGB5pUHHOhN6RW4zWgJeY/8zbwlYjsKSJ1gBleLq0yj4jUBkYBV4pIRRHpBYwDmgHnq+r5ZVC5AvgeaOO3ENGo6mBV7Z6e7iyjikPaP//wLnDKmTHnpk06a9as4dZbjwKe4rrrwOWSBmAmsEvenSJSyzvmiJEGDRrQIB4Zq2+8EW66CTp3hi+/LFOe/nFrQ0cgiKU/N26Et9+GY491ypUfpOKYC/UKVjSqOl1EjgKuB+7HlK2JwK7ABD9lCxDLsVD3jwK3Yok8BwA3q+p/cjaVIb4BnvRyVP3Df4NcDPJFKkfx2LCBipMmcWFaGkHO2jt5chVUv6NSpQYu/O92Ikm981IV2JRkWULNN998A0CnTp1KXsivv8JLL0HXrpZhtYxN9MSlDR2BIZb+fOMNmD8f+vZNllSOaFJxzKWMggXbzN6eEZGPgNeBE4E1wMEiMt0FwaAFtmpZHcgBOqrqd/6KFAhe8l7vzueYc7APC6NG8cXWrTTfe2+aZmT4LU2+qMJdd5UDjuaaa2Dnnf2WyF9E5DnvrQIPi8iGqMPpQDtgTLLlCjOPPPIIUIoHle++g44doVo1eOSRMqdcQRza0BEoiurP2bPh7rvh8MMhhVyAQkUqjrmUUrAiqOp84CQRuQ1L9vo2cKuI3AN8WUYi423DCz9+L3ApsBroA9yiqqt9FSwgqGroTWUdsGbYMG4H1s6dy1xVCgv77RcDB67mhx8epXr127nnnp38FicI7O+9CpaLLtpfdjMwGngi2UKFmQ8++KDkX54710KogcWp3m23+AgVMkrVho7AUVR/9uoF69bBM88EOvhsSpOKYy4lFawIqvqEiDwFnAM8CAwGxorIw8DASKCHVEVE9seiA56Hmb09BTxURv2sHClO9TFj+B1Y2bt3IJWrzZvhllu+Bx7n8svPYuednYKlqkcDiEhf4EZVXeOzSKGnTp06JfviokXmgLJgQZn38i9xGzoCSWH9OWqU+V5dey20CZQndtkiFcdcSitYAJ5Z4Aci8jFwPtATi5Y3Q0ReAvqmksLhRQk8EegBdALWY4rVU6q60E/ZgoqIFBoeS1WfSpYsjhKSmwu//EJNoGbnzn5L8x9ycnLIyirHvHln0bDhwTz8cH2/RQoUqnqZ3zKkCoMHDwagc3HGwdatFtBi6lT45JMykeuqMErUho7AUlB/zpsHZ54Ju+8OXpRwh0+k4phLeQUrgqpuAd4WkXeBM4CbMNOTB0TkA6AfMDysfloi0gi4EOgONMLyWWUCL6SSApkgrs/zuTyWbHkjlgTVKVhBZ+xYHl6yhL8rV2ZAALP21qu3B0uWdADepn//+mUpIFvMiMjR2CRYQ2CH2IqqeowvQoWQJ598Eijmg8qFF8KHH1rkwNNPT4xgIaJEbegILPn15/r1cOihFtjio49gJ2dQ4CupOObKjIIVwVOgPgY+9qLGXQNcDHQF5onI+8CHwOig+2qJSF3gdMzP7HBv949YhMDPPaXSUQSq+p8kpyKyG9AXC5aSdFwerGLy3XcIkF63bmCM6Ddt2sSECRNo2LANOTm3APty553C4YcX+dUyh4h0BV4BPgE6AJ9h6SP2AN71TbAQMnDgwNhPzs2FHj1MubrqKnj66cQJFiKK1YaOwJNff953n7kcfvghdOnig1COHUjFMVfmFKxoVHUccI0XDONUbAXoZuB2YKGIfAl8CQxT1VW+CeohIuWA1pgJ4ClAW+/QROB/wPuq6nLGxAFVXSwi/8PC2H/iQ/2DgcEZGRlXJrvuUPL119wF8PDDfkuyjSuuuIING7JZtOgjVqy4mYMOgqwsv6UKLLcB16nqGyKyFuipqjNE5AVgnc+yhYratWsXfdKcOfDFF3D//eZ7dfDB8OyzgZmc8JuY2tARGqL7c8UK6N0bXnwRzjnHNof/pOKYc9HTAFVdr6rvq+opmGlYV+AXLDjGJ8AKERkjIs+LyPkiso/n6xQzIvKMiDxTzO/UEZGOInKPiHwHrAT+xEz/tmBKVUughao+5JSruJMGlM0wWiFCFy7khp9+ok96Opxwgq+yLFiwgLfeeguA8867mKlTD+b336FBA/jsszKVq7W4NAGGeO+zsfxXAC9gv8eOGBk0aBCDBhWQum/xYujWDRo1spWrxo3Nw3/4cPfPGUWhbegIHZH+XLoU2re3FG/du8Nrr/ktmSNCKo65Mr2ClR+qugx4C3hLRCoAhwJHAkcA3YDrvFM3icg/wBRghrfNxnx2lgHLVTUnquhW0fWIhTmrAdT2tvrYQ8YeWALg/dnx4f4fT67hwA+qujQ+V+wQkbwGAoIp2j2w9nYEmHX9+zMByKlfn241a/oqS8+ePVmwYAFdulzEiy92ZPz4jtSoAV9+CXXr+ipa0FkOVPPez8dy9o0DagGV/RIqjDz3nKUW69KliwWvmDkTBg60/Fa//27hLM85B678f3vnHS5VdfX/z5diAwQR7CBqiqKoKIotirHEmNjra8ceIcGCMbEkGrtiT8QWRaNGjb4RW/QnKBrzxtgFxIaCYkUiCIj09ftj7YFhmLll7tx7z1zW53nOM3P23medNfvMnjnr7LXXOsGjBsas1VIs0YdB1XP99dczbRpMn74/H30ETz0V+a6yRkscc2Fg1YCZzQVGpQ1JbYGe+KxRbtsBX5i91GxgSpo5B8/n0smLNAVfwL0ixfv/v7ix9g88weabwJtmNrVSnytYikLnXwO+Ap7B17MFWcWMDvffz0iAiy9uFhUmTJjA66+/zn777cell17KY4+9xM47t+bVV6FLF7+v7dWrdjnLOP8EdscfJD0AXC9pN2AX4OnmVKyqWLCA4Qcf7I/oV18dpkzxdVbgs1X9+/taq802a1Y1s87w4cObW4Wgghx77HCOPtqjBT78cBhXWaQljrkwsOpBChrxZtoWkQyv7nj0vi5A17S1B5ZP2w7AQuB53Oj6Dp/pmoLfzH8OTIjkv01PJBquXqY+/TRjX3mFH626apOuVL7yyivZaqut6NevHzfccAM333wzH344gRdeWIvf/GZfpk6F9dbzmauNNmoytaqZgcAK6f2lwHxge9zYigDKZjBtGrz3nodSnzEDpk9f/Dp1qpePG0fHGTP8mGOPhbXXdkPrpz+F9ddv1o9QTXTs2LG5VQgqxKhRcNJJHdlsM3j+eVh55ebWKChGSxxzYWBVgGR4fZC2IAiaiFtPP52zgPt/9CMOXrHpPMnOO+88Tj31VPr168cVV1zBTjsdzkknrUbuIdxee8Gdd0bo37qSn0oiRXq9vBw5kvYArgNaA7eZ2WUF9Ur1ewKzgGPM7LVy9S6b+fPdOPr6axg3zl+nTSu9TZ7sCYALadXK7xg7doQNNoCjjuL+Vq1g44055KSTmvADtSzuv/9+AA455JBm1qT6aM4xaObPG8aOhdGjfWnh3/4GHTvez4knwsorx/XMKi1xzIWBFSyzSPopMBTYrHDmUFJHfKbyRDP7f82hX1AL//oXZ7z1FrutsAK9b7yxUU/1wgsv0L9/f6666ir23ntvpk2bRuvWrRk/Hq6+ug233rol8+dDhw4wZAgcf7zf+walkdS5rm3rkssvBR76E7Ab8AnwsqRHzGxcXrOfAt9PW198/Petj95L8O238MEHbvwUziqVev3qK0++U4oOHaBTp8Vbt27uY9qrF3TvDptuCp07e7sVV1xqDdXQfv1g9OgwsBrA0KFDgZZ1s9cUNMcYXLAAXnkFRo6E++6DMWMW13XuDEceCe++O5QHHoBTTonrmVVa4pgLAytYlhkIXFnMLdPMvpF0OTAIaHIDK/Jg1cy0L77g7SOOYEOg9+DBjR5BYvvtt+eUU07ho48+Yu5cGDlyBYYOhSee8KemrVrB0UfDRRfBOus0qiotiSn4eseaUGpTl6itWwPjzexDgJRAfh88jUWOfYC7Uo7DFyV1krSmmX1eb+0BDjnE/UCLsdJKbgR16OCzTB06uLG02Wa+HqpTJy/bYAM3nDp18nZtGva3/MQTTzTo+CD6sAE0+Rg87TS44QZ/36uX/wZvuCFssYUPtzZtYNasuJ5ZpyWOuTCwipByr2xiZv3qcYwBB5lZy8uW1nLZFDi9hvpn8FD4TU7kwaoBM1448kgumjiR3Tp35pzTTlu0eKcxmDt3Lt9+uxw9epzG8OG+pGXaNK9bfnk4/HA44wzo2bMRlWiZ7FxheWsDk/L2P2HpJ+PF2qyNr4FdhKQTgRMBunfvXvqMgwbBUUe5Vd2x42Jjqn37BhtK5bLSSis1y3lbEtGHZVOxMQh1G4dHHQXbb+8BMUulUorrmX1a4jUKA6sJkDQMOLqmNmam1K5LyseVf3wf4GVgPTObmFe+Lz4LswUelXAS8G/gj2b2cmqzP3Ay0BtfRD4OuNjMHimh6/8A9wKPF+rRAumKBx4pheFhooOssGABDBrEz0eMoMvyy8NVV7FC5zp7mtUJM/f6evllGDlyEsOGbcrChcMx23FRm002gcMO80jXLTA/YpNgZs9VWGSxeOOFM2R1aYOZ3QLcAtCnT5/Ss2y77VYP9ZqGu+++G4AjjjiimTWpXqIPy6ZiYxDqNg779PGtJuJ6Zp+WeI3CwGoaBgG/ydv/ADgbuL9cgZIuBs4CbgD+gBtX3fC8XVcC/VLTnfCZmHOBr4HDgb9L6mdm/yyQuX46dlnJ/fQJPov1fon6TfGcPEEWmDABTjyRP4wYwXZt2rDrAw/A3nuXLW7mTJg0yYOvvfsuvPOOb+PGLZ6h8owKP6RNm43YdlvPY3zAAREZsNLUth6rLmuw8PHcLW9/HaAwMkRd2lQ1t912G9CyblSamujDssnkGIzrmX1a4jWqKgNL0ijgbTzyTH9gAR7C9ybgatx4mA6cY2Z/Scf0Aq7BQ/5+BzwCDMqtu0mLMi8HjkunuZMCf/8U9eZM4CRgLWA8cLmZ3V0XvdO5Fq3zSe6E35jZF/XqgMXH98UNtEFmdn1e1QTg+bR2KHfuQQWHXyDpZ8C+5BlSKdT8X3GXuJ3xcPMtnceBCyU9YWbf5VdIWgk3XEsssAiahIULfQXzTTfBvffy3Zw5/FHiQjPOfvVVLth7bxYsWMCKK67I73//e8488xwmTfqODTfsyLHHXswuu5zJpEnfcNZZXdlmmyvp3HkQH3wwmXHj1gGuxyd3P8FzfN+E5xL/ANiI3r3vYP/9D6dv3xfZbjto1675umEZoLb1WHVZg/Uy8H1J6+EPRg4FDito8wgwMK0N6Yv/Dpe3/iqjPP10pA1rKNGHZZPJMRjXM/u0xGtUVQZW4nDcmOoL7A1cC+wBPAn0wV3xbpM0EpiWyl/GF192Bm4FbgcOSPLOAE5I22hgQDpHftjQi4ADU927wLbArZKmmlnRG/BkDFKfdVz14DBgJlA0dFpaPFoTHYDCxMUXAxPN7E5JlV4bkVUuxq/r+5JuAN5J5RvhrpcCLqmrsKoJEZ0BzGDuXJg9O2/777fM/ngysz+ezLfjJvLYqOF0/XQBq8xchW/oyFDWZ5tuA9hnx2N44dWLefLJ7XnuOZg+XbRrN5hLLtmWc88F/1kbzC23bM0tt4CnoRvMv/61ZTr7SsBg2rbdnB49YJ11OjBjxmB+/ONe7LEHdO3aiXvuGczBB/ekd+9m6Z5lkcLfnLa4W/Mv8Nn3WjGz+ZIGAk/hY/B2M3tL0smp/ibgCXz8jWfxg7oWRdu2bZtbhaon+rA8sjoG43pmn5Z4jarRwHrLzM4HkHQ17no3z8yuS2V/wF3ntgNWwZP9HmlmM1L9icCzkr5nZuOBU4ErzOyBVD8I+EnuZJLa4YEQds9zqZsgaWvc4Co1w/FxmZ9vD0kzC8oKAz7/APjQzObn6XkKcEVem55mtpQOkgbgU/J/ySvbHTgE2LxMnasSM5ssaTs8TOwlLPYNN/wP4hQz+7Iusho7PK0tNGyhsXD+wkVb4f7CBb5vC/z9gvnGvLnGvDkLmTfXmD8v7c/DX3Nluf15MG+ep+jJ319UNh/mzdPisgW+P3uumD23FbNni9lzYPYcMWdOrrw1s+e1Yva81r7Nb8Ps+W2Ys6DYj2k7YL209cUffv4OuACYC9zAR5PWhXvasaTd22rRfuvW0KVLW7p0uYQuXUjbCnTpcgldu3qwtm7d2tO9u+97hOuOBfJW5dJL62xXBxWgxHqsEZI+BI7H14XWRc4T+A1cftlNee8N/91usQwbNgyAY445pln1qGaiD8sni2Mwrmf2aYnXqBoNrNG5N+aRISYDY/LK5kmaCqwGfA8YnTOuEv+HBzboKekrYE08METu+IWS/sNiH+GeeHCIJ5NrX462wMRSSprZUeV9PJ4nRc3JYxPg77Ucdw8eTjzXdqksPJIOwNdYHWpmH6WyLsAw4DAzK5zVavGkfthT0ir490XA+2X0RaOEp501qxNSf+COpNofcHf1W1KLc/CJ2j+l/bOAOfjELvizgdb4ZQf4Jf7M4dK0/wvcG/TCtH88sC5wXto/Bvgh8Nu0fxgeU2Vw2j8Yf5ZxatrfH9iFxf+fe6Ut95XeIx1zLG35jnnsyQocSFf2YjlmMJHjWbXtfmzUdV+s3UjenvI1m27xIT/84VqMHv0QvXv3YuONPVhb+/aLo2B37Ahdu3oAt8g/1aJ4A9ixtkbBYlrijUpTE33YsojrmX1a4jVS7d5k2SG53Y01s4F5ZWOBB3OzWqnsC9ytbwNgS8sL/yVpOXwt1r64MTMN2MXMnslr8xegm5n1S+udXsTvGgtnhOblGSp1DtOeZqgGmtmwgvJh1CGKoKTr8DVjq5jZvJra5pUfgM9aHZWvo6R+wLP4erYcuVvUhcDGZvZubZ9pWUfSgcAeZnZ82j8S6FvwXX0MuMzMXkj7I4GzzOyVAlmLQtMCW+JuFIW0ZslrVp+yNsD8OrSrFpn1OU9DZJY6TzXILCavoTJXNLNGM2cl5Z4E7GZmGzbWeeqgx1fAR2Ue3gVfX1ZNhM6NT6X0XdfMulZATuapYRxW27XPJ3RvHiqte/FxaGZVswGj8BDk+WVjgfMLyr7A19CcgAeX6JBX1w93Afte2v8MODuvXvg6q1FpvwMwG+hfi24GHFjHzzETX39TWD4MeKxIeZ8kv0fa3ybtn15b21R2MG5UHlykfTt81it/exh4Lr1frrmvezVswEH4uqvc/pHADQVtHgd2yNsfiT8AqEnuKyXKb2lA2VIyi7WrFpn1PE/ZMms4T+ZlNtX3qNwNmIEHKMptM3CDbjqwV6XO09RbJfsodG45OlebvlneqrkvQ/eWrXs1ugjWh3vwBRx3SfodvibrZuB/zddfgQcd+K2k93BXw1Nwt8HPAcxshqQhwJAUpOB53MdqG2CheZ6GpZB0Vzq+XFfBkpjZi5KuAK6UtC7wID67tjqLZz4WJD0OxWeuBuMRBtdI9XPN7Gsz+xY3UvN1nwa0MbMlyoMaaerwtI82oKyu8qpFZn3O0xCZdZW3rMssh4EF+wuBr4D/2DLouhwEQRBUNy3awDKzWZJ+gi9IeQmfiRqO56XKcRWwBnBb2v8LbpjlZ7o5D/gSN1KG4k9V32DJoBKFFE87XiHM7CxJL+GLXY7Cjb4vgReAHc0slyn9ZPw6X8vihTngM1T9GlPHZYwmDU9rZkvd8Na1rK7yqkVmfc7TEJl1lbesyywHM7uzMeUHQRAEQVNSVQaWFQl5bmabFClbI+/9GHz9VCmZ84HT0laqjeEJfW+ooY0K9pfSNa+ufYnyY0qUv0KR7Odm9hDwUKnz1KZHDccU1SMojTVeeNqiM6QNJGQuezKrQcdcwuHVKAjSY0tG46wmGqPfG5vQufGpNn2zTDX3ZejePDSJ7lUV5CIIgiBoeUjqjYfK7JUrwteSCn/GVZdEw0EQBEGQCapqBisIgiBokdyOu9YOwl2d48lfEARBULXEDFYQBEHQrKTUFZvnBR8KgiAIgqolUnIGQRAEzc0LLBlYqCqQdLukySkfY66ss6SnJb2fXlfJq/utpPGS3k0BmLKg7/mSPpX0Rtr2zIq+SYdukp6V9LaktyQNSuWZ7Oca9M10P2eZYt/bgnpJuj714WhJWzS1jqWog+79JH2T9734XVPrWIpS3+WCNpns+zrq3qh9HzNYQRC0SCRtCOwDrI27nH0GPGJmbzerYsFSSFobj+T6JJ42YokE6mb2fHPoVRuSdsTzGt6VC7iUUmh8bWaXSfoNnhD+LEk9gb8CWwNrASOAH5hZsUTTTanv+cBMMxtS0LbZ9U16rAmsaWavSeoAvArsCxxDBvu5Bn0PJsP9nGWKfW8L6vcEfokHkeoLXGdmfZtWy+LUQfd+wGAz+3kTq1Yrpb7L+UGHstr3ddS9H43Y9zGDFQRBi0PSWcB9eJCEl/Aw+gL+mm7GgmzxfWBz4BrgaTypfG57tpl0qpVk+H1dULwPkAs7fyd+c50rv8/M5pjZBDya6NZNoWeOEvqWotn1BTCzz83stfR+BvA2/tAkk/1cg76lyEQ/Z5k6fG/3wQ0YM7MXgU7pBrvZqeeYyxR1/C5nsu/LGIcVJwysIMgQkn4iaaikRyQNT+/3aIC8LgX7R6Tp/BMlLRX6vx5yJamvpP0l7Zfely2viPz2kraQ1KlMEccBW5nZZWZ2d9ouw29cjitTpz3y3neU9OfkEnGvpNXLlNlR0mWS3pH037S9nco6lSOzxHka2p+Nfc1vBkbiUQRXA7rmbatV6BxNxeq5/HbpNaf/2sCkvHaf0MR/+DUwMH2Xb9diV7vM6SupB9Ab+A9V0M8F+kKV9HMVUu19uK2kNyX9Q9LGza1MMYp8l3Nkvu9r0B0ase/DwAqCjCDpWjyK2nN4Eusr0/tfSbquTLH/L0/+ucCR+FT5bsDVZeq5O/A+cD7uFvAz4ALg/VRXjswb897vAIzDk4CPUd5ahXqwEHe3KWTNVFcOl+S9vwr4HNgLnx27uUyZDwBTgX5mtqqZrQrsnMr+VqbMivdnY1zzAtYBfm9mb5nZFDP7b/5WAflZoJgxmgUf/aHABvgM4uf49wQypq+k9njex1PNbHpNTYuUNbneRfStin6uUqq5D18D1jWzzfBcqw83rzpLU8vYy3Tf16J7o/Z9hGkPguywp5n9oLBQ0v3Ae7jxVV/yf/z2B35kZt9Kuhf/cSmH64BdzWxigZ7r4cmUywlWsE3e+wtxX+nXJK2PGyFP1FPeqcBISe+z+Olad+B7wMAy9Cukj5ltnt5fI+noMuX0MLPL8wvM7AvgcknHNkC/SvdnY1zzfJ4GtgQ+aKCcLPClpDXN7PPkKjM5lX8CdMtrtw6+LrBZMbMvc+8l3Qo8lnYzo6+ktvhN0j1m9r+pOLP9XEzfaujnKqZq+zD/pt/MnpB0o6QuZjalOfXKUWLs5ZPZvq9N98bu+5jBCoLsMFtSMd/7rYDZZcpcUVJvSVsCrc3sWwAzmweUu4i6Df6jWsinQNsyZeazcp7v9IdAvZPMmtmTwA/wWZan8Jm884EfprpyWE3S6ZLOAFYucI8r97f0I0m/zncxlLS6fA3ZpBqOqw8N7k8a/5o/CVwl6SJJhyQ3xEVbBeQ3JY8AOYP7aGB4XvmhkpZPhun38fWBzYqWXC+xHx5kBDKibxpnfwbeNrP8WfdM9nMpfbPez1XOI8BRyY15G+CbnPto1pG0Ru6/JP3/twIyMWtfw9jLJ5N9XxfdG7vvYwYrCLLDMcBQecSb3M1sN2B6qiuHz1nsCvh13hPfVYH5Zcq8HXhZ0n0sNgK6AYfiP2jlsKGk0fiMWw9Jq5jZVEmtKPMG3swWAi+WqU8xbgU6pPd3Al2AryStAbxRpsxDgN8Ao/KMrC/xP62Dy1e14v3ZGNc8n5xL49lF6ozyjMJGR9JfgX5AF0mfAL8HLgMekHQc8DFwEICZvSXpAdxdcz4woBki8hXTt5+kzfF+ngiclBV9E9vjrs1jJL2Rys4mu/1cSt//yXg/Z5YS39u2AGZ2Ez6LviceIGQW0L95NF2aOuh+IPALSfOB74BDzTIT3rvUd7k7ZL7v66J7o/Z9hGkPgoyRbtjXxm+OP0kuY5U+R2tgeTObVebxPYG9ydMTD4E+rsYDS8tbt6DoMzObJw/SsWMJ14RmR9JdZnZUA2V8D3+i3Q2/wXoP+KuZfdMAmYX9+bmZzW1If1b6mgdBEARBSyUMrCDIEJK6A9PNbJo88k0ffIr7rQbIbAU+oyNpOWATYKKZZTp0rKTVzGxy7S2bBkmPFCn+MfAMgJntXYbMXwE/B57HnwK+gQe42A84xcxGlaluEARBEATNRBhYQZAR5PmZTgLmAEOAwcC/8IAFf67BB7ommfviEe4WAifjU+Tf4uuTfmFmj5Yhsz3wa+AAfEHrXDw4wU1mNqy+8pLMzoVFeLTD3vjvVLMbg5JeB97CE+IaKa8W7iaHmT1XhswxwOZmtkDSSsATZtYvGdrDzax3mbqugbuiLAR+hyeCPADPBTKovj7ykvrgUS0/BX6LuwxuhUcWPNHMXi9Hzzz5p9dUX853PwiCIAiaizCwgiAjSHoLn7FaCffRX9/MvpLUDviPFckCXweZrwM/BVYE3sRzQ72bXMgeMrM+ZcgcDvwdGIGvE2qHJ/U9F/jUzIqto6lN5kLgo4LidXA3NDOz9esrs9KkmcBB+EzTmWb2hqQPG6JbMrD6mNkceV6cEWa2ZaobW841T8c+CTyOX5vDgHtwY3AfPBrgPvWU9xJusHXCUwicZmYPStoFuMjMti1Hzzz5EwqK2uIh9b8DJmfh+gdBEARBXQkDKwgygqTRZrZpWh/1ObBGCtRQ9s22pNdzsyCFMiS9ZmZblCHzzZQ3Irf/spltlQyQcWa2YRkyBwO74obLmFQ2wczWq6+sxkbSOsA1eDCKvc2sewNkDcITH78I7AhcbmZ3SOqKG8A7lik3/7p/nK+jpDfyQsxXQt6iukqSgn7cAdxqZn+vtPwgCIIgaCwiimAQZIfX5Pmp2gEjgTvTTMSP8QhTZSGpVTLUjs0raw0sV6bIbyXtYGYvSNoL+BoWrfEqlnSwVsxsSIpQd42kSfhsSSaf/pjZJ8BBkn6GR3hsiKzrJI3A80hdbWbvpPKvcIOrXPLDxt9VUFdORL7Z8oTCHQGTtK+ZPSxpJ8oP918jZvalpHPwvF1hYAVBEARVQxhYQZAdjsdDDRvwILA17t71LvCnMmWeiBtSs80sP7dKNzzMcTmcDNwm6Qd4LpdjAdKsS7l65hsue+GJZ1cqV1ZTYGaP4254DZXzFr62q5IMl9TezGaa2bm5whSx8N0y5J2MuwYuBH6Ch7Ydhq/JOqEC+paiFbB6ra2CIAiCIEOEi2AQBA1C0l7lBMuoRebewIdmNrbWxkG9kNTfzO7IkjwtnUxY+BqsAfj34GcNkd9SSEZtFzP7eUs6V5FzPwZMMbNjmvrcQdCYxBhedmhVe5MgCJobSf/IsMyLKyQnn4vCuGo0LsigvAcLtgfwoCmv4zO7ywSSukq6UdJESXMkfSlppKTdUpNBwBHNqWMpJI2S9McmPN9oSZeXqDtR0neSfivpZUnTJX0l6VFJZQWOCYK6EGO43ud8RpIV2RrsHdLchItgEGQESaUCTgjYPCsyS8iqNI0hc5lB0uhSVZThcldpeYWYWTzscx7CXWOPA8YDqwE7AasCNCT5dAtkNNCrsFBSR+Ai3KW1H3Aj8DL+Xf0DMEJSzyykfghaJDGG60dv4Bw89Uc+s5pBl4oSBlYQZIeXgecoblx0ypDMQhrDzzh8lxvG6vhaqakF5QL+LwPyggIkdQJ+BOxmZiNT8Uf4GM61GUaey4+kUXhus1lAfzzgyEXATcDVwOF4IJZzzOwveXJGAWPNbGAp2UX02wO/EdoEH58vA6ea2dvp2J2AnSQNSIesZ2YTU+CbM/Ecf2vhN52Xm9ndSe5KuBF0IJ6j77o6dtloYGCR8t/h4f0vM7PvCj7DkcA3wPZARd2agyDGcP3GsKQN8PuQ58zsi7ocU03EU8MgyA5vAyeZ2c6FGzAlQzKD7PMY0N7MPirYJgKjMiAPAEk/Ta40HYvUdUx1u5crv8qYmba9Ja1Qj+MOB2YAffHANdcCDwPv4Xn17sSD0qzVQP3aJdlb4zND3wCPSloOd3v6Nx5Wf820TUrHXYQ/zR8A9AQuBW5OUTjBk6rvhifC3gV/ol2XCJqjgW6SVs4VpMA7vwROLzSuEh3w+57CBwVBUAliDNdvDG+JG5QNSlSfVcLACoLscD6lx+QvMyQzyDhmdpyZvVCi7rDmlpfHQODKYm4zqexy/I+/xWNm84Fj8PUZ0yT9W9IQSX1rOfQtMzvfzN7Hn3hPAeaZ2XVmNh53ixOwXQP1eyht75vZaPxp+3rA1ulazQVmmdkXaVsgT5J+OnC8mT1pZhPM7F7gVmCApPb4jduvzeyptO6yPx6tsjZybqv5a6quBp43s4dKHHMd8AZ+I1kUSU/FOq2gHGIM13sMb4mnDZksaWbe9reGfM6sEAZWEGQEM3vQzBaF0E7hynN1D2dFZhG+rJCcxpYZZI9NgRE11D8DbFZDfYsiGQZrAXsB/8BvqF6UdHYNhy1aH2ceFngyMCavbB4+Y7NaQ3STtIGkeyV9IGk6PkZbATUl2u4JrAA8mX8DBfwC2CBty5Fn8JjZzHz9S2Fmn+E3or2Sfj/B3Vh/VUL/q4EdgAPMrKbcbRsC79R2/iAoRozhuo9h3MB6CF8Pnr+dUq8PllFiDVYQZJeLqfw6gYrLNLPdam/V/DKDTNKVmp90Gmlx+LKCmc3G88A9DfxB0m3A+ZKGlDhkXqGIEmX5D1QXsvS6zLa1qPYonvfspPQ6H0+AXlPC8tw59wI+LqibB6xSyzlrYwywiaQ2wDXAH81sqaTskq4BDgV2NrMPC+p6Arfg7oPDgK/TTASSvp/kroGv6zrIzL6Q1A34I35juhzwc2BX/MawDTDezPZr4GcLqpQYw3WmNx4xeHwDZGSWMLCCILtEdL6gpfMJPov1fon6TfEbgWWZcfh/dX3WdNTGV/gai3w2AyYWayxpVWAjYICZPZvKtmDJe4i5uLtPPuOAOcC6ZvZMEbn/xW/StgE+TGXtcLe/D+rwOUYnvQfghvj5Rc5xHW5c9TOzdwrq2uDRy443s7GSHgDeTHXL44EG+pvZx5KOx12iLgSeAH5lZs+m9YMr4O6uW5rZ/BTsIAhyxBhe+rj1gM600PVXEAZWEGSZiM4XtHQeBy6U9ESRiG8r4WsPqj4fSl1IN0B/w2/4R+OL3vsAvwZGmtl0D+ZVEZ4BrpUn9H4Xf6LdjRI3Z7h70hTgBEmTgLWBK/En4DkmAltL6oEv9P/azGakp/ZDUiSy54H2+M3YQjO7RdKfgcslfQV8hkcBLLzJK8Vo4Gj8xvKMwrV8kv4EHAnsC0yVtEaqmpncmPYHXrHFOffeZXEAjH3xG9JHUr8vB9wH7Ae8lLtJNbNvJC3Eo6FdLmmYmdXFPSpoYcQYrtcY3jK9fpE3LnNMyc0iVzNhYAVBEATNxcV4aN/3Jd3A4rUvG+EzAgIuaSbdmpqZwIt4UI/vAcvjs3f34lG8Ksnt+OxgLvfMjcDfgS7FGpvZQkmHANcDY/EwzWfg6ydyDMGjnY0DVsQXz08EzsPXegwGhuIhp9/A81SRytul888Cbkj7deFN3LB5CXfvKyS3lmNkQfkF+GzXpklGji2Bq9L7XsCZZnZP/oGSLkrnW0S6Ce2FG2X3SfpdDYE2gpZLjOG6j+GcgfV2oar4zNa0Wo7PPPL1dEEQZA1Jo81s06zLDIKGIGld/E/7Jyx2YTXgKeCUFAo+CCqOpNOAHmY2SNIu+JqZ1c3sK0kD8dmH/mZmknqZ2RhJvwR+YGa/lNQKX4PSOUWAQ9L1wH8KDbMgCJYtwsAKgowi6elKB3toDJlBUAkkrYI/9RXwvplFrqKgUZHUBY/01gZ/qr+TmXVPde2Au/HZ1NnAM2Z2uqQOuKtgD3ztyUDgBNxlahY+gzGwlkiFQRC0cMLACoIgCIIgCIIgqBCRBysIgiAIgiAIgqBChIEVBEEQBEEQBEFQIcLACoIgCIIgCIIgqBBhYAVBEARBEARBEFSIMLCCIMgu0jCkx5Z635TnrazcUUiWtm1S2cZI/4c0FulRPMFuvh659gdWXJ8gCIIgCCpOGFhBENSPJW/65yFNRnoWaQBS20Y88yDgiIpLdaPnj01yLucOYE3gVaQVgAeAAZhtArwHHFOgx5qNpEcQBEEQBI1AGFhBEJTDCPzGvwewO/AocAHwTzx/TOUx+wazaY0iu2nPNQuzLzCbB+wLjMDs9VT3DtC1QI8vGkmPIAiCIAgagTCwgiAohznJSPgUszcwuxroB2wB/BoASUi/RvoA6TukMUhLzgp5mzOQ3keag/QJ0qVFz1jotuczTzciXYI0Jc2kDUFqlddmD6R/Ik1F+hrpKaSNlpAJOwED8mblehQ51/JI1yJ9iTQb6UWkHQr0q12fpdkIGJO33wsYV0P7IAiCIAgyThhYQRBUBrOxwJPAAankIuA4YADQE7gUuBnpZ3lHXQKcl+o2Bg4CJtXjrIcD84HtgIHAqcAhefXtgGuBrXED8BvgUaTlUv0g4N8sdttbs8T5r0hyjwV640bRk0iF7nu16VPIZ8APAZA2BXYFHqmhfRAEQRAEGadNcysQBEGLYhywa3ITPB3YHbN/proJSFvjBtfjSO2B04BTMbs9tRmPGzx1P5/Z79L795BOAHYB/gqA2UNLtJb6A9Nxg+sFzL5BmkvObW9xu/xj2gG/AI7H7PFUdjLw4/RZzq2zPkvzF+B+pDFJr4Mxm1P3jx8EQRAEQdYIAysIgkoiwPAZqxXwWR7Lq28LTEzvewLLAyMbcL7RBfufAast1kYbABcCffG1Ta3S1r0e59gA1/tfi0rMFiD9G/8MddenELNZwF710CUIgiAIgowTBlYQBJWkJ/Ahi92P9wI+LmgzL72KhjOvYN9Y0vX5UeBT4KT0Oh+fZVuOupPT04rUFZbVpk8QBEEQBC2c+OMPgqAySJsAewAP4kbMHGBdzMYXbB+lI3JtdmkkfVbFg0hcgtkIzN4GOrD0g6W5QOsaJI1PbRYHtZBaA9sSASmCIAiCICggZrCCICiH5ZHWwB/SdMWNpLOBV4EhmH2LNAQYgiTgeaA9sA2wELNbMJuBdB1wKdKc1GZVYEvMhlZAx6nAFOAEpEnA2sCV+CxWPhOBrZF6ADOBr5eo9c8yFLgMaQowAV87tjpwYwX0DIIgCIKgBREGVhAE5bAr8DmwAJgGjMXzYN2M2dzU5jzgS2AwMBQP4vAGHpEvx29xQ+g8YJ3U/q6KaGi2EOkQ4Pqk33jgDOChgpZDgDvx2agVgfWKSDsrvd4BdAJeB/bA7POK6BoEQRAEQYtBZsWWFQRBEAQVRxoFjMVsYD2PM+AgzB5sDLWCIAiCIKgcsQYrCIKgaTkRaSbSVrW2lG5CmtkEOgVBEARBUCFiBisIgqCpkNbG3RABJtWa80paDVg57X2O2beNqF0QBEEQBBUgDKwgCIIgCIIgCIIKES6CQRAEQRAEQRAEFSIMrCAIgiAIgiAIggoRBlYQBEEQBEEQBEGFCAMrCIIgCIIgCIKgQoSBFQRBEARBEARBUCHCwAqCIAiCIAiCIKgQYWAFQRAEQRAEQRBUiP8PDH7en/99pCoAAAAASUVORK5CYII=\n",
|
|
116
|
+
"text/plain": [
|
|
117
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
118
|
+
]
|
|
119
|
+
},
|
|
120
|
+
"metadata": {
|
|
121
|
+
"needs_background": "light"
|
|
122
|
+
},
|
|
123
|
+
"output_type": "display_data"
|
|
124
|
+
}
|
|
125
|
+
],
|
|
126
|
+
"source": [
|
|
127
|
+
"# generate synthetic data set with given GGP model\n",
|
|
128
|
+
"lat,N,model_name=30,100,'THG24'\n",
|
|
129
|
+
"# get the model definition\n",
|
|
130
|
+
"GGPmodel=svei.GGPmodels(model=model_name) \n",
|
|
131
|
+
"# see the model definition:\n",
|
|
132
|
+
"# draw N declinations and inclinations from the model\n",
|
|
133
|
+
"di_block=svei.GGPrand(GGPmodel,lat,N)\n",
|
|
134
|
+
"result=svei.svei_test(di_block,plot=True,model_name=model_name)\n"
|
|
135
|
+
]
|
|
136
|
+
},
|
|
137
|
+
{
|
|
138
|
+
"cell_type": "markdown",
|
|
139
|
+
"id": "a3bceed1",
|
|
140
|
+
"metadata": {},
|
|
141
|
+
"source": [
|
|
142
|
+
"Figure Caption: \n",
|
|
143
|
+
"a) Equal area projection of simulated directions drawn from the model for a latitude of ~30. Solid symbols are lower hemispheric projections. Grey contours are the probability densities for directions expected from the model. The latitude (Lat) listed above the stereonet was calculated from the data based on the average inclination. An infinite kappa implies no uncertainty in the directions. \n",
|
|
144
|
+
"\n",
|
|
145
|
+
"b) Empirical cumulative distribution functions (ECDFs) from data drawn from the THG24 model plotted against the predicted cumulative density functions (CDFs). Solid lines are the CDFs generated by the model for the declinations (red) and inclinations (blue) at the specified latitude and the dotted lines are the ECDFs of the data. \n",
|
|
146
|
+
"\n",
|
|
147
|
+
"c) V2decs from the data (solid vertical line) compared to CDF of 1000 simulated datasets drawn from THG24 (red line) at the same latitude as in a). Bounds containing 95% of the simulated data are shown as dotted vertical lines. The note, e.g., \\[221.6<=185.0>=130.4\\] is the maximum 95% confidence bound, the V2dec of the data and the minimum 95% confidence bound. Results will vary!\n",
|
|
148
|
+
"\n",
|
|
149
|
+
"d) Same as c), but for the elongations (E) of the data (solid vertical line) and the simulations (solid blue line). \n",
|
|
150
|
+
"\n",
|
|
151
|
+
"This example will pass all four tests ~95% of the time."
|
|
152
|
+
]
|
|
153
|
+
},
|
|
154
|
+
{
|
|
155
|
+
"cell_type": "markdown",
|
|
156
|
+
"id": "cd1f944d",
|
|
157
|
+
"metadata": {},
|
|
158
|
+
"source": [
|
|
159
|
+
"## download and unpack MagIC contribution for PSV10-24\n",
|
|
160
|
+
"- The Private contribution for PSV10-24 compilation is magic_id is:'20079' and the share_key is: '716ade67-ef46-43bf-8f70-99c7082871f4' \n",
|
|
161
|
+
" - NB: This will change to a public contribution on publication of this paper\n",
|
|
162
|
+
"- download the contribution with ipmag.download_magic_from_id()\n",
|
|
163
|
+
" - the directory PSV10-24 will be created if it does not already exist.\n",
|
|
164
|
+
" - the downloaded file will be put into the PSV10-24 directory\n",
|
|
165
|
+
"- use ipmag.download_magic() to unpack it\n",
|
|
166
|
+
"- run the svei.py module functions to see if the data represent PSV\n",
|
|
167
|
+
" - read in the site level data for a particular study\n",
|
|
168
|
+
" - Quidelleur et al., 2009 (passes)\n",
|
|
169
|
+
" - Calvo-Rathert et al., 2009 (fails)\n",
|
|
170
|
+
" - create the di_block array\n",
|
|
171
|
+
" - run svei.svei_test_varkap()"
|
|
172
|
+
]
|
|
173
|
+
},
|
|
174
|
+
{
|
|
175
|
+
"cell_type": "code",
|
|
176
|
+
"execution_count": 3,
|
|
177
|
+
"id": "ebafd385",
|
|
178
|
+
"metadata": {},
|
|
179
|
+
"outputs": [
|
|
180
|
+
{
|
|
181
|
+
"name": "stdout",
|
|
182
|
+
"output_type": "stream",
|
|
183
|
+
"text": [
|
|
184
|
+
"20079/magic_contribution_20079.txt extracted to magic_contribution.txt \n",
|
|
185
|
+
"\n",
|
|
186
|
+
"1 records written to file /Users/ltauxe/PmagPy/PSV10-24/contribution.txt\n",
|
|
187
|
+
"80 records written to file /Users/ltauxe/PmagPy/PSV10-24/locations.txt\n",
|
|
188
|
+
"2441 records written to file /Users/ltauxe/PmagPy/PSV10-24/sites.txt\n"
|
|
189
|
+
]
|
|
190
|
+
},
|
|
191
|
+
{
|
|
192
|
+
"data": {
|
|
193
|
+
"text/plain": [
|
|
194
|
+
"True"
|
|
195
|
+
]
|
|
196
|
+
},
|
|
197
|
+
"execution_count": 3,
|
|
198
|
+
"metadata": {},
|
|
199
|
+
"output_type": "execute_result"
|
|
200
|
+
}
|
|
201
|
+
],
|
|
202
|
+
"source": [
|
|
203
|
+
"reference_doi= '10.1029/2024JB029502'\n",
|
|
204
|
+
"dir_path='PSV10-24/'\n",
|
|
205
|
+
"magic_contribution='magic_contribution.txt'\n",
|
|
206
|
+
"ipmag.download_magic_from_doi(reference_doi)\n",
|
|
207
|
+
"os.rename(magic_contribution, dir_path+'/'+magic_contribution) # move to PSV10-24 directory\n",
|
|
208
|
+
"ipmag.download_magic(magic_contribution,input_dir_path=dir_path,dir_path=dir_path,print_progress=False) \n"
|
|
209
|
+
]
|
|
210
|
+
},
|
|
211
|
+
{
|
|
212
|
+
"cell_type": "markdown",
|
|
213
|
+
"id": "c59bea2c",
|
|
214
|
+
"metadata": {},
|
|
215
|
+
"source": [
|
|
216
|
+
"### Same as first figure but for a dataset from PSV10-24 Quidelleur et al., (2009), using model THG24. \n",
|
|
217
|
+
"This data set was deemed compatible with the model."
|
|
218
|
+
]
|
|
219
|
+
},
|
|
220
|
+
{
|
|
221
|
+
"cell_type": "code",
|
|
222
|
+
"execution_count": 4,
|
|
223
|
+
"id": "2bb978e0",
|
|
224
|
+
"metadata": {},
|
|
225
|
+
"outputs": [
|
|
226
|
+
{
|
|
227
|
+
"data": {
|
|
228
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEKCAYAAAAPRvR9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACsOklEQVR4nOydd7gTxdeA38Old5GqiIACiigoCthBRLFg7x27Yu+VEPUHqOhnRUVFLCgWVMAuKqJSbShV6V0B6R3u+f44Gwjhltx7k+wmmfd59knZ3ZmzO7PlzJwiqorD4XA4HA6Hw+FwOEpOKb8FcDgcDofD4XA4HI5MwSlYDofD4XA4HA6Hw5EgnILlcDgcDofD4XA4HAnCKVgOh8PhcDgcDofDkSCcguVwOBwOh8PhcDgcCcIpWA6Hw+FwOBwOh8ORIJyC5XA4HA6Hw+FwOBwJwilYDkcaIiIjROS5AtaPE5EzUimTw5EIRKS6iNSIXvyWqSBEpLaILBGR+n7L4nBkGyLyiYgMiPrtnn2OQOAULIcjM3kYeFRE0uoaF2GACJ/k9zuVdSeozBEiqLe0i/p/PxFGiTBRhGEiVIySIbL9WYmUJciIyJ4i8rmIbACWAUu8Zan3GVhU9V/gDSCc3zYi0lpEVESOyGf9eyLyk/f9KhH5QUT+E5EVIvJdfvsVhIhc5tUZWRZ59TQqalkORxoR17NPRGbHXB+RpXdRKospZ52ITBSRa0p0BI6MIK1evhwOR9x8BlQBTkhmJSlQgG4GLkpkgZ7Sk9fsX8Lr8ngNqAf84tVfHngP6KZKC+Av4LIoGeolQYag8xpQB7gc6Agc4y0dvM+g8xpwYX6zbar6C/AbcEXsOhHZFTgFeNX7qz3wLnYe2gLTgC9FpEkx5FqH9afdgAuAVsBQEckpRlkORzpQlGffQ9j1Eb08Uow6I+UcAHwMvCgi5xajHEcG4RQshyN9KS0iT4vIcm95PDJqp6pbsQfN+f6KWDJUWanKijSva50qi1XZ7P0+DRiuym/e76lArSgZFidBhqDTBrhEVd9W1RGq+n304rdwYtwuIn+LyEYRmS8ivSLrVXUisBAoyDTpVeBsEakc8/9FwGZMqUJVL1TV51T1N1WdBlwHrAY6F0N0VdXFqrpIVb/DZtlaAHuLyCEi8pWILBWRVSLyo4gcGnPc14jIXyKywTOD/FJESnvr9heRb7x9V4vIBBHpUAwZHY64EJGKIjJARNaIyD8icl/sNkV89q32ro/oZU0xRIuUM11VHwD+xu7ziEhvEZkmIuu92a7HRKR81DHtISJDvBnrdSIyVUTOi1rfXUTmePedxSLyRjHkc/iAU7AcjvTlQuwaPhS4BrgauCVq/Tjg6FQK5M0O9RWhpwhLRfhXhD4i2+81IogIt4vwtwgbRZgvQq98yos1GYyn/M4i/CDCchH+E+FLEfaNlIedk25RpngN86mrnAhPifCPCBtEGCPCEUWRJR/2Bf6M+r0/MLnws5vRzALK+S1EAfQEHgR6AfsBZwPzYrYp7HobCOQAsSPblwODVHVtPvuVBcoDyyN/RJn/NYz3ADzWe59lsFH+N4EjMQX3d+AzEanp1XEw8DymlDUDjgW+iCrrbWCRt++BQA9gQxHlcTiKQh+gE3AmNsN7IHBUHtsl5NnnKUQDirHrBuwaA1iLXeP7AtcD5wH3R23bF6iIzdbvhz3DV3j1nwnc4e3XBDgZOzZHGuAULIcjfVkE3KSqU1X1PeBx4Lao9QuB3SMjzinkQmALcBhwA/bAiH6pjOdltSTlVwKewl782gMrgWEilMVM8Eaz3WyvXgF1P+aVezn2IP8T+EJkBxO+wmTJi4XYCysiHIC9uA4tZJ9M52agl4js7bcgsXgzTrcC96hqf2+UerSq9o3ZdCGYsp4XqroCGEyUmaCIHIKZFb1SgAiPAGvYsY+sxEwHN+e5R97HUR+4E5gP/KWq36rqm6o6RVWnAjdiL4aRmbIG2MvhUFWdo6oTVPX/VHWLt35P4Gvv/jNdVT9S1dHxyuNwFAXvOrwCuEtVv/RmjbsCuXlsHu+z73/ebFj0cnLU+hnYczZeGUuLyGXYoNk3AKr6sKr+pKqzVfUz7PkXPbu2J/Cjd33NUtUvVPWLqHWLgK9Uda6q/qyq+Qa3cgSLVL94ORyOxDFGVTXq92jgYRGpqqqrsNFqwUa/i2P2UFwmq9Ld+/6XCFdho43viBB5Wb1Flf7eNtM92UtcPoAqg6M3FqErsApoo8qPImzCM9vLrwIRKmGmWVeq8qn337WYP1A34IF4ZMmHN4F3RfjTk+scVTbGeeyZyhBsBmuaiGzElNZtqGpVX6QymmOyfVPIduuBCoVs8yrwrYjs4yk1lwMTVXVsXhuLyM3Y7PSx3jUNgKp+BHwUh+yVRGQNdh+oCPwKnKGqm0SkNhYQoAPm/5bjyd/A2/drYA4wS0S+BL4CPlTV1d76J4FXRORS7NwM9o7J4UgGe2GzudueFaq6RkT+zGPbeJ99T7Ld9zHCNoVKVTvGKdv/RKQHdp/YhA12vgQgImdhA297A5Wx6yzaB/JpzGerM3YdfeT5bAK8jw0+Ra7BL7ABj2x/XqQFTsFyODKXGsCGYtqUl4Q/Yn4vBGp73+N9WS1u+YiwF/bi2BbzbSrlLQ2In70wE4+fIn+oslWE0dgxxCVLXqiyDuhSBFmygRv8FqAAJM7talB4xMMR2IDC5SISwkaye+RZqSlXjwAnqGpxzYLWYYEtcoF/YswQX8cUq1uB2cBG7LosC6Cqq0XkIMwEqxNwL9BTRA5R1YWq2kNEBmLBBI4HQiJyrar2x+FIPPFehxD/s2+Zqk4vgUwRIoraOmBRZOBTRNoBgzAz21sx079TMFNHAFT1VU95OhGzZhglIr1UtYeqzhORZtig3bHAE9h11rYAk2JHQHAKlsORvrQVEYmaxWoHLIwa6W6BjVinmlizJWW7OXJRHpLFKR9gGLAAG/lfgM2GTMZ7cYyTiJyax7ro/wqTxREHqvq63zIUwGRM+eiIOa/nRwtgZEEFqaqKSH9sVHoqNmP0Zux2InIbFpnsRFX9sZhyR6rM7wXyCMzE2JuhlTrERLD0zAG/xWbdQsC/mB9IP2/939g5eUZEXgCuBJyC5UgG07H7bTtgJoCIVMKuuxkx26b62ZefonY4sEBVH478ISJ7xm6kqvOxa6qfiNyN3R96eOs2AJ8Cn3oh5Bd75X6V6INwJBanYDkc6ctuwFMi0hez+b6THUPMHsmOTulBIN6X1WIhwq6YM3E3Vb7z/juIHe91m9jRRCMvpnvbHcG2hzk5WECRtxMstgMQkXKYT1tzTFGdBLzjtzmMN5PzNOYjthFTonYFWqvqC2DRzYDWwE5RzfJgADbD2gf4WFWXRa8UkTuB/2HRBf8SkbreqvWqutLb5nTMh7Gjqi4o5qH9BVwkImMxv8XHsD4fkeNkbCZ3JPAfZkpYBZgiIhU8+d/HZr/qYNdKnqaODkdJ8cwBX8VyXC3BrAW6k/e9PN5nX5Wo6ytC9HX2DTBOVe8tpth/Yb5gF2KmjccTE93Qu7d87m1bFfOBnOytuwx7do3FTB3PxZTMhD87HYnHKVgOR/oSiUo2FnshfRX4PwAR2R0LvJCMvE7FRpXVIngvq8S8rPJCAqpYjiWnvUqEecDumD18tE/PbKCNFz1wDfCf6o6O0qqsFeEFoLcIS7Eod7diL5KxwQ0cJUREmmMvRFXZHmHxKiAsIp1VdYpvwhn3Yn3rQaA+8A+WXDjCqcBcVf2hsIJUdZGIfIaZieYV3KIbZp76bsz/r7M9X1o1LFBKGYrP5dio+S/Yy2oPvHQBHiuwUNPdMf+tGcCVqvqDiJQFdvFkqoslh/4Ei3jmcCSLO7DBgI8wc7xnvd/bKOKzr7u3RDMwat+9KFoAph1Q1WEi8jgWdKkCNuvUnR2fIaWw49gDS8fwDXC7t24FcDc2mFEGU7zOUNVZxZXJkTqcguVwpCGq2j7qZ17+K7cAAzzTg6BR2MtqsVElV4RzgWeAidhM1O2wQ+CLPtiL4WTsodcIU7piudv7fA2ojiWK7awaf1QpR9w8jZ3fiyMmriJSFXgLezk53j/RQFVzgd7ekhe3YiZ98ZZ3SgHrGsax/wBsJqzY26jqBMxPMZo3o9b/iM1a5bXvJixxscORMjy/o0u8JT9uIY5nX5zXWYm38Wa/YmfAXohaf2MB+36MJS52pCGyYxAyh8ORCXhmRm+o6j9+y5LNiDACmKhatCAOIihwtiofJEWwgCEi64BDVHVSzP/7Y9EyK+W9p/940fguAx5X90B1OHzFPfscQcE5YzscGYiqPu4eMIHhahHWiHBIYRuK8KJISkPqB4UN2CxhLNUIePJaVf1XVR9zypXD4T/u2ecICm4Gy+FwOJKECLuzPTfSvMLyXYlQG/NDAlikSlaE4hWR14FDML+rMd7fh2K5ZMapale/ZHM4HA6Ho6g4BcvhcDgcviIi1TG/uC7AVu/vUsBQ4LJIVC+Hw+FwONIBp2A5HA6HIxCISBNgHywP2eQEJQF1OBwOhyOlOB8shyOAiEhLERktIn+KyDAvolpk3b0iMl1EpolIwqKriciNXpmTROSxZNYnIg+LyB8i8ruIfCUiuyW5vs5eedNF5J5ElBlTfnkRGSciE7zzF/b+ryEiX4vI397nLgmss7qIfCAiU0VkiogcmuT6bhaRid7x3eL9l9D6VPVvVR2mqkODpFyJiIrIWhH5n9+yONIbETlWRNaISK6IHOu3POmEuw4zDxH5VkQ2iEhJEqoHE1V1i1vcErAFGA8c7X2/HHjY+94cmACUw8KLzwByElBfB2A4UM77XTvJ9VWN+n4T8GKy6sNyhc0AGgNlvfKbJ7i9BKjsfS+D5SZrhyVvvcf7/x7g0QTW+TqWlwjvuKonqz6gBRb2viKW3mM40KQk9WGh9CtFfc93SWRbFfP4Fdg76ndTYAiwBEvC+yXQLGr9ZZip45qopX3U+huAn7Gk2wMKqfs8YBqwEvjXa/eqiTy+mPoKlM3rA32xfHMrgZEx6w/C8tutwVIw3FxAXVdiqRTWYHnQdkvicXUAvvNknp3H+obe+nXAVODYqHX1MHPVhV5faFhAPbWBd7xtVwI/AW3z2G52dB1uiasNY6/Dmt75XYbljBoNHF7A/n2wJL2rvTa+JGrdkTHX6xqvvjOTdCyXYjnoVgHzsXtp6UKOfW2UbK9ErWvh3YOWApqCdijK/atQ2bz75Y9+969EL24Gy+EIJs2wlxSAr4Ezve+nAoNUdaNassHpQJsE1Hcd0FtVN4JFRktmferlOvKohD08klVfG2C6qs5Uy98zyKsnYagRif5XxlvUq+d17//XscStJcab0TwKSy6Nqm5S1RXJqg/YFwuXvk5VtwDfA6eXsL792Z4od/9ClqBRHXvhboYlnx6HKVzRjFbVylHLiKh1C4FHgP5x1PUT9tJYDRskKO3tWygiUiee7WIoTLZ+QA2sT9TAcoBF6quJKUovYQnE98aSq+Yl29FAT6wP1cCSeb8Ttb6WiEgx5M+Ptdgx3ZnP+newXGy7AvcDH4hIJPFyLnZcZ+azbzSVsQGy1thxvQ58KiKViy+6Ix/WYAOQtbDE148Cw0QkvxyvazE/z2qYgvO0iBwGoKo/RF+vwMlsV/wLRESqiUi5IspeEcvZVRPLR9eRwhN1t4yS8cqo/zcD7wFX5CNfce4DBVGU+1eBsmUyTsFyOILJRCCSjPRsLMs7wO7smFl+vvdfSWkKHCkiY0XkexGJhBRPVn2IyP9EZB5wIZbdPln1Je0YohGRHBH5HZtl+FpVxwJ1VHURgPdZO0HVNcZmT14Tkd9E5BURqZTE+iYCR4nIriJSETgR65PFrk9VO3hKYeR7vkuCjiFhqOo4VX1VVf9T1c3A/wHNRGTXOPf/UC2J6LI4tp2nqkuj/tqKKS554pmOXici4ygkGXFRZRORZth96WpVXaKqW1X1l6hNbgO+VNWB3iDJalWdkk9VXYD3VXWSN/DxMNbH9vLWXw7MEpGwiDQq6nHkcVzjVPVNYGYex9UUm3kLqep6VR0M/ImnUKnqP6raF1OcCqtnpqo+qaqLvPPTD5thblbSY3DsiKpuUNVpaonABbs2dsEU27y2D6nqVFXN9e7PP2DRSvPiUuADteTGOyEipTxzz4HY86VmEWV/wVPqNqnqAmAgcHhRyogqa5qqvgpMymeTAZ4J+3VeQKESUcT7V2GyZSxOwXI4fEJEhns+LbHLqdjLRTcR+QWoAmyK7JZHUXFFqimkvtLYg6kdNsL7njd6nKz6UNX7VXUP7MESScRb7PoKEiUJZe5coL1MtQLqA21EpEWi64iiNPZC+IKqHoiNzCbctyyC95L8KDab+gVmZrklUeWLSHdPcYv9v4KIdM9rn4BxFLBYVaNfOA4UkaUi8peIPFjAqHqhiMgRIrISM206E3gqZn0pEekkIm8Dc4DjsNmhU6K2+UREVuSzfBKnKG298sPesf0pItGzOu2A/0RklIj8K+Y/2iC/w2LHazPyvQWAqj6KmUfWBn4Wke9E5JLYfiIi9xRwXCviPK79gJmqujrqvwne/yVCRFphClZgfAozDRH5A8uXNxQznfu3kF0QkQpYaoidXvy9PnYW22fno9c1FpGHsBnXJ4FfgSaekoSIXFBQfyzgejgqL1liGCkii0XkQxFpWNgxRnEKdj84DpgjIm9794sddIAE3SMcHsW+4TscjpKhqoU5OB8H20ZXT/L+m8/22Sywl/mFJa1PRK4DPlRVBcaJSC42IpeU+mJ4G/gUCJWkvgJIRpn5oqorRGQE0Bn4R0TqqeoiEamHzW4lgvnAfG8UFuADTMFKVn14o5CvAohIT0+GRNUXAl7E/F+iqeite6iY5SYdEakPPI/N3kQYiSkKc7CX9HcxhbRXcepQ1R+BaiKyO5YrbHZU/TcAd2E+DgOAm2JmvCJlnFycumOojx3XYGA3bPT/UxGZ7Cnh9THFvxM2A/QYZnqX18j8Z8C7IvIi5hfTHRv42KZAqeoYYIxYUJVTMV+Np0Tkw4iJlKr2BnqX8LgqY/5S0aykhDPdYqa8bwJhdakGkoaqHiAi5TGz5bJx7vYipkR/mce6M7Hr6fvIHyLSEnga8xMeBJyuqr/mIcvb2DMtbkSkK3Aw5pOYH0djOQIrYuZ5n4hIK89ku0C8WfaPgY/FzHgvwAbMaorIY6r6nLddIu4RDg83g+VwBBARqe19lgIewB4GYCN054lIOTGzmSaY/0dJ+Rg4xquzKfaQWpqs+sTCcUc4BXM4Jkn1jQeaiEgjESmLjYoPLWGZOyDmL1Ld+14BOBY7pqGYqQneZ6yfTrFQ1cXAPDGTLTD7/cnJqg926JMNgDOwF+dE1SfkPat4IBZEIpCI+eh8BfRV1W3+Q56Z2CzPFOlPTEE8q6T1eaPkX2AveBEaYbPPvwN/EIfZTglYj/lUPOKZNn2PBYY4Lmr9R6o6XlU3AGHgMBGpFluQqn6DKc+DMUV0NjZDNz+PbTdix/Y7NpufaL+8NWxP8B2hqidPsfDuA8Mw38ViKdaO+PHMBd8B7vGUoXwRkcexgYJzvEHFWC4F3ohZVx1LITEdU8wSMiMpIqdhAwQn5DUwEkFVR+p2X9ubset+32JUuYzt19IuXjmOJOBmsByOYHK+iHTzvn8IvAagqpNE5D3sZXoL0E1Vt+ZTRlHoD/QXkYnYC8yl3sMlWfX19pSDXOzl6lpIzvGp6hZvlP9LLKJgf1VNtD14PeB1EcnBBq7eU9VPRGQ0Zm55BTAX86dLFDcCAz2lcSbQNVJ3kuobLOZjtBlrl+Ui0rsk9YnIakyxUmCmiES/0OQA5dk+uBAoxELSfwUMVdXCwkYreZuqFofSQMRPCVW93WuHi7Coi1VF5E3sBfHvKHk/xyKl5cUPqnpCHHX/Ecf66DaMfM/z2FX1eWz2LzKw8wDm7xeReVfgfOASbHbsLaBDtF+XiNwH3JefQGoBCwpjEtBYRKpEmQm2pIgzEVEylcMGrRYA1xSnDEexKYP5qE7Ia6VYCo0TsCi9q/JYvwfQnph2U9XvvdnqE7B77RPeNfU65nO71dv/QizIS340V9W53radgZeBk7yBmKJQpHuKN6h5CXAxNjs7ALhbVZdEbZOIe4QjggYglKFb3OIWt7gl+xZspPgyTNG+yfsdWc4HDvVbRk/O2PDQVbGZ1efy2f4ELAAI2Kj3RCyAQmR9aUx57IWZkJUnnxDNWBCYBtjL1J6Y2dKHBcjaGngWm4HuX4xjzVc27OV1OvCgt93h2CzPPt76Y4DlQCtv2//DXszyqqc8Nosg3vGNAHpGrb/CK/t9zES6pOkaSnl1noAN6pQHykatH4OF8Y6Ymq0AasXIG4l42gwon089ZbCZq4/za1Nvu9m4MO1FbcPY67AdcARmcVEBuNvrM3mG+wfuxcxR6xVQx33EpB7IZ7ua2EzSb5jJee0iHssx2GzSUXFsu593TeVg5qxPYakbynjrxeufzb1zVB4v5Yq3vr93P3gWaJ2AdijK/atA2bxtLiMDw7T7LoBb3OIWt7gluxfMvyDfl1G/lzxe7C5l57w0a4AG3vo+WA6otdjs4kORlyFvfQ+2z9xFlh7eugYxZf0PM5tb6332A3aNQ+ayQJtiHGu+snnr98PyDa3FZppPj9n/OmzmZjmmaOwRtW4ScKH3vTo247UWWOy9rOVEbdscqJHANmyfx3GNiFrfEFPy1nsvr8fG7B+7r0ate5HtufyO9tavi+kbR8aUNzu2DrcU+To8GpupWo2ZEn9PlMKCDU5Mitl/Y0y73BdTx1TgiiLK1RIvD2IR9vkOs9KIluXzqPWfR2TDlLFp3rXyL6a8N4npu7H9c3bU+jZEDSYkoB3yvUew8/2rQNm8bS4jAxUs8Q7OF0TkA2CUqj7pmxCOhOH5C72A+RrUwEw5RvgqlMPhCDwicjawSVWHxPx/KqaYfOCPZNvk2IC9mD2jqg/6KYsjvRGRjpjfWTngRFX9zmeR0gZ3HWYeIvI1NhM5TlU7+i1PIvE7yEUYeCAvB9hoRGRASUJEisgIEXmuuPvHlNVNRP4QkVXeMlpETorZpoeIaMyyuAh13OftkxCZi0Mxz/mJmG1yF8wnZVTCBXM4HJlIDyzMcixrvXW+oqrlVbWae6lzlBRV/UZVq6tqBadcFQ13HWYeqtpJVatkmnIFPitYak59MzHn3HRhPmbnexAWVvNbLPTlATHbTcOUjMgSV9QjEWmHheEtzJk4iOwNLFLVUaq6WC15pMPhcBRGY+yeGct0b53D4XA4HGlDUhUsEeksIj+IyHIR+U9EvhSR2LCSQzFn5qTUIyIDMDvdblGzSQ2LW5eqDlHVz1V1uqr+par3Y/a/sdnAt3hKRmRZkkdxscdRDUu6egVmv15kRKSKiOSKSHvv9x4iMkFEnvMinBULbxawr4j0FEsw+a+I9PHMAiPn+f+ABt45nl3cutIREenvnZOJ+awXEXlGRKZ7M6AHxVnu1YmV1NWXqfWl+bEtx0Lyx9KUEoTKdjgcDofDD5I9g1UJi3bSBnMwXQkM88IKRxgHtPFyRiSjnpsxh9zX2D6bNC+vQkTksqIoYCKSIyLnYVFdYs3hGovIAhGZJSKDRCSeUdh+wAeq+m0J5GuJRW35Q0QO8eR6WVVv0O1hRIt0nFFciDllHgbcANwCnOutuxlz5J6PneNDilh2ujMASyybHydgL5BNgKsxX7V4yPclVkS6JHqdqy+t6wvMsRWDIcD/iYXqjtTdDHgSc+h2OBwOhyNtSKqCpaqDveVvVf0D889phClCERZiYU13S0Y9atnTNwHromaT8sursxIzU9lcUH0isr+IrMGcLV/EoihF5zAYi0VFOQEz96sLjBLL6ZFfmVdhJnYF2RbHI19LTIHsgM0OXqlelu4ilpMXk1W1uzdz9x4WBacjgHeeVwNb452xyyRUdSQFJ0Q9FS9xoaqOAaqLSL0SVlvQy29x17n6MrO+VB9bUbkLuy9NFpF5IjIPizi3CrgzRTI4HA6Hw5EQkhpFUET2Ah4G2gK1MIWuEham9W1vmybAX8D+qpqfedUAoKaqnlycekRkBDBRVW9I0HGVxUJRVgfOxJSo9gXIXxnzNeudV8REb6T2RyyM61Tvv2LJLCIvA+dhuQZmAPsVoFAWVM4Aos65J880Vb0mapvXgV1U9RTv9x3ADarasKj1ZQLejOAnqtoij3WfYO3/o/f7GyzJ3895bHs122cHWlesWDHP+rZu3UpOTt5Wn8Vdt2XLFkqXzjv/uKvP1uXm5uJ9YevWrYgqpVXJVWUrliBEsMROm7FQYXi/t2KjSbB9dCPye6u3TRnvO1G/I+vVKzsn6ndpsVyTm1QpFfV72/pI2aomjwg5CBu1PFupjk04g6VkycFua4pFA85BqISQSy7LkW2/YSt/q6omdJBORDph+V4E+BX4Rv0MdQvUrFlTGzZs6KcIgWbmkrUANK5VyWdJso9ffvllqarW8luOVJBJ16G7ZjKL/K7DvN80EscwtmcyX4CZl03G8nNEqOF9lmTGI556EoYXvGG69/NnzxTvVsx3Kq/t14jIJPL2MQDz36oJTBTZlpg7BzhKRK4FKqnqxjjFa4klvrsDMw+8CMs0nghiZ7wU/yNRpgt5ZVzP88VRVfth5qJUqlRJ165dm0y5HEVh+XJObNeOf+fM4edNMTFccnKgYUOoXx922w3q1YOaNaFKFVsqV97+Wb48lC0L5crZZ2SJ/C5TBiSvLlN8VJW5c+dSpkwtbryxIh9+aP9XrAhdusCRR0KrVnYIdeva4RSEiKxPqIAm49fA14kutyQ0bNiQn3/eaRwkbgYMGADAZZddlhiBAsa5L40G4N1rYt2QHcluexGZk5SCA0g812G6XGvJumbS5fgzjfyuw6QpWJ453L5At0goUs+xP7bOFsBCVf0nifVswhSWZFGK7QPVeclYHtgHM6nLi4+B2DvHa1jG8Z6Y/IXiBbFoAVykquNEZCDQXUQGquqWeMpwJI35wB5Rv+tj5rGOdCA3F559FkIheq9cyTowLeSEE+Coo+DAA6FZM1OcAoqIULnynnTqBL/9BlWrQjgMV1xhep/fiEhbzOS4NjEDN6p6ky9CJQD30pO9uLZPLdl+vrP9+INGMmewlgNLgas8e/rdgcex2aVojgS+iKO8qiLSKua/FcDcOOqZjQXSaIhlmP5PVXNF5AbMpG0fABE5Hcsm31FVF+QlhIj0Bj7F/JyqABdggTVOitqmDzarNhd7WXgQM1l8PWqbbXWr6grvWKLrWevJmafZYT40BSoAv3u/H8aykl+ONyMS73FmEyLyMfAK8Jmq5iapmqHADSIyCDNlXamqi5JUlyORrFgBZ50F33wDwAEdO8Idd8Cxx0I+5oZB5Jlnnqd//72ZMOF4mjSBL76AxgEJgO6ZFz+GWQYsZMfZXV9NBEvKiBEj/BbB4ROu7VNLtp/vbD/+oJE08y7vRfVc4ABgIvA8pmhsM3XzZnZOB16Oo8gjMdO36KVPPPUAfbBZoMmYKWID7/+aQLOo7ap5v8uQP3WBt7AgEd9g0fJOUNXPo7apD7zjbfOhJ0s7VY2eRoytu1DiiP7XEgs0MQtAVad7sj4gItEzbPEcZzaxFngXmO+Foc/PlDNfROQdLFplMxGZLyJXiMi1noknwGeYH950rL9fnyDZHQlkzpw5dO3alfnz5wPw4yefcGHjxiz+5huoXZvvHnqIOw88kLnNm6eFctW/f3/Gjh0LwAMPPMKECUOoXRu+/TY4ypXHzcBNqtpUVduraoeo5Zh4C0lWugSHwxEf7hp0ODxU1bcF6AZ85acM6bQAYSyyVmm/Zcm0BagKXIelDcgFRgKXABX8lKtixYrqSB0fffSRAvrrr7+qbt6sH7dooXuDzm7USHXOHH3vvfe0WbNm+uWXX/otalzUrl1bb7nlFp0zR7V8+c0KK/WLLxJTNrBWE3f9rQQaJ6Cco7Ak8BPzWX8i8DnmE9kOGFtYma1bty7ReerXr5/269evRGUEmXNeHKXnvDjKbzECSbLbHvhZA/D8jF6ScQ1qnNdhulxrybpm0uX4M438rkO/h2A3Azf6LEM6cSJmVuj8qRKMqq7CclO9ICL7AVcCLwHPemZ9T6nqFD9ldCSf0047LfISAPffz6kTJ3JqnTrw44+w226c3aABZ599tr9CFoGffvoJEeHRR2HDhtKcfXZVjj/eb6ny5B0sj1zfkhSiqiMLye+3LV0CMEZEqotIPU2iue67774LwFVXXZWsKhwBpVhtv2ULLF4Mw4fD99/DIYfA9elj8ODnNZjt11oijn/1alizBrZuTdyyZcvO/61eDStXwrp1oFq0BYq+T0n2b94cHnmk6OfSVwVLLVqaI05UNduS96YcEdkNewCcjPnxfYAFp/hDRO5V1T5+yudIEX/+CY8+CqVKwbvvWlTANGTvvffmn3/g1Vftd48evopTEPOAsIgcDvxBTMRSzSO9RTHZnR0Tzc/3/tvh5S46VUKDBg0oCcOHDy/R/o70pcC2z82FOXNg6lSYPx8GDICJE2HVqu3blC8Pe+yRbxFpSlzXIBT9Osz2a60ox79unXW3FSvY9oyYNAmWLk2efHlRtqwFzC3KAkXfpyRlVK1avGPzewbL4fAdESmDKVWXA50w/77HgHdUdY23zTlYoJCUKFgi0gXoUq5cvsEpHUng7rvvZt26dTw7bZoNs91wAxx9tN9iFYsxY8Ywa9YsZs8+h40bczjlFBuJCyhXYgGIDvOWaBRIlIIVV7oEjUqVcPDBB6d1kA1HQPj7b3j5ZRg0CP77D2LTb4hYVNK2baF6dWjd2pYARyYtJsVKWeKuw6Kzfj3MmAEDB8K0afDvv9uXlSt33LZhQzjjDPPNrVbN0nQkayld2rKVVK1qGUkyFadgORw2cibA28A9qvpHHtt8jUXGTAmqOgwYVqlSpey0dfCJzZs3s2n+fPj6a4tdHg77LVKxGTBgAO+//z677HIeANdcU8gOPqKqjVJUVcrTJfTta1aP16eRmZcjMfR99lkYPZrrd9nFZqg2bjQlqmlTe8OsXNmSzzVpYmkfMk+ZyoukXYPZfq317t2XKVNgwYLr+fnn7UpU6dLW5erUgYMOss/atW3ArXZtU3SaNrU0jI7E4RSsEiAiFYBGQGPvc08sOmAt77MKlh+rlvcdLGT8JmAdsAwLMb8Ee8mfiUUAnAks1W3OII4kcyvwvqpuyG8DVV2OtbEjg3nyySfhnHPsx3XXQY0aBe8QYJ555hmOO+4uzjxT2G03gup7lWpSni5h2LBhQPa+9GUlq1fDE08w7KGHQJXry5SBQw+Fl16CffbxWzq/Sdo1mG3XWm4uTJkCw4bBe+/Bb7/Z8e+22/VceCHsvrvlu+/YEUpo6ewoBk7BihMRqYRFvGmDhUNvBTRhx1D3G4B/MaVpKZYHayMWDv0cb/0PQFksL9auWLSdWkD1mCr/FZEJWE6rX4EfVXV+wg/MAdABS/a8g4Lltfmzqnq5H0I5fGDpUvj4Y/O9ujG94++ULVuW8eMtFvuZZ5ppRlARkWcKWq9xJhr20iW0B2qKyHwghJeOQlVfxNIlnIilS1gHdC2+1PHx+eefF76RI3MYNw5OPx0WLuTz9u3h8svhwgvtnpIF+HkNZsu19scf0LOnxUFZtsz+a9YMevb8nM6doWXLrOlugcYpWPng+eUcDpwAHA20Zvv5mg1MwHInTcNmnGYCS/KbdRKROgCqekk+6ythMySNgL2B/TEl7mZMIUNEZmHhw4cDn6vqspIdpcPjUuAeLIdYNBWwUO1OwcoCNmzYwBEHHcSdmzdz7gknQP36fotUIp588kkGDToMaMepp/otTaHsH/O7DLAPds/9Nd5CVPX8QtYrlh7E4UgcqjBiBNx/P4webTZY334L7dtv96jPEtw1mDwmTbKAkiNH2u/zzoPjjjM34UaNsq6rBR6nYEXhKTldsOTHx2MJeTdjuZEex2afxnjmYkXl94JWqupaLFHyDsn5PEXvACzR8pHASZhCkCsio4FhwLuqOrsYMmU1IlID870SYBcRiQ5/n4Od63/8kM2RetavX0/t1aspB3DppX6LUyI2bdrE7bffDjxMtWrtOOoovyUqGFXtEPufl4j+Vey+m7Y8/fTTANx8880+S+JIOGvWwJNPwptvwvTpUKkS9O4N114L1aq5tk8xmXi+f/vN9PYxY2D5cpuZCofh4otNqYomE48/ncl6BUtEcoBjgYswxaoS9lI9GPgEGK6qsTMbRUZVbynmfpuBX7zlKREphc2mnewtvYHeIvITFqThnWIqgNnIUix6kQKT81ivmHmDIwvYZcMGPlu50jx9TzrJb3FKRNmyZenbdw3XX6906JCekZpUdYOI/A/4EnjRb3mKyzfffAO4l56MYvlyU6ruvhs2bLAoAs8/DxddtENMZ9f2qSXTzvevv0Lnzha5/6CD4Oyz4ZRTYK+98t4+044/3claBUtEamGmX9cCDYEVmILyNvCDqm71TbgCUNVcYLy3hESkEXA+cCHwPNDHs4Huq6q/+CdpWtABm736FjgT+C9q3SZgjqomNcKYIxg888wzvPLYYwxWpUmnThbdK80ZNaoSAB12mhtKK2oBad0YQ4cO9VsERyIZMMBCcm7aZJEDHn98e2CcGFzbp5ZMOd/Ll1vOwuefh112gR9+sHzThZEpx58pZJ2CJSJNgLuBizHfphHe7yGqutFH0YqFqs4CeopIL8xn6xpsNu5yERmDzXAN8xQzRxSq+j2Ap6TODVLURpcHK7UceeSRjHrsMTMPPOUUv8UpMZMnT2Ho0I+AKzjmmDp+i1MoInJb7F9APWzg6LPUS+Rw5EHPnmav1aaNmQJmoY+VI3ksXWoxUT791CIEnnwy9O8PtWr5LZmjOGSNgiUiBwD3AWdjsxOvAs+pal6mYb4gYSmDJdzcBRigofhnTzzl4DfgWhG5GwvOcCsWHW+Sp4ANCurMXKoRkYOA3z3Fc1dgV8nnQamqcTvZJwqXByu1HNiyJYPWrbMfxx7rrzAJYPjw31i16n6qVTuH/fYLvoIFxIZszMXSV7wG9Eq9OImjTx/LTX7HHXf4LImjWEyaBKNGWRCLt982m61hw8wssBBc26eWdD7fo0ZZirRVq6BTJ/OzateuaPp7Oh9/JpLxCpaI7Ak8go2ErgEeA55S1SAGLxiI+VWVBm6UsOytIV1byD47oaorgWdF5AXgXOBe4C3gHk/5+jxIszU+8TNQFwur/zPmb5VfhvkAB7h2JIJvX36ZpsuXU3/PPXf2HE5D6ta9ADiDQw8tmxYD7ClMNJxyRo8e7bcIjuIyYoSFadu82RwZzzkH3norLuUKXNunmnQ93089BbfdBtWqWY774o7xpevxZyoZq2CJSH3gIyxn1VZMsXo04AEgOmOhwQEqAs0oQojiWFR1CzDQ88k6E+gJfArMF5E7VPXdEsqbzjTCRsgj3x1ZysaNG+l47bU8DDxwzDF+i5MQxowBKM+hh/otScGIyK9Ax8h9WUTOB4Z6UVUzgsGDB/stgqM4TJ0KN91k2Vo//dQSDRUxmZxr+9SSjuf73Xfh1lst1PrHH0P16sUvKx2PP5PJuFRkYpyLzUocDCwGmqrqPQFXrsDCwW9ke2S7mYkoVFVzVfV9YD+gP1AfeEdEnhKRqgXvnZmo6pzILJ73Pd/Fb1kdySUnJ4cfOnTgQoDDD/dbnITwySdvAc/Stq3fkhRKK7wkpB4vAWlh0+jIYAYOhP33h8mToU8faN482Jm6HWlJ375w/vmw3342c1US5coRPDJqBsszB+wHHIfN/LwL3IQpFvN8FC1ezgAewCJn9dGQrkhw+aWxkPQTgR+xc3O2iNygqh8luK5A4/lgxYUfPliO1FG6dGmOmOmNZaSBRlIYW7bAjBnDgNkcckisa1PgSQODxqLRu3dvAO655x6fJXHExTvvWLj1gw82X6u6dYtdlGv71JJO5/uvv+G9JywQ5cCBiUmlkU7Hnw1khIIlFp3gUuAZ7AF9E9AX852pBsz3T7r40ZCuAu5KYhUCDAI+U9XvReQ1bMT4QxF5A7jJ89/KBgryu4rG+WBlONddeilV58zh0cqVYd99/RanxPz9N+TmvkuDBhuoUcNvaRy///673yI44mHdOrj5ZnjlFZtS+OIL2HXXEhXp2j61pMv5XrIEFi20oBZDh8bt0lco6XL82ULaK1gisisWEfBUYCRwmRe6HMz36jKfRAscnl/D3VG/x4lIW2zW7D6gg4hcHAlfnuGkt9/VZZfB66/b99KlLVnGfvvBWWfB1VcHL7Nsw4Ywx7O2rFABGjeGG2+0fDI+o//+i4KNWGeAGdCECfbZqlV5fwWJn5NEJDKwUwo4XkR2CEKkqh+mXqzEMGjQIL9FcBSGKnTtCu+9Z5/du5dYuQLX9qkmHc73lCnw119QsSIMfSNxyhWkx/FnE2mtYHnKwfuYzf7tWHRAl++pCKjqJqC7iHwCvAl8KyL3AY9n8rkMum9VXHmwjj0W3nwTtm61IbFvv4VQyP775huoVCll8sZF9+5w3XWwZo0l67z2WjM6P/dcX8V68bDDbLS6dWtf5UgUX375K/ASe+75ALCH3+LEw6sxv5+P+e1mkR3JY8MGuOsuU67CYbtPORxJ4LvvLBBlmePNrS+RypUjeKRlkAsvkMUNwA/YLNVhqvpkJisEyUZVx2FBQd7HkhN/LCK7+CtV8hCRg0SkVNT3fBc/5FPVYap6dU5BMyrlypl/wO67Q6tWFud1xAj49Vd47LHt223aBHffDfXrm9J1yCHw5Zc7ljV1qiXYrVYNKleGQw+FP/+0dX/+CR07QtWqUKUKtGxpT4qiUqWKybv33vDII9CkiYVNArjnHovSVaGCzXbddZe9+ESYNw9OPRVq1LChv332gejRuocegj333H5OLrkkfrkmTrTP/fcv+jEFkAkTZgEf0KJF8HUSVS0VxxL8AymAhx9+mIcffthvMRx5sXo1nHgiPPssnH02PPhgQot3bZ9agny+J02yR+wuu8CBByZn/DPIx5+NpJ3+LCJlgOeAq7GQ45eo6n/+SpUZqOpqL0zyj8CTwGgROUlVZ/gsWjLIzDxYLVpYIszBg200FszkZcYMS5JZvz589hl06QLjx5uytHAhHHGERdCLhDIaN85mxgAuuMC2GzfOhtz+/BPKR5mfNWwI7dvbrFRRKF/e8suAPW369zdlcfJkm90qVw4iD4vrrzeF67vvTNGbNm17OYMHW6Svd94xJenffyNxygvl0Ucf5Z733uMT4KQWLYomf0BZsuRM4AyOPtpvSRwA06L7qiM4LFoEZ5xh94q+fe2ek+Ckca7tU0tQz/fGjXDxxfb4/PJLuOer5NQT1OPPVtJKwRKRatgMSydsluV+N2uVWLzQ5c+JyATgY2CsiJymqj/6K1nCydw8WM2bw/Dh9n3GDFM8Zs+2cEUAN9xg6196yV4snn/eFJz334eyZW2bpk23lzdnDtxxh80agc1ARbPXXlCvXvzybdliyTr//NNMBmHHkeOGDeG++0xpiihYc+bAmWeaogc7JgOeM8fqP+448z1r0MD8qeLgnNNOY8N999EuNzcjAlysWgXz50O5crJTMzn84a233vJbBEcsgwfDFVfA2rV2n4nchxKMa/vUEtTz3asX/PYbvPxycvPYB/X4s5W0UbBEpB7wFbAPcIWq9vdZpIxGVX8QkXbYLOE3InJ+OjuaxxLtgxV0f6wio7p9JPbXX+138+Y7brNxI0SS6v72m81gRZSrWG67Da680oJqdOxoik5E2QLz94qH+++HHj2s7rJl4c47twe5+OADS2c/fbr5aG3dun0GDSy617XXmq9Ux45w+unbfabOPhueftqeXMcfbzN4p5xiM2CF0GjzZkK5uaY0VqwY33EEmKlTAXpQrVoOOTmJNXdyODKCjz+2YED77muz+q1a+S2RI4N56y0bJzzxRHuMOrKHtPDB8vJb/YDNNHQOinIlYakkYUmbUF1FRVX/BtoBvwDvi8jFPouUNESknog8JCIfeMvDIrJbEcvoLCLTRGS6iOyUiEJEqonIMBGZICKTRKRr4o4gismTLUofQG6uKVvjx8Pvv29fpkwxkzwwBawgevSwMk87DUaNggMO2L5vUbjtNqt7zhxToh57DEqVMhOd884z5WjYMFP4Hnlku/kg2GjzrFlm7vjXX3DYYSYXwB57mMngSy+Z+eDtt5vytXZtoSJ9/fbbTAKLwJgBTJkC8DcVKkz3WxSHR/fu3enuAicEg4UL7R5ywAF2L0uycuXaPrUE7Xxv3GjjiK1aWQyVZBO04892Aq9giUhTzCdoV+BYVY1zuDy5SFi6AyuAFRKWCwrcVmRE9JIK+RKF5992HDACeENErvVXosQjIp2AGcC5wDpvORuYLiLHxVlGDhb97ASgOXC+iMRMG9ENmKyqLYH2wBMiks+0UTGZONFmec46y34feKApUIsX2yxN9LL77rbNQQfBjz9aMIz8aNIEbroJPv3UlJ1XXim6bLvuavXuttuOvg4//WSyPPigBeBo0mR7SPdo6te3EPTvvWdBLfr1276ufHk46ST4v/8zZXLSJCu3EC599lmeAvNdywBMwRrIZZe97rcoDo958+Yxb1465LnPYFTh8cfNfHjlSjONrl496dW6tk8tQTvfffrYo/eRR1IT1Ddox5/tBNpEUEQaAd8CZYH2qjrBZ5EAkLDUwfJGlfaWl4G3fRUqiajqGhE5CfN/e0FENqtqbGjldOYZ4BXgZs8HDQAReRp4GojHOacNMF1VZ3r7DsJys02O2kaBKl5i7MrAf8CWYku9caPdvXNzLUz7N99Az542e3PHHbZN06Zw4YWWN+uJJ0yZ+u8/izbYuLE5eV9/Pbz4osWPvf9+C3M0fryZ0DRrZmWdfbb5Rv3zjyljbdtul6NjR2jTxgzNi0PTprBggaWzP/RQ8wJ+550dt7n5ZsvK2LSpORp98cV2s8cBA8yvq21bi4D47rvmi9WkSaFVf3HIIVT87rsMU7Aywp0sY3jttdf8FiG7UbWBl7vuMt/Mp5+2GfAU4No+tQTpfK9bZ4/cU06xR1cqCNLxOwKsYHnmWcOBisDRqvqnzyJFE2tTVaCNlaq2j3yXsJSRsOwFLNCQbsh/r2ChqhtE5Cws8MXLIrJWVTMlq11D4Llo5crjeeCqOMvYHYgeOpoPtI3Z5jlgKLAQqAKcm1eQFhG5GouSSdn8/KLAAlXUq2fJcatXNyUhFDK/puj9XnsN/vc/e8GYP99CnbdpAx06eJLvDiNHmi1Dhw42u7T//jZDlJMDy5fDpZeaMrfrrnDyyTY0F2HGDDPTKy5duljdt9wC69dbsIqHHjLFL0JuriUmnjfPwr137GhPL7Bjf/RRUwQ3bzbF68MP4/ImPmDBAvsS66OWpvz1F8AZzJhxJnChz9LEj4jUAP4HdARqE2NdoapV/ZDLkQH07m1Bc/bZx+6Z1ar5LZEjCxg50h6d0Y8xR3YRSAXLe9gOxx60HQOmXKEh/VfC8hAQxvJwXR7PfhKWmsB4oBawXsJyqIY0bZwlVHWjiJwJfA68KSKrVPUzv+VKAD8D+wN/xfy/P/BbnGXkF+I9muOB34FjgL2Ar0XkB1VdtcNOqv2AfgCVKlXKW3kfMCD+sOhlypi/UsRnKS/228/Ct+fF24VMzs6eXbgMhW3Tq9fOM2DRkb2efTb/fU87zZYi8t+SJQyfMYOjgTp77VXk/YPG1q0wY0YuMJfy5Vf4LU5ReRU4EOv3Cylk0CqduPfeewHoVdwZXkfxefVVU64OO8xSPBQ0YJUEXNunlqCc782bzRW4XDlo1y519Qbl+B1G4BQszydlMPYCeryXADdwaEh7SlieALZqSOM187oC2A0zeawA3AOkVVwZVV0nIl2A74D3ROQIVf3dZ7GKTEwC4b7A/4lIEyCSQKkdcB3WRvEwH4iexqmPvShG0xXo7c2UTReRWVhUzED28Uxn4ogRnLt1K8N32YU6qTCQTzLz58PmzaWoV+9nbrvNb2mKTEegk6qOLUkhItIZM+vNAV5R1d4x66sBbwENsOdfH1VNql3NsmXLklm8Iz9+/90GaTp1gqFDU65cQXa2vZ/XYFDO97PPWlyo/v1TO2EalON3GIFSsDzflH5YAICLVHWErwIVgoZ0YxF3WYvNeOF9rkmsRKlBVVd5StZY4BMRaaOqscpE0MkruXDPPLZ7C3gnj/9jGQ808fwGFwDnAbHBT+ZiL5I/iEgdoBkws4hyOxLEIVWq8CfQsFkzv0VJCNO9ufA0zX/1LyW8H0YFmumEDXiMF5GhqhrtBxkJNNNFRGoB00RkoKoWEOGlZPSLDsbiSA2q5k9avrzFyS7vT7DfbGt7v6/BIJzvlSvNWOTEE831OZUE4fgd2wmUggXcAVwK9FDVgX4LU1LC4bAA9bCRmsp3cMfUgQz8+R/+OTSX3D+Ah/2VsPio6kIRORmL8DjUm8lKG58yEpxcWFW3iMgNwJfYyF1/VZ0Uibqoqi9i7T1ARP7EFLu7VXVpIuVwxIeqMnv8ePYCKsQRDCMdmDED4C9mzLiBsWMfpm3bWBfAQHM/8JCIXKqqxVW0Uh9oxhFMvvrKTJ4ffRRq1/Zbmmwi66/BSy6B1avhhht2DJbryD4Co2CJyNFAL+AD4CGfxSk24XC4FOZrc773ue3uXpnKXMM1ABuBVcD54XB4YCgUWu6HrCVFVSeIyEVY4IungLQJ4Z6M5MKeP9pnMf+9GPV9IRby3uEzr7/+Ol27d2cccEgG+F9BZAZrI6VKrWLneC2B5wEs2My/IjIH2By9UlUPiKOMpASaadCgQXxHkA93eBE9+0QHhnEkj3Hj4NRToVYtiz7qI1nY9gm7BqHo16Hf53vCBLNGPfbY7TGkUonfx+/YkUAoWCJSDxiE5SK6Io9obilHwiJARQ1p4dlKPcLh8KmYkrgvsBx72R4DzAJWY75X9YBWmPL1LNA7HA4/DfQKhUJpZzKoqkNE5DHgLhH5SVXf9Fum4iAipbHRtwZYO21DVd/wRShH0jjxxBN57ZBD2Gv8eMgoBWt/+vQZk1LH6gTxQQLKSEqgmYMPPrhEz6P169eXZHdHUZg1y1JKVK1q6R7KlfNVnCxs+4Rdg1D069DP871+PZx/PtSsafGn/LBKzcL+Fmh8V7BEpBTwJlANc3Le6SJLNRKWBsAPwO4SlnHAsRrSdflsW6Yb3SrXotaLwDnAFMz3ZnAoFMrPpvhN4PZwONwKuBvLqXVBOBw+PxQKjclnnyBzPxYU4kURGauqsdH4Ao2I7AMMw8wGBfOPK42Nom8EAqdgXXYZLF0Kn3zityTbGTAAunbd/rtuXTjySLPSiSNiekqpXbs2l0XGcRo39leYBBHxwUpHfVFVwwkoJpCBZp5//vlkFe2IZu5cywG4caPFyD7wQL8lysa29/Ua9PN833235SH88kvLfOIHWdjfAk2pwjdJOjdgjv83q+pEv4XxeAib6s4BWmJ+YTshYbm7ClXWKbpM0bMwRaNlKBR6pwDlahuhUOj3UCh0PnCU99f34XD4zMQcQupQ1S2YSeRG4A1vNiideAr4BVPy12EzkAdjo2y+tIeIdBGRflu3bi184wBRsSIsWgQLF1p0999/t0SLQTuMX375hU+nTrUf6aiRxKAa8cF6n1tv7cDKlSv9FqlYiMgxInKDiHQTkfZF3H1boBkvGu15mClSNJFAM7hAMxnEf/9ZQvUNGyzheuvWfkuUrWTlNTh1Kjz3nPldHeecABwevipY3szBo8CnwCt+yhJDKbZPdQt5nCcJS50KVAhfyqWlq1FN3uTNDaFQqGcoFNocu21hhEKhH4DWWGS7d8PhcJeSCO8Hnn/RdZi99d0+i1NUDgEeUdW1QC5QWlV/Be4CnvBDIFUdpqpX5+TkxLX9ZZdZ/t+nn7bRs112sdmkdVHzrqqWm7dJE7OcqV8fvLQZgOX23XNPW1e3rjnrFhUR27dePbNBD4Vg4kSbXRk/3h4+NWuaBc8RR8Do0Tvu/9JL0LSpmVfUqgXHHw9bPPfnP/+0/MJVq1qu4ZYtLbVNcXjx6ae5as0aqFQpI5zgFy+2tq5cWYEtlPPZNKqoiMjuIjIO+Bq7f9wDfCMiY72k84XiDfREAs1MAd6LBJqJBJvBAs0c5gWa+YYUBJq55ZZbuOWWW5JZRXbz+efQti2MGQNPPpnaxEOFkG1t7/c16Nf5DoVscLF795RXvQPZ1t+Cjm8Klmca+BoWuvzKIPhdRRECFmMmYpOBAbEbVKBCztmcXaY61RnIQGbGMQAjYSklYWkh4Z1fGEKh0H+YbfJvwDvhcDjtYker6ruYL10PEdnfb3mKgGAzVwBLsNlLMHOHtAl6/cMPpswMHw7vvgsffWQKV4T77oOHHzalatIkeP992MMz5hg8GPr0gb594e+/zfSwTZvt+w4YYMpTPDmFo6lQwT43b7bIShdfbHKOGwetWlko26Xeo/Xnn6FbN3tYTZtmx9G58/ayLrjAFLdx4+C33ywUbnHt3B+68EKGg5kHZkCop4h5YPPm5/DDDz9Q3qew1CXgGcw0d29V3UNV9wCaeP89E28hqvqZqjZV1b1U9X/efy9Ggs2o6kJVPU5V91fVFqr6VhKOxZEqPv7YbiKLFsH338O1aRNnKWPJtmtw5UoYMgSuuMIGBR2OCH6acl2F+e1crKqLfZRjJzSksyQsewBVgZUa2ln5u5u7TwdKDWPY1rnM3YIX6SY/JCw52KhOO6CUhOVKDenb0duEQqE14XD4NGACMCAcDh8eCoXyjK4TYG7AcmC8ICJH5RcdKGBMxExBZ2J24HeLyFasj073U7CiULUqvPAClC4N++5rvt7ffGMK1Zo18H//B089BZdfbtvvvTcceqh9nzPHlJfjjoMyZaBBAzj44O1lV6sGzZrZuniZPx8ef9xmypo2hRYtdlz/7LOm2H3xBVx0kblQVKpkJoVVqthsWsuW27efMwfuuAP22We7/MWl3rp11AOrJAMw88C0zYEFds9or6qzIn+o6kwRuQkb5U5bnnrqKb9FyEzmz4ezzrKby+jRUKOG3xLthGv71OLH+R4yxNz+zjsv5VXvhOtvwcKXGSwR2RPoDXwHBDLflYY0V0O6Ii/lKhwOV8emub+ZxKQaQA0NFZq36xDMfK4SUAF4UsKyk3d9KBRaANyGKWLnl+woUo+qLsNM6w6nEKUzQPyP7SahD2BOut9hIdVv8kuootK8uSlXEXbbDf79175PnmwPgY4d89737LPNfaFRIxuJe/992z7C6aebnXlhzrtr10LlyqYo7bEHbNoEH34IZcuaLNdcY+9D1aqZEvXvv6ZYAXTqZPpOo0bmTvH66zbrFeG22+DKK+GYY+B//zN5issXX33Ft7B9Ci/NicxgjRlzPA89lLZZLvIiHQZoHH5w991m9zx0aCCVK0d28MYb9hgJkGWqIyD4ZSI4HAso8GzATAPj5WpgF+DO9aH1q/KLMBgOhyUcDh8eDofvvY3brj+WY8vvx36UtSjgtYGJEpbr8tj1LeBP4F4vWXG68SGwAOgrIgGLH7czqvqlqn7ofZ+pqs2BmkAdVR3hq3BFIHZ2SQRyvdfTwq6yPfYws7yXXrKZsNtvNz/xtXEnKTAqVrTAFn/+abNmv/wChxxi6y691Pyw/u//YNQo265+fVPCwBSuX3+F996zGbRevWy2aqEXg6pHD1MUTzvN9j/gAOjfv2jyRQgPGUJvsIoyAFOwlN12241dd93Vb3GKwzfAMyKyTeMVkQbA06T5DFa3bt3o1q2b32JkFn//bTbQV19tU+sBxbV9akn1+d6yxSxTjzsuGJbmrr8Fi5QrWCJyAJb7YAMw2EsklzZ4Cs8VwMhQKPRb5H8JSwMJSycJyy7edsdgpmc/Aj2rUvXUQzm09Nmcze3czlEcJaUoVQF4RsLyhYSlSaQszyzwaWA/dk7SF2hEpD7wF7AbNit0i68CFQERqSAiLUSkBbA+TZX/PGne3IJXfFPAq2r58nDSSaYAjR9vflo//VS0ekTMTK1xY5vFiubHH+HGG62O/fYzhWrRoh23KV3aZqh69YI//jAFLzoUfZMmcNNN8OmnNtP2SjFD43zQurVF1cmQGSzzjRN69nwtXR+wNwEVgZkiMkdEZmN5ESuSRrPIeVGhQgUqRJwRHYnhkkvsBnPrrX5LUiCu7VNLqs/3mDGmZOVnGZJqXH8LFn74YPUGVgAHAjdiUaPSiWZAU+D/In9IWI7CkgpvBTbeFr7tmWpUewh7QbgUGBYKhZbnhHP+qU/92m1pyzEcQyMa8Q7vlN7Epk7YeWgYVc8HwIvAKViy4nRhARYU5F3gZuAaEemjqvMK3MtHRKQcFs3yGizJsAAbRaQfFuFog5/yJYIqVeDmm80fq1w5OOooWLbMZpiuu86CWGzZYsG4Kle2IBllyphCAzZYfO+9pqAVN8dH06bw1ltWx9q1cNddZjoY4ZNPzJfoqKPM4ue778xEcN99LYnjHXeYKWPDhvDPP6awtS3m8MPuy5bZlwxRsObMAVAaNgzAMGox8O4PB4lIJywnjgCTVXW4v5KVnD59+vgtQmbx99/bIwY2beq3NAXi2j61pPp8P/ecPatOPjml1eaL62/BIqUKloh0AE4A7lTVOcAdqaw/QRzmfUYHiL4L861iH/bZVI1qD29m86dlKHNOKBTaZj6YS+7gucy9ZC5zy01jWs5pnCancRrv8V4pYA8Ji0R8vkKh0MpwOPxrVH1pgTfrcxeAiDwInIvlFeta0H4+8wLmb3UlEAkcfijQC6gCXJ5qgUSkC9AlkeG2e/Wy8O0PP2z+4XXqbA/FXr26JQS+4w6L+Ne8uflORRIEr1xpJoSbi5yEYDv9+5tFT+vW5h/WowcsWbJ9ffXqFhTsoYcs5Phee9kM1ZFHmhnh8uVmZrh4Mey6qz3Uivs86T91Kq2AgzJAwdqwwc6JSIgTTviQP/74g1KlgpDisOio6tek36CbI5W8+KJ9npl2KSMdGcSWLZZU+PTTbQDT4Ygl1TNY3bGs3s+luN5Esh+wHvg76r/ZwMYylCl3EieVXcQiXuGVTlvZ2ueR8CM9H+CB+kDL+7jv2z706bCJTXv/wR8ba1BjVXva125KU/7ir1zgCOCHqHInAKen6sASjarOEZG+wI0i8rCqBjWZ4NnAGd7LXYSZIvIvMBgfFCxVHQYMq1Sp0lV5rR8woODfYApMjx7bf5cqBffcY0ssp51mS35cdpktBVHYNi1bwtixO/538cXbvx9xRP55rcqWtcTFiWDrxo1ctXw59wMHFXc6LkBEgoTUrLkvHTt2TBvlSkRuA/qq6gbve76o6pMpEivhXH21WcH369fPZ0kygIkTzYb5qKPSwn/StX1qSeX5vv9+WLHCTN6DgutvwSJlCpaIHAa0B25Nc5OresDCmPDp9wH1D+CAI6tQpcZgBrOVrWXLU/66czjnGjxft7KU5SZu4gM+YDazS49k5IqWtNRDOVT+4q/SwGPYzEmE+UDNcDhcpjgJjANCH+B64E4sEXEQWYuZNsayAFOmHRlEqcWLWQCUqVNnRxvFNCWSm2y//c7n6afTKvDojcDrmD/ujQVsp0DaKlhpGnQkeKxfb2HZK1SAd97xW5q4cG2fWlJ1vkeMgMces9yMpwdoCNz1t2CRyhmse4FlwMsprDMZlCfmpVtDugo4rUe4x/srWXnmbGYLwGmcxp7sWepzPmcqU3UXdpGTOInzOI++9GUVq0pNZOLmwzm8bFnK5m5i06qYuiL1lMOSHqcdqrpARAYAl4vIQ6q6qLB9fOBZICQil6nqerCAF8CD3jpHBiHz51MXMiYHlvlfbaVBA8Xf1IZFQ1Ub5fU90+jVq5ffImQGb71ldsoffGA2xmmAa/vUkqrz/cUXFpCpb1+zDAkKrr8Fi5R0DRFpBpwMPK2qRQz8HDjW4flbxSLIPrnkjgfW16AG+7AP3/M9YxnLSlbKbGbzNm9TlrK0pjXAo2tZO6IUpahFrXnsPMMTqSedZ/zAZuZKY0mIA4GIDI0sWKTGE4AFIjJCREZgs4cnAm18FNORBGb+/DPPAUvq1PFblIRgM1i/MnBgJYYPT8+YECJyiRdsJvb/siJyiR8yOQJEbq75Xu27L5xxht/SOLKcb76BNm0sn6PDkR+p0r2vw2ZgXkpRfclkIbB7OBzOyWNdeUHWAEPqUGcrwN/bXbUUyF3O8i1LWZq7F3vNAZ7qTOenAK7iqvM0tJOPUgPgn1AotCUZB5IqVHUG8ClwpYgExSZrWcwyGBgCzPKWoVg+r2V+CehIDuPHjeNGYMkuu/gtSkKwGaxdOO64W2gW4JxAhfAalhsxlireurSla9eudO0a5Bg/acB771mSvEsuCUbCoThxbZ9aUnG+ly6Fn3+Gzp2TWk2xcP0tWCTdnkREKgGXAe+r6r/Jri8F/ImF8t4Xy3O1jdWs3rKKVe0B3cCGHIBKVDLVSoFSlJJckcqlKm+tSMXvNaS54XA4EsbsnzzqauXVlwn0BboAZwCDfJYFVXV3oSzlrOrV+RfYZf/9/RYlIdgM1t7ceeej6Rx1XrC7ZCwNgJUpliWh7JHGjRIIVOGJJyyoxe23+y1NkXBtn1pScb4HeW8vHTokvaoi4/pbsEiFwf652Mhk3xTUlQpGeZ8diFGwpjO9zAEcUKoCFZjHPNaxjva0Zw5z2Oy5ULUr1U4qUrH0l3xZr0e4R5U7uOP88pT/7y3emhsitK2scDhcA2gJPJKaw0o6XwEzsdlM3xWsvBCRxkBz7EVvSoCjHjpKQM6iRdSCtIhCFg82g7WOPfYojw+540uEiPzJ9iGo70UkerY+B9gTyzGYtjz00EN+i5De9OhhUwbPPWfJ+dII1/apJRXn+403LNXI4Ycnvaoi4/pbsEjF0/hi4C+2KyZpTSgUmgFMAi6IXTeVqZ/mkEM72rGFLRs/4ZPc+tSnm3TjzFJncgmX5B7P8UxhCmMYc1Qd6vxekYrtxzGuymxmfybhHWwfzsXaZ0iKDi2pqGou0B84SkQCFV1ARKqKyPvAdOBj7Jz/LSLviYjLcJFhfDxpEq8C1KvntyglZtMmWLAA4HJOPnk/v8UpDh9g5rmCmREPjlreAq4CLvJNOoe/zJsHvXtbuLbrr/dbGkeW8/nnMH68hWZPI0tVh08kVcESkfrA0cBALwFtptAfaBcOhw+J/nMa025byMI/juAIbU7zbyYzWQYwgMUsZi/2kl3YZcNwhm96n/cpTelyp3Jq441s5Cd+KgMcAxb5wvPvugH4HfgtxceWTCKxdc/zVYqdeRo4AJuVrOAtHb3/nvJDIBHpIiL9tm7d6kf1Gc3r8+bxNKRNJLKCmD/fLKh23fUcbrvtVr/FKTKqGlbVMJaI/MHIb2/pparvqOomv+UsCRdddBEXXeR0xCLz9dew334W4KJnz7R8o3Vtn1qSeb5V4aqrLPjsrQG91br+FiySPYN1PjYymaAUoYHhFeA/oFc4HN5219eQbt2N3TqUotT00zjtxP3ZX2Yzm0EM4jEeW/s0T5/0Iz+u2oVd1nela25d6vIRH7GWtWDmml96s1gXYqZqj4ZCoYxRTD2Tu9HY8QWJU4ArVfV7Vd3sLSOAq4HT/BBIVYep6tU5OXnFUnEUG1UGb9nCT5ARM1hmHgj77nvGtiST6Yiqvp7m+RHzpVmzZukcfMQf5syBU06xQZCPP07blAqu7VNLMs/3uHFmLdCjB1SvnpQqSozrb8Ei2T5YZwA/q+r0JNeTUkKh0KpwOBzCciRdRlSUq1Ao9F/DcMP/60SnvmdyJkdzNBOZSGMaP9qABi03sWlcGcocn0vu+ilMCf/FX49FFV2jOc1PAJ4AxgLvAUhYGgKqIZ2TqmNMIu8Az4hIE1X9u9CtU0MF8o4W+B+W98yRKSxfTqnNm6lStSpUrOi3NCUmkmS4Tp0lbN1ag3RVyEVkNXkHuQBAVaumUJyE8uCDD/otQvrxwguwYQMMGQJp/MLo2j61JPN8v/EGlCsXrMTCsbj+FiySNoMlIrWx/EJDk1WHz7wAjACeD4fDB0evmMOcCv3pv2UIQ1jDGo7maBrQ4CHgqbKUbSXIMznk7P0+7/chKoFwaUrnnszJvbH8V5eHQqFcCcvjwGRgqoTl4ZQdXfL4xPs8yVcpduQn4GER2fbG7UW/DJMhvoMOj0WLeAz4rEpmuNZFkgwPHlyHcDjstzgl4caY5TbgTSzv4P0+yuVINQsXwmuvQcuWaa1cOTKH1avhzTfh7LNd7itH/CTTRPBEtjsuZxyhUGgr5kv0L/B5OBxuFbX6g1xyV//GbysHMGDdczzXGWgM1Abqh0Kh20Kh0GINqeLlCCtN6U0XcdGqilTcH+gaCoUmS1gqAzdjMyzlgXskvHMyznRCVWdhQUK6+C1LFLdhgwELROT7qETDbYFbfJTLkWg8Betzv+VIEDaDtZXzz3+Wk04K0phF0VDVAZ6ZYGR5RVW7YcrVoX7LVxLOO+88zjsvaG6nAUXVAlqsXg3/939+S1NiXNunlmSd77FjrUtefHHCi04orr8Fi2SaCJ4ILCKzgjTsQCgU+iccDh+bS+4IYFS3cLdbnw89/5KGdK6EpRn2gj55aWhpvuG+NaSvHh8+fkprWvcrS9nmwLWhUOhdb/VmYCsQiU27xVvSnU+A20Wkiqqu9lsYVf1TRJpg0cr2wQYG3sKCs6yPtxwR6YwFzMgBXlHV3nls0x4LnFEGWKqqR5dUfkcRWLSIJcDWI47wW5KEYDNYZenatRtt2/otTVL4Dp8CzSSKVq1a+S1C+vDJJ/D99/Dkk8FMNFREXNunlmSd72HDoFQpOOigpBSfMFx/CxZJUbBERID2wJcZFj1wJ3rQo0xVqlY9h3PK1qf+i3eF7zqnEpW6aUinst0cLk/C4XBl4MbDOOw+IBc4PRQKbQvLriHdKGG5AAuqocClGtJMCCv3DXA3cBjwpZ+CiEgZYB7QUVVfLkE5OcDzQCds9mu8iAxV1clR21TH8sF1VtW5nhmtI5UsWoQApXff3W9JEoLNYK2hQoXVbN1aO219sArgPGBpvBsHcZDjnnvuSWbxmUXv3rDLLnDDDX5LkhCyse39vAaTcb5VLc5Kly5Qs2bCi08o2djfgkyyZrCaArWAkUkqP0hcvopVlfvTXw7jMG1P+yOBKeFw+GvgIyxq3tRQKLQhHA6XAnYHDgaOx6IsVsX81G4OhUKzYwvXkH7klZNJjMZm5o7EZwVLVTeLyGYKcLCPkzbA9EhyYhEZBJyK+c9FuAD4UFXnenX/W8I6HUVk3Zw59ADO2LSJdn4LU0K2bLEw7fAxRx55MVOmTGGfffbxW6xiEZVweNtfQB2gBmZGHU8ZbpAjnfnvPxg9Gm66Ke0SCjuMTLwG//kH5s4Nbmh2R3BJloJ1pPeZDQrWbGB9LrkVf+THDX/x16PXc30ultelb2SjcDi8CRutiYR1X4sltX02FAqNTa3I/qKqa0TkF7b3E795FrhXRLqqanFNMHfHZsIiRHy4omkKlPF8vKoAT6vqG7EFicjVWIh4ypYtW0xxHHmxat48ngX2Xr8+7RWshQtNyapZ81BCoWdp1KiR3yKVhA9ifucCS4ARqjo1zjICOchx5plnAjB48OBkV5XevP22TRecf77fkiSMLGx7X6/BZJzvn36yz5YtE1Zk0sjC/hZokqVgtcPCXv+VpPKDxEtAC+AE4Ot/+bdnKBTaHA6HHwEaYS/ZewGVgU2YX9rvwK+hUGijPyIHgp+A60SkdAmUmkRxJJYQe4GITMSU322o6ilxlJFXFszYWbHSWDLpjljgktEiMkZVd7hOVLUf0A+gUqVKGW1im2rqrljBekAvuMBvUUpMJAfW3nvvxQ1pblLlJRsuKUkZ5GjQoEGJhDr00LSO0ZE6XngBDj0U2rTxW5KEkYVtn7BrEIp+HSbjfA8dCpUqwWGHJbzohJOF/S3QJEvBagX8lun+VwAa0i3kYcLiJQie6S2OnfkNi4zYBJjisyxLgZIO+cwH9oj6XR9YmMc2S1V1LbBWREYCLcmOgYhgsGgRALLbbj4LUnIiObAqVx7HypXNqJYB8YNF5BgsyTrAZFX9tii75/FfiQc5Dj744BI9x+64446S7J4dDB4MkydDz54geTVjepKFbZ+waxCKfh0m+nxv3WoK1tlnWw6soJOF/S3QJFzBEpHS2IzOc4ku25FRTPA+W+GzgqWqXRNQzHigiYg0AhZgzvmx0yRDgOe8a6QsNrKX/rGI04jpCxbwPNBt/Xr29luYEmIzWGsZPrwtzz77MA888IDfIhUb77r5ENif7QMTu3m+WWdGTI4KwQ1ypCNTpsC550KdOnBdXO52juCSUdfgqFGwYgV06uS3JI50JBl5sJoB5TAzOIcjP6ZiJpO+WTaLSCkRuVNEfhKRcSLSU0TKF6csz8zxBixoxxTgPVWdJCLXisi13jZTgC+AP4BxWISliYk5GkehrF7N/PXreRX4d906v6UpMbNmAZSmW7fPOOecc/wWp6S8CqwCGqtqA1VtgOUOXIFFUY2HbYMcIlIWG+SITXQ/BDhSREp7icXbkuQBnlNOOYVTTonHyjgL2bLF8l5Vq2bOLtWr+y1RQsnCtvf1Gkz0+X7sMdh1V0iXJszC/hZokmEi2NT7jNcx2ZGFqOomEZnB9v7iB3cDj2Bh49djCYdr4tl8FxVV/Qz4LOa/F2N+Pw48XpzyHSVk0SLaA6saN4bDD/dbmhJjJoLl6NLlBJr6eRUlhkOBdhHHdwAvwtitWNTRQlHVLSISGeTIAfpHBjm89S+q6hQRiQxy5JKCQY6OHTsms/j0plcv+P13GDAA9trLb2kSTra1vd/XYCLP98aN8NVXcO21ULlywopNKtnW34JOMhSsSCirGUko25FZzGR7f/GDy4AbVbUvbMvf8bGIXJMN/oNZh+d/Rb16/sqRIGwGazzr1pUGDvRZmhIzF/PHiKU8OzrNF0gQBzluvvnmVFWVXuTmwuuvw8EHwyWX+C1NUsjGtvfzGkzk+V6wADZtggMOSFiRSScb+1uQSYaJYGNghaouT0LZjsxiJtDYS0ztB3uyYzLoLzEn3fSPgODYmYULGQF0W7yY1atX+y1NidiyBebNA3iAhx++0m9xEsHtwDMi0k5EcrylHZaM9HZ/RXMkheHDYcYMuPrqjAps4cgMxnrJc9JJwXIEi2TMYDXEckM5HIUxG0u0vAvwnw/1l8VMAwFQVRWRTZgPoa+ISBegS7l0CF2ULixaxN/AoAUL6Jmb67c0JWLBAlOyatXqS79+6TmWJSKr2THCWHksfUOkcUphCckHYveJtOSEE04A4PPPP/dZkgCxebOFZttjj4zKexWLa/vUksjz/e67FnclHfJfRXD9LVgkQ8GqBfyThHIdmUekn9TEHwULoJeIREc8KAuERGRl5A9VvSnVQqnqMGBYpUqVrkp13RnLokVcBVwVCplTfRoTCdHepMleHHywr6KUhBvZOYRzxtGlSxe/RQgen38Oq1ZZ7qt0cXApBq7tU0siz/e0aeaqW7ZswopMOq6/BYtkKFg1gb+TUK4j81jqfdbEnxCtI7Ek0NGMAqIzGmb8C2DWkEE+WOZ/NRORcaxadSJVq6bfBI+qDvBbhlRw/fXX+y1C8OjbF6pUgTPP9FuSpOLaPrUk6nxPngxTp6afa6Drb8EiWQrW0kK3cjhgifdZ04/KVbW9H/U6fGLRIl4HJgwdypOXXuq3NCXCZrC+4KefurFq1by0VLBEpIaq/hf5XtC2ke0cGcDzz8OXX8Kjj6ZH9lZH1vH221CqVPopWI5gkVAFS0RKYbbyKwvb1uHActwAVPdRBke2sGgRU4Dvp/ia1zoh2AzWFYRCh7P77rv7LU5xWSIi9VT1X2xQLq/ZYvH+z0mpZAnk2GOPBWD48OE+SxIAliyBBx4wx5bbbvNbmqTj2j61JOp8f/EFHHQQpNut1fW3YJHoGayIteqGBJfryEw2ep9uGNORfBYtojfQe+RIvyUpMaZglePII1umcwC2Y9jue9nBT0GSybnnnuu3CMHhlVdgxQr47jsonQwDmmDh2j61JOJ8//sv/PILPPJIAgRKMa6/BYtE3+EiL8obC9yqCIjICEieOVeyy09lPWl4rjZ5n07BciSX9evtxa5MGdh1V7+lKTGzZinwGOvXHw+08lma4qGq3wOISGlgP+BjVV3or1SJ56qrXJwaANauhT594IgjoFUrv6VJCa7tU0sizveQIfaZjjl7XX8LFonOgxWZwbpOREaIyFMJLj8t8RSTVkCriJKS7Xh940Pv5zk+iuLIBhYvZiGw69at9Ord229pSsSmTTB//iLgHmbM+NFvcUqMqm7Bko6W8VsWRxL56Sf47z/o1s1vSRyOfPnsM2jQANq08VsSR7qT6BksF3HNURQixk2u38Tg8mAlmIULKQ3cVK8etWvX9luaEmEJhutRv/5qrr46bV2TYhkDtAbm+C1Iomnfvj0AI0aM8FUO3+nfHypWhM6d/ZYkZbi2Ty2JON9Tp0Lr1hbkIt1w/S1YJFrBipgGvqSqfRJcdtqiqu1TZYqYLqjqLSJSB1gMvOu3PJ4sF2Nh2x9U1aUicjiwUFVnpVoelwcrwSxaRG0gdMghcMUVfktTIsz/SmjcuDIVKvgtTcJ4GegjIg2AX4C10StV9VdfpEoAl112md8i+M9//8GwYXDeeVC9ut/SpAzX9qmlpOd70SLLf3XaaQkRJ+W4/hYskqVgJWzYPdkKSaoUnlTUk4bnKmJSmjCfveIgIq2Bb4BZmC/I41hUs05AU+AC/6RzJIRFi1gMbKhUiT1VkTSODGEh2seyZs13rF17I5UqVfJZooTwtvf5ZB7r0jqKoHvpAZ5+GtatyzrzQNf2qaWk5/v770EV0jVfr+tvwSLRk6CbsYdh5oyrOpJJpJ/4HXWyD/C0qh7Ijsrel8Dh/ojkSCiLFvEEsO+7vk+WlhibwRrJr7/em9aKYgyNClga+yhXidm8eTObN2/2Wwx/ef99OPpoi32dRbi2Ty0lPd+//GKp2Q45JIFCpRDX34JFQmewVFVF5D+gwKSRDodHpJ/4nUS0NZCX3dgioE6KZXEkg0WLuABo3bVr2islNoN1Jy+9dD0VK1b0WZqEsScwygt4sQ0vwuBhpLFvVqdOnYAs9otYtgymTIELL/RbkpST9W2fYkp6vn/7DRo1smCz6Yjrb8EiGYkolgI1k1CuI/OI9JOlvkoB64Fd8vh/H+DfFMviSDBLly6l+zffcAVw3qmn+i1OiZnleQQ2a5YRpoERvgPqsfP1Vs1bl7YmgldeeaXfIvjLt9/a5zHH+CuHD2R926eYkpzvzZvNRPC66xIoUIpx/S1YOAXL4Se1vE+/FawhQEhEzvZ+q4g0BB4FBvsmlSMh/Pvvv7y3cCGdgdb16vktTomxGay+/PJLJY4++lKfpUkYQt7RRHclJuBFunHRRRf5LYJ/rF4N4TDUrp2+dlclIKvb3gdKcr4nTYItW+DggxMoUIpx/S1YJEPBWgy0SEK5jswj8rb7j69SwB3AZ8ASoCLwI2Ya+BPwgI9yORJA8+bNWVqjBixZAmmuYK1fb5GuYCAjRtTkttvSW8ESkaHeVwXeEpFoH8gc7FkyKuWCJZB169YBZJI5Z/z06GFvrkOHQulkvG4Em6xuex8oyfl+913IyYHjjku0VKnD9bdgkYw73izgZBEppaq5SSjfkTk0Bv5R1XV+CqGqq4AjROQY4CAs+MuvqjrcL5lcHqwEsmmTKVelStlIehozd659Nm78Ex99tNVfYRLDMu9TgOWYuW6ETdhgx8upFiqRnHjiiUAW+kV88AE8+SRcckn6hmUrIVnb9j5R3POtCkOGQMuWULduEgRLEa6/BYtkKFgzsTDt9YAFSSjfkTk0wvqLr4hIS1WdoKrfAt/6LQ+4PFiJZMgbb/AZ8FydOpTJSVtXHgBmeldLw4aQk+bHAqCqXQFEZDbQR1XT2hwwL65LZ6eO4vLPP3DVVWZv9XJa68clIivb3keKe75nzbI4LM89l2CBUozrb8EiWQoWWMJWp2A5CmIvzAzPb34TkUnAm8Dbqjrfb4EciWP6H3/wOVA6zc0DAf7+G2AV//xzP2PHXkTbtm39FilRPBz9Q0TqAicDk1U1rU0Ezz33XL9FSC2qcOaZsHYtDBwIZcsWvk+GknVt7zPFPd+//26f6Z5FwPW3YJHoPFgAU7xP54flyBcRqYqFZp7styxYtMAPgSuB2SLynYhc7snoSHNu79CBuYDsvrvfopQYU7CWM2PGm/xtPzKFT4EbAUSkMvAzlvD7exG5xE/BSsrKlStZuXKl32KkjnfegZ9+gsceg6ZN/ZbGV7Ku7X2muOf755/NRbBVq8TLlEpcfwsWyVCw5mG29C2TULYjc9jf+/zdTyEAVPUvVQ2palMssfCfQE9gsYi85690jhJjUSFgt938lSMB/PUXwJ68996KTIsY1Zrt5rlnAKuA2sBVWBCauBCRziIyTUSmi8g9BWx3iIhsFZGzSiJ0PJx66qmcmgHpAeJi82a46y4zDbzxRr+l8Z2sansPP6/B4p7vn3+GFi2gQoVESeIP2djfgkzCTQS9ZMMTgFaJLtuRUbTyPif4KUQsqjoWGCsiA4EXgTPj3VdEOgNPY9HPXlHV3vlsdwgwBjhXVT8oudSOgrjt9ddpCNyUMSaC0KSJv3IkgSrACu/7ccBHqrpZRL4Fno+nABHJ8bbtBMwHxovIUFWdnMd2jwJfJkj2ArnppptSUU0w+PZbWLAA/u//LCRblpNVbY//12BxzreqKVhnJX2oJflkW38LOsmKm/obcJ2IlFXVTUmqw5HetMbyXwXGT09EGgMXABcCewM/YGaD8ewbyJc7B0xZ4HWxNJ/B2rgR5swBkV948slX6NHjQXZL82OKYi5wuIgMA44HIjnpagDxRhltA0xX1ZkAIjIIOJWdzZBvxPLbpSQx0xlnnJGKaoLBc8/BrrvCSSf5LUkgyKq2N3y9BotzvqdPh+XLMyNNWxb2t0CTDBNBsMAF5bGXaIcjL44EflLVvJKLphQR6SYio4C/sRe714CGqnqMqr4WZzHbHizeoELkwRJL5MHybwJEd8TB5/vvz5OQ9jmwZs6E3FyoXXsuH330ARs2bPBbpETyJBZkZj426DLS+/8ozGQ3HnbHTNQjzPf+24aI7A6cjs1O54uIXC0iP4vIz0uWLImz+rxZunQpS5f6nUs9BUycCJ98Al27gsvDA2RR228nYdegt22RrsPinO8xY+zz0EOLtFsgycL+FmiSpWD96H0elaTyHWmMiNRj+wxRELgH67OtVLWlqj6mqkWdWUvKy92WLVuKKIZjJzLEBytiHtiq1eksWbKExo0b+ytQAlHVl4BDgcuBI6JyKM4AHoyzGMmr6JjfTwF3q2qBScRUtZ+qHqyqB9eqVSvO6vPmrLPO4qxMsD8qjMceg3Ll4I64XeYynqxp++0k7BqEol+HxTnfo0dDlSqw775F2i2QZGF/CzRJMRFU1X9EZBqmYD2ajDocac2R3ufIArdKHQ0SMJNWpAeLSF6bezup9gP6AVSqVMn3Gb50Zt68eVw3ZQr3AYel+QyWBbjI3MBsqvozFj0w+r9Pi1DEfGCPqN/1gYUx2xwMDPKuv5rAiSKyRVU/LrLAcXL77bcnq+jgsHQpvPkmXHEF1KnjtzSBISvafkd8vQaLer63bLGgl+3bZ4bLYBb2t0CTLB8ssIhQl4pIeVXNKFsWR4npjDm0/+aXACJyEPC7N1J+YCEKz69xFBnIl7tsZ/V//7Fo0yY2i0Dt2n6LUyIiM1grVrxFt26jef75uGI/BBYRuQ3oq6obvO/5oqpPxlHkeKCJiDTCzAzPw3wqo8tpFFX/AOCTZF9/Xbp0SWbx/rNsGUyaBDVqwBNP+C1NoMj4tt8ZX6/Bop7vv/+GFSssbVsmkIX9LdAkU8H6BLgOOBrn0O/wEJFSwEnAF6rqp/3bz0BdzBfqZ2y2Kb9ZqHjGtgL5cpftNK9Rg18A6tZN+yHKyAzW1q1/88MPQbGuLRE3Aq8DG7zv+aGYj1aBqOoWEbkBe97kAP1VdZKIXOutL9TnIxksXrwYgLp16/pRfXKZMMGUq8qV4ccfoVo1vyUKFBnd9nng9zVY1PM9bZp9tsiQrK3Z1t+CTjIVrO+A9cDJOAXLsZ3WWH6bT3yWoxGwJOp7ifD7weLIh4XeJGKa+1/B9hmshx8O07hx2F9hEkD0gEP09xKW+RnwWcx/eV57qnpZIuosjPPOOw+AESNGpKK61JCbC48+asspD8ABB2SGE0uCyci2LwQ/r8Ginu/IPbVhw0RK4R/Z2N+CTNIULFVdLyLDgVNF5OYop2VHdnMakAt84acQqjon+icwLy8/LBFpUIQyA/dyl+30f/NNPgCG1a0b1zRkUFm71tILlSkDDeLukY4gcM89+eZaTV+eew7uuw8OPxyaN7eO6diJjGz7AFPU8z1yJDRqZJkFMgHX34JFMmewAN4FugCHE5yIcQ6fEHM+ugD4WlWX+S1PFLOAesSETheRXb116fxuntVsWraM9UDO7rsXum2QiZgH7rUXdO9+H9WrV+euu+7yV6gE4d0XLsGSejfGBjxmAu8DA4OQyqEkdO7c2W8REst//0GPHtCpE3z5JfQb47dEgSXj2j7gFOV8b9gA330HF1xQ+LbpgutvwSJZYdojDMGSRF6Y5Hoc6cGhQENgoM9yxCLsHPEPoDLmH+JIU67de2++g7TPgTVxon22aAFTp05lxowZ/gqUWAZjuef2xHJeTcLMdt8APvBRroQwb9485s2bV/iG6UK3bhYZ4IknoIDgQI4MbPuAU5TzPWWKWQYcc0yShUohrr8Fi6TOYKnqGhH5GDjbMxPcmMz6goqIjIj+rart/ZHEdy7C/PI+9lkOAETkGe+rAr1EZF3U6hwsefDvqZYLQES6AF3KlSvnR/WZQ4b4YEUUrP33h+7dP/RXmAQiIhcCxwHHq+rXMeuOBwaLyAWq+rYvAiaAiy++GMgQv4hnn4VBg+ytdP/9/ZYm8GRU26cBRTnfkQTDbdokUaAU4/pbsEi2iSBYlKgLgDOAd1JQnyOAiEhlbCbzQ1Vd7bc8HpE3BAH2BTZFrdsE/Ar0SbVQAKo6DBhWqVKlq/yoP1M469NPOQDonkEzWBnGRcCjscoVgKp+KSKPe9ukrYL1wAMP+C1CYli2zPyujjsOPi1KerLsJWPaPk0oyvkeOdLG3RolJLxOMHD9LVikQsEaDkwHridLFawsnrGK5gKgKtDXb0EiqGoHABF5DbhZVVf5LJIjwVTcuJHyAPXr+y1KiYgoWJUq/UWVKq157bXXOOuss/wVKjG0BAp6K/gUuCZFsiSFY4891m8REsPbb8OaNfDYY1A6Fa8O6U/GtH2aUJTz/eOPcOSRmWXl6vpbsEj6XVJVc0XkBeAJETlAVf9Idp2OYOE5sXcDJgCjfRZnJ1S1q98yOJLDG5H4CHvsUfCGAWblSpg7F8qVg6ZNy9OlSxeaNWvmt1iJYldgUQHrFwE1UiRLUpg5cyYAjRs39lmSEvLJJzbc37Kl35KkDRnT9mlCvOd77lyYP9+CYGYSrr8Fi1QNQw0AHgFuBdzLbPbRHjgAuCaoEcFEpANwPtAAKBu9TlUzyA02i1i1yrSTChXSOg7vpEkAG6lc+UbmzLmAt99OW2u5vCgDbC5g/RZvm7Tl8ssvB9LcL+Kee+Crr+DOO/2WJK3IiLZPI+I93z/9ZJ+HHZZkgVKM62/BIiUKlqr+JyL9gG4i0iMmB5Ej87kfWIxFBQscInIZ8CLwEaYMDgGaYpHM3vJNMEeJWD11KkcA91arxnlpbAdi5oHLWbt2KDNntqN9+/Y+S5RwYgPMRFMxpZIkgXA4zZNCL1xowS06dYJevfyWJq1I+7ZPM+I930OHQu3amTcZ6/pbsEilIfUTmB/WHcCNKazX4SMi0hboCNypqkENeX4HcIOqviIiq4F7VXWmiDwHrPFZNkcx2Tp3Lo2AKnXq+C1KiTAFqy7h8GK8AcpMYiSwVxzbpC1HH3203yKUjBdfhHXrLLlwjksJWBTSvu3TjHjP9/ffw7HHZp4roetvwSJl3UtV54nIG8CVItJbVRekqm6HrzwILAde8luQAmiMBWMB2IjlvwJ4DhgBuPToaUj15cstH8CBB/osScnI4AiCWREAaNq0aQDp6Tc3dy48+SQcfzw0beq3NGlHWrd9GhLP+V66FBYtgtatUyVV6nD9LVikWn//H3AxEMYUrRwgN6h+OY7iISI5qrpVRI4GTsJmhIISmj0vlgFVvO8LgBbAH5gDfgU/BHJ5sBJAJOFiGge4UI0oWN/y+usDOfTQPuyyyy5+i+UoAtdcY0EQ09IvIhyGrVvh+ef9liQtSeu2T0PiOd/m0wr77JMCgVKM62/BIqUKlqrOEpG+wE0iMgoLenEr22cPHGmOiJQHxonIIOA0TGF52lehCucHLNnpn8B7wDMi0gkzbdwpP08qcHmwSs7Pv/7KJUD/zZtp57cwxWTBAliyBCpWnMdPP31J6dJP+S2So4j07NnTbxGKx+TJ0L8/nHUW7FWYFacjL9K27dOUeM73999baPZDD02BQCnG9bdg4YcF6v+wkN2vArN8qN+RXKoAM7B2BrhbVdf7KE883ACWLgnohUUuOxxTth7xSyhHySi/ZAn7AVXTOJPk+PH2efjhl/LVV5f6K4yjWByWrqHKnnnGPp3jfLFJ27ZPU+I536NHw/77QyYaArj+FixSrmCp6lIR+RSb3bhLVd3sVQahqktE5FJgJpADPOWvRIWjqv9Ffc8FHvVRHEeCaLF8Oe8DHHGE36IUm3Hj7LNNG3/lcBSfiZ4TXYt0cqJbsABeew2uvRaaN/dbmrQlLds+jSnsfOfmwpgxNimbibj+Fiz8iqFyDvArlnz4c1Vd65McjuQQxpKDHqqqm/wWJi9EJO7kpdEKmCNNUM0IH6yIgvX339156KHSdO/e3V+BHEXmhhtuANLML+L558336q67/JYkrUnLtk9jCjvfU6bAihWZaR4Irr8FDV8ULFXdLCLXYb4vIcDdxTMEETkQuAnop6pj/ZanAJYChQVXEW8bF5s43Vi2jDc3bCBcqhSjN2ygVpUqhe8TMHJz4eef7bvIfKZN2+ivQElGROpgQZD2Ah70rB0OBxaqatqakz/++ON+i1A05s2zkOxdukAam9cGgbRr+zSnsPP9xRf22aFDCoTxAdffgoVvWQBU9UcReRm4XUQ+VtVRfsniSAwiUg5LJvwPcK/P4hRGht5iHQDMmkUd4JAqVahatarf0hSLv/6CVatg991h0KD+fouTVESkNfAN5pe7H/A4NgjSCUv6fYF/0pWMQw45xG8R4mfDBjj9dNiyBf73v8K3dxRIWrV9BlDY+R482JILZ+q4getvwcLvNGu3Yw/QN0Sklaq6pK7pzUNYiPOTVHW538IUhKp+77cMjiQyYwbHAccdcwykaaj7LPO/6gM8raohL9l3hC+Brj7JlBB+//13AFq1auWrHHHRuzf88gu8/bbzvUoAadX2GUBB53vtWhg7Fu67L7UypRLX34KFrwqWqq4WkcuA74AngGv8lMdRfETkKOBOzDTwM7/lKQqF+WP54YPl8mCVkBkz7DONw0tHFKxddvmaTp0e49VXX6VBgwb+CpU8WgNX5PH/IqBOimVJKLfccguQBn4RCxdCnz5w0klw/vl+S5MRpE3bZwgFne/ffjOz60wesHL9LVj4PYOFqn4vIo8Dd4nI96r6tt8yOYqG5zsxCAvPfofP4hSHwvyxUu6D5fJglZCZMzkVKPftt7zntyzFJKJgNWq0gQkTlmd6guH1QF4HuA/wb7yFiEhnLO9eDvCKqvaOWX8hcLf3cw1wnapOKJbEcfLUU08ls/jEsHgxHH+8BbZwpoEJIy3aPsH4eQ0WdL4jKS8y2YouG/tbkPFdwfJ4ADgMeFlEflfVyX4L5IgPESkNvIO9HHVW1dWF7BJEYv2xygAHAtdhfdORbsyYwRFA6TR9mq5eDb/+Cjk5cNNNXXjggS5+i5RshgAhETnb+60i0hBLmTA4ngJEJAd4HjM7nw+MF5GhMc+TWcDRqrpcRE4A+gFtE3QMeRJ4c53586FjR/v89FNzUnEkhMC3fYLx+xos6HyPHg177gl16yaipmCSbf0t6ARCwfKiCp4L/AYMFpF2qrrSb7kccfEIpqB0VdU//BamOOTjjzVcRGYCVwJuVjXdmDGDOyFtw0yPHGmTCe3aQZrG6CgqdwCfAUuAisCPmGngT8Q/yNEGmK6qMwFEZBBwKrDt5S4mmNIYoH6JJS+E8d7QeSAd0JcutZjVK1fCV1/B4Yf7LVFGEei2Tw6+XoP5nW9V+OknOProRNUUTLKwvwWaQChYAKq60FOyvgbeF5GTVHWz33I58kdEumJT/S+p6gCfxUkGvwNH+S2Eo4hs2IDOnw+lSiFpmgPr22/ts337zTRr1oL77ruPSy+91F+hkoiqrgKOEJFjgIOAUsCvRUxEvzswL+r3fAoeGb8C+DyvFSJyNXA1UGK/tzvvvBMIoF/EwoWWhHvBAvjkE6dcJYHAtn3ySNg1CEW/DvM73/PmWXc/7LBCi0hrsrC/BZrAKFgAqjrCu6D6A8+KyHWqWliuIocPiEgHbGr/a+BGn8VJOCJSGbiFHR8WjnRg9myWAA1Vef6tt+jaNf2C0H3zjX22abOKWbMOpFatWv4KlGREpKWqTlDVb4Fvi1tMHv/l+fzw7l9XAEfktV5V+2H3Nw4++OASPYOee+65kuyePO64w8wCv/su84f2fSKwbZ88EnYNQtGvw/zO9+jR9pmpCYYjZGF/CzSBUrAAVPU1EWmC5VGaBziP24AhIi2BD4G/gLPTfabRCwsdffMWzExpLXBhEcoJnIN9VjJjBjnA9Q0a0DwNQ00vXQoTJlh0+RNO2JXTTx/kt0ip4DcRmQS8CbytqvOLUcZ8IHrKsj6wMHYjETkAeAU4QVWXFUfYotCiRYtkV1F0pkyBd96BG25wylUSCWTbJxdfr8H8zveoUVCxIhxwQKJqCiZZ2N8CTeAULI8HsIv0ERFZrarP+C2QwxCRZtis1RrgxAzxlbsh5ncu5gsyNt58Xn479zq2o9Onsxzoc8IJ0Db9Tu9339lnu3YbmDZtGgcccAAieQ0MZxT7YIMZVwI9ReQHTNn6wDMfjIfxQBMRaQQsAM4jJkGxiDTABocuVtW/EiV8QYwaZS4nhwXFPmnkSLjnHtPg7w16Pvj0JnBtn3x8vQbzO9+jRll49jJlEllb8MjC/hZoAqlgqWqu599TCXhaRNaoan+/5SouIjIi+reqtvdHkpLh3TSHY7M9x6rqHJ9FSgiq+noCigmkg302Mu7HH2kPLNxttzzjfgediP9V/fpfcvLJN9CmTRsGD44rkF7a4r1ohbBIgm0xZasn8JyIfKKq58RRxhYRuQFLTpwD9FfVSSJyrbf+RaA7sCvQ11Nat6jqwUk5KI/7vMymvvtF/P033H8/vP8+VK8OAwbAbrv5K1OGE5i2TxF+X4N5ne916+D339M23lGRyLb+FnQCqWDBtgv1fCx87ysiUta7OB0+ICJNgW+AykB7VZ3ms0gJx0s4XBtzsN9GnGkDkuJgX7Zs2TiqdkRTce5cjgNW7rFH2ilYqhYpG+Cmm07lppvqUbNmTX+FSjGqOhYYKyIDgReBM4uw72dYNMLo/16M+n4lNkuWMl566aVUVrczq1fDFVeYYlWmjM1ePfig2Uw5korvbe8Dfl6DeZ3vn3+GLVsy3/8KsrO/BZnAKlgAqrpRRE4D3gdeEJEqqvq4z2IVmXSdsYrg2Ut/hSkeHTLNb0hEDgReA/aP/IXN0kU+40k0nBQH+0qVKrkgL0Vk/zlzGALQITa9WfD57TeLeFW3rtK6NeTktPFbpJQiIo0xk6ILgb2BH0ixQpRomjVr5l/lixbBkUfCzJnmb3XjjdC0qX/yZBm+tn0Wktf59qzmaNcuxcL4gOtvwSLQChaAqm4QkTOAt4DHvFmG+1U112fRsgIRORKbRVyHmQVO9VmkZNAfsxe/GfiHfBSjQgikg33WsWwZ/PMPVKoEaRii/eOP7bNDh5nUqnUIr7/+Ol26ZHySYUSkG6ZUtQUmYgMeA1V1ga+CJYDvv7c0e0f7EUzikUdg9mz4+mtLJuxIKb62fRaS1/keNQqaNYNsMARw/S1YBF7Bgm2JiC8AVgD3AHuJyKWqut5fyTIbEbkIeBWYDXRW1Vn+SpQ0mmDREKeXoIxAOthnHVOm8CwQ2rCB2WvWUDWNsvSqWmA3gM6dS1G16jk0atTIX6FSxz3AO8A1qvqn38IkklAoBKTYL2LTJujeHfr2hcsvd8qVT/jS9llMXud73Djo3NkngVKM62/BIi0ULABV3eo5Sk4HHgUaiMhpqrrYZ9EyDhEphTmcdwdGAGeq6n++CpVcfgT2xfpWsfDbudfhMXky+wEX7r03FdPMx2T0aJg+/VPKlHmIDh0+4pJLssrltEGm5jzs3z/F8ZmGDoXLLoPly+GCC0zJcvhCyts+y4k933/9ZQYN++7rk0ApxvW3YJE2ChaA9wB+XERmYCaDv4nIuao60mfRMgbPBPNN4ERgADaivMlXoZLPFVgglcaYedIOeb3i7V9BdLDPOn7/nWOAY664Akqn1e2NN94AKEf9+jUoU6ZUYZunPSJyEPC7Z+59YEGh6FX115QJlmAaN26cuspef92Uq5Yt4eWX4bTTICceF1JHMkhp2zt2Ot9DhtjnmXGHyUlvXH8LFun1BuKhqh96oXw/AL4VkXuBJ5xfVskQkUOwgCL1gOuBFzN1VDmGJkAr4Pg81sUb5MIRBH713sNbt/ZXjiLy8MO96N9/AjCIoUOPpW5dvyVKCT8DdYF/ve+RwDKxpPU1OHz4cACOPfbY5Fa0bJnFoj7gAJsOrVAhufU5CiVlbe8Adj7fY8dC48aw995+SpU6XH8LFmmpYAGo6p+eQvAK8BjQSUQuV9X5PouWdohIacwHIoQFZjhCVcf7K1VKeQkLQd+L4ge5cPjNli3wxx9cBYy8+mqmTS+JS11qmTxZ2bxZOOggaNHCb2lSRiMsoXfke0byyCOPAEl86dm0CW66yUwDly+HL75wylVASHrbO3Yg9nyPGQPZFO/B9bdgkbYKFoCqrhKRc7Hkt08CE0XkRuCtyMyLlz8r003c4kZEcsB82rzfTYE3sOhdg4BuGe5vlRf1gRNVdYbfgkQQkS5Al3LlyvktSvowbRqsX0+nWrVofMUVfktTJBYtsgSRl17qsyApJCZRuQLz8pox94LDpC1vvvlm8gpftw4uugg++sgcTQYMgAMPTF59jiKR1LZ37ET0+Z4/HxYsyI7w7BFcfwsWaW/or0Y/oCXmP/MG8JmI7CUidYGZXi6trEdEagK/AFeJSDkR6Q78ATQFzlfV87NQuQL4GgiUTZmqDlPVq3Oc/0T8/PILAOcccQT33nuvz8LEz7PPfsb338+hShVzn8lSZgG1Yv8UkV29dWnLHnvswR7JSBnw999w+OEW2797d5g8GY47LvH1OIpN0trekSfR53vsWPuvbVsfBUoxrr8Fi7SewYpGVWeIyNHAjcDDmLI1GagNTPJTtgCxDAt1/yhwO5bI8z3gVlXdKWdTFvEF8ISXo+pPdg5y8aEvUjmKhpdRclPr1pT1WZSC2Lp1K1deeSWXXHIJHTp0IBR6CFjFmWcOo2rVvfwWzy8iSb1jqQxsSLEsCeWLL74AoHMiY0V//DGcdRaUKwcffABnnJG4sh0JIylt78iX6PM9ZoxdHq1a+StTKnH9LVhkjIIF28zenhKR94GXgROAVUA7EZnhgmDQApu1rApsAY5X1a/8FSkQROIY35fHurR2sM8qPAWr1csvc+DkyQwcONBngfJm8eLFfP311xx99NGMHw/Ll39E+fKl6Nmzjt+ipRwRecb7qkAvEVkXtToHaAP8nmq5Eknv3r2BBL70PPkk3H471K0LH34Ihx6amHIdCSfhbe8okOjzPWYMHHQQlA3yaFuCcf0tWGSUghVBVRcAJ4rIHViy1zeA20XkAeDTLImMtw0v/PiDwKXASqA/cJuqrvRVsICgqmlvKpv1rFgBEydC2bJce+ON7Lbnnn5LlC+777478+fPR1U5/niAetx8M9Sr57dkvrC/9ylYLrpof9lNwK9An1QLlUgGDRpU8kKWLLHIgD16wG+/wX77wc8/Q/nyJS/bkTQS0vaOuImc782bzWL8mmt8FijFuP4WLDJSwYqgqn1E5EngHOB/wDBggoj0Aj6IBHrIVERkfyw64HmY2duTQM8s9bNyZDKjRoEqtG7NTbff7rc0cfHVV8LXX0PVqhZdOxtR1Q4AIvIacLOqrvJZpIRTt6Qx94cNs0Q+mz3L5TPOgLfecspVGlDitncUicj5/vVXWL8+uwJcgOtvQSOjFSwAzyxwkIgMBs4H7sWi5c0Ukb7Aa5mkcHhRAk8AugGdgbWYYvWkqi7yU7agIiK3FbReVZ9MlSyOYvKVWbpuOfpoNqxZQ6VKlSgoca2fdO/enU2bhEGDwgDcfz/UqOGzUD6jql39liFZDBs2DIAuXboUbUdVuO02eOop2GMPeP55OOooqFYt8UI6kkKx295RLCLne9YsO9+HHeanNKnH9bdgkfEKVgRV3Qy8ISJvAacDt2CmJ4+IyCBgAPBDuvppiciewIXA1cCeWD6rEPBcJimQSeLGmN9lsGTL67EkqE7BCjqec++kZs1oVaUKgwcP5oyAOv43btyYhx4awpw5lg/5tgLV++xBRDpgg2ANYMc4Jap6jC9CJYAnnngCKOJLz+efwz33wB9/wAUXQM+eEGCzV0feFKvtHcUmcr5r1uzCnnvauEQ24fpbsMgaBSuCp0ANBgZ7UeOuAy4GLgPmi8g7wLvAr0H31RKResBpmJ/ZEd7f32ERAod6SqWjEFR1pySnIlIHeA0LlpJyXB6sIjBrluXAqlaNWsccw6OPPkrLli39lmonrr/+eo477jhKlz6JWbNaUro09O8PpbPuLrwzInIZ8CLwEdAeGIKlj2gEvOWbYAnggw8+iH/jt96CZ56B8V6e92uvheeeA5euIS0pUts7SswHH3zA5s3mopiNOobrb8Eiqx/tqvoHcJ0XDOMUbAboVuBOYJGIfAp8CoxQ1RW+CeohIqWBgzATwJOBg71Vk4H7gXdUNa1zxgQFVf1HRO7Hwth/5EP9w4BhlSpVuirVdacdgwfb53HHsVuDBtwVQIemjRs38sUXX1CuXANeffU0oBYPPwwHHOC3ZIHhDuAGVX1FRFYD96rqTBF5Dljjs2wlombNmvmvVIWlS2HuXDMBfO01aNjQpjWd7WjaU2DbOxJOzZo1+fprWL48OxUs19+CRVYrWBFUdS3wDvCOl4z3JG85B7gSUBH5A/gBGIWFDf6rKEEyROQpr65birBPXSyB8iHAUcChWF4YBcZgStUnwJ9Bn21LU0oB2Rc7O92IRE467zxWrlyJiFClSpVA+WCVK1eOH36YyVFHKatXw7nnwt13+y1VoGgMDPe+b8TucwDPASOwYD1pyYcfWhq9M844w2Zbx42DRYvs+8cfm3IV4Yor4MUX3bRmhrBD2zuSzuDBH9K7N9SocUZWKliuvwULdxePQVWXAq8Dr4tIWeAwTLk5ErgcuMHbdIOI/An8Bcz0ljmYz85SYJmqbokqulV0PWJvf9WAmt5SH3vJaIQlAN6fHV/u//Tk+gH4VlWXJOaIHSISezcSzAerG3a+HUFl6lSLx1ulCpx4Ir3DYfr06cOmTZsK3zeFzJkDxxwDM2cKBx0Er74KAdL/gsAyoIr3fQGWs+8PYFeggl9CJYJnnnkGNm/mjPffh/ffh63euFzZsnDkkTZbteee0KSJ2TY5MoZnnrE0b+6FNzV07/4MkydDz55nkI3W9a6/BQunYBWAqm7CRk9HAIhIGaA5NqsUWY7AHLN3yqXkJc3ciOVzqW5/yVLMgbsCeZ//ZZiy9jk2UzYBmKCqyxN1XI6diDVcVmAJ8C3mz+YIKn37shx4eM89OXfCBLp06UKDBg18n71atGgRzz77LD179mTcOOjQ4WrWrStD69bP89VXUKmSr+IFkR+A47CBpPeAZ0SkE9AR+NpPwYrNggXw6acMqVbNQq2PHg3XXw9XXmne9zVqOC07wxkyZIjfImQVNWsOYc894c47/ZbEH1x/CxZOwSoCXtCICd6yDU/xaoBF76sJ1PKWykA5bzkCyAVGYkrXemymayn2Mr8ImOWS/6Yel2g4Pfnx88+p278/5YFXZs2i1bRpXHLJJRwWgNi8AwcOpFevXuy2W5jbby/Dpk21qF17LsOHQ/XqfksXSG4AIomdegFbgMMxZesRv4QqNtddZ6Z+QLU6dcwhpHt3CxvpyBqquZD6KWPaNBg5shr33Ze9FrauvwWLLO2GicVTvGZ4i8PhSAHnnHMOJ61dy8vHHMOqb77xW5wdOOmk2/nwwwu58cYyAFx33f946imzCnPsTHQqCS/S66PFKUdEOgNPAznAK6raO2a9eOtPBNYBl6nqr8WVexsbN8KMGTB8OAwYAL/9BuefDzffzLuzZoEI5zrlKut49913ATj33HN9liR1+HENrl0Ll18OpUu/S61aANlzvqPJxv4WZNzIvSNrEZETRGS2iOw07CMi1bx1x/khm6MQZszg482buQ0sR1BAmDkTLr0UWrQQRo+uR61aFoOjb1+nXMUiIjXiXeIsLwd4Houy2hw4X0Sax2x2AtDEW64GXijRQWzcaLNVlSub/9TNN0OpUnDrrfDKK9C2LS+8+CIvvFCyahzpyQsvvJBVbe/HNbh8ORx7LIwZA3vv/QIff5w95zuWbOtvQcfNYDmymRuAx/Myy1TVlSLyKHAz8FWqBXN5sApgyxa4/HLabNxoSVjbtvVVnK1bbeLi5ZdhyBDYsmULIndx+unn0a9fG1zk3HxZivk7FoR428STCKoNMF1VZwJ4CeRPxdJYRDgVeMOLujpGRKqLSD1VXVRk6QFOPRW+/BKOOgquvhpatLDY+1G+VZ999lmxinakP1nY9im/Bnv3hrFjLVvH8cdn3fnegSzsb4HGKVh54OVeaaGq7YuwjwJnq6rL9JY+HAA2CZIP32Kh8FOOy4OVD6pw880sHzmSn6pXp10oRLL0l4ULF1KqVCnq1q0LwOzZs6lQoQJ16tRh82Z4991ZjBhRia++qs28eQCzEKnE6aev5YsvXuL00w+kZs02SZIuI+iQ4PJ2B+ZF/Z4PxGrfeW2zO+YDuw0RuRobXadBgwb513jHHXDLLdCpU77JgCtWrBiX8I7MIwvbPmHXIMR3HXbtCk2bwumnA2Td+d6BLOxvgcYpWClARAYAlxa0jaqKt11NVT05Zv+DgfFAI1WdHfX/adgszEFYVMJ5wGjgOVUd721zBnAtcCDmRD4Z+J+qDs1H1vOBt4FPY+XIQGphgUfyQ7Ew0Y4gsHmzRWF75RX+zMmhy4oVfD13Lsc2bZrwqqZOnUqbNm1o3749Q4cOZckSOOywjtSufRi1a7/JqFGwdu2RQGfgFRo2hCVL2nLmmWfx+ut9yc1dzZYtWwqpJbtR1e8TXGReIfliZ8ji2QZV7Qf0Azj44IPzn2U79thChXrrrbf+v70zj5OqOvr+94eCRsAdhSjiFhdc4oJgfHwU3BOXmLjEV8VAXFDB4O6r0UQjGo3ENXGJG2rUxEgSJfro6xr1iUaNEgQVIYiKgmIQFZBhYOr9o04zd5qerbtnpmemvp/P/XTfc86tU/fevjOn7qlTBcCxxx7baNugY9EJ733ZnkFo2nO41Va+Qae83nXo7OdfaYSB1TqMpm6izH8DFwB/KFagpMuA84AbgJ/jxlVfPG/XVcDg1HRPfCbmQmAecAzwZ0mDzez5PJmbpmM7S+6nWfgs1rR66rfHc/IEbc3rr8OJJ3rOq1VXZad77uHlfv3Ycssty9ZFTQ189JHHKpgxYyuGDp3Cq6/OYIMNvBx+xezZvZa333DD6xkypA+nngoDB8L48b+hX79+AHTp0oVuseiqyTS2ziobBKMBZuF/A3NsCHxURJuycttttwEx6OmMdMJ736bPYCe83nXo7OdfabQrA0vSs8BbeOSZ4cAyPITvzcDVuPHwBfATM7snHbMdcA0e8vcr4GFgdG7dTVqUeSVwfOrmLvL8/VPUm3OAEcDXgenAlWb2u6bonfpavs4nuRN+bmZzmnUBao8fhBtoo83s+kzVu8Bzae1Qru/ReYdfIulA4FAyhlQKNX8/7hI3BFrM86qSeAS4VNKjZvZVtkLSarjh+kibaBbA4sXwxBO+uGnCBC/r1w/uu48eu+3GLk0QYeYRpj77DObNgzlzfJs9u/Z7bv+99zxmQS19yY0DevSAb37zUHbayZfb7L479O5dN5njEUccUY6z7qw0th6rKWuwXgG+IWkT/MXIUcDReW0eBkaltSGD8L/Dxa2/aiJPPNE+03gFpdMJ732bPoOd8HrXobOff6XRrgysxDG4MTUIOAS4FvfTeQwYgLvi3SbpKWB+Kn8FX3y5NnArcAdwWJJ3FnBi2iYBI1Mf2bChY4DDU91U4FvArZI+M7OCA/BkDNKcdVzN4GhgAXBjocq0eLQhegL5iYsvA2aa2V2Syr02olK5DL+v0yTdALydyrfGXS8FNDlEXZuFiO4IzJtHzfQZVE2dSdWkqSx6aRILX5vKokXGQrqzsNuBLNz/+yw85CgWTVmNqX/6gDlzFrDRRluzcCEsWgRffOGG1Pz5tZ/z53tMjKbSqxdsthnMn38Gm266JcOHn8wOO8Cmm3pwuKDFyP+b0xV3az4Fn31vFDNbKmkU8Dj+DN5hZlMknZzqbwYexZ+/6dS+qGtRunbt2tJdBBVKZ7v3bf0MdrbrnU9nP/9Koz0aWFPM7GIASVfjrnfVZnZdKvs57jq3G7AWnux3qJl9mepPAp6RtLmZTQdOB35pZg+k+tHA/rnOJHXHAyHsl3Gpe1fSQNzgqm+G4/0iz+8ASQvyyvKHdlsAM8xs+dBR0qnALzNt+pvZCjpIGolPyd+TKdsPTxyxQ5E6t0vM7BNJu+FhYi+n1jfc8H8Qp5rZx02RlQlPuy/uAvGKpIfNLBs9KRuedlDqt0kh8KzGsGU12LIaapb6tsL3ZVa3PO1XLzGWVtsKn3XKqlnxcylUVxtLq8nsw9JlUF0t318KS5f69yXVomoJVC02qqpIm6iqFlVLulBV3YWqpemzugtVS1eiqqarb/RkKQPwdyQFWAJMSBtQ18OkYVZbDdZay7fevetuffr45/rrw0YbQc+efsyQIRPp339lDj+8yd0EJVDPeqwnJc0ATsDXhTZFzqP4AC5bdnPmu+F/t1uNcePGATBs2LDW7DaoADrjvW/LZ7AzXu8snf38K432aGBNyn0xjwzxCfBGpqxa0mfAesDmwKSccZX4Ox7YoL+kuUAfPDBE7vgaSf+gdgTXHw8O8Vhy7cvRFZhZn5Jmdlxxp8dzpKg5GbYF/tzIcffi4cRzbVd43y7pMHyN1VFm9l4qWxcYBxxtZvmzWh2edB2+I2kt/PciYFoR16JFwtMuWrQm0nDgTvyF4KW4u/pvU4uf4BO1v0n75wFV+MQu+LuBlfDbDnAa/s7hF2n/FNwb9NK0fwLQD7go7Q8DtgTOT/tH4zFVzk77R+LvMk5P+98H9qb2/+fBacv9pA9Ix/wIfwz3B44DhuJW1Lfp2mUoa69+FKt2X8ysOQfRq9fxbLPNcGAuzz//bbbaagSDBh3DV1+9z4svnsZee53BgAHfYdmy2dx663EMG3YuBxywLwsWvM855xzPhRdewJAhQ5gxYwYjRoxgxIifsfvuuzN16lRGjRrFmDFj2GabQUyePJkzzjiDK664gmeeeaa+WxK0LhOBPdpaiVKIQU/nJe5969LZr3dnP/9KQ417k1UOye1uspmNypRNBh7MzWqlsjm4W99mwM5mtkemrhu+FutQ3JiZD+xtZk9n2twD9DWzwWm900v4qDF/Rqg6Y6g0OUx7mqEaZWbj8srH0YQogpKuw9eMrWVm1Q21zZQfhs9aHZfVUdJg4Bl8PVuOnHFWA2xjZlMbO6fOjqTDgQPM7IS0PxQYlPdb/StwhZm9kPafAs4zs1fzZC0PTQvsjLtR5LMSde9Zc8pWBvId5wq1ay8ym9NPKTLr66c9yCwkr1SZXzOzFnOclJR7E7CvmW3VUv00QY+5wHsliFgXX2PWHmgvuoaeTj8z69V4s/ZPGZ7DctNefoPlIM61YQo/h2bWbjbgWTwEebZsMnBxXtkcfA3NiXhwiZ6ZusG4C9jmaf8j4IJMvfB1Vs+m/Z7AYmB4I7oZcHgTz2MBvv4mv3wc8NcC5QOS/I3T/q5p/8zG2qayI3Gj8sgC7bvjs17Z7S/A39L3bm1939vDBhyBr7vK7Q8Fbshr8wiwe2b/KfwFQENyX62n/LcllK0gs1C79iKzmf0ULbOBfipeZmv9jordgC/xAEW57UvcoPsCOLhc/bTFVs7rFLqGnrFVxtaZ7m2ca3Fbe3QRbA73ApcAd0v6Kb4m6xbgT+brr8CDDpwv6R3c1fBU3G1wNoCZfSlpLDA2BSl4Dvex2hWoMc/TsAKS7k7HF+sqWC9m9pKkXwJXSeoHPIjPrq1P7czHsqTHUfjM1dl4hMHeqX6Jmc0zs4W4kZrVfT6wspnVKQ8apLXD004ooayp8tqLzOb0U4rMpsrr7DKLYVTefg0wF/iHdULX5SAIgqB906ENLDNbJGl/fEHKy/hM1EN4XqocvwJ6A7el/Xtww2zrTJuLgI9xI+Um/K3qROoGlcincNrxMmFm50l6GV/schxu9H0MvADsYWa5TOkn4/f5WmoX5oDPUA1uSR07Ga0antbMVhjwNrWsqfLai8zm9FOKzKbK6+wyi8HM7mpJ+UEQBEHQmrQrA8sKhDw3s20LlPXOfH8DXz9Vn8ylwBlpq6+N4Ql9b2igjfL2V9A1U9ejnvJh9ZS/SoHs52Y2HhhfXz+N6dHAMQX1COrHWi48bcEZ0hIJmZ1PZnvQMZdweD3ygvRY3Wic7Y2WuPYtRXvRNfQM2prOdG/jXIugXQW5CIIgCDoeknbEQ2VulyvC15IKf8fVlETDQRAEQVARtKsZrCAIgqBDcgfuWjsad3WON39BEARBuyVmsIIgCII2JaWu2CETfCgIgiAI2i0tlsMkCIIgCJrIC9QNLNRukHSHpE9STsZc2dqSnpA0LX2ulak7X9J0SVNTEKa21PNiSR9Kmpi271SAnn0lPSPpLUlTJI1O5RV1TRvQs+KuaVA+6rvvHRlJK0l6PeXy7LBIWlPSg5LeTvf3WyXJixmsIAg6IpK2Ar4LbIC7nH0EPGxmb7WpYsEKSNoAj+T6GJ42ok4CdTN7ri30agqS9sBzG96dC7qU0mjMM7MrJP1fPCn8eZL6A/cDA4GvA08CW5hZoWTTraHnxcACMxub17Yt9ewD9DGz1yT1BP4JHAoMo4KuaQN6HkmFXdOgfNR339t5IJ4GkXQmnmN1dTM7qK31aSkk3QU8b2a3SeoGrGZm84uVFzNYQRB0OCSdB/weD5LwMh5GX8D9aXAWVBbfAHYArgGewJPK57Zn2kinJpGMv3l5xd8FcqHn78IH3rny35tZlZm9i0cUHdiGetZHW+o528xeS9+/BN7CX5JU1DVtQM/6aLNrGpSPIu57u0bShsCB1KYy6pBIWh3YA7gdwMyWlGJcQRhYQVBRSNpf0k2SHpb0UPp+QAny1s3bP1bS9ZJOSomzi5UrSYMkfV/S99L3ouUVkN9D0k6S1ixSxPHALmZ2hZn9Lm1X4AOa44vU6YDM9zUk3S5pkqT7JK1fpMw1JF2RXBL+k7a3Utmaxcisp59Sr2dL3/NbgKfwKILrAb0y23pl6qM1WT+X4y595s5hA+CDTLtZtP3gbFT6Hd+RcburCD0lbQzsCPyDCr6meXpCBV/ToHwUuO8dkWuBc/Hk7x2ZTfHk9ncmd8jbJHUvRWAYWEFQIUi6Fo+i9jc8ifVV6fuPJV1XpNj/l5F/ITAUd2nYF7i6SD33A6YBF+N5vQ4ELgGmpbpiZN6Y+b478CaeBPyN7BqGZlCDu+Hk04fi/1Fcnvn+K2A2cDA+O3ZLkTIfAD4DBpvZOma2DjAklf2xSJllv54tcc/z2BD4mZlNMbNPzew/2a0M8iuFQgZpW/rp3wRshs8ezsZ/I1ABekrqged5PN3MvmioaYGyVtO1gJ4Ve02D8tGM32e7RdJBwCdm9s+21qUVWBnYCbjJzHYEFgIlebtEmPYgqBy+Y2Zb5BdK+gPwDm58NZfsP/XvA/9tZgsl3Qe8VpyaXAfsY2Yz8/TcBE+mXEywgl0z3y/Ffdpfk7QpboQ82kx5pwNPSZpG7VvjjYDNgVFF6JfPADPbIX2/RtIPi5SzsZldmS0wsznAlZJ+VIJ+5b6eLXHPszwB7Az8u0Q5lcLHkvqY2ey0ZuOTVD4L6JtptyG+NrBNMLOPc98l3QrkFrG3qZ6SuuKD13vN7E+puOKuaSE9K/WaBuWjnt9nR+S/gEPSS7lVgdUl/c7Mjm1jvVqCWcAsM8vNRj5IiQZWzGAFQeWwWFIhn/xdgMVFyvyapB0l7QysZGYLAcysGih2cfXK+B+jfD4EuhYpM8vqGR/3GUCzk8ya2WPAFvgsy+P4TN7FwJaprhjWk3SmpLPwfzRZ47XYv6XvSTo362Ioaf20huyDBo5rDiVfT1r+nj8G/ErSGEk/SG6Iy7cyyG9tHgZyRvcPgYcy5UdJWiUZp9/A1wi2CclQyfE9PMAItKGe6bm6HXjLzLKz7BV1TevTsxKvaVA+Gvh9djjM7Hwz29DMNgaOAp7uoMZV7sXmB5K2TEV7454fRRMzWEFQOQwDbpJHJsoNZvsCX6S6YphNrSvgvMwb4HWApUXKvAN4RdLvqTUC+uJ/gG8vUuZWkibhM24bS1rLzD6T1IUiB/BmVgO8VKQ+hbgV6Jm+3wWsC8yV1BuYWKTMH+BvyZ7NGFkf44OxI4tXtezXsyXueZacS+MFBeqM4ozCVkHS/cBgYF1Js4CfAVcAD0g6HngfOALAzKZIegD/x70UGNlaUeTq0XOwpB3wazwTGNHWeuJvzYfi7qwTU9kFVN41rU/P/1OB1zQoHwXvu5k11ysgqDxOA+6VRxCcAQwvRViEaQ+CCiMN2DfAB8ez0puVcvexErCKmS0q8vj+wCFk9MRDoBf1xkdSv7yij8ysWh6kY49KdcOQdLeZHVeijM3xN9198YHXO8D9ZvZ5CTLzr+dsM1tSyvUs9z0PgiAIgo5KGFhBUEFI2gj4wszmpwhFA3BXhCklyOwCPqOT3sxsC8w0s6aGbG4TJK1nZp803rJ1kPRwgeK9gKcBzOyQImT+GDgIeA4PHjERD3DxPeBUM3u2SHWDIAiCIGgjwsAKggpBnp9pBFAFjAXOBv4XD1hwezH+3pIOxSPc1QAn4y4sC/H1SaeY2YQiZPbAw7Yehi/UXoIHJ7jZzMY1V16SuXZ+ER7tcEf871SbG4OSXgem4PlAjJRXC3eTw8z+VoTMN4AdzGyZpNWAR81scDK0H0rRjIrRtTfuAlYD/BR3fTgMz9kyOhfuuhnyBuBRLT8EzsddBnfBIwueZGavF6NnRv6ZDdV39LUOQRAEQcciDKwgqBAkTcFnrFbDffc3NbO58lwM/zCzbYuQ+TrwbeBrwL/w3FBTkwvZeDMbUITMh4A/A0/i64S640l9LwQ+NLNC62gak1kDvJdXvCHuhmZmtmlzZZabNBM4Gp9pOsfMJkqaUYpuycAaYGZV8nw5T5rZzqlucjH3PB37GPAIfm+OBu7FjcHv4tEAv9tMeS/jBtuaeAqBM8zsQUl7A2PM7FvF6JmR/25eUVc8pP5XeJjgNr//QRAEQdBUwsAKggpB0iQz2z6tj5oN9E6BGooebEt6PTcLki9D0mtmtlMRMv9lZt/M7L9iZrskA+RNM9uqCJlnA/vghssbqexdM9ukubJaGnlm+2vwYBSHmNlGJcgajSc+fgnPIn+lmd0pqRduAO9RpNzsfX8/q6OkiZkQ8+WQt7yunKSgH3cCt5rZn8stPwiCIAhaiogiGASVw2vy/FTdgaeAu9JMxF6UEC5UUpdkqP0oU7YS0K1IkQsl7W5mL0g6GJgHy9d4FUqm2ShmNjZFqLtG0gf4bElFvv0xs1nAEZIOxCM8liLrOklP4nmkrjazt1P5XNzgKpZs2Pi78+qKici3WJ5QeA3AJB1qZn+RtCfFh/tvEDP7WNJP8LxdYWAFQRAE7YYwsIKgcjgBDz1seJK7gbh711TgN0XKPAk3pBabWTbnSl887HExnAzcJmkLPMfLjwDSrEuxemYNl4PxxLOrFSurNTCzR3A3vFLlTMHXdpWThyT1MLMFZnZhrjBFLJxahLyTcdfAGmB/4BRJ4/A1WSeWQd/66AKs32irIAiCIKggwkUwCIKSkHRwMcEyGpF5CDDDzCY32jhoFpKGm9mdlSRPKyYTFr4GayT+OziwFPkdhWTUrmtmB3Wkvgr0/VfgUzMb1tp9B0FLEs9w56FL402CIGhrJP1PBcu8rExysowJ46rFuKQC5T2Ytz2AB015HZ/Z7RRI6iXpRkkzJVVJ+ljSU5L2TU1GA8e2pY71IelZSb9uxf4mSbqynrqTJH0l6XxJr0j6QtJcSRMkFRU4JgiaQjzDze7zaUlWYCvZO6StCRfBIKgQJNUXcELADpUisx5Z5aYlZHYaJE2qr4oiXO7KLS8fM4uXfc543DX2eGA6sB6wJ7AOQCnJpzsgk4Dt8gslrQGMwV1aBwM3Aq/gv9WfA09K6l8JqR+CDkk8w81jR+AneOqPLIvaQJeyEgZWEFQOrwB/o7BxsWYFycynJfyMw3e5NNbH10p9llcu4O8VIC/IQ9KawH8D+5rZU6n4PfwZzrUZR8blR9KzeG6zRcBwPODIGOBm4GrgGDwQy0/M7J6MnGeByWY2qj7ZBfQ7AB8IbYs/n68Ap5vZW+nYPYE9JY1Mh2xiZjNT4Jtz8Bx/X8cHnVea2e+S3NVwI+hwPEffdU28ZJOAUQXKf4qH97/CzL7KO4ehwOfAfwFldWsOgniGm/cMS9oMH4f8zczmNOWY9kS8NQyCyuEtYISZDcnfgE8rSGZQ+fwV6GFm7+VtM4FnK0AeAJK+nVxp1ihQt0aq269Y+e2MBWk7RNKqzTjuGOBLYBAeuOZa4C/AO3hevbvwoDRfL1G/7kn2QHxm6HNggqRuuNvTi3hY/T5p+yAdNwZ/mz8S6A/8ArglReEET6q+L54Ie2/8jXZTImhOAvpKWj1XkALvnAacmW9cJXri4578FwVBUA7iGW7eM7wzblCWlKi+UgkDKwgqh4up/5k8rYJkBhWOmR1vZi/UU3d0W8vLMAq4qpDbTCq7Ev/H3+Exs6XAMHx9xnxJL0oaK2lQI4dOMbOLzWwa/sb7U6DazK4zs+m4W5yA3UrUb3zappnZJPxt+ybAwHSvlgCLzGxO2pbJk6SfCZxgZo+Z2btmdh9wKzBSUg984HaumT2e1l0Ox6NVNkbObTW7pupq4DkzG1/PMdcBE/GBZEEkPR7rtIJiiGe42c/wznjakE8kLchsfyzlPCuFMLCCoEIwswfNbHkI7RSuPFf3l0qRWYCPyySnpWUGlcf2wJMN1D8NfLOB+g5FMgy+DhwM/A8+oHpJ0gUNHLZ8fZx5WOBPgDcyZdX4jM16pegmaTNJ90n6t6Qv8Ge0C9BQou3+wKrAY9kBFHAKsFnaupExeMxsQVb/+jCzj/CB6HZJv/1xN9Yf16P/1cDuwGFm1lDutq2AtxvrPwgKEc9w059h3MAaj68Hz26nNuvEKpRYgxUElctllH+dQNllmtm+jbdqe5lBRdKLht90GmlxeGfBzBbjeeCeAH4u6TbgYklj6zmkOl9EPWXZF6o1rLgus2sjqk3A856NSJ9L8QToDSUsz/V5MPB+Xl01sFYjfTbGG8C2klYGrgF+bWYrJGWXdA1wFDDEzGbk1fUHfou7D44D5qWZCCR9I8ntja/rOsLM5kjqC/waH5h2Aw4C9sEHhisD083seyWeW9BOiWe4yeyIRwyeXoKMiiUMrCCoXCI6X9DRmYXPYk2rp357fCDQmXkT/1/dnDUdjTEXX2OR5ZvAzEKNJa0DbA2MNLNnUtlO1B1DLMHdfbK8CVQB/czs6QJy/4MP0nYFZqSy7rjb37+bcB6Tkt4jcUP84gJ9XIcbV4PN7O28upXx6GUnmNlkSQ8A/0p1q+CBBoab2fuSTsBdoi4FHgV+bGbPpPWDq+Lurjub2dIU7CAIcsQzvOJxmwBr00HXX0EYWEFQyUR0vqCj8whwqaRHC0R8Ww1fe9Du86E0hTQA+iM+4J+EL3ofAJwLPGVmX3gwr7LwNHCtPKH3VPyNdl/qGZzh7kmfAidK+gDYALgKfwOeYyYwUNLG+EL/eWb2ZXprPzZFInsO6IEPxmrM7LeSbgeulDQX+AiPApg/yKuPScAP8YHlWflr+ST9BhgKHAp8Jql3qlqQ3Ji+D7xqtTn3plIbAONQfED6cLru3YDfA98DXs4NUs3sc0k1eDS0KyWNM7OmuEcFHYx4hpv1DO+cPudknsscn+ZmkdszYWAFQRAEbcVleGjfaZJuoHbty9b4jICAy9tIt9ZmAfASHtRjc2AVfPbuPjyKVzm5A58dzOWeuRH4M7BuocZmViPpB8D1wGQ8TPNZ+PqJHGPxaGdvAl/DF8/PBC7C13qcDdyEh5yeiOepIpV3T/0vAm5I+03hX7hh8zLu3pdPbi3HU3nll+CzXdsnGTl2Bn6Vvm8HnGNm92YPlDQm9becNAjdDjfKfi/ppw0E2gg6LvEMN/0ZzhlYb+Wris9szW/k+IpHvp4uCIJKQ9IkM9u+0mUGQSlI6of/096fWhdWAx4HTk2h4IOg7Eg6A9jYzEZL2htfM7O+mc2VNAqffRhuZiZpOzN7Q9JpwBZmdpqkLvgalLVTBDgkXQ/8I98wC4KgcxEGVhBUKJKeKHewh5aQGQTlQNJa+FtfAdPMLHIVBS2KpHXxSG8r42/19zSzjVJdd+B3+GzqYuBpMztTUk/cVXBjfO3JKOBE3GVqET6DMaqRSIVBEHRwwsAKgiAIgiAIgiAoE5EHKwiCIAiCIAiCoEyEgRUEQRAEQRAEQVAmwsAKgiAIgiAIgiAoE2FgBUEQBEEQBEEQlIkwsIIgqFykcUh/XeF7a/ZbXrnPIlnadk1l2yD9HWky0gQ8wW5Wj1z7w8uuTxAEQRAEZScMrCAImkfdQX810idIzyCNROragj2PBo4tu1Q3en7dKn05dwJ9gH8irQo8AIzEbFvgHWBYnh59WkiPIAiCIAhagDCwgiAohifxgf/GwH7ABOAS4Hk8f0z5Mfscs/ktIrt1+1qE2RzMqoFDgScxez3VvQ30ytNjTgvpEQRBEARBCxAGVhAExVCVjIQPMZuI2dXAYGAn4FwAJCGdi/RvpK+Q3kCqOyvkbc5CmoZUhTQL6RcFe8x32/OZpxuRLkf6NM2kjUXqkmlzANLzSJ8hzUN6HGnrOjJhT2BkZlZu4wJ9rYJ0LdLHSIuRXkLaPU+/xvVZka2BNzL72wFvNtA+CIIgCIIKJwysIAjKg9lk4DHgsFQyBjgeGAn0B34B3IJ0YOaoy4GLUt02wBHAB83o9RhgKbAbMAo4HfhBpr47cC0wEDcAPwcmIHVL9aOBF6l12+tTT/+/THJ/BOyIG0WPIeW77zWmTz4fAVsCIG0P7AM83ED7IAiCIAgqnJXbWoEgCDoUbwL7JDfBM4H9MHs+1b2LNBA3uB5B6gGcAZyO2R2pzXTc4Gl6f2Y/Td/fQToR2Bu4HwCz8XVaS8OBL3CD6wXMPkdaQs5tr7Zd9pjuwCnACZg9kspOBvZK53Jhk/VZkXuAPyC9kfQ6ErOqpp9+EARBEASVRhhYQRCUEwGGz1itis/yWKa+KzAzfe8PrAI8VUJ/k/L2PwLWq9VGmwGXAoPwtU1d0rZRM/rYDNf7f5eXmC1DehE/h6brk4/ZIuDgZugSBEEQBEGFEwZWEATlpD8wg1r344OB9/PaVKdPUTrVeftGXdfnCcCHwIj0uRSfZetG08npaQXq8ssa0ycIgiAIgg5O/OMPgqA8SNsCBwAP4kZMFdAPs+l523vpiFybvVtIn3XwIBKXY/YkZm8BPVnxxdISYKUGJE1PbWqDWkgrAd8iAlIEQRAEQZBHzGAFQVAMqyD1xl/S9MKNpAuAfwJjMVuINBYYiyTgOaAHsCtQg9lvMfsS6TrgF0hVqc06wM6Y3VQGHT8DPgVORPoA2AC4Cp/FyjITGIi0MbAAmFen1s/lJuAKpE+Bd/G1Y+sDN5ZBzyAIgiAIOhBhYAVBUAz7ALOBZcB8YDKeB+sWzJakNhcBHwNnAzfhQRwm4hH5cpyPG0IXARum9neXRUOzGqQfANcn/aYDZwHj81qOBe7CZ6O+BmxSQNp56fNOYE3gdeAAzGaXRdcgCIIgCDoMMiu0rCAIgiAoO9KzwGTMRjXzOAOOwOzBllArCIIgCILyEWuwgiAIWpeTkBYg7dJoS+lmpAWtoFMQBEEQBGUiZrCCIAhaC2kD3A0R4INGc15J6wGrp73ZmC1sQe2CIAiCICgDYWAFQRAEQRAEQRCUiXARDIIgCIIgCIIgKBNhYAVBEARBEARBEJSJMLCCIAiCIAiCIAjKRBhYQRAEQRAEQRAEZSIMrCAIgiAIgiAIgjIRBlYQBEEQBEEQBEGZCAMrCIIgCIIgCIKgTPx/qNZrAjFc/iUAAAAASUVORK5CYII=\n",
|
|
229
|
+
"text/plain": [
|
|
230
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
231
|
+
]
|
|
232
|
+
},
|
|
233
|
+
"metadata": {
|
|
234
|
+
"needs_background": "light"
|
|
235
|
+
},
|
|
236
|
+
"output_type": "display_data"
|
|
237
|
+
}
|
|
238
|
+
],
|
|
239
|
+
"source": [
|
|
240
|
+
"dir_path='PSV10-24'\n",
|
|
241
|
+
"example_data_doi='10.1016/j.pepi.2008.09.012'# data of Quidelleur et al, 2009)\n",
|
|
242
|
+
"# read in MagIC formatted PSV10-24 data compilation\n",
|
|
243
|
+
"df=pd.read_csv(dir_path+'/sites.txt',sep='\\t',header=1)\n",
|
|
244
|
+
"# pick out desired example\n",
|
|
245
|
+
"df=df[df['citations'].str.contains(example_data_doi)]\n",
|
|
246
|
+
"# use svei.svei_test to see if consistent with data model\n",
|
|
247
|
+
"# first pick out the directional data and put in array\n",
|
|
248
|
+
"di_block=df[['dir_dec','dir_inc']].values\n",
|
|
249
|
+
"# do the test and make the plot\n",
|
|
250
|
+
"resdict=svei.svei_test_varkap(di_block,plot=True)\n"
|
|
251
|
+
]
|
|
252
|
+
},
|
|
253
|
+
{
|
|
254
|
+
"cell_type": "markdown",
|
|
255
|
+
"id": "1b4cf32e",
|
|
256
|
+
"metadata": {},
|
|
257
|
+
"source": [
|
|
258
|
+
"## Illustration of svei.svei_test_varkap( )\n",
|
|
259
|
+
"- The program first tries with no scatter in the directional data (kappa is infinite, represented by kappa=-1. \n",
|
|
260
|
+
"- When that fails one or more tests, it tries with a kappa of 100. \n",
|
|
261
|
+
"- Failing that, it tries a kappa of 50. \n",
|
|
262
|
+
"- This data set failed the A2D compatibility test, even using a kappa of 50.\n",
|
|
263
|
+
"- In this case, the data are just too scattered. \n",
|
|
264
|
+
"- Other data sets can be made to pass using filtering of data for quality using, e.g., MAD at the specimen level or a site level kappa if there are multiple samples per site. "
|
|
265
|
+
]
|
|
266
|
+
},
|
|
267
|
+
{
|
|
268
|
+
"cell_type": "code",
|
|
269
|
+
"execution_count": 10,
|
|
270
|
+
"id": "11a57a4d",
|
|
271
|
+
"metadata": {},
|
|
272
|
+
"outputs": [
|
|
273
|
+
{
|
|
274
|
+
"data": {
|
|
275
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAEPCAYAAACwSQ7wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACzPUlEQVR4nOydZ5gTVReA30OXrjSpUgQEUVFBwYIo2LvYK2IXVMReQ9APULEjKqJiLygqiBUUBQWkF1EQQQSRLr2z5/txJmwI2d3sbpJJsvd9nnmSafee3Mwkc+5poqo4HA6Hw+FwOBwOhyM+FPNbAIfD4XA4HA6Hw+HIJJyS5XA4HA6Hw+FwOBxxxClZDofD4XA4HA6HwxFHnJLlcDgcDofD4XA4HHHEKVkOh8PhcDgcDofDEUeckuVwOBwOh8PhcDgcccQpWQ6Hw+FwOBwOh8MRR5yS5XA4UgYRBovweU7ryew7Tm2OFkG9pU3Y9gNF+FmEWSIMF6FsmAyh48+PpywOh8PhcDiSh1OyHA5HgUmCEnQbcHk8G/QUn/7J6MvjdaAmMNnrvwzwIdBVlRbAXKBzmAw1EyCDw+FwOByOJOKULIcjDRGR0SISTVEI7f9FRM5LpkyJQJW1qqxJ8742qbJUle3e+jnASFWmeuu/A9XCZFiaABnSBhGpLCL7hC9+y5QbIlJdRFaISB2/ZYknIqIicn5O6w6H34jI5yIyOGw9I/73HJmDU7IcjszkEeAxEUnqPe5ZiQaI0FuElSIsF6GfSPZvjQgiwh0i/CHCVhEWi9Anh/Yi3Qdjaf8UEcaI8J8Iq0X4WoRmofaA44CuYW559XPoq7QIz4iwTIQtIowX4Zj8yJIDzYCZYesHAbPzHt3MRUT2E5EvRWQLsApY4S0rvdeURVWXA28CwZyOEZHDPSXlmBz2fygiP3nvrxORMSKyWkTWiMj3OZ2XGyLS2eszcukeYxM1geH57dfh8JGY/vdE5K8c7o2++eksop1NIjJLRG4o1CdwZBROyXI4MpMvgArAqT70fRmwAzgK6AZ0By4K298beAjoAxwIXAAsimP75YBngCOA9sBaYLgIpTB3vHFku/DVzKXvx712uwCHYorRVyK7ufPlJUs0lgBNAUQ4GOgIDMvjnEzndaAGNtYdgBO85XjvNdV5HbgsJ6ubqk4GpgLXRO4TkSrAWcCr3qb2wAfYOBwJzAG+FpHGBZBrE9nXeWgZGMuJqrpUVbcWoE+Hwy/y87/Xiz3vjUcL0GeonYOBT4GXRCSv/wBHEcEpWQ5H+lJCRJ4Vkf+85YnQDJ6q7sT+cC7xQa7ZqjysylxVPgS+xx4YEaE8cDtwryqvqTJPlXGqDIhH+wCqfOwtf6gyA7gaaAAcocpaYBvZLnxLVdkZ2YEI5YCbgHtUGaHKb8CNwDKga6yy5MBbwAEizAReBC5Upag/zB4BXKmq76rqaFX9IXzxWzgx7hCRP0Rkq4gsFpFd1ldVnYUpz7m5Kr0KXCAi5SO2Xw5sxxQrVPUyVe2vqlNVdQ52Ha4HTimA6OopS+HLJhE5xbOW/edZzL4WkWYRn9m5BzpSBhEpKyKDRWSDiCwTkfsjj8nn/976KPfGhgKIFmpnnqo+CPyBuYQjIn1FZI6IbPasXo+LSJmwz1RXRD7z7sFNIvK7iFwctv9hEVno/eYsFZE3CyCfw0eckuVwpC+XYfdwW+AG4HrMkhLiF8w1LtnMiFhfAlT33jcHSgOjEtQ+IjQS4V0R/hRhHaYYFQPq5aOPRkBJ4KfQBk8ZG4d9hphkiYYqm1Q5U5WDVDlalVn5kCtTWYBdF6lKLNbXvO63d4Di7Gnp7AK8r6obczivFFAG+C+0IcwVsH6sHyCCHKy9UqqA7TkciaYfcCLQCZvIOhRoF+W4uPzveUrR4AKcugX77wDYiN3fzYCbgYuBB8KOHQCUxSz2B2L/32u8/jsBd3rnNQbOwD6bI40o4bcADoejwPwL3KqqCvwuIk2AHsBT3v4lQG0RKaGqO5Io1/aIdSV7QkcS3D5YHMk/mOL5D+bONxt7WI2VkJwaZV/4trxkccTGbUAfEblZVef5LUw4nuXpdqC7qr7mbZ6HKdzhLAFa59SOqq4RkY8xl8FXvbZbY25G1+ciwqPABnZ3KV2LuRFGXn+RlBOR3WbnVbW8qn4cvk1ErgbWYUrX2DzadDiSincPXgN0UdWvvW1XA4ujHB7r/97/RKRnxLaLVTUUl/sn9h8bq4wlMKv0QZiHAqr6SNghf4lIb0xxesjbth/wsapO99YXhB2/n9f/N6q6HfgbmBSrPI7UwClZDkf6Mt5TsEKMAx4RkYqqug7YjCkLZbCHtFRgNrAVm4n8I96Ni1AFmzXsqsr33rbD2P23bhtmUciNed5xxwDzvXaKY1bDd+MstgM+wyxZc0RkK6YY70JVK/oilRGr9XUzsFcex7wKfCciB6jq79gs9yxVnRDtYBG5DZss6Ojd0wCo6ifAJzHIvgloGaXdRliSgCOxzJbFyL+11+FIFo2wSbJdExuqukFEZkY5Ntb/vafIjoMMsUupUtW83L5DhJS10th/xhPAywCeu213YH+gPPa/E/7f8ywWw3UK9vvyiRe/CTAEm3xaICJfA18Bw1ycZHrhlCyHI3PZB9hSQD/zhKDKehGeBfqIsBX4EagCHK5qs3+F5D8sI911IiwCamN/euEP7X8BR3hZBTcAq1XJipBzowgvAn1FWInNMN6OJWfIT/yYIza6+S1ALsRqfd2HvDMhjsYU+C4iEsBiR3pG7dQUrEeBU1W1oG5CmoNlMB7WXocjWeTHAyLW/71VcbKah5S1TcC/oYlPEWkDvI9lHb0dcwM8C3N7BEBVX/UUqNOwBEg/i0gfVe2pqotEpCk2IdkReBIIiMiRubgWO1IMp2Q5HOnLkSIiYdasNsCSsBnvFsAUf0TLlfswZeghoA4WMxWXgF5VskS4CHgOmIU90N4BhLtH9QPewB4q98KSYvwVpbl7vNfXgcpYdrhTVGN3IXHEhqq+4bcMuRCr9bUFNmmQI6qqIvIaNkP9O3b9vRV5nIj0wLKWnaaqcXXf87IZetZe9ay9EmntdThSiXmYa2wbdnkWSDnsnvsz4thk/+/lpKwdDfwT7jIoIvtFHqSqi7GMnwNF5B7st6Gnt28LMAIY4aWXX+q1+028P4QjMbgfVYcjfakFPCMiAzA/8LvYPQXtsZiLQcJQpXPEevsYjskC+npLXscWpP3vsD/acMqH7Z+Luf3l1c5WzNWje+SxscriiB0RKY0lc2mOxbb9Crznt3uMqq4XEc/6KhHWV30RLPMZcDiwR8azKAzGXPX6AZ+q6qrwnSJyF/A/LL5jrojs6+3arKprvWPOxZJwdFDVf/L5kcKsvZKTtdfhSBk818BXsRpYK7C4q4eJ7vYd6/9ehbB7K0T4PTYK+EVV7yug2HOx2LDLMDfHk4nIeuj9rnzpHVsRyyA629vXGXtGn4B5XFyEKZpxd7N3JA4XoO1wpC+hbGUTgFcwl4WnAUSkNla76XXfpHOEuF6EDSI5J0UIIcJLIikTP5c0RKQ59vDwFBYn1AbLfjc3MrW4T9wHPIZZX3/DLKN1wvafDfytqmPyakhV/8XSTO8NDIpySFcsO9kHWIxIaHk27JhKWK21knucnXf/WdgD28GYtfcF7HO5WA9HKnMnViLjE+91FhGW43z+7z3M7vfXv9i9EKIR7FYTMV+o6nBs8uIZLAvtiV6f4RQDnscUq28xr46rvH1rsGQfY7DP2gk4T1UX4EgbZPe4eYfDkQmIyBNAJVXNLWuZI8GIUJvsZAiL8qqHJUJ1bEYT4F9VioTvvYh8i8U0XBFydxWRisDbQGlVPdlP+fJCRH4BnlFVlxTF4fAJ97/nSDWcu6DDkZksJyzA1uEPquTLlUuV5dh3V9Q4GmgdkUFvnYg8AIz3T6y8EZHqwEfAe37L4nAUcdz/niOlcJYsh8PhcPiKiKwGzlTVnyK2HwN8pqpV/JHM4XA4HI6C4WKyHI4UREQOEZFxIjJTRIZ7rlOhffeJyDwRmSMicXOjEpFbvDZ/FZHHE9WfiDwiIjNEZJqIfCMitRLVV1i7p3htzhORe+PVblj7ZUTkFxGZ7o1f0Nu+j4h8KyJ/eK97x7HPyiLykYj8LiK/iUjbRPUnIreJyCzvs3X3tsWzr+HAKyJytIgU95ZjsHozw/I4N+GIiIrIRhH5n9+ypDsiEvTGUsUKuDoceeLuwcxDRL4TkS0ikrkF0FXVLW5xS4otwETgOO99F+AR731zYDpW+LABlr62eBz6Ox4YicW/AFRPVH9AxbD3twIvJfizFffaaojVAZoONI/z9yVAee99SSwZSRvgceBeb/u9wGNx7PMN4FrvfSkszXzc+8MyNc4CymIu5iOBxvHsy5P9MyALy6C1HdiJBblXiud3VUD5FNg/YttAYI4nc+co59yOpVxeC7wWurcijmkMbAHezqP/hsDnwHosM+DjBfgM3YBJWIKLwVH2d8DSym/CEgvsF+WYUt4xi/Po60IsQch6LKj/nIj99b0xLeH3d+uW9Fii3YNh+67y9l8bQzuhenZjEyhrE+/3bAWwGvgaaJrHOR2x1PMbgUXAhQVtq5Cyt/D6WIlVncjr+Bx/B73vZTKwDljs/WeUiDimcyK/C78XZ8lyOFKTpmRnTvoWyywElsXsfVXdqpZlaB5wRBz6uwnoq166bFUNxQXFvT8Ni7sBymF/jgnpy+MIYJ6qzlfVbViByLPj0O4u1AhlBSzpLer1E6oB9QZwTjz68yyb7bCMkqjqNlVdk6D+mgHjVXWTqu4AfgDOjWdfqrpGVc/GrvvzsOu9qaqeq15K5RRkOnAzUWryeFbYezHFpT6mJAWjtPECNqGSIyJSCvsN+A7YF8tq+HbY/hoxyrsEK/HwWpQ+qgJDsSyD+2DK2AdR2riLPGIGvQxvbwM9sCQudwHverFrDkdc8Szo92ElH2LhMWwCINb2RUSq5VOsypgFvilWwP4XTFHKqY/mwLvAA1jm0JaYcpJnW55HQb6zjObCduBDLLNhLOT4O4hNzHUHqmJZYztgWSKLDE7JcjhSk1lYdXiAC4C63vva2CxXiMXetsLSBDhWRCaIyA8iEko3npD+ROR/Xo2ey8hOa5uoz5aodnfDc3Gbhj2EfquqE4Aaaim78V7j9aDZEJvZfF1EporIILHinInobxbQTkSqiNWDOg27HuPel6r+oarDVXWYRi/wmTKo6guqOgqzREVyFfCqqv6qqv9hdbE6hx8gIhdjaZpH5dFVZ6zI+FOqulFVt6jqjLD9gz1X1ZtEpHIu8g5V1U+BVVF2nwf8qqpD1Aqg9gQOEZEDwuRtgNXu6pOHvHWANar6pTf5MAKbnW+Ux3kOR0HogxWfX5nXgSLSFrPU5JniXUQaem7fCzBvkphR1V9U9VVVXa2q27HSKk3FCoFH40HgZe+e2aGqq1T1zxjbOhFYLCJPikhkfch8o6pzVPVVYlRac/sdVNUXVXWMNwn4D1Z25ujCyphOOCXL4fAJERnpxblELmdjP+pdRWQyUAHYFjotSlMxZa/Jo78SWN2eNtjM84ciIgXtL4++UNUHVLUu9qPbrbCfLS9xEtTu7g2q7lTVlthD5hHx+MPLhRLAYcCLqnoo9hAb91gzAFX9DZv9/RYr8jmdOBSuFZHnPMUw9D7HpbB9+cCB2DiFmA7UCD0YeZbIXsAdMbTVBvhLRL4UkZUiMlpEDgrbfxbQGzgJWCgi74rIiSKSn//33eRV1Y2Yi+2BYcc8jxVb3pxHW5OA30TkLG/i4RzMRXFG7qc5HPlDRI4AWgEvxXBsccxy3I0cfv9FpKyIXCki32MW5urAxar6WNgxa3JZcvoNbgcs1YjC42G08dqeKSL/isjbIrJPLG2p6geYhSgL+EZEJorIzZExsiJyaR6y18uhv3jSjtgtjhmBCzp1OHxCVTvmcchJACLSBDjd27aYbKsW2AP9ksL2JyI3AUNVVYFfRCQLM/EXqL8YPluId4ERQKCgfcVAotqNiqquEZHRwCnAMhGpqar/ikhN4peefTEWFzPBW/8IU7IS0p83s/kqgIj09vovbF8HkV1M96DcDkxDymOxWCFC7ytglqRHMEvXIpvLyJU6WMzkWZjV6zbgMxE5wJsh3g58Cnwq5vZ3KaYUVxWRx1W1f4zyrojYttaTFxE5F4ul+ERE2ufWkKruFJE3sXu7DDZBdIGnuDkcccFTmgYAt6hqVgz30a3ABFWdHDFJEWpvEGbRHQ+8iGU13aOuoapWzqecdTDlrkcuh9UBrsD+85dg7tfPY54eebalqrOAuzwl72TM+t1bRL4CrlfVdWo1/Hyr4yciV2MK8bV+yeAHzpLlcKQg4sUveLPRD5I9UzcMuFhESnvuO40xH+3C8ilwgtdnEyzAfWUi+hORxmGrZ2GB9CSiL4+JQGMRaSAW33Ixcc5YJyLVxHPVEpG9sCDm371+rvIOu4pc/PLzg6ouBRaJSFNvUwcswUBC+gu7HuthDyLvFbYvVT3eiyMLvc9xicdnSDIbyC4qTdj79SLSErs+no6xrc1YYPiXXkxhP6AKFisXySrMYjQNs0w3KKC8IZnXe9bGx4FbYmlIRDp6x7fHfkeOAwZ5n9vhiBc3AzNUdVxeB4plsL0Vi3nKiRbYhMA0r91cC8fHglgs1zfAAFXNrY7eZuB1VZ3rxfb2xtyy89WWqu7E3LunY0kyWpA9keUbnjW7L3Cqqubp1plJOEuWw5GaXCIiXb33Q/F8yFX1VxH5EHug3gF09X5YC8trwGsiMgv7o7nKs2olor++nnKQBSwEboTEfTZV3SEi3bCMScWB11Q13i4LNYE3vNnVYsCHqvq5iIzDXC+vAf7G4uvixS3AO57iOB+4OtR3Avr72HN12459L/+JSN949SUiDwP9VHVTxPa9gLtUtVchZPeDX4FDsAByvPfLVHWViFyBJcP425t9Lw8UF5HmqnpYlLZmkEccgzdxcSU2G74WGAzco6qR1qnc5A0pzHiKVSNve2NP3jGevKWASiKyFGijqn9FtNUS+FFVJ3nrE0VkAqZYTotRHocjLzoAx4lISBnZBzhURFqqareIY4/AfqNne9fwXsBe3jVc23P1biMizbDf0e9EZDHwJvBeuJufiGwgZ3qram/vuL0xpWiYquaVdn4Gubiw59WWiJQHzsd+Aw7GfncuUtWJYcdchpXEyInmqvp3HnLmGxE5BXgFOF1VZ8a7/ZRHUyDFoVvc4ha3uKXoLli69upRtlcBdqaAfNFSuJfC3OF+Aq7z3hfz9p2CpW9vjlmUvsOyd4Jl3No3bOmHuXtWy6Hvplha9Y7YJMHtWLxUKW//a5jV+Xng8Fw+QwlPxj7AW977Et6+aphy1snb/hiWUTJ0Xri852EuTfsSpcQCZrlaCbT01g/FLGwnhR1TH5fC3S35WCLvQSzrXvh1+TPmRlcpyrmlI469DSuzsW8OfRXHXPSHYGUIrsmnrBUxL4z+MR7fBUuw0dD7ffgQeCuWtrzfmnXAl8BFRCkVkU/ZxfsNaO6NeZnc2szjd/AE795vl8v5ncngFO6+C+AWt7jFLW4p2gtm1dxDyfAUixUpIF80JWu0tz18aR+2vwewzHsAej2nBxUsk9/bYev1MPe9emHbzsNKGqzz+j0wbN8ReApXHp+hZxR5e0aM9e+Y69JooH4O7bQnok4WZvG6LGy9myfveszKekfE8fVxSpZb8rFEuwcj9o8mrE4WFs/0aw7Hxvxgj1nI8lVXkey6XRu9ezm01MtJNqzEwwpveQvYO8a2GgC14jjOoXszfPkrbP+XwP0R4x71dxCrt7cjQu4vC/pdpOMi3od0OBwOhyOpiMh67E+5HGatCf9DKo7Nir6kql2jnJ40RGQLliHvOVV9yE9Z0h0RCWAKaGmgnMbH3dmR4bh7MPMQkW+xzIq/qGoHv+VJBE7JcjgcDocviMhVmHvKa1jRyvCMfNuwGdQ8A9sdDofD4Ug1nJLlcDgcDl8RkeOAn1S10PW3HA6Hw+FIBXxN4S4iH4lIbrUDHGmEiBQTkZdFZJWIaF71VDIJEXlNRJZ72fmi7RexwqrzRGSGiETLIhbtvOvjK6nrLxP7yoD+qpNdCy68j7NF5Pw49uNwOBwOR1Lwu05WEHhQRCrldpCIDBaRzwvaiYiMFpFYCjLG0lZX7yF5nbeME5FoDwc1ReQNEVkhIltEZLY3W1uodpNFAcf8NCz96ZlYutSf4y5Y6jIYy/KTE6diqZAbA9djxQ5jIccHWRE5M977XH9x3ZfJny3X/gpAT2BLlO0bvX0Oh8PhcKQVvipZajnz5wOX+ylHPlkM3AMchlWv/g74VEQODh0gVpT0JyzW4HSsaOQtwPLCtJsG7A/8q6o/q+pStcKZRQJV/REr/pcTZwNvqjEeqCwiNQvZbW4PwAXd5/pLTn+Z/NkKQkNgTpTt87x9DofD4XCkFQmNyfKKkD2AVZ1WYCLQXVV/CzvmYax+xjG5tDMYqKqqZ+S3H+/cqyJOaaB7FlAsMCKyGrhPVV/21nsDx6lqrgUk89tujOdUwILHT1DV0SJSF/gcGAPcFmsmp8gxF5HRWJHYNdgMdhZWqO9uVc2KMs4LVbV+rHJnAiJSH/hcVVtE2fc5VidnrLc+CisWOinKsdeTbSU4vGzZslH727lzJ8WLF4/rvh07dlCiRPQa5a6/XPYVKwZZWaC663VHVhYlRGyb9zsbym+b5S07sKIoYGmzsrCiI8XD1veK2B++HipiApZ3W8LWQ2ahUmHvi2Ep3ULHClCMCuxgPVAbKyGzFZiFZfKt4p39K5YpeB/v7NkAqqpxmagTkSVYAexvI7afhNWLqRGPfgpC1apVtX79+nFpa/qs2QAc0qJ5XNpzpDdz5ti8QtOmTQt0/uTJk1eqarV4ypSKxHIPFnYs48X8FRsBaFitnK9y5ESqjFOmkNc9GP1pI36UA57BqlnvBTwIDPcq24esHL9gLoN7qermePeDFZ1rgtX/uN87fkW0RkSkM1bPJCYlTESKAxcA5dndNe4c4CsR+QA4HivcOAh4QWPQanNqN0b5DsGenWaISGtgKPCYqu5yl8zv5wzjMuBZ4CigJfAuMBl4DxvnhVhRvdZYcVFHNhJlW9RrQVUHAgMBypUrpxs3bkykXI6CsHo1DBkCo0bBmDGwdGn04yJu9xeBm4F/a9SgVJkybCpRgjrlykGpUqwSYUvx4tSuUAFKlWKlKtuKF6dWhQpQvDgrtm1jhwg1y5eHYsVsHajp7V++ZQtZIuxbsSIUK8ayzZuhWDFqVKzImm3b+HfDBqqUL0+V8uX5Z906vpnXgKfHnMXsZVWxn6h9KFuyFE1rrKRKuflU3Ks4NSuVoEbF7WzNWgEUp1LZ8pQvAxu3reKuD84v6O91ND4DnhaR81R1LoCINAWeAj6NYz/5pn79+kyatMdcSIHo9Pz3AHx8y/Fxac+R3mzatAmAnCbS8kJEFsZTnlQllnuwsGMZLy562ZKhfnBDW1/lyIlUGadMIa97MKFKlqp+HCHM1VgxxSOAsd7mJUBJoBZWxT6u/ajqWBHZBmxS1RyehHaxFnNZ2Z7bQSJyEDAOmzTeAJzruT6GaIg9Sz0N9MUUkue9fTnGhsXQbizyHQIswpS7/kBnVf064piYPmcUZqvqw977uSJyHdABeE9V13o1b3bGMM5FkcVA3bD1Oti170gnfvsNHn0UPvoItoV5w1auDM2bQ9Om0KAB1KiRvVStChUqQPnynLx0KR9Nm8beZ5xB6dKl2Ses6SoRXVWNWI+cKotcrx6xHm76qewtYHpf/3vgiY9svWZNuPnmepx+OhxyCBQrVgv7Oc6duz7I85D8cDfwFTBbRP71ttXEJuHuimtPPlKiVJm8D3IUGdyDbvxwYxkbbpySS0KVLBFpBDwCHIk9ExTzlnphh4VmQ/eigMTYT56o6ifAJzEcOgdTnCoDnYA3RKS9qoYyyxUDJqnqfd76VBFpDHQlFyUrr3ZjlK8lsDfwPqa0jow8IB+fM5IZEetL2PPZzhGdYUA3EXkfu07Xquq/eZzjSBW2bIGePeGJJ8wdsFgxOPlk6NQJjj3WlCuJZqzcnYaNGtGwUaPEyxvG9OnTGTp0KLfccgtVq1bl7ruhXz8oWdL0xdtug9KlkyrSHqjqeuBoETkR+w0TYAowKhbrf7qwcMJX9iZFZ7kdyeXtt98G4PLL0yksPTVxYxkbbpySS6LdBYcD/wA3eK87MGf+UmHHhCZzo7rwxbGfuOG5Os7zVid5bnm3A9d42/71+g/nN8ylrjDtxsIhwFTgTszV8HLgjXycnxuRli/F/wyVKYGIvAe0B6qKyGIggFloUdWXgC+w7IvzgE1YFkZHOrB6NZx+Oowfb8rVDTfA/fdDvXzN4QCwaNEili5dSqtWrZAYlLJ4MGPGDHr16kWXLl0YNarqLgXrs8/g1FOTIkLMeDFZ3+Z5YJoyf+xw713QVzkcqcGgQYMA98AbD9xYxoYbp+SSMCVLRKpgWfW6qur33rbDovTZAliiqssS2M82LJY8UYTiyUP8BERGFTbBYpYK026ueLFcLYDLVfUXEXkHeFhE3nFFPhOLql6Sx37FLJmOdGLNGjjuOJg1C/bbD957D9oW3Arx0ksv8dhjj7FjR/JuxyuuuILLLruM1auFbt1s29NPp56CJSJHYu7H1YmYvFHVW2M4/zXgDGB5DslnBIspPQ2b6OisqlPiIHrMHNf92WR250hxvv02s+YT/LwHM20sE4Ubp+SSSCvEf8BK4DoR2d+rEfUSZmUK51jMFz8vKopIy4ilfoz9/AUcISL1RaSqiBQDEJFuIvJ76CAROVdEfheR2jkJISJ9ReRYr62DRKQPZsF4J+ywp4E2IvKAJ9MFwK3AC2HtRPYdS7t50QRzu5zmrT8C7Iclowj/DHl+zqKEiHwqImeErguHAzC3wKuuMgXrgAPgp58KpWABXHXVVQwbNixOAsZOsWLFeOQRYeVKOP54uPnmpIuQKyJyJxaP2hlzFzwobNnjYS0HBpOYWnVxo1jxEhQrnmgHEke6ULJkSUqWLOm3GPFkMD7dgxk4lgnBjVNySdivvZfW+yLgOSwf8DzgDmBXkgoRKQOcC5wcQ5PHYm5w4Xysqufn1Q/QD3OZm40pIQ0wxasqu1ucKnnruV2B+wJve69rsTilU8OTS6jqRBE5B+gNPAT87b0OCGsnsu88240hK+AhwHpggSfHPBF5G8ve+Iaqbs3H5yxKbAQ+ANZ6qehfV9U//BXJ4TvPPw/DhllSixEjoHbh5ySaNGlCkyZNCi9bPhg6dCjjx89i4EDLWfPMMzGFjyWb24Bbw7Og5hdV/dGbeMuJXbXqgPEiUllEaiYzNnLBzyPsjYvJcgCDBw8GoHPnztkbVS2xziefwKJF0LcvHF2oajBJw897MOpYOvYgHcdJFTZuhLVrYf16C5EOLVu32rJjB+zcGfuycqUlBd6xI+/lwQctBLsgJLROVp6di3QFzlbVk3wTIo0QkSBwPnCIc/+LLyJSEUtRfzVWDHoslnZ/SCFKCxQal8LdJ/75x6xXGzbA0KFw7rlxafb3339n/fr1tG7dOi7txcJtt93G4MGfsG7d35x9Nnz6aXzaFZFNqhqXYjAishY4VFXnF7Kd+sS5Vl29evUOX7gwPpmyqzc5DIDlc5PqpehIUdq3bw/A6NGjbcO2bXDfffDUU5b2s0kTCAbNZTkKIjJZVVslR9rY8Ose3GMsfSLVU7jHe5x27oTt223Zti37fX6W0HnLl8OECaYArVljStXatbBunfUTT4oXh1q1LD65RIncl3vvhRNPjN5OXveg334L24FbfJYhnTgN6OYUrPijqusw14UXReRA4FrgZeB5LyPgM+FFtBONiJwJnFna77RvRZVg0BSsc8+Nm4IF0KdPH3744Qf++uuvuLWZF0899SxDhz7DunXQvXvSus0v72FuRgPyOrAQFKhWXatWreI2E3n8HS/kfZCjyLDrQXf2bBg40CznCxbAFVfA66/bk2BmkbB70G/lKl2INk5ZWfZ3t369KTeTJsGMGfDvv7B5c/aybp0ZV7dsyVaQ4m2n2X9/U37q1YNKlfZcKlaEvfayjLhlythSqpQpQ8WLx76ULp2crLq+KlneTeSIEVVN3vR3EUVEamEuDWdgcX0fYfWtZojIfaraLxlyqOpwYHi5cuWuS0Z/jjD+/hsGD7ZMgn37xrXpe+65h+uuS+5X+t13sHix0LAhtGuX1K7zwyIgKCJHY67Su2UyVdWn4tCHq1XnSC1Wr4ZeveBZLyHK8cfDgAFwSm5hTWmNuwd9Zv16GD0aFi+2v7qpU+HryEqqmPJSp44pNGXK2Gvt2haWXLasWYDiuZQqZX3UrJn0IUkofluyHA7fEZGSmGLVBTgRi/17HCuyvME75kJsVi0pSpbDR154waboLr7Y3HXiSPPmzePaXiw89NATQGUuv/w6iqVuapdrsQLsR3lLOArEQ8nyvVbdn2M+szcp6krkSCIjRvDKeefBtm1cd/HF2S6CmU3C7sFXXnkFIOmTWKnKokXwxRf2umGDLX//DT/88ArbtgFcR/HicOCBcPbZUK0atGoFFSpAixa2PfMMqcnHKVkOh9U1E+Bd4F5VjSy6DFa757+kSuVIPlu3mpsOwK15Zg3PN5MnTwbg8MMPj3vb0cjKgqlTRwC1OOec1H34UNUGhW0jHWrVLZo8KtldOlKJUFKLgQNh5Eg+KF4cWrTguvfe81uyuODnPfjBBx8ARVfJ2rjRLFLDh8O4cTBnjm0vVgzKlzflqVo1qFLlA6pWha+/vo7q1Z0ilWickhUnRKQSUA/LGhhaKmAFkatjsWcLgdewul2bsNTzoWUJsEz9zERSdLkdS3CxJacDVPU/LCulI5P5/HNYsQIOPhjatIl783fddRfbt29nzJgxcW87GpMnw7Zto6lbF1q2TEqXvpEOterad3/Oz+4dfrJ9uyW1ePJJW7/hBkb26QN77+2vXHHEz3tw5MiRiWg25Rk3Dh591CqMrF1rl1PbtnDRRXDWWXDYYZHZZIvmOPmFU7LygVdIryaWKr0lcDCwP9AQ2CeGJvYDgrns3yQiC4D5WDr6acB0YJ6qxjm3iiOM44FPgd2ULBEpBzyvql2ineTIQIYMsdcrrkhInvNnn32WnfFOk5QLobqTp52WkmnbdyEiuWofsRQjdjhSll9+gTPOsAmcc84xa5YzITgKwfz58M03cNNNtn7mmXDbbRZ368pgpQ5OycoFT6k6EGiH1ek6FggvlrMQmANMwhSjhcAKsq1T64GtWAKF771zOgClgbJAFcziVQ0LAG3oLftjJvXQr/B6EfkZ+BEYA0xQ1W1x/8BFl6uAe7HvK5y9gCuJKObsyFA2bzZLFsD55yeki4MOOigh7ebE998rcC17730+Vgc0ZYkcmJLAAdh/VMbkO5832ivf6GKyigZbt5pr4O23m6/WBx/ABRfsmvEYMMCSad6catXB05CiMpbz5sHDD0PIw7RpU3MRbNw4tvOLyjilCqkbBu0TIrKXiJwuIi9iRYRnAi9gCtYYrGjmccDeqlpfVU9W1ZtU9QlV/VBVv1fVmar6r6puUNXtnol8GjBNVXeq6iZVXamqc1T1J1X9VFX7q2oPVT3Hqy9RDjgMe8B/B1PC/ocpWitFZIiIdBaR6kkeooxBRPYRkSpYPNbe3npoqYZlGFzmr5SOpDFqlDm2H3441K8PwL///sv339v8yMaNG+nSpQvfeuahtWvX0qVLl137V61aRZcuXXa5Ai5btowuXbowbpzVTfnnn3+45pprmDZtWlI+zrZt8NNPm4FvKF9+XlL6LCiqenzEcgz2mzcC+NBn8eLGkpk/sWTmT36L4Ug0WVnw8ceWOOfWW+Goo2DWLLjwwt1MysOHD2f48OE+Cpo5ZPJY7txpitRJJ5ky9eGHloBy1ChLtR6rggWZPU6piLNkASJSAjgBK0Z7HlAe2Ah8A/TErFALChMvpard83n8VizL3VTgdU/OKphV7VRMATgfyBKRkZgi9omqRlpjHDmzEstcpsDsKPsVC9xNOq5Olg+EfPpPO23Xpm+++YYhQ4bQtGlTypYty8iRIznmmGMA2Lp1KyNHjuSEE04AYMuWLYwcOZKTvdLwmzdvZuTIkZxxxhmAKWlff/01LVu2pGUSAqQmTYLNm8vSrNkiHngg4d3FHVXdIiL/A74GXvJbnnjQ7pZ4JEl0pCw7d9oT8AcfwGefmUvgiBFw6qlR/XW//PJLH4TMTDJ1LGfNgltusbTrpUubzn733ZZOvSBk6jilKkVayRKRelhF8WuAfYF12Kzph8BoT9FJGVR1FfAJ8Innyngo0Am4FHgDeElEPsQKek50STTy5HjMivUdNo6rw/ZtAxaqqi81PFydLB8IBTCFlXY/4IADaNSoEWXLlqVy5cr8/fffu/ZVr159t/XatWvvtl6/fv3d1ps0acLixYsT+AF2Z/ToNcDDNGlyGZYtOS2phk16ORypz403wqBBplBdcgm88gqUK+e3VI405emnoUcPqyH1+OOmYLl51/SiyClZnnJyHNAdOBN7yB4BDAZG5JZhLpXwFKgpwBQReRBoC1wBXI7FGE0WkeeBd1V1e84tFV1U9QcAEWkA/O2U0iLMv//C7Nn2QHRktkJy5JFHcuSR6amgjBv3H/AW1aq1JdWVLBHpEbkJSzJ0GZb2OSOYO8rSTLuYrAykVy9TsK66ypSrGLIPPOsVIb7tttsSLV3GkwljmZVlhs+PPoJp08wVsF07M4zuu298+siEcUonioyS5SlXpwP3YwrJCuAxYKCq/uWjaIXGUw5+Bn4WkbsxRasrpjj2EpEngFdVdbN/UqYWInIYFiOXhSUgqSI5pF9T1YwJvHfkwNix9nrMMTZtmAHMnt0A+I9bbvFbkpiIlDIL+41+HeiTfHESw/I5k/0WwRFv1q+HYNCKCZ99tilaJWJ7tBo1yuqmuQfewpPuY7l9u1mqXnrJrFXHH2+X0+23xzfLf7qPU7qR8UqWp1ydBPTF0q4vBG4GBmei0uHFZL0oIi8BpwAPAM8DD4nII5hS6TITWkbIfYHl3nvFZs8jUbKzPDoyFS85BW13tzD07t2bRx99lLVr11IyjfLirlxpKX7LloXmzf2WJm/iUYw4HTjm5sf9FsERL1Thk0/g+uth9Wq45hro1y9mBQtg2LBhCRSwaJHOY/nhh3DvvbBgQeK9TNN5nNKRjM4uKCKXYZXXvgIqYW50jVX1xUxUsMJR40svS1c7LLHD88BsEXlAcjLbFB0aYDPlofcNvdfIpaEv0jmSS0jJiihAfMQRR9C1a1dK5OPBKRWYOhVgEhUr3sSKFf/6LU6OiMgUEdk7bP0Srz6dw5GabNtmVqvWraFTJ6hRA37+2Z6MK1XyWzpHmvHTT1Y4eNUqGDYM3nnHhfFlEhmpZHkpuD8E3gbaYPFXzVT1zaIYn6SqY7Dsiad7mx4F/hCRA/2Tyl9UdWEoBst7n+Pit6xFnp49oUWLnNcLy9atMMXzCI2Iv+rYsSNPPPEE6TYnMWMGwN+sXfsxW7akdJhpS6wmVoiXgRr+iJJ4fv/mXX7/5l2/xXAUlNmzLV/2HXfA2rXQvz9MnrzH5Eys9OvXj379+sVZyKJJOo7l9u1Wo7pBA/jrLysonOi/mnQcp3QmvaZn88CzzlwJPAHsgxUIrgZ8kGqZApONqqqIfAksBapj4zNNRJ4EHlHVjb4KmGS8mKyYSMmYrM6d4Y037H2JEua0feCBVkT3+utTr+R7/fqwMEJfrVQJ1qzJ+9w77yShgUWzZtns9AEHQOXKu+1S1bRTsCCkZJ3H00+fR4P0csRLv8HOB6sWzPJbBEdB6d/fAmRKlrTf3iuuKPQTcaiGnqPwpNtY7txpMVdr1lgcVjzjrnIj3cYp3ckYJUtEagGDsBpS44ETgc1YvM1RwFD/pEsZ9gMaAbcDw7DEH/cAnUTkSlUtSndfbnFY4aRuTFbHjvDWW/ZrvWIFfPcdBAK2bdSo1PM5ePhhuOmm7PViMRrSy5e3JVGEigNHqV114403MmLEiKSmXo8HpmTBwQf7K4djd46+obffIjjyy6ZNNnn15Zdw2GHw2mtwyCFxafrjjz+OSzuO9BrLKVNMR589Gx54wGpUJ4t0GqdMICPcBUXkImAWVvfoNuBoVZ2uqnOBuqrqFCzAy6LYBEv6sUJVu2BuhKWAsSLyPxHJjNRqeZNbHJbvMVkicqaIDNy5c2fOB5UubXlda9c2BaFHD6tYOGWKFdUIsW0b3HMP1Kljilfr1vD117u39fvvcNZZZl0qX94SQMycaftmzoQOHaBiRahQwR4wvv8+/x+qQgWTN7RUr24K4jXXmL/EXnuZK87jj1su2xDxdg+MZPp0e42iZJ122mnceuuties7AWzfbn/e8A6vvdbVb3Fi4XQROU9EzsP+k04OrYdtdziSzzffwH77mYLVowdMmBA3BctRNBk2zGpTL1wITzwBjzySeBdBh3+ktSVLRPYCngOuBX4BrlTVOeHHqOpaP2RLVbzsg+Hr34vIQcAzWHr7jiJygar+He38TCHVY60KXIy4RQs45RT4+GNLKwxw9dXw55/w7rumaH3xhTl/T5xoDwxLlljq8qOPtoK8lSvDL7+YAgRw6aV23C+/mGvizJlQpkx2n/XrQ/v2MHhw/j9oVpYpiR9+CNWqWR/XXw9VqpjylQxysWSdffbZyZEhjsybZ3p1pUp/MGHCGL/FiYVXI9ZfiFhPXWtyPvntqzftjauTldosXWpuyu+8A40awYsvmjUrzvTt2xeAe++9N+5tFzXSYSzHjTMXwQMOsHpYrVolX4Z0GKdMIm2VLBFpCHwEHIrVUXlYVXf4K1V6oqrrgC4iMgJ4DZgqIpep6lc+i5Ywwutk5RWflZIxWbnRvDmMHGnv//wT3nvPomrr1bNt3brZ/pdfhgED4IUXzMI1ZEh2jagmTbLbW7jQHjgOOMDW999/9/4aNYKaNfOW64EHzCoV4v77benVK3tb/fpmiXvvveQoWarZlqwoM9Tbt2+nePHiFIvVtTEFmDvXXtu27cmXX/b0VZa8UNX0Gdg4sGbxH36L4MgNVfs9vP12c2d+8EH73QqfVIoj00ITPI5Ck+pjuWgRnH461Kplc5l16vgjR6qPU6aRlkqWiHQEhnirZ6rq537Kkymo6sciMgNTXr8QkQeAvqEsfBlG5tbJUs32P5gyxdYjiyVt3QonnGDvp07NvQhvjx5w7bUW7N2hg6UtDilcYPFfsdCjx+6K0z772OtLL1kBz4ULYfNm83fbb7/Y2iwsixfDunVQtaq5MEZwzjnnsGzZMiZNmpQceeLAH95zfLie7EgN2l77iN8iOHJi+XK48kpzpT7qKBg40JIJJZD3338/oe0XJVJ5LFetgnPPtSQXY8b4p2BBao9TJpJ2SpaIXAe8iNV9OltVF/gsUkahqn+ISFvgFaA30FhEbszAAsaRdbIKjYicAjyLKWWDVLVvxP5KWFmBeti9109VX49H37sxezY09ELJsrJM4Zo4cc+Mg3vtZa956dA9e8Jll1lcwtdfmxviSy9Bly75k6tKlT2tYB98AN27WxHPo46yuK8XXrAin8lgjuddHK40hnHFFVewadOm5MgSJ0KWrN9/f4DHHqvIPffc469ADkeqs3w5HHSQPQ3fdZclEEq1xEGOtGTVKvO4nzzZnEcSrLc7Uoy0UbK89Ox9gbux4sIXeW5ujjijqptE5HLgDyAANBCRc1V1jb+SxY/wmKx4xGeJSHEsluREYDEwUUSGqerssMO6ArNV9UwRqQbMEZF34qrAzpoFX31lbi4Ahx5qStTSpXD88dHPOewwePttC+TJyZrVuLEtt95qGQIHDcq/khWNsWOtNlW3btnb/vyz8O3GSkjJato06u6LL744ebLEiZCStXnzXP78M0l5gR0x8esIb07FxWSlDhMnmlV/wwZL6NO+fdK6fuQRs2w+9NBDSeszU0nFsZwzx5xIsrLsr/P66/2WKDXHKZNJCyXLe4B9CUtw8SJwq4u/Siyei2BPEZmHxWl9JyInqepKn0VLCCJSE7gJCPnV/Qa8qKpLYmziCGCeqs732nsfOBuzuIZQoII3YVAeWA0U/DreutWUp6wsS+E+ahT07g2HH24xVGA+Y5ddZnW1nnzSFKrVqy0LYcOGcN55cPPNZpm68EKLP9h7b3vwaNbMlI8774QLLrB4qWXLshWjEB06wBFHQJ8++f8MTZpYwowvvzQr1/vvww8/JK9oSB5K1saNGylZsiSlclI+U5CQkvXmm0OoX99XURwRrF+W0vl2ih7z5lkSoPLl4amnkqpgAcyZMyfvgxwxkYpj+cQTULw4DB1qyXtTgVQcp0wm5ZUsESkJvAlcDDyKJbjIxBihlERV3xaR1cDHwA8icmI+FI+0QEROBD4DFgETvM0XAHeIyDmq+k0MzdT2zg+xGDgy4pj+WH2yJUAFzBqbRUEZOdISThQvbhkBW7QwN5cbbtjdIvX66/C//8Hdd1sM0j77mFIUsmzVrg0//mhuMscfb+6FBx1kMQnFi8N//8FVV5lCV6WKlagPrxj/559Qt27BPsMNN1h2v0svNYtbp05wxx1WiyYZhDSSHJSsOnXq0L59ez5JlvtiAfjss8+4++67CQQCnHnmpfz777+IHMeECf+jfv0L/BbPEUabLj39FsER4q+/4NhjLQZ07FibVEoyb7/9dtL7zFRSbSy//hpefdUcP1IpSW2qjVOmI6msr4hICeB9oBNwj6o+nscpKYmIjA5fV9X2/khScESkPTAcWAq0U9V/fRUojojIb8C3wG3hCryIPAucpKp5/vuKyAXAyap6rbd+BXCEqt4Sdsz5wNFAD6wo9LfAIZFuryJyPXA9QKlSpQ7funVrIT+hI0caNLCHrd9/j6poDRgwgEaNGnHyyScnX7YYWbJkCa+88gpHHXUUVaqcyOGHr6JSpVv45JPrOD4nF9E4ICKbVDXjA1datWql8Up8ctHLVu/9A+cu6C8TJph1ftEis+ofd5zfEhUIEZmsqj4kAk8u8bwHE03oHp8/qC3r1tkcYij82ZF55HUPpqwlS0SKYW5qnYDuqvpszOcGpTTmvjVDA65OVjxQ1dGexWck8K2ItM8g18H6QP8oFtIXgFjrVC0Gws05dTCLVThXk52tcZ6ILAAOwGq87UJVBwIDAcqVK5e6syDpzubNltGweHFTtsI4++yz2bFjByNGjPBJuNipVasWgUAAsDwiUIUTTng3xxC8VERE9gH+B3QAqmNFiXehqhVjbCc1ks/kwKxhr9gbp2T5g6qlZ3/2WbPo//yzFV73iYcffhiAXuFlLNIcv+7BVBrL5cth0iTo3z/1FKxUGqeiQEoqWV7MSn/gCuDBfCpYDYHfgZKASlBO0oCOTIyksZGOlqtoqOp4ETkT+AL4SkQ6ZEix50nAQcDciO0HAVNjbGMilomxAfAP5t56acQxf2MPkWNEpAbQFJhfUKEdhWTePHvoathwj4QfJ554Ijt2pEfY5y+//MLq1as55ZRTdnk/Nm7sr0wF4FWs5uFAbHIi35MLKZN8Jhc2/bcsGd04cmLgQFOwrrsOHn0Uqlf3VZxFixblfVAa4ec9mCpjuWOHeaG3bAlXX+23NHuSKuNUVEhJJQu4D0tC8DiWRjw/PI0pWGB1j14C9s/5cEd+UNXvRaQTFsM0REROV9XtfsuVXyIKEA8AnhaRxsB4b1sb7BqMqSy6qu4QkW7A19gM3muq+quI3Ojtfwl4BBgsIjOxa/OeDLIGph+5JL3oFp7tMMV57rnnGD9+PPPmzdulZKVhjawOwImqOiHPI3Mm+cln8ivgVQ8mqytHJDNnmhWrY0dL9JMCBcZffz1pRtRk4ds9mCpjuWgR7NxpYcVly/otzZ6kyjgVFVJOyRKRizC3kXeAewuQ5GJjxPrmuAiWIkhQLsBmirYDF2lAxyZbBlX9wosbeg14XkRuSsNkJNEKEEdT6N8G3oulQVX9ArPyhW97Kez9EuCkfEvqSAzz5tlrGmok4Tz22GNs2LABIJ2VrOXAhkK2kfzkM470YMMGOOccqFTJfLhSQMHKUIr0Pfjbb5Zbqnp1q57icKSUkiUiRwJvAGOBawr44H4TZqquCmzBssRlBBKUSsAHZCsG35NttUsqqvq6iDTBLD1zgaf8kKMQxKUAsSONWeDVMQ8Vbg6jZcuWHHrooWkx61e7dm3APB/TWMl6AOglIlepakGVLYmyLfI/5GRgGnACXvIZERmTW/KZevXqFVCcPZnxyYv2xsVkJY8tW+Dyyy3Bzfff55hJ1A/uu+8+APoUpPxFauLbPZgKY9mnjyXnbdTINxHyJBXGqSiRMkqW55v7ETa7ca6qFiilmpfoolo8ZSsswWCwGFAG2BYIBApjFm/M7j9iJSQoxTWgOwslYMF5wJPpCS/Dyg8+yZFv4lGA2JHm/PWXvUYpJnXJJZdQp06dpIpTUL799ltEhMMP78iaNeai4nOoSUF4EEtAs1xEFmKW+l2o6sExtJGQ5DOtWrWKm5V+28ZMCGFNIxYvhlNOgV9/tVisdu38lmg3Vq1a5bcI8ca3e9DvsfzzT/jwQ2jebY8Q35TC73EqaqSEkuUFS76DKUdt0z1OJRgM7guch1nUDsN+aIp5+1YCM4HRwNBAIDArH01PBTYBIU/fJT4qWKhqlohcDbQAPhCRQ9M1tbtXLuAILOPRbj+RqvqmL0LlQufOsHIlfP6535JkM3jw7oG+++5rZWgee2yP5H2pQS5K1j333JNUUQrDo48+iojwzDMdAdhvP5tNTTM+ikMbKZ98ptXlMYV4OuJFr16mYA0ZAuef77c0ezBw4EC/RYg3vt2Dfo6lKtx2m/3upvrcXAZecylNSihZ2CzmicB1qhprNreUIxgMNgQC2I9KCWAB8BP2A7IeKI3N8hwG9LRTgj8CPQOBwPd5ta8B3SlBqQf0wZQt358EVXW9lwjjF+A9L+Ogb4pfQRCRA7AaYA0wS+FO7PvbDmzFimEnW6YzgTNLly6d7K4LRdmyNqOnaqWnbrjBKt1Pm2aZ0lOGrCxL3w6mlaQx7777Ljt37mTaNFtPx4+jqsE4tOGSzziymTAB3ngDbrwxJRWsTKSo3oNTp8KIEfDIIzAzxVK2O/zFdyVLRNoAD2MJBl71WZwC4bkD9gAexR7QXwAGBgKB2bmcUx24HLgd+C4YDL4NdAsEArn6k2hAV+H5KacK3o/oTVg83R1YVsh04hlgMtASK7bcEqgEvIhNACQdVR0ODC9XrlxMdbpClq0TT4THH4dNmyzO+4UXsjMcqcJTT1lirb//hmrV4IorzI8cbNL31Vdh6VLYe2846SR4M5/qpYhZsABq1oRAwMIh5s2DdevggQdgyhTYtg0OPhieeGL3MjUvvwxPPmnyVagAhx1mf14lSlhysO7dYeLE7MzrzzxDwepBLVsGW7dC1apQvvweuytWrMjNN99M3759o5ycWoRisj77zNbTUckKISInAM2xOI5fVXV0fs5P9eQz0z563t64mKzEsmABdOhg9/f99/stTY7ceeedAPTr189nSeKHX/egn2P56aeWS+WGG6Db0KR3ny8y8ZpLZXxVskSkLPZgvhjoloYZ6ggGg3thCuJ5G9n43U/89PBPgZ9+yuu8QCCwHHgqGAwOwFLWPwAcEQwGTw0EAulYO+kt4CzgERH5UlVn+i1QPmgNHKeqG0UkCyihqlNE5G7geSCWeBDfGTPGFJuRIy2N7IUXWgIEL86V+++HF180RatdO1ixwmbgAD7+GPr1g/feg4MOsmKK48dntx1yBVywIKp3XY6ECjFu3w7r15tS9+yzpoz17w+nnQZ//GHPQpMmQdeuNvl8zDGwZg189112W5deCoccAr/8kq10lSlTwMHKxVUQoEePHrRp06aAjSeXIUOGUL16dRYuPA5ITyVLRGoDnwCHkx3DUUtEJmExupFxHWnJzu0FCjV25Jfbb7di459/DnXr5n28T2zenFHJj33Fr7FcutQmM48+2iYuUx13zSUXvy1ZfYAmwAnpWNQ2GAyWwh4MTvqO7/79kR9PAE6QoLyhAe0cSxuBQGALEAgGgyOBT4Efg8HgMYFA4K8EiZ0QVFU9a9YxwFsi0jqN6mcJ5n4JsAJLQzsHU/7TpsZaxYqmRJUoAc2awQUXwKhRpmRt2ABPP22Wny5d7Pj998+2Ii1caAraSSdByZJQrx60apXddqVKlpSrZD5yWS5ebJaqOnVM2WvRYvf9zz9vyt1XX5m16++/oVw5cy+sUMGUhUMOyT5+4UK480444IBs+QtMHkpWz549C9F4crn33ntp27YtW7emr5IFPId5AeyvqgsARKQhNoH1HJAR/l6HX3Kn3yJkPq+9ZmbdQADat/dbmlx54YUX/BYhY/BrLB97DNautcnDdMBdc8nFt2IRInIEcAvQX1XzjEdKUZ4DTl7Agt4/8mPNsO1X5behQCAwBktpWg4YHgwGU7CMXe6o6grgBuAQzA0yXZiFyQwWW3aPiBwHBIF5vkmVT5o3NwUrRK1aZpECmD3bvOM6dIh+7gUXWKbjBg3gmmssTnxr2KT7uedajJXnmZYjGzea9125cjaBvG0bDB1q2ZaWLzd3iiZNTGmrUMG2/f23nXviiaYgNGgAl11mFq3167Pb7tEDrr0WTjgB/vc/k6fA5KJkqSo7diStPm2hGTt2LE8//XS6h5idCHQNKVgAXkHTW719DkferFljGQiaNIG77/ZbGkeGs3y5WbGuvNLVxXJExxcly8sm+CIW//KAHzIUlmAweAamUDz+Bm9EFqstkNtjIBCYjmXjaUH0wrgpj6p+BnwGBEQkXR73/kd2avwHseQk32N+47f6JVR+ibQyiVh+B7AYptyoWxfmzLGYqIoV4Y474PDDTWnKD2XLWpKLmTPNejZ5MrRubfuuusriqZ5+Gn7+2Y6rU8cUMTCla8oUS4Nbr57Fih1wACzxHMV69jRl8Zxz7PyDD7ZJ6wKRi5K1Zs0aSpYsyTPPPFPAxpNLzZo1qVatWrorWTmREUVKQ0z98BmmfviM32JkLsGguQkOGpQdjJrCdO/ene7du/stRkbgx1j27Gn/semkz7trLrn4Zcl6A8uw1yOyAF06EAwGS2OxOrOAhzSgvwJDvN2KxVjFjATlKgnKNgnKzp70PA1LnHFrMBhskde5Kcqt2LU10m9BYkFVv1bVod77+araHCtmXSO/gfepSvPmULq0uQ/mRJkycPrppgRNnGiZj/OOLtwdEXPja9jQrFnhjB0Lt9xifRx4oClV/0Yk/C9RwixVffrAjBmm5IWnqW/cGG691ZJhXHONPUsViFyUrFKlStGrVy/atk2P5AQDBw7khx/Gs3y5jV/Nmnmfk4KMAp4TkV0BNCJSD3jW2+dw5M66deYm2KGD1Y5wOBLIzJmWGOr887Nd2B2OSJIekyUilYELvdW7ReQvVR2fyympyOVY4cxTA4HANgAN6IXRDvSyCLYFqmNp3KcCcwOBQLht4TWyFd5bhzDkiAu44ErMyndJQj5BghCRmsATWPHl/UXkHFX91F+pYkNE9sIq0AP8mY6JWHKiQgXzornvPlO22rWDVavM0nTTTZbYYscOOPJIc/f74AOzjDVubOd/8omdO2pU3i6DOdGkCbz9tvWxcaPN/oUXbfz8c0v/3q4d7LMPfP+9uQs2a2aT03feaW6N9etbcsCxY62tApGD2Wf79u1s3LiRu+++m3RJn9+tWzc6d74DaEPduimWKj92bsUs4PNFZAk2WVUbmEEaWZPz4tALu/stQmby55/QsaNNnvTv77c0MZMu1vJ0INljee219l/5eJrlUnbXXHLxw5J1L6bc3YNZC/bxQYbCcgNmxfo6pwOCwWDTYDD4GeYS+SlWufw94HdgajAYPC3s8N2+h1/5tSyWzr5TMBisGl/RE85O4FjMBW8x8ICI+Bb7FwsiUlpEngFWA9OxB7vVIvKsiBQ0f13K0acP3HOP1fJo1gw6dbLkFACVK1v69mOPtQQVH39ssVShIsJr15o74fZCpDJ57TVzITz8cLj4YkvAEW5IqlzZUuF27Ggzg/36maXq2GNNcfjvP3M5bNrUYsTatrVMiQUi5IMYoTFOnz6dGjVq8O233xaw4eSzePFiTj3VjOfp6iqoqotU9TDgNKAf8BRwqqoerqqL/ZXOkdIMG2bm8yVLYPhwS1nqcCSQJ5+0LLdXXWWu7Q5HTkgyJ+s9V5C5wBBVvVJEyqjqlqQJEAeCwWA9YCFwdyAQeCKHY87DsmJtA/oDI4BFQGWgPZbwownwJHBXT3p+AZzinb4EqNOTnoditZu6BAKB1xP1eRJB6HsVkSsx19CLVfUDv+XKCRF5DYu/ugcY521ui2W/HKmqXXyQKVSM+LotW9LqFkl9Nmww017p0mYiE9m1a/ny5Xz00Uecdtpp1M9PrnqfeeUVuP56+9MfPDg5fYrIJlUtl/eR6U2rVq100qRJcWlr//adAJg3+uO4tOfA3AOnTjXTd3g60jSga9euQMEzvonIZFVtlfeR6U0s92BhxzJWtmyB6tXNLXviRIthDueil+0R4oMUrYWXrHEqKuR1DybbXfB+zGrzEEC6KVgex3ivUae6g8HgscCHWJa6ToFAIDzqZDEwKxgMDgSexgr3rtGAnipBOQmz6g3RgGowGJwKrMSsQmmlZIV9r+9gn7GXiHykqjt9FCs3LgDOU9Xw73S+iCwHPgaSrmTltxixIx+EAsFq1dpNwQKoXr06N998sw9CFYwtW7bw4osvMnv2CcAhaWXJEpEewABvQqZHbseqakFtlilF8ZLp4YKaNrz6qhXT+9//0k7BAtgrVEjQUWiSNZbDh5sb+5AheypY6YC75pJL0pQsL1anC/C6qi5MVr8J4GBgO/Br5A6vbtbrwALglEAgsM7bXhNoBvwL/B4IBLYFg8FuQCWgZzAY/EQD+k14W4FAIKRopUUh3Gio6k4ReRRTOs8jOzlIqrER+CfK9n8AV7kv0wgpWREZIpYvX06zZs146qmnuOqqfFdh8IV169bRo0cPjjiiP3BIurmu3IJZurd473NCMffBtKfl+bl9TEe++Plnq17evj3cdZff0hSIfv36+S1CxpCssRw40LzMcyqHkuq4ay65JDNWpgem1KVZmOAe1AUWBwKBaNEp52OJE24LBALrgsHgXsFg8HXMBXAUMBsYFwwGG3mJL27DHjDuyKGvBUCduH+C5DIUcxG9XyTCbJA6PI+lnN81xeO9f8jb58gkQvFYtWrttrlUqVJccsklNGrUKMpJqUnVqlX577//KFnSjK3pZMlS1QaquirsfU5LQ79ldaQYq1ZZYb26dc2kkJ8q6Q5HAZk9G0aOtAy3JZKeNs6RjiRFyRKRSsCNwHtegcl0piywIYd952LWjy+99YFYYeIngQ5ANywW6+tgMFg+EAisAj4CzgkGg9G+i41YceK0xXMR7Au0xOKeUgIRGRZagCOBU4F/RGS0iIzGXDtPA47wUUxHIsjBklW5cmX69+/PMcccE+Wk1KRYsWJUrlyZxYttfiCdlKxwRORKEdnDl05ESnmxnRnBpLf7Muntvn6Lkd4sW2Y1IDZtsuw4VdMtN1Q2119/Pddff73fYmQEyRjLMWPs9dxzE9pNQnHXXHJJli5+FVCezHD52Ark5FjfApjgufrtj6V67x0IBEIFl78LBoOzge+Ay4CXgQnAVS/y4gs9gz3rAf00oN97x5fGkmekO+9gilZXcsnImGRWRaxHRqIvSJYgjiQTsmSlaUGpcJYvX86rr77OokXnAY2pWzfPU1KV14GvgOUR2yt4+95MukQJoFS5Sn6LkP4EAmbJ+vJLOPlkv6UpFFWqVPFbhIwhGWP5xRdQp44ls0xX3DWXXBKuZHkuYjcD41V1SqL7SwJLgdrBYFAial2BKZJrvfetvdf3Io4ZDSzDLCQvh47fwY4bvf2nSVBaa0AnYa6CEeVa0w9V3SYir2Aug/VV9a8UkOlqv2Vw+ER44oswpkyZwnHHHcdHH33EyWny8LZ48WLuv/9eoBn77tuYMulbcECw2KtI6pH9m5r2HHzuTX6LkL5kZZnl6uWXrar5KafkfU6K06dPH79FyBgSPZbz5lnSi3vv3SNfUlrhrrnkkgx3weOBpsCAJPSVDGZjLnwNouxbCYSmx0MZ9sqHXNBEZHSvXr1GA3uF7a8JsHn3/AqXS1AO3cjG41eyMifXxHRjIPYQdYPfguSEiDQUkTNE5HQRcXEgmUoO7oJVqlThuuuuo14aZY9o2bIl33yzETg1LV0FRWSmiMzAfht+EJEZYcuvwBhgpL9SOlKCUKG/tm0hGPRbGkcRY/RoUIVLLvFbEkc6kQx3wc7AGlI3s1x+meC9tgMi48smARcGg8G9sIeDrcA9IkKoHtmxxx5bC6hIdgr4DmtZu30Tm8IjdxdWpOLkcpSTsYw9UoLyhAY0PdMneajq3yLyBXCliDyYSuncRaQiXvFnICt7s3wMXKOq632QKVQnK9ldZz45uAvut99+PFXg6sb+UKxYMZYtKwukbTzWR95rC6yeYPik0jbgL/Z05U1bfnnjUXtzwwh/BUk3VOHpp+GwwywwpnhxvyWKC1dfbQ4Vr7+eVlVaUpJEj+XTT0PDhtC8eUKaTxrumksuCVWyRKQslgzi/TStiRWNGcDfwEXA4Ih97wLXAlcHAoEBwWDwAaBfIBCYhLkJ1gOOwxJjDAsGg82Ak/dir6cx98FGWP2sww/kQAGYy1y8NtNayfJ4BzgDU1C/z+PYZPIslir/eOBnb9vRwEvAM8A1yRbI1clKIDm4C6Yjf/zxB4MHvw9cw377pd/nUdUggIj8BXyQQf8TUSm7dw2/RUg/du6Es8+2OKzHHssYBQugbhoHUaYaiRzL336zzIJPPpn+l5+75pJLoi1ZZ2FxSu8kuJ+YkaDsD7wPlAGu14D+nMcpu+EltXgDeDAYDDYOBAJ/hO0enUXWj8BjDwcfHlWc4k9hLoS3AHdiyRYeA4JYUovBwLpSlHpcA7or4LtksOQdrWh12SIWscryM6RzXbFwhmEz1ZeSWkrWWcA5qjombNtoEbke+AQflCxHgti0CdauhVKlYJ99dtv12WefceGFF/LLL79wSJoUNp09ezajRj0MnJ6WSlYIVX3DbxmSQYuz3JxJvvnkExgxwvy0Onf2W5q40qtXL79FyBgSOZavvmpVAi6/PGFdJA13zSWXRMdkXYTViBqT14FJZCZwOHAgMEaC2bWR8sEALKbqkfCNPel50XM8d+xmNpffxKbf1rCmYyAQeCMQCLQCSgHVAoHAvUAVLMtea6BLIBDYLaPWgzy4pgpVGMe4rcBvmIUl7VHVTZjScr6IpFJhk73YM9sgwGpMGXdkCiEr1r777hG93KhRI26//XZq1Egfa8PZZ59Nx47bgZbp6i4IgIisF5F1OS1+y+fwiZ07oXdvqFwZ3nwz/c0IjrRDFT7+GI49FqpX91saR7qRMCVLRMpgdZE+TZX4GwlKcXZ/aC4GHJTfdgKBwFLgCeCiYDB4WtiuF9ewRgYzmB3skMpU/iYYDH4XDAZvxMbi0mAwOAgrzns4cGkgEPgkvO1gMFgTs3b9fCEX7qUBba4B/S+/MqYwnwCVgaN8liOcn4BHPPdWAESkHGZxzJel05Hi5OIq2KJFC/r27cu+++6bZKEKx6JFJYBiaa1kYdb+8KUH8BawCXggl/PSivGv9WT8az39FiN9+PRTmDoVnnoqI6u/Xn755VyeCeaRFCBRYzllCvz1F3TsGPemfcFdc8klkb9a7bHCvZ8nsI98oQHdKUFZhyWeANgBTC9gc32weLM3g8HgEYFAYD6wE2AFK3iRFzmDM8YczMF1gRfDztuApXV/NBAI7FaLKRgMlgY+xCwr10RJEZ8JjMQC2s8AfvBZlhA9sDi5f8IynR2CFYOOOZe3iJyCxXcVBwap6h5VR0WkPRbnVRJYqarHFVJ2R37IpUZWVlYWIoKkUX7eCRN+4c8/hwN3sd9+FfM8PlVR1cHRtovIFKyQ+/NJFShBVKiR3ppw0nnxRahdG67MmHrUu9G0aVO/RcgYEjWW33opyq7JkKABd80ll0QqWadjs5CpFHsDsD8wCLNoddWAbi1II4FAYEswGOyEZRv8NhgMngBcgSmVxbaxbclQhnY4mIN3APsB1YH1wLxAILA9sr1gMFgGixU7BrgkEAj8XhC5Uh1VXS8io4EzSZFkHqo6U0QaY8WjD8Bq9rwNvKOqm3M92UNEigMvACcCi4GJIjJMVWeHHVMZczU9xcu26JwPkk0O6dsBXnjhBW699VZWrFhB1apVkyxYwfjxxyns2PE/Kla8hYoV01fJyoXvsUmJjODA0115vpj56isYNcpqY2Wom+BDDz3ktwgZQ6LGctIkqFs3c1wF3TWXXBKpZHUAfki1bFEa0BXA2fFoKxAI/BEMBk8BvgHG96TnRT3pWQIoo4HdHs7/8paoBIPBOsAHmAtdt0Ag8H485EthvgKeEpHaqvqPn4J4sWGLgA6q+kohmjoCmKeq871238eus9lhx1wKDFXVvwFUdfkerTgSSxR3we3btzNjxgxat27NQw89RPny5X0SLmdWrVrFDz/8wNFHH02NGjVYsWIFY8aMoWXLTsAN6e4qmBsXY8mDYsJZkzOEL76A00+HOnXgxhv9lsaRDzLpHly+HIYNg/PP91sSR7qSkJgsEakGNCN13MESRiAQ+AVL970eGN2Tnv170rNSLOcGg8HSwWDwNiwZxyHAhYFA4IXESZsyhBKhHOurFICqbge2Yy6ChaE2pqyFWOxtC6cJsLdXmHqyiET1gRGR60VkkohM2rFjRyHFcuxGFHfBL7/8kuuuu47GjRvTq1cvypRJvVwnc+bMoVOnTkyfbt7Ns2bNolOnTowbNxsQ6tdPHxfHaISKEoctM0VkOdAL6B1jGyFr8qlAc+ASEWkecUxlzJp8lqoeCFwQz8+RF+MGPcS4QW4mOVdU4c47oXx5i8cqV85viRLGxRdfzMUXX+y3GHHDz3swEWP5wguwfTs8/HBcm/WVTLvmUp1EWbKO8V5TKatgwggEAr8Gg8HDsDitm4Brg8HgECxl+U/AklB8VTAYrAS0wn6ErsDcCEcCN0ekg89kpmGxacdiLpJ+8zxwn4hcraoF1WqiPeVGKm4lsIQnHbC4u3EiMl5V5+52kupAYCBAuXLlMjEuzz+iWLKqV69O48aNSUWFtl69epx++un069eP6dOn06BBAwBat27N9OnTGTGiIZC2hYjD+ShiPQtYAYxW1Vhdp1Pemly5TuNkdpee/PKLFSZ6+GFIE7fdgtKyZUu/RYg3vt2D8R7LrCx47TU47TQ44IC4Nu0rGXjNpTSJVLK2AJMS1L4vSFCqwS6Xw90IBAIbgFuCweBzwG3AZd4CsCkYDK7D4sAqe9u2Y8kWngW+z9AkF1FR1R0iMo5sZdxvjsWKRP8jIrOwhBe7UNWzYmhjMRBe5a8OVr4g8piVqroR2CgiP2IWzLk4kkOUmKw2bdrwwQcf+CRQ7tx88800bdqUcuXKcfDBB+/aXr58eQ4++GBefdXW013JChUlLiTRrMlHRhzTBCjpxYVWAJ5V1TcjG/Jq5F0PpujGi2anZGYCh7jSuzeUKQPdu/stScK59957/RYh3vh2D8Z7LEePhsWLLSQwk8jAay6lSZSSdSgwQ1W3Jaj9pCNB+RDPrC1B+UwDek604zxrVLdgMHg70BJoAzQAygFbsQfvqcC4QCBQlOu/TALuEpHSqgVLPhJHVgIfF7KNiUBjEWkA/IPFklwaccxnQH8RKYHVTTsSeLqQ/TryQy7ZBVORvP4QF3plytNdyQohIidgbkYAs1X1u/ycHmVboa3JrVq1KjITYL7z888WBHPffbD33n5L48g/GXMPjhgBpUvDWbFMsTocORB3JUss//Eh7On+kbZIUMqxu9/w2RKUKhrQaAVsAfAyCE70lpRAgtITs7ItBU7QgP7rozjTsOuvOaZ0+oaqFjrll2ed64YVmS4OvKaqv4rIjd7+l1T1NxH5CpiBuUMNUtVZhe3bESNbtsB//1m9nTA3pAEDBtCrVy/++OMPKlSo4KOAe7Jjxw5K5FIfKFOULG9yYihWtzBkAa4lIjOBTiH3ozxIeWvyTy/fb29uSLWkuylAVhb07AkVK8Jtt/ktTVLo1KkTAB9/XNg5vpTBt3sw3mM5ZQocfDDstVdcmksZMvCaS2kSYcmqA+xDwetPpQtZfguQHyQopwIBb7UyMB5LLe8XoeujJT4pWSJSDLgDOAfLcjQS6FXQjJiq+gXwRcS2lyLWn8AKWTuSzdKl9rrvvlAsO+fP/vvvzznnnJNyCS+ysrIoWbIkPXv2JBAIRD0mU5Qs4FVgHdAwFKshIvWAN7CSGyfE0EbKW5OrNGiRrK7SjzfftKJETz0FNWr4LU1SaNu2rd8ixBvf7sF4j+XUqXBppOQZQAZecylNIpSskKtHxszQa0A3SlBeB0IWj7c1oP/5KVMBiIx/8ttfah7mPnmgjzLcAzwKjAI2Y0WJq+L5gTsyjBxcBU866SROOukkHwTKHVWlV69etGvXLur+9evNMFemTEbUcGkLtAkpWABeLbnbgXGxNJAO1uQDTsrAp7Z4MHky9OgBLVoUiVisEHfeeaffIsQVP+/BeI7lP//A2rXQOAPz1GTaNZfqJELJaui9zktA276hAe0iQbnJe+93DFFBeB24j2yf6W98lAVV3SkiC7B4Nb/oDNyiqgNgV32PT0XkBlV1cRiZRpTMgqlM8eLFcy0cGbJi1asHkt4Z3AH+xuIzIinD7oH0ueKsyWnK7bdDqVJmzcqAi7kokwn34Kef2uuJJ/oqhiMDSESdrIaYhWJpAtr2FQ3o1jRVsNCAzsP8nt8G7tOAnuGzSAB+K1n7AZ+HrX+NKaHp8RTuyB85WLLuuece6tevn3x58iArK4tNmzaRlRXdM/lvz+aTAa6CYG67z4lIGxEp7i1tsIKld/grWvwYO+Buxg64228xUothw2DMGLjjDjj0UL+lSSpnnXUWZ7nMCnEhnmP5zTfQoAEc6KefTYJw11xySYQlqwHwl6qmVcxSUUADOhOrzZUqzAeO8rH/UpibIACqqiKyDSjtn0iGiJwJnFm6tO+iZA5R0rcDHHnkkRQrloj5psKxePFi9ttvPwYNGsQ111yzx/50j8cSkfXsnnmsDFZXMPTfUQzYCbwDVEyudImhetPD/RYhtZgzBy67DFq1gm7d/JYm6XTo0MFvETKGeI3lf/9ZaGDnzplpVHXXXHJJhJJVEwt4dDjyYglQSUT2UtXNeR6dGPqIyKaw9VJAQETWhjao6q3JFkpVhwPDy5Urd12y+85YcnAXPO+88zjvvPN8ECh3KlasSN++fWndunXU/emuZAG3sGd654ymSYeL/BYhtbjtNti+HYYMybw0bjFwWxHJopgM4jWWU6bA5s1w5plxaS7lcNdcckmEklUVn1NyO9KGUFHnKlha12TzI9AoYtvPQHjlwyL1EJjRpFmNrMqVK3PPPffkuD88JisdUdXBfsvg8JGffoKvv4aHH4YUdNd1FE1+/tksWC4JnyMeJErJWpmAdh2ZR+g6qYYPSpaqtk92nw4fycFd8OKLL2bevHlMmjTJB6FyZvv27WzcuJHy5ctHrZWV7pYsEdlHVVeH3ud2bOi4dOfH53vYmxtiSpiY2Tz1FFSuDHcX3Ri1U089FYAvv/zSZ0nSn3iN5Q8/wCGH2KWZibhrLrnEVcny6g7tDWTEH6Ij4YSKOVfxVQpH0SAHd8HTTz+dFStWRDnBXyZOnMjRRx/NV199xcknn7zH/nRXsoAVIlJTVZdjEy7RrMbibS+eVMkSRK2DjvZbhNRgzhwYOhSuvBLKlfNbGt84M1N90nwgHmO5bZtZsq7P4CIu7ppLLvG2ZJXC/hT9iq9xpBehor+pVQXWkXls2wYrV1oR4mrVdtt1xRWplAsmm/3224+nn36aZs2a7bFv2zbTGYsVg9q1fRAuPpxA9oTc8X4Kkiz2b9/JbxH8Z8cOuPpqS9nep4/f0vjKzTff7LcIGUM8xnLSJIvHyqE0YUbgrrnkkgglCyyFe1wQkdGQONeuRLefzH7ScKxC10mpXI9yOArLUq+ixL77QvHdjSKqiqRgGqnatWvTPYfCrIsWgSrUqQMlSyZXrnihqj8AiEgJrCj5p6q6xF+pHAnnySdh3Djo2zdtatY5igbffmuvxx7rrxyOzCHeeYtD+aZvFJHRIvJMnNtPSzzlpCXQMqSoFHW8a+MVb/VaH0VxZDgzZ86kxz33WMrTmjWZOnUqPXr0YNmyZQC0atWK008/3VcZo7F582aWL1/Ojh079tiXAa6Cu1DVHVhh0jRVF2Nn9DO3MvqZpCcrTR22bYPHH4eTT4ZckroUFTp27EjHjh39FiMjiMdYfvyxWbEinB0yCnfNJZd4K1mpV2zGkcqEYjDcdROBiJwpIgN37tzptyhpyauvvkr79u1RVf766y8GffaZ+aXVrMn8+fMZNGgQa9asAaB79+60atXKT3GjMnz4cGrUqMHcuXP32JdJSpbHeCDji0jVPbwDdQ8vwnVqvvkGVq8ukjWxonHRRRdx0UUurX88KOxY7txpoYJHHhlHoVIQd80ll3i7C27zXl9Q1Wfj3Hbaoqrtk+WWmC6oancRaQHMBF71Wx4RqYEVam4EPKSqK0XkaGCJqi5ItjyuTlbhEBFKlCiBiHDmmWeyrl8/6NoVatWiU6dOdOqUHRuTqjFZhx56KP3796dWFJeqDFSyXgH6iUg9YDKwMXynqk7xRao40+jYs/0WwT/mz4f774e994aTTvJbmpTguuvcz3u8KOxYTplihtaWLeMjT6rirrnkEm8lKxRjUzrXo/JBopWSZCk9yegnDccqdJ3ELYavIIjI4cAoYAEWG/IElu3sRKAJcKl/0jkKQpcuXejSpUv2hjSrkQXQuHFjGjduHHVfBipZ73qvT0XZlzHZBYss27ebYrVqFbz/viW9cDhSiLFj7fWEE/yVw5FZJMqSFTcly5HRhK6TbbkelXj6Ac+qakBE1odt/xq42ieZHPEkhxpZqczatWtZv349tWrVolix3T1qF3i21QYNfBAsMWTOJ8mF75/sam9uyAjDXOx88QX8+ScMG2bxWA4A2rdvD8Do0aN9lSMTKOxYTp5seZH23Td+MqUi7ppLLnFVslR1h4hsBCrFs11HxhK6Ttb4KQQWC3JNlO3/AjWSLIsjDjzyyCNMnjyZTz/91DbkUCMrlRk0aBB33nkna9eupWLFirvtmz/fXjNIydoP+NlLgrELL/PgUcBCX6SKM/Xbnua3CP7www9QpoxzE4ygc+fOfouQMRR2LH/6CY4uAmXs3DWXXOJtyQJzs8rg3CyOOBK6Tlb6KoXVdds7yvYDgOVJlsURB8qVK0elSmFzPWnoLnjSSScxcOBAypYtu9v2bdtg8WKrkVWvnk/CxZ/vgZrseb9V8vZlhLtgg6NSL4tlwpk3DwYOhOOPh9LOySUc98AbPwozlosWwV9/we23x02clMVdc8klUUpW1QS068g8QteJ30rWZ0BARC7w1lVE6gOPAR/7JpWjwPTo0WP3DWnoLnjQQQdx0EEH7bH977+tRlbduhkV2iJkZxsNpwoRSTDSmayde6bjz2hUoXNnEIH+/f2WJuXYvn07ACXTtdhdClGYsRwzxl6LQn0sd80ll0QoWStwLlaO2KgObAfW+izHncAX2LVbFhiLXcM/AQ/6KJcjHmzfDitW2INejfT5aVq+fDkbN26kQYRPYCbFY4nIMO+tAm+LSHgSnOJAC+DnpAuWIH545jZ7c3MRicn66SdbBgyAhg39liblOPHEEwEXHxMPCjOWP/4IFSvCwQfHWagUxF1zySURStZCoHUC2nVkHg2AhaoabQY7aajqOuAYETkBOAyr2zVFVUf6KZej4Nx4441s2bKFwYMHw7JlNqNeowaUSMRPXmLo3bs3r7/+OmvX7j4HkUlKFrDKexXgP8x1N8Q2bMLjlciT0pWGx5zptwjJY8cO6NsXKlSAFC2T4DfXXnut3yJkDIUZyzFj4KijoHhGOCXnjrvmkksinjjmA1VEpKL38Opw5EQDLG26r4jIIao6XVW/A77zWx6wYsTAmaVdDEOBqF69Otu2eUkr0zDpBcDll19OmzZt9tgeSnqRCYYBVb0aQET+Avqpasa4BkZjvyNP8VuE5HH//TBiBDz0EJQv77c0Kcnll1/utwgZQ0HHcsoUmD0bromW+ioDcddcckmUkgX2AD09Ae07MoeGwEd+CwFMFZFfgbeAd1V1sd8CuWLEhaNXr17ZK2mY9AKgVatWtGrVao/tGWbJCvFI+IqI7AucAcxW1YxxF9yxbYvfIiQHVXj7bTjzTAgG/ZYmZdm0aRPAHsltHPmnoGMZqo918cXxlig1cddccimW9yH55g/vtVkC2nZkCCJSDQtq/yOvY5PAAcBQ4FrgLxH5XkS6iEjFPM5zpANpmPQCYOHChfz55597bM9QJWsEcAuAiJQHJmFFwX8QkSv9FCyejHn+DsY8f4ffYiSeGTPsvjvrLIuFdETltNNO47TTimha/zhT0LGcNg2qV0+7v4cC46655JIIJes3LJnBIQlo25E5hK4P362dqjpXVQOq2gQ4GpgJ9AaWisiH/krnKAinn346d9zhPcymqbvgHXfcwVlnnbXH9gxVsg4n21X3PGAdlhjnOiwxTUyIyCkiMkdE5onIvbkc11pEdorI+YUROr80Ou5cGh13bjK7TD47d8KNN0KlSmbJcuTITTfdxE033eS3GHHFr3uwIGOZlQUjR0Lr1kVnLiATr7lUJu7ugqq6TURm45QsR+6kjJIVjqpOACaIyDvAS0Ann0VyFIDGjRtTp04dW0lTd8E77rhjj6QX69fDypVWbmjffX0SLDFUILso+UnAJ6q6XUS+A16IpQERKe4deyKwGJgoIsNUdXaU4x4Dvo6T7DFTr1XHZHeZfD75BMaPh8GD0yqbpx9cdNFFfosQV/y8BwsylqNGWY2sPn3iJUXqk2nXXKqTqFRb04GTRET8zhznSFkOBZao6gq/BQkhIg2BS4HLgP2BMZgLYaznnwI8i6WeHqSqfXM4rjUwHrhIVVMhJi3jeOaZZ7JX0tRdsG3btntsC7diFUuEH4J//A0cLSLDgZOBUM26fYBNMbZxBDBPVecDiMj7wNnA7IjjbsHq3yU9C+62zRuS3WVyWbXKrFj168Nll/ktTcoTmkTZrXB6euPbPViQsZwwwV7POCNeUqQ+GXjNpTSJUrLGA1diyS/m53Gso2hyNHad+I6IdMUUqyOBWcDrwDuq+k8+2kj5WfQiS5q6C/7++++ULFmSRo0a7dqWoa6CAE9hiWc2YGVAfvS2t8Pcd2OhNrAobH0xdk/vQkRqA+cCJ+CDkvXTgHvsTfcTk911chg40BStDz9Mq3IJfnH22WcDGVWzyLd7sCBjOXkyNG5snq1FhQy85lKaRP0KevWzORanZDkiEJE6QH3M6pMK3Au8B9ygqrE+0EWS8rPoRQkR4X//+x/3339/2roLXnXVVey999589dVXu7aF0rdnmpKlqi+LyGSgLvCtqmZ5u/4EHoqxmWhRFZGeFM8A96jqTsklCENErgeuB6hXr16M3edN4xMuyPugdCUrC/r3h2OOgRNO8FuatODWW2/1W4R449s9WJCxnDoVojgMZDQZeM2lNIlSsmYDq7FZyDcS1IcjfTnWe/0x16OSR704uLXGbQYv/M+lVKlShRSraHL11VfTrl07K4i6fLlFNadZfMiTTz5J5EPIH14uzsaNfRAowajqJCyrYPi2EfloYjGmpIWoAyyJOKYV8L43rlWB00Rkh6p+GtHvQGAgQKtWreLm8l7n0Pbxair1eOopm9DoG9VL2hGF8847z28R4o1v92B+x3LRIli4sOjUxwqRgddcSpMQJUtVs0TkR6Cji8tyRKEDsBaY4ZcAInIYMM2bMT80txk1VZ0SS5PRTo1Yf4YYZvDC/1zKlSvn7p18cMkll3DwwQfz2muv2YbFi22GvUYNSDOF9Zhjjtlj25w59tq0aZKFSQAi0gMYoKpbvPc5oqpPxdDkRKCxiDQA/gEuxmIsw9vZZQMUkcHA55EPd4lk64Y1yeoquWRlwRNPmAXLFTuNmZUrVwJQtWpVnyWJG77dg/kdy2HD7LWo6RwZeM2lNIl0mv4COAc4EItzcTgQkWLA6cBXqrrDR1EmAfsCy733Ss6KUvEY2ovbDJ6j4Kgqu83p/OOF1aVZPBbAzz//TL169bKzJJKtZDVp4pNQ8eUWzNNhi/c+JxSL2coVVd0hIt2weMfiwGuq+quI3Ojtf6nwIheOn19+wN7ccaq/gsSb774zi3HnzkUnF3YcOP98y16eKfExft6D+R3LH36AevWgefNESZSaZNo1l+okWskCOAOnZDmyOQxTbj73WY4GwIqw94Ul5WfRiwLvv//+7htC8Vi1aydfmEKgqhxzzDE88MADPPLIIwBs2GA6Y8mSlrwt3Qm/H8LfF7LNL8j+7wlti/pgp6qd49Fnfmh64iXJ7jLxzJ8P115rgYKdXMWL/LCrll8G4dc9mN+xnDMHDjqo6M0JZOI1l8okTMlS1X9EZApwFuCctB0hzgSygK/yOjCRqOrC8FVgUTS3VhGJKeo9HWbRiyQhS1YaKlnffvvtbgHfoXis/feH4rHYVh0pR62D93QBTWs2bTLFavlyMw2ULeu3RGnFma5Yc9zIz1ju3Alz58KJGZrkMzfcNZdcEp1jdSjwqIjsF/FQ6yiCiPnJXQL8qKor/ZYnjAVATcx1cBciUsXbF9MjbarPohcF2rVrx2WXXcYNN9xgG9JUySpWrBgdOnTYbdvcufaaCfFY4Xi/C1dihb8bYpMe84EhWCmFjIlL3Lx2ld8ixA9VOP98mD4d3n0XWruEqfll6dKlAOybYZXF/SA/Y/n337BlCxxwQKKlSj3cNZdcEl3O8l3vNQN9JBwF4HCgMfCO34JEIOyZpAKgPBYv4kgTypUrR+nSpbM3pKmStW7dOr777jtWrcp+KM+kpBcRfIzVptsPq4n1K+bC+yaQUcW6xw96mPGDHvZbjPjw/PPw5ZeWTfDii/2WJi25+OKLudiNXVzIz1iGfkuLopLlrrnkklBLlqouEJFxWGyKcxl0XAZswx6qfEdEnvPeKtBHRDaF7S6O1b6almy5HAXnyy+/3H1DmsZkzZ49mw4dOjBixAhOO+00INuSlSFJLwAQkcuAk4CTVfXbiH0nAx+LyKWq+m7UBtKMA065wm8R4sO2bRAIWDbBO+/0W5q05d577/VbhIwhP2M5b569htV5LzK4ay65JKMk+1vAABFpraoTk9BfyiEio8PXVbW9P5L4h4iUBi4HRqjqf37L43GQ9ypAM0wBDLENmAL0S7ZQACJyJnDmblYZR/5JU0tW8+bN+eGHHzjwwAN3bctQS9blwGORChaAqn4tIk94x2SEklXzwDZ+ixAfnn4a1qyB7t2hWKIdYjKXU045xW8RMob8jOXQofaXUBQ95tw1l1yS8ev4DrARuCkJfTlSl/OxtOUv+i1ICFU9XlWPx9JInxpa95aTVfUGVf3DJ9mGq+r1xV2Gg5hZvXo1hx56KEOGDMnemKYp3CtWrEi7du2oUqUKYOEvmWjJAg4hIo4xghFAy+SIkng2rV7GptXL/BajcIwcCfffD+eeC2ec4bc0ac2iRYtYtGhR3gc68iTWsVy9GkaPNg/XopZZENw1l2wSbslS1XUi8hbQWUTuVNXVie4z1SiKlqso3Az8AYzyW5BIVPVqv2VwxIe6detSrlw5W1m/3pYyZWDvvf0VLJ8sWLCAuXPn0r59e0qXLs2yZbBunX2MDKshWQX4N5f9/wL7JEmWhDPh9V725r5zfJWjwKjC44/DPvvA4MFF8yk1jlxxhbmPuppFhSfWsZw1yy7jE05IglApiLvmkksy3AUBBgA3AtcCjyepT0eKICKHA0cBPVQ1y295oiEix2MJWuoBpcL3qWoR/TlOL/bZZx+GDRuWvSE8HivNHgY/++wzbr/9dlavXk3p0qV3K0KcZh8lL0oC23PZv8M7JiNoflpnv0UoOCtXwkUXWeHh7t2hYkW/JUp7HnzwQb9FyBhiHcuJXtDKIYckUJgUxl1zySUpSpaqzhSRb4EeIvKcqrqMbUWL+4C1wGt+CxINEekMvAR8ArQHPgOaYBnO3vZNMEfhSNN4LIBLLrmEI488kkqVKgHw66+2vVkzH4VKHJFJZ8LJqMJLNZqlcZrz++83Bet//4O77/ZbmoygY8eOfouQMcQ6lq+8YlkF0/BvIS64ay65JDNitTdQA3CuWUUIETkAOA/or6pr/ZYnB+4EuqnqJdis+n2qeiimYG3wVTJHzMyePZsDDzyQ77//3jaksZJVo0YN2rZtSzEvqcCMGbb94IN9FCox/Ag0wpLQRFsaecdkBBtW/MOGFf/4LUb+WbQI3noLLr/clK0SyXKCyWzmz5/P/Pnz/RYjI4hlLDdtsqLuF12UJKFSEHfNJZdk/lL+AIwD7hGRV1V1W14nODKC+7BaU8/6LUguNARGeu+3YvWxAPoDowGX8zQNKFWqFM2aNaNiyI0pjZWsCRMmsH79+l2zjiElK9NcXIpavOrEN3vbmwfP91eQ/HLDDbBjBwSDfkuSUXTp0gVw8THxIJaxnD4dsrLg0EOTJFQK4q655JI0JUtVVUR6AV8CNwDPJ6tvhz+ISAss/fLTqrrCb3lyYRVQwXv/D9ACmIEF5e/ll1CObHbu3MmOHTsoVaoUIrLH+o4dO6hbty5DhgxBQkFLoZisNMssCPDUU08xffp0fv/9d7KyspWsgw7K/TxHanPgmdf6LUL+WbDAig7fdx80bOi3NBlF0CmtcSOWsRw3zl5btUqwMCmMu+aSS7ILXHwNfA88LCK1RaS3iNRJsgyOBCIixUTkCRHZHytAvR7o47NYeTEGK4gK8CHwnIi8DrwH7FG/x5F8Bg0aRJkyZVi6dCkAAwYMoEyZMqxebclKn3nmGcqUKcPGjRuzT0pjS1a/fv34+GOr2b1gAWzcCDVrQrVqPgvmKBTVmxxK9SZpNo3eubNlW7nxRr8lyTiOO+44jjvuOL/FyAjyGktV6N/fXK7T8C8hbrhrLrkk1bHas2bdDUwE5gDlgAXAK8mUw5FQmmOZJG/DsoI9pKqr/BUpT7oBZbz3fbCMZkdjCtejfgjkihHvzhFHHEHv3r2pUMEMjm3btqV3796ULWt5EY499lh69+5NqVJhiSHTVMkaP348JUqUoJU33ZqproJFkXVLF3rv2voqR8wMGgQ//ggPPwz16vktTcYxx0sb2jTDKoz7QV5juWSJTVg9X8R9qNw1l1ySHr2qqpNE5G+gLnCeqn6SbBkciUNVZ4lIc8zdrgKWvj+lCa/d5qWYf8xHcUJyDAeGlytX7jq/ZfGbf//9lwoVKnDfffft2taqVatdSgjAkUceyZFHHrn7iX//ba9p9nB49913U6JECb777jvA4gggI5NeFDkmv+NVMAlc7K8gsbB0Kdx0kxUUcmmfE8INN9wAuPiYeJDXWP72m702b54kgVIUd80lF79SBHUApgDXi8inqqo+yeFIDBcClYFLUrX4tIjEXOA0VT9DUeGRRx5hyJAhrFiRj7C+LVvg338tC1qaxWS9/PLL7Ny5c9d6BmcWLHIcdE4audy9+aYlu+jfH0pmTKmylKJ3795+i5Ax5DWWISUrQ8tgxIy75pKLL0qWqs4TkYeAZ4BOwEd+yOGIPyJSFwgCnwMf+CxObqwE8lLuxTumeOLFceREly5d8l/bI9yKVTy9vr5mEU8BRcVdUERqAFdgadsfUtWVInI0sERVF/grXXyo2ihNMpcsXAi9ekGHDu6pNIEcddRRfouQMeQ1lr/9BpUqwb77JkmgFMVdc8nFz2IXLwBXAf1FZLSqrvRRFkccEEvr9gqmnNyS4hbK4/0WwBEbka6BMfHXX/a6335xlyfRDBs2jMaNG9OsWTPWr4c//zRDQia70IvI4cAoLEb3QOAJbCLkRKww+KX+SRc/1v7zp/cuxWOyLrvMcl2/8ILfkmQ0s2bNAqBFixY+S5L+5DWWM2bAgQdaDpeijLvmkotvSpaq7hCRzsAk4CURuSDFH8odeXMDcDLQVVX/8lmWXFHVH/yWwREb8+fPZ+fOnTRu3Dj2k0JKVv36iRApYagqnTp14q677qJ3795Mm2bbDzww4z22+gHPqmpARNaHbf+aDCpgP+X9p+xNr8v9FSQnNm2y+KuffrJkF5ms2acA3bp1A1x8TDzIbSy3bIGJE+HWW5MsVArirrnk4mvZdlWd4bkN9gUuA972Ux5HwfFStj+JpTx/0Wdx8kVe8VkuJstfunfvzqJFi5g6dWrsJ6WpkgUwZcoU9t57byC7rktkTo8M5HDgmijb/wVqJFmWhHFIp65+i5A7t91mGQWvugoeeMBvaTKeJ554wm8RMobcxnLGDNi2DdqmuAE5GbhrLrn4qmR59APOBF4UkYmqOsdvgRz5Q0TKYPFX24AuaWiRzCs+K72CejKM+++/f/f6V7GQpkqWiHBQWMXhkJJVBNzoNwN7R9l+ALA8ybIkjH3qp3Bqs0WL4MMPoVMnGDzYb2mKBK1bt/ZbhIwht7H88Ud7bdMmScKkMO6aSy6+K1mqulNELgGmAh+JSBtVzecTlcNnngUOA85S1cV+C1MAIuOzSgKHAjcBvuQudnWysmlTkH/GNI3JWrNmDV999RXHHnsstWrV3qVkFYEZ2M+AgIhc4K2riNTHyil87JtUcea/RXO9dyn2harC/fdb1etevfyWpsgwzfMHbtmypa9yZAK5jeWMGVC3btolmk0I7ppLLsX8FgBAVRdhgc0HYhatIh6amD6IyJXA9UBfr7ZT2qGqP0QsI1X1CeAuLNuZHzINV9Xri6dZZrxEMGvWLP7444/8nZSmlqx58+ZxySWXMHXqVBYsgGXLoGpV2H9/vyVLOHcC+wArgLLAWGAesIZ8THSIyCkiMkdE5onIvVH2XyYiM7zlZxFJas7GaR8+y7QPn01ml3mzdStcfz28/Tbcc48rJJREunfvTvfu3f0WI674dQ/mNpbz50OjRvHoJf3JxGsulfHdkhVCVb8RkZ5Y+u9ZwOP+SuTICy+98ivAaOAhf6VJCNOAdn4LUdS58sorqV27NsOHx6jDb91qNbKKF4fatRMrXJxp0aIFv/32G7Vq1SL0cdu0yfyMWKq6DjhGRE7ArOLFgCmqOjLWNkSkOJa19kRgMTBRRIap6uywwxYAx6nqfyJyKjAQSFrEW8sLb0tWV7GRlQWdO8P778Pll8Ojj/otUZHimWee8VuEuOLnPZjbWM6fD6eeWtgeMoNMu+ZSnZRRsjweBZoDj4nIPFUd6rdAjuiISCPgU2AhcL6q7vBXovgiIuWB7sAin0Up8jz33HPky20yVCOrbl0rRpxGlClThgMOOACgKLkKIiKHqOp0Vf0O+K6AzRwBzFPV+V6b7wNnA7se8FT157DjxwN1CthXgdi7bpNkdpc7qpZu7f33TdF6/XW/JSpyZKDLlm/3YE5juWmTzbk1bBiPXtKfDLzmUpqUegJR1SwRuRrYD3hbRE5Q1fF+y+XYHRGpghUbLgacrqqrfBapUHgpo8MTXwjmsrQRy3rp8JFjjjkmfyeEXAsbNIi/MAnm999/Z+LEiXTq1Ilx48oCRUPJAqaKyK/AW8C7BYztrM3ukyKLyX2G/Brgy2g7ROR6zA2aevXqFUCU6Kz+K/SsmQJf6jvvWB2syy+HV1/1W5oiycSJE4GMSkbg2z2Y01iGPMedkmVk4DWX0qSUkgWgqptF5GzgZ+BLEWmvqtP9lsthiEglrHZNA+AkVc1nsExK0i1iPQuLDZmgqv/F2oiInIIlASkODFLVvhH7LwPu8VY3ADe5aztvxo8fT/Xq1WkY67/kHC9BaRrW+Pn222+59dZbOfbYU5k+vSzFikER+S88AJvQuBboLSJjMIXrI8+VMBaiOVVGzRoqIsdjD3hRNXhVHYi5MdGqVau4ZUud/rFX3LdPtGz1SeSff+Daa602wOuvQ7GUCM8uctx1111ARtUs8u0ezGks//Tqf6fhnFtCyMBrLqVJOSULQFWXi0gHYAzwrYgc61K7+4+IlMMsWIcA56jqjz6LFBdU9Y3CtpEO8SDpyllnncX555/PgAEDYjshpGR5bnfpxNVXX81pp53GtGn7sHOnWbHKl/dbqsSjqnOBAJZh8EhM4eoN9BeRz1X1whiaWQzUDVuvAyyJPEhEDgYGAacm2wp/2MU9ktlddLZtgx49YOdOU7DSzKU2k+jfv7/fIsQb3+7BnMZy5kx7bdYsHr2kPxl4zaU0KfvrqqoLRaQj8CPwnYh0VNXf/JarIIjI6PB1VW3vjyQFx4tRGgYcBVysqiN8FinueEWJqxORdTNCUcqJlI8HSTe+//576taty0cffUS1atViPzFFLVn//PMPv//+O8cccwylS5dm0aJFzJ07l3bt2lGyZEkWLlzIvHnzOO6443jySbsETz7ZZ6F9QFUnABNE5B3gJaBTjKdOBBqLSAPgH+BiLGvtLkSkHjAUuMJT7JJKpdo+pzj77Te4+274/HN4+GH35OkzLVq08FuEeOPbPZjTWE6ZYlasSpXi1VN6k4HXXEqT0j4C3g3YAZPzRxE51GeRiiQisjfwLZZp70pVHeKzSHFFRA4VkWmYi+CvWHbLmWGvsRDNFz231Ha5+qKLyCQRmbRjR0blE8mVTZs28dJLL/HbbzaXcuqppzJo0CDatWtHs/w8DKaokjVixAg6duzIqlU2cfvpp5/SsWNH1q0zb7iPPvqIjh07smnTZr76ys455RS/pPUHEWkoIg+KyG9YGvf/MBfCPPGS73TD3Jl/Az5U1V9F5EYRudE77GGgCjBARKaJyKT4f4qcWfnnTFb+GetPShzJyoJXXoFDDjEF65FHIBhMvhyO3fj555/5+eef8z4wTfDzHsxpLKdNg1at4tFDZpBp11yqI6pxczdPGCLSGBgFVATOUNWxPotUZBCRfYGvgGaYBesTn0WKOyIyFXNpeBxYRoQPeSyuql4R1ZNV9Vpv/QrgCFW9JcqxxwMDgGPycpUoV66cbtxYNGpzL1q0iHr16vHKK69w7bXXMnbsWGrXrk2D/DjTr1tnU5alS1th1RSoM9atWzeaNm3K+eefz7x58zjiiCMoXbo0S5Ys4c8//6RNmzaULFmSxYsXs2DBAqpWbUvz5iXYZx9YvjwlPkJURGSTqpaLU1tdMRfBI7HJjXeAd1T1n3i0XxhatWqlkybFRxer3uQwAJbPnRKX9mLm0kvhvffgqKPg3XfTrkh3ptK+fXug4PExIjJZVTNehYjlHow2lps3m7v1Qw9Bz56Jky+ci162tLAf3JACyW2iUNhrzrE7ed2DKesuGI6q/iEixwAjgZEicrWqvue3XJmOiLQARgBVgTNV9RufRUoUjYELVHVeIdpI+XiQVKdWrVosWbKEChUqAAXIKggw1/M+adw4ZbSTuXPnUr58eWrWrEnNmjV3ba9Vqxa1atXatV6nTh3q1KnD88/b+oknpsxHSAb3Au8BN6iqD6ae5HD4ZXcnt8OtW03BGjrUCg6/+KJLcpFCvPzyy36LkDFEG8u5c82I6+prZ+OuueSSFkoWgKr+LSJtgU+Ad0Vkf+BRTQdTXBoiIicDQ4D1wLGqmuSp16QyFrPUFUbJSvl4kFSnePHiuykhBSIFXQW/+SZ/cxNff22vRcxVsF5R+C2vuG8SLUiqcNZZ8M03cNFF0LevU7BSjKYp9DuV7kQby9leRLRTsrJx11xySRslC0BVV4nIicArQC/gEBHpko8Uv448EJFiwN3A/7B4pDMKWLMmnbgGGCQiDTFXpe3hO2PJoqiqO0Qk5IteHHgt5Ivu7X+J3X3RAXYUBVePWFm2bBkffPABZ511FvXr1y9YI7//bq9pmFkQYMMGGDXK3p90kr+yJBoROQyYpqpZwKHePRGVTJnkWT53qvcuwa5EWVnQpYspWA8+CL16QS7j6/CHH374AYDjjjvOZ0nSn2hjOXu2zSs0buyXVKmHu+aSS1opWQCqulVErgJmAH2Bg0WkUya7mCQLL8HFG8CZwAfAdaq63l+pkkJjoCUQLZebYkpTnqjqF8AXEdteCnt/LTEG8RdF5s+fz2233UbTpk0LrmSFpi5TRMlav349F110EV27duX000/P8/jPP4ctWyx0JsyTMFOZBOwLLPfeKznX2ckIx8lfhw+yN0/enLhOduyA22+HN96Aiy+2YBSnYKUkgUAAcPEx8SByLFXho48s6UXp0j4KlmK4ay65pJ2SBeC5lfQTkV8wZWCCiNwJvFgUXE4SgYi0wxSs2sAtwAtFaCxfxhKr9CFK4gtHcmjdujUrV66kfGEKQ02bZq+HHBIXmQrLli1bWLFiBZs2bYrp+A8/tNcLY6kKlf40wDJ6ht5nPK2vvD+xHezYAZddZhfSVVdZHSynYKUsr732mt8iZAyRYzltmjk2uBCk3XHXXHJJSyUrhKqG0rq/gRWCPcdzH8x097a4ISJlgEeBHsB8LP5qgr9SJZ06wGmq+qffghRlSpQoQZUqVQrewLp1MH8+lCqVMpasatWqMXHixJiOXb7cLFnFisH55ydYsBRAVReGrwKLok3seLGMGUH5arlVdSgkf/1llqsJE+DGG2HAAKdgpTgNGzb0W4SMIXIs33oLSpaETrFW2SsiuGsuuaR9FKyqLgVOAW4GjgZmenWGiolIGRF5TURcpB8gIpVE5Bkvwx0iciwwGbgDs+a0LIIKFlgNsMP9FqKoM3fuXPr168eKFSvyPjgaMz2P4ebN7d81zXjjDdi+HU4/HWon8Fk8RVkA7FFxWkSqePsygmW/TWTZb7Ep3TGjanWvmjY1d9k33rAsgk7BSnlGjhzJyJEj/RYjIwgfy+3b7TY480wozLxdJuKuueSS1pasEN7s54si8i3wKqYwXI35+V+N1VzJs9ZREaA4cAVwuIj8CVwF/I2lE//KV8n85SvgSU/5nMmeiS+GJlsgETkTOLN0EXImnzZtGnfddRennnoq1art8bydN9On22vLlnGVqzCMHz+ehx56iP79++ea1UkVBg6099ddlyThUgshuptueWBLkmVJGLO/GGxvnrk1fo2+/TY8/DB07AjPP58yVlxH3jz66KMAdOzY0WdJ0p/wsRw/HlavNsOuY3fcNZdcMkLJCqGq80SkPaZIPAW0Af4CZvsnVUqxCRgNnIelt+qLpcEvGtVuc2aA9xotYMKXoHtVHQ4ML1euXJF55O7UqRPr1q2jbNmyBWsgVKwyhZSsrVu3snHjRornUfBq9GiYN88sWKeemhzZUgERec57q0AfEQkPXisOHAFMS7ZcieLIqx+OX2OrVpnZc8IEOOww+OQTq7zqSBveeustv0XIGMLHcvJke23XzidhUhh3zSWXjFKyYJdV600RGQN8hlf/SESeBPoVxXTvIlIcq9n0KFAPK5zbTVU/81WwFEFV095tNhMoXrz4rkLEBWL8eHtt0yY+AsWB4447jp9//jnP4154wV6vuQZKZNyvcq4c5L0K9lu9LWzfNmAK0C/ZQiWKsvvUKHwjmzebe2D//rB+Pdx/v1myipDVO1OoW7du3gc5YiJ8LKdMseysNeJwu2Ua7ppLLhn7d66qC7D07vtjNZ8eAm7xZk6fU9VVvgqYBESkFHAZcC/QBHtg6aKqo3wVzOGIwi+//MLIkSPp3r17/q1Za9bAb79Z0osUsmTFwsyZ8PHHJvr11/stTXJR1eMBROR14LZMnwT791dvIqCgdbJUoVs3eO01OOccS8+eIpk0Hfnnq6/MS/+UIlZ5PBGEj+W4cdC6tc8CpSjumksuGatkhVDVecBFIvI48ABWEPYOERkEDFDVub4KmAC8eldXA92BusBU4ELgY6/wpyMMEemR235VfSpZshRlxo4dywMPPEDXrl3zf/IEL1/L4Yen1Iz+yy+/zAcffMCoUaPIqdhuMGiv119fJBNeAKCqV/stQzL4/auQq87t+T/5yy/NgjVuHFx5pUX2O9Kavn37Au6BNx6ExrJjx1OYPx8uuMBngVIUd80ll4xXskKo6mTgPBE5ELPsdAVu85JlDABGqOr23NpIZcSe4FoBN2KugWWAMcANwFdFqOZVQbglYr0kUBPYjBVKdUpWErj99tvp2rUrpUqVyv/JY8faawq5CgIUK1aMUqVK5ahgzZhhVqzSpeG++5IsXIohIscDl2AuzbtdBKp6gi9CxZk21/bK/0mLFsFDD5lSVaECPPts0TN5Zijvv/++3yJkDKGxHDoUsrLg0EN9FihFcddccikySlYIVf0VuEJE7gKuxZSQT4BVIvIhlonw53RRSkSkEeYSeCnQFNiI1Q17UVWn+ylbuqCqexRCFZEawOvAK8mXqGgiIhQ4m+K339rrCan1LH7ddddxXQ7pAlWhh2dDveEGiyEoqohIZ+Al7Le4PRZP2wQrUvy2b4LFmb0q5TOf9ODBcLVn5DvqKPj0UyhI5k1HSrLvvvv6LULGEBrL77+HSpXgvPN8FihFcddccimyAf+qulRVH8X+xM8CRmIudmOBRSLykoicISIFTHWWGESkuIi0EZFHRWQaMA8IAksxhbG2qt7oFKzCoarLMPfSx/2WpajQs2dPAoFA/k/87z+YONFqY7VvH3e5Qvz0008Eg8FddbymT59OMBjkv//+A2DKlCkEg0HWrbOwookTJ/Lqq6+S03zNm2/CqFFWx+XBBxMmdrpwJ5aM5xKshMJ9qnoopmBt8FWyOLJkxliWzBib94Hbtlns1dVXQ5Mm5io4dqxTsDKM4cOHM3z4cL/FyAhCYzl7Nhx4IOSR0LXI4q655FJklawQqrpDVYer6sVAdax21ATMOjQcs3CNFpFeInKiiBQo/ZlXBPiZApxXSkRai0gPEfkEWAaMA+4D1gF3A/VUtb2qDlTVtQWRzxGVYoAv+YlE5EwRGbhz504/uveF1atXM2LEiPyf+N135h/Stm1CU1hPnTqVPn36sHLlSsCUrJ49e+6mZPXs2XM3Jevhhx/mySef3KOt5cuzrVhPP+2enYGG2EQXwFasPhZAf6CzHwIlgjnfvsecb9/L+YCNG6FfP0uL9sIL0KwZzJoFp5ziigtnIE8++WTU3wdH/nnyySfp1+9JJk2Cgw/2W5rUxV1zyUXSxCsu6YhIaaAdcKr3eijZSumfwHRvmQPM95bVObkZishoAFVtn8P+cphVrSGwP3AwcAhwIBYjFOp3DPAN8LWqri7ER3R4iEikY4FgMVldgfmqenrypTLKlSunGzcWjTJmoVsnp/ilHLniCivI2qcP3HtvAiQzwm9tEcn3eogdO6wW1siRcOKJ8PXX6fn8LCKbVLVcnNpaBJymqjNFZDrwmKq+KyJHA1+oaqV49FMQWrVqpZNCNdgKyTlPfgnAp3dEFEMbOhQefzw7gctJJ5kl6/TToViRnwvNWEITNlWrVi3Q+SIyWVVbxVOmVCSWe3DlypUsXgyHHlqVAQPgppuSJFwEF708DoAPbihgBtEEU9hrzrE7ed2DRS4mK1ZUdSvwrbfgWbCOAlpjyk9LrKhvOBtFZAWw0lvWY7OyW4HG1oy8AZQGygJVgKresk9EW8uwIpzfYKnXx6jqknh+RscuPopYV2AF8B1wR/LFKVpkZWVRpUoVHnjgAe688878nbxtG4RcHzp1ir9wYUQqf/ldD3HffaZgVa9umbjTUcFKAGOAk4CZwIfAcyJyItAB7zc4EyhdvvLuG7KyrDja4MFQtizcfDN07AjnnuuHeI4k4x5040fVqlV3Jdx0RYhzxl1zycUpWTGiquuBr70FABEpT7b1qSGWFSukNFXz9pXClKq9sYf347Aim5swRWyq97qEbIvYfFVdmYzP5XDFiP0mKyuLK664ghYtWuT/5G++gbVr4aCDoHHj+AsXxr777su1117Lo48+WuA2XnjBvMFKlIAhQ6BOnTgKmN50wzKiAvQBdgBHYwpXwQc8xVg8dbT3rq25Bl5yiU0SnHGGWWMr+Wawc/jA0KFDATjPZWkoNEOHDuX556Ft2/M48EC/pUld3DWXXJySVQhUdQM28zrTb1kcjnSlRIkSPPfccwU7eeBAe7300vgJlAOdO3fmyCOPLPD5AwaYBxiYsuVmW7MJd332avk95qM4CeOP74ZA1k54aBO8+y789Rc8+SR07+7cAosgod8998BbePr0eY6FC+Gaa9xY5oa75pKLU7IcRRYRORV4ETgkMmGIiFTCYu6uV9Vv/JDPkQd//w0jRphZKJTmOoGEijjml5074YEH4DFPbXj+eVfmCEBEIl2kcyQt409V4c8/Ydo0K4j2998cfcT5sGUb9H4EjjvONO+TT/ZbUodPfPbZZ36LkDHUqfMZkyZBly5+S5LauGsuubipM0dRphvwRLSMjN62x4Dbki5VEWPRokWUK1eOt956K38nPvaYxbScf75lY0sgqppjKvbcWLLk/+2de7yc0/X/359cSZC4BEmKpC4l7qKieqFFm1KlVNGiaFwToqV8q5Squ9StKkoqcatSqqUiLUHwU5qWNEJogpAQkkiIBElOzvr9sfbkTCYz58yZM3Nmzsl6v17Pa2b2s5+11+zneWb2evbaa7kn2OWXe0jhkSMbZrMC5uFrHxvbMnWKQtJgSa9Kmi5plSgocq5L+ydL2qUcX2Ql5syBBx7wtVVbbgmHHgqXXALjx9Nl7Z502XZ7mD3bo2KGgbVa06NHD3q0MxfRatyDixfDuHE9OOKIHvTt21Jp7Zv2eM3VMmFk5UHS9ZlogM04xiR9t0IqBZVhBxrCRufjMTzISVBBunXrxsknn8zWW29d/EFvvAGjRnnUiFZIMjV16lQ6d+68wp+9KZYv96AW224L48Z5LqxHHoGTTqqwom2LrwJfa2LL1GkSSR2B3+IRYQcAR0gakFPtm3gQoi2BE/CZ7PIwZw6cfTZssgkceCA8+SRccAH8+9/w0UcwcyZv1b3PW++87FFPgtWeu+++m7vvvrvaapSNat2D550Hn356N/36tZ++rBTt7ZqrdcJdsBWQNAbPv1UQM1Oqt4GZfSvn+F2BiUB/M5uRVX4QPhuzC7AmMBPPoXW9mU1MdQ4GTsJD0K8BvAxcbGYPFND1COAPwEO5erRDegH1jew3PAJkUEHWX399RowYUfwBZj4dtHQpHHkkrbHKuWfPnpx99tlNGoLLl3scg/PPdw8x8HDtN90UQS5yMbMJZRa5GzDdzF4HkPRH4ED8Ny/DgcBtKdXGs5J6SuptZrOb3Vp9vWeTnjDBE2LffTe8/z7ssQdcfDEMHAhrr5xW8bUJ96d355Xw9YL2xsiRbl8cdthhVdakbLTuPYjfdp5rcCTPPAPQbvqyIrTDa66mCSOrdRgOZE+bvwacA5T8OEHSxcDZwG+AC3EDaxM8zPyVwF6p6p74jMy5wHw8yfL9kvYys6dyZH42HbtSeTtmFj6bNa3A/h2At1tPnQYkHQAc0LVr12o0X9vceCOMHQvrrANXXtkqTfbp04eLL7644P45czw43PXX+yQb+ITGpZd6TI4I0944Ta3PKnJNVl/8dzDDLCA3Ukm+On2BkgZ4HHecu/717OnbL34Bp51WsPqXT40koEEDY8eOrbYK5aZV78GlSz0lxu67e1/G32XTtMNrrqZpU0ZWcuGbioc/PxZYjof3vRG4CjcgFgI/N7Pb0zHbA1fj4YA/AR4AhmfW4aTp7cuBH6VmbgU65rQr4KfAiUAfYDqeLPOOYvROba1Y9yPJgA/N7N1mdUDD8YNwI224mWWHZXsDeFLSishcZpa7puiXkvYHDiLLmJLUGbgL+DnuorM6JFN4CPiVpLFm9kn2DkndcOP1oWooZmYPAg927979+Gq035o888wz7Lnnnjz88MPss88+jVceOxaGp0v6xhth440rryBQV1dHhw4d6JAVAW7mTE8kfM89vrxm+XIv33xzH2efcAKssUYBgUEu8/CZ40J0bGRfhnymbK7MYuog6QTclYlNN900f2sdOsDDD8MWWxR9ojt1iQsiaKBbt27VVqHctOo92KULPP44dO0K667b7vqyIrTDa66maYtrsn6AJ/kdBFwGXAP8BfgfsCtuJI2S1CcNlMcBi/Bp7O/gMz23ZMk7AzgeN6C+gP+Z/yCnzYtwI2wo7md8KfC7ZKzkRdITzV3X1Qy+j3+nG/LttKZX6K8NLMgpuxiYYWa3tly9NsPFQA9gmqSzJR2Ytv/Dr6cewCVV1XA1oE+fPpx11ln079+/8Yr33QcHHwzLlsGZZ3qOoVZi9Ohb6dixI9ddN5MTT/R4BptuCscf72utJNhvP4938OqrbmSFgdUsctdnfQOf/X8TOKpIGbPw2fwMn8HzDza3DmZ2k5ntama79urVq3CL223XrBP95nPjePO5cUXXD9o3d9xxB3fcUdSz2rZCq9+Dm23mz9raYV9WhOin1qVNzWQlXjKzCwAkXYX/ES8zs2tT2YW4G90eeALgtYCjUjLhzNORxyVtYWbTgdOBK8zsnrR/OP4HT/rcHfgJ8PUs97o3JO2GG12FZjreKvH7DZa0KKcs1xjeCk9YXJel5ynAFVl1BpjZKjpIGor/qN2eVfZ13JF5pxJ1bpOY2RxJe+ALby+h4Qmb4UmnTzGz96ql3+pCv379GnXF4/33PbjFjTf655NPhiuuKFy/BXzyCbz+ukfefu01eOUVj8D93//uBJzP8OENS/TWWcdzXR14oNt+6xUdkDzIpcD6rEclvQ4MwdeJNsVEYEtJ/XE338PxB1LZPAAMS2tFBuEeBaW5CpbA608/mN79srWaDGqYUaNGAXDkkUdWWZOyUbV7sB32ZUWIfmpd2qKRNTnzxjxaxByykgGb2TJJC4ANgS2AyRkDK/EMHuxggKS5QG88WETm+HpJz9HwpGUAHjBiXHLzy9AZmFFISTM7urSvx5OkKfIstgPuz1M3mzuBf2TVXWWWUtIh+Jqrw83szVS2ATAG+L6Z5c5utXtSP+wnaV38ehEwbXXsi2pRX++xR7Jd8aivh+efhzFj4PbbYeFCz4c1YoRPEzVjkVNdncclyGxz5/oymnfe8dfM+8yWn4FsttlAdtoJBg2CvfeGXXZxlYKKMgkoKm2zmdVJGoY/IOkI3GJmL0k6Ke2/ERgL7Ie7fGfczluNPU+/tjWbC2qcRx55pNoqlJVq3oPtrS8rRfRT69IWhwjLcj5bgbIO+IC5kOtcsUlvMiO/A1h1diq33XLwcZphW4Gknjl1/gd8WVJnM1sGDeu+8tTNyDgEn706Oiey4Ha4ofmoGgauHdIxdcC2ZvZqi75RGyAZVRNbIkPSYOBa/M9llJldlrNfaf9++J/LMWb2fEvabPOY8afRozl8yBBe+s1v2Hr+ByyZNJUlT/2Lj+ctZjHdWUx/Fn9+LxYPOZ3Fvfqx+E5YtMhzo+RuH3ywskG1YIHXLZZOnaBfP19Xtfnm7ha4446w1VYf06tXJ7p06VKpnghykLQW7mkws4mqKzCzsfggLrvsxqz3hnsgVIUOHdviX25QKTp37lxtFcpOte7B9tiXlSD6qXVp77/4LwPHSVo7azZrD9yImGpmH0qaDeyOR+DLDIR3oyHSzcvAEmAzM3usVbUvzF3AacCpeMCPRpH0PXyt2g/N7N6c3ROB7XPKLsJdLYfiwTSCJsjKD7Iv7nM+UdIDZpYdujY7P8gg3E0xN/JSXqzesHqjfrlhy+upr0vbcqO+rt7LllvBz8vrjGVLjbplDa91daxcVufLneqWmb/Wrfy+4dWoW2osW1pP3VKjbmn9irKlS2HJUliyRCxZJpYs7ZA+w5Kl/nlpnVhS1zFtnfiYg+jMYex4alfqKPAHMJGSTeAOHTzw27rr+rbBBtC7N/Tps/Jr797Qt2/+2akhQ07j4Ycf5u23qxJsst0j6SNWfvAloBuwmFXXyLZZ3ngmeZef+IXqKhLUBGPGjAHgmGOOqaoe7YHoy+KIfmpd2ruRdSfu/H6bpF/ghsPvgD9nzRZdC/xM0v9wt8NT8Jmd2QBm9pGkEcCIZIA9ia/z2h2oN7Ob8jUs6bZ0fKlugwUxs2clXQFcKWkz4F58lm0jGlwNlyc9DsdnsM7EIw9mwrEtNbP5ZrYYmJKj+wdAJzNbqTxolIrkB/n447WQzgRG4OPOU/HL79JU4yTcM/bC9HkIsBkNeXiOAT4H/Cx9/j6eVu3M9Pl7+HOH09Pn7+B24inp8wFpy1xWg9Mxx+Fet98AjsZjEywF9sdjxByOj48PSjoeAnwAHIqndjsQDyh3BPBjfHJvNnA0nTuewRpr7EvXNWexePEQevc+h402+irSa0ybdhI77ng+/ft/iSVLXuWpp4YxePBFbLPNIBYsmMJ99/2Yk0++jEGDBvLOOy8wYsRZXH31r9lppx2YOHEi55xzDldddR3bbLMNzzzzDOeffz4jR45kiy22YMKECQwZchE333wz/fr1Y/z48Vx22WWMHj2aQw45hIEDBxY6TUHLGZbzuR6YCzzXnlx3Z/wz84D/oqrqEdQGMeAtH9GXxRH91Lqo6UB0tUOK1jfFzIZllU0B7s0Ew0hl7wIXmdn1KYT7NfhI8lPgr6wcwr0Tvk4p4xd8O258bmNme6U6wgcBJwOb42HiJ+EBMx5JdQw4NDNTlIksmJGR8z0WAcPMbExO+Rial4z4EHy2aWd85P0e8DTw20yQjqTHnnm6c0I+3RrTIyiMpO8Cg81sSPp8FDAo51r9G3CZmT2dPo8Hzjazf+fIWhG6FhiIuxZm05FkRBdRnq+sE1BXRL1KyGxOOy2RWaidtiAzn7xKyGzpOV/TzNpihNpmkdbuvtkCERvgTxRqnbaiJ7QdXSut52Zm1kj4y/ZBGe7BUmkr11k2oXPrkNG58XvQzGKLLbYWbvgUzaisz0cBv8mp8xDwpazP44GBTcj9d56ymwrUXaW8QFnVZDaznZJlNtJOzcvMJ68SMitxzlu6AesBW+MBh1Zs5W6nNbdK9NPqrGdb0rWt6Blb+zl/oXNt6dze3QWDoLUoW36QIniwGeWF6lZLZnPaaYnMYuWtzjIrcc5LQtLOwGga1odmghZlXotJRhwEQRAENUMYWUFQHlotP4iZ5R3w5isvVLdaMpvTTktkFitvdZZZiXPeAm7B75vhuNtz2/FjD4IgCII8hJEVBGXAKpcfJG9glRYSMmtbZlvQsdwyt8TXtE5vsmbboxJ9Xwnaip7QdnRtK3oG+WmL5y90bh2K0rlNBb4IgiAI2h+SxuEBeyo9YxYEQRAErUIYWUEQBEFVkdQXGAWMw1NKrJTo3cyerIZeQRAEQVAq4S4YBEEQVJstgZ3wxGu5ROCLIAiCoM3R7nOcBEEQBDXP7/CUBtvj2bV7ZW0bVlGvJpF0i6Q5KWdjpmw9SY9ImpZe183a9zNJ0yW9KimfUdmael4g6W1Jk9K2Xw3ouYmkxyVNlfSSpOGpvKb6tBE9a65Pg+IpdF7bApI6Snoh5eSseST1lHSvpFdSf3+h2jo1haQfp+tiiqS7JK3RaP1wFwyCoD0iaWvgQKAvPhvyDvCAmU2tqmLBKkhaDOxgZq9VW5fmIukrwCLgNjPbLpVdAcw3s8sk/R+wrpmdLWkAcBewG9AHeBTYyszyJYVuDT0vABaZ2YicutXUszfQ28yel7Q28B/gIOAYaqhPG9Hze9RYnwbFU+i8mtnLVVatSST9BNgVWMfMvlVtfZpC0q3AU2Y2SlIXoJuZfVBltQqS3NqfxnM3fiLpHmCsmY0pdEzMZAVB0O6QdDbwRzzP0r/wEPsC7koDtFJkDs5630PS7yVNlvQHSRuVKLOHpMvSk7z30zY1lfUsRWYb5RFgYLWVKIW0Xmx+TvGBwK3p/a344DtT/kczW2Jmb+CRRnerop6FqKaes83s+fT+I2Aq/qCkpvq0ET0LUbU+DYqnhPNaE0j6DLA/vra15pG0DvAV4PcAZra0lg2sLDoBa0rqBHSjiVynsSYrCGqI5EJyECvPvvzVzMaVKG8DM5uX9flI/I99CnCzlTiVLUlJTrae/ypVXh75awFbAa+X+MP7I2BbM1spgIKkq4CXgMtKkHkJHpgB4NfAbOAA4GDc3e2gEmTeAzwG7GVm7yYdNwZ+CPwJ2LcEmStRhr7MyKnkOR8H/FrSDsCLrBr44s9laKM12SiTA8/MZkvKuDz2BZ7NqjeL6g/ghkk6Gvg3cIaZLaBG9JTUD9gZeI4a7tMcPb9IDfdpUDw557XWuQY4C1i7ynoUy2eBucBoSTviM4bDzWxxddUqjJm9LWkE8BbwCfAPM/tHY8fETFYQ1AiSrsGTsU4ArgCuTO9Pk3RtiWJX/ABIOhc4Cv8x2xe4qkQ9vw5MAy7A837tD/wSmJb2lSLzhqz3XwJexg2ZF7PXNDSDetwlJ5feaV9L2dXMzjWzN83saqBfiXL6mdnlGQMLwMzeNbPLgU1LEViBvqzIOc/hBnzAeQ7uUnVv1vanMsivFZSnrJo++yOBzfGgI7Px6wRqQM/0cOA+4HQzW9hY1TxlraZrHj1rtk+D4mnG9Vd1JH0LmGNm/6m2Ls2gE7ALMNLMdgYWAyV5mbQWaR3ogUB/fHzRPT24LkjMZAVB7bCfmW2VWyjpbuB/uAHWXLL/2A8GvmxmiyX9AXi+NDW5FtjHzGbk6NkfT7i8TQkyd896/yvcB/55SZ/FZ3vGNlPe6cB4SdOAmalsU2ALYFgJ+gFsmHzeBawjSVmzOKU+sHpT0lnArWb2HkByPTwmS+/mUu6+hMqc8xWYWXt74PeepN5pxqU3MCeVzwI2yar3GZpwN6kkmWsOQNLNQGbBfFX1lNQZH+DemTWLWXN9mk/PWu3ToHgKXH+1zBeBb6eHaGvg/093mFmjBkCVmQXMMrPMLOG91LiRBewDvGFmcwEk/RnYA7ij0AHt7Y8tCNoyn0rK56P/eeDTEmWuKWlnSQOBjpmp+ORGV+qC6074D2QubwOdS5SZzTpZPvGvU0L47uReuRU+2/J3fEbvAuBzpbpeAjfjrhhr4WtCNoAV7n2TSpR5GLA+8ISk+ZLmA08A6+EL6FtKi/syUelz3t54AHf5JL3+Nav8cEldk4G6Jb5msCokYyXDd3A3Yqiinskt9ffAVDPLnm2vqT4tpGct9mlQPI1cfzWLmf3MzD5jZv2Aw4HHatzAInlvzJT0uVS0N+51Ucu8BewuqVu6TvbG1+wVJGaygqB2OAYYmSIaZQa0mwAL075SmE2DW+D8rCfB6wN1Jcq8BZgo6Y80zLZsgv+4/75EmVtLmozPEvWTtK6ZLZDUgRIH8WZWz8prIFqEmf0yt0zSbWZ2NHB0iTIXpKfd8/A+rMNnLe8ysw9LVLXsfUllzvkK0gxhQWp5sCPpLmAvYANJs4Dz8TV/90j6Ef7HfCiAmb0kj0j1Mn6uh7ZWdLkCeu4laSfcbW0GcGK19cSfyh+Fu7dOSmXnUHt9WkjPI2qwT4PiyXtezawUD4CgcU4F7pRHFnwdOLbK+jSKmT0n6V7cC6gOeAG4qbFjIoR7ENQYaWakLz5InpW9XqeMbXQEuprZxyUePwD4Nll64uHRS3oSJWmznKJ3zGyZpA2Ar9SCy4akB/IUfw0PXIGZfbsEmacB3wKexNc6TQIW4E/ATzGzJ0qQmduXs81saUv7stznPEf2GzlFnfH1c5/gaw0+29I2giAIgqA1CSMrCGoISZsCC83sgxTZaFfcbeGlFsjsAD6zk54YbQfMMLNiwzlXBUkbmtmcpmu2DpJewCMTjsKfUgsP0nA4gJlNKEHmi8BOZrZcUjc858Ze6Tr4a1oQvFqS1qaNxqNg3l9tfYIgCIKgOcSarCCoEeT5myYAz0oagoe1/ibuItOoO1UjMg/CXQbflnQg8BQwApgs6YASZa4l6UJ51vMPJc2V9KykY0qRl2Sul7OtD/xL0rqS1itVbpkZiEdm/DnwYZpl+sTMJpRiYGWRcdvuSgq/a2ZvUaJrn6SNJY2U9FtJ60u6QNKLku7JWS/SHJm7Snpc0h2SNpH0iKQPJE2UVBFDMAUQ+DkeaTMIgiAI2hSxJisIaoejgAF4grsZwGfNbK6k7niejlLWpZwP7AisCfwX+LyZvZpcyu4DHixB5p3A/cA38OAM3fHEv+dK2srMzilB5jzgzZyyvrjvs+E5NapKWuN1taQ/pdf3aPlv6Ch8rdOzeGLGywEk9aL4xLG5jAEews/L4/j52h8PPXtjem0uN+DXUk/gGeDHZravpL3Tvi+UqGtTdABKSvQcBEEQBNUk3AWDoEaQNNnMdkjrpWYDG6eBPZKmmNl2Jch8IeNylitD0vNmtksJMv9rZjtmfZ5oZp9Pbokvm9nWJcg8Ew+P+lMzezGVvWFm/Zsrq7WQtD/wxRKNymw52+Ih0KeY2Stl0Cv7nL9lZptm7ZtkZjuVWeaKfS3Q+eDcInxN1lA8ifL+LZEfBEEQBK1NzGQFQe3wvDx/VXdgPHCrpHF4cIWSgwtI6pCMteOyyjoCXUoUuVjSl8zs6eRyOB9WrPnKl3CzScxsRIpcd7WkmfisSU0/ATKzh/AZo5bKeQlf61Uust3Ab8vZV2oI90/lSYd7ACbpIDP7i6Q9KT0VQDb35nw2YC4eVOSMMsgPgiAIglYljKwgqB2G4GGJDR907gZ8H3gV+G2JMk/AjalPzSw7J8smeEjkUjgJGCVpKzwHzHGwwsWtVD0xs1nAoclwewR3mwyaz18lrWVmi8zs3EyhpC3wa6kUTsLXRtXjbqInSxqD58k6voX6tsdkxEEQBMFqTrgLBkHQIiQdYGalrO1qTOa3cTexKU1WDopG0rFmNrrWZQb5SYbtBmb2rfbUVp62/wbMM7NjWrvtIKgkcQ+vXsTTwyBoA0h6uIZlXlwmOdlcFAZWRVgloXI1ZUr6pqQZknrk2dcj7ft6y9RrO0jqJemG9L2XSHpP0nhJ+6Yqw4Ejq6ljISQ9Ien6VmxvsqTLC+w7QdInkn6WImAuTFFQH5TU7LWtQVAscQ83u83HJFmercWu+LVAuAsGQY0gqVAQCgE71YrMArLKTSVkrhZImlxoFyVG6quEzMQw4Eoz+zB3h5l9mAbRw4F/tKCNtsR9uJvsj4DpwIbAnsD64H1SPdVqjsnA9rmFyWC/CHdv3QuPfjkRv1YvBB6VNKDW8wQGbZa4h5vHzniqjltyyj+ugi5lJ4ysIKgdJuJ5svIZGD1rSGYulfA5Dj/m0tkIXze1IKdcePj1WpEJsAPQWA64x/A/4HaPpJ7Al4F9zWx8Kn4Tv4czdcaQ5f4j6QlgKj4gORYPQnIRHqr/KuAHwELg52Z2e5acJ/BolsMKyc6j32D8XGyH358TgdPNbGo6dk9gT0lD0yH9zWxGCobzU+BEoA8+8LzczO5IcrvhhtB3gcXAtUV22WTcSM/lF8AnwGVm9knOdzgK+BD4IqWlrwiCgsQ93Lx7WNLm+Dhkgpm9W8wxbY0wsoKgdpgKnGhm03J3pIh7tSIzqG3+BqxlZpNyd6Q/5lqRCdALD6ZRCCM9AV4NWJS2b0t62sw+LfK4H+CDsUHAt4FrgMF4MvNdgR/igWrGm9k7LdCve5I9Gc+7dy7woKQB+GzjVsArQCalwdz0ehE++BqKB175AnCzpAUpQucIYF/gEDyQyvl4zrg/N6HPZGATSeuY2UKAFIznVOCIXAMrsTa+TCL3YUEQlIO4h5t3Dw/EjcoXWvCdappYkxUEtcMFFL4nT60hmUENY2Y/MrOnC+z7fq3ITMzCZ7MKsQP+p93uMbM64Bh8vcYHkv4paYSkQU0c+pKZXZAepFyFJ/ZeZmbXmtl03EVOwB4t1O++tE0zs8n4U/f+wG7JBWop8LGZvZu25fJE6j8BhpjZODN7w8z+ANwMDJW0Fu5WdZaZ/T2twzyWxg3vDBkX1uw1VlcBT5rZfQWOuRaYBPyzkFBJf491W0EpxD3c7Ht4IJ5WZI6kRVnbn1ryPWuJMLKCoEYws3vNbEWI7RTKPLPvL7UiMw/vlUlOpWUGtcdDwK8krZm7I7mgXEgZcpG1FZJx0Ac4AHgYH1Q9K6mxhNcr1suZhwueA7yYVbYMn7nZsCW6Sdpc0h8kvSZpIX6PdgA2beSwAcAawLjsQRRwMrB52rqQZfSY2aJs/QuRnujPI63LkvQN3KX1tAL6XwV8CTjEzBrL7bY1/jQ/CJpN3MPF38O4kXUfvj48ezulWV+shgl3wSCoXS6m/OsGyi7TzPZtulb1ZQY1ycW4G8o0Sb+hYXC7Db7eRsAlVdKtKiQXo0fSdqGkUcAFkkYUOGRZrogCZdkPVetZdZ1m5yZUexCfVTwxvdbhSdIbS2qeafMA4K2cfcuAdZtosyleBLaT1Am4GrjezFZJ3C7pauBw4Ktm9nrOvgHATbgr4RhgfpqRQNKWSe7G+DqvQ83sXUmbANfjg9MuwLeAffDBYSdgupl9p4XfLWijxD1cNDvjkYSnt0BGTRNGVhDULhG1L2jXmNkcSXsAI3FjKnN9GvB34BQzW91nNV/G/6vXKKPMuUDvnLIdgRn5KktaHzd8h5rZ46lsF1YeQyzFXX+yeRlYAmxmZo/lkfs+PlDbHXg9lXXHXQBfK+J7TE56D8XX7l2Qp41rcQNrLzN7JWdfJzyq2RAzmyLpHuC/aV9XPPjAsWb2lqQhuHvUr4CxwGlm9niKZrgG/lBgoJnVpQAIQZAh7uFVj+sPrEc7Xo8FYWQFQS0TUfuCdo+ZvQnsJ2ldYAvc0JpmZqtVcII0CPoTPuifDHyEL3o/CxhvZgs9yFdZeAy4Rp70+1X8yfYmFBig4a5K84DjU8CcvsCV+JPwDDOA3ST1wxf/zzezj9LT+xEpQtmTwFr4gKzezG6S9HvgcklzgXfw6IC5A71CTMaDAuwInJEbHlvSb4GjgIOABZI2TrsWJZemg4F/W0NOvldpCIpxED4ofSD1exfgj8B3gH9lBqrmqQbq8Shpl0saY2bFuEoF7Yy4h5t1Dw9Mr+9m3ZcZ5mVmk9s6YWQFQRAEVScZVRObrNh+WQQ8i0f52gLoirv0/AGP7lVObsGDimRy09wA3A9skK+ymdVLOgy4DpiCh3A+A19PkWEEcCv+5HtNfEH9DOA8fO3HmfiM5UI8+MQV6bgz8ahn9+NhrH+TPhfDf3Hj5l+4q18umbUd43PKf4nPeu2QZGQYCPw6vd8e+KmZ3Zl9oKSLUnsrSAPR7XHD7I+SftFI8I2g/RL3cPH3cMbImpqrKj7D9UETx7cJ5GvsgiCoNSRNNrPGIq/VhMwgCIK2iKQfA/3MbLikvfE1NBuZ2VxJw/BZiGPNzCRtb2YvSjoV2MrMTpXUAV+Tsl6KDIek64Dnco2zIAhWPyK6YBDULhG1LwiCoHLcDuwh6QU89PYsM8vkBhoN9ACmSpqEh6UGnzH7rKSXgOdxl8JzJb2a5HTG3QqDIFjNiZmsIAiCIAiCIAiCMhIzWUEQBEEQBEEQBGUkjKwgCIIgCIIgCIIyEkZWEARBEARBEARBGQkjKwiC2kUag/S3Vd63ZrvllfsEkqVt91S2LdIzSFOQHkTqlqNHpv53y65PEARBEAQVIYysIAiax8oD/2VIc5AeRxqK1LmCLQ8Hjiy7VDd8rm+VtpzRQG/gP0hrAPcAQzHbDvgfHuUsW4/eFdIjCIIgCIIKEUZWEASl8Cg++O8HfB14EE/w+RRSsYlEm4fZh5h9UBHZrdvWx5i9i9kyPHnpo5i9kPa9AvTK0ePdCukRBEEQBEGFCCMrCIJSWJIMhbcxm4TZVcBewC7AWQBIQjoL6TWkT5BeRFp5dsjrnIE0DWkJ0iykS/O2mOvC5zNQNyBdgjQvzaiNwBOEZuoMRnoKaQHSfKS/I22zkkzYExiaNTvXL09bXZGuQXoP6VOkZ5G+lKNf0/qsyjbAi1mftwdebqR+EARBEARtgDCygiAoD2ZTgHHAIankIuBHwFBgAHAp8Duk/bOOugQ4L+3bFjgUmNmMVn8A1AF7AMOA04HDsvZ3B64BdsONwA+BB5G6pP3DgX/S4MLXu0D7VyS5xwE744bROKRcV76m9MnlHeBzAEg7APsADzRSPwiCIAiCNkCnaisQBEG74mVgn+Qy+BPg65g9lfa9gbQbbnQ9hLQW8GPgdMxuSXWm40ZP8e2Z/SK9/x/S8cDewF0AmN23Um3pWGAhbnQ9jdmHSEvJuPA11Ms+pjtwMjAEs4dS2UnA19J3ObdofVblduBupBeTXt/DbEnxXz8IgiAIglokjKwgCMqJAMNnrtbAZ3ssa39nYEZ6PwDoCoxvQXuTcz6/A2zYoI02B34FDMLXOnVI26bNaGNzXO//t6LEbDnSP/HvULw+uZh9DBzQDF2CIAiCIGgDhJEVBEE5GQC8ToMr8gHAWzl1lqVX0XKW5Xw2VnaDfhB4Gzgxvdbhs21dKJ6MnpZnX25ZU/oEQRAEQbAaEH/+QRCUB2k7YDBwL27ILAE2w2x6zvZmOiJTZ+8K6bM+HljiEswexWwqsDarPlxaCnRsRNL0VKch0IXUEfgCEaQiCIIgCII8xExWEASl0BVpY/xBTS/cUDoH+A8wArPFSCOAEUgCngTWAnYH6jG7CbOPkK4FLkVakuqsDwzEbGQZdFwAzAOOR5oJ9AWuxGezspkB7IbUD1gEzF9pr3+XkcBlSPOAN/C1ZBsBN5RBzyAIgiAI2hlhZAVBUAr7ALOB5cAHwBQ8T9bvMFua6pwHvAecCYzEAztMwiP1ZfgZbgydB3wm1b+tLBqa1SMdBlyX9JsOnAHcl1NzBHArPiu1JtA/j7Sz0+tooCfwAjAYs9ll0TUIgiAIgnaFzPItMwiCIAjKjvQEMAWzYc08zoBDMbu3EmoFQRAEQVBeYk1WEARB63IC0iKkzzdZU7oRaVEr6BQEQRAEQRmJmawgCILWQuqLuyQCzGwyJ5a0IbBO+jQbs8UV1C4IgiAIgjIRRlYQBEEQBEEQBEEZCXfBIAiCIAiCIAiCMhJGVhAEQRAEQRAEQRkJIysIgiAIgiAIgqCMhJEVBEEQBEEQBEFQRsLICoIgCIIgCIIgKCNhZAVBEARBEARBEJSRMLKCIAiCIAiCIAjKSBhZQRAEQRAEQRAEZeT/Axep0RW42wmWAAAAAElFTkSuQmCC\n",
|
|
276
|
+
"text/plain": [
|
|
277
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
278
|
+
]
|
|
279
|
+
},
|
|
280
|
+
"metadata": {
|
|
281
|
+
"needs_background": "light"
|
|
282
|
+
},
|
|
283
|
+
"output_type": "display_data"
|
|
284
|
+
},
|
|
285
|
+
{
|
|
286
|
+
"data": {
|
|
287
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEPCAYAAABfi2XOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACz6UlEQVR4nOydZ5gTVReA38PSl6agUpSmdAQREOwNu4hd7NgbduxiiH4i9o4FFVRUUFEUsaJiL6CCFBGRJgLSe4fz/TgTNoQt2U2ZTPa+zzObTMm9Z2bvJHPuaaKqOBwOh8PhcDgcDocjccr4LYDD4XA4HA6Hw+FwZAtOwXI4HA6Hw+FwOByOJOEULIfD4XA4HA6Hw+FIEk7BcjgcDofD4XA4HI4k4RQsh8PhcDgcDofD4UgSTsFyOBwOh8PhcDgcjiThFCyHw+FwOBwOh8PhSBJOwXI4HBmDCINE+KCg9XT2naQ2R4ug3tI5ansrEb4XYaIII0SoHCVD5PhTkymLw+FwOByO9OAULIfDUWLSoABdC5yTzAY9peepdPTlMRCoA/zi9V8ReBO4SpXWwFSgR5QMdVIgg8PhcDgcjjThFCyHI4CIyGgRyU9JiOz/WUROTqdMqUCV5aosC3hfa1SZr8pGb/1EYJQqv3nrU4CdomSYnwIZAoOI1BCRHaMXv2UqDBHZWUQWisiufsvicJQ2ROQDERkUtZ4Vv32O4OMULIcjO7kHuF9E0nqPe9ah/iL0FWGRCAtEeEgk77tGBBHhRhH+EmG9CHNEuK+A9mJdBuNp/2gRvhFhqQhLRPhEhBaR9oCDgauiXPEaFtBXBREeE+E/EdaJ8KMIBxRHlgJoAUyIWt8TmFz01c1eRKSBiHwkIuuAxcBCb1nkvWYsqroAeAUIF3SMiLQXERWRAwrY/6aIfOe9v0REvhGRJSKyTES+LOhzhSEiPbw+I8s8r59GxW3L4QgQcf32icjMmPsjsvQrTmcx7awRkYkicllCZ+DICpyC5XBkJx8CVYFjfOj7bGATsB/QE7gOOCNqf1+gN3Af0Ao4Dfgnie3nAo8B+wCHAMuBESKUx1zwfiDPba9OIX0/4LV7IdAOU4o+FtnGha8oWfJjLtAMQIQ2QBfg/SI+k+0MBHbBrvXhwGHecqj3mukMBM4uyNqmqr8AvwEXxe4TkZrACcCL3qZDgKHYdegE/Al8IiJNSiDXGmyM1wXOAvYC3heRnBK05XAEgeL89t1N3u9AZPlfCfqMtNMGGA48KyJF/Q44shynYDkcwaWsiDwuIku95cHIrJ2qbsZ+aM70Qa7JqtylylRV3gS+xB4WEaEKcD1wqyovqTJNlR9U6Z+M9gFUGeYtf6nyO3AB0AjYR5XlwAby3Pbmq7I5tgMRcoErgFtUGanKH8DlwH/AVfHKUgCvAs1FmAA8A5yuyvpinH82sg9wnqq+rqqjVfWr6MVv4cS4UUT+EpH1IjJHRLZaXVV1IqY4F+aa9CJwmohUidl+DrARU6pQ1bNV9SlV/U1V/8TG4Urg6BKIrqo6X1XnqeqXmJWtNbCHiHQUkU9FZJGIrBCRb0Vk35jzvkxEporIOs8N8hMRKevt21NEPvc+u1JExovIoSWQ0eGICxGpLCKDRGSViPwnIrfHHlPM376V3v0RvawqgWiRdqap6p3AX5grOCLST0T+FJG1nrXrARGpGHVOu4nIe57Feo2ITBGR7lH77xKRWd73znwReaUE8jl8wClYDkdwORu7h/cFLgMuxSwoEX7G3OHSze8x63OBnb33LYEKwOcpah8RdhfhdRH+FmEFphSVAeoXo4/dgXLAd5ENniL2A3YOccmSH6qsUaWrKnuqsr8qE4shV7YyAxsXmUo8Vtei7rfXgBy2t3BeCAxR1dUFfK48UBFYGtkQ5f7XMN4T8FjrvZbDZvlfBQ7EFNxxwIciUsvrowPwNKaUNcMsrR9HtfU6MM/7bDugD7CumPI4HMXhIeAI4BRsIqsdcFA+xyXlt89TiAaV4KPrsHsMYDV2j7cArgS6A3dEHdsfqIxZ61thv+HLvP5PAXp5n2sCHI+dmyMAlPVbAIfDUWLmAdeoqgJTRKQpcAPwiLd/LlBPRMqq6qY0yrUxZl3Jm8yRFLcPMAL4F1M6/8Vc+CZjD6rxEpFT89kXva0oWRzxcS1wn4hcqarT/BYmGs/idD1wnaq+5G2ehinb0cwFOhbUjqouE5FhmJvgi17bHTG3oksLEeF/wCq2dSNdjrkOxo6/ws5jV+AmYA4w1bO6Re+/GntwPRoYjE1IrAbeV9WVwCxgfNRHGgAPqeoUbz2j/m+O7MK7Dy8CLlTVT7xtF2DjOZZ4f/vuFZE+Mdu6q2okFvdv7Hc2XhnLYhbpPTHvBFT1nqhDZopIX0xp6u1tawAMU9XIvTUj6vgGXv+fqupGYDYwNl55HP7iHgQcjuDyo6dcRfgB+1Gp5q2vxRSFitt90j8mA+sp2o2uRIhQE5sp7KvKKM+1ryrbTiZtwCwJhTHNOy46qUUOZi0s1QkpUsR7WOzRn56bzIroxWfZ4rW6rgUqFXHMi8C+ItLcW78QmKiqP+V3sIhci00UnKyqW6+Dqr6rqs1V9d8i+sv13KlWYxa38l5bG8SyHz7nuQAux9wQdybP0vsZplTNEJHXROR8Eaka1fYjwAsi8oWI3BF1Tg5HKtgdG79bJzY8d74J+Rwb72/fI1hcYvTyZVT7h6vqbXHIdq+IrPL6fRp4EHgOQERO9dxv53vHPMq23hSPA3eKyA8i8j8RaR+17y3vHGaIyIsicpqIZLKl3xGFs2A5HNnLjsC6EvqUpwRVVorwOHCfCOuBr4GaQHtVm/FLkKVY5rlLRPgHqIf92EXPYs4E9vGyB64ClqiyJUbO1SI8A/QTYRE2q3g9loihOPFijvjo6bcAhRCv1XVHis54OBpT3i8UkRAWJ9In305NufofcIyqltQtaA320LgF+C/GDfFlbDxfj90T6zElsjyAqq4Ukb0xF6wjgNuAviLSUVXnqmofEXkNSyZwFBASkcujrHwORzIpjvdDvL99i5NkMX8EmzxZA8yLTHyKSGdgCOZmez3m+ncC5uoIgKq+KCKfAMdibrjfi8h9qtpHVf8RkWbYhGQX4GHsPutUiEuxI0NwCpbDEVw6iYhEWbE6A3OjZrpbA7/6I1qh3IYpQr2BXbEYqaQE7qqyRYQzgCeAidjD7I3AsKjDHsIeLidjFodG2ANmLLd4rwOBGlgWuKNV43cZccSHqr7stwyFEG11/auQ41pjEwYFoqoqIi9hLpFTsPH3auxxInIDlpnsWFX9toRyR7os6AHyAMzFeKTX5y7EFLn23Ku+AL7wFMIFWBzI897+v7Br8oSIPANcDDgFy5EKpmEusZ2B6QAikovdd3/HHJvu376CFLX9gX+j3QRFpEHsQao6B7unnheRW7Dvhz7evnXASGCkWAr5+V67nyb7JBzJxSlYDkdwqQs8JiL9MZ/vm9g2xeyBbBuUnnRU6RGzfkgcx2wB+nlLUceWpP0vsB/YaKpE7Z+KufoV1c56LOD4uthj45XFET+e68vZmEueApOAN1TV1wyLniXHs7pKjNVVnwHLbga0B7bLapYPg7BaPQ8Bw1V1cfROEbkJuBeL5ZgqIrW9XWtVdbl3zElYwo3D43ATLIipwDki8hNW2uABzC02IsfxmFvW18ASLAi/KvCHiFTy5H8Lm5zYBVPY8nV1dDgSRVVXiciLWI2rhVic1V3k7+4d729f1aj7K0L0ffY58HOcboL5MRVz2z8bc208ipjsht53y0fesdWwGMjJ3r4e2HP6T5i3xRmYklnYRI8jQ3AxWA5HcIlkJfsJGIC5KDwKICL1sNpMA32TzhHhUhFWiRScACGCCM+KkDEunelCRFpiDw2PYLWfOmO1zKaKSAsfRYtwG3A/ZnX9A7OI7hq1vxswW1W/KaohVZ2HpZHeAXghn0OuwjKQDcUC3CPL41HHVMcy+5Xb7tPxcyE28fAL5sb0EttacpdhqaZHYda2XsDF3jlu9uR/GUu28S72AHlDAvI4HEXRC4uRetd7nUiM1biYv313se09Ng+LoYqwOzFW3eKgqiMwF/XHsIyzR3h9RlMGeBJTqj7DPDrO9/YtwxJ7fIOd6ylYDOUMHBmPbBsj73A4sgEReRCorqqFZSdzpBgR6pGX+OCfoupdibAzNosJME+VUuFnLyKfYfEL50ZcXL1kLYOBCqp6lJ/yFYWI/Aw8pqqv+y2Lw1Gacb99jkzBuQg6HNnJAqICaR3+oEqx3LdUWYD970ob+wMdYzLlrRCRO4Af/ROraERkZ+Bt4A2/ZXE4HO63z5EZOAuWw+FwOHxFRJYAXVX1u5jtBwDvqWpNfyRzOBwOh6P4uBgshyMDEZG2Xl2MCSIyIqq2FSJym4hME5E/RSRprlMicrXX5iQReSCV/YnIPSLyu4iME5FPRaRuivs72mtvmojcmow2Y9qvKCI/i8h47/qFve07ishnIvKX97pDEvusISJvi8gUEflDRPZNcX/XishE7/yu87Ylq78RwAAR2V9EcrzlAKyWzPtFfDbliIiKyGoRuddvWRzBRkS6iNUm2yIiXfyWJ0i4+7B0ISJNvXtls4hc7Lc8xUZV3eIWt2TYAowBDvbeXwjc471vCYzHCp82wtLT5iShv0OxYPYK3vrOKe6vWtT7a4BnU9Uflgjkb6AxVuNnPNAyyf8vAap478thiUc6Y5nZbvW23wrcn8Q+X8aSDuCdV41U9YdlZZwIVMZcy0cBTZLVnyf7e1i9po3eshkLZq+ezP9VCeVTYI+o9aaevAuxDHufAM2i9vfw5F8VtRwStb8Flv58OZZ++qRC+q6AJa+Zi5U36A+US+G59gTGYqnpB+Wz/3As6cUaLNFAg3yOKe8dM6eIvip757PIuxZfp/C8DvXkXQ7MzGd/Q2//Gk/2LlH76mCK/lxvLDQsoq8vvbGxwvu+6ZbPMTOj+3BLXP/Dbe5Db1sOlj13LlYs+zegRiFtdMFSuEeKb59e0rYSPJfzsQQzK4A53ndp2UKOL1C24raVBNkL/Y6IOba19/24CCsbEbu/yO9CrH7gxX6Pv+IuzoLlcGQmzcjLjvQZlj0ILFvZEFVdr5ZJaBqwTxL6uwLop15KbFWNxAGlpD+NirXBUkRHfJVT0d8+wDRVna6qG7CMad0SbHMb1Ihk/yvnLer1E6nx9DKWlS1hPIvmQVjmSFR1g6ouS1V/2I/gj6q6Rq020lfAScnqT1WXqWo3bNyfjI33Zqp6knopkzOMGtgDdzMsRfnPmMIVzQ+qWiVqGQ0gImW9Yz/ACqJeCgwWkaYF9HUr0AF7UGkK7A3cGY+QXm2r4jIXe5Dbrp6ViNQC3sGyKe6IPWQNzaeNm4gvlvB5r50W3uv1UX3tJCLFKS5bFKuxc7qpgP1vYA+tNYE7gLdFZCdv3xYs7fcpBXw2lmuBOqpajbz/b4mz0TkKJYxlDdwXSxB0LrAuvwO9bKWvY//f6lgR7l9K0lZMu9W9MhPFoTJWAqQWljn1cCxLYkEUJluhbZXwe6AwCvyOyIeNwJtYNsRtKMF3YaBwCpbDkZlMxCq+A5wG7Oa9r4fNukWY421LlKbAgSLyk4h8JSKRlOKp6g8RuVdE/sFqH0VS16aiv5SdQzSeW9s47MHyM1X9CdhFLS033uvOSequMTZDPlBEfhORF8SKbqaqv4nAQSJSU6zm07HYmExqf6r6l6qOUNX3teACub6jqj+r6ouqukRVN2IWpmYiEk+sWHOsht2jqrpZVb8AvsMemPKjK/CE19dCrIj2hQU17rmOXuFlNhxUjNMCQFXfUdXhwOJ8dp8MTFLVt9QKoPYB2opI86j+G2E1vO4rrB8RaYZ9x12qqgu9axH9sHshMENEwl6bCeH9z17FK1IbI0tEcQ2p6lpVHQZMwFOoVPU/Ve2PeRbE09fv3kQE2ERLOfK+wx1JwnNJvg64RFVneRNdE72xmR93As+p6kequklVF6vq3yVpS0TKeO6er2G/L7WKI7uqPqOq33iTY/9iZVf2L8l5xtHWIM+F/QoRqVEcOQuQvbDviNhj/1TVF7G6hrEU97swUDgFy+HwCREZ5cW0xC7dsIeLq0TkF6y4Z6QAaH4zunFlqimiv7JYXZvO2Azvm97scar6Q1XvUNXdsB+DnomeX2GipKDN7Ru0H4i9sPpI+4hIbLHjZFIWeyB8RlXbYbPzSY8ti6Cqf2B1oD7DZvLHA5sK/VARiMgTnlIYeV/gkvAJpJ6DgPm6bdHgdiKySESmikhvb7YW8h+PwvbFsaP3Scz6riJSfesGe9g7QkReB2YBRwJ9yZukQUQ+EJFlBSwfxHmerbD/PQCquhpzv20VdcyTWMHltUW01cmTNexdpwkistVCpKr3A90xpX2siHwpIud5Cn7exRC5tZDzWlaM85quqiujto2POa9i4V3vdZi78GjM2udILnti30Onish87167qpDjOwN4Y22eiAwWkR2L05aINBaRu4EZWN2+X4EmnmKDiJxV2HgUkfoFyHYQ+SshJTnP2LZOwL4PjgRmicjr3vfFNjpAkr4jikNxvwsDhUvT7nD4hKoWFeB8JGydXT3O2zaHbWdCd8XM9Qn1JyJXAO+oqgI/i8gWbEYuJf3F8DowEggl0l8hpKLNAlHVZSIyGjga+E9E6qjqPDEXoWSlYJ+Dxbf85K2/jSlYqeoPbxbyRQAR6evJkEh/e5JXKHfPZMmZbkRkV6w4aXSR3a+xh4RZ2EP6UOwB6T4svmcBcJOIPIrFBh2Mxe3kx0fAtSLyJRaHcY23vTKwXER6AjdjMQ6DgGtUdVFsI6p6fMnPcitVMMtpNMuxSSBE5CQs9uNdETmkiLZ2xa7RMGwWe19gpIhM9hR6VPVH4EexpCrdsNi2x0TkHVW92DumH9AvCecV64q6nAQs3ap6vIiUw2J+mqvqlgTkc+TPrpirX1MsZrcJ8LmITFXVzwo4/lzst3Uu5tb8JOZFUWhbItIWK/bdEnMzP0lVf43tQK0WXrHq4YnIBZgbcEGJHOI+z/za8qzsw4HhYm6+Z2ETZrVE5AFVfco7LhnfEcWhuN+FgcJZsByODESstg7eDNOdwLPerveB7iJSQcxtpgkW/5Eow4HDvD6bYkHqi1LVn4g0iVo9AfuiJUX9jQGaiEgjESmPzYonNTOdWLxIDe99JeyhaorXz/neYeezfZxOiVDV+cA/Ym5WYD73k1PVH2wzJutjrmJvJNKfqh6qFjcWeV/gkqxzSDZiMTqfAv1VdWsdLLV4vxmqukVVJwB3A6d6+zZisWrHAfOBG7EYhTkFdHMvFhs0Dvgeu1c3kqfMNsKsz+OA34nDbScBVpFXCDtCNWClmDXyAeDqONtai53H/zzXpq+wB6sjYw9Uiw39HTvHDSRfIS/wvBJpVFU3qupHwFEickKRH3AUl4iV9G7PtfN3TPk5tpDjB6rqVLWY2b5RxxbVVg3MpW0aZt1MiguziJyITRAck9/ESJyyFaetxeTdSztg3x++UILvwkDhFCyHIzM5U0SmYg/pc4GBAKo6CfsCmoy5al2lqpuT0N9LQGMRmYh9cZ/v+Xmnqr9+Yu6Cv2MPVNdCas7Pi4XoiWUy+gN40+snmdQBvvTOZwwWg/UB9mN3hIj8BRxB4jPt0VwNvOb1uRf2sJDK/oaJyGQspfpVqro0Wf2JyF2xrl/e9koicld+n/EbsbiIT4H3VbWotNFKlDuMWozOwapaU1WPwmLq8p1I8B6oeqpqPVVtjD0g/RK5L1T1Ru/zE7D4rBliZRCiJzEQkY/EUh7nt3wU52lPAtpGtZkL7O5tb4Jl4vtGROZjyTDqeC5NDfNp6/eiOhOL+espFk/2BeZ1c6iqdoo65vZCzmtVgY1vf16NRaRq1La2FOyyVVzKYtfJkVwiYyhel+/fCzm20La8CYBdMSv0ccBsEXlDrARITuQ4ETm7sPEY7SIoIkcDA7AagBOKkLtA2eJpS0SaiMg9mGvj49j3RWPv+yNyTDK+I4pFcb4LA4dmQCpDt7jFLW5xS+ldsJTmO+ezvSawOQPki03TXg17CHiqgOOPwRKAgM16T8QSKET2twEqYm5+vbCHngoFtFUPc6ETLIbkH+DIQmRtj7k9LQJeKsG5lvVkuw941Xtf1tu3E+Y6d4q3/X4su2Tkc7WjlpOxyaHa5FNqAXMPnYZlJCyLBeWvxNzpwLKOrQTewh5oEy3XUMaT+RjMdbMiUD5q/4/AQ972k4BlwE5R+yuSl/G0GVCxgH6ae31U8s7xHMzqtnfMcTNxadoTug+9bV9j9fIqYNkoFwCHF/D5C717rbF3770JvFrCtmphE4O/eeN8u++vIs7lMGyy5KA4jy9QtqLawiZQF3nfC+2T8H8o8Dsin2PF29/S+/9VJOq7jji+CwlomnbfBXCLW9ziFreU7gVLg71TPtu7AAszQL5YBet8b9tqtq11Vd/b/xDwn7d/OuYiWC7q8w9iNa1WYTFW0W3Xj2nrIO9hfA3wJ3B2nDKXB/Ypwbn28c4teukT8z+ZgrktjaaAmlDAIcTUwcIsQmdHrbcCfvCu02SiauB4D2Q7JvF/eEg+5zU6an9D73zWete5S8znYz+rUfueJa+WXwssscVKTEkbQ/61fWbG9uGWIv+H+SlY9TBvh1XevXZZ1L6zsayX0ceHsTjChZhysEM8bRUhV1u8OojFOJcvsbjM6O+Pj6L2fwTcHud5FtXWPkRNJiTh/1DgdwTbf381zOfYmVFtFfhdGHXMaAKoYIknvMPhcDgcaUVEVmI/uLmYAhH9g5SDzWw+q6qFZcxKOWLZ4NZj6dJ7+ymLI9iIyOFYYo8KwLGq+qXPIgUGdx+WLjw35zHYZNGVqjrIX4mKh1OwHA6Hw+ELInI+5kLyElbnJTqT2wZspvMHH0RzOBwOh6PEOAXL4XA4HL4iIgcD32lecVaHw+FwOAKLr1kEReRtEbmh6CMdjsxGRF4SkQVeFr789otY0dRpIvK7iOwdZ7uXJldS11+29hfwc9uZvFpv0X10E5FTk9iPw+FwOBwpx+807WHgTomqSJ8fIjJIEqgiLSKjReSpkn4+pq2rvAfkFd7yg4jk92BQR0ReFpGFIrJORCZ7s7QJtZsuROQgEXlfRP4VERWRHgUcd6WIzPDO8RcRObAkx2QBg7DCsgVxDJbGuAlwKfBMnO0W+BArIl2Tvc/1F+j+MubcSkAfYF0+21d7+xwOh8PhCAy+KlhqufqnY2lMg8Ic4BZgb6xa9hdYdew2kQPECo5+h8UWHIdlFbqavMKQJWo3zVTBUgtfS16Ru20QkTOwegp9gXZYEcyPYuo8FHlMNqCqXwNLCjmkG/CKGj8CNUSkToLdFvbwW9J9rr/s7C/d51ZcGmOZ22KZ5u1zOBwOhyMwpDQGyyt8dgfQGssONQa4TlX/iDrmLqymxwGFtDMIqKWqxxe3H++z58d8pJGqzizhaeXX/xLgNlV9zlvvCxysqvsns904P1MVCxQ/TFVHi8huwAfAN8C1WoKirWLFGnvGZnARkZ+A31X1kqhtfwFvq+pt8R6TLYgV0/xAVVvns+8DoJ+qfuutfw7coqpj8zn2UvKsA+0rV96u/ioAmzdvJicnJ6n7Nm3aRNmyZV1/iexTtWXLFjZt3kxZkbxtkfStWCqszVjxD7CMDpu89c3esimf/RWw9HobYvavw778Knnr67Hc55Ww9HxgMz6R9UjV2/LesbZelTLUYDP/YFmBa3ut/IbV2NzF63W8nalqUibpRGQuVtz6s5jtR2J1anZJRj8loVatWtqwYcOE2vjzT9Mdy+24KwCNd8pNVCxHFhAZF82aNSvR53/55ZdFqrpTMmXKVIq6D0t6LacvXA1k7j2Z6BhxpJ6C7sP8nzSSRy7wGFaFuhJwJzBCRFqq6gbvmJ8xN8FKqpqvpSSRfjALTFOsbsft3vEL82vEc4MbSJwKmFj17tMwa8/3UbtOBD4WkaHAoVgRuheApzUOjbagduOUry32rPS7iHQE3gHuV9WtLpLFPc8CZCyPFbR8KGbXp8B+8R5TipB8tuU7FlT1eeB5gNzcXF29enUq5XIkypYt8M038NFH8NlnMG6cbcuHb7CiRp8BHYHllSqxW9WqSMWKLMvJYUXZstTPzYXy5VlapgyrypRht2rVoHx5lgBrRNi1alUoU4YlGzeyRnXr+uKNG1m3ZQv1qlWDnBwWrVvHBqBu9er8s2oV81avZrcddqBO9erMXrGCDarkVqxInRo1GPJ7Fe77/BB+n9eCzSjwD1XKV6BFnY3ssdNqKleYSfVKyg5VKrJDbg6rNyzglrdOLen3dX68BzwqIier6lQAEWkGPAIMT2I/xaZhw4aMHbvdPEixWLPGVNwLXh0PwNDL9k1YLkfwiYyLgibRikJEZiVTnkymqPuwpNfyjOcsSWmm3pOJjhFH6inoPkypgqWqw2KEuABYgRU9+9bbPBerdl4X+DvZ/ajqtyKyAVijqvOLaGo55qaysbCDRGRPrDhiRaw42kmeu2OExsCVwKNAP2AvrII2QIGxYHG0G498bYF/MMXuKaCHqn4Sc0xc51kEtbCJ9P9itv+HFaKM95jSwhxgt6j1XbGx7wgqa9fC009D//4wY0be9pwcaNECWraEBg2gXj1b6talyZYtvDhmDC2PP57qTZpQPcryVcNbIuzgLRF29JaC1mvGiFcr6v1ubDv4Iv65W7bA7XfCfYNtfaed4MorhW7d6tO2LZTZap/afvb0lvymDErOzVgRzckiMs/bVgebgLspqT35gHs4cuSHGxfJI1uvZbaeV2kgpQqWiOwO3AN0AnbCYr7KkPf7DnnxPZUoIXH2UySq+i7wbhyH/okpTTWAU4CXReQQVY1kkCsDjI1ygftNrGDaVRSiYBXVbpzy7YU9lw3BFNZRsQcU4zzjIdYKI/lsi+eYbOd9oKeIDMHG6XJVnVfEZxyZyjvvwPXXw+zZtl6/Ppx+Ohx5JBxwAFTK/+usNnDhwQXmukkJS5YsYfDgwRx33HHsvvvuW7dv2QIXXQSDBplO2Ls39OoFuT54yqjqSmB/ETkC+w4T4Ffg83is/pnO4MGeBsvuhR7nKF1ExsU55wQpDD0zydZrma3nVRpItYvgCOBf4DLvdRMwGXP7jxCZhM3XbS+J/SQNz71xmrc61nPFux64yNs2z+s/mj8wd8VE2o2HtljARC/MvfAc4OVifD5eFmFhIrVjtu9MnsUqnmOyAhF5AzgEqCUic4AQZplFVZ8FPgSOxf6/a4AL/JHUkRCbNsGNN8ITT9h6mzZw771wzDGmpRTBihUrWLBgAfXr16d8+ZR8PW3HrFmzuPbaa2nQoME2Clbv3qZcVa4Mw4fDEUekRZxC8WKwPivywIDxwgsvALDLmff5LIkjk4iMC/fwnDjZei2z9bxKAylTsESkJpY97ypV/dLbtnc+fbYG5qpqiR644+xnA+aqlirKYLHnEb5je5+apkBx/aVj2y0UL3arNXCOqv4sIq8Bd4nIa8ku4KmqG0TkF+AI4K2oXUcAw+I9JltQ1TOL2K+YBdMRVDZtgvPPh9dfh3Ll4KGH4Kqr4lKsIowcOZKzzjqLP/74g+bNm6dQ2DzatGnDokWLyI0yTX38MfTtay6A776bGcqViHQCDscmYLZJnqGq18TZxkvA8cCCApLNCJbV9FhsoqOHqv6aoOhF8tlnpjOe81JisVyO7CIyLrIJv+7BbLyWkL3nVRpIZZr2pZgF4xIR2cOrAfUsZl2K5kDM974oqonIXjFLwzj7mQnsIyINRaSWiJQBEJGeIjIlcpCInCQiU0SkXkFCiEg/ETnQa2tPEbkPs1y8FnXYo0BnEbnDk+k04Brg6ah2YvuOp92iaIq5Wo7z1u8BGgAXxpxDPOdZJXKd8dwtvfVot8tHgB4icrGItBCRx7FYumeLeYyviMhwETk+Mi4cjny5+mpTrqpUgc8/h2uuKZZyBbDvvvvyyiuvULdu3RQJuT05OTnUrFmTihUrArB6NVx2me275x7zavQbEemFxZ/2wFwE94xatntIK4RBpKYeXUKUK1eOcuXKpaMrR4CIa1wEz0N2ED7cg9l6j2XreZUGUmbBUtUtXg2kJ7B6StOAG4myXIhIReAk4Kg4mjwQc32LZpiqnlpUP1gWu5cxt71KQCNM6arFtpam6t56YaO5NjDYe12OZS48JjqRhKqOEZETsdpPvYHZ3mv/qHZi+y6y3Tiy/7UFVgIzPDmmichgLEvjy6q6vhjn2QH4Mmo97C0vYw9BqOpQz4J4JxaQPhE4VlW3WuriOSYDWA0MBZaLpfUfqKp/+SuSI6N4/XV49lmoUMHMP/uXrAJDw4YNSTTld3EZP348o0aN4pJLLqFatWo88ICFjrVrBzffnFZRCuNa4JrobKclQVW/9ibeCmJrPTrgRxGpISJ1Uh0POWjQIO+dS7XsyCMyLnr06LH9ziVLbCZkv/0s3jMg+HUPFnotA4wf57V5s+VwWrMm7zW/JbJv3TqL6Y2qULLNayq3paO/Nm0sn1VxSWkdrCI7F7kK6KaqGTCHmvmISBg4FWibbJe/0o6IVAPOxmKjOmBZLl8A3kqgfEDCuDTtGcDcudCsGaxaZUpWxPxTAhYuXMjChQtp1qxZgXW1kk3//v256qqrmD9/Pjk5u9CokZ3KN99YPo6SIiJrVDUpKTFEZDnQTlWnJ6GthiRYj06iatHVr1+//axZic0HHXLIIUBeDFampoR2pJfIuBg9enTexjVr4NVXoV8/++7p169ABUtEflHVDqmXtHgk4x709sV9H+Z7LeMg09O0F+e8li41pWfjRls2bdr+/cKF8N9/2ypKs2bB/PmwciUsWwbTphVYaaTEiJhLukjB7zN1W5s28NhjhZ1b/vdhqpNcFMVG4GqfZQgSx2IFf51ylWRUdQXmqvCMiLQCLgaeA570Mv89Fl0gO9WISFega4UKcYfgOVLFLbeYRnLCCXDppUUfXwgDBw7klltuYdWqVdvERKWSyy+/nLPPPpuqVasSDtupHH10YspVCngDcyvqX9SBCRJXPbroWnQdOnRIeBYy8nAUeZhzOCDmoVkVfv0VTj0VZs6Ehg1h1Cg48ECfpEsZJaoJWdR9WFzFKijkd17r19vQmDfPFKYff4SxY00fLy45OVC7tlUU2WEHez3lFHtfufL2S6VK22+rUGF7xSRaQZHklvQIDL4qWN7N44gTVe3otwzZjojUxVwYjsfi+N7GSgj9LiK3qWps0eSUoKojgBG5ubmXpKM/RwH8+CMMHmy/II8+mvAvRbdu3WjYsOHWeKh0UKZMGapXr8769WaAA7j11rR1Hy//AGER2R9zj96mRp+qPpKkflw9OkfmsHatpfB8+WUYM8bcAuvWhU8/hcMOK3aMZ0Bw92AcqMKCBaZrL1li1qX//oNhw+Dbb82NL0LjxjZc2raFatUsB1PZstu+Rt7XrAl16lg5jsqVbbsjNfhtwXI4fEdEymFK1YVYhsPfgAeAN1R1lXfM6dhMWloULEeG0LevvV53nf2KJUizZs1o1iy9cTjvv/8+s2bNombNq1mwwH6EDzoorSLEw8VYcfX9vCUaxZLlJANf6tENGDDAe1ecfB2OrEUVQiEG3HsvbNnCJWXLQo8eFhh58slmUsheUnIPRu6xSy4J7pzk5s1WOuORR6x2/dq1AJHvDjuvBg0sv9J++8E++0CNGlC1aum1EmUyTsFyOKxumQCvA7eq6u/5HPMZlrHSUVqYOhVGjDDr1Q03JKXJ2bNns2zZMtq0aZOU9uLh7bff5rvvvmP33c0b+7LLMu/HWFUbJaOdTK1HN3ToUABqnuYUrFKNqn2nXHwxLFzI0J12gjp1uOTHHwssTh40/LoHI/dYkBQsVbNQTZ1q3qHPPWfxUA0awBVXmJfoCy8MpXx5GDToEqpUgXr1zBLlyHzcvykJeHUddsZSotcCdvJeq2J1rKoDV2Dp5F/C6nKtARZ72xZiJvLZqroxtn1HyrkeS2axrqADVHUpln3SUVp49FF7Pfdc2HnnpDT50EMP8eqrr7J0afp09Zdffpnp09fTpAmULw9nnJG2rtNOptajGzVqFOBisEo1Y8fC6aebaaJJE7jjDkZdfbUFq2QRft2DkXssCGzYAHfeCS+9BIsX520/+GD72enaNU+Juvrq4JyXY1ucglUMPEWqMZYOPbLsgT14Vy7gYxvJS4deC0tHXFDmgi0i8g8wHZiE1bMaD0zyM5NdKeBQYDiwjYIlIrnAk6p6YX4fcmQxa9da7BUkNUXypZdeytFHF1YiJvmICB98UBFVOP542HHHtHYfFyLyRGH74y007HBkJGPGWJKcBQvgmWfMguXMEKWO9ethyBCrUT9xIpx2GnTpAi1amM6d3Z6hpQ93hxeCV3i2HXAwVofrQKCmt3sLMBX4E/gUU4pmAQswq9QiYKWqbvHaGg2gqod4ilpFr62Ixaseprw1wpS2HkAVr6+NIjIW+NpbvlHVlSk67dLI+cCtWA2xaCoB5xFTqNlRChgxwtLtdewILVsmrdnWrVvTunV63cQee+wxnnuuDnAGp56a1q6Lw54x6+WA5thv1K/pFye59O/vJUfMaeevII708/ffcOih5gL4+efgpd2GvHFx5ZVX+iRc9pDp1/LVV6FXL9OxW7aEd9+FE08s+nOZfl6Ogsku23QSEJGqInKKiLyExeaMBR7GHgBGYDUZ9gGqqmoLVT1RVW9Q1adUdYSq/qSqf6vq8ohy5THOW1BjrarOUdVxqvqZqg5S1btU9VxV3RdzK2yC1b3yfJW4ARgJLBaRT0XkGhFJPPK+lCIiO3pFkAXYwVuPLDthmQT/81dKhy+8/joA6884gw8//HDr5ssuu4y33npr6/pFF13Eu+++C8DmzZu58MILGTFihH12/XouvPBCPvroIwDWrFlDjx49GD9+fLrOAoBnn32BKVPep3x5OO64tHYdN6p6aMxyAJZdbCTwps/iJcyIESO2jgtHKWHzZrjnHmja1EwXo0dvo1yBGxfJJFOvpSrcdx+cd57FVH32mVmv4lGuIHPPy1E0zoIFiEh54Cis0OwJmOViGfAx9gP/haomlEZUVa8r5vFbsCDQacAwT87KQGfgGOzh/3HgcRH5GXgNGKqqTiGIn0VYhjIFJuezX7EA3bTj6mD5yNKl8OGHUKYM41u04Mknn2SXXXahffv2fPHFFzRs2HDroZ9//jktWrQAQFUZNWoUe+21FwBbtmxh1KhRdOxo1RU2btzIqFGjqFq1Kk8++WTaTueOOyZy3nlbOPRQS+EbFFR1nYjcC3wCPOu3PIkQUbJdDFYpYdMm8/8aPtx8wB58EFq12u6wyLhwJE6mXssnnoDbbzeF6vXXi5/LJFPPy1E0pVrBEpHdgcuxLDY1saQTg7AZ028zraCvqq4BvvCWm0RkD+Bk4ExM2XrUq5LeH/gsxoLm2J5DMevVF8ApwJKofRuAWYkq1iXF1cHykQ8/tJL3hx3Gjk2bUqdOHSKK7l9//bXNoTNnztz6vmzZssyePXvreqVKlbZZr169OnPmzEmt7DE89NBDfPTRXkAX0hz6lSx2Is9V2uEIBo88YsrVDTdYwE2mpe10pIUtW+Cxx6w0xjvvuGFQ2ih1CpYX/3QEcB1wNBZLNRwYCHwapCx+qjoNq9f0gIi0BM7F4oVOAP4WkaeBAZFaTo5tUdWvAESkEZbBsdBK8Y5SQmTG8Pjj2WOPPXjppZf8lScBQqEQqleS6QqWiMTmwRegDuZV8OH2nwgWjz/+uL2puI+/gjhSyyefWBXYhx+2VHAPP1zo4ZFxce2116ZDuqwmE69lr16Whv3VV0uuXGXieTnio9QoWF7CihOB24H2WHxVGFNAAl9FXFUnA7eJSAizal2FFee808vQ9aSqLimsjdKEiOwNjPOsfDWBmlLAN6CqBj7I3hEnW7bYQxLAMcf4K0sS+OabFbRvv4nddoM01zcuLlfHrG/BylcMBO5LvzjJ5fPPPweg0nFOwcpK1q2DK6+EgQNtfb/94NmivVoj48I9PCdOJl3LtWvh7LMtkUWnTnDWWSVvK5POy1E8sl7B8ixWxwH9gFZYTNPFwGBVXe+nbKlAVTcAQ4AhItIZuA3oA/QSkYeBh5xFC7DkJbWxrI9jsXir/DQsBXLSKJfDT8aOhUWLrNJjs2aMGDGCSy65hC+//HJrrFWQ+OGHHCCHgw/ObPeUZBUazlTef/99wMVgZSXz58NRR8Hvv8Pll5tLYG5uXB+NjAtH4mTKtVy61IyX331niS2efTaxUmeZcl6O4pPVWQRF5EIsrfkIoDwWq9RcVV/MRuUqFlX9UVW7AW2whB0hYJqIPCIi2VE2vuQ0wmbII+8jKfJjF5elsTTx8cf2eswxIEKdOnXo1q0bNWrU8FWskrBo0SKeeeZOYAL77++3NPkjIr+KyA5R62d69eccjsznk0/g8MPhr7+swNEzz8StXDmyj+++sxTs338PTz8NL79c/KQWjuwhKy1YIlILeAZLcb4auBJ4IUjxVclEVScAp4lIJ+Ap4HrgbBE5WVW/81c6f1DVWfm9d2QgffrA229bbtv81pPJl1/a65FHAtChQwc6dOiQ/H7SwPz585k06T5gbw44ILbMVMawF3mF2AGeA37C6gpmDQ899JC9qZqhmq6j+Dz/PFx2mVXufvNNq+JdTCLjolevXsmWrtTh97WcNAmOPhpq1oT33y/RcMgXv8/LUXKySsHy3AEvAu4HqgF/YFaIj0qrchXDz1imxDXARuBbr97Xzaq62FfJ0owXgxUXGRmD1aOHTY8BlC0LO+xgaYBPPRUuvRTKlSv042mnYUOYFaPHVq8Oy5YV/dleveDq2BCdFLBhA/z0k70/4IDU95diqlVrDWyienVNZq3kVJPBjowl54cfzDWw7JFOwcoKnnwSrrkGDjrIso6W0GoVGReOxPHzWi5ZAhddZDWvvvgCGifR78WNkeCSNQqWiOwKvIRlCPwGs1otB34DOgIzfRMuc6iJubzdAQwA7sKKFx8nIher6gd+CpdmCou7iiZzY7C6dLH0RJs3w8KF9s0eCtm2zz/PPFeVu+6CK67IW4/XMb1KFVtSzW+/WXRys2aw004A9O/fnzvvvJPp06cHzk3wu+8AhP33l4RiAByJM2zYMMDFYAWeTZusqNGDD1oii08+gYoVS9xcZFw4EsfPa/nIIzY39/rryVWuwI2RIJMVP7sichYwAdgfU6wOUdWJqvoP0EBV3/JVwAxBVRcBrYGnVXW1qt4CdMASPYwQkQEiUtVXIdNHYXFXvsdgiUhXEXl+8+bNBR9UoQLUrg316sFee1nNldGj4ddf4YEH8o7bsAFuuQV23dWUro4d8zLlRZgyBU44waxKVarAvvvChAm2b8IEizOoVg2qVrWiHhFXuuJQtarJG1l23tmUw4sugkaNzFm9SROTfUtUCbc+faB16+L3V1y+/dZeo6xXLVq04JxzzqFSAB3phw0bA9zC3ntnvHH6OBE5WUROxn6TjoqsR213OPxj40Z44w3YYw9Trpo1g0GDElKuHNnBokXQv7+F7Z55pt/SODKJQFuwRKQyFlN0AfA9cL5XG2orqrraD9kyFS/LYPT6eBHpiKWsvwk4SERO9eK2spZMj7sqcaHh1q3NEXzYMAiHbdsFF8Dff9v02q67mktL164wZowpS3PnmlKx//7w2WdQowb8/LMpP2A5Ztu2tW1ly5rCFf1g0bAhHHKIPXAUly1bTEF8802zGv38s7k41qxpilc6+c4LR4xSsA499FAOPfTQ9MqRJH7+eRLwOHvvfZ3fohTFizHrT8esZ64VOU769etnb3Y42F9BHMVn+XL7bpw0CZo2tYqxJ56YlLSckXFx6623JtxWaceva3nllTZE+vRJTftujASXwCpYItIEeBvYE7gHCKtqIdP9joLwMireKiIfAkOBn0TkMlV91WfRUkZ0Hayi4rEyMgarMFq2hFGj7P3ff9vM68yZUL++bevZ0/Y/95xNvT39tFm23noLype3Y5o2zWtv1iyLg2re3Nb32GPb/nbfHerUKVquO+7Y9lfo9tttufvuvG0NG5oF7o030qtgqeZrwQoqq1bBnDk9KFu2R0YXGFbVrPCiKIpx48bZm0OdghUovv7avvsmTYLHH7fvziT6224dF46E8eNaTpli+vbpp8M+KSpx58ZIcAmkgiUiRwFvApuAY1X1Y59FygpU9WsRaQe8AbziWbZuUNVNPouWCrK3DpZq3uzqr7/aemyWg/Xr4bDD7P1vv5lSEVGuYrnhBrj4YkuqcfjhcMopecoWWLxXPNxww7ZK04472uuzz8ILL5git3atueM0aBBfm8li1iyLY6tVyxRGj1tuuYWBAweyYMGC9MqTIOPH27+9VSuXJjgTGDJkCOBisAKDqsWLPvecWfTvv9+SWiSZyLhwJE66r+WsWXDssfb9+sgjqevHjZHgEjgFS0SuAJ4EJgLdMt3VK2io6nwROQLLxHgDsLuIdFfVlT6Llmxi62AljIgcDTyOKWQvqGq/mP3VgcFAfezee0hVByaj722YPDkv0nbLFlO2xozZPrNg5MlbtfD2+vSxsvQffWSxW+GwKUUXXlg8uWrW3N76NXQoXHedFefcbz+L83r6aXj33eK1nSi/ekbK9u23cf054IADKJdpGRnj4LffAN5AdTJm4Hc4HHGxZYsVDB4wwNKwP/RQepLsOALFBRfAP/9Y6cR4HDgcpY/AKFgiUgZ4ALgRGAmcmYUP/RmBZ7G6UUSmYvEQ34rIsar6r8+iJY1k18ESkRzsWh0BzAHGiMj7ak+4Ea4CJqtqVxHZCfhTRF6LjYtLiIkT7Rv/zjttvV07U6Dmz4eCYon23hsGD7ZkGAVZsZo0seWaa2xm94UXiq9g5ce330KnTuZ6E+HvvxNvt7hEFKy9t/UW7dq1K127dk2/PAliCtZPLFjwGU7B8p977vH+Bzt38VcQR9E8/bQpV+efby7UKUzBGRkXvXv3TlkfpYV0Xsv337c8T7fdZk4dqcSNkeASCAXLe3gdgCWzeBq4Lkvd1jIKVX1ORGYAw4BvRORwVZ3ht1ypQETqAFcAEV+6P4BnVHVunE3sA0xT1elee0OAbkC0gqVAVa9eWxVgCebmWjLWrzfFacsWc2/7/HPo29esMJGihE2bmvWpRw94+GFTIJYssWyDjRvDySdblO6zz5oj+R13WE2tMWOgRQvLltWrF5x2msVH/fdfnlIU4fDDzQH9vvuKfw5Nm1pyjI8+MuvWkCHw1VcmQzqJtmBFoapIEoLZ040pWI/xlsufmhH8+eef9sYpWJnNl19aXGjbtjaJlOL6BlvHhSNh0nUtJ0+Gbt0siW86woTdGAkuGR9gLCLlgdcx5SoMXO2Uq/Shqp8ChwM1MCWreeGfCB6eS+TfwBlYEeY1wGnANBE5Ms5m6gH/RK3P8bZF8xTQApiLlRW4VlW3UFJGjTLfhPr1Tcl5/32rg/X119vWwBo40PwZbr7ZYqeOP96OicQ51atn6xs2mJWrXTsrpFm2LOTkwNKlNpvbrBmcdJKlcI92Ov/7b5g3r2TncNllptiddZalj585E268scSXpESowi+/2PsYC1a7du1o1apVeuUpJhMnTqRNmzY84v1P1q7dzG+/NQWepm1bf2VzGIMHD2bw4MF+i+EojBkzbMKpXj3LtFo29fPPblwkj3Rdy969LYnuH39sE66bMtwYCS4ZbcESkbLAEOAkoJeqPuyzSCVCREZHr6vqIf5IUjJU9WcRORj4DPhKRA5S1WyaVnkCeAFTeLYGJInI41hMVYs42igoQUY0RwHjgMOA3YHPROQbVV2xTUMilwKXApQvyGVv0KD406KXK2dxVIXlkW3Vyh4q8uP11wtvf+bMomUo6Jjy5eHFF22J5q678t7Hyl7UuRSXefNgwQILZm/YcJtdt9xyC+vWrUteXymgZs2anHPOOezoJQ354w8BOlCnTh2qlpaqdg5HInzyiaVe37DBsqnWreu3RI4MZONGGDkSLrnESjc6HIWRsQqWF3M1EFOurlXVJ+L+bFhygYOAXzWk/6VIxFKFqk7wlKyvgVEicqCqzvRZrGTREHgqWrnyeBqItw7VHGC3qPVdMUtVNBcA/bx+pnnul82Bn6MPUtXngecBcnNzi8hA4UiY6Pgrzx2wd+/ejBw5kl9/zfwM/XXq1OHmm2/euj5+fBngdQ480D+ZiouI7Ajci1nLdybGu0JVq8XZTmYkmonhrsiEQb1jUt2VozgsX25W9KFDrfj5G29YTb80ERkXd0eXqgg4ft2D6biW77xjnvnpLI2YjWOktJCRCpYXo/I0cA5wRzGVq4bAVKAcoBKWUzWk76RE0DgJmsWqIFT1T89lbjTwuadkxRujlMmMxeqpTY3ZvifwW5xtjAGaiEgj4F+gO3BWzDGzsQfIb0RkF6AZML2kQjuSRKTOSLt2Wzc1adKE/fbbzx95isns2bOZMWMG+++/P2XLlt2qL0adThB4EWiHTSzMZXvrb5FkTKKZfPjnH897ONZp2OEfy5ZZrNXs2Ran+tRTZsVOI1vHRZbg5z2Y6mu5YYOFKO+5p8VgpYtsGyOliYxUsIDbgcux2f6+xfzsA5hyBea29Tjgq4KVTajqeG+GahTwgecuuMpvuYpLTHHh/sCjXvHqH71tnbGkF3GVT1fVTSLSE/gEm7l7SVUnicjl3v5nsXRug0RkAjY2b1HVRUk5IUfJmTTJXlu33rrpvPPO47zzzvNJoOIxdOhQbr75ZlauXEmVKlW8BBeBU7AOB45Q1Z8SaCP9iWbiZOBAm6B3dbAyhIUL7Qb591+rdXXppb6IERkXWYRv92Cqr+WAARZuPHKkhSaniywcI6WGjFOwROQM4H+YCfn2EjSxImZ9dcJCZRASlhOAl7zVizWkw9Mtg6r+5P2fRgCvi8hJqro53XIkSH7FhfNT5gdjhZeLRFU/BD6M2fZs1Pu5QLxJMxzpYuJEe83wZBYF0b17d9q3b0/lypVRhQkTbPtee/kqVnFZACQ6UZNfoplOMcc8BbyPWcmqAmcklGjGETxULSvqvHkwfHh6zRHZT1beg4sXW/nHTp3gGOfl64iTjFKwRKQz8DLwDXBxPjEx8XA1lkxgVywb3MnJk9BfJCw5wHDylIJ3JCzlNJR+5UZVPxSRa7Gizw9iRYmDhAtRdVjUciQNbsuWWzf36NGDuXPn8umnn/okWPzstttu7Labhf/98w+sWGE1nXfe2WfBiscdwN0icn4CFvGUJJqpX79+CcXJ47bbbrM3DU9IuC1HggwebKUgHn/cd+UqMi7uK0mJi8wkafcgFO8+TNW13LAB9t/fjJ4PPLBNHfq0kIVjpNSQMQqW54v7Nha/crKqri9JOxrStWybbMB3wuFwOcwUvgFYEwqFSpq4oBbbfoEJFhBewhzZiaGqT4lIM+B6EflJVYf6IUdJSEZxYUcW8NdfpmQ1arRNavuOHTuydOlSHwWLnz/++IN58+Zx2GGHbfV2bNUq/Q8CCXInlmxmgYjMAjZG71TVNnG0kZJEMx06dEg40czixYvtTcNEW3KUmKVLrQB7//5Wt++qq/yWKG9cZA9JuwehePdhqq7l4ME2B/fyy+CH13gWjpFSQ0YoWF5g5OuYArFv0ONSwuFwHeBUzB1sbyA65+uqcDg8CfgKeBf4KV6FS0P6n4RlEXadABZrSH1RrqK4EWgPvCAi41V1is/ylAivJMA+WGajbXKjq+orvghVCD16wKJF8MEHfkuSx6BBVm4rQu3acOCBcP/9GZzSNlojieKqDHj4ipdnnnmGV199laVLlzLZi3QIoLfj20loI2MTzTz//POAi8HyjRUr4Nhj4ccfLcd2OJzeQJoCiIyLLMK3ezBV1/Kdd+y37JxzUtJ8kWThGCk1ZISCBfQGumBugfFmbcs4wuFwI6wY8pnYtZ2GJYOYjsWGlcd8lNthLnU3A7+Fw+Ew8H6cilZ9LFmCYLO+vqKqG0TkdCzb3tsiso+qrvFbruLgFU8egbkNCrAZ+/9tBNYDaVewRKQr0LVChQrp7johKle2QGBVmDLFMiCfcIIl6suA55ntySfBRdC44YYbOPvss4EC9cWMR1XDSWjDJZpxbM/q1XDUUTBmDLzyCpx7rt8SZS3Zdg8uXAgffwzXXw9lyhR9vMMRje8Klhd31Rt4lbzkDYEiHA6XAa7H6rhsxtKUPhsKhQq05oTD4erAGZgFaDjwQTgcvigUCi0orC/PBbJXkkRPCqo6R0TOxr5U+wLX+StRsXkM+AXYC5jvvVYHnsEnJVZVRwAjcnNz46rDFbFoHXGE+YmvWWN1M59+2pQeaxMeeQSefdYyE++0kz1rRFy7777b6v3Onw877ABHHmnPI8VBxGb7AOrUgVDIZv6mTbNJ5DvusLJTGzZAmzbw4IOw7755n3/uOXj4YZOvalUrTTVyJJQta8kbrrvOnpNUoXFjeOyxBGuSFJDg4tBDD6VOnTq8XlSR5QygYcOGNPQKJAdVwYogIocBLbG4jUmqOro4n8/URDO9enlf2U1OSXfXpZvNm82v68cfzRRx0kl+S7QNkXHx0EMP+SxJ8vDrHkzFtXz8cRtC3vyVL2TjGCkt+KpgiUhlzDowB7i6hEktfCUcDlfAlMPTVrHq61GMuve30G9FRsaHQqHlwPPhcHgglpijL/BLOBw+JhQKTUyt1MlHVT8VkSeBa726F1/4LVMx6AgcrKqrRWQLUFZVfxWRm7EkHvHEf/jON9+YUjNqlCU7OP10aNoUIvH1t98OzzxjStZBB9nsXCSl97Bh8NBDVmdzzz1hwQJ7JokQcf+bMQO8Z/m4qFTJXjduhJUrTaF7/HFTxJ56yrx2/voLatWCsWMtLOLll+GAA6xMzRdRo+iss6xszc8/5ylcFSsmcMGArT51UQkuAI455hiqV6+eYOPpYcyYMaxZs4aDDjo4sC6CIlIPc5luT17MRl0RGQucFPR6e2vXrvVbhNLJeeeZYnX99RmnXIEbF8kk2ddy2TL7vTzySPvd8Qs3RoKL+KnTiMgTmHJxmKp+6ZsgJcRLXvEucNxoRv87mtGRMpIfakiPK2Zb7TA3tYrAQaFQaHIRH8k4PIX5N6AS0Dq/rECZiIgsATqo6nQRmQZcqqpfiMjuwARVreyXbLm5ubp69faVBmJjsHr0gM8/NwWorDdtcskltj5qFKxaZUrMY4/B5Zdv388jj5j1aOJEKFdu+/3vvmuK2uefQ70CiqUOGgQ9e1pfAHPmWDbkOXPMbbB8+W2PV4W6dc2Kdc459hx0wQV2fNWq27dfrRo8+SScf37+/RebzZvNvLdhg2l/VaokqeH0cvLJJ/PXX38xcuQEGjQwy+SCQu3gyUFE1qhqbtFHxtXWMCxW9SxVneFta4yVSZirqqcmo5+S0KFDBx07dmxS2orEYA29bN8ijnQkzHvvmRn/4ovh+ecDl/UlHkTkF1Xt4Lcc6SCZ92E0Bd2TDz4IN98M33+/rZeFwxFLQfehb16lItIR6Ak8FUTlyuMh4LgFLLgrSrkCOFbCks9jasGEQqHfgIOxuJ+R4XB4hyTKmRa82KvzscxBd/ssTnGYCETmqH4GbhGRg7F4umm+SVVMWrbMU67AlJfIg/bkybB+PRx+eP6fPe00WLfOklFcdBG89ZYdH+GkkyymqiDlKsLq1aan5ObCbruZ7vLOO6ZcLVhgMVlNm0L16qZELVhg7oBg7o0NGpgMZ59tlqyVK/PavuEGe1Y67DC4916TJyFmzzYB69YNrHIF5joyZMiQoLsHHgFcFVGuALxipdd4+xyO+Fm/3vyRd90VnngiK5UrR2p5/32rJeiUK0dJ8UXB8rIGPoPFu9zhhwyJEg6Hj8R+/B/vT/8X8jmk2JXJQ6HQ38CJmILyREIC+oSq/gg8B1wtIu38lidO7iUv/f2dWJrZLzE/8Wv8Eqq4xFqeRGCLV76xKEP1brtZKtrnnjNL0Y03Qvv2pjAVh8qVLaHFhAlmyfrlF+jY0fadf77FTz36qM0Kjhtnzz8bNtj+qlUtPuvNN6F+fYsNa94c5nrOYX36mKJ44on2+TZt4KVEojb/+stemzTZblejRo247rrrEmg8fTRu3JhWrVoFXcEqiIwuQBov1113XWDGU+DZvBluuskCEu+9N89POQNx4yJ5JPNaLlpkvzEnZEDZOjdGgotfFqxXMF/7G4PiRhZNOBwui8XmTAVu9VKl9/d2K3CXhuL3vZSwnCFh2Shh2dKHPtcC/YBzwuHwAcmWPU3cDiwDPvaU6YxGVT9R1Xe899NVtSWWCn+X4gbZZyotW0KFCubiVxAVK8Jxx5kCNGaMPZ98913x+hGBPfawBBS5Mc5j334LV19tfbRqZQrVvJgiA2XLmoXqvvvg999NwYtORd+kCVxzjSW+uOgieCG/qY14mTo1r9EYzjvvPA488MAEGk8fn3/+Od9++23QFazPgSdEZGsNHRGpDzzu7XM4imb9epsZevJJOOUUlzHQUSLeessmJ48/3m9JHEEm7UkuRKQGViMK4A4RmaOq36RbjgQ5HWgKnBQKhdYBaEivArYrnhMOh3cB9gfqAKuA8cD4mJTsr5L3vzjzCZ7ocg3XXIJZU45O2VmkABHZEcvKt6O36RrgUd8EKgYiUgmrLA/wdxCTrhRE1apw7bUWR1WhgiW5WLzYLExXXGHxU5s2QadO5i03dKhZxCK6RzwxWEXRtKkVbezUyRSnm2/eNi7rgw8sVuugg2DHHeHLL81FsEULWLsWevUyV8aGDeG//0xh69QpgYsSsWA1bbp10+bNm1m8eDG33norlTJ45jua2267jVq1arFkiSXuatHCZ4FKxjXAe8B0EZmLTVTVA34nQFbkgnjssccAVwcr5fTuDePH2yzRtddmvGtgZFw4EidZ11LVhs/uu0OHDIhuc2MkuPiRRfBWoBxWB6onkE84e8ZzGRab835BB4TD4SbAg8AJ5LmfRZgaDod7A295itY2/4clLKmFWcTC4XC4YSgUmplE2VPNOmBfzAp3LHCNiPRX1fWFf8w/RKQCcD/2fy2P/b/Wi8jzWI2OdX7Klyzuu8/Sr99zjyWS2GWXvMr0NWpYQeBevSzjX8uWFjsVKRC8fLm5EG7cWPL+X3oJLr3UJpjr1jWXv4UL8/bXqAHDh1u6+DVr7AfuhResWPGGDbB0qbkZzp8PNWva7GJCmWvzsWD9999/1KtXj+eee45LL700gcbTx5AhQwChfXtbb97cV3FKhKr+A+wtIkcAzbF7cLKqjvJXMkdgGDnSLFddu1o9B4ejBAwZYnNvjzyS8fq5I8NJaxZBz/1jKvC2qp4rIuVVdUPaBEgC4XB4Z+A/oE8oFMq3OGY4HD4eGIrFYT2JKWKzgGrAgVjmxL2AF4HL+9DnJSDiy7AIqN2HPvWxAsU3hEKhQFiAIkT+ryJyJFYb6wZVzdhzEJGXsHirW4DIFPO+wH3AKFW90AeZIoWGL1m3Liv0u8xjjz3MZDZx4la/utWrV/Pyyy9z8MEH0ypAvnaLFln2wKpVTRlOx4NBMrMIZjLJyF521VXm3LCozTmAyyKYdD7+2BSrNm3go49g5539liguIuPi6aefLtHnXRbBPEp6LWOzCHbvbp4a8+dDTgYEOCQ6Rhypp6D7MN0WrNuwuK/eAEFTrjz2814/y29nOBzuBLwDjMNcCP+N2v0f8Fc4HH4Zy1B3B7BCQ3qehKU/5hIzXEO6GZgRDoenYQpZxion+RH5v3q1sUYBt4vIc16WwUzkNOBkVY3+n04XkQXAMCDtClZxCw07ismGDTBzpmkiu+++dXNubi5XXnmlf3KVgHfeeYdFi+oBnWjWLDizriJyA9BfVdd57wtEVR9Jk1gpISjupoHk7bfNd3jPPc2vuFo1vyWKGzcukkcyruWGDfDJJ5Y1NxOUK3BjJMikTcESkTrYg+ogVZ2Zrn5TQKTo7LjYHV7yi5eAecDRoVBoibe9LtAaWAiMC4VCm4E7w+FwDeD6cDj8pob0x9j2sJpSeyf9DNJLGPgGuJjMzYy4Gvg3n+3/Aq7KXzYyY4ZlG2vQYJtqxW3atOH000/nzjvv9FG44nHVVVfRtGlXoFN0OFkQuBp4GXMrvrqQ4xQItIL1kOfL6mKwkszw4aZctW5tQZwBUq4gb1w4EicZ1/L9963A8CmnJC5PsnBjJLikM4vg9Vjs1QNp7DMV7AosCIVC+VljjgdaAjeGQqEl4XC4Qjgcfh6Yg7nK/QqMD4fDEd+jWzGXwJsL6Gum119gUdVvMQXrJhEpX9TxPvEkEPKSXABbE1709vY5so0CUrR37tyZRpHAs4Dw/fff06aNlZ0LkoKlqo1UdXHU+4KWxn7L6shAliyBM86wQf/ZZ1bbweFIgLfeshqNhx3mtySObCAtCpaIVAeuAIao6t/p6DOFVMayAebHicBiYLi3/gRwCZZV72DMgrcT8Gk4HK4ZCoVWAa8Dx4bD4Qr5tLcaqBAOh30rCJ0k+mKK4ll+CxJBRN6PLEAn4BjgXxEZLSKjMaX4WGAfH8V0pIp8MggCPP/885x99tk+CFRyGjVqxL//1gagWTOfhSkhInKel2wmdnt5ETnPD5mSyaWXXhqYpCmBYMEC2Htv8+l6/XWoXdtviUqEGxfJIxnXctw4U64yySvPjZHgki4XwXOBKgTczcNjPVCxgH2tgbGhUGhTOByuh6dchUKhSHzB1+FweDzwC3ARZs37CbjmFV55sk+4T0Ogv4Z0uHd8BWBTKBQKerHNT4DJwJXAIH9F2crimPVhMesz0iWIwwcKqYEVNF588UXGj28P7BUoC1YMA4GPgQUx26t6+15Ju0RJpGbNmgAs91mOrEAVLrsMZs0y5SqSPjOARMaFI3ESvZarV9u8W6bNr7kxElxSrmCJiGAP1j+p6i+p7i8NzAd2DofD5UKhUGzS6lws8x9Y7JRg2QS3EgqFfg2Hw38BHb1NKwHWsS6SzOAICctRGtJPMavP/BScQ1pRVRWR/sBTItJRVcdkgEwX+C2Dw0emTbPXPfbYumn16tU0adKEUCjEZZdd5pNgxWPTpk1cfPHF5OSEgb2CrC8KFmsVS32yQC+57777ABeDlTCbNsGNN1rs1U03wZln+i1RQkTGhSNxEr2Ww4aZ7r5PhvmsuDESXNLhenYw0AKr65QNTMYU0/zKeS7CCgpDXnKEahG3syj3sypR+2sDrGGbkK5zJCytlrHs2CUsWZHsE/CJVzGXx4xN0SYijUXkeBE5TkRc3Ec2M8MzUDbe9t983HHHBSoGKycnh2+/nc3mzVdTt66laQ8SIjJBRH7HlKuvROT3qGUSFr/pamE5zH+raVN44gmrc9Wvn98SObKIt96yhLJHHeW3JI5sIR0ughdgM5BvpaGvdBDJ9ncQ8HvMvjHAleFwuLp33Arg5pycHNm8ebMC7LvvvrUxJewT7zNd1rJ243KWl4tq5/dKVJpQjWryNV/XlLC8oiENdByCqq4QkTeAM0Wkp6qu9lumCCJSDatJdgqwJW+zDAMuUtWVPsgUqYOV7q6zn82bYfZse9+w4dbNubm5DBgwwB+ZSoiIsGrVbkCwElxE8bb32hoYybbxrRuwRD+x7ruB44ILPIN5ZxdLUWIeesgqk7/3Hpxwgt/SJIXIuBg4cKDPkgSfRK/lL7/A4YdnXpkLN0aCS0oVLC8T28nAUFXNlnTX04E/gO7AUzH7XseyJV4RCoX6hcPhG4EBvXv3/h0YDeyMWfS+BIaGw+GGwEnlKT9A0UbYQ8ZzQIMWtJAylGEqUwFOBQKtYHkMxtK1nwC84bMs0TyOpd8/FPje27Y/8CyWoOSidAvk6mClkH//hY0bLTC+cmW/pUmIVatW8eKLrwCH0bRpc7/FKTaqGgYQkZnY70RWVtXebTdTgv/0WY7Asno1jBgBp5+eNcoV5I0LR+Ikci3XrYN582C//Yo+Nt24MRJcUu0i2BVzh3stxf3EjYSlsYTlVwnLnxKWYifjDIVCigVd7x8Oh/eK2Td2M5tHKhq6PXz73qFQ6AVMOVoJXAMcATyMXZcyWA2YDTnk3KchPVZDWl9Dem8Zyvy0D/uwgAXMZS5gf7KAb7DsfBmTTdDjBOBiVf1KVTd6y2jgUiwzpCObmO6FSca4Av7111/UqlWL4cOHp1+mErJo0SLeeusq4IfAZhAEUNWXs1W5Arj77ru5++67/RYjuDzyCKxYAWdl2k9HYrhxkTwSuZbLvSjPAw5IokBJwo2R4JJqBesMTDn4OsX9FIffgXZAU2CUhGWHErTxAub2eG/0RgnLCY/y6LErWFFxM5t/6RnueWooFBoWCoUOAMqGQqFaoVCoF1AN+BBzM7w0FArNiW7nLu7aUJva/MAP64CpwIElkDHjUNUtmOXqaBGp4bM40VRi+6yCAEsoOGOkI6hE4q9iFKzc3Fy6d+9O/QDV09ltt9046KD5wBlBdREEQERWisiKgha/5XP4yPTpcPfdlpbdFShypIDFi6FGDWjVqshDHY64SZmLoFfT5CjgVVXdnKp+SkBu1HsB2lPMIOpQKLQ0HA7/D3gwHA6fEQqFIpkCn1/FKhnEIM7iLHZip7fC4fAPwBBgVjgcroYpS2cDOUCPUCj0enTb4XC4JuaWNq4b3Tr8Gvo1k65dMngXuAkbG0OLODZdfAfcIyLnquoaABHJBcLkuQw6soUCFKy6devy1FOxXr+ZTU5ODrNm7QIENgYrwtVsm0WwHDYRdgoxE1lB5JxzzrE3B17lryBBY/NmuP56yMmx2KtMC5BJkMi4GDx4sM+SBJ9EruXy5XDccVAmAyuOujESXFIZg3Uwpsx8kMI+SsIioJb3fjNQ0ry5j2HufwPC4fDEUCg0CdgIsJSlPMdzHMVR33ekYw0sxifCKizhx/9CodC06AbD4XBZLI6rJnBcKBTKNuUK4Gfsf3A8maNg3QB8hBUajmQ0a4tlPYw7p5CIHI39r3OAF1R1uzRXInIINnbKAYtU9eAEZXcUlwIyCAaR6dPnMWvWUHJyTqJRowZ+i1NiVHVQfttF5FfgcODJtAqUZJp5/psTfZYjcNx4I7z/PoTDsOuufkuTdJoF2a83wyjptVy/3upV79k2yQIlCTdGgksqFazjgXVYQodMYg9gAFbA8noNlSybnVdM+DQsc+An4XD4MOBM7HzLbmLTgpGM7NKRjuuAulg69lXA9HzqZxEOh8tjMVlHAheHQqHfSiJXpqOqm0XkI+A4EcnJBOumqk4QkSbAOUBzzLI5GHgt3uQsIpIDPI3F2c0BxojI+6o6OeqYGli5gqNVdbaI7JzcM3HERQEWrC+++IITTzyRTz/9lM6dO/sgWPH5+utpwPXUrt2acuWCq2AVwpfYhESg6d27N+DqYBWLl1+Gxx+HM84A7/plG72z9Lz8oKTXcskSe+3SJYnCJBE3RoJLKhWsw4GvIi5XmYKGdDlwejLaCoVC/4TD4SOAz4Ef+tDnrFAoVE7CUk5DGq1E/est+RIOh2tjlqtDgZtDodCLyZAvg/kYOBezEv3qpyAiUg74BzhcVRPJ0b0PME1Vp3vtDgG6YXXTIpwFvKOqswFUdUEC/TlKSj5JLn755Rfq1q3LRRddRO3atX0SrGBWr17NJ598Qvv27WnQoAErV67ks88+Y+3avYEltG2bW2QbAaU7ZvGOC2dFzhJ++w0uvhg6doRXXsk618BsJmj34PLlUK4ctGvnlwSObCUlHqciUgtoSWYlt0gJoVBoArAvpkB9HA6HB/ahT1xPaOFwuHw4HL4SmOS1cV4oFHowddJmDJFx4XvyDlXdiLl2alHHFkE9TFGLMMfbFk1TYAev4PQvIpJv6n0RuVRExorI2E2bNiUolmMb1q61fLw5OVtdjqZOncrpp59OxYoVefTRR2kYVRsrU1i4cCGnnHIKX35pDgHz5s3jlFNOYfTo74EdaNGivL8CJkik4HDUMkFEFgB3A33jbCNiRT4G+/05U0RaxhxTA7Min6CqrYDTknkeBdG9e3e6d++ejq6Cz5YtcOedULYsDBkC5YM9tgsj28aFn/dgSa/l+vVQqVJmxl9B9o2R0kSqLFiRZJdZr2ABhEKhv8PhcCegD1YH65xwODwcS+jwAzDTS++OV4S4A+YKeB7mOvgVcGUoFJq8fevZh6rOEZEZWBbFx4s6Pg08CdwmIheoakk1mvymWGOVtrJYUpXDscyFP4jIj6o6dZsPqT4PPA+Qm5ubqOLniGbWLHtt0MAe4ICyZcvSsmVLFi5cmHHKVffu3Vm5ciXvvvsu48ePZ1dPKWzQoAHjx4/nvvsCXWQ4mrdj1rcAC4HRqjolzjYy1oq81157AZCVft/Jpm9f+PBDePjhrIiTLIzIuMgifLsHS3otV6+GmrWKPs4vsnCMlBpSpWDtD6zH4pOyBgnLTkB5Del27n6hUGgtcEs4HO6P1bw6F0uCAbA+HA6vACpgKdoBNmGuck8Cn0UUsFLEN1i6dlFVv8/9QCwpy78iMhFLbrEVVY2nsuUcILoi4K5sX79sDuYOsRpYLSJfY26SU3Gkh3zirxo3bsyIESN8Eqhw9ttvP9auXUv58uVp06bN1u0VKlSgTZs2W/XFoCtYkYLDCZKfFblTzDFNgXIiMhqLw31cVV+JbUhELsXq4CUlbf+tt94KuBisIvn3X+jTB047zbIHZjmRcZFFJO0ehOLdhyW5lv/9ZzXnq2Swh3UWjpFSQ6oUrHbABFVdn6L2046EZRBwvvf+Cw3p4fkdFwqFZgE3hsPhm4E9gc7A7ljB5Q3APGAc8H0oFCrN9V3GkmfBm+ezLIuAYQm2MQZoIiKNMHfR7mxfUPk94CkRKQuUx354Hk2wX0dxKKDIcKZyzTXXFLr/zz/tNVsSTYnIYZhrEcBkVf2iOB/PZ1vCVuQOHTr4PQFUenjhBUvNft99Lu4qmCTtHoTU34eRn4NKlZLdssORAgVLRATYCxie7Lb9QsKSg6dceRwmYWmsIZ1e0Ge8FOvjvCUjkLDcAPQGlgJHakinFfGRVDLee90LnxUsVb0gCW1sEpGewCdYcO9LqjpJRC739j+rqn+IyMdYsestWACwy9ycTvKxYH3++edcdtllvPvuu+y5554+CVZ8Fi+2DFhVqkAG5uUoFt7ExDvYpFTE8ltXRCYAp0RcjoogY63Ip5xyCgBlj+yVym6Cz5tvwqGHwu67+y1JWoiMi2HDEp3fyxh8uwdLci2/+85eK1ZMpOfUkoVjpNSQCgtWXayO07gUtO0XW/LZ5nt68eIgYWkPPOyt1sDqUe3om0B5ClZbrAZV2hGRMsCNwIlYNqNRwN2quq4k7anqh8CHMduejVl/ECgNiUwyk3xqYNWoUYNOnTpRtWpVn4QqmM6dO9O8eXMGDRq03b6p3uNI06ZZMdn/IrACaByJzRCR+ljpiheAw+JoI2OtyPvuu+9WAR0F8NNPMHkyXHSR35Kkjci4yCJ8uwdLci3Hj7cMgpUrJ9p76sjCMVJqSIWCFXHvyJqZeQ2pSlgeB671Nr2jIZ3lp0wloDNmqo88ilX3URZUdbmI/AO08lGMW4D/YWn212IFh2vh+Xw7spB8LFjt27fntdde80mgwunWrRu77LJLvvuyzD1wX6BzRLkC8GrFXU+cxeAz2Yrcq5dZrlwMVgFs3AiXXQa1apUqBSsyLrIFP+/BklzL2bOhcsuij/OTbBsjpYlUKFiRqeG/U9C2b2hIr5Ow3ASU0VAgY8veJK82BWTGZOrfgJ/BMD2Aq1W1P2yt3zFcRC7LgMQbjlQQsBis2267rcB90RasLGA2Fo8RS0W2DZovFGdFDiBbtkCPHmZOePttqO7r3J8jQYJyD27aBOPGQeMOfkrhyGZSkfm/MZbMIdbvNvBoSDcGVLlCQ7oQy94zEAhjM8Z+M4M8hdwPGgAfRK1/gln46vojjiOlLF1qVSUrV4addtq6+ZVXXqF+/fosWBCsus9ZpmDdCDwhIp1FJMdbOmPFSG/0V7TEOeGEEzjhhHiSkZZCxo+H11+HK64AL96ktODGRfIo7rWcOhVWrMh8fd6NkeCSKgvWLFUNVIxSacBLynGh33JEMR2oIyKVVHWtD/2Xx1wDAVBVFZENWDp9XxGRrkDXChV8FyV7iI6/igpa2nXXXTn88MOplIGppGrXrs3555/P/fffv92+oLsIishKts0wVhH4jryY1zJYrOtr5JW3CCSHH25JZ7/3WY6MY/16iFhpr7vOV1H8IDIuHIlT3Gv56af2Wi3Dv1ncGAkuqVCwamPBjQ5HUUSsnLsAM32S4T4RWRO1Xh4IicjyyAZVLTxXdgpQ1RHAiNzc3EvS3XfWkk/8FcBhhx3GYYfFk0Mh/VxyySV07Nhxu+1btsBff9n7Jk3SLFTyuJrtUzhnJddea+G737sYrG0ZPRo++QR6984aU2xxiIwLR+IU91p+843NtWXgvNo2uDESXFKhYNUiixJcOFLKQu+1Fv4oWF9jNcqi+R6IrmhYKh4ASwUFKFiZzD333JPv9n/+scn/2rUzfwa2IFR1kN8yOHxEFe65xxJb3HKL39I4ShGqZsE69VRYU/ThDkeJSJWCtSgF7Tqyj8g4qeVH56p6iB/9OnyiAAWrb9++9O/fnzlz5vggVMFE8qxIPjnYg+4eCCAiO6rqksj7wo6NHBdUjjnmGACqnXiXz5JkEC++aIWInnsOcnP9lsYXIuPio498qVSSVRTnWv7wA6xaBQcdBB9vSLVkieHGSHBJqoLlFRneEQj0j6EjbSz2Xmv6KoWjdFCAgtWqVStOPPHE9MtTBKtWraJ69eo8/PDDXH/99dvsy5IEFwtFpI6qLsAmW/KzFou3PSeffYGha9euAHzlsxwZw7RpltTisMNKVVr2WCLjwpE4xbmWI0dC2bJw2mnwcWZW6NiKGyPBJdkWrHJYYLIfCQscwSNS0DeD66g7soaZM+21YcNtNnfr1o1u3bqlXZyiKFu2LHfccQf77LPPdvuywYKFFQ+OTMYd6qcgqebKK68E4CsXg2X+WaedZq8vvww5gdadEyIyLhyJU5xr+fXX0LYtVKmSQoGShBsjwSXZClZ57zVpqcxFZDSkzp0r1e2ns58AXqvIOClf6FEOR6KoFqhgZSqVKlUqMAZryhR7DbKCpapfAYhIWazg+HBVzbryHo4YhgyxAkQPPgi77uq3NI5SxpYt8PPPcPXVfkviyHaSXQcrklP6UhEZLSKPJbn9QOIpJnsBe0WUlNKONzaGeavdfRTFkeXMmjWLG664gj/WroUddmD64sXccMMNTPX87M4991zatm3rs5Tbs2XLFjZt2pTvviyxYAGgqpuwoqPl/JYlVXTp0oUuXbr4LYb/bNoEDzxgbroxbq+lETcukke813LhQtiwITi5jtwYCS7JVrBSUbjYkb1EYi62j+Iv5YhIVxF5fvNmV06uJHzxxRcce+yxzJ07l4ULF/LCq6/yD0CjRsyfP58XXniBuXPNWHL++efTqlUrX+XNjz///JNy5coxZMiQbbavXm1ZBMuVC85DQhz8CLT3W4hUccYZZ3DGGWf4LYb/nH22Wa/uvbdUuwZGcOMiecR7LWfNstfddkuxQEnCjZHgkmwXwUg+lmdU9ZEktx1YVPWQdLkiBgVVvU5EamGp2t/0Wx4R2QU4F0vb3ltVF4nI/sBcVZ2RbnlcHazEWLduHQsXWhWADh06sOLFF+HMM6FhQ/bbbz9WrFix9dhMnSGsWbMmd999N23atNlme6T+1e67W6B2ljAAeEhE6gO/AKujd6rqr75IlSQuucRu41GlOQZr8GB4800rLHzmmX5LkxFExoUjceK9luPG2WsGzqnlixsjwSXZP8+RmJoKhR5VDFKtkKRL4UlHPwG8VpFxkrSYvZIgIu2Bz4EZWCzIg1hWsyOApsBZ/knnKAnHHnssxx57bN6GANbA2nnnnendu/d227PJPTCK173X/CbmAp9FsNSzeTPceit07gx33+23NI5SzHffwU47WZFhhyOVpMqClTQFy5HVRMaJ35UoHgIeV9WQiKyM2v4JcIFPMjmSScASXABs2rSJDRs2ULFiRcqUyfO+jihYzZv7JFhqCI7mWwIOOeQQAHY58z5/BfGLJ5+Ef/+FRx/NKrNrokTGxejRo32VIxuI91r+/ju0bw/5lBfMSNwYCS5J/aZT1S3eA2r1ZLbryFoi42SZn0JgsR/5FWOZB+ySZlkcSeD1119n4MCBfPDBB1SoUCGQFqwvvviCo446im+//Zb9999/6/YstWA1AL73El5sxcswuB8wyxepkkSPHj0A+MhXW71PzJ0LffpAp05w6ql+S5NRRMaFI3HivZazZ8O++6ZWlmTixkhwScVU0iKgVgradWQfO3mvi3yVwuq27ZDP9ubAgjTL4kgCmzZtYs2aNZSNzJYH0ILVpEkT+vXrR6MYpTBLFawvgTpsf79V9/YF2kVwq4JV2mKw5s2Dww+HdevMihUUs0GacA/PySOea7lqFSxZEqzqAG6MBJdUZP1zCpYjXiLjxG8F6z0gJCIRl0UVkYbA/eSlkncEiPPOO4/vvvuOnJwcK3wSSR0VIAWrUaNG3HLLLdStW3frNtWsVbCEvKyi0dQkJuFFENm4cSMbN270W4z0sn49nHwyTJsG774LHTv6LVHGUSrHRYqI51pOnmyvLVumQaAk4cZIcEmFBWshNhPpcBTFzt6r3wpWL+BDbOxWBr7FXAO/A+70US5HMpg3zwqf7LQT5Ob6LU3crFu3jrVr11K9evWtMVhz59osbM2atgQdEXnfe6vAYBGJdqLLAVoD36ddsCRzxBFHAKUsBuu66+DHHy1z4DHH+C1NRhIZFy6+JnHiuZZBVLDcGAkuqVCwZgEB8nB1+EgjYBWwxE8hVHUFcICIHAbsjVl2f1XVUX7K5Sg5jzzyCF988QUffPBBIOOvwOLILrroImbOnEmDBg2ArLReLfZeBViKuetG2IBNdgxIt1DJ5uKLLwZgROBtcXEyZAg8+yxceSWcdprf0mQskXHhSJx4ruXkyVChQrAyCLoxElxSoWBNB3YQkR1UdWkK2ndkD42A6aqan2tQ2hCRtqo6XlW/AL7wU5YIItIV6FqhgkvIWRJycnLYeu0CGH8F0KlTJx599FFqRpmqsk3BUtULAERkJvCQqmalCnLOOecAMKI0xGD99Recf76laguH/ZYmo4mMC0fixHMtJ02y784gJbJ0YyS4pCIGa7r3GqzpYocfNCZvvPjJbyIyQURuFpGMCH9V1RGqemlOTqBj+33j2muvZdgwL3wuoBasVq1acd1111GlSpWt27I0RTvAPURZr0SktohcLCL7+ShT0lizZg1r1qzxW4zUs2kTnHceVKoEb70FtVw4dmGUmnGRBuK5ln/8ESz3QHBjJMikQsH6y3vNvkcAR9Lw0i/vAUzzWxZsrL4DXAzMFJEvReRCEanms1yOZBBQC9bKlStZsGAB0QbebLNgRTESuBpARKoAY7GC31+JyHl+CpYMtit8nY2sXw89eljc1WOPBW5Cww9KxbhIE0Vdy6VL7aegVav0yZQM3BgJLqlQsP7EfOfbpqBtR/bQDCs0PM5nOVDVqaoaUtWmwP7ABKAvMF9E3vRXOkdJuPHGGzn33HNtJaAWrEcffZRddtmFLVu2bN2WxQpWe/Lcc08GVmBJcC7BktDEhYgcLSJ/isg0Ebm1kOM6ishmEUlLYaYrrriCK664Ih1d+cdDD8Frr8G995qi5SiSbBwXft2DRV3LP/6wLKzt2iWjt/SRjWOktJB0T1RV3SAik4G9kt22I6vYy3sd76cQsajqT8BPIvIa8Cxwis8iOUpAtWrV8lLbBtSCdeyxx7LTTjsRcRNdt85OJScnWEHacVKVvILjRwLvqupGEfkCeDqeBkQkxzv2CGAOMEZE3lfVyfkcdz/wSZJkL5IzzjgDgHeyNQZr6VKrc3XkkXD77X5LExgi4yJb8PMeLOpaTplir0GbnMq2MVKaSIUFC8wqsZeIqyroKJC9gPWYxTMjEJHGInKniPyBZS9birkNxvv5jJw9L42EQiGeeOIJiwmZPds2epn4gkKHDh22mbmcNs1mYBs3hvLlfRQsNcwG9heRXOAo4DNv+45AvAEI+wDTVHW6qm4AhgDd8jnuaqy+XdqKiC9fvpzly5enq7v0c9118N9/cNddfksSKLJwXPh2DxZ1Lf/9117r109Wj+khC8dIqSFVCtaPmHvH7ilq3xF89gfGqqrvFfRE5CoR+R6LHzwNGAg0VNXDVHVgnG1EZu6OAVoCZ4rIduG0fsyel2r+/Rc2b4Y6daBiRb+lKRaLFi1i7ty5W9cnTbLXoAVpx8kjwKvYrPe/wNfe9oMwl914qAf8E7U+x9u2FRGpB5yEWafTRrdu3ejWLb/nzCxg2TJ45x046yzYf3+/pQkUWTgufLsHi7qW8+bBDjsEb3IqC8dIqSFVySq/8V4PIjOSGDgyCBGpDHQEHvJbFo9bgTeAy1Q13oe5WLbO3AGISGTmbnLMcZGZu44l7McRBzvvvDPdu3fniZNPtg0Bi78CuO222xg5cuRWJWviRNsetCDteFDV50TkF2A34DNVjQSe/Q30jrOZ/DwmYktAPAbcoqqbC3OwEJFLgUsB6idhyvuaa64BYOjChJvKPO64A1avhptu8luSwBEZF1lE0u5BKN59WNS1nD07eNYryMoxUmpIlYL1B1ZA8kDgpRT14QgunbCx901RB6aJ+kmoxZXfzF2n6AOiZu4OoxAFK/pHpXzQptsyhHPOOYd99903sPFXABdccAGHHnro1vWIBat1a58ESjGqOhbLHhi9bWQxmpiDKWgRdgXmxhzTARjiPdjVAo4VkU2qOjym3+eB5wE6dOiQcJ2+kz1Ff2i2xWDNnAkDBlgx4b328luawBEZF1lE0u5BKN59WNS1nDULdg+gT1UWjpFSQ0oULFVVEfka6CIi4nchWUfG0QXYDHznlwAisjcwzpspb1fYTJqq/hpPk/l9NGb9MeKYuYv+UcnNzXX3TjHo3bs3a9eu5ZFHHrENoZC9BtCCtd9++7HffnlloLLNgiUiNwD9VXWd975AVPWROJocAzQRkUaYm2F34KyYdrYOBBEZBHyQ34Ndslm0aFGqu0g/qnDsseZzdd99fksTSCLjolb21Avz7R4s7Fqq2lzAYYcl2kv6ycIxUmpIZT3rkdhs/Z7A7ynsxxE8jgO+VVU/IzfHArWxINuxmDJUkJIUT7XfpM7cOUrGkiVLti3KGGAL1vTp06lcuTK1a9dm7Vr4+2/LIBi0LFiFcDXwMrDOe18QisVoFYqqbhKRnlh8Yw7wkqpOEpHLvf1pjbuK5tRTLZ/NLmdmkSLy4ouW+3rAgKxMa5kOIuNi9OjR/gqSJPy8Bwu7losWwapVgZxny7oxUppIpYL1ofd6HE7BcniIyG5YjTS/HfYbAQuj3idKxs6elyaefjomo/f06fYawF/Wk046iUaNGjF8+HCmTIEtW6B5c6hQwW/JkkP0/RD9PsE2PyTvtyeyLd+HOlXtkYw+4+HGG28EYHDslEtQ+fZbS8fevj1ccIHf0gSWyLjIJvy6Bwu7llOn2muTJsnqLX1k4xgpLaRMwVLVeSIyFjgByKJpO0eCHO+9fuCnEKo6K3oV+Cc/V1YRiSssNpNnz0s1f/9trwF0vu/Xrx+VK1cGsj/+Ktvp2rUrAIOzIQZrwgQ4+GCoXdsKC+fEY+B35EdkXDgSp7BrGXFkCOA8mxsjASaVFiyAd4C+ItJQVWemuC9HMOgOTCGD6l8BM4A6xNTkEJGa3r64niAydfa8NHHRRRfRsGFDevfuDWvWWG7ecuVgt92K/nCGccwxx2x9n23xV9F49RLPw4p6N8YmPKYDbwGvZUMM7/z58/0WITmoQs+eZk795hvnGpggkXFRu3ZtnyUJPoVdyy+/hKpVgzlc3RgJLqmqgxXhDe/1zBT34wgAnjXoIDLvoUnYPiEFQBUsPsQRENatW8f69ettJdo9MGCz7KrKr7/+ujXAOaJgZakFaxhWe64BVvNqEua2+wrwto9yJY3u3bvTvXt3v8VInE8+ga+/hssvD+bTaoaRNeMiAyjsWv70kxldA1YKEXBjJMik1IKlqjNF5DvgbBHpl2EP1Y70E1G0X/dVCg8RecJ7q8B9IhKVHYEcrLbVuHTL5Sg5r732Wt7KNK8EXwDdA9euXUv79u3p168ft9xyy1YXwWyzYInI2cCRwFGq+lnMvqOAYSJylqpmxHdGSbn11lsBGDiriAMzmS+/hBNOsGJC//uf39JkBZFx4Uicwq7lvHlwwAFpFCaJuDESXFLtIgjwKlaxuyPwcxr6yzhEZHT0uqoe4o8k/uG5AV0A/BApxpsB7Om9CtAC2BC1bwPwKz4VQxaRrkDXCtmS0cAPAhx/VbZsWYYPH07z5s1ZudJiCMqVgz328FuypHMOcH+scgWgqp+IyIPeMYFWsI4++mgABgY1Bmv1arj6anO1HTMGdtzRb4mygsi4cCROQddy9WpYvDiQXuKAGyNBJh0K1uvYQ+oVlFIFywHAoUAzLNYiI1DVQwFEZCBwraqu8FmkrajqCGBEbm7uJX7LEiSOOeYYjjvuOHr27JmnYAVQKylfvjzdunUD4DuvWlyrVqZkZRltgTsL2T8SuCxNsqSMf/75p+iDMpW1a6FbN0vJPmKEU66SSGRc7BbUp/8MoqBr+buXwzqo1n83RoJLyhUsVV0pIq8AF4pIL1VdnOo+M43SaLHKhyuBxVjgekahqi7PcJZQpkwZypTxQksDbMFasWIFU6ZMoUWLFvz2W1UA2rXzWajUUBOYV8j+eUDgn+jPPfdcIIB1sGbMgKOPhr/+gkGDrLCwI2lExoWrcZQ4BV3L2bPtNYA/A4AbI0EmHRYsgGewB+yLgfvT1KcjQ/CSW5wIPKKqGZk0QkQOxWLE6gPlo/epagDrv5dORo4cmbcS4BisMWPG0KVLF7766it+++0gIGsVrHLAxkL2b/KOCTR33mlGugF/+yxIcdi4EY45xooI3XknnJcxzgdZQ2RcOBKnoGs516s9V7duGoVJIm6MBJe0KFiqOlFEPgWuF5EnVHVtOvp1ZAw3YYkknvRbkPwQkR5YnOC7wCHAe0BTLJPZYN8Ec5ScjRth1iwQCWTxk7Zt2/LBBx/QunVrxo2zbVmqYMH2CWaiqZxWSVJEly5dABjwd4BisJ58Ev78E4YPNxdBR9KJjAtH4hR0LefOteyBO+yQZoGShBsjwSVdFiyAvsBoLNFB/zT26/AREdkFs1y+oqqZGojQC+ipqi+IyErgNlWdLiJPAat8ls0RJ2vWrOGQQw7h+uuv58x99oHNmy2yOYC5eWvVqsVxxx3Hxo15KdrbtPFXphTxNVCUifHrdAiSSqZPz5S8PnHy2Wdwyy1w/PGWOdCREiLjorFLeZ8wBV3LOXOgXj2bawsibowEl3QqWF8D3wM3i8gLqrqhqA84soLrgQpktmtoY2CU9349Vv8K4ClsUsDlSQ0AW7ZsoWbNmlSoUCHQ8VcAs2bNYs6cOVSq1JkNG3LYYw+oVs1vqZJPaYlPvfDCC4EAxWCFw7DTTvDqq8F9Mg0AkXHh4msSp6BrOWMGNGyYfnmShRsjwSVtCpaqqojcA3yEZYXKSHcxR/IQkXrANcAQVZ3qtzyFsBio6r3/F2gN/I4F4FfySyhHHps3b2bTpk2UK1eOMmXK5Lterlw5Ro4caUkunnnGPhhQBWvw4MHceeedDBiwHsjJZvfAUkE4HAag/xSfBYmHNWusMmuvXlCjht/SZDWRceFInIKu5ezZFkoYVNwYCS5l0tzfJ8AXwF0iUltE+oiIyz2ZZYhIbxFpAfTBlPhMj9L8Bit2CvAm8ISXuv0NYLv6PI708+GHH1KxYkV+++03AIYPH07FihWZ5FXgHTp0KBUrVmRaJLFF5DWAKdoBzjnnHD799FMmTLB8K07BCjYHH3wwBx98sN9ixEffvrBpk8sYmAYCNS4ynPyu5cqVVmQ4oPNsgBsjQSadLoIRK9bNwFjgT6AasBB4Op1yOFKHiOwK3AiEMAX+uQwqLFwQPYFIoM59WOay/TFl639+COQKDW9L8+bN6du3L3W9VFCtWrWib9++7LLLLoAlhejbty+1atWyD/z5p702aeKHuAkxY8YMVq5cyRFHHMH/vNHnFKxg82dkPGY6770H994L3bvDAQf4LU3WExkXzZo181mS4JPftZziWYxbtPBDouTgxkhwEVVNf6ciM7F02N1V9c20C+BIKSKyE/AbUBdoqapBcIzJSHJzc3X16tV+i+Ery5cvZ8WKFdSrVy+vxlVR7L47TJ8OkyZBy5apFTDJXHXVVbz55pv8999CatSwWdj588HTJTMGEVmjqrl+y5FqOnTooGPHjk2ojUMOOQTIi8Eaetm+iYqVfNauNYtvzZowZgy4yZ2UExkXJY2vEZFfVLVD8iTKXIq6D/O7lq++atUFCvsZOOM5y+yZkfckiY8RR+op6D5MqwUriiMxK9YFIvKW+qHlOVLJEUA9oFemKlciEnfxUlVdkkpZHIXz4osvcuONN7Js2TKqV69e9AfWrbPI5pycQLoIXnnllZxwwglMnmzKVYMGmadcOYpH3759AXh8gs+CFEbfvpbT+uWXnXKVJiLjwpE4+V3LSPLOICfgc2MkuPiiYKnqVBHpDTwGnAK87YccjuQjItWBRzAF+jF/pSmURVhtrsIQ75ic1IvjKIgjjzySAQMGULlynCWRpk4FVbNilS9f9PEZRqtWrWjVqhUDBth6587+ypMuvJIO52Jp23ur6iIR2R+Yq6oz/JUuMfbbbz8AHp+QoXWw7rsP/vc/6NoVDj/cb2lKDZFx4Uic/K7lzJlWYDiAlTq24sZIcPHLggUWd3U+8JSIjFbVRT7K4kgejwI7Acep6ma/hSmEQ/0WwBEfrVu3pnXr1vF/4I8/7DWgjve//vorlStX5ocfmgOwb2Z6riQVEWkPfA7MAFoBD2KTIEdgRb/P8k+6xJkYKWaWiTz3HNx+O3TpYtYrl5Y9bUTGRbG+3xz5kt+1nDEjkHXmt8GNkeDim4KlqptEpAdm6XhWRE5zroLBRkS6YYWk71XVX/yWpzBU9Su/ZXDEx4IFC1i1alX8hRYjkc3Nm6dOqBRy8cUXU69ePaZNGwGUDgULeAh4XFVDXrHvCJ9g3ymBpmfPnkAG1sGaOtXSse+zD7z7LlSpUvRnHEkjMi5cfE3i5HctZ84Mfq4WN0aCi58WLFT1d89VsB9wNjDYT3kcJUdEdgaeB8YBd/srTfEoKh7LxWD5S79+/RgwYAArV64s+mAIvAXrueeeY/Xqshx6qIXC7LWX3xKlhfbARflsnwcEPgLtwQcfBOChXzf5LEkUS5bAEUeYG+0rrzjlygci48KROLHXcuNG+Oef4Fuw3BgJLr4qWB4PAV2B/iLyc4YXpHXkg4jkAK8CNYDDVXWDvxIVm6LisVwMlo+cffbZdOrUKf4PBNyC1bFjRz7+2N63bx/IMLKSsBbYIZ/tzYEFaZYl6XTs2NHe/JohMVjr18N++1lSi2++AZcC2he2jgtHwsRey9mzYcuW4CtYbowEF98VLFXdLCJnAb8Cb4tIZ1Vd47dcjmJxJ5YZ8jJVzeBggwKJjccqB7QDrsCnIsmuDlYe7du3p3379vEdvHlzXg2sgCpYn3zyCR991AxoWFrcAwHeA0Iicpq3riLSELgfGOabVEli3LhxfouQhyr07m33ydtvl54sKhlIZFzsVUrM1Kkk9lrOnm3bGzb0RZyk4cZIcPFdwQJQ1dkicjbwEfCMiPRw8VjBQESOxIoKvwoM8FmcElFAPNYoEZkOXAy8nmaRUNURwIjc3NxL0t13pjF79mw2btzI7rvvXvTBs2ZZmva6dSGelO4Zxvr16zn66KPZY4++wG2lScHqBXyIFZ6vDHyLuQZ+RzEmOUTkaOBxzOr8gqr2i9l/NnCLt7oKuEJVxycsfRFcd911QIbEYPXqBY88AqefDqec4rc0pZrIuMim+Bq/7sHYa7lwoW3feedEW/aXbBwjpYWMULAAVPUTEQkDfYAJmOugI4MRkRbAm8Ak7Esy25TiccBBfgtR2unVqxcTJkzgj0hsVWEE3D2wbNmyfPXVDxx1VF0A9t/fZ4HShKquAA4QkcOAvYEywK+qOireNjxX5aexzINzgDEi8r6qTo46bAZwsKouFZFjsLjRYviflozHHnsMgPt+WpvqrgrnhRdMubrwQsse6PCVyLjIFvy8B2Ov5SIvL3WtWom27C/ZNkZKExmjYHncA7QEHhCRv1X1Xb8FcuSPiOwEjATWA11VdbXPIiUVEakCXAf847MopZ4bbriBZcuWxXfwZO93PKAJLnJyclDtzLp10Lo11K7tt0TpQUTaqup4Vf0C+KKEzewDTFPV6V6bQ4BuwNaHO1X9Pur4H4FdS9hXsdjq3vOTjzFYn3wCl1wCTZpA//5QNtN+/ksfWej25ds9GHstIxasmjWT0bp/ZOEYKTVk1Desqm7xUrfXB14TkUNV9SefxXLEICKVgeFAHeAQVZ3pq0AJ4qWFjra+CeamtBrLbunwkc7FiREZ73matGmTGmFSzJIlS3jmme+AfTn88IBPvRaP30RkEuZq/LqqzilBG/XYdkJkDoXPjF+EuaVvh4hcClwKUL9+/RKIsi1jxoxJuI2E6N8frroKqlaFDz6w9JQO34mMiyxKZJC0exCKdx/GXstx46BxYyhXrmihM5ksHCOlhoxSsABUda1XT+l74CMROURVf/dbLochIhWAd4F9gdOzRAHuGbO+BYsF+UlVl8bbSKbGfwSdKVOmUK5cufhisCLJBAI66/f7778zdOgJwBd06VKqamE3xyYzLgb6isg3mLL1tuc+GA/5VcjN121ZRA7FHu7yrZKjqs9jrkt06NAhYdfnm266CfApBuuHH0y5qlQJJkyABg3SL4MjXyLjIovia5J2D0Lx7sPYa/ndd3DMMXFInOFk4RgpNWScggWgqgtEpAvwDfCZiBykqn/6LVdpR0TKAm9gGQMvUtW3fRYpKajqy4m2kcnxH0HnggsuoGrVqnz66aeFH7huncVglSlj/nUBpGnTDpQpMxZowsEH+y1N+vDKc4SwTIKdMGWrL/CUiHygqqfH0cwcYLeo9V2BubEHiUgb4AXgGFVdnLDwcfDUU08BcM93cdZySxY//WS1rmrWhO+/d8pVhhEZF1mEb/dg9LVcscJcBAP6M7ANWThGSg0ZqWABqOpMT8n6GvhcRLqo6hS/5SoJIjI6el1VD/FHkpIjIuWxGeWTgGtV9SWfRUo6XsHhnbEA+63EKEkFkbHxH0Hlu+++o0aNGjz44IPk5MRRimzyZNi0yRJcVK6cegGLyaJFixg/fjwdO3akWrVqLFiwgAkTJtCpUyeqVKnC/PnzeemlSWzZ0pn998+lalW/JfYHzyr+k4i8BjwLxJvqbgzQREQaAf8C3YGzog8QkfrAO8C56ay52DrypPddGmOwZs2Cbt0skO+rr6BevfT17YiL1tmgAWyLb/dg9LWc4zkY75oFv7BZOEZKDWWKPsQ/PKtVF6wu0dci0tZnkUolIlIRq0VzOnCTqj7hs0hJRUTaicg4zC1wEjARy2QZeY2H/HzPC3uiKTT+Q0TGisjYTZs2xdl9dvDaa6/x22+/AXDuuedy//33c8ABB7BvPPnKM9w98Mcff6RLly5MnWrPFN988w1dunRhxowZAHz55Zf07t0FmMPhh/soqI+ISGMRuVNE/sBStS/F3AaLRFU3Ye6+nwB/AG+q6iQRuVxELvcOuwuoiRW2HyciY5N/Ftvz/fff8/333xd9YLKYNg323RfWroVhw5xylaGkfVykGD/vwehrGamBtdtuhXwgIGTbGClNZKwFK4KqThCRA4FRwGgROS7GEpDxBNFiFUFEqmExV4diMUPP+ixSKngJm227FviPAnzGiyAl8R+5ubnZlvq+UC644AJuvPFG2rVrx9ChQ6lWrVr8H44kuMgwBevpp59m2bJlXH755Xz99dc0a9YMgIMPPpivv/6axo0bA3DYYYezyy5f899/u3HUUX5KnH5E5CrMLbATNrExEHhNVf8tTjuq+iFWTyt627NR7y8mToUtmdx+++1AmmKw1q6FU081l9nPPoO2bl4yU4mMi2yKr/HrHoy+ljNn2rZGjZLdS/rJxjFSWsh4BQvMPz9KyfpCRM5X1aF+y5XteKb8D7DU+eer6qs+i5QqmgCnqeq0BNrI2PiPIDFlyhSqer5xxc6alKEWrJ9//pn58+dzxx13cOCBB27dXqtWrW3W58zZmf/+25m6daE4iROzhFux+M7LVDVeq3FgeM6rOXXX6CWp7+zkk22y4YMPYJ99Ut+fo8Q852qRJY3oa/nPP1aFoE4dHwVKEm6MBJdAKFgAqjpLRPbF0oMPEZHdgfuysLhtRiAiHYARWLryY1T1M59FSiXfAi2ARBSsjI3/CBIRa06x2bwZfvnF3rdrlzyBksDLL8eXQ2XYMHs96STL01HKqJ/N3+URqyWjUxiDpQoDBsDHH8ONN8Jxx6WuL0dS2DouHAkTfS3nzIG6dbPje9SNkeASGAULQFUXeYkvXgTuBdqKyMWqmubUTNmNV4vsGWA+cHicSR6CzEXACyLSGHNP2hi9U1W/LqoBVd0kIhHf8xzgpYjvubf/Wbb1PQfYpKodknomAWb9+vW8/PLLHHDAAbRs2bJ4H544EVavtsInO++cGgFTiGqegnXyyf7Kki5EZG9gnKpuAdp590S+qOqvaRMsBXz11Vfeu/LJb3zdOnjqKXj8cXuy3HVXuPPO5PfjSDqRcXFwaUoZmiKir2XkNsgG3BgJLoFSsABUdZ2InIMlH7gXaCMip6rqJJ9FCzwiUgl4ElM4vgDOVNUF/kqVFpoAewH5Rb4opjAVSabGfwSFZcuWcdlll/H0008XX8H68Ud7zUDfup49e7LPPvtw3nnnFXjMpEkwdapl0z7ooDQK5y9jgdrAAu+9UnAsY1z3YKYSCoWAFMVgnX8+vPkmHHAA3HsvnHaa1bxyZDyRceHiaxIn+lrOmZNxnuIlxo2R4BI4BQvAcyXpJyI/AkOAn0XkemBANruZpBIR2RNLw94W+B/QR1U3+ytV2ngO+By4j5InuXAkSK1atZgzZ07xEltE+MFzvcpABeuHH36gZs2ahR7z5pv2euKJFjtQSmiEZe6MvM9aXnrJqlrc9tl/yW34ySdt8Fx2GTzzDBRiBXRkHpFx4UicyLVUNUNutnjIujESXAL9U66qo0WkHfAK9pB8oucyuF1yAUf+eAVybwTuAZYBx3mWmNLErsCxqvq334KUZnJycqhX0nTSEQtWPOnc08wvkdiwAti0CQYOtPdnnVXooVmFqs6KXgX+yW+CzItdDDR5sYVJUrDWrIHbboMnnoBjjoGHHnLKVQApccypYzsi13LpUrs9ssVF0I2R4BL4EEBVnYe5dl0NHAJMFJELRKSMiJQVkSdFpImvQmYIIlJRRHqLSGdvfU+skPP9WLbA1qVQuQL4DGjvtxClnUWLFvH0008zffr04n1wyRL480+oWBHatEmNcCnk449txnWPPeDQQ/2WxjdmADvFbhSRmt6+QDNq1ChGjRqVnMbWroUjjjDlqk0beO89qFIlOW070kpSx0UpJ3ItZ3nTNvUDPy1juDESXAJtwYrgBUk/JSKfYTWNXgIuxJSHnlh697/8kzBjKAdcAXQTkS+AG4DlwHnA4FLsXvkx8LCXQn0C2ye5eCfdAolIV6BrhQoV0t21b8yaNYuePXvy3nvvFW/W7rvv7LV9eyifgiQCCbBw4UKuvPJKrr76ag4qILhqwAB7veSSUm2EEPJ3za0CrEuzLEnnf//7H5CEGKy//4YuXWDmTOjXD26+uVQPmqATGRddunTxWZLgE7mWl11m17J5cz+lSR5ujASXrFCwIqjqn169rAuAB7FCrv8AgSpMnELWYJaqSzCLzYvAraq6yFep/Ke/93p7Pvt8CbBX1RHAiNzc3EvS3bdftG3blgULFmytgxU3kdm9ww5LvlAJsmrVKiZPnsyKFSvy3f/vv1auqFw56NEjvbJlAiLyhPdWgftEZE3U7hxgH2BcuuVKNq++aiUEe304p2QN/PEHXHCBlSKoWhXefdcC9hyBJjIuHIkTuZbPPAM5OdAkS/yW3BgJLlmlYMFWa9aLIvI18B7QFPhbRB4AHlXV1b4K6ANi+Y+PxlwB98QCy+9U1ed9FSxDUNXAu8pmA2XLlmWnnbbzEiuazz+31wyc4WvUqBGTJhWc4PSpp2DLFkvNHsDs8slgT+9VsFp0G6L2bQB+BR5Kt1DJZrfdIjXIi6lgLVtmg+PLL239/PPhrrusHIEj8OSNC0eiRK7l779Dy5aQLc4fbowEl6xTsCKo6l9ASxFpDvTFkjhcKyKPAU+r6jIfxUsLIlIG6IpZZvYB/gbOAN4qxe6Ajgxl+vTpDB8+nLPOOovatWvH96F58yzHeeXKGZlBsDAWLzYFC+Cmm/yVxS9U9VAAERkIXKuq+Zv6As7HH3/svase/4eWL7ec/ZMmwa23mqLVsWNK5HP4Q2RcHH300T5LEnwi13LatKNp3dpnYZKIGyPBJWsVrAiqOgU4WUT2Be7AUpDfIiLPAM+o6kw/5UsFXj2r7lh2wFZYkPgVWPHbDYV9tjQiIjcUtl9VH0mXLKWZCRMmcOONN3LIIYfEr2BFrFcHHZRx8VdgtUsee+wxnn766e0yJD76KKxaBUcfDfvs45OAGYKqXuC3DKmkX79+QDFisMaOhcsvhwkTLA37aaelUDqHX0TGhXt4Tpx+/fqhCn//fXRWFWt3YyS4ZL2CFUFVfwCOF5G9gNuAXsBNIjISi8H5NOh1n7xsiZdhCT52ACYC5wBDVXWTn7JlOFfHrJcD6gBrsSKoTsFKA8cddxzLli0jNzc3/g99+qm9Hn54aoRKkJUrVzJz5kwkJhHBkiWWBA7M48sBInIocCZQH9hGW1bVzAuwKwZDhgwB4Nr34kiIeMst8MADUL06DB3qlKssJjIuHIkzZMgQfvsNjj3W8h1lC26MBJdSo2BFUNVxwBkishtwKZbw4UNgnogMAV4HfgmKC52I7AKcDpwNdAI2Ae9gSuPXQTkPP1HV7Yqcetd1IDAg/RKVTsqWLUv16sVwodq4EUaMsPfHH58aoRKka9eudO3adbvtd9wBK1da2FgGlu5KOyLSA3gWeBcrtxGJn20EDPZNsCSRZ5EtRMEaMgSefRa++gq6dbPiaDvskBb5HP4Qt6XeUSS1a9dm2jR736mTv7IkEzdGgkupDe5X1X9UtTc2W3oa8BNwFTAGmCYij4vIESKSUX5HYrQQkZtE5CtgLvAEUBG4GWigqmeo6ldOuSo5qvof5lL6gN+ylBaef/55br/9dlatWhXfB776ypIAtGiRlpy8U6ZM4e67795ap2v69OmEw2Fmz54NwF9//UU4HObff/8F4I8//iAcDjN//vxt2vnpJ3juOShbFh57LOViB4VeQE9VPRMrk3CbqrbDlKs4B0TmMmLECEZEJgNimTIFrr4azjzTxvRNN5nlyilXWU+h48JRLEaMGMG7746gdm0oab36TMSNkeBSahWsCKq6QVXfVtWTgNqYVWuK9/opsFhEPhaR20XkQBGpWJJ+ROQxL8FGcT8nItJURC4WkZexKdDJ2IN/deA+rEDwXqr6oKrOLYl8jnwpA+ziR8ci0lVEnt+8OdBeq8ViyZIlDBo0iJycOLPiDx1qryedlDqhovj555+5//77mTHDrBDTp0+nT58+2yhYffr02apgTZkyhT59+vDff/9tbWPDBgutUYVevaBVq7SIHgQaY/UKAdZj9a8AngJ6+CFQMnn44Yd5+OGHt9/x4os2QfDUU1YIbcMGcw/MlhRojkIpcFw4is3DDz/MTz89TIcO2VUazo2R4CLOyJE/IlIZOAw4FjgISxYB5oI3BRiP1WeZCkwHZhSWAl5ERgOo6iEF7C8L7Iq5xOyBpS/eC2hDXuqphcA3wGfASFX9p2Rn54hGRGJDYgWLwboKmK6qx6VfKiM3N1dXry4dlQUi30Wx8Ur5sno11KljfnaTJlle3jQQLWP0d2c86wDXXQePPw4NGsDkyZb8MKiIyBpVLUbAXKFt/QMcq6oTRGQ8cL+qvi4i+wMfqmoxfEeTS4cOHXTs2LEJtbFokZUavGqY1bsfekF7+PZbOO442G03S8OeTdPujriIjItatWqV6PMi8ouqdkimTJlKUffhxImL2HNP6NevFrfcEn+7Zzz3AwBDL8tMX+1Ex4gj9RR0H5a6GKx4UdVIUd4PAESkJla4eB+gLXAwFve0FRFZhCVFWOQtK7DZ2A3A7t4x/bEA7spArailDtv+P1ZjStzrwG+YYvWnc/tLCW/HrCumzH6BZWJ0pJjOnTuz33778cgjceYTGTbMlKvOndOmXMG2yl+sIljU+ptvmnJVrpyF2wRZuUoB3wBHAhOAN4EnROQI4HBsQinQ5D0c/QULFkCjRjB3LtSvD2+84ZSrUop7aE4e//xj1zLbKhm4MRJcnIIVJ6q6GAu8fi+yTUR2xKxNjTAXlwaYsrQTVjSzClDBW3KBLVhCivVYhrpFWAzVeGAeZgmLLLO9osmOFOMKDfvPQQcdRPPixFG99JK9XnhhagTKh2OPPZZddtmFgQMHFvuz334LF3iJyB9+OHAlu9JBTyyOFMzteROwP6Zs/c8voZLFO++8A3PmwKQysHKVadeDB5sFq0YNv8Vz+MQ777wDwMnZlFfcJ5599h3KloXOnbPrWroxElycgpUAqroE+NlbHA5HCXnggWLkEhk71pIB5ObCGWekTqgYOnfuTI0SPAz//LOlDl6zxvTBnj2TL1vQ8b5LI++3APf7KE5yUeWJO+6AP/+0OlhNmsBLE6BiicJ5HVnEE16tBvfwnDhffPEEublQuXJ2XUs3RoKLU7AcpRYROQZ4Bmirqstj9lXHLIuXquqnfsjnKID/eQaNK66AatXS1u1dJShY9f77cNZZFjLWvTs8/3x2BWAngucBEBfRClhg2LTJXFnvv5/3pkyBdu24tGNHqFTJKVcOAN57772iD3IUyeLFsGrVe9x+u9+SJB83RoKLc41ylGZ6Ag/+v70zj5eqrv//88UiKiiuKBLumpGShqKZpeYSaRilluUSLmEJhVv6dUtSNBdwX3JJUTPTNFPSLHfrVyQmyOIGCa6oEIsCCvdy378/3p/hDsOdu8ydOzN37vv5eJzHzHzO57zP+5w5Z+bzPp/3kmtcAaS2S4GRJdeqA7Lpppvyq1/9qumOkyfDQw/5APW0yg2Pq62FCy+EIUPcuDrqKLjzTmhugsQOwjw81rGxJdOnWUgaJOk1STMl/V8D6yXpmrR+iqQvFuNAVqGuzv1AN97YreoFC+h50030/Oc/3bgKgkTPnj1bVvuvHVCOe/DZZwF6ctBB1XUuoTqvkY5CGFgNIOm6TNa/Fmxjkg5rI5WCtqE/9amhG+IpPKFJ0IaYGYcddhg77rhjUx29XhB4rvMSFmBcsWIFG2ywAVdeeWWTfadMgS9/GX7xC1d59Gg3rrp2LYGi7Yt98UytjS2ZPk0iqTNwPfANoB/wfUm5GVC+AWyXlmH4DHbxePNNOOAAz8Hfqxf88Y/w6qvc27Mn98aT6CCHe++9l3sz5SaqgHLdg3ffDT163Mvs2dVzLjNU2zXSkQgXwRIgaRzww8b6mJlSv43M7Js52++KF0DeysxmZ7UPwWdhvgisBbwN/Au4zswmpj7fAX4M7IIHkb8MXGRmD+fR9ft45sJHcvWoQjbGE4/kw4ANS6RLh0US1113XdMdr73Ws0Vssgmcf37bK5ZFbW0tRx11FP0ayVg4axZcfLHn36ir8+zbt90G++9fQkXbEWb2bJFFDgRmmtkbAJJ+D3wL/83L8C3gzpSNdYKk9ST1NrM5Be1x8mS46y7Puf/665CKUHP66W5hr7MOADfe6GPITb7fjFnaoMOQuS6+V8JY0jam5PfgpEn+HKNv3xu55RY48siqOZdAVV4jHYYwsErDSCB7qvy/wNlAwY8lJF0EnAlcC1yAG1d9gT2By4F9Ute98ZmYc4H5eGr5ByXtY2Z/z5G5ddp2lfYq5h18FmtGnvX9gXdLp049kgYDg7tFwVHn+ed90Apwww0lz7zWrVu3lcHG2Zi5zXfVVfCnP7lh1aULDB/uLoLh2dE8morHamYMVh/8dzDDO8DuzejTB8/i2nJGjYK//AX69/eq0cOGweDBq5UOePTRRwE49q6XCtpNUJ1krosqouT34K23+nOMCRMercqEnFV4jXQY2pWLoKRnJN0oaayk+ZLmShopqZuk6yUtlPSWpKOzttlJ0hOSPknbjEsJDDLrO0saI2lBWq4COufsV5LOkPTfJGeqpKOaq7eZLTKz9zMLPjOS29aS87A7bqCdamanmNlzZjYrvV6Cu9Vk9j3SzC4xs+fNbKaZ/RL4DzAkR2ZX4B7gHDxNfEfgEeBCSasFRqRC0xekPiXHzMab2bDOHSBo54MPPmCdddbJn/58yhRPZ11T4y6CZc6mVFcHEyfCmWd6OaOvftWfoHbuDMccA9OmwTXXhHHVQpqKx2oODaUPya0b2Jw+SBom6QVJL8yd28jur7gC5szxC+Lhh/2iaGCWc+2112btKHwW5FCF10XR7kFo3n141VXw3HOw2WZVdy6BqrxGOgztcQbrSOAK/KnIIcBVwCDgMWBX3BXvVklPAgtT+0R86noD4BbgNuDQJO804EdpmQIMT/t4MWufo4HD0rrXgC8Bt0haYGYNDsAzMVxmtk9rD7gBfgAsBm5oaGUzihGvAyzIabsImG1md0jat4FtqpGL8O91hqRrgVdT++dw10sBF5dJtw5Dt27dGDZsWMN1sP7yF88QMX++5zq//PKS67d8Odx11z856aQD2XPP8Uydui//+1/9+j59YOhQn7Xq3bvk6lULub85XXG35p/gs+/N4R18Fj/DZ/A6gy3tg5ndDNwMsOuuu+b/Pd1662Yp9tvf/ja926ZZ/YOOQea6OOqoZj+vrXSKdg9C8+7Drl1h552r8lwC1XtcHYH2aGBNN7NRAJKuwF3vaszs6tR2Ae46tyewPl7s92gz+zitHwY8LWlbM5sJnAxcZmb3pfUjga9ndiapO3AqcGCWS90sSQNxgyvfDMdbBR7fIEmLc9pyZxq3B94ws9osPU8CsosJ9TOz1XSQNBz/Qbsrq+1A4HvAzgXq3C4xsw8l7YkH2V5M/ZM1A/4KnGRmH5RLv47Ceuutx9ixY1dtnDsXzjsPbrrJPx9yCNx7L7Shy+TSpTBzpofSzJjhr9Onw0svwfLlvYATeeaZzQHYYgufVDviCE9o0ald+QJUHnnisZ6Q9AZwAh4X2hQTge0kbYW79h6BP4zK5mFgRIoN2R33JCjMPbAF3HrrrUDEYAWrkrkuqmjwXLZ7sArPJVC9x9URaI8G1pTMG/PMEB8CU7PaaiQtAHoB2wJTMsZV4p94YoN+kuYCvfHEEJnt6yT9m/onLP3w5BCPScp+gtIVmJ1PSTM7prDD4zk8s042OwIPNrHd3cDfsvquNuSTdCgeY3WEmb2Z2jYCxgE/MLPcWa2qJ52HgyStj18vAmZ0xHNRdmprYcIEGDfO00J9+qkHNI0aBWedVZAVs2IFLFwICxb4JNi8efDee77MmVP/PrPkY4cdtmW33cayxx6eJG7bbaOeVYmYDHy1OR3NrFbSCPzhSGfgNjObLunHaf2vgUeBg4CZwFLg2LZQOpfHH38cgKNue6EUuwvaCZnroloo5z1YbecyQ7UeV0egPRpYNTmfLU9bJ3ywnM+9oyk3ugyZUd1gVp+Vyt1vMViaZtZWImm9nD6vA1+R1NXMamBl3aZFDfTNyDgUn7U6JieD4I64kfmE6keMndI2tcDnzey1Vh1ROyAZVBNbI0PSIOBq/I/l1hQPl71eaf1B+B/LUDN7cTVB1Y6ZWzuzZsGsWfznb39jz9tu44G1urPfkhqW0Y1lrMvSrx3JkpFns7jX1ix5GhYv9ppSjb0uWuSi5893o2rhwuar1aULbLMNbL/9qssuu8C66xoKi6qkSOqBexi83UTXlZjZo/gALrvt11nvDfc8KCldI0d/0ADVeF2U6x6sxnMJ1XtcHYH2aGC1hJeB4yStkzWLtSduQLxiZoskzQH2wDPtZQbBA6nPaPMysAzYwsyeKqn2+bkH+BnwUzwerVEkfRe4A/ihmd2fs3oisFNO22jcvXI4MKvV2nYAsup/HID7mE+U9LCZZaenza7/sTvumpibYalBrM6wOqOutg5bUUddbf2y8vOKtL52xcr3dbV1rKg1amuMmuW+ZN6vbKsxapcbNTV4ey3U1Bg1y0nvfVn5flkdtcvr6l9Xyq2jZjksrxHLlotlNWLZp7BsGSxbDstqOrGspjPLVnRmma3BMnqzjC35hG9Qyw0MXpLzR/JUWlr1vXiyiQ02qF8226x+6d27/rVPHzeyGmLs2Cs4++yzmTdvHuuk1NtB8ZD0Mas+9BKwNrAEj4lt14wbNy69+2w51QgqjMx1MXTo0LLqUQ1U67ms1uPqCFS7gXU38EvgTkm/wI2Gm4A/Zs0SXQ2cJel13NXwJHxGZw6AmX0saQwwJhlfz+FxXXsAdSkIczUk3Zm2L9RVMC9mNkHSZcDlkrYA7sdn1zah3r1wRdLjCHzm6nTgOUmZ6qzLzWy+mS0BpuXovhDoYmartAeN0ib1P5YuXQ/pWOB2fMx5AR4PnLnszsFzuVyfPp+JPw+4Kn0+FZ9QyySH+Cl++WZiQX4CbARcmD6fAGwBnJc+D8UHhWelzz/Ay66llOl8F39mcXL6/B1gP+ofUA5OS+ayHJS2OQ731P06cAxwNLAc6WC6dTueHj2OYM01l7BgwRB69z6Rvn0Po1u3hUyadDj9+4+gX79v0anTPMaP/z777XcKAwcexPLlc7j55mM47rgzGDToAJYufYtTTz2ec845m3333Zc33niDE088keOPP5+99tqL1157jREjRjB69Gi22GJ3pk2bximnnMIll1zCgAEDmDRpEmeccQZjx45lt9124+STT6Z79+75vqqgdYzI+VyHZw/8dzW462YGSRGDFWQTg+fiUa3nslqPqyOgphPOVQ4pM980MxuR1TYNuD+T+CK1vQ+MNrPrJO2Ejzb3BD4FHgJGJpc6JHXBR58ZP+C7cMPzc5kMgMmwGoGPRrcBPsJjAy4zs8dTHwMOz8wQNZZFMCWxGGFm43Lax9GyQsOH4iPZXfBR8wfAP4DrMwk5kh57N3A6n82X4TCfHkF+JB0GDDKzE9Lno4Hdc67VPwOXmNk/0ucngTPN7IUcWcOot0gG4O6EuXQmGdEFtHUBapvRr73IbMl+WiMz337ag8yG5LVW5lpmVvXpPVKs7putFLMRnoq+0gk9i09b6rqFmW3cRrIriiLdh+WgPV2rjVENx9FWx9DwfWhmscQSSysX4HA87irz+Wjg2pw+jwB7ZX1+EhjQhNwX8rTf3Iq21WQ21K+9yGzhfgqW2ch+Kl5mqa6j1i54KY0d8ORCK5di76fUS1ucq9Cz/HpUm66xxPdfzcdR6mOodhfBICgVRa3/0QzGt6KtufLai8yW7Kc1Mpsrr6PLbDGSdsH9YDPxoJkERZnX6q+4HQRBEFQN7cpFMAgqleRq+joegPQu7tL5AzObntXnYNzV9CA8ucU1ZjawCbkvmNmuRdY1ZHYwmZWuo6RJ+MOGy3BX51X+mKydZzJti/PfFoSexac96RoUn2r5/qvhOEp9DDGDFQRFwNqu/keDSVRaScjseDIrXcft8BjWmU32bJ+0xflvC0LP4tOedA2KT7V8/9VwHCU9hpjBCoIgCMqKpMfw5Dxt6ooYBEEQBKUgDKwgCIKgrEjqA9wKPIaXjViliLuZPVcOvYIgCIKgEMJFMAiCICg32wE744XRcokkF0EQBEG7ouprmARBEAQVz0142YKdgF7AxllLrzLq1SSSbpP0YarJmGnbQNLjkmak1/Wz1p0laaak1yQ1ZFCWWtdRkt6VNDktB5VbV0l9JT0t6RVJ0yWNTO0VdV4b0bPizmlQeiTNljQ1XQMvNL1F+Wnp71ml0tLfujbRIVwEgyCoRiTtAHwL6IPPgrwHPGxmr5RVsWA1JC0B+pvZf8utS0uR9FVgMXCnme2Y2i4D5pvZJZL+D1jfzM6U1A+4BxgIbAY8AWxvZg0Vmy6VrqOAxWY2Jqdv2XSV1BvobWYvSloH+A8wBBhKBZ3XRvT8LhV2ToPSI2k2sKuZtZsCvS35PSunnk3Rkt+6tiJmsIIgqDoknQn8Hq+j9DyeNl/APekPohCZg7Le95T0G0lTJP1O0iYFyuwp6RJJr0r6X1peSW3rFSKznfI4MKDcShRCig+bn9P8LeCO9P4OfNCdaf+9mS0zs1l4RtFGSzUUkzy65qNsuprZHDN7Mb3/GHgFf1BSUee1ET3zUdbvPwiaooW/ZxVLC3/r2oSIwQqCCiK5jAxh1VmXh8zssQLlbZT99EzSUfgf+jTgFitwCluSkpxsPZ8vVF4D8nsA2wNvmNnCAkQcD3zezFZJliDpCmA6cEkBMi/GkzAAjAXmAIOB7+AubkMKkHkf8BSwj5m9n3TcFPgh8AfggAJkrkYRzmdbf+ePAWMl9QemsnqSiz8WYR+lZBMzmwM+CJeUcXPsA0zI6vcOjQ/IS8UISccALwCnmdkCKkRXSVsCuwD/poLPa46eX6aCz2lQMgz4myQDbjKz9prqPN991x5p6L5sE2IGKwgqBElXASOBZ/GCq5en9z+TdHWBYv+WJf9c4GjcjeUA4IoC9TwQmAGMwut6HQz8EpiR1hUi84as93sBL+NGzNQC/aTrcBecXHqnda1lVzM718zeNLMrgS0LlLOlmV2aMa4AzOx9M7sU2LxQ5Yp9PtviO8/hBnygeTbuQnV/1vKHIsivFNRAW7n99G8EtsGTjMzBrxOoAF3Tg4EHgJPN7KPGujbQVjJdG9CzYs9pUFK+bGZfBL4BDE9ua0H5yHdftgkxgxUElcNBZrZ9bqOke4HXceOrpWT/oX8H+IqZLZH0O+DFwtTkamB/M5udo+dWeDHlzxUgc4+s9xcCQ1Jcw9b4LM+jLZR3MvCkpBnA26ltc2BbYEQB+gH0knQqfk7XlaSs2ZtCH1a9KekM4A4z+wAguRsOzdK7EIp9PtviO1+JmVXbw74PJPVOT3t7Ax+m9neAvln9PoPPBJaNzHUHIOkW4M/pY1l1ldQVN1ruzprBrLjz2pCelXpOg9JiZu+l1w8lPYh7ALTHkhP57rt2RSP3ZZtQbX9qQdCe+VRSQ/74uwGfFihzLUm7SBoAdDazJQDJda7QwOou+EAhl3eBrgXKzGbdrLiGNyggRXdyqdwen2X5Kz6TNwr4bKHulsAtwDpAD9wPfSNY6dI3uUCZ3wM2BJ6RNF/SfOAZYAM8UL4YtPp80vbfebXxMO7mSXp9KKv9CEndknG6HR4jWDbSgCnDt3H3YSijrskd9TfAK2aWPdNeUec1n56VeE6D0iKpe0p8gqTuwIHUXwftjXz3XbuikfuyTYgZrCCoHIYCN6Yf5cxgti/wUVpXCHOodwWcn/UUakOgtkCZtwETJf2e+lmWvsAR+GCjEHaQNAWfHdpS0vpmtkBSJwocwJtZHavGO7QKM/tlbpukO83sGOCYAmUuSE/S5uHnsBafrbzHzBa1Qt1in8+2+M5XkmYG85IzyK4oJN0D7ANsJOkd4Hw8xu8+SccDbwGHA5jZdEn34S6btcDwUmaQy6PrPpJ2xl3VZgMnVoCuX8bdmadKmpzazqbyzms+Pb9fgec0KC2bAA+6DU4X4HeteLhXMlrye1bJtOS3rs10iDTtQVBZpBmRPvjg+J3s+Jwi7qMz0M3Mlha4fT/gELL0xFOgv1ygvC1ymt4zsxpJGwFfrYQkB5IebqD5a3iSCszskAJk/gz4Ju42chA+E7YAf7p2kpk9U6Cuuedzjpktb835LPZ3niN7Vk5TVzxe7hPgQzPburX7CIIgCIJSEQZWEFQQkjYHPjKzhSkr1a64+8n0VsjsBD6jI2kNYEdgtpmVNYVpU0jqZWYV4+staRKegfBW/AmY8IQMRwCY2bMFyJwK7GxmKyStDTxqZvuk6+AhM9ulaAfQzkixaLfj2S4fLLc+QRAEQdBcIgYrCCoEeX2mZ4EJkk7AU1d/A5+ab9SFqhGZQ3A3wXclfQv4OzAGmCJpcIEye0i6QNJ0SYskzZU0QdLQQuQlmRvkLBsCz0taX9IGhcotMgPwDIznAIvS7NInZvZsIcZVFhlX7W54jBdm9hatiG2StKmkGyVdL2lDeQX7qZLuy/FDb668XSU9Lem3kvpKelzSQkkTJbWJEZgCks/BM2oGQRAEQbshYrCCoHI4GugHrI37B29tZnNTgOy/KSyt+vnAF4C1gJeA3czsteRC9gAwvgCZdwMPAl/HEzF0x4v6nitpezM7uwCZ84A3c9r64JkODSi7i1iK6bpS0h/S6we0/jf0Vjy2aQLwVeBSAEkb07oiieOAR/Dv5mn8OzsYLxj56/TaEm7Ar6X1gH8Cp5jZAZL2S+u+1ApdG6MTHssQBEEQBO2GcBEMggpB0hQz65/io+YAm6ZBPZKmmdmOBciclHEzy5Uh6cVUo6OlMl8ysy9kfZ5oZrslV8SXzWyHAmSeDuwP/NzMpqa2WWa2VUtllQpJB+N1TgoxKLPlfB5Pcz7NzF4tkm7Z3/tbZrZ51rrJZrZzEeWtXNcKfb+T24THYA3HiyMf3Br5QRAEQVBKYgYrCCqHF+X1qboDTwJ3SHoMT6RQcCIBSZ2SoXZcVltnYI0CRS6RtJeZ/SO5Gc6HlTFeDRXSbBIzG5My1F0p6W18tqSin/6Y2SP4LFFr5UzHY7uKSbb795056wpJ0/6pvKBwT8AkDTGzP0nam8LT/Wdzf85nA+biCUROK4L8IAiCICgZYWAFQeVwAp7+1PAB50DgB8BrwPUFyhyGG1Kfmll2vZW+eOrVQvgxcKuk7fE6EsfBSre2QvXEzN4BDk9G2+O4q2RQGA9J6mFmi83s3EyjpG3x66ml/BiPharDXUN/ImkcXgfrR61VtgoLDQdBEAQdmHARDIKgVUgabGaFxHI1JvMQ3DWsvRZmrFgkHWtmt1eqvCA/yajdyMy+WU37amDffwbmmdnQUu87CNqSuIc7DvHUMAjaAZL+UsEyLyqSnGxGh3HVZqxWMLlc8iR9Q9JsST0bWNczrTuwdeq1HyRtLOmGdNzLJH0g6UlJB6QuI4GjyqljPiQ9I+m6Eu5viqRL86wbJukTSWelTJcfpWyn4yW1OJY1CJpL3MMt3udTkqyBpdXu9+UmXASDoEKQlC/hhICdK0VmHlnFpi1kdhgkTcm3igKy8hVbXhYjgMvNbFHuCjNblAbQI4G/tWIf7YkHcNfY44GZQC9gb2BD8HNSPtUqjinATrmNyVgfjbu07oNnuZyIX6sXAE9I6lfpdQCDdkvcwy1jF7wcx2057UvLoEtRCQMrCCqHiXgdrIaMi/UqSGYubeFnHL7LrWMTPFZqQU678DTr5ZaXoT/QWI23p/A/36pH0nrAV4ADzOzJ1Pwmfg9n+owjy+VH0jPAK/hg5Fg84choPBX/FcCRwEfAOWZ2V5acZ/CslSPyyW5Av0H4d7Ejfn9OBE42s1fStnsDe0sanjbZysxmp8Q3PwdOBDbDB52Xmtlvk9y1cSPoMGAJcHUzT9kU3EDP5RfAJ8AlZvZJzjEcDSwCvkxhJSqCIC9xD7fsHpa0DT4OedbM3m/ONu2JMLCCoHJ4BTjRzGbkrkiZ9SpFZlD5/BnoYWaTc1ekP+Zyy8uwMZ44Ix9GevLbAViclkMk/cPMPm3mdkfiA7HdgUOAq4BBeKHyXYEf4klpnjSz91qhX/ckewpeV+9cYLykfvgs4/bAq0CmbMHc9DoaH3gNxxOsfAm4RdKClIlzDHAAcCieNOV8vCbcH5vQZwrQV9K6ZvYRQEq881Pg+7nGVWIdPDQi90FBEBSDuIdbdg8PwA3KSa04poolYrCCoHIYRf578qcVJDOocMzseDP7R551Pyi3vCzewWex8tEf/8OuesysFhiKx2cslPQvSWMk7d7EptPNbFR6iHIFXrS7xsyuNrOZuFucgD1bqd8DaZlhZlPwp+1bAQOT29NyYKmZvZ+WFfIi6acCJ5jZY2Y2y8x+B9wCDJfUA3elOsPM/priLo+lcaM7Q8ZtNTum6grgOTN7IM82VwOTgX/lEyrprxGnFRRC3MMtvocH4GVDPpS0OGv5Q2uOs1IIAysIKgQzu9/MVqbQTunKM+v+VCkyG+CDIslpa5lB5fEIcKGktXJXJLeTCyhCrbH2QjIMNgMGA3/BB1QTJDVWzHplfJx5WuAPgalZbTX4jE2v1ugmaRtJv5P0X0kf4fdoJ2DzRjbrB6wJPJY9gAJ+AmyTljXIMnjMbHG2/vlIT/LnkeKwJH0dd2P9WR79rwD2Ag41s8Zqt+2AP8UPghYT93Dz72HcwHoAjwfPXk5q0YFVKOEiGASVy0UUP06g6DLN7ICme5VfZlCRXIS7nsyQdC31A9vP4fE1Ai4uk25lIbkVPZ6WCyTdCoySNCbPJjW5IvK0ZT9QrWP1uMyuTag2Hp9NPDG91uIF0BsrWJ7Z52DgrZx1NcD6TeyzKaYCO0rqAlwJXGdmqxVll3QlcASwr5m9kbOuH3Az7j44DpifZiKQtF2Suyke13W4mb0vqS9wHT4wXQP4JrA/PjDsAsw0s2+38tiCdkrcw81mFzxj8MxWyKhYwsAKgsolsvMFVY2ZfShpT+BG3JDKXJ8G/BU4ycw6+mzmy/h/9ZpFlDkX6J3T9gVgdkOdJW2IG73Dzezp1PZFVh1DLMfdfbJ5GVgGbGFmTzUg93/4IG0P4I3U1h13+/tvM45jStJ7OB6rN6qBfVyNG1f7mNmrOeu64NnLTjCzaZLuA15K67rhiQaONbO3JJ2Au0RdCDwK/MzMnk5ZC9fEHwgMMLPalOwgCDLEPbz6dlsBG1Cl8VcQBlYQVDKRnS+oeszsTeAgSesD2+JG1gwz61CJCNIA6A/4gH8K8DEe4H4G8KSZfeTJvIrCU8BV8oLer+FPtPuSZ3CGuyfNA36UkuP0AS7Hn4BnmA0MlLQlHug/38w+Tk/tx6RMZM8BPfDBWJ2Z3SzpN8ClkuYC7+FZAHMHefmYgicA+AJwWm4KbEnXA0cDQ4AFkjZNqxYnN6bvAC9Yfc2916hPgDEEH5A+nM77GsDvgW8Dz2cGqeblBOrwbGiXShpnZs1xjwqqjLiHW3QPD0iv72fdlxnmZWaR2zNhYAVBEARlJxlUE5vsWL0sBibg2by2Bbrhbjy/w7N4FZPb8AQimdozNwAPAhs11NnM6iR9D7gGmIanaT4Nj5/IMAa4A3/ivRYePD8bOA+P9Tgdn6n8CE80cVna7nQ8u9mDeKrqa9Pn5vASbtg8j7v35ZKJ5Xgyp/2X+GxX/yQjwwBgbHq/E/BzM7s7e0NJo9P+VpIGoTvhRtnvJf2ikUQbQfUS93Dz7+GMgfVKrqr4zNbCJraveOTxdEEQVBqSpphZYxnWKkJmEARBe0TSKcCWZjZS0n54zMwmZjZX0gh89uFYMzNJO5nZVEk/BbY3s59K6oTHoGyQMsAh6Rrg37mGWRAEHYvIIhgElUtk5wuCIGg77gL2lDQJT6/9jpllav/cDvQEXpE0GU89DT5TtrWk6cCLuBvhuZJeS3K64q6EQRB0YGIGKwiCIAiCIAiCoEjEDFYQBEEQBEEQBEGRCAMrCIIgCIIgCIKgSISBFQRBEARBEARBUCTCwAqCoHKRxiH9ebX3pdxvceU+g2Rp2SO1fR7pn0jTkMYjrZ2jR6b/YUXXJwiCIAiCohMGVhAELWPVQX8N0odITyMNR+rahnseCRxVdKlu9FxXkn05twO9gf8grQncBwzHbEfgdTybWbYevdtIjyAIgiAI2oAwsIIgKIQn8IH/lsCBwHi8eOffkZpbJLRlmC3CbGGbyC7tvpZi9j5mNXhh0icwm5TWvQpsnKPH+22kRxAEQRAEbUAYWEEQFMKyZCS8i9lkzK4A9gG+CJwBgCSkM5D+i/QJ0lSkVWeFvM9pSDOQliG9g/SrBveY67bnM083IF2MNC/NpI3Bi39m+gxC+jvSAqT5SH9F+twqMmFvYHjWrNyWDeyrG9JVSB8gfYo0AWmvHP2a1md1PgdMzfq8E/ByI/2DIAiCIKhwwsAKgqA4mE0DHgMOTS2jgeOB4UA/4FfATUgHZ211MXBeWvd54HDg7Rbs9UigFtgTGAGcDHwva3134CpgIG4ALgLGI62R1o8E/kW9217vPPu/LMk9DtgFN4oeQ8p132tKn1zeAz4LgNQf2B94uJH+QRAEQRBUOF3KrUAQBFXFy8D+yU3wVOBAzP6e1s1CGogbXI8g9QBOAU7G7LbUZyZu8DR/f2a/SO9fR/oRsB9wDwBmD6zSWzoW+Ag3uP6B2SKk5WTc9ur7ZW/THfgJcAJmj6S2HwNfS8dybrP1WZ27gHuRpia9vovZsuYffhAEQRAElUYYWEEQFBMBhs9YrYnP8ljW+q7A7PS+H9ANeLIV+5uS8/k9oFe9NtoGuBDYHY9t6pSWzVuwj21wvf/fyhazFUj/wo+h+frkYrYUGNwCXYIgCIIgqHDCwAqCoJj0A96g3v14MPBWTp+a9CpaT03OZ2NV1+fxwLvAiem1Fp9lW4Pmk9HTGliX29aUPkEQBEEQVDnxxx8EQXGQdgQGAffjRswyYAvMZuYsb6YtMn32ayN9NsSTSFyM2ROYvQKsw+oPlpYDnRuRNDP1qU9qIXUGvkQkpAiCIAiCIIeYwQqCoBC6IW2KP6TZGDeSzgb+A4zBbAnSGGAMkoDngB7AHkAdZjdj9jHS1cCvkJalPhsCAzC7sQg6LgDmAT9CehvoA1yOz2JlMxsYiLQlsBiYv8paP5YbgUuQ5gGz8NixTYAbiqBnEARBEARVRBhYQRAUwv7AHGAFsBCYhtfBugmz5anPecAHwOnAjXgSh8l4Rr4MZ+GG0HnAZ1L/O4uioVkd0veAa5J+M4HTgAdyeo4B7sBno9YCtmpA2pnp9XZgPWASMAizOUXRNQiCIAiCqkFmDYUVBEEQBEVHegaYhtmIFm5nwOGY3d8WagVBEARBUDwiBisIgqC0DENajLRbkz2lXyMtLoFOQRAEQRAUiZjBCoIgKBVSH9wNEeDtJmteSb2AddOnOZgtaUPtgiAIgiAoAmFgBUEQBEEQBEEQFIlwEQyCIAiCIAiCICgSYWAFQRAEQRAEQRAUiTCwgiAIgiAIgiAIikQYWEEQBEEQBEEQBEUiDKwgCIIgCIIgCIIiEQZWEARBEARBEARBkQgDKwiCIAiCIAiCoEiEgRUEQRAEQRAEQVAk/j+aI2S3Bsc+3wAAAABJRU5ErkJggg==\n",
|
|
288
|
+
"text/plain": [
|
|
289
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
290
|
+
]
|
|
291
|
+
},
|
|
292
|
+
"metadata": {
|
|
293
|
+
"needs_background": "light"
|
|
294
|
+
},
|
|
295
|
+
"output_type": "display_data"
|
|
296
|
+
},
|
|
297
|
+
{
|
|
298
|
+
"data": {
|
|
299
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEPCAYAAABfi2XOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC02klEQVR4nOydebxM5RvAv4+dm6VIREIJUZQl2pRol/ZUKm20q1TaNKZFm6SF9hAtKqWkfmVJ2kORpexEErLv2/P74znDGHPvnXvvzJyZue/38zmfmTnnzPs+8857Zs7zPpuoKg6Hw+FwOBwOh8PhKDhF/BbA4XA4HA6Hw+FwODIFp2A5HA6Hw+FwOBwOR5xwCpbD4XA4HA6Hw+FwxAmnYDkcDofD4XA4HA5HnHAKlsPhcDgcDofD4XDECadgORwOh8PhcDgcDkeccAqWw+FwOBwOh8PhcMQJp2A5HI6UQYSBInyW3etk9h2nNseJoN7WImx/AxF+EGGaCCNEKBMmQ+j8C+Mpi8PhcDgcjuTgFCyHw5FvkqAAdQU6xrNBT+l5MRl9eQwAqgKTvP5LAe8DN6vSEJgFdAqToWoCZHA4HA6Hw5EknILlcKQhIjJORKIpCaHjv4jI+cmUKRGoskaV1Wne10ZVlqqyzXt9LjBald+8138C+4fJsDQBMqQNIlJBRPYL3/yWKSdEpLKILBeR6n7L4nAUNkTkMxEZGPY6I/77HOmPU7AcjszkEeBJEUnqNe5Zh/qL0EuEFSIsE6G3yO7fGhFEhG4izBZhiwiLRXg8m/YiXQZjaf90Eb4VYZUIK0X4UoT6ofaAVsDNYa54NbPpq6QIfUX4V4TNIvwkwvF5kSUb6gNTw14fAczIfXQzFxE5WES+EJHNwH/Acm9b4T2mLKq6DHgLCGZ3jog0EREVkeOzOf6+iHzvPb9eRL4VkZUislpEvs7ufTkhIp28PkPbP14/tfLalsORRsT03yciCyKuj9D2RF46i2hno4hME5EuBfoEjozAKVgOR2byOVAWOMOHvi8HtgPHArcAtwOXhB3vBfQAHgcaABcBi+LYfhbQF2gOnASsAUaIUAJzwfuR3W57VXPo+ymv3WuAozCl6H8ie7jw5SZLNJYAdQFEOBJoA3yay3synQHAAdhYnwK09raTvcdUZwBweXbWNlWdBPwGXBt5TEQqAucAb3i7TgKGYuNwDDAT+FJE6uRDro3YHD8QuAxoDHwqIkXz0ZbDkQ7k5b/vYXb/D4S2R/PRZ6idI4HhwMsiktv/gCPDcQqWw5G+FBOR50Rklbc9HVq1U9Ud2B/NpT7INUOVh1SZpcr7wNfYzSIi7APcAdyrypuqzFHlR1X6x6N9AFWGedtsVX4HrgZqAc1VWQNsZbfb3lJVdkR2IEIWcCPQXZWRqvwB3AD8C9wcqyzZMBioJ8JU4CXgYlW25OHzZyLNgStV9R1VHaeq34RvfgsnRjcRmS0iW0RksYjssrqq6jRMcc7JNekN4CIR2Sdif0dgG6ZUoaqXq+qLqvqbqs7E5uE64PR8iK6qulRV/1HVrzErW0PgUBFpJiJficgKEVkrIt+JSMuIz91FRGaJyGbPDfJLESnmHTtCRMZ4710nIlNE5OR8yOhwxISIlBGRgSKyXkT+FZH7I8/J43/fOu/6CN/W50O0UDtzVPVBYDbmCo6IPCEiM0Vkk2ftekpESoV9poNE5BPPYr1RRP4UkQ5hxx8SkYXe785SEXkrH/I5fMApWA5H+nI5dg23BLoAnTELSohfMHe4ZPN7xOslQGXv+eFASWBMgtpHhENEeEeEuSKsxZSiIkCNPPRxCFAc+D60w1PEfsQ+Q0yyREOVjaq0U+UIVY5TZVoe5MpU5mPzIlWJxeqa2/X2NlCUvS2c1wDvqeqGbN5XAigFrArtCHP/qxnrB/DY5D0Wx1b5BwMnYAruZOBzEank9dEU6IcpZXUxS+v/wtp6B/jHe+9RQE9gcx7lcTjyQm+gLXABtpB1FHBilPPi8t/nKUQD8/HWzdg1BrABu8brAzcBHYAHws7tD5TBrPUNsP/w1V7/FwB3ee+rA5yNfTZHGlDMbwEcDke++Qe4TVUV+FNEDgPuBPp4x5cA1USkmKpuT6Jc2yJeK7sXcyTB7QOMAP7GlM6/MRe+GdiNaqyE5NQox8L35SaLIza6Ao+LyE2qOsdvYcLxLE53ALer6pve7jmYsh3OEqBZdu2o6moRGYa5Cb7htd0McyvqnIMIjwLr2dONdA3mOhg5/3L6HNWBu4HFwCzP6hZ+/FbsxvV0YAi2ILEB+FRV1wELgSlhbzkY6K2qf3qvU+p7c2QW3nV4LXCNqn7p7bsam8+RxPrf95iI9IzY10FVQ7G4c7H/2VhlLIZZpI/AvBNQ1UfCTlkgIr0wpamHt+9gYJiqhq6t+WHnH+z1/5WqbgP+AibGKo/DX9yNgMORvvzkKVchfsT+VMp5rzdhikKpvd7pHzOALeTuRpcvRKiIrRT2UmW059pXlj0Xk7ZiloScmOOdF57UoihmLSzUCSkSxCdY7NFMz01mbfjms2yxWl03AaVzOecNoKWI1PNeXwNMU9Wfo50sIl2xhYLzVXXXOKjqx6paT1X/zqW/LM+dagNmcSvhtbVVLPvhK54L4BrMDbEyuy29ozClar6IvC0iV4lI2bC2+wCvi8hYEXkg7DM5HIngEGz+7lrY8Nz5pkY5N9b/vj5YXGL49nVY+6eo6n0xyPaYiKz3+u0HPA28AiAiF3rut0u9c55lT2+K54AHReRHEXlURJqEHfvA+wzzReQNEblIRFLZ0u8Iw1mwHI7MZT9gcz59yhOCKutEeA54XIQtwHigItBE1Vb8CsgqLPPc9SIsAqphf3bhq5gLgOZe9sD1wEpVdkbIuUGEl4AnRFiBrSregSViyEu8mCM2bvFbgByI1eq6H7lnPByHKe/XiEgAixPpGbVTU64eBc5Q1fy6BW3Ebhp3Av9GuCEOwubzHdg1sQVTIksAqOo6ETkac8FqC9wH9BKRZqq6RFV7isjbWDKB04CAiNwQZuVzOOJJXrwfYv3v+y9OFvM+2OLJRuCf0MKniLQA3sPcbO/AXP/OwVwdAVDVN0TkS+BMzA33BxF5XFV7quoiEamLLUi2AZ7BrrNjcnApdqQITsFyONKXY0REwqxYLYAlYSvdDYFf/REtR+7DFKEeQHUsRiougbuq7BThEuB5YBp2M9sNGBZ2Wm/s5nIGZnGohd1gRtLdexwAVMCywJ2uGrvLiCM2VHWQ3zLkQLjVdXYO5zXEFgyyRVVVRN7EXCL/xObf4MjzROROLDPZmar6XT7lDnWZ3Q3k8ZiL8UivzwOIKHLtuVeNBcZ6CuEyLA7kVe/4bGxMnheRl4DrAKdgORLBHMwltgUwD0BEsrDrbm7Eucn+78tOUTsO+DvcTVBEDo48SVUXY9fUqyLSHft96Okd2wyMBEaKpZBf6rX7Vbw/hCO+OAXL4UhfDgT6ikh/zOf7bvZMMXsCewalxx1VOkW8PimGc3YCT3hbbufmp/2x2B9sOPuEHZ+Fufrl1s4WLOD49shzY5XFETue68vlmEueAtOBd1XV1wyLniXHs7pKhNVVXwLLbgY0AfbKahaFgVitnt7AcFX9L/ygiNwNPIbFcswSkSreoU2qusY75zws4cYpMbgJZscsoKOI/IyVNngKc4sNyXE25pY1HliJBeGXBf4QkdKe/B9gixMHYApbVFdHh6OgqOp6EXkDq3G1HIuzeojo7t6x/veVDbu+QoRfZ2OAX2J0E4zGLMxt/3LMtfE0IrIber8tX3jnlsNiIGd4xzph9+k/Y94Wl2BKZk4LPY4UwcVgORzpSygr2c/Aa5iLwrMAIlINq800wDfpHCE6i7BeJPsECCFEeFmElHHpTBYicjh209AHq/3UAqtlNktE6vsoWoj7gCcxq+sfmEW0etjx9sBfqvptbg2p6j9YGul9gdejnHIzloFsKBbgHtqeCzunPJbZr/he746da7CFh0mYG9Ob7GnJXY2lmh6NWdvuAq7zPuMOT/5BWLKNj7EbyDsLII/DkRt3YTFSH3uP04iwGufxv+8h9rzG/sFiqEIcQoRVNy+o6gjMRb0vlnG2rddnOEWAFzClahTm0XGVd2w1ltjjW+yzXoDFUM7HkfLInjHyDocjExCRp4HyqppTdjJHghGhGrsTHyzKrd6VCJWxVUyAf1QpFH72IjIKi1+4IuTi6iVrGQKUVNXT/JQvN0TkF6Cvqr7jtywOR2HG/fc5UgXnIuhwZCbLCAukdfiDKnly31JlGfbdFTaOA5pFZMpbKyIPAD/5J1buiEhl4EPgXb9lcTgc7r/PkRo4C5bD4XA4fEVEVgLtVPX7iP3HA5+oakV/JHM4HA6HI++4GCyHIwURkUZeXYypIjIirLYVInKfiMwRkZkiEjfXKRG51Wtzuog8lcj+ROQREfldRCaLyFcicmCC+zvda2+OiNwbjzYj2i8lIr+IyBRv/ILe/v1EZJSIzPYe941jnxVE5EMR+VNE/hCRlgnur6uITPM+3+3evnj1NwJ4TUSOE5Gi3nY8Vkvm01zem3BEREVkg4g85rcsjtRHROaKyFYRGeK3LJmEuw4LFyJymFgdvx0icp3f8uQZVXWb29yWYhswAWjlPb8GeMR7fjgwBSt8WgtLT1s0Dv2djAWzl/ReV05wf+XCnt8GvJyo/rBEIHOB2liNnynA4XH+vgTYx3teHEs80gLLzHavt/9e4Mk49jkISzqA97kqJKo/LCvjNKAM5lo+GqgTr/482T/B6jVt87YdWDB7+Xh+V/mUT4FDw14f5sm7HMuw9yVQN+I9tYHPsAK+K4Cnwo7dAkzE0r8PzKXvTt5YrA/bTkrgZ81RNixd/Z9YzNzXwMFRzinhnbM4l77KYHXlVgBrgPEJ/FwVvGsm5IbbM+J4YyyZwBpgMfBQDm19EfF9bAWmRpzTExji99zNpC3yOgzbtyHsu3g9h/dX867bld53fEPYsVyv6Th/lquwBDNrPVmeAorlcH5RLEvwEu835TegQn7aioPsefn9auiN5QqsbES0czpgyYM2YP/VJ0QcH4f3X5dOm7NgORypSV12Z0cahWUPAstW9p6qblHLJDQHaB6H/m4EnlAvJbaqhuKAEtKfhsXaYCmiQ77KieivOTBHVeep6lYsY1r7Ara5B2qEsv8V9zb1+gnVeBqEZWUrMJ5F80QscySqulVVVyeqP6A+8JOqblSrjfQNcF68+lPV1araHpv352Pzva6qnqdeyuQUowJmWauLpSj/Bbs5A0BESmDX7VigCpZxMNyasQS7WYq1ZtSPqrpP2DYuljd5ta3ySrayiUgl4CMsm+J+2E3W0Cht3E1ssYSveu3U9x7vCOtrfxHJS3HZ3HgWU+hqYr8JV4jI1WHH38F+c/cDWgE3isg50RpS1TPCvw/gByxlvcMfGoV9HzlZOoZgReMPAM7CCmef7B2rQA7XdE6ISHmvzEReKIOVAKmEZU49BcuSmB1BLDtiSywR0hXA5ljayufvQE7k5fdrG/A+lg1xL0SkLZah9WqsDMSJeHXO0h2nYDkcqck0rOI7wEXAQd7zasCisPMWe/sKymHACSLys4h8IyKhlOKJ6g8ReUxEFmG1j0KpaxPRX8I+QzieW9tk7MZylKr+DByglpYb77FynLqrja20DhCR30TkdbGim4nqbxpwoohUFKv5dCY2J+Pan6rOVtURqvqpZl8g13dU9RdVfUNVV6rqNuzmva6IhGLFOmFFv/uo6gZV3ayqv4e9/yNVHQ78t1fjBcRzHb3Ry2w4MK/vz0W284HpqvqBWgHUnkAjEakX1n8trIbX47nIWRf7jeusqstVdYeqTgo75RpgvogEvTYLSjvMirhRVRdgixPXhB2vCbztyTEX+A5okFujIlITq7u0V8FoR+ogIvsAJwGPqeo2VZ2CJae5BmK6piPbKyIibUTkbez/pVJe5FHVl1T1W29x7G+s7Mpx2fS1L6ZAXa+qC70FvWneNRhLWwM9F/YbRaRCXuTMRvaYf79UdaaqvoHVNYxGEHhYVX9S1Z2q+rfmv7ZfSuEULIfDJ0RktBfTErm1x370bxaRSdiqTqgAaLQV3Zgy1eTSXzGsrk0LbPX5fW/1OFH9oaoPqOpB2J/BLQX9fDmJkoA2927QbswaY9aK5iISWew4nhQDjgZeUtWjMNeKuMeWhVDVP7BVxlFYAc8pwPaCtCkiz3tKYeh5tluBP0DiORFYqruLBrcAFojIFyKyQkTGicgRBWj/KK+dWSLSQ0T2yADs3ey1FZF3gIXAqUAvdi/SICKficjqbLbPYpSjAfbdA6CqIZeecEXkBazg8qZc2jrGkzXofbapIhKy1KOqT2KuQ5WBiSLytYhc6Sn44Z/93hw+1+qIPiXiefg12he4UkSKe8pfS8wVNjeuBL5VV5vIT8aLyFIR+chTeKMhEY+h59n9Tkde0/YGkdoi8jBmCesD/ArUCSkFInJZTvNRRGrk0F92SsgR2O/thd7nnCUiN2dzbrS2zsF+D04FForIO97vxR46QJx+I2JGRIoCTYH9xeKjF4vIi2KFzNMel6bd4fAJVW2TyymnggV6Yu4MYNaXg8LOqY6Z6wvUn4jcCHykqgr8IiI7sRW5hPQXwTvASCBQkP5yIBFtZouqrhaRccDpwL8iUlVV/xGRqsQvBftiLL7lZ+/1h5iClaj+8FYh3wAQkV6eDAXp7wh2F8otiPLhKyJSHStOGl5ktzoW13gOMAboCnwiIvU8N9W8MB67CVyIKTJDsZutx73+bwHuwWIcBgK3qeqKyEZU9ew89huNfTDLaThrsEUgROQ8LPbjYxE5KZe2qmOfaxhwIKbQjBSRGZ5Cj6r+BPwkllSlPWYZ7CsiH4VcwVT1CeCJGGT/H3CviFyFuYBdg7lWhfgMeAtzrSqKrapPiKHdKzF3KYc/tMJKOZTBvofPRKSx58q8C1VdJyLfAz1E5G4s3vcC9p7PUa9pEWmEFfs+HHMzP09Vf418r1otvDzVwxNzVW0KZOfeWB0rLn4YFptcBxgjIrNUdVRubXkWueHAcDE338uwBbNKIvKUqr7onReP34i8cAD2H3AhZgXehrllPgg8kGRZ4o6zYDkcKYhYbR28FaYHgZe9Q58CHUSkpJjbTB3MV7ygDAdae30ehgWpr0hUfyJSJ+zlOVhAPAnqbwJQR0RqicXGdCDOmenE4kUqeM9LA22wz/QpFoCM9xiTT39uqOpSYJG30g7mcz8jUf3BHnOyBuYq9m5B+lPVk724sdDzbLd4fYZ4IyL7A18B/VU1vA7WJuA7Vf3CU6h6AxWxWKM8oRY7ON9zn5kKPIzdkISohVmfJwO/kwC3wzDWs7sQdohywDoxa+RTwK0xtrUJu6F61HNt+gZLmnFq5IlqsaG/Y59xK/lTyG/z+pyNzdN3sUUCRGQ/TAF7GCiFLcicJiI35dSgWKbLKtgCh8MHVHW87o5B7YpdD9ldZ5d7xxcBL2HeE4vDT8jhmq4A1MPigqd4jwVGRM7FFgjOiLYw4hGyBj+sqps8d+P3MFftvLb1H7uvpX2x8fCL0Od6QVX/8WTuQ8TnSlecguVwpCaXisgs7CZ9CTAAQFWnYwGjM7AbgptVdUcc+nsTqC0i07Af7qs8P+9E9feEmLvg79gNVVdIzOfzVjJvwTIZ/QG87/UTT6oCX3ufZwIWg/UZ9mfXVkRmA22JbaU9Vm4F3vb6bIy5gCSyv2EiMgNLqX6zqq6KV38i8lCk65e3v7SIPBTtPX4jFhfxFfCpqkamjf6dBLiheihhbk6q2g2LyZsKPI/FLT0SsYiBmLvi+my2L2LsezrQKKzNLOAQb38dLI7pWxFZiiXDqOq5NNWM0tbvUfbtgVjM3y1i8WRjMa+bk1X1mLBz7s/hc4USz+DF1lyuqlVUtQF2/xNavKkN7FDVt1R1u6ouJsoNbBSuwiz/63M5z5E89rg+9jhg8Utnq+r+3hyqSNgCXk7XtLcAUB2zHJ8F/CUi74qVACka1sblOc1HCXMRFJHTgdewGoBTc/hMoWsl29+U3NoSkToi8gjm2vgc9ntR2/v9CJ0Tj9+ImPH+Qxbn9LnSGk2BVIZuc5vb3Oa2wrthacgrR9lfEbvx9Vu+yDTt5bAbsxezOb8ulsa8DeZudgcWq1TCO14Ms5Q8jiVHKEU2aZWBM7BkImAr6NOAQA6yNsHioFYAb+bjs2YrG7A/5hJ4gbf/SSy7ZOh9VcK287HFoSpEKbWAuQbNwTISFsOC8tcB9bzj13qvP8BuaAtaruEQbz4V9cZ0BdAg7PtcjblOFfFk/hFLiJBde6W997TO5nhPXJr2uG5RrsMG2OJSUcx9tS8wEyiezfvrY+6sJbBELCuA/cPmQLbXdJS2KmELg79583yv369c3t8asyadGOP547G6gCW9z7EMOCWWtrAF1BXe70KTOHwPefn9Eu/44d73VwqvHIx3/GFsUbIyZlH7Fq8sTdg540jDNO2+C+A2t7nNbW4r3BtW/2r/KPvbAMtTQL7IG7ur2Lv+znqgRtg552MKxFrvBqFB2LGe3vvDt57esRrhbWHuhf96fc3zbkii3kBGyFwCaJ6Pz5qtbGHfyZ+Ye884oGY27ZxERB0szNJ1edjrBpgiswGzWp8XduxwYL84focXezfCGzH3qNMijrf2bvTWAEsxa0AZ79gJwPqI8y/F4uIkh3F0ClYctyjXYWtModqAKRzDsYQToeOXY1kvQ69vx2KuNmBZIpuGHcv1ms5BrkZ4dRDz8Fm+xmIpw/v6Iuz4F8D9Ya+rYV4d673fgS55aKs53uJOnL6HbH8j2Pv3q2aUcxeEtVUcq4W32rvungdKRfQ3jjRUsMQT3uFwOByOpCIi67A/3Czsxjf8D6kottr5sqrmlDEr4YjIZqyo5vOq2sNPWRypj4jMxG6I31fVa3I73xEb7josXHhuzhOwxaKbVHWgvxLlDadgORwOh8MXvIxugrmw3I5ZD0JsxVY6f/RBNIfD4XA48o1TsBwOh8PhKyLSCvheI1IrOxwOh8ORjviaRVBEPhSRO3M/0+FIbUTkTRFZ5mXhi3ZcxIqmzhGR30Xk6Bjb7RxfSV1/mdpfmn+2yuyu9RbeR3sRuTDK+Q6Hw+FwpCx+p2kPAg+KSPmcThKRgVKAKtIiMk5EXszv+yPautm7QV7rbT+KSLQbg6oiMkhElovIZhGZ4a3SFqjdZCEiPUVEI7alUc67SUTme59xkoic4Ie8KcBArLBsdpyBpTGuA3TGanDEQrY3sSLSLt7HXH9p3V/KfLZ80BPYHGX/Bu+Yw+FwOBxpg68Kllqu/nlYusx0YTHQHTgaq5Y9FquOfWToBLGCo99jsQVnYSk1b8Wy3OS7XR+YidX3CW17FHcUkUuwegq9gKOAH4Avwus8FBZUdTywModT2gNvqfETUEFEqhaw25xufvN7zPWXmf0l+7PlldrY700kc7xjDofD4XCkDQmNwfIKnz0ANMSyQ00AblfVP8LOeQg4VVWPz6GdgUAlVT07r/14770q4i21VHVBPj9WtP5XAvep6ive615AK1U9Lp7txviesligeGtVHSciBwGfYbUFumqMRVtFpCdwoao2zOGcn4HfVfX6sH2zgQ9V9b5YZc4UxIppfhZtzDwL7BOq+p33egzQXVUnRjm3M7utA03KlNmr/ioAO3bsoGjRonE9tn37dooVK+b6i3d/O3eCKuzcGUrfypYdO9gBlBEBVbZieXbLYEWhdoS9BnYdL4ml19sacXwz9uNX2nu9Bct9XhpLzwe24hN6HarEWcI7V7ytJJZ/G8pjGXeLYaVeqgMHeL1OAVBVjcsinYgswYpbj4rYfyowWFUPiEc/+aFSpUpas2bNPL9v5kzTF+vWrbtr37zlGwCovX9WXGRzpD/R5kmsTJo0aYWq7h9vmVKR3K7DgoxjTqT7NZuocXHsJrvrMPqdRvzIwgq//Y79rz8IjBCRw1V1q3fOL5ibYGlV3RTvfrBCcIdhdTvu985fHq0REekEDCBGBUysevdFWIG7H8IOnQv8T0SGAidjtTdeB/ppDBptdu3GKF8j7D7pdxFpBnwEPKmqu1wk8/A5a4vI39i93M9YTYZ5XhslsIKWvSPe8xVwbG6fsRASrbJ81Lmgqq8CrwJkZWXphg0bEimXI96sWQMjR8K4cfDjjzB9uilX2CrHicAooBm2EnKQKoIVAVkL1ChdGsqUYVXp0qwvWZKD9tkHihVjpQgbixShelYWFC/OSlU2ilC9XDkoXpz/duxgswjVKlSAYsVYsXUrW1U5sFw5Fm3YwD+bNnFQ+fJULVeOv9atY+vOnWSVKkXVChX4a+1atu7cyZxVh/D0N6czdk4RTMEqT/lSGzm86jSq77udgyoW4eCK29m841+6f3Bhfn+vo/EJ8KyInK+qswBEpC7QB6tt4xs1a9Zk4sS91kFyZeNGU2vDF0guecUSIg7t0jI+wjnSnmjzJFZEZGG85UlVcrsOCzKOOZHu12yixsWxm+yuw4QqWKo6LEKIq7F7iOZYkTcw5aM4cCBW6T6u/ajqdyKyFdioqnvFEEWwBnNT2ZbTSSJyBFYcsRRWUO08z90xRG3gJuBZ4Ams0vgL3rFsY8FiaDcW+RoBizDF7kWgk6p+GXFOLO38DHTCFNPKmNL6g4g0UNX/sCrmRbECmOH8ixWidOzJYuCgsNfVsbnvyARUYdQoeP55+Oor2BZ2aRUtCjVrwqGHUqdqVd7YsIHDW7akfJ06lK9UCSpWhPLlqVCmDBXKlIEiZhTa19tC7Odt2b2uGCFSpbDnB7Hn5Iv04T1IoXdvuO9Z2LEDypWDLl3gkkvg6KPLINJ8r4/cPdqSQf65ByuiOUNE/vH2VcUW4O6Oa09Jwt3QOGLBzZP44MYxOm5c/COhCpaIHAI8AhwD7I/FfBVhz//30CpoafJJjP3kiqp+DHwcw6kzMaWpAnABMEhETlLVUAa5IsDEMDe538QKpt1MDgpWbu3GKF9j7L7sPUxhHR15QiztqOoX4a9F5CcsXu4qbFV516kRb5Uo+xzwKXCLiLyHzdM1qvpPLu9xpAPffgtdu8Jvv9nrIkWgVSs4+2w49lg4+mgoVQqAKkCyq46uXLmSIUOGcNZZZ3HIIYfsdXzbNrjiChg61F7ffjs89BDsu+9epyYMVV0HHCcibbHfMAF+BcbEYvVPRYYMGQJAx47pFGLsSDZunsQHN47RcePiH4l2ERwB/A108R63AzMwt/8QoUXYqG57cewnbnjujXO8lxM9V7w7gGu9ff94/YfzB+auWJB2Y6ERFjBxF+Ze2BEYlIf3ZyfbehGZjmXBA1iBhYlUiTi1MntbtTIeEXkXOAmoJCKLgQBmmUVVXwY+B87Evt+NwNX+SOqIG1u3wj33wHPP2euqVeG22+Caa6By5ahvWbt2LcuWLaNGjRqUKJGQn6e9WLhwIV27duXggw/eS8FShauvNuWqXDkYPBjOOScpYkXFi8EaleuJacDrr78OuBsbR864eRIf3DhGx42LfyRMwRKRilj2vJtV9Wtv39FR+mwILFHVfN2Ux9jPVsydLVEUwWLDQ3wPREYUHgbk1V86st0c8WK3GgIdVfUXEXkbeEhE3i5oAU8RKQXUA74GUwZFZBLQFvgg7NS2wLC9W8hsVPXSXI4rZsF0ZAKrV0O7dvDdd1C8ONx3H9x7L5TO2RA/cuRILrvsMv744w/q1auXFFGPPPJIVqxYQVbW3kHazz4Lb78N++xjHo7N9/YETBoicgxwCrZIs0fyDFW9LcY23gTOBpZlk2xGsMynZ2ILHZ1U9dcCih6VUaMyQk90JJhMmyd+XYOZNo7xwo2LfyQyTfsqzMpxvYgc6tWAehmzLoVzAuZ7nxvlRKRxxFYzxn4WAM1FpKaIVBKRIgAicouI/Bk6SUTOE5E/RaRadkKIyBMicoLX1hEi8jhmuXg77LRngRYi8oAn00XAbUC/sHYi+46l3dw4DHO1nOy9fgQ4mAivpBg/Z28RaSUitbwbnw+xZCLh1rA+QCcRuU5E6ovIc1gs3ct5kNl3RGS4iJwdmhcOR46sWgWtW5tyVa2auQgGg7kqVwAtW7bkrbfe4sADD0yCoEbRokWpWLEipTw3xRAzZ8L9XtqfwYN9V67uwuJPO2EugkeEbdlmMo3CQBJTjy7PFC9enOLFiyeqeUeGkIHzZCA+XIMZOI5xwY2LfyTMgqWqO706Sc8D0zDXqG6EWTc8q8h5wGkxNHkC5voWzjBVvTC3frBMd4Mwt73SQC1M6arEnpam8t7rnGZjFWCI97gGy1x4RngiCVWdICLnYvWhegB/eY/9w9qJ7DvXdmPI/tcIWAfM9+SYIyJDsCyNg1R1Sx4+Z3XgXU/O5cBPQAtV3WWFU9WhngXxQSwgfRpwZvg5acIGYCiwxkvrP0BVZ/srkiMl2b4dLr7Y4q0OPRRGj4aDD4757TVr1iQ/Kb8LwpQpUxg9ejTXX3895cqVAyxr/PXXw5YtcNVVcO65SRUpGl2B28KzneYHVR3vLbxlx656dMBPIlJBRKomIh5y4MCBAHTq1CneTTsyiKjzZPly+PBD+PxzOP546N7dF9nyg1/XoLveopPIcdm+Hdatg7VrYeNGi+fNy7Z9++7na9bAsmXmea+aty1UBSVeW2R7jRpBv365j0ckic4iOJa9Vx/3CXt+LfCzV3g1p3Y6YSub+erHS/u7V45NVe0J9Ax7PRBbfclNllxR1ZHAyByOR/YdS7u1MCVxcTZtvocltwjft1e7MX7ODjHIg6r2Z0/FMe1Q1ctFpBxwORYbda+IfIel1v+gAOUDHJnGffeZUrX//nlWrgCWL1/O8uXLqVu3bra1s+LN999/z1133UXHjh13KVgDBpjhrXJl6NMnlwaSQzksTjHRVMOyrIZY7O3b4+YuvBZdjRr5q5vubvgcsbBrnlxxBXz9Nfzvf/Dii7b6IQInnOCvgPEnpmsQ8nYduustOrGOy4IF5ia+Zo0pTeHb2rV771u3DjZvjp+cIlCpEpQsac/zshUpkvf35NZeeJv5DZdOdJKL3NgG3OqzDOnEmcAtBY2ncuyNqq7FXBVeEpEGwHXAK8ALXua/vuEFshONiLQD2pUsGXMIniPRfPcdPPOMpV3/6KM8K1cAAwYMoHv37qxfvz5qTFQiuOGGG7j88sspW7YsYKuFjzxix/r0gf32y+HNyeNdzK0o0Ys1MdWjC69F17Rp03xlMRw3blx+3uYoZIwbN87uYC++2H5XihSB9u2hc2c46aRdGUgziHzVhMztOnTXW3Qix0UVBg602Nvly2HDBli/3qxH4fla99kHypbdc6tRY/fzcuX2POaVZ8xxK1Ys+2NlytjxTMLXj+NdPI4YUdVmfsuQ6YjIgZgLw9lYHN+HWAmh30XkPlWNLKycEFR1BDAiKyvr+mT058iFLVssO6CqJbM4/vh8NdO+fXtq1qy5VzxUIilSpAjly5ff9frtt2HhQqhXDzrEZKdOCouAoIgch7lH71GjT1XjZWdz9egcqcXChdCkCfz3n1nIb7892yykGYK7BpPInDkweTL8/TfMnw/ffw8TJ0L9+lCnjilSWVmmPF18MVSpYvuKuIj0ApNh+qLDkXdEpDimVF2DZUH8DXgKeFdV13vnXIytpCVFwXKkGC+9BLNn279Sjx75bqZu3brUrRuZYDSxfPrppyxcuJBbb72VHTugVy/bf//9ZoxLEa7Diqsf623hKHvW3isISatH99prrwFw/fVujcSRDZMn89qpp8Lq1Vz/1VfQtq3fEiWDhFyD7nqz+KXffjP3759/tudz577mHb2eEiUsmdFTT0G3bk6JSjROwXI4zPdbgHeAe1X19yjnjMIyVjoKG2vXwmOP2fOnnjIn8Xzy119/sXr1ao488sg4CZc7H374Id9//z233norH39semKtWnBpjoUFkouq1opHO6lUj26oV7m5MN/wOaKwbZsFu7z5JgwbxtDixaFRI67PEOXKr2uwMF9vv/5q3qUDB5qlCqB2bTjqKFAdSrlyMGrU9VSsaDFFjuTgFKw44NV1qIylRK8E7O89lsXqWJUHbsTSyb+J1eXaCPzn7VuOmcj/UtVtke07Es4dWDKLbEM2VXUVlmTEUdh44QVYsQKOOw7OOqtATfXu3ZvBgwezalXydPVBgwaxZYslEH3jDdt3xx2Z5+8OqVWPbvTo0cnoxpFuXH45fPCBBZ7cdBOj77knX/GcqYpf12Bhut62bIFPP4WffrLthx/MG+HII20t8LjjLMmtUXjGJdXIwL/YxOEpUrWxdOih7VDsxrtMNm/bxu506JWwdMTZLYHvFJFFwDxgOlbPagow3WWySygnA8OBPRQsEckCXlDVa6K9yVEI2LZtd37Wnj0LvPzXuXNnTj89pxIx8UdEKFWqFEuWwFdf2X3dZZclVYRcEZHnczoea6FhhyOl+eorS7/euTM8+SRUqOC3RI40YN48eOghi6FavdqsVGvWWP6Txo3h8cfhxhshLNTWkQI4BSsHvMKzRwGtsDpcJwAVvcM7gVnATOArTClaCCzDrFIrgHWqutNraxyAqp7kKWqlvLZCFq9qmPJWC1PaOrE71fw2EZkIjPe2b1V1XYI+dmHkKuBerIZYOKWBK4ko1OwoRHz4IfzzDzRoAKecUuDmGjZsSMOGeambW3D69u1L1apVWbjwEnbutARlFSvm/r4kc0TE6+JAPew/6tfki1Nw+ve3hIg33XSTz5I4UoIPP4SOHaFu3T2UKzdP4kOmjeNbb8GwYTBhgv0FARxyiClUxx4LF15o9e5zqyGcaeOSTjgFKwIRKQucCpzlbaF0PnOBEcAPmGVpuqpuzEPTk0NPPBP5JiybTtSaVp5yF7KWNceUuzuB7pjCNQ74DPhMVeflQQ6Hh4jsh8VeCbCviISnvy+Kff//+iGbIzXY8txzjAHOvO02EKFLly60adOGiy66CIBrr72Ws88+m/POO48dO3Zw/fXXc95559GuXTu2bNnCjTfeyEUXXcQZZ5zBxo0buemmm7jjjjto1KhR0j7D66+/TqNGjZg8+RIAUrFMjKqeHLnPK0T/BvBt8iUqOCNGjADcjU2hZ906q+o9dKjdGX/66R6WKzdP4kMmjOOqVaaHDx5siSoOPNDW9Zo2hRYtLEFFXp0oMmFc0hWnYAEiUgI4DSs0ew5muVgN/A8rFjxWVQuURlRVb8/j+TuxINA5wDBPzjJAC+AMLI34c8BzIvIL8DYwVFWdQhA7K7AMZYoVcI5EsQDdpOPqYKUAs2Yx5eefeaFoUQ44/HCaAGPHjqVmzZq7ThkzZgz169cHQFUZPXo0jRs3BmDnzp2MHj2aZs2susK2bdsYPXo0ZcuW5YUXXkjax5g2bRoTJ+6kWTOrj3zGGUnrukCo6mYReQz4EnjZb3nyyhdffOG3CA6/mTQJrrvO8mR362YF6EqX3uMUN0/iQ7qP4+DB5jm6ebMZOXv1simT3yK3IdJ9XNKZQq1gicghwA1YFpuKWNKJgcD7wHepVtDXs5iN9ba7ReRQ4HzgUkzZelZEPsOKdY4KuSc6suVkzHo1FrgAWBl2bCuwsKCKdX5xdbBSgHfeYT+gaq1alPRWnGfPnr3HKQsWLNj1vFixYvz111+7XpcuXXqP1+XLl2fx4qgG64TRu3dvGjduzPjxbQBzK8nNpSTF2J/drtIOR3qwbp3FbPbxqgt06QK9XYUPx55s2wa//GLxU1Onmif6oEFw9NEu218mUOgULC/+qS1wO3A6Fks1HBgAfJVOWfxUdQ5Wr+kpETkcuAKLFzoHmCsi/YDXQrWcHHuiqt8AiEgtLINjjpXiHYUIVXj7bQ4F3uzfH5IcNxUvAoEAN910E6NHm4LVrp3PAmWDiNwZuQuoinkVfJ58iQrOc889B0DXrl19lsSRVD74AG67DZYuNd+u4cOhWrVsT3fzJD6k2zhu3mzeBOPG2eurr7YqIJUqxbefdBuXTKLQlBkTkSIicj4wAXM5aQwEgRqqeqGqjkwn5SoSVZ2hqvdhFdIvxWo79QEWikjAizdyeIjI0V6cG5j18ihv316bn3I6fGLiRJgzBw44AE7eKzwobVi7di033PAokydDVlZKf5RbI7abgOOxha8bfJQr34wZM4YxY8b4LYYjmfTrBxdfbBfbqFFmnshBuQI3T+JFOo3jmjVwzjmmXAWDMH26lUWLt3IF6TUumUbGW7A8i9VZwBNAAyym6TpgiKpu8VO2RKCqW4H3gPdEpAVwH9ATuEtEngF6O4sWABOBKljWx4lYvFU0o7xiCS8chYlPPgFgRJMmXF+9Ol9//fWuWKt0omjRoowaZdO3bVtL65uKxKvQcCrx6aef+i2CI5k8+ij06GHVXceMgX33jeltbp7Eh3QZR1UrkzFqlMVcPfRQYvtLl3HJRDLagiUi12BpzUcAJTDLTj1VfSMTlatIVPUnVW0PHIkl7AgAc0Skj4iUzvndGU8trMBz6HkoRX7kVtsX6Rz+4mVeqnrGGbRv354KaVivZsWKFTz44IO8885UAM4+22eBoiAiv4rIvmGvL/Xqzzkc6cPAgaZctW4N330Xs3LlKFyowqWXwuefW4jey2mXuseRFzLSgiUilYCXgAuBDZi7yevp7AJYEFR1KnCRiBwDvAjcAVwuIuer6vf+SucPqrow2nNHCtKzp+WunTYt+ut4s3Ah/P477LMPTa+/nqZpmslx6dKlPP744xQtejRwBGed5bdEUWnM7kLsAK8AP2N1BdOa3l5Sg7vuustnSRwJY+tWuOkmeOMNaNQIPvoIypTJUxNunsSHdBjHxx6zbP1du5rlKhmJLNJhXDKVjFKwPHfAa4EngXLAH5gV4ovCqlxF8AuWKXEjsA34TkTeBO5R1f98lSzJ5CW2SlVTr9Bpp06WbgigWDFbMW3QwNLEde6ceqniatY0xSWc8uWtLH1u3HUX3HprIqSKzsiR9njqqZCmyhVYUeMvvtjOaacpRx8NVar4LVFMZEzurB9//NFvERyJZPt2M0d89JH9Hj//PJQtm+dm3DyJD6k+jq+8YmuDF14Izz6bvCyBqT4umUzGKFgiUh14E8sQ+C1mtVoD/AY0Axb4JlzqUBFzeXsAeA14CCtefJaIXKeqn/kpXJLJKe4qnNSNwWrTxopn7NgBy5fD2LEQCNi+MWMs0DqVeOghy0cbokiMHsr77GNbsggpWGefTf/+/XnwwQeZN29eWroJjh9vdbRTOLlFxjJs2DC/RXAkClW44w5Trh59FB54IN9NuXkSH1J5HBcsgBtugNNOg9deS24K9lQel0wnI2KwROQyYCpwHKZYnaSq01R1EXCwqn7gq4ApgqquABoC/VR1g6p2B5piiR5GiMhrIpL3Jbj0JKe4K99jsESknYi8umPHjuxPKlnSzBLVqkHjxnDnnZaW6NdfLd9riK1boXt3qF7dlK5mzeDLL/ds688/La1R+fKmzLRsaYU5wB5POQXKlbMV2kaN4Ouv8/6hypY1eUNb5cqmHF57LdSqZQU469Qx2XeGlXDr2TN5adK3bYPx4+35qadSv359OnbsSOnS6ReyOGHCBAYO7A78x0kn+S1NjpwlIud7WV6LAKeFXoftdzhSh48/hhdftCLC99/vtzSOFOfDD+3x+echDdfpHPkkrS1YIlIGiym6GvgBuMqrDbULVd3gh2ypipdlMPz1FBFphqWsvxs4UUQu9OK2MpZUj7vKd6Hhhg3h9NNh2DDL/wpWYGPuXHjnHVOyPv/cCiJNmGDK0pIlcPzxcNxxltqoQgVLLxxS7i67zM775RdzR5w6dc90dDVrwkknWaB3Xtm50xTE99+H/fe3Pjp3hooVTfFKNpMmwfr1cNhhUK0aJ1erxslpav759dfp/P33c8DtHH+839LkyBsRr/tFvE5dK3IOPPHEEwDce++9PkviiCv//AO33AJHHGFp2QtojnDzJD6k6jh++62tb9ata+uHySZVx6UwkLYKlojUAT4EjgAeAYKqmsNyvyM7vIyK94rI58BQ4GcR6aKqg30WLWF4MViTVXVnbvFYKRmDlROHHw6jR9vzuXPh3XfNR6FGDdt3yy12/JVXoH9/u0nIyrICmSVK2DmHHba7vYULLQ6qXj17feihe/Z3yCFQtWrucj3wgFmjQtx/v20PP7x7X82aZoF7911/FKyQZS5NlapwDj20E9CJo49O3VVTVc0IL4poTJ482W8RHPGmVy/7HStWDD79dPfvZQFw8yQ+pOI4TphgnvylS1selGS6BoZIxXEpLKSlgiUipwHvA9uBM1X1fz6LlBGo6ngROQp4F3jLs2zdqarbfRYtEWRuHSzV3b/kv/5qrw8/fM9ztmyxlMIAv/1mFqzsbhbuvNNcYQYNMlfBCy7YrWyBxXvFwp137qk07efVvn75ZXj9dVPkNm0yN72DD46tzXgzdqw9emPTvXt3BgwYwLJly/yRpwCMG2ePrVr5Kkah5b333vNbBEc8efppU65atbK4q6ZN49KsmyfxIdXGccYMcybJyjLHiFo+VfpLtXEpTKSdgiUiNwIvANOA9qnu6pVuqOpSEWmLZWK8EzhERDqo6jqfRYs3kXWwCoyInA48hylkr6vqExHHywNDgBrYtddbVQfEo+89mDEDanuhYzt3mrI1YcLemQVDcUWqObfXsydcfjl88YXFbgWDphRdc03e5KpYcW/r19ChcPvt0Ls3HHusxXn162cxDslm61b43qta4AUtHX/88RRPtYyMMfLBB+8CMzjppEf8FsXhSF+2bYNHHrHtzDMtsUUaZxd1JJ4NG+D66+2v9auv/FOuHP6SNgqWiBQBngK6ASOBSzPwpj8l8CxW3URkFhYP8Z2InKmqf/ssWtyIdx0sESmKjVVbYDEwQUQ+VdUZYafdDMxQ1XYisj8wU0TejoyLKxDTpsH//gcPPmivjzrKfuWXLs3e7e3oo2HIEFMwsrNi1alj2223WSbA11/Pu4IVje++g2OOMbfFEHPnFrzd/PDbb2ZBq1/fEnAA7dq1o127dv7IUwA2b4bZs38GRnHCCU7B8oNHHrFx79Gjh8+SOPLNX3/Zb9OIEXDllfa7F+cFFzdP4kOqjOPOnVbh44cfbK0wTobOfJMq41IYSQsFy7t5fQ1LZtEPuD1D3dZSClV9RUTmA8OAb0XkFFWd77dciUBEqgI3AiFfuj+Al1R1SYxNNAfmqOo8r733gPZAuIKlQFmvXts+wErMzTV/bNliitPOnZamfcwYixFo0sRipsBiqS6/3Oq0PPOMKVMrV5r/WO3acP75Vijz5Zfh4ovNBWbffc3iVb++RebedRdcdJHFR/37726lKMQpp0Dz5vD443n/DIcdZskxvvjCrFvvvQfffGMyJJuff7bHFi127VJVxA/H+QIyeTLs3NmXww/3ZygdMHPmTL9FcBSEFSssO+uqVZbZ9O67E9KNmyfxIVXGsXt3U6769rW/Vr9JlXEpjKS8giUiJYDBwMVYprugam4+TY54oapficgpwP8wJauNqv7pt1zxxHOJ/ARYBHh32VyEWfHOVdWvYmimmvf+EIuBYyLOeRH4FFgClAUuUdWd5JfRoy25RNGilsWgYUOrg9Wly56WqAEDrIT8PffA4sUW+9S8+W6LVrVqlpr87rttn4hlyHr1VWt71Sq46ipT5ipWhLPPNpe+EHPnwkEH5e8zdOli2sBll5ml7YILoFs3ePPN/I5K/vnpJ3sMUx6POuootm3bxvTp05MvT4xMmzaNyy67jE6dOnHnnXeyY8cOzjmnPtCVY4652W/xCi1DhgzxWwRHfvnzTzjxRCuE/tlncNZZCevKzZP4kArj+Prr9td42WVw661+S2OkwrgUVlJawRKRYsB7wHnAXar6jM8i5QsRGRf+WlVP8keS/KGqv4hIK2AU8I2InKiqmbQs8jzwOtA1XHkXkeewmKr6MbSRXYKMcE4DJgOtgUOAUSLyraqu3aMhkc5AZ4AS2bnsDRwYe1r04sUtjio8g18kDRpY+vZovPNOzu0vWJC7DNmdU6KEpVd6IyJT90MP7X4eKXtunyW/hCxYYQpW9+7d2bx5c/z7iiMVK1akY8eO7OclDRERypRpClTdw9DocDhi5NFHrVzD11+7LDGOmPj3X/MmPfBA+2sukrH5UR2xkrIKlhdzNQBTrrqq6vMxvzcoWcCJwK8a0H8TJGKhQlWnekrWeGC0iJygqgt8Fite1ARejGIZ7QfEWodqMRBuxqmOWarCuRp4wutnjud+WQ/4JfwkVX0VeBUgKyvLWWuTwfLlMG8elCkDDRvSo0cPRo4cya+/pn6G/qpVq3LPPffsel2kSBGKFjWlOF0ULBHZD3gMOAWojBUc3oWqlouxndRINAM85C0SPBxehsCR+rzxBrz9Ntx7b1KUq0ybJ35dg36P4/vvm9f+sGFxD9MrEH6PS2EmJRUsL0alH9AReCCPylVNYBZQHFAJyoUa0I8SImiMpJvFKjtUdaaInAqMA8Z4SlasMUqpzESsntqsiP1HAL/F2MYEoI6I1AL+BjoAl0Wc8xd2A/mtiBwA1AXm5VdoRxwJWa+aNoVixahTpw7HHnusvzLFyF9//cX8+fM57rjjKFasWKSumC68ARyFLSwsYW/rb66kTKIZj0WLFuV+kiO1+OgjK0nRsuXuQu0JJpPmiZ/XoN/j+O67cOSRe4TwpgR+j0thJiUVLOB+4AZstb9XHt/7FKZcgbltPQf4qmBlEqo6xVuhGg185rkLrvdbrrwSUVy4P/CsV7zaC8ShBZb0Iqby56q6XURuAb7EVu7eVNXpInKDd/xlrCD2QBGZis3N7qq6Ii4fyFEwItwDr7zySq688kofBYqdoUOHcs8997Bu3Tr22WcffvHsoU2aWD3UNOEUoK2q/pzrmdmT/EQzOTBgQEIMY45EsW4d3HefZUsdPTouRYRjIcPmiW/XoJ/jOGMG/Phj/vI8JZoMm19pRcr9/YrIJcCjmAn5/nw0sTbi9YYCC5VCSFDOAUIZAK7TgA5Ptgyq+rP3PY0A3hGR81R1R7LlKCDRigtHU+aHYIWXc0VVPwc+j9j3ctjzJcCpeZbUkXiixF+lCx06dKBJkyaUKVMGSNuPsgwo6EJN8hPNODKDf/6Bdu1g1ixLauFdS448UyivwUcftYLC113ntySOVCKlwvBEpAUwCPgWuC6f2QJvxS5qgI3A+XESz3ckKEWB4UBFb/vI25d0PGWiK9AOeNoPGQpILaC295jTVtsvAR1JQpVdZh9PK+nUqROnnpoeuvBBBx1E69atKeJFVaepgvUA8LCI7FOANvKSaOZAoDHwoojsFd8lIp1FZKKITFy+fHnk4Zi47777uO+++/L1XkcSmTnTMhNMmgSDByc0Y2A0MmyexO0ahLxdh36N49dfm3vgzTdDpUpJ7z5XMmx+pRUpY8HyfHE/xOJXzlfVLflpRwO6iT2TDfhOMBgsjpnCtwIbA4FAfhMXVGLPHzDBAsL/KZiE+UNVXxSRusAdIvKzqg71Q478EI/iwo4MYcECWLPGigtXrw5As2bNWLVqlb9yxcgff/zBP//8Q+vWrVGFiRNtf/Pm/sqVRx7Eks0sE5GFwLbwg6p6ZAxtJCTRTNOmTfP1e/3ff//l522OZPLGG1a4SAQ++cSsWEkmw+ZJ3K5ByNt16Mc4rltn6dj32Wd36clUI8PmV1qREgqWFxj5DqZAtEz3uJRgMFgVuBBzBzsaW6kJsT4YDE4HvgE+Bn6OVeHSgP4rQVmBjRPAfxpQX5SrMLoBTYDXRWRKutbI8koCNMcyG+3hfK+qb/kiVA506mR1MD/7zG9JdjNwIFx99e7XVarACSfAk09CrVq+iZU7U6bYY6NGu3bdfHP61I966aWXGDx4MKtWrWLRIqsjXbFi/kuT+cSHcWgjpRLNvPrqq4lo1hEveva0RBbNmsGnn4JPSW0ybJ74dg36MY6vvgrTp8OgQbD//knvPiYybH6lFSmhYAE9gDaYW2CsWdtSjmAwWAsrhnwpNrZzsGQQ87DYsBKYj/JRwJ3APcBvwWAwCHwao6JVA0uWINiqr6+o6lYRuRjLtvehiDRX1Y1+y5UXRKQeFk9WCxvXHdj3tw3YAiRdwRKRdkC7kiVLJrvrAlGmjNUdVrVanV26wDnnWC3hor44s8bA5Mn22Lixn1LkmzvvvJPLL78cgN+8X8+jjrJF+XRBVQucss0lmnHEzNChply1bGlF1tMoG0wqU9iuwW++MaeHNMmH5Egyvv+qeHFXPYDB7E7ekFYEg8EiwB1YHZcdWJrSlwOBQLbWnGAwWB64BLMADQc+CwaD1wYCgWU59eW5QKaUMVpVF4vI5diPai/gdn8lyjN9gUmYP/hS77E88BI+KbGqOgIYkZWVFVMdrpBFq21beOop2LgRzj0X+vXbHa+tCn36wMsvw19/2YrbFVfsznz08MPmMbN0Key7L5x6KryVR9VSxCxXAFWrQiAAHTvCnDmwdi088AD8+its3WopbZ9+2u5xQrzyCjzzjMlXtiwcfTSMHGn3P1Onwu23w4QJ9llq14a+feHkk/Mm415EsWCdfPLJVK1alXdyK7KcAtSsWZOaNWsCeypY6YiItAYOx+I2pqvquLy8P5USzdzl+Qz17t07Gd05YuWxx+DBBy3N5qef+q5cZdo88esaTPY4zp0LI0ZAt25J6S7fZNr8Sid8/WURkTKYdWAxcGs+k1r4SjAYLIkphxetZ/340Yx+7LfAb1/l9r5AILAGeDUYDA7AEnP0AiYFg8EzAoHAtMRKHX9U9SsReQHo6tW9GOu3THmgGdBKVTeIyE6gmKr+KiL3AC8AscR/+M6335pSM3o0LFoEF18Mhx1mmYcB7r8fXnrJlKwTT7TauqEb8mHDoHdvC9Y94ghYtgx++ml32yH3v/nzwbuXj4nSpe1x2zbzV7/iCnjuOVPEXnwRzjwTZs+24OCJEy1QeNAgOP54WL0axobNossuMx3ol192K1ylShVgwEKEFKwwC9YZZ5xB+fLl49B44pkwYQIbN26kVatWaWuME5FqmMt0E3bHbBwoIhOB89Kx3t6mTZv8FsERyVdfmXJ16qmmXKWAh4CbJ/Eh2eP42GP2eMMNSe02z7j55R/ip04jIs9jykVrVf3aN0HyiZe84mPgrHGM+3sc46p5hz7XgOYpFVEwGDwKc1MrBZwYCARm5PKWlMNTmH8DSgMNVTUyZX5KIiIrgaaqOk9E5gCdVXWsiBwCTFVV33L2ZmVl6YYNe1caiIzB6tQJxowxBSi0IHv99fZ69GhYv96UmL59o/8h9Olj1qNp06JXof/4Y1PUxoyBatX2Pg6mhN1yi/UFsHgxXHSRPc6du3dZGVVL3vX002bl+ugjU+IWLzbrVSTlysELL8BVV0XvP1+sWQMVKtiN1vr1vq9m54fzzz+f2bNnM3XqVA4+2Kx/M2ZA/fqJ7VdENqpqVpzaGobFql6mqvO9fbWxMglLVPXCePSTH5o2baoTQ5lDCsglr/wIwNAuLXM50xF3li+HBg3sh+iPP6L/yKQZIjJJVZv6LUcyiOd1mBeiXbPDh8N559n/1uDBSRfJkWJkdx36lqZdRJoBtwAvpqNy5dEbOGsZyx4KU64AzpSgRLlNzZ5AIPAb0AqL+xkZDAb3jaOcScGLvboKyxz0sM/i5IVpQMg/7Begu4i0wuLp5vgmVR45/PA99YMDDzRLFNgN95YtcMop0d970UWwebMlo7j2WvjgAzs/xHnnWUxVdspViA0bLKNSVpYlWdi61RSnEiVMli5dzKpWvrzd3yxbZgoBmHvjwQebDJdfbpasdet2t33nnVZnpHVrWz38Mx7pVH7/3R4bNkxL5QrM9eO9997jv/9sLEuXtjFOM9oCN4eUKwCvWOlt3jGHI//MnQtt2tiCymefZYRy5fCH7dvtv6hMGXPBdziywxcFy8sa+BIW7/KAHzIUlGAweCr25/9cf/q/HuWUPFcmDwQCc4FzMQXl+QIJ6BOq+hPwCnCriKRLJMhj7E5//yCWZvZrzE/8Nr+EyiuRlicR2OmVb8zNUH3QQVYO5pVXzFLUrZuFKEQxnuVImTKWM2LqVDMITZpkSbrALE8TJsCzz8IPP9h51aubEgZ2z/Prr/D++1CjhsWG1asHSzznsJ49TVE891x7/5FHwpsFjdqMEn8FUKtWLW6//fYCNp4cateuTYMGDXa5Bx55ZAonFMk7aVuA9Pbbb0+bOZTRfPGF/ZgtXGimhxTzn3XzJD4kaxw/+8w8Q557zv4rUx03v/zDLwvWW5ivfbd0cSMLJxgMFsNic2YB93qp0vt7hxV4SAOx+15KUC6RoGyToOzsSc+uwBNAx2AweHy8ZU8S9wOrgf95ynRKo6pfqupH3vN5qno4lgr/gLwG2acqhx9uXnBjxmR/TqlSVmPz2WdNEZo+Hb7/Pm/9iMChh1oCiqwI57HvvrOaIWedZZ46ZcvCPxFFBooVMwvV44+bcWnDhj1T0depA7fdZokvrr0WXo+2tJEXQlpJhIJ15ZVXcsIJJxSw8eQwZswYvvvuu10fJU0TXIwBnheRXcnlRaQG8Jx3zOHIO++8Y4Ge++9vFWHPOMNviRxpzuDBVjKxUye/JXGkOkn3iRGRCliNKIAHRGSxqn6bbDkKyMXAYcB5gUBgM4AG9GZgr+I5wWDwAOA4oCqwHpgCTIlIyT6Y3d/Fpc/zfJvbuO16zJpyesI+RQIQkf2wrHz7ebtuA571TaA8ICKlgUO8l3PTMelKdpQtC127WhxVyZKW5OK//8zCdOONFj+1fTscc4y5+A0dahaxOnXs/bHEYOXGYYfBkCHWx4YNcM89e8ZlffaZefKceCLst5/dD61bZ7FEmzZZIceLLrIkG//+awrbMccUcGBCLoKegrVjxw7+++8/7r33XkqHMnSkOPfddx+VKlViv/0scVeaKli3AZ8A80RkCbZQVQ34nTSyIofTt29fv0Uo3CxdCnfcAXXrmmm8jG+htDni5kl8SMY4bt5s/1M33JA+HuVufvmHH1PkXqA4VgfqFiAdnaG7YLE5n2Z3QjAYrAM8DZzDbvezELOCwWAP4ANP0drje1jJykqYRSwYDAZrBgKBBXGUPdFsBlpiVrgzgdtEpL+qbsn5bf4hIiWBJ7HvtQT2fW0RkVexGh2b/ZQvXjz+uKVff+QRSyRxwAG763dUqGAFge+6yzL+HX64xU6FCgSvWWMuhNu25b//N9+Ezp3NW+fAA83lb/ny3ccrVDAPnocftjTzhxxiFqoTTjA3wlWrzM1w6VIrpHv22Zb5MN/s3GlmOrDUicC///5LtWrVeOWVV+jcuXMBGk8e7733HiJC+/b2OsIYlxao6iLgaBFpC9TDrsEZqjraX8kcacnixVb/Yc0ay/KTosqVI72YM8f+i44+2m9JHOlAUrMIeu4fs4APVfUKESmhqluTJkAcCAaDlYF/gZ6BQCBqccxgMHg2MBSLw3oBU8QWAuWAE7DMiY2BN4AbetLzTeAK7+0rgCo96VkDK1B8ZyAQSAsLUIjQ9yoip2K1se5U1ZT9DCLyJhZv1R340dvdEngcGK2q1/ggU6jQ8PWbN2eEfpd6LFhgGmSVKrt8FTds2MCgQYNo1aoVDRo08Fe+PLBtm7lkhtLh77NP4vuMZxbBVCa/2ctuvtkcGvqFRcK7LIJJYMYMy+azbBmMG2crNClMtHkSKy6L4G4KMo45EX7NXnut1YacM8cSMqUDiRoXx26yuw6TbcG6D4v76gGQbsqVx7He46hoB4PB4DHAR8BkzIXw77DD/wKzg8HgICxD3QPAWg3olRKU/phLzHAN6A5gfjAYnIMpZCmrnEQj9L16tbFGA/eLyCtelsFU5CLgfFUN/07nicgyYBiQdAUrr4WGHflghlcJ4fDDd+3Kysripptu8kmg/PHRRx+xZUs1tm07htq1k6NcxQMRuRPor6qbvefZoqp9kiRW3EgXF9OMYvlyU6g2brSMPSmuXIGbJ/Ei0eO4bJklYOrYMX2UK3Dzy0+SpmCJSFXsRnWgqi5IVr8JIFR0dnLkAS/5xZvAP8DpgUBgpbf/QKAhsByYHAgEdgAPBoPBCsAdwWDwfQ3oT5HtYTWl0t0YHQS+Ba4jdTMjbgD+jrL/b8BV6ctUoihYRx55JBdffDEPPvigT0LlnZtvvpnDD28HHEPDhn5LkyduBQZhbsW35nCeAmmnYPUukP+qI19ceimsXGlV149PjxxRbp7Eh0SPY79+Fjucbgn53Pzyj2RmEbwDi716Kol9JoLqwLJAIBDNGnM2cDjQLRAIrAwGgyWDweCrwGLMVe5XYEowGAz5Ht2LuQTek01fC7z+0hZV/Q5TsO4WkRK5ne8TLwABL8kFsCvhRQ/vmCMTCcVfhbkCtmjRglqhwLM04YcffuDII63sXDopWKpaS1X/C3ue3Vbbb1kdacDLL1sWni5d0ka5cqQHqhYPfPrp6Rnj6vCHpChYIlIeuBF4T1XnJqPPBFIGywYYjXOB/4Dh3uvngeuxrHqtMAve/sBXwWCwYiAQWA+8A5wZDAZLRmlvA1AyGAz6VhA6TvTCFMXL/BYkhIh8GtqAY4AzgL9FZJyIjMOU4jOB5j6K6UgkUSxYr776KpdffrlPAuWPWrVqMX9+FWBXro60Q0Su9JLNRO4vISJX+iFTQencuXPaJEpJe9autSw+DRrA86nqKBEdN0/iQyLHceVKq8eYjl+Tm1/+kSwXwSuAfUhDN48obAFKZXOsITAxEAhsDwaD1fCUq0AgEIovGB8MBqcAk4BrMWvez8Btb/HWCz2DPWsC/TWgw73zSwLbA4FA2hbb9PgSmAHcBAz0V5Rd/BfxeljE6/nJEsThA6pRFax05I033mDSpCZA47SyYEUwAPgfsCxif1nv2FtJl6iAVKxY0W8RCg8vvwx//WUZA0ukqqNEdNw8iQ+JHMfFi608ydlnJ6yLhOHml38kXMESEcFurH9W1UmJ7i8JLAUqB4PB4oFAIDJpdRaW+Q8sdkqwbIK7CAQCvwaDwdlAM2/XOoDNbA4lM2grQTlNA/oVZvVZmoDPkFRUVUWkP/CiiDRT1QkpINPVfsvg8JHFi2H9eitAWqkSYBkE69SpQyAQoEuXLj4LGBvbt2/nuuuuA4IUK9aYww7zW6J8I1isVSQ1gDVJliUuPP74436LUDj4+Wd46CGrYN66td/S5Bk3T+JDosZx82ZYvRo6X5M+ta/CcfPLP5LhetYKqI/VdcoEZmCKaf0ox1ZgBYVhd3KEciG3szD3s33CjlcB2MgeIV0dJSgNVrP6zJWsXBvvD+ATgzGXx5RN0SYitUXkbBE5S0Rc3EcmEyX+CuCss85KqxisokWLMmLEX8Ct1KuXdov3iMhUEfkdU66+EZHfw7bpWPymq4XliM4nn1i9q5Il4emnQSJLTjocBWPlSnu89FJ/5XCkH8nQx6/GViA/SEJfySCU7e9E4PeIYxOAm4LBYHnvvLXAPUWLFpUdO3YoQMuWLatgStiX3nvabGLTtjWsKR7Wzu+lKT21HOVkPOMrSlDe0oCmZRxCCFVdKyLvApeKyC2qusFvmUKISDmsJtkFwM7du2UYcK2qrvNBplAdrGR3XTjIJkX7a6+95pNA+UNEWL78ICC9ElyE8aH32BAYyZ7xrVuxRD+R7rtpwdVXm5F8wIABPkuSoXzxBVxwARx6KHz/vVmj0xA3T+JDosbxv5VQqhTUqxfXZpOGm1/+kVAFy8vEdj4wVFUzJd31POAPoAPwYsSxd7BsiTcGAoEngsFgN+C1Hj16/A6MAypjFr2vgaHBYLAmcF4JSrymaC3sJuMV4OD61JciFGEWswAuBNJawfIYgqVrPwd412dZwnkOS79/MvCDt+844GUsQcm1yRbI1cFKMBkSf7V+/XqGDHkLaE3Dhul3B6CqQQARWYD9T2RMVe2DDjrIbxEyl1dftWyB1arBRx+lrXIFbp7Ei0SM47p1sGY1HHBA+hpH3fzyD1GN5vYep8ZFLsZikFqr6tcJ6ygPSFBqY6umWcCNGtCxeW0jGAzejSWoOCoQCEwOP/ZQ8KHPilDklK1sPa5XoNevwWDwAkzpOg5LrDAQCADbsGLFTYB6gUBgcaiNosGiHTvTeXARitDfPCvnakAPzfunTS1EpAiwEJisqu38lieEiPwHnKuq30bsPxH4WFV9ixLNysrSDRtSxtiXORx/vK16jx4Np5wCwOzZs2nZsiWvv/465557rr/yxciCBQs8l8Y3+eSTqznnnOT1LSIbVTUreT36Q9OmTXXixIlxaeuSV34EYGiXlnFpr1Dy3Xd2zbZuDcOHm3tgIUVEJqlqU7/lSAbxvA5j5dln4ckJP3L00fD5Xe6adUQnu+sw0TFYlwBLgPEJ7icv/A4cBRwGjJag7JuPNl7H3B4fC98pQTnnWZ49cy1rS+1gx6RbgrdcGAgEhgUCgeOBYoFAoFIgELgLKAd8jrkZdg5XrgAe4qGtVajCj/y4GZgFpH45+hhQ1Z2Y5ep0EangszjhlGbvrIIAK8k+Y6QjnZk1yx7r1t21Kysriw4dOlCjRg2fhMo7Bx10EJUrLwUuSVcXQQBEZJ2IrM1u81s+R4owaxa0aWOJaQYPLtTKlSPxfPghlC1rm8ORVxJmwfJqmvwHDFbVGxPSST6QoER+4LYa0DwHUQeDwbuAp4EOgUBgqNf2UuCAfdmXy7iM/dkf4EfgPcxyUw5Tli4HigJdAoHAoIh2KwJTgX+BpoFAYEdeZUtlRKQl5obXQVWH5nZ+MhCRUVi83BWqutHbl4Wlhi6nqm39ks1ZsBLAqlWw335QpoxlEkxX3w/gv//sXjMry0oBFUlixbx4WrBEpBN7ZhEsji2EXQA8pqq+FfzO78p5x44dARgyZMiufc6CVQDWrIGLLjKr87Rpae/eGyLaPIkVZ8HaTUHGMRobN0L58nBUtx+pVSt9r9l4j4tjb7K7DhMZg9UKc8P7LIF95IcVQCXv+Q5MAcoPfbHYqNeCweC0QCAwHXP7YxWreIVXOI3TfmhGswpYjE+I9VjCj0cDgcCc8AaDwWAxLI6rInBWpilXHr9g38HZRKSw95E7gS+wQsOhjGaNsKyHp8XaiIicjn3XRYHXVfWJKOechM2d4sAKVW1VQNkdeSVkvTrssLRWrgDGj/8HGMqhh55HkSIH+y1OvlHVgdH2i8ivwCmAbwpWfqkbZh11FJANG8xyNWmSxV9liHIFbp7Ei3iP46RJsH07lCsX12aTjptf/pFIBetsYDOW0CGVOBR4DStgeYcG8pfNzismfBGWOfDLYDDYGrgU+7zFtrN92UhGtmlGs83AgVg69vXAvCj1swgGgyWAQcCpwHWBQOC3/MiV6qjqDhH5AjhLRIqqqu9KpKpOFZE6QEegHlaTZwjwdqzJWUSkKNAPaAssBiaIyKeqOiPsnApYuYLTVfUvEakc30/iiIlwBSuMsWPHcu655/LVV1/RokULHwTLO+PHzwHuoEqVhkD6Klg58DW2IJF29OjRw28RMoOVKy2F2/LlMGgQXJkJ+Z524+ZJfIj3OE7wqnWmu4Ll5pd/JFLBOgX4JuRylSpoQNcAF8ejrUAgsCgYDLYFxgA/9qTnZYFAoLgEpbgGNFyJ+tvbohIMBqtglquTgXsCgcAb8ZAvhfkfcAVmJfrVT0FEpDiwCDhFVQuSo7s5MEdV53ntvge0x+qmhbgM+EhV/wJQ1WUF6M+RX2bOtMewlb1JkyZx4IEHcu2111KlShWfBMueDRs28OWXX9KkSRMOPvhg1q1bx6hRo1i27GhgJaeckrG5JjpgFu+YcFbkDEMVunY15ap374xTrjKRTLkGp0yBKlWgePHcz3U4opEQj30RqQQcTmolt0gIgUBgKtASU6D+FwwGB/SkZ0x3aMFgsEQwGLwJmO61cWUgEHg6cdKmDKF54XvyDlXdhrl2FjQYsRqmqIVY7O0L5zBgX6/g9CQRiXq3ICKdRWSiiEzcvn17AcVy7EWEBWvWrFlcfPHFlCpVimeffZaaNWv6J1s2LF++nAsuuICvvzaHgH/++YcLLriAiRN/APblqKPSrMJwBKGCw2HbVBFZBjwM9IqxjZAV+Qzs/+dSETk84pwKmBX5HFVtAFwUz88RTocOHejQoUOimi8cDB0KQ4ZAz57QrZvf0iSETJonfl6D8RzHnTvhyy+thnW6k0nzK91IlAXreO8x4xUsgEAgMDcYDB4D9MRSsncMBoPDgY+xGK8FgUBAAbwixE0xV8ArMdfBb4CbAoHAjL1bzzxUdbGIzMeyKD6X2/lJ4AXgPhG5WlXzq9FEC+aJVNqKYWn5T8EyF/4oIj+p6qw93qT6KvAqWJKLfMrjyI4IBatYsWIcfvjhLF++POWUqw4dOrBu3To+/vhjpkyZQvXq1QE4+OCDmTx5CieemNZFhsP5MOL1TmA5ME5V/4yxjZSyIjdu3DhRTRcOBg2CG2+0eKv77/dbmoSRYfPEt2swnuM4bhz8+6/Vsf50fa6npzQZNr/SikQpWMcBW7D4pIxBgrI/UEIDupe7XyAQ2AR0DwaD/YHbMBe4C73DW4LB4FqgJJZJEGA75ir3AjAqpIAVIr7F0rWLJrIYW2ycgCVl+VtEpmHJLXahqrFUF1oMhFf0q46VKIg8Z4WqbgA2iMh4zE1yFo7ksHMnzJ5tzz0Fq3bt2owYMcJHobLn2GOPZdOmTZQoUYIjjzxy1/6SJUtSseKRrF0LFStaIcx0JlRwuIBEsyIfE3HOYUBxERmHxeE+p6pvRTYkIp2BzkC+0/bfe++9+XqfA3MHvOceaNoUPv00o/20MmyexO0ahLxdh/Ecx1dftUSzF1wAnw7K/fxUJsPmV1qRKAXrKGCqqm5JUPtJR4IyELjKez5WA3pKtPMCgcBCoFswGLwHOAJoARwC7ANsBf4BJgM/BAKBwlzfZSK7LXj/+CzLCmBYAduYANQRkVqYu2gHbKUunE+AF0WkGFAC++N5toD9OvLC339b/t3KlaFCBb+lyZXbbrst22PTptnjEUekfTLEXYhIa8y1CGCGap4KwSfEity0aVO/F4AKF7/9BnffbcrVmDGuCFF6EbdrEPy5Dv/+Gz76CG65BUq5KpiOAhB3BUtEBGgMDI93234hQSmKp1x5tJag1NaAmcGj4aVYn+xtKYEE5U6gB7AKOFUDOieXtySSKd5jY3xWsFT16ji0sV1EbgG+xIJ731TV6SJyg3f8ZVX9Q0T+hxW73okFAE8raN+OPBAlg+CYMWPo0qULH3/8MUcccYRPguWdkILVoIG/csQDb2HiI2xRKmT5PVBEpgIXhFyOciGlrMgXXHABAMOGFXTtppDx8MNWo2706EKhXGXYPPHtGozXOL7/PmzbBjfcUKBmUoYMm19pRSIsWAdidZwmJ6Btv9gZZZ/v6cXzggSlCfCM97ICVo9qP98E2q1gNcJqUCUdESkCdAPOxbIZjQYeVtXN+WlPVT8HPo/Y93LE66exAtUOP4iiYFWoUIFjjjmGsil4M9eiRQvq1avHwIED9zoWbsHKAN7Ain3XDsVmiEgNrHTF60DrGNpIKStyy0yIkE8mqnD99TB8uCW0KF/eb4mSQobNE9+uwXiN45gxUKfOXlU80pYMm19pRSIUrJB7R8aszGtAVYLyHNDV2/WRBnShnzLlgxaYqT5kwvf130tV14jIIsDP9ffuwKNYmv1NWMHhSng+344MJEqK9iZNmvD222/7JFDOtG/fngOyCbCaPt0eM8GChWVRbRFSrgC8WnF3EGMx+FSzIt91112JaDZzmTcP3ngDzj8fHn3Ub2mSRibNEz+vwXiM47p1pmBde22Bm0oZMml+pRuJULBqe49zE9C2b2hAb5eg3A0U0UBaxpa9z+7aFJAaCUjmArV87L8TcKuq9odd9TuGi0iXFEi84UgE2RQZTlXuu+++qPt37oQZXl6uDFGw/sLiMSIpxZ5B8znirMhpypo1cMklULQoPPGEC35JY9L5GvzmG9i82ZJbOBwFJRF1sGpjyRwi/W7THg3otjRVrtCALsey9wwAgtiKsd/MZ7dC7gcHA5+Fvf4Ss/Ad6I84joQTRcF66623qFGjBsuWpU/d5wULLFfHgQfCvvv6LU1c6AY8LyItRKSot7XAipGmZQGkc845h3POiSUBqYPnn4dJk+Cxx8w/qxDh5kl8iMc4fvUVlCiRGfWvQrj55R+JsmAtVNW0ilEqDHhJOa7xW44w5gFVRaS0qm7yof8SmGsgAKqqIrIVS6fvKyLSDmhXsqTvomQOW7bA/PlQpAgccsiu3dWrV+eUU06hdOloBhR/qVKlCldddRVPPvnkHvszIcGFiKxjzwxjpYDv2R3zWgSLdX2b3eUt0oZTTomaaNYRyfbt8NJLcPLJ0L2739IkHTdP4kNBx3H7dhg5Elq1yiwDqptf/pEIBasKFtzocORGyMp5ALDAJxkeF5GNYa9LAAERWRPaoarZ58pOEKo6AhiRlZV1fbL7zljmzTPfutq1IUxxbd26Na1bx5JDIflcf/31NGvWbK/9ofirNC8wfCt7p3DOGLp27Zr7SQ548EH45x948UW/JfEFN0/iQ0HHccwY+4vo2TM+8qQKbn75RyIUrEpkUIILR0JZ7j1Wwh8FazxWoyycH4DwioYZewNY6Eiz+CuARx55JOr+TLBgqepAv2Vw+MzDD8OTT1rQS/v2fkvjKMSEYlpPP91fORyZQ6IUrBUJaNeReYTmSSU/OlfVk/zo1+ETIQUrLIMgQK9evejfvz+LFy/2QajsCeVZkShVhDPBgiUi+6nqytDznM4NnZdOnHHGGQB88YUvVShSn6+/hkAAzj0X3nvPElwUQtw8iQ8FHcfp02H//W3LJNz88o+4KlhekeH9gLT7M3T4wn/eY0VfpXAUDkIp2iMsWA0aNODcc89Nvjy5sH79esqXL88zzzzDHXfcsWv/9u3w55/2/PDDs3lzerBcRKqq6jJssSWatVi8/Wl3992uXTu/RUhdtm6FG2+EypVhyBAoloi13vTAzZP4UNBxnDABjjwyTsKkEG5++Ue8f9WKY4HJfiQscKQfoYK+GRRS6khZsnERbN++Pe1T0D2pWLFiPPDAAzRv3nyP/XPnWr6OGjUgBWsj54XW7F6MO9lPQRLBTTfd5LcIqctLL9mCx2uvQVaW39L4ipsn8aEg47h0Kfz+Ozz+eBwFShHc/PKPeCtYJbzHuKUyF5FxkDh3rkS3n8x+0nCsQvOkRI5nORzxIM1isEqXLh01BisT3AMBVPUbABEphhUcH66qGVfewxHBmDFw111w1FFwTSoltXUUVr76yh5PO81fORyZRbzrYIVSc3UWkXEi0jfO7aclnmLSGGgcUlIKO97cGOa97OCjKI4MZ+HChdx588388e+/ULo087Zu5c4772SWp3BdccUVNGrUyGcp92bnzp1s3759r/2ZkOAiHFXdjhUdLe63LPGkTZs2tGnTxm8xUoudO+Gqq6B8efj8cyuZUMhx8yQ+FGQcp02zxLIp+DdQYNz88o94/7q5X0tHXgjFXOwdxV/IEZF2IvLqjh2unFx+GDt2LGeeeSZLlixh+fLlvD5oEIsA6tRh6bJlvP766yxZYsaSq666igYpqK3MnDmT4sWL89577+2xP1MsWBH8BDTxW4h4cskll3DJJZf4LUZq8eGH8Pff8MwzUKWK39KkBG6exIeCjONff0H16pmp77v55R/xdhHc6j2+pKp94tx22qKqJyXLFTFdUNXbRaQSlqr9fb/lEZEDgCuwtO09VHWFiBwHLFHV+cmWx9XBKhibN29m+XKrAtC0aVPWvvIKdOwIhx3Gsccey9q1a3edm6orfBUrVuThhx/myIjI60yzYHm8BvQWkRrAJGBD+EFV/dUXqQrA9de7S3cPJk2CK66wTAIXXui3NCmDmyfxoSDjOGMG1KsXR2FSCDe//CPeClYopqZkjmflgUQrJMlSeJLRTxqOVWiexC1mLz+ISBNgDDAfiwV5Gstq1hY4DLjMP+kc+eHMM8/kzDPP3L0jmxTtqUzlypXp0aPHHvu2brWPIgL16/skWGJ4x3uMtjCXllkEHWHs2AFXXmlZWUaMKPSJLRypgyosXAitWvktiSPTSJQFK24KliOjCc2TrTmelXh6A8+pakBE1oXt/xK42ieZHPEkmxTtqcz27dvZunUrpUqVoojnuzJrlqVpP+QQKFPGZwHjSy2/BYg3J510EgDjxo3zVY6U4OOPzUwweLClv3Tsws2T+JDfcfz9d1i7NuMWrHbh5pd/xFXBUtWd3g1q+Xi268hYQvNktZ9CYLEf10bZ/w9wQJJlccSBd955hwEDBvDZZ59RsmTJtMsgCBZHdtppp/Hdd99x3HHHAbvjrzLMPRDgYOAHL+HFLrwMg8cCC32RqgB06tTJbxFSg/Xr4cEHrWibiwXZCzdP4kN+x/Hmm6FiRbjoovjKkyq4+eUfiajutwKolIB2HZlHqGb6Cl+lsLpt+0bZXw9YlmRZHHFg+/btbNy4kWLFipkPSBoqWHXq1OGJJ56gVq3dxp0MTXAB8DVQlb2vt/LesbRzEXQ3NljWwNNOg9mzzTWweEYliowLbp7Eh/yM44oV8P330KsX7L9/7uenI25++UcicqY4BcsRK6F54reC9QkQEJGQy6KKSE3gSXanknekEVdeeSXff/89RYsWhSVLYMMGqFQJ9tvPb9FiplatWnTv3p0DDzxw174MTXABlklUo+yvSETCi3Rh27ZtbNu2zW8x/OXpp+GHH6BPHwiPiXTsws2T+JCfcZwyxR6bNUuAQCmCm1/+kQgL1nJsJdLhyI3K3qPfCtZdwOfY3C0DfIe5Bn4PPOijXI54kIbWK7BMiJs2baJ8+fK7YrAyzYIlIp96TxUYIiLhCW+KAg2BH5IuWBxo27YtUIhjH5Yvh8ceg1NPhVtu8VualKXQz5M4kZ9xnD3bHjM1/grc/PKTRChYC4GWCWjXkXnUAtYDK/0UQlXXAseLSGvgaMyy+6uqjvZTLkf+6dOnD2PHjuWzzz5LywQXYHFk1157LQsWLODggw9m82aYMweKFk2rZIi58Z/3KMAqzF03xFZsseO1ZAsVD6677jq/RfCX886DLVvMelU07Tw8k0ahnydxIj/juGSJZWQ9IIMjrd388o9EKFjzgH1FZF9VXZWA9h2ZQy1gnqpGcw1KGiLSSFWnqOpYYKyfsoQQkXZAu5IlXULO/FC0aFF2jV1IwUozreSYY47h2WefpWLFigD88YeFtNStC5kyLVT1agARWQD0VtW0dAeMRseOHf0WwT+GDLHglkceyUh/1nhSqOdJHMnPOM6YYRlZiyXiTjhFcPPLPxIRgzXPe8y4tLuOuFOb3fPFT34Tkakico+IVPdbGLBCw6rauahb+c0XXbt2ZdgwL3wuDWtgATRo0IDbb7+dffbZB9gdL9CokY9CJY5HCLNeiUgVEblORI71UaYCsXHjRjZu3Oi3GMln1iy46irzY73rLr+lSXkK7TyJM/kZx19/haOOSpBAKYKbX/6RCAXL82olQ+tiO+KBl375UGCO37Jgc/Uj4DpggYh8LSLXiEg5n+VyxIM0tWCtW7eOZcuWETLwZriCNRK4FUBE9gEmYgW/vxGRK/0ULL/sVey6sPDSS1CkCPzvf1CqlN/SpDyFdp7EmbyO49q1sGCBVQ/IZNz88o9EKFgzMd/5zLwNcMSLulih4ck+y4GqzlLVgKoeBhwHTAV6AUtF5H1/pXPkh27dunHFFVdYDMj8+XbDd8ghfouVJ5599lkOOOAAdu7cCcDkyba/cWPfREokTdjtnns+sBZLgnM9loQmJkTkdBGZKSJzROTeHM5rJiI7ROTCggidEzfeeCM33nhjoppPTX76Cfr2hfPPh2rV/JYmLci0eeLXNZjXcfzxR6vg0TLDMwZk2vxKJ+LueaqqW0VkBtA43m07MorG3uMUP4WIRFV/Bn4WkbeBl4ELfBbJkQ/KlStnqWnnzrXApdq10y5w6cwzz2T//fenaNGiqGa8BassuwuOnwp8rKrbRGQs0C+WBkSkqHduW2AxMEFEPlXVGVHOexL4Mk6yR+WSwlhU96abrBTCo4/6LUnakEnzxM9rMK/jGDKwZrqClUnzK91IhAULzCrRWEQkQe070p/GwBbM4pkSiEhtEXlQRP7AspetwtwGY31/yqyeF3YCgQDPP/982roHAjRt2nTXyuOiRbBqlZXyCiuLlUn8BRwnIlnAacAob/9+QKwBBM2BOao6T1W3Au8B7aOcdytW3y6hRcTXrFnDmjVrEtlFavHRR/Dbb9C1K9Sp47c0aUOGzRPfrsG8juOUKXDkkVAuwwMBMmx+pRWJUrB+wtw70ssnx5FMjgMmqqrvFfBE5GYR+QGLH7wIGADUVNXWqjogxjZCK3dnAIcDl4rIXt7dyVo9d3iksYK1YsUKlixZAuxpvcrQZas+wGBs1ftvYLy3/0TMZTcWqgGLwl4v9vbtQkSqAedh1umE0r59e9q3j3ZvmYFs2GCJLZo2dYkt8kiGzRPfrsG8juMff2R+/BVk3PxKKxKVnPJb7/FEUiOJgSOFEJEyQDOgt9+yeNwLvAt0UdVYb+Yi2bVyByAioZW7GRHnhVbuMrh2vP9UrlyZDh068Py6dbYjDRWs++67j5EjR7JkyZJMj79CVV8RkUnAQcAoVd3pHZoL9IixmWiqZ2QJiL5Ad1XdkZODhYh0BjoD1KhRI8bu9+S2227L1/vSjp074cYbYf16eO45KFPGb4nSigybJ3G7BiFv12FexnHVKli6tHAYWjNsfqUViVKw/sAKSJ4AvJmgPhzpyzHY3Ps2txOTRI041OKKtnJ3TPgJYSt3rclBwQr/UylRokQBxSqcdOzYkZYtW1rAPaSlgnX11Vdz8sknAxkffwWAqk7EsgeG7xuZhyYWYwpaiOrAkohzmgLveTd2lYAzRWS7qg6P6PdV4FWApk2b5uu34fzzz8/P29KPAQNg8GDo2ROOTdus+r6RYfMkbtcg5O06zMs4fvONPZ5wQsxvSVsybH6lFQlRsFRVRWQ80EZExO9Cso6Uow2wA/jeLwFE5GhgsrdSflROK2mq+mssTUZ7a8TrvsSwchf+p5KVleWunTzQo0cPNm3aRJ8+fWxHKHtSGipYxx57LMd6N6yZaMESkTuB/qq62XueLaraJ4YmJwB1RKQW5mbYAbgsop1d9RlFZCDwWbQbu3iwYsUKACpVqpSI5lODTZvg4YetmNBDD/ktTVqSYfPEt2swL+M4cSIULWoerZlOhs2vtCKR9atHYqv1RwC/J7AfR/pxFvCdqvoZeTkRqIIF2U7ElKHslKRYqv3GdeXOkT9Wrly5u6jif//Zts8+ULWqv4Llg3nz5lGmTBmysqowdy6UKAH1Mqu64K3AIGCz9zw7FIvRyhFV3S4it2DxjUWBN1V1uojc4B1PeNxVOBdeaDlsxo0bl8xuk8fEiRZ39ddf0L9/xgYHJppMmid+XoN5GcexY22xqnTpREmTOmTS/Eo3Eqlgfe49noVTsBweInIQViPtbp9FqQUsD3teUFJq9byw0q9fWEbvUIKLww5Ly5u/8847j1q1anH33cMBaNAAihf3V6Z4En49hD8vYJufs/u/J7Qv6k2dqnaKR5/Z0a1bt0Q27y///gutWllK9s8/hzPO8FuitCXT5olf12Cs47h4sdXAeuSRePWc2mTa/EonEqZgqeo/IjIROAd4PFH9ONKOs73Hz/wUQlUXhr8EFkVzZRWRmCLcU2313EFaZxAEeOKJJyhTpkyhiL/KRNq1a+e3CImjc2fYuBG++87cAx35JqPnSRKJdRy/9wITzjorgcKkEG5++UciLVgAHwG9RKSmqi5IcF+O9KAD8CcpVP8KmA9UJaImh4hU9I7F4iKYUqvnhZVrr72WmjVr0qNHj7RXsM7wrALvvGOvMyn+KhyvXuKVWFHv2tiCxzzgA+DtdI3hXbp0KQBVqlTxWZI4ogq33w6ffgo33JC5kzKJZOQ88YFYx3HaNChSBOrXT4ZU/uPml38kqg5WiHe9x0sT3I8jDfCsQSeSejdNwt4JKQD2weJDHGnC5s2b2bJli71IYwVLVfn1119ZsWLFrgQXGWzBGobVnjsYq3k1HXPbfQv40Ee5CkSHDh3o0KGD32LElxEj4Pnn4aab4IUX0tL1NtXIyHniA7GO4++/219CqVJJECoFcPPLPxJqwVLVBSLyPXC5iDyRYjfVjuQTUrTf8VUKDxF53nuqwOMisjHscFGsttXkZMvlyD9vv/327hczvBJkaVhNctOmTTRp0oRevZ5g6tTuQGYqWCJyOXAqcJqqjoo4dhowTEQuU9WU+M3IC/fee6/fIsQPVQgELHDlkEOs/EGxRDvAFA4yap74SKzjOHUqNG+eYGFSCDe//CMZv5CDsYrdzYBfktBfyiEi48Jfq+pJ/kjiH54b0NXAj6FivCnAEd6jAPWBrWHHtgK/4lMxZBFpB7QrWbKkH92nP5s3w5w55gty2GF+S5NnihUrxvDhwxGpx6ZNUKsW7Luv31IlhI7Ak5HKFYCqfikiT3vnpJ2Cdfrpp/stQvy48UZ45RU491zo0SOzsq34TEbNEx+JZRzXroX58+Haa5MgUIrg5pd/JNpFEOyPcT1wYxL6cqQuJwN1gZf8FiSEqp6sqidjqaLPCL32ttNUtYuqzvZJthGq2rlo0ZjCvxweZ5xxBi+++CLMmgU7d9pqexr6gpQoUYL27duzYoW5NzbLtix12tOIiLjFCEYCjZMjSnxZtGgRixYtyv3EVOfDD0256twZhg2Do4/2W6KMImPmic/EMo6hBBfHHJMEgVIEN7/8I+EWLFVdJyJvAdeIyF2q+l+i+0w1CqPFKgo3Af9hgesphape7bcMjvhQpEgRihQpsts9sEEDfwXKJ2vXruXPP//ku+/qA2UzWcGqCPyTw/F/gP2SJEtcueKKK4A0rz+jCn36mAm1Xz+zCDviSkbMkxQglnGcP98e09BrPN+4+eUfyXKifgm7wb4OeDJJfTpSBC+5xblAH1VNyaQRInIyFiNWAygRfkxVW/silCPPjBw50p706GGPafpPOmHCBNq0aUOdOt8AJ2ayglUc2JbD8e3eOWnHgw8+6LcIBee116xo0NNPu5irBJER8yQFiGUcFyywgu2FKaGem1/+kZRfTFWdJiJfAXeIyPOquikZ/TpShruxRBIv+C1INESkExYn+DFwEvAJcBiWyWyIb4I58k+aW7AaNWrERx99xkUXNUQk472yIhPMhFMmqZLEkTZt2vgtQsH47Te46y7zp7rjDr+lyVjSfp6kCLGM4y+/QMOGhcsQ6+aXfyRzmvUCDsASHTgKCSJyAGa5fEtVU9UR+C7gFlW9FFtNv09Vj8KUq/W+SuaImY0bN9K8eXPefffdtM4gCFCpUiUOPPAsduzYj/r1oWxZvyVKGOOBQ7CEM9G2Q7xz0o558+Yxb16q5PPJIy+8YIpViRIWf+ViQRNGWs+TFCK3cVy/Hn74AVoXMn8UN7/8I5k2//HAD8A9IvK6qm7N7Q2OjOAOoCSp7RpaGxjtPd+C1b8CeBEYB7g8p2nAzp07qVixIiWLFIHZs22ZMg1rYAEsXLiQoUMXAy1o1ixzb24zOT71mmuuAdIw9mHECLjtNmjb1qpcV6rkt0QZTdrOkxQjt3EcNw62bQOvfnuhwc0v/0iagqWqKiKPAF8AXUhRdzFH/BCRasBtwHuqOstveXLgPyBkI/gbaAj8jgXgl/ZLKMduduzYwfbt2ylevDhFihSJ+rp48eKMHDmSIjNmwI4dcOihUDo9v74hQ4bw7LMPAlsyWsHKZILBoN8i5A1VuPVWeOklOPJI+OSTtL1+0om0mycpSm7jOG2aPTZtmgRhUgg3v/wj2Z6oXwJjgYdEpIqI9BSRg5IsgyPBiEgPEakP9MSU+FSPsvwWK3YK8D7wvIgMAN4F9qrP40g+n3/+OaVKleK3334DYPjw4ZQqVYrp06cDMHToUEqVKsWcOXPS3j0QoGPHjhx00FdAiUxOcJHRtGrVilatWvktRux8/bVlCrziClvud8pVUki7eZKi5DaOM2dC1apQrlwShUoB3Pzyj6SmBfKsWPcAE4GZQDlgOdAvmXI4EoeIVAe6AQFMgX8lhQoLZ8ctQKhY0uNY5rLjMGXrUT8EcoWG96RevXr06tWLAw88EIAGDRrQq1cvDjjgAMCSQvTq1YtKlSqBp3Slq4I1f/58Fi1ax6JFbSlVCho18lsiR36YOXMmAHXTwU11/Xqrvlq1qilZWVl+S1RoSKt5ksLkNo4zZ6ZlzfkC4+aXfyQ976qqThKRhVg67EtU9f1ky+BIHKq6WETqAL8BBwLP+SxSrqjqyrDnO0mBeDFVHQGMyMrKut5vWfxmzZo1lCpViu7du1uNK0zhuu+++3ad06BBAxqEMgZOmWKPRx6ZbFHjQu/evRky5H1gOc2bg9Ox05MuXboAaRL78MwzlsN62DCnXCWZtJonKUxu4zhzJlx4YRIFShHc/PIPvwpbnIpZsa4WkQ9UVX2Sw5EY2gLVgLtU9U+/hYmGiMRcvDRcAXMknzfeeINu3bqxevVqypcvn/sbJk+2x8aNEylWwrjppptYvvwcPvgAjj/eb2kc+aVXr15+ixAbo0ZBMAiXXALnnee3NIWOtJknKU5O4/jff7ByZdrmPCoQbn75hy8KlqrOEpEeQF/gAuBDP+RwxB8RKQ/0wRTovv5KkyMrsNpcOSHeOS7LgI+ceuqpvPbaa5QpE0NJpNWrYeFCKFUK6tRJuGyJoEGDBvz9t1njCpOC5ZV0uAJLzd5DVVeIyHHAElWd7690eefYY4/1W4TYeOwxqF4d3nwTRPyWptCRNvMkxclpHENhuYXRRdDNL//wszR7P+Aq4EURGaeqK3yUxRE/ngX2B85S1R1+C5MDJ/stgCM2GjZsSMOGDWM7OeQeeMQRUMzPn7f88+OPvzJhQhlE6tGypd/SJAcRaQKMAeYDDYCnsUWQtljR78v8ky5/TPPSlsU8d/3g+efhm2+soHAsCxiOuJMW8yQNyGkcv/7aHgtjwiA3v/zDtzsQVd0uIp0wS8fLInKRcxVMb0SkPVZI+jFVneS3PDmhqt/4LYMjNpYtW8b69eupXbt27ieHFKw0zgxx1VXXsW1bNY48cgQVKvgtTdLoDTynqgERWRe2/0vStDj9LbfcAqRw7MPatfDww3bX+cgjfktTaEn5eZIm5DSOCxfCAQfYVthw88s/fF3iVdXfPVfBJ4DLgSF+yuPIPyJSGXgVmAw87K80eSO3eCwXg+UvTzzxBK+99hrr1q3L/eQ0j78CaNv2FWbPLlao3AOBJsC1Ufb/A6TlbdHTTz/ttwg588ADFpwycqS51Dp8IeXnSZqQ0zguWAC1aiVPllTCzS//SAUfmt5AO6C/iPyS4gVpHVEQkaLAYKACcIqqbvVXojyTWzyWi8Hykcsvv5xjjjkmtpNDClYaW7Dmzzc/luOO81mQ5LIJ2DfK/nrAsiTLEheapao/0o4d0L8/vPgiXHABxHptORJCys6TNCOncZwxA04/PYnCpBBufvmH7wqWqu4QkcuAX4EPRaSFqm70Wy5HnngQywzZRVWn+S1MPoiMxyoOHAXciE9Fkl0drN00adKEJk2a5H7itm27a2ClaYr2rVth7NgvgbqcdFJNv8VJJp8AARG5yHutIlITK5kwzDepCsBkT9lvnGrW1Msug/fftzpxr77qtzSFnpSdJ2lGduO4ahUsXQr16iVfplTAzS//KOK3AACq+hfmItgQeEnEpTJKF0TkVKyo8GDgNZ/FyReq+k3ENlpVnwbuxrKa+SHTCFXtXLSoM5799ddfzJ07N/cT//zTNJTataFcucQLlgDGj9/Cli2nU7nyu3g1lQsLdwH7YYXnywDfAXOA1eRhkUNETheRmSIyR0TujXL8chH53dt+EJGEmTpvv/12br/99kQ1nz/69DHl6tpr4fffYb+Yq1U4EkRKzpMC4Nc1mN04/vGHPRbWHA+ZNr/SCd8tWCFU9UsRCQI9gamY66AjhRGR+sD7wHTgxgxMUjIZONFvIQo7d911F1OnTuWP0D9ldmSAe+DXXxcDfuTsswuXdqWqa4HjRaQ1cDS2+Perqo6OtQ3PVbkflnlwMTBBRD5V1Rlhp80HWqnqKhE5A4sbTYiPXN++fRPRbP7YtAluv90sViedBC+8AG7xJiVIqXlSQPy8BrMbx4UL7fGggwraQ3qSSfMr3UgZBcvjEeBw4CkRmauqH/stkCM6IrI/MBLYArRT1Q0+ixRXRGQf4HZgkc+iFHruvPNOVq9enfuJv/xij02bJlSeRDJmTFGgBRdc4LckyUVEGqnqFFUdC4zNZzPNgTmqOs9r8z2gPbDr5k5Vfwg7/yegej77ypWUcMnZvt2SWbzxhiW0uO46i71yrscpQ0rMk/jh2zWY3Tj+8guULm0esYWRDJtfaUVKKViqutNL3V4DeFtETlbVn30WyxGBiJQBhgNVgZNUdYGvAhUQLy10uPVNMDelDZjrqsNHWrRoEduJIQUrTYP2V62CX35ZSdGi39OgQUugkt8iJZPfRGQ65mr8jqouzkcb1dhzQWQxOa+MXwt8Ee2AiHQGOgPUqFEjH6LAhAkTAJ+DzJ94Ap56Cs45xyxYJ7vyf6lGSsyT+BG3axDydh1mN46TJsFRR6VtWcQCk2HzK61IuSmnqpu8eko/AF+IyEmq+rvfcjkMESkJfAy0BC7OEAX4lojXO7FYkJ9VdVWsjYjI6cBzWNbB11X1iYjjlwPdvZfrMbfKKfmWupDw559/Urx4cQ455JDsT9qyZbeLYJpasL7+GlR/Z8eOc5g3bywHH1yobobrYYsZ1wG9RORbTNn60HMfjIVosbtR3ZZF5GTs5i5qMnxVfRVzXaJp06b5cn2+++67AR/rz/TtCw89BO3awfDh4EKbUxLf50l8ids1CHm7DrMbxxkzKHQeAeFk2PxKK1JOwQJQ1WUi0gb4FhglIieq6ky/5SrsiEgx4F0sY+C1qvqhzyLFBVUdVNA2Ui3+I5O4+uqrKVu2LF999VX2J/3+uyW4qFcPypdPnnBx5MsvAZpy440TadKkjt/iJBWvPEcAyyR4DKZs9QJeFJHPVPXiGJpZDIRHWlQHlkSeJCJHAq8DZ6jqfwUWPhtefPHFRDWdOwMGwB13mHI1dKhTrlIYX+dJ/PHtGow2jsuXm2ds/frx6CE9ybD5lVakpIIFoKoLPCVrPDBGRNqo6p9+y5UfRGRc+GtVPckfSfKPiJTAVpTPA7qq6ps+ixR3vILDlYnIrhmhJGVHSsV/ZALff/89FSpU4OmnnybXbIo/e4bUFHYPXLFiBVOmTKFZs2aUK1eOZcuWMXXqVI455hhKl96Hjz5aCkznyitbUK5clt/i+oZnFf9ZRN4GXgZiXX+eANQRkVrA30AH4LLwE0SkBvARcEWiay429Ctt2YQJcPPN5g74wQcu3irF8W2eJAbfrsFo4/ind8dYWFO0Q8bNr7QiJdK0Z4dntWqD1SUan8iUuo7sEZFSWC2ai4G7VfV5n0WKKyJylIhMxtwCpwPTsEyWocdYiOZ7Xi2H83OM/xCRiSIycfv27TF2nxm8/fbb/PbbbwBcccUVPPnkkxx//PG0bNky5zeG4q+aN0+whPnnp59+ok2bNsyaZfcU3377LW3atGH+/Pn8+COsWPE10IYKFfITfpQZiEhtEXlQRP7AUrWvwtwGc0VVt2Puvl8CfwDvq+p0EblBRG7wTnsIqIgVtp8sIhPj/ymMH374gR9++CH3E+PJ8OFw2mlQoQK8955TrtIAX+ZJgvDzGow2jqHEs4XZgpVJ8yvdSFkLVghVnSoiJwCjgXEiclaEJSDlSUeLVQgRKYfFXJ2MxQy97LNIieBNbLWtK/Av2fiM50JC4j+ysrIyLfV9jlx99dV069aNo446iqFDh1Iu1npWP/5ojylowerXrx+rV6/mhhtuYPz48dStWxeAVq1aMX78eGrXrs1DDwGcwsUXj6dGjcKXT1hEbsbcAo/BFjYGAG+r6t95aUdVPwc+j9j3ctjz64hRYSso999/P5DE2IdevSxj4NFHwzvvQOXKyenXUSCSPk8SjF/XYLRxnDYNsrIKb4p2yLz5lU6kvIIF5p8fpmSNFZGrVHWo33JlOp4p/zMsdf5VqjrYZ5ESRR3gIlWdU4A2Uir+I135888/KVu2LJCHrEdLlsCcOVC2bErWwPrll19YunQpDzzwACeccMKu/ZUqVeKEE05AFT7+GKAyt91WmTJlfBPVT+7F4ju7qGqsVuOU5pVXXkleZ999B8EgtGkDI0dCiRLJ69tRIJI6TzKYyHFUtUuhRQsoktK+WonFzS//SAsFC0BVF4pISyw9+HsicgjweAYWt00JRKQpMAJLV36Gqo7yWaRE8h1QHyiIgpVS8R/pSu3atfP+pvHj7fG441IyF++gQTnnUJkyBebPhwMOgNw8ITOYGpn2Wx6yVCacFSvgssvMYvXOO065SjOSNk8ynMhxXLAA5s2DO+/0R55Uwc0v/0i9u5EcUNUVXuKLN4DHgEYicp2qrvNZtIzCq0X2ErAUOCXGJA/pzLXA6yJSG3NP2hZ+UFXH59aAqm4XkZDveVHgzZDvuXf8Zfb0PQfYrqrpmVM8AWzZsoVBgwZx/PHHc3heqkKGFKwTT0yMYAnm/fftsX37wrXSKiJHA5NVdSdwlOSQ6U5Vf02aYHHim2++AcwVNCGowptvwr33wrp1Fn+1//6J6cuRMBI+TwoJkeM4bZrtb9LEL4lSAze//COtFCwAVd0sIh2x5AOPAUeKyIWqOt1n0dIeESkNvIApHGOBS1V1mb9SJYU6QGPgtCjHFFOYciWV4j/SkdWrV9OlSxf69euXUQrWLbfcQvPmzbnyyiv3OrZjB7z1lj3v2DHJgvnPRKAKsMx7rmQfyxjTNZhKBAIBIEGxDyNGQJ8+MG6cJXZ55RVo3Dj+/TgSTkLnSSEichyneo7Ghd2A4+aXf6SdggXguZI8ISI/Ae8Bv4jIHcBrmeZmkixE5AgsDXsj4FGgp6ru8FeqpPEKMAZ4nPwnuXAUkEqVKrF48eLYE1uAuUdNnw6lSqVsgeEff/yRihUrRj02ahT8/Tcccggcn225zYylFpa5M/Q8o3jzzQRUsti5E269Ffr3t0yBzz0HN92Ukq6xjthIyDwphESO4zffwBFHwL77+iRQiuDml3+k9a+yqo4TkaOAt7Cb5HM9l8G9kgs4ouMVyO0GPAKsBs7yLDGFierAmao6129BCjNFixalWrWcMttHYfRoezz22JRNST1p0qRsjw0caI+dOhW+WrCqujD8JbAo2gKZF7uYduQrnjAnvvgCnn3WtPJrrzXlKqvw1kvLFOI+TwopkeP4xx/gvOLc/PKTtPf4V9V/MNeuW4GTgGkicrWIFBGRYiLygojU8VXIFEFESolIDxFp4b0+Aivk/CSWLbBhIVSuAEYBhdxT239WrFhBv379mDdvXuxv+sIrJXbGGYkRKoGsWmVhMyJw1VV+S+M784G9AohEpKJ3LO0YPXo0o0MLAAVBFbp2hTPPhJ9+gsceg9dec8pVhhC3eVLICR/H7dth6VKoXt1noVIAN7/8I60tWCG8IOkXRWQUVtPoTeAaTHm4BUvvPts/CVOG4sCNQHsRGQvcCawBrgSGFGL3yv8Bz3gp1Keyd5KLj5ItkIi0A9qVTFGrTCJYuHAht9xyC5988klsq247d8L//mfPU1TBWr58OTfddBO33norJ0bEiA0YAFu2QNu2hbtOi4cQ3TV3H2BzkmWJC48++igAbdq0yV8DqvDtt+YCOH26aeEvv2zusI6MocDzxAHsOY4//wzbtkHDhj4LlQK4+eUfGaFghVDVmV69rKuBp7FCrouAtCpMnEA2Ypaq6zGLzRvAvaq6wlep/Ke/93h/lGO+BNir6ghgRFZW1vXJ7tsvGjVqxLJly3bVwcqV336DZctsmTIvSTGSyPr165kxYwZr167dY/+2bdC3rz2/7bbky5UqiMjz3lMFHheRjWGHiwLNgcnJliseDB5cgLKBf/8NF1wAP/9s6ddfegk6dy5caSYLCQWaJ45dhI/jr17OUeci6OaXn2SUggW7rFlviMh44BPgMGCuiDwFPKuqG3wV0AfE8h+fjrkCHoEFlj+oqq/6KliKoKruriUFKFasGPvnJc3055436xlnpGwAU61atZg+fe8Ep++/D4sWQf365vlViDnCexSsFt3WsGNbgV+B3skWKh4clF+z5Lx5llt69Wq48UZ45hkoXTqusjlSh3zPE8cehI/jiBFQqxYceKCPAqUIbn75R8YpWCFUdTZwuIjUA3phSRy6ikhfoJ+qrvZRvKQgIkWAdphlpjkwF7gE+KAQuwM6UpR58+YxfPhwLrvsMqpUqZL7G4YNs8ezz06sYHFGFZ5+2p5361a4jRKqejKAiAwAuqrq2lzekjb8z3NfPf3002N/06ZNcM45sH69JXA55ZQESedIFfI1Txx7ERrH0047nYkT4cILC/dvawg3v/wjYxWsEKr6J3C+iLQEHsBSkHcXkZeAl1R1gZ/yJQKvnlUHLDtgAyxI/Eas+O3WnN5bGBGRHGu9q2qfZMlSmJk6dSrdunXjpJNOyl3BmjkTpkyBcuXgtGjly1KDcePG0bdvX/r167crQ+Knn5roBxxQKGtfRUVVr/ZbhnjzxBNPAHm4sfnuO7jhBou3+vhjp1wVEvI8TxxRCY1j3bqns2qVKzAcws0v/8h4BSuEqv4InC0ijYH7gLuAu0VkJBaD81W6133ysiV2wRJ87AtMAzoCQ1V1u5+ypTi3RrwuDlQFNmFFUJ2ClQTOOussVq9eTVYs2dE++MAezz03ZdOzA6xbt44FCxYgngvj1q1w99127IEHUlr0pCMiJwOXAjWAEuHHVLW1L0IVgPfeey/2k3v3hu7doWpV6NfP5rWjUJCneeLIltA4fv+9vT76aB+FSSHc/PKPQqNghVDVycAlInIQ0BlL+PA58I+IvAe8A0xKFxc6ETkAuBi4HDgG2A58hCmN49Plc/iJqu5V5NQb1wHAa8mXqHBSrFgxypcvn/uJqjB0qD2/+OLEClVA2rVrR7t27Xa9fvllmD0bDjvMjBUOQ0Q6AS8DH2PlNkLxs7WAIb4JVgBicnNVtWJogQDUrg0//giVKiVcNkfqENM8ceRKaBx/+cXqbh9xRC5vKCS4+eUfhdZDVVUXqWoPbLX0IuBn4GZgAjBHRJ4TkbYiUiKndpKNGPVF5G4R+QZYAjwPlALuAQ5W1UtU9RunXOUfVf0Xcyl9ym9ZCguvvvoq999/P+vXr8/5xAkTYNo0qFjRcpwniT///JOHH354V52uefPmEQwG+euvvwCYPXs2wWCQv//+G4A//viDYDDI0qVLAavLEgxaW717Q/HiSRM9HbgLuEVVL8XKJNynqkdhylUuEyI1GTFiBCNGjMj+hB074Mor4Zpr4NBDreSAU64KHbnOE0dMhMbxp5/MPdBVMzDc/PKPQqtghVDVrar6oaqeB1TBrFp/eo9fAf+JyP9E5H4ROUFE8nXZikhfL8FGXt8nInKYiFwnIoOweKoZ2I1/eeBxrEBwY1V9WlWX5Ec+R1SKAAf40bGItBORV3fsSGuv1TyxcuVKBg4cSNGiuWTFf/lle7z6aiiRvPWPX375hSeffJL5863u7bx58+jZs+ceClbPnj13KVh//vknPXv25N9//0UVrrsOVq6EU09Nu7wcyaA2Vq8QYAtW/wrgRaCTHwIVlGeeeYZnnnlm7wObN8FDD8H++8OQIXDWWTB5MhxySNJldPhPtvPEkSeeeeYZnn76GSZMgObN/ZYmdXDzyz/EGTmiIyJlgNbAmcCJWLIIMBe8P4EpWH2WWcA8YH5OKeBFZByAqp6UzfFiQHXMJeZQLH1xY+BITJECS6/+LTAKGKmqi/L36RzhiMj5kbuwGKybgXmqelbypTKysrJ0w4bCUVkg9FskOaVcX7UKqlWzbGuzZ9vKfxIJlzH8tzO316+/LnTuDBUqwNSpVror3RGRjaoaQ8BcTG0tAs5U1akiMgV4UlXfEZHjgM9VNQbf0cTQtGlTnThxYp7ft2KFlResFLJK/fsvlzw/DhbMZ+g798FJJ0G7dnDrrc6cWYjZa57kARGZpKpN4y1TKpLbdbhixQrGjIEOHSrxxRcQr5wOl7zyIwBDu7SMT4NJpiDzyxEb2V2HhS4GK1ZUNVSU9zMAEamIFS5uDjQCWmFxT7sQkRVYUoQV3rYWW43dChzindMfC+AuA1QK26qy5/exAVPi3gF+wxSrmc7tLyF8GPFaMWV2LJaJ0ZFgWrRowbHHHkufPrnkE3nlFVOu2rZNunIFeyp/kYpgdq8nTNhdTLh//8xQrhLAt8CpwFTgfeB5EWkLnIItKKUdu25oZs2yxBX9+8NFj8B++8GMGVYEzVHocTe+8aFSpUp8/725BroCw7tx88s/nIIVI6r6HxZ4/Ulon4jsx//bO/N4qcvqj78/IpIsgQtuhLumiKShaGaKuWSaaaap5b6ACYam2S9TcxcVSU3FzBSX1Mwl1yx385cLpgiIKYiIxCL8QBRkuZd7fn+cZ2AYZu4yd+bO3Mt5v17f18z3eZ7v+Z555vudec73Oc85Ptu0Ge7isgluLHXHk2Z2BjqkrRNQhwekWIxHqJuNr6F6G5iOz4RltikpaXJQZiLRcOXZY4892GabbepvNH++J10FOOec8iuVwwEHHMD666/P7bff3uhjPv7Y0xotWuQugkcdVUYFWzeD8XWk4G7PtcA3cWPr0kop1RweeughGD+eQ4cOhZoa+Na3PLRZly5hXAXLeOihhwA49NBcR4qgKTz00EM8+CDstdehkZc7i7i+KkcYWM3AzOYAr6ctCIIiueqqRsQSuflmmD0bdt21IjmCdt11V7p169bo9tOmeYquGTPcG+zGG8umWqsn/ZZm3tcBV1ZQnZJw/TXXwOuvc2iPHh47ukcPSO5GQZDh+uuvB2IA3FyGDbueadNgyJDox2zi+qocYWAFqyySvguMAL5mZvNy6rriM4sDzOwfldAvyGLmTLg0TWRccAHUt06rTFxwwQWNbjt5MuyzD3zwAWy3HTz4YIvG42gVJA+ARpFtgLUKXnmFR6ZOhdpaeOwxN66CIA+PPPJIw42CBhk48BFeeQX22KPSmlQXcX1VjnCNClZlBgNX5xpXAKnsSmBIi2u1CrLBBhtwxRVXFG7wi1/AvHm+crnKM9I//TTstJMbV337wosv+rKbYCVm42sd69sybRqFpP0lvSdpoqT/yVMvSden+jGSSpeOdNEiN6b22gt2242uixbR9bbbIiFPUC9du3ZtXP6/VkKl7sEHHuhK585dI8FwDm3t+mpNxAxWHiTdgIc+79+EYww43MxyAyYE1Usf4Of11D+H58IKyoiZcdhhh9G7d+/8DR55BO66Czp0gN/9riKzV0uXLqV79+6cf/75nHnmmXnbLFgAF17oy8TM3A687z6I/7aC7FVKYZLaATcC+wJTgVGSHjWz8VnNvgtslbZd8BnsXZp98vffd3/QyZN9//TT+XOfPtCxI0c0W3jQlvlzSpp+xBGt/0qp1D04fz787W9/Zp99YI01Wn8/lpK2dH21NsLAagEkjQSOq6+NmSm1W9fMVsiSI2knPAHyZmY2Oav8EHwW5uvAmsDHwCvADWY2KrU5FDgV2BFfRD4euMzMHi2g61F45MIncvVog3THA48UwoB1WkiXVRZJ3HDDDfkrJ0+G44/395ddVpHIgQC1tbUcffTR9OrVa6W6pUvh3nvh17+GKVNgtdXci/GCC/x9kB8ze7HEIvsBE81sEoCk+4CD8d+8DAcDd6ZorK9K6iZpQzObXtQZX3sNLrkEnnzSLelHH3Ufpa5dGdG/PxADm6B+RowYAbSZ66TF78Fp0+C002Dp0hF4Tvc20Y8lo41dX62KMLBahiFA9lT5B8C5wJ+LFSjpMuCXwO+Ai3HjqiewG3A10D813ROfiTkPmIOHln9YUn8z+2eOzM3TsSuUt2Gm4rNYEwrU9wH+23LqLEfSQcBBHTp0qMTpq4MZMzwr76efer6gn9c32VheOnTosGyxcIaFC92wGj4c3nnHy3bcEW65xV0Eg8bT0HqsRq7B6oH/DmaYyspPxvO16YFHcW06V18NTzwBAwfCuefCxhsvq3ryySeLEhmsWrSx66TF78ErrnDP3N12e5LHHy9GQtumjV1frYpW9XxV0guSRki6RtIcSbMkDZHUQdKNkj6VNEXSMVnHbC/pGUkL0zEjUwCDTH07ScMkzU3btUC7nPNK0jmSPkhyxko6urF6m9k8M5uR2fCZkdyypvTDLriB9nMzO9PMXjKzD9PrULJcb8xsiJkNNbPXzWyimV0E/Bs4JEdme+Be3CVuUlP0acU8AVwiaaWgrinR9MWpTYtjZo+Z2YB27do13LiVM3PmTLp06bJi+PMJEzz03oQJsMMOcOedFXENzGXJEp+sOOEE2GgjOOkkN6423hhuuw1efz2MqyJpaD1WY8h3geTmDWxMGyQNkPSGpDdmzarn9FdfDbNmeYTLLOMKoGPHjnTs2LFhrYNVmjZ2nZTsHoTG3YcXXQTvvQf/+78dWWutNtOPJaONXV+tilZlYCV+AnyOPxUZClwL/BV4H9gJuAO4VdJGaZD8FDAfn7r+AT7Dc1uWvLOAU4CBwDdw42qFBMJ4HpaTgEFALzxPy+8lHVhIyWQMvlD8x6yXH+Of6aZ8lY1IRtwFmJtTdhkw2czuaL56rYbLgK7ABEm/lHRw2v4Hv566ApdXVMNVgA4dOjBgwADPg2UGd98N/fr5v2afPh41ognh0UvJ4sXw6qtw6qn/YvXVO/PlLz/PgQfCyJE+sbbTTnDHHb4E54QTYPXwCSiWvYBvZ23fwWf9PwKOqee4bKbis/gZvoLnGWxqG8zsFjPbycx26t69e+EzbrYZFEjkeffdd3P33Xc3TvNglaWNXScluwehcffh2mu753gb68eSEf1SOVrjcOAdM7sQQNJw/E+4xsyuS2UX465zuwFr4cl+jzGzz1P9AOB5SVua2UTgDOAqM7s/1Q/B/9xJ+53wQAj7ZbnUfSipH25wFZrhmFLk59tf0vycslxDeGtgkpnVZul5GpCdTKiXma2kg6RB+A/aXVll++GOyzsUqXOrxMw+kbQbvsj2cpY/WTPg78BpZjazUvqtKnTr1o1rhg2Dl1+GffeFZ5/1ioMP9uAWXbqUXYcFC+DDD2HSJJg4Ed5+G0aPhvHjPdI2rAcMZOnSjdl+ezj8cN8ayo0cNI4C67GekTQJOBlfF9oQo4CtJG2Gu/YeiT+MyuZRYHBaG7IL7klQnHtgA9x6660AHH10o50dglWQNnadVOwebGP9WDKiXypHazSwxmTemEeG+AQYm1VWI2kuPiLaEhiTMa4S/8IDG/SSNAvYEA8MkTm+TtJrLH/C0gsPDvFUihSYoT0wuZCSZnZscR+Pl4ABOWW9gYcbOO5PwD+y2q40Oynph/gaqyPN7KNUti4wEvixmeXOarV5Uj8cIGkt/HoRMGFV7IsWx8xnqR5+GO6/3y0a8EeS11wDxx3XbLfARYtg7lxPozVjxsrblCluVM0sYEZLbkTtsceW7LXXNfTvDxts0CyVgqYxGmhUZhszq5U0GH840g64zczekXRqqr8ZeBI4AJgIfAGcUA6lAZ5++ulyiQ7aEG3pOqnkPdiW+rGURL9UjtZoYNXk7FuBstXwwXIhd7mG3OgyZAyVg1h5Vir3vKXgizSztgxJ3XLavA98S1J7M6uBZXmb5uVpm5HxQ3zW6ticCIK9cSPzGS0fzK6WjqkFtjOz95r1iVoByaAa1RwZkvYHrsP/WG5N6+Gy65XqD8D/WI43szebc85WwcKFMHu2WzMTJvgU0dix8MorMGsW/8anmx/q3IV9fnY2C08cxIIvrcMXE31mKbN98UX+/c8/dyNq7lx328t+XbSocSq2b+/eXptv7lvv3r70q08f6NTJQ8mrCtaArUpI6ox7GHzcQNNlmNmT+AAuu+zmrPeGex6Unfbt27fEaYJWTlu7Tip1D7a1fiwV0S+VozUaWE1hPHCipC5Zs1i74QbEu2Y2T9J0YFc80l5mENyP5RFtxgOLgU3M7LkW1b4w9wI/A04HhjfUWNKP8LVpx+XJ0zUKyM2EeSnuXjkI+LDZ2q4ClDv/hy2tw2qXYrVLqavxbdn72roV3tfVLMWW1vn7tF+zuI7aGqN2SR21S+qoWWLL9pe9T1tNDdTWGrU1+Psao7bWy2pq5O8X1VKzaCm1i5eyeLGxeJGvV1q8GBYvgcULjcWLjCVLjMVLV2cxHdK2A4vZZdn+EnVgUbuOLK1rz/fmt3dHzRKuemvfHtZaC9Zf32eeMltmv0cP2GILD1hRXzyR4cOHc+655zJ79my6tIDL4qqGpM9Z8aGXgI7AAlZeE9sqGDlyJADHZ9IMBEEe4jopDdGP+Yl+qRxt3cD6E3ARcKekC3Cj4ffAQ1mzRNcBv5L0Pu5qeBo+ozMdwMw+lzQMGJaMr5fwdV27AnVmdku+E0u6Mx1frKtgQczsVUlXAVdL2gR4AJ9dW5/l7oVLkx5H4jNXZwMvSco4OC0xszlmtgAYl6P7p8DqZrZCeVAvZcn/8cUX3ZBOAG7Hnwtchq8Hzlx2vwY+xW078OWHi/HYL+DLB9vhnqHgNnlnPE4LwE+BdYFL0v7JwCbA+Wn/eOCrwK/S/o/xtGtnp/0f4c8szkj7hwJ7s/wB5UFpy1yW+6djTgTqwL4DtcficQyWIB1Ihw4n0a3bkay55gJmzTqEjTYaSM+eh7HGGp/y5puH06fPYLbd9mCk2Tz++FHsvfeZ7L77AdTVTeeGG47llFPO4cAD92X+/CkMHnwS5557LnvttReTJk1i4MCBDBjwG3bffXfee+89Bg8ezKWXXkrPnrswbtw4zjzzTIYOHUrfvn156623OOecc7jmmmvYeeedOeOMM+jUqVOhrypoHoNz9uvw6IGvtVZ33RjYBI0hrpPSEP2Yn+iXyqGGA85VDykq3zgzG5xVNg54IBP4IpXNAC41sxskbY+PNncDFgGPAEOSSx2SVsdHnxk/4Ltww3NbM+uf2ggfAPwU2AL4DF8bcJWZPZ3aGHB4ZoYoE0EwIyPnc8wHBpvZyJzykTQt0fAP8ZHsjvioeSbwMnBjJiBH0mPPPN35Yj7d6tMjKIykw4D9zezktH8MsEvOtfo4MNTMXk77zwK/NLM3cmQNYLlF0hd3J8ylHcmILqJsdaC2Ee1ai8ymnKc5MgudpzXIzCevuTLXNLPWGIm2SaS1uh81Q8S6eBj61kBr0TX0dDYxs3rCXLYdSnAfFkO1XWfVpg+ETlDoPjSz2GKLrZkbcDi+7iqzfwzwu5w2TwC7Z+0/C/RtQO4bBcpvaUbZSjLztWstMpt4nqJl1nOeqpfZUtdRczdgbWAbPLjQsq3U52nJrRz9tKrrGnrGtip+f9WmT+hU/9bWXQSDoKUoaf6PRvBYM8oaK6+1yGzKeZojs7HyVnWZTUbSjrgfbGY9aCZAUea17WfcDoIgCNoMYWAFQWlo0fwfZrbSgLexZY2V11pkNuU8zZHZWHmruswiuQ2/b4bgrs6tx3c9CIIgCHIIAysISoCVL/9H3iAqzSRkrnoyq13HrfA1rBMbbNn6KEffl4vWomvoGbQE1fb9VZs+EDoVpFUFuQiCIAjaHpKewoPzlHumLAiCIAjKThhYQRAEQUWR1AO4FXgKTxuxQhJ3M3upEnoFQRAEQTGEi2AQBEFQabYCdgC+k6cuglwEQRAErYo2n8MkCIIgqHp+j6ct2B5YD+ieta1XQb0aRNJtkj5JORkzZWtLelrShPS6VlbdryRNlPSepHwGZUvqeaGk/0oanbYDqkDPnpKel/SupHckDUnlVdWn9ehZdX0aFKbQ95jTpr+keVnf6QVl1mmypLHpXG/kqZek69O1NEbS18usz1ezPvtoSZ9JOiOnTVn7qKm/sznH7p/uuYmS/qeUetWrc7gIBkHQFpG0DXAw0AOfBZkGPGpm71ZUsWAlJC0A+pjZB5XWpalI2gOYD9xpZr1T2VXAHDMbmv7Q1zKzX0rqBdwL9AM2Ap4BtjazfMmmW0LPC4H5ZjYsp20l9dwQ2NDM3pTUBfg3cAhwPFXUp/Xo+SOqrE+DwhT6Hs1sfFab/sDZZva9FtJpMrCTmeVNlpuM9tPxoFm7ANeZ2S4tpFs7POLrLmb2UVZ5f8rYR035nc2j7/vAvniqnFHAUdnfb7mIGawgCNockn4J3IfnUXod/1EVcG+xT7Ak7Z/1vqukP6anh/dIWr9ImV0lDZX0H0n/l7Z3U1m3YmS2Up4G+lZaiWJI68Pm5BQfDNyR3t+BD7wz5feZ2WIz+xCPKNqvgnoWopJ6TjezN9P7z4F38YckVdWn9ehZiIr1aVCYIr7HauBg3NAwM3sV6JYMxZZgb+CDbOOqJWji72w2/YCJZjbJzJbg44KDy6VnNrEGKwiqiOQ2cggrzro8YmZPFSlv3eynYJKOxn9wxgF/sCKnsCUpycnW8/Vi5eWR3xnYGphkZp8WIeIkYDszWyFYgqThwDvA0CJkXo4HYQC4BpgOHAQciru4HVKEzPuB54D+ZjYj6bgBcBzwF/ypW7MpQX+W+zt/CrhGUh9gLCsHuXioBOdoSdbP5Lgzs+mSMm6OPYBXs9pNpfKDucGSjgXeAM4ys7lUiZ6SNgV2BF6jivs0R89vUsV9GhQm53vM5RuS3sZ/9842s3fKqIoB/5BkwO/NLDfseA/g46z9zLVUVF7NJnIkPhObj5bsIyj8m5BNvr5qkdm+MLCCoEqQdC0+CL4T/xEA+ArwM0nfNbOVfMMbwT+Aryf55wHfAu4BvgdsC5xZhJ77ATcBE3BXgYyeW0o6zcz+UYTMm8zstPR+96TjB0nmQDN7soki63A3nNynbBumuuayk5ntkN7/VtJxRcrZ1MyuzC5IhtaVkk4sVrlS92c5vvMcbkqv5+apa0tBLpSnrJJ++iOAS5IOl+APDk6kCvRMDwUeBM4ws8/cvs/fNE9Zi+maR8+q7dOgMLnfY071m8AmZjY/uef9FQ/MUy6+aWbTksHwtKT/5ERSrci1JGkN4PvAr/JUt3QfNZaK3XdhYAVB9XCAmW2dWyjpz7gPcTEGVvaPy6HAt8xsgaR78B/EYrgO2MfMJufouRmeTHnbImTumvX+EtwH/k1Jm+OzPE01sM4AnpU0geVPrzYGtgQGF6EfwHqSfo736ZclKWv2plh3648knQPcYWYzAZK74fGs+NStqZS6P8vxnS/DzNqau/pMSRump6obAp+k8qlAz6x2X8Gf9laEzDUHIOkPwONpt6J6SmqPD3b/lDV7WXV9mk/Pau3ToDAFrrdlZBtcZvakpJtyvUNKiZlNS6+fSHoY9xzINrAqdS19F3gz+xrP0NJ9lCj0m5BNxe67tvanFgStmUWS8vnk7wwsKlLmmpJ2lNQXaGdmCwCS61yxi6tXZ/kMWzb/BdoXKTObL2f5xE+iiNmL5FK5NXAR8Hd8Ju9C4KvFulsCfwC6AJ1xf+91YZlL3+giZR4BrAO8IGmOpDnAC8Da+GL5UtDs/qT833lb41HczZP0+khW+ZGSOiTjdCt8jWBFyFm38QPcdRgqqGdyRf0j8K6ZDc+qqqo+LaRnNfZpUJh6rrfsNhukdqT/6NWA/yuTPp3kwTaQ1AnYj+XXUIZHgWPl7ArMy7jKlZmjKOAe2JJ9lEWh34RsRgFbSdoszcAdmY4rOzGDFQTVw/HAiPTjmhnM9gQ+S3XFMB3I/GnMyXrasw5QW6TM24BRku5j+SxLT/yH649FytxG0hh8dmhTSWuZ2VxJq1HkAN7M6lhxzUOzMLOLcssk3WlmxwLHFilzbnrKPRvvw1p8tvJeM5vXDHVL3Z/l+M6XkWYGC1Jo4FMNSLoX6A+sK2kq8Bt8jd/9kk4CpgCHA5jZO5LuB8bj3/Uga6EocgX07C9pB9xlZjIwsNJ64muYjgHGShqdys6l+vq0kJ5HVWGfBoUp9D1uDGBmNwOHAT+VVAssBI4s1XrjPKwPPJxsldWBe8zsKUmnZunzJB5BcCLwBXBCmXRZhqSO+JrggVll2TqVtY+a8jsraSPgVjM7wMxqJQ3GH7S2A25rgbVhrnP5rpEgCIohzYj0wAfHUzPBD0p8jnZABzP7osjje+G+2Mv0xEOgFxX6VNImOUXTzKxG0rrAHtUQ5EBSvqde38aDVGBm3y9C5s/w9XAv4X+Yo4G5+JPv08zshSJ1ze3P6Wa2pDn9WervPEf2hzlF7fH1cguBT8xs8+aeIwiCIAhaijCwgqCKkLQx8JmZfSqPaLQT7rpQ9BOXNGuBmdWlKfLewGQza2zI5oogaT0zy+dTXREkvYVHILwVfzot3F3iSAAze7EImWOBHcxsaXpC+KSZ9U/XwSNmtmPJPkArI61Fux2PdvlwpfUJgiAIgsYSa7CCoEqQ52d6EXhV0sl46Orv4lPg9bpQ1SPzENxN8L+SDgb+CQwDxkg6qEiZnSVdLM96P0/SLEmvSjq+GHlJ5to52zrA65LWkrR2sXJLTF88CeWvcZ/3F4CFZvZiMcZVFhlX7Q74Gi/MbArNWNuU/OFHSLpR0jqSLpQ0VtL9KiJfiqSdJD0v6W5JPSU9LelTSaMklcUITAupfw1cVQ75QRAEQVAuYg1WEFQPxwC9gI647/7mZjYrLXR9jeVrqZrCb4CvAWsCbwM7m9l7yYXsQeCxImT+CXgY+A4eiKETnrzvPElbm1m+UNsNMZuVQ6r3wCMdGlBxF7G0puu3kv6SXmfS/N/QW/G1Ta8CewBXAkjqTuOTwuZjJPAE/t08j39nB+IJFm+m6YkWb8KvpW7Av4AzzWxfSXunum80Q9f6WA1fkxAEQRAErYZwEQyCKkHSGDPrk9ZHTQc2SIN6JI0zs95FyHwr42aWK0PSm2b29SJkvm1mX8vaH2VmOydXxPFmtk0RMs8G9gF+YWZjU9mHZrZZU2W1FJIOxPOVFGNQZsvZDg9zPs7M/lMi3bK/9ylmtnFW3WhbnsOrFPKW1TVD30Nzi/A1WIPw5MgHNkd+EARBELQkMYMVBNXDm/L8VJ2AZ4E7JD2FB1IoOpCApNWSoXZiVlk7YI0iRS6QtLuZvZzcDOfAsjVeBbOB1oeZDUsR6n4r6WN8tqSqn/6Y2RP4LFFz5byDr+0qJdnu33fm1BUTpn2RPNlwV8AkHWJmf5W0J8WH+8/mgZx9A2bhAUTOKoH8IAiCIGgxwsAKgurhZDzMqOEDzn7Aj4H3gBuLlDkAN6QWmVl2zpWeeIjTYjgVuFXS1nh+jhNhmVtbsXpiZlOBw5PR9jTuKhkUxyOSOpvZfDM7L1MoaUv8emoqp+Jroepw19CfShqJ58E6pbnKtsFEw0EQBMEqTLgIBkHQLCQdZGbFrOWqT+b3cdew3ASLQTORdIKZ3V6t8oLCJKN2XTP7Xls6V55zPw7MNrPjW/rcQVBO4h5edYinhkHQCpD0tyqWeVmJ5GRzaRhXZWOlhMmVkifpu5ImS+qap65rqtuveeq1HiR1l3RT+tyLJc2U9KykfVOTIcDRldSxEJJekHRDC55vjKQrC9QNkLRQ0q9SpMvPUrTTxyQ1eS1rEDSWuIebfM7nJFmerdnu95UmXASDoEqQVCjghIAdqkVmAVmlphwyVxkkjSlURRFR+UotL4vBwNVmNi+3wszmpQH0EOAfzThHa+JB3DX2JGAisB6wJ7AOeJ9UTrWqYwywfW5hMtYvxV1a++NRLkfh1+rFwDOSelV7HsCg1RL3cNPYEU/HcVtO+RcV0KWkhIEVBNXDKDwPVj7jolsVycylHH7G4bvcPNbH10rNzSkXHma90vIy9AHqy/H2HP7n2+aR1A34FrCvmT2bij/C7+FMm5FkufxIegF4Fx+MnIAHHLkUD8U/HPgJ8BnwazO7K0vOC3jUysGFZOfRb3/8u+iN35+jgDPM7N107J7AnpIGpUM2M7PJKfDNL4CBwEb4oPNKM7s7ye2IG0GHAQuA6xrZZWNwAz2XC4CFwFAzW5jzGY4B5gHfpLgUFUFQkLiHm3YPS9oCH4e8aGYzGnNMayIMrCCoHt4FBprZhNyKFFmvWmQG1c/jQGczG51bkf6YKy0vQ3c8cEYhjPTkdxVgftq+L+llM1vUyON+gg/EdgG+D1wL7I8nKt8JOA4PSvOsmU1rhn6dkuwxeF6984DHJPXCZxm3Bv4DZNIWzEqvl+IDr0F4gJVvAH+QNDdF4hwG7Av8EA+a8hs8J9xDDegzBugp6ctm9hlACrxzOnBUrnGV6IIvjch9UBAEpSDu4abdw31xg/KtZnymqiXWYAVB9XAhhe/J06tIZlDlmNlJZvZygbofV1peFlPxWaxC9MH/sNs8ZlYLHI+vz/hU0iuShknapYFD3zGzC9NDlOF40u4aM7vOzCbibnECdmumfg+mbYKZjcGftm8G9EtuT0uAL8xsRtqWypOk/xw42cyeMrMPzewe4A/AIEmdcVeqc8zs72nd5QnUb3RnyLitZq+pGg68ZGYPFjjmOmA08EohoZL+Huu0gmKIe7jJ93BfPG3IJ5LmZ21/ac7nrBbCwAqCKsHMHjCzZSG0U7jyTN1fq0VmHmaWSE65ZQbVxxPAJZLWzK1IbicXU4JcY62FZBhsBBwE/A0fUL0qqb5k1svWx5mHBf4EGJtVVoPP2KzXHN0kbSHpHkkfSPoMv0dXAzau57BewJeAp7IHUMBPgS3StgZZBo+Zzc/WvxDpSf5s0josSd/B3Vh/VkD/4cDuwA/NrL7cbdvgT/GDoMnEPdz4exg3sB7E14Nnb6c16YNVKeEiGATVy2WUfp1AyWWa2b4Nt6q8zKAquQx3PZkg6XcsH9hui6+vEXB5hXSrCMmt6Om0XSzpVuBCScMKHFKTK6JAWfYD1TpWXpfZvgHVHsNnEwem11o8AXp9Ccsz5zwImJJTVwOs1cA5G2Is0FvS6sBvgRvMbKWk7JJ+CxwJ7GVmk3LqegG34O6DI4E5aSYCSVsluRvg67oON7MZknoCN+AD0zWA7wH74APD1YGJZvaDZn62oJUS93Cj2RGPGDyxGTKqljCwgqB6ieh8QZvGzD6RtBswAjekMtenAX8HTjOzVX02czz+X/2lEsqcBWyYU/Y1YHK+xpLWwY3eQWb2fCr7OiuOIZbg7j7ZjAcWA5uY2XN55P4fPkjbFZiUyjrhbn8fNOJzjEl6D8LX6l2Y5xzX4cZVfzP7T07d6nj0spPNbJyk+4G3U10HPNDACWY2RdLJuEvUJcCTwM/M7PkUtfBL+AOBvmZWm4IdBEGGuIdXPm4zYG3a6PorCAMrCKqZiM4XtHnM7CPgAElrAVviRtYEM1ulAhGkAdBf8AH/GOBzfIH7OcCzZvaZB/MqCc8B18oTer+HP9HuSYHBGe6eNBs4JQXH6QFcjT8BzzAZ6CdpU3yh/xwz+zw9tR+WIpG9BHTGB2N1ZnaLpD8CV0qaBUzDowDmDvIKMQYPAPA14KzcENiSbgSOAQ4B5kraIFXNT25MhwJv2PKce++xPADGIfiA9NHU72sA9wE/AF7PDFLN0wnU4dHQrpQ00swa4x4VtDHiHm7SPdw3vc7Iui8zzM7MIrdmwsAKgiAIKk4yqEY12LDtMh94FY/mtSXQAXfjuQeP4lVKbsMDiGRyz9wEPAysm6+xmdVJOgK4HhiHh2k+C18/kWEYcAf+xHtNfPH8ZOB8fK3H2fhM5Wd4oImr0nFn49HNHsZDVf8u7TeGt3HD5nXcvS+XzFqOZ3PKL8Jnu/okGRn6Atek99sDvzCzP2UfKOnSdL5lpEHo9rhRdp+kC+oJtBG0XeIebvw9nDGw3s1VFZ/Z+rSB46se+Xq6IAiqDUljzKy+CGtVITMIgqA1IulMYFMzGyJpb3zNzPpmNkvSYHz24QQzM0nbm9lYSacDW5vZ6ZJWw9egrJ0iwCHpeuC1XMMsCIJVi4giGATVS0TnC4IgKB93AbtJegsPrz3VzDK5f24HugLvShqNh54GnynbXNI7wJu4G+F5kt5LctrjroRBEKzCxAxWEARBEARBEARBiYgZrCAIgiAIgiAIghIRBlYQBEEQBEEQBEGJCAMrCIIgCIIgCIKgRISBFQRB9SKNRHp8pfcted7Syn0BydK2ayrbDulfSOOQHkPqmKNHpv1hJdcnCIIgCIKSEwZWEARNY8VBfw3SJ0jPIw1Cal/GMw8Bji65VDd6bmiRczm3AxsC/0b6EnA/MAiz3sD7eDSzbD02LJMeQRAEQRCUgTCwgiAohmfwgf+mwH7AY3jyzn8iNTZJaNMwm4fZp2WR3bLn+gKzGZjV4IlJn8HsrVT3H6B7jh4zyqRHEARBEARlIAysIAiKYXEyEv6L2WjMhgP9ga8D5wAgCekcpA+QFiKNRVpxVsjbnIU0AWkx0lSkK/KeMddtz2eebkK6HGl2mkkbhif/zLTZH+mfSHOR5iD9HWnbFWTCnsCgrFm5TfOcqwPStUgzkRYhvYq0e45+DeuzMtsCY7P2twfG19M+CIIgCIIqJwysIAhKg9k44Cngh6nkUuAkYBDQC7gC+D3SgVlHXQ6cn+q2Aw4HPm7CWX8C1AK7AYOBM4Ajsuo7AdcC/XADcB7wGNIaqX4I8ArL3fY2LHD+q5LcE4EdcaPoKaRc972G9MllGvBVAKQ+wD7Ao/W0D4IgCIKgylm90goEQdCmGA/sk9wEfw7sh9k/U92HSP1wg+sJpM7AmcAZmN2W2kzEDZ7Gn8/sgvT+faRTgL2BewEwe3CF1tIJwGe4wfUyZvOQlpBx21veLvuYTsBPgZMxeyKVnQp8O32W8xqtz8rcBfwZaWzS60eYLW78xw+CIAiCoNoIAysIglIiwPAZqy/hszyWVd8emJze9wI6AM8243xjcvanAest10ZbAJcAu+Brm1ZL28ZNOMcWuN7/u6zEbCnSK/hnaLw+uZh9ARzUBF2CIAiCIKhywsAKgqCU9AImsdz9+CBgSk6bmvQqmk9Nzr6xouvzY8B/gYHptRafZVuDxpPR0/LU5ZY1pE8QBEEQBG2c+OMPgqA0SL2B/YEHcCNmMbAJZhNzto/SEZk2e5dJn3XwIBKXY/YMZu8CXVj5wdISoF09kiamNsuDWkjtgG8QASmCIAiCIMghZrCCICiGDkgb4A9puuNG0rnAv4FhmC1AGgYMQxLwEtAZ2BWow+wWzD5Hug64AmlxarMO0BezESXQcS4wGzgF6WOgB3A1PouVzWSgH9KmwHxgzgq1/llGAEORZgMf4mvH1gduKoGeQRAEQRC0IcLACoKgGPYBpgNLgU+BcXgerN9jtiS1OR+YCZwNjMCDOIzGI/Jl+BVuCJ0PfCW1v7MkGprVIR0BXJ/0mwicBTyY03IYcAc+G7UmsFkeab9Mr7cD3YC3gP0xm14SXYMgCIIgaDPILN+ygiAIgqDkSC8A4zAb3MTjDDgcswfKoVYQBEEQBKUj1mAFQRC0LAOQ5iPt3GBL6Wak+S2gUxAEQRAEJSJmsIIgCFoKqQfuhgjwcYM5r6T1gC+nvemYLSijdkEQBEEQlIAwsIIgCIIgCIIgCEpEuAgGQRAEQRAEQRCUiDCwgiAIgiAIgiAISkQYWEEQBEEQBEEQBCUiDKwgCIIgCIIgCIISEQZWEARBEARBEARBiQgDKwiCIAiCIAiCoESEgRUEQRAEQRAEQVAiwsAKgiAIgiAIgiAoEf8PtT8SHg6v2E4AAAAASUVORK5CYII=\n",
|
|
300
|
+
"text/plain": [
|
|
301
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
302
|
+
]
|
|
303
|
+
},
|
|
304
|
+
"metadata": {
|
|
305
|
+
"needs_background": "light"
|
|
306
|
+
},
|
|
307
|
+
"output_type": "display_data"
|
|
308
|
+
}
|
|
309
|
+
],
|
|
310
|
+
"source": [
|
|
311
|
+
"# here's one that fails the compatibility test:\n",
|
|
312
|
+
"example_data_doi='10.1186/BF03352885'# data of Calvo-Rathert et al., 2009)\n",
|
|
313
|
+
"# read in MagIC formatted PSV10-24 data compilation\n",
|
|
314
|
+
"df=pd.read_csv(dir_path+'/sites.txt',sep='\\t',header=1)\n",
|
|
315
|
+
"# pick out desired example\n",
|
|
316
|
+
"df=df[df['citations'].str.contains(example_data_doi)]\n",
|
|
317
|
+
"# use svei.svei_test to see if consistent with data model\n",
|
|
318
|
+
"# first pick out the directional data and put in array\n",
|
|
319
|
+
"di_block=df[['dir_dec','dir_inc']].values\n",
|
|
320
|
+
"# do the test and make the plot\n",
|
|
321
|
+
"resdict=svei.svei_test_varkap(di_block,plot=True)\n"
|
|
322
|
+
]
|
|
323
|
+
},
|
|
324
|
+
{
|
|
325
|
+
"cell_type": "markdown",
|
|
326
|
+
"id": "f35460be",
|
|
327
|
+
"metadata": {},
|
|
328
|
+
"source": [
|
|
329
|
+
"## Use svei.py module to correct inclination shallowing\n",
|
|
330
|
+
"- create directory for example data set\n",
|
|
331
|
+
"- download data set of Gilder et al., 2001 (doi: 10.1029/2001JB000325)\n",
|
|
332
|
+
"- These data were filtered for MAD<10 prior to contributing to the MagIC database\n",
|
|
333
|
+
"- perform a reversals test\n",
|
|
334
|
+
"- run svei.find_flat()\n"
|
|
335
|
+
]
|
|
336
|
+
},
|
|
337
|
+
{
|
|
338
|
+
"cell_type": "code",
|
|
339
|
+
"execution_count": 11,
|
|
340
|
+
"id": "1f80d27d",
|
|
341
|
+
"metadata": {},
|
|
342
|
+
"outputs": [
|
|
343
|
+
{
|
|
344
|
+
"name": "stdout",
|
|
345
|
+
"output_type": "stream",
|
|
346
|
+
"text": [
|
|
347
|
+
"20098/magic_contribution_20098.txt extracted to magic_contribution.txt \n",
|
|
348
|
+
"\n",
|
|
349
|
+
"1 records written to file /Users/ltauxe/PmagPy/find_flat/contribution.txt\n",
|
|
350
|
+
"1 records written to file /Users/ltauxe/PmagPy/find_flat/locations.txt\n",
|
|
351
|
+
"222 records written to file /Users/ltauxe/PmagPy/find_flat/sites.txt\n",
|
|
352
|
+
"222 records written to file /Users/ltauxe/PmagPy/find_flat/samples.txt\n",
|
|
353
|
+
"222 records written to file /Users/ltauxe/PmagPy/find_flat/specimens.txt\n"
|
|
354
|
+
]
|
|
355
|
+
},
|
|
356
|
+
{
|
|
357
|
+
"data": {
|
|
358
|
+
"text/plain": [
|
|
359
|
+
"True"
|
|
360
|
+
]
|
|
361
|
+
},
|
|
362
|
+
"execution_count": 11,
|
|
363
|
+
"metadata": {},
|
|
364
|
+
"output_type": "execute_result"
|
|
365
|
+
}
|
|
366
|
+
],
|
|
367
|
+
"source": [
|
|
368
|
+
"# download data from MagIC\n",
|
|
369
|
+
"dir_path='find_flat'\n",
|
|
370
|
+
"dirs=os.listdir()\n",
|
|
371
|
+
"if dir_path not in dirs:\n",
|
|
372
|
+
" os.mkdir(dir_path) # create directory if needed\n",
|
|
373
|
+
"else:\n",
|
|
374
|
+
" print (dir_path + ' already created')\n",
|
|
375
|
+
"\n",
|
|
376
|
+
"reference_doi = '10.1029/2001JB000325'\n",
|
|
377
|
+
"magic_contribution='magic_contribution.txt' # default filename for downloaded file\n",
|
|
378
|
+
"ipmag.download_magic_from_doi(reference_doi)\n",
|
|
379
|
+
"os.rename(magic_contribution, dir_path+'/'+magic_contribution) # move to dir_path\n",
|
|
380
|
+
"# unpack the file\n",
|
|
381
|
+
"ipmag.download_magic(magic_contribution,dir_path=dir_path,print_progress=False)"
|
|
382
|
+
]
|
|
383
|
+
},
|
|
384
|
+
{
|
|
385
|
+
"cell_type": "markdown",
|
|
386
|
+
"id": "98e24f0e",
|
|
387
|
+
"metadata": {},
|
|
388
|
+
"source": [
|
|
389
|
+
"## Be patient - these simulations can take a while...."
|
|
390
|
+
]
|
|
391
|
+
},
|
|
392
|
+
{
|
|
393
|
+
"cell_type": "code",
|
|
394
|
+
"execution_count": 5,
|
|
395
|
+
"id": "78c00be8",
|
|
396
|
+
"metadata": {},
|
|
397
|
+
"outputs": [
|
|
398
|
+
{
|
|
399
|
+
"name": "stdout",
|
|
400
|
+
"output_type": "stream",
|
|
401
|
+
"text": [
|
|
402
|
+
"Heslop et al. (2023) test statistic value = 9.65\n",
|
|
403
|
+
"Heslop et al. (2023) critical test statistic value = 12.90\n",
|
|
404
|
+
"Estimated p-value = 0.10\n",
|
|
405
|
+
"Cannot reject null of common means at alpha = 0.05 confidence level\n"
|
|
406
|
+
]
|
|
407
|
+
},
|
|
408
|
+
{
|
|
409
|
+
"data": {
|
|
410
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEOCAYAAAB4nTvgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlY0lEQVR4nO3deZhU1bX38e+i6cjQzLSI0Ax6cUyUCOKYiFEQVBANqDHwEmNARSK84k0QHLhGuEaj0byJubQkV0QR0OSCbUIS5IqaiEyGREUUokC3IAqKIDO43j/O6bZoG6q6qapTw+/zPOc5VfsMtQ76sNh7n723uTsiIiKHUi/qAEREJPMpWYiISFxKFiIiEpeShYiIxKVkISIicSlZiIhIXPWjDiBVWrdu7Z06dYo6jNR5++1gf/zxSbjV2+GtDv9eIpLdli1btsndi6uX52yy6NSpE0uXLo06jNTp2TPYL1iQhFv1DG91+PcSkexmZmtrKs/ZZJHzbr896ghEJI8oWWSrCy+MOgIRySPq4M5Wy5cHm4hIGqhmka1Gjw726mcQkTTIuWRhZv2Afv/2b/8WdSgiWWfv3r1UVFSwa9euqEORFCkoKKB58+a0bt2aevUSb1zKuWTh7mVAWffu3YdFHYtItqmoqKBJkyZ06tQJM4s6HEkyd2fv3r1s3LiRiooKOnTokPC16rMQkSq7du2iVatWShQ5ysz4yle+Qrt27di+fXutrlWyEJEDKFHkvto0P1XKuWaoSps3b6a0tJSGDRsyZMiQqMNJvkmToo5ARPJIztYsPv/8cwB27twZcSQpcvbZwSYiWadv375MnTq11te9/PLLkU3Lk7PJIue98kqwieSBoqKiqq1evXo0bNiw6vuTTz5Z6/v17NmTKVOm1CmW2l47YcIEBg8efEDZ3LlzGTp0aNxrzYzVq1dXff/GN75RNZdbuuVsM1TOGzcu2GucheSBzz77rOpzp06dmDJlChdqFoO0Us1CRLLW559/zr333suxxx5Lq1atuPLKK/n444+B4M2uwYMH06pVK5o3b87pp5/Oxo0bGT9+PC+//DIjR46kqKiIkSNHfum+tb121KhRlJSU0LRpU7p168bLL78MwJ/+9CcmTZrEzJkzKSoq4tRTTwUOrJ2sXr2a8847j2bNmtG6dWuuuuoqAL75zW8CcOqpp1JUVMTMmTNZsGAB7du3r4qzvLycK664guLiYlq1alXjsyRLztUsKgflFRd/aYZdEamLyhmOY115JYwYATt2wMUXf/n4974XbJs2wcCBXz5+441w1VVQXg4lJXUO7Re/+AWzZ8/mxRdfpLi4mJtvvpmbbrqJp556iqlTp/Lpp59SXl7OEUccwfLly2nYsCETJ07kb3/7G4MHD+YHP/hBjfet7bWnn346d955J82aNePhhx9m0KBBrFmzhj59+jBu3DhWr17NE088UeNv3XHHHfTu3ZsXXniBPXv2VM2W/dJLL2Fm/OMf/6BykHHszND79+/n0ksv5Vvf+hbTpk2joKCg6tp169Zxyimn8M9//rNWYykOJedqFu5e5u7DGzZsGHUoIpJikydPZuLEibRv354jjjiCCRMm8Mwzz7Bv3z4KCwvZvHkzq1evpqCggG7dutG0adOE7lvbaytrIfXr12fMmDHs3r074b6FwsJC1q5dy/r162nQoAHnnntuQtctXryY9evXc//999O4ceMDru3QoQNbtmxJWqKAHKxZiEiSHapfrFGjQx9v3frQxw+jVgGwdu1aLr/88gPGDRQUFLBx40aGDBlCeXk5V199NVu2bGHw4MFMnDiRwsLCuPet7bUPPPAAU6ZMYf369ZgZW7duZdOmTQk9w3333ccdd9xBjx49aNGiBWPGjOH73/9+3OvKy8vp2LEj9eun56/xnKtZ5I2HHgo2kTxWUlLC3Llz2bJlS9W2a9cu2rVrR2FhIXfddRcrVqzglVde4bnnnuPxxx8H4g88rM21L7/8Mj/96U+ZNWsWn3zyCVu2bKFZs2a4e0K/ddRRR/Hoo4+yfv16Jk+ezIgRIw54A+pQz75u3Tr27dsX99xkULLIVl27BptIHrvhhhsYP348a9cGi7t99NFHzJkzB4AXXniB119/nf3799O0aVMKCwspKCgAoE2bNrz77rsHvW9trt22bRv169enuLiYffv2cffdd7N169aq423atGHNmjVVY7+qe/rpp6moqACgRYsWmFlCcfbo0YO2bdsyduxYtm/fzq5du/jb3/6W0J9bXShZZKvnnw82kTw2atQo+vfvT+/evWnSpAlnnnkmixYtAuCDDz5g4MCBNG3alBNPPJHzzjuvarzDqFGjeOaZZ2jRogU333zzl+5bm2svuugi+vbty3HHHUfHjh1p0KABJTHNa4MGDQKgVatWnHbaaV/6rSVLlnDGGWdQVFRE//79efjhh+ncuTMQjNEYOnQozZs3Z9asWQdcV1BQQFlZGatXr6ZDhw60b9+emTNnAkEHd1FREevWrTvcP+IqVllVyjUdO3b08ePHAzB8+PCIo0kBrcEtKfDWW29x4oknRh2GpMHB/lub2TJ37169PGU1CzP7rZl9aGZvxJS1NLN5ZrYq3LeIOXabma02s7fN7KKY8m5m9np47BemWc5ERNIulc1QjwF9qpWNBea7exdgfvgdMzsJuBo4ObzmETMrCK/5NTAc6BJu1e8pIiIplrJk4e4vAR9XK74MqJw9ayowIKZ8hrvvdvf3gNVADzNrCzR194UetJc9HnONiIikSbo7uNu4+waAcH9kWN4OKI85ryIsaxd+rl5eIzMbbmZLzWxp7FwyIiJyeDJlUF5N/RB+iPIauXspUApBB3dyQstQkydHHYGI5JF0J4uNZtbW3TeETUwfhuUVQOxQzvbA+rC8fQ3lEtGc9iKSn9LdDPUsUDmJ+1BgTkz51WZ2hJl1JujIXhw2VW0zszPDt6D+T8w1+a2sLNhERNIgZTULM3sK6Am0NrMK4C7gXmCWmV0HrAMGAbj7m2Y2C1gB7ANucvf94a1uJHizqiEwN9zkgQeCfb9+0cYhInkhlW9Dfcfd27p7obu3d/ffuPtmd7/A3buE+49jzp/o7se6+/HuPjemfKm7fzU8NtJzdRShiCTdpEmTDjoNOcCTTz5J7969D/t3qq9olwxr1qzBzNI291M8mu5DRLLG9OnT6d69O0VFRbRt25a+ffvy17/+9aDnjxs3rmqRoZr+8v3ud7/LX/7yl5THnQuULEQkKzz44IOMHj2acePGsXHjRtatW8eIESOqJg6sLlP+RZ4rlCxEJON9+umn3HnnnfzqV7/iiiuuoHHjxhQWFtKvXz/uv/9+IJh0b+DAgQwePJimTZvy2GOPMWHChKoJACuXKW3evDlFRUUsXLiQxx577IDFht5880169epFy5YtadOmDZMmTQKChYbOOussmjdvTtu2bRk5ciR79uyJG/eMGTPo3v3AaZZ+/vOf079/fwD+8Ic/8PWvf52mTZtSUlLChAkTDnqvTp068XzM5KGxzwbw6quvcvbZZ9O8eXNOPfXUpM/1linjLKS2pk2LOgLJA6NHj2b58uUp/Y2uXbvyUJy1WRYuXMiuXbu4/PLLD3nenDlzePrpp3n88cfZvXs3P/3pT6uOvfTSS3Tu3JktW7ZULRgUu5rdtm3buPDCC7n11lspKytj7969rFixAghmeP35z39O9+7dqaiooG/fvjzyyCOMHj36kPH079+fYcOGsWrVKrp06QIETWljxowBoHHjxjz++OOcfPLJvPHGG/Tq1YuuXbsyYMCAQ963uvfff59LLrmEadOm0adPH+bPn8+3v/1tVq5cSbKWmM65moWZ9TOz0p07d1aVlZaWUlpayrRc+gu2pOSwVxkTyRabN2+mdevWcVeFO+ussxgwYAD16tWjtksrP/fccxx11FGMGTOGBg0a0KRJE8444wwAunXrxplnnkn9+vXp1KkT119/PS+++GLcezZq1IjLLruMp556CoBVq1axcuXKqppFz549+drXvka9evU45ZRT+M53vpPQfat74oknuPjii7n44oupV68evXr1onv37vzxj3+s9b0OJudqFu5eBpR17NhxWPVjsQkk64Xz1nPVVdHGITkt3r/406VVq1Zs2rSJffv2HTJhlBzGP6DKy8s59thjazz2zjvvcMstt7B06VJ27NjBvn376NatW0L3veaaaxgzZgx33nkn06dPZ8CAATRq1AiARYsWMXbsWN544w327NnD7t27q9a/qI21a9fy9NNPUxYz9mrv3r2cf/75tb7XweRczSJv/PrXwSaSB8466ywaNGjA7NmzD3neoVYwiLe6QUlJCf/6179qPHbjjTdywgknsGrVKrZu3cqkSZNI9C3+3r17s2nTJpYvX85TTz3FNddcU3XsmmuuoX///pSXl/Ppp59yww03HPS+jRs3ZseOHVXfP/jggwNiHzJkyAHLy27fvp2xY8cmFGMilCxEJOM1a9aMu+++m5tuuonZs2ezY8cO9u7dy9y5c/nRj36U0D2Ki4upV6/eQZcpvfTSS/nggw946KGH2L17N9u2batadW/btm00bdqUoqIiVq5cya9r8Q+1+vXrM3DgQP793/+djz/+mF69elUd27ZtGy1btqRBgwYsXryY6dOnH/Q+Xbt2ZcaMGezdu5elS5fyzDPPVB0bPHgwZWVl/PnPf2b//v3s2rWLBQsWVC3XmgxKFiKSFW655RYefPBB7rnnHoqLiykpKeGXv/xlwp3BjRo1Yvz48Zxzzjk0b96cV1999YDjTZo0Yd68eZSVlXHUUUfRpUsXXnjhBQB+9rOfMX36dJo0acKwYcO4qpbNv9dccw3PP/88gwYNOqAZ7ZFHHuHOO++kSZMm3H333Vx55ZUHvcdPfvIT/vWvf9GiRQvuuuuuA2ooJSUlzJkzh0mTJlX92dx///0HXfe7LvJiWdVYObPEqpZVlRTQsqr5I2OWVRURkdyRc29D5Y2Y9koRkVRTsshWrVtHHYGI5JGca4aqaVBeTnrssWATEUmDnEsW7l7m7sNrO3oz6yhZSIrk6ksv8oW6vCWVc8lCROquQYMGbN68WQkjR7k7e/bs4f3336dx48a1ulZ9FiJSpX379lRUVPDRRx9FHYqkSP369WnWrBmta9nvqWQhIlUKCwvp3Llz1GFIBlIzlIiIxKWaRbZK4tTDIiLxKFlkq3CKYxGRdFAzVLZ65JFgExFJAyWLbDVrVrCJiKRBziWLvBnBLSKSRjnXZ3GoZVUhWI8boGHDhgwZMiSdoYmIZK2cq1kkSjUPEYnVqRM0bAhFRdCmDVx7LXz2WdRRZY68TRYiItWVlQUJ4rXXYMkSuOeeqCPKHEoW2WrBgqSskiciX9auHfTtC6+/DpdeCsXF0KJF8Dl2WevHHoNjjoEmTaBzZ3jyyaB89Wo47zxo1ixYTaCWq7BmJCULEZFqysuDca/HHBM0R61dC+vWBc1UI0cG52zfDjffDHPnwrZt8Mor0LVrcOyOO6B3b/jkkyC5/PCHkT1K0kTSwW1m/xf4AeDA68C1QCNgJtAJWANc6e6fhOffBlwH7Adudvc/pz/qDPOznwX7W2+NNg6RHDJgANSvH9QILrkE7rsvSBCVxo+H88//4nu9evDGG9ChA7RtG2wAhYVBglm/Htq3h3PPTetjpETaaxZm1g64Geju7l8FCoCrgbHAfHfvAswPv2NmJ4XHTwb6AI+YWUG64844zz0XbCKSNLNnw5YtwV/0jzwC7nD99dCxIzRtCt/8ZnB8/35o3BhmzoT/+q8gSVxyCaxcGdznvvuCa3v0gJNPht/+NsKHSpKomqHqAw3NrD5BjWI9cBkwNTw+FRgQfr4MmOHuu939PWA10CO94YpIPnrgAXj7bVi0CLZuhZdeCsorl/u46CKYNw82bIATToBh4Qv7Rx0Fjz4a1CwmT4YRI4J+jGyW9mYod3/fzH4GrAN2An9x97+YWRt33xCes8HMjgwvaQe8GnOLirDsS8xsODAcoGXLlnFj0ZgLETmUbduCZqjmzeHjj+E//uOLYxs3Bknkggu+eOW2IGzzePppOOusoAmqRQsw++JYtoqiGaoFQW2hM3A00NjMBh/qkhrKalzGy91L3b27u3cvKipKOCaNuRCRmoweDTt3Bm80nXkm9OnzxbHPPw9qHkcfDS1bwosvfjFd25IlcMYZQQLp3x8efjh4WyqbRdHBfSHwnrt/BGBmvwfOBjaaWduwVtEW+DA8vwIoibm+PUGzVX7L9TXGRdJszZovlx199JffUL/++mDftm2QIGpy333Blkui6LNYB5xpZo3MzIALgLeAZ4Gh4TlDgTnh52eBq83sCDPrDHQBFqc55swzd26wiYikQRR9FovM7BngNWAf8HegFCgCZpnZdQQJZVB4/ptmNgtYEZ5/k7vvT3fcIiL5LJJxFu5+F3BXteLdBLWMms6fCExMdVxZ5Sc/CfZ33BFtHCKSFzSCO1vNnx9sIiJpoGQhIiJxKVmIiEhcShYiIhJXzq2UZ2b9gH7FxcVRh5JarVpFHYGI5JGcSxbxllXNGb/7XdQRiEgeUTOUiIjEpWSRrW67LdhERNIg55qh8sbChVFHICJ5RDULERGJS8lCRETiUrIQEZG41GeRrdq3jzoCEckjShbZ6oknoo5ARPJIzjVDmVk/MyvVUqkiIsmTc8nC3cvcfXjDXF92dPToYBMRSYOEmqHM7Kvu/kaqg5FaWL486ghEJI8kWrP4LzNbbGYjzKx5KgMSEZHMk1CycPdzge8CJcBSM5tuZr1SGpmIiGSMhPss3H0VcDvwY+A84BdmttLMrkhVcCIikhkS7bM4BbgWuASYB/Rz99fM7GhgIfD71IUoNTruuKgjEJE8kug4i18CjwLj3L3qnVR3X29mt6ckMjm00tKoIxCRPJJosrgY2Onu+wHMrB7QwN13uPu0lEUnIiIZIdE+i+eB2IELjcKyjJM3g/KGDw82EZE0SDRZNHD3zyq/hJ8bpSakw5M3g/LeeSfYRETSINFksd3MTqv8YmbdgBz/p7uIiFRKtM9iNPC0ma0Pv7cFrkpJRBEpLS2lYcOGDBkyJOpQREQyTkLJwt2XmNkJwPGAASvdfW9KI4tAzvdziIjUUW2mKD8d6BRe83Uzw90fT0lUEl/XrlFHICJ5JNFBedOAY4HlwP6w2IE6JYtwfqkpwFfD+3wfeBuYSZCQ1gBXuvsn4fm3AdeFv32zu/+5Lr+bUx56KOoIRCSPJFqz6A6c5O6epN99GPiTuw80s68QvFk1Dpjv7vea2VhgLPBjMzsJuBo4GTgaeN7Mjqsc8yEiIqmX6NtQbwBHJeMHzawp8E3gNwDuvsfdtwCXAVPD06YCA8LPlwEz3H23u78HrAZ6JCOWrDZ4cLCJiKRBojWL1sAKM1sM7K4sdPf+dfjNY4CPgP82s1OBZcAooI27bwjvu8HMjgzPbwe8GnN9RViW3yoqoo5ARPJIosliQpJ/8zTgh+6+yMweJmhyOhiroazG5jAzGw4MB2jZsuXhxikiIqFE17N4kaDTuTD8vAR4rY6/WQFUuPui8PszBMljo5m1BQj3H8acXxJzfXtgPTVw91J37+7u3YuKiuoYnoiIVJdQsjCzYQR/qU8Oi9oBs+vyg+7+AVBuZseHRRcAK4BngaFh2VBgTvj5WeBqMzvCzDoDXYDFdfltERGpm0SboW4i6FReBMFCSDF9CnXxQ+DJ8E2odwnWyqgHzDKz64B1wKDwt940s1kECWUfcJPehALOOivqCEQkjySaLHa7+x6zoPvAzOpzkH6DRLj7coLXcau74CDnTwQm1vX3ctJ//mfUEYhIHkk0WbxoZuOAhuHa2yOAstSFFZ3ScFEhzRMlIvKFRMdZjCV43fV14HrgjwTrceesjJ8n6tvfDjYRkTRIdCLBzwmWVX00teFIwjZvjjoCEckjic4N9R419FG4+zFJj0hERDJObeaGqtSA4E2ljBz1Zmb9gH7FxcVRhyIikjMSHZS3OWZ7390fAr6V2tDqJm+WVRURSaNEm6FOi/laj6Cm0SQlEWWQjH4z6oIa3zIWEUmJRJuhHoj5vI9wvYmkR5OhMvLNqDvuiDoCEckjib4NdX6qAxERkcyVaDPULYc67u4PJiccSVjfvsF+7txo4xCRvFCbt6FOJ5jUD6Af8BJQnoqgJAGZ2DQmIjmrNosfnebu2wDMbALwtLv/IFWBiYhI5kh0uo8OwJ6Y73uATkmPRkREMlKiNYtpwGIz+x+CkdyXA4+nLCoREckoib4NNdHM5gLfCIuudfe/py6susubEdyXXhp1BCKSRxKtWQA0Ara6+3+bWbGZdXb391IVWF25exlQ1rFjx2FRx5JSt94adQQikkcSXVb1LuDHwG1hUSHwRKqCEhGRzJJoB/flQH9gO4C7rycPpvvIaD17BpuISBokmiz2uLsTTlNuZo1TF5KIiGSaRJPFLDObDDQ3s2HA82ghJBGRvBG3g9vMDJgJnABsBY4H7nT3eSmOTUREMkTcZOHubmaz3b0boAQhIpKHEn119lUzO93dl6Q0mgyWcWtbXJk3M8SLSAZINFmcD9xgZmsI3ogygkrHKakKLFNlzNoWI0ZEHYGI5JFDJgsz6+Du64C+aYrnsOXNCO4dO4J9o0bRxiEieSHe21CzAdx9LfCgu6+N3VIeXR3kzRrcF18cbCIiaRAvWVjM52NSGYiIiGSueMnCD/JZRETySLwO7lPNbCtBDaNh+Bm+6OBumtLoMlRpaWnmvBUlIpIGh0wW7l6QrkCyTca8FSUikgaJTveRdGZWYGZ/N7Pnwu8tzWyema0K9y1izr3NzFab2dtmdlFUMWeU730v2ERE0iCyZAGMAt6K+T4WmO/uXYD54XfM7CTgauBkoA/wiJmpxqNkISJpFEmyMLP2wCXAlJjiy4Cp4eepwICY8hnuvjtcbGk10CNNoWauTZuCTUQkDaKqWTwE/Aj4PKasjbtvAAj3R4bl7YDymPMqwrIvMbPhZrbUzJZ+9tlnSQ86owwcGGwiImlQm2VVk8LMLgU+dPdlZtYzkUtqKKvxNV53LwVKATp27JjyV30zbr4oEZEUSXuyAM4B+pvZxUADoKmZPQFsNLO27r7BzNoCH4bnVwAlMde3B9anNeI49GaUiOS6tDdDuftt7t7e3TsRdFz/r7sPBp4FhoanDQXmhJ+fBa42syPMrDPQBVic5rBFRPJaFDWLg7mXYEW+64B1wCAAd3/TzGYBK4B9wE3uvj+6MEVE8k+kycLdFwALws+bgQsOct5EYGLaAssGN94YdQQikkcyqWYhtXHVVVFHICJ5JMpBeXI4ysuDTUQkDVSzyFaVr+ouWBBpGCKSH1SzEBGRuHIuWZhZPzMr1dgHEZHkyblkkTfLqoqIpFHOJQsREUk+dXAnSdrniRozJvW/ISISUrJIsp07d6YncfTrl5r7iojUQM1QKZTSTva33w42EZE0UM0iW11/fbDXOAsRSQPVLEREJC4lCxERiSvnkoUG5YmIJF/OJQsNyhMRST51cGer22+POgIRySNKFtnqwgujjkBE8kjONUPljeXLg01EJA1Us8hWo0cHe42zEJE0UM1CRETiUrIQEZG41AyVYmmfjVZEJAVUs0gTDRIUkWyWczULM+sH9CsuLo46lNSaNCnqCEQkj+RczSJvRnCffXawiYikQc4li7zxyivBJiKSBjnXDJU3xo0L9hpnISJpoJqFiIjEpWSRRqWlpUybNi3qMEREai3tycLMSszsBTN7y8zeNLNRYXlLM5tnZqvCfYuYa24zs9Vm9raZXZTumJNJr9CKSDaKos9iHzDG3V8zsybAMjObB3wPmO/u95rZWGAs8GMzOwm4GjgZOBp43syOc/f9EcSeFBqoJyLZJu3Jwt03ABvCz9vM7C2gHXAZ0DM8bSqwAPhxWD7D3XcD75nZaqAHsDC9kSffYdUyHnooaXGIiMQT6dtQZtYJ+DqwCGgTJhLcfYOZHRme1g54NeayirAsJ9S5ltG1a2oCEhGpQWQd3GZWBPwOGO3uWw91ag1lfpB7DjezpWa29LPPPktGmGlT61rG888Hm4hIGkRSszCzQoJE8aS7/z4s3mhmbcNaRVvgw7C8AiiJubw9sL6m+7p7KVAK0LFjxxoTSs64555grxXzRCQN0p4szMyA3wBvufuDMYeeBYYC94b7OTHl083sQYIO7i7A4vRFnD7q+BaRTBVFzeIcYAjwupktD8vGESSJWWZ2HbAOGATg7m+a2SxgBcGbVDdl85tQidDrtSKSaaJ4G+qv1NwPAXDBQa6ZCExMWVAiInJIGsEtIiJxaSLBbDV5ctQRiEgeUbLIVscfH3UEIpJH1AyVoeJOOlhWFmwiImmQczWLXFpW9ZBvRT3wQLDv1y89wYhIXsu5ZOHuZUBZx44dh0UdSzJo7IWIZAI1Q2UJjb0QkSgpWYiISFxKFllo2rRprN+wgfUbNmjlPRFJi5zrs8hllf0XAC9cey2g5ikRSQ8liyy1vWXLqEMQkTyiZqgsdcySJRyzZEnUYYhInlDNIkud9NJLALx7+ukRRyIi+UA1CxERiSvnkoWZ9TOz0nzq+I07NYiIyGHKuWaoXBvBnaidO3dqtLeIpEzO1SxEr9OKSPLlXM0iX8y7/vqoQxCRPKJkkaV2FxUd8riapEQkmZQsstRxr7wCwDtnn33I82KbpKZNm8bOnTuVQESk1tRnkaWOW7iQ4xYurNU1lYlDfRoiUluqWeSB2DmlRETqQjWLPDdt2jQ2bNjABs1gKyKHkHM1i1xaVjUdYpukNFZDRA4m55JFvg7KS7bYxFFJCUQkf+VcssgXc3/4w8O6vi79GOoYF8lfShZZav9XvhLJ76qZSiQ/KVlkqZMWLABgRc+ekfy++jdE8ovehspSxyxbxjHLlkUdBqDmKZF8oJqFJEWifSDxaiGVo8wPdm684yKSGlmTLMysD/AwUABMcfd7Iw5J6iDeW1Y1vcob73j1e4hI8mVFsjCzAuBXQC+gAlhiZs+6+4poI5NkqCmB1OZ45TmgmodIqmRFsgB6AKvd/V0AM5sBXAYoWUiV6gklkSSTqNjEo4Qk+cjcPeoY4jKzgUAfd/9B+H0IcIa7j6x23nBgePj1eODtWvxMM+DTFJybjvNbA5syKJ5U/llm87PW5fxUPm8+PWuqz8+lZ+3o7l+eAsPdM34DBhH0U1R+HwL8vyT/Rmkqzk3T+UszLJ5U/llm7bNm2vPm07Om+vx8eNZseXW2AiiJ+d4eWJ/k3yhL0bnpOL+2Min+fHrWupxfW/r/OJrzc/5Zs6UZqj7wDnAB8D6wBLjG3d+MNLAMYWZL3b171HGkQz49K+TX8+pZM1tWdHC7+z4zGwn8meDV2d8qURwgnxasyKdnhfx6Xj1rBsuKmoWIiEQrW/osREQkQkoWIiISl5JFljGz35rZh2b2RkxZSzObZ2arwn2LKGNMFjMrMbMXzOwtM3vTzEaF5Tn3vGbWwMwWm9k/wmf9j7A85561kpkVmNnfzey58HsuP+saM3vdzJab2dKwLKueV8ki+zwG9KlWNhaY7+5dgPnh91ywDxjj7icCZwI3mdlJ5Obz7ga+5e6nAl2BPmZ2Jrn5rJVGAW/FfM/lZwU43927xrwFlVXPq2SRZdz9JeDjasWXAVPDz1OBAemMKVXcfYO7vxZ+3kbwF0s7cvB5PfBZ+LUw3JwcfFYAM2sPXAJMiSnOyWc9hKx6XiWL3NDG3TdA8BcscGTE8SSdmXUCvg4sIkefN2yWWQ58CMxz95x9VuAh4EfA5zFlufqsECT+v5jZsnBaIsiy582KcRaS38ysCPgdMNrdt5pZ1CGlhLvvB7qaWXPgf8zsqxGHlBJmdinwobsvM7OeEYeTLue4+3ozOxKYZ2Yrow6otlSzyA0bzawtQLj/MOJ4ksbMCgkSxZPu/vuwOGefF8DdtwALCPqmcvFZzwH6m9kaYAbwLTN7gtx8VgDcfX24/xD4H4KZtLPqeZUscsOzwNDw81BgToSxJI0FVYjfAG+5+4Mxh3Luec2sOKxRYGYNgQuBleTgs7r7be7e3t07AVcD/+vug8nBZwUws8Zm1qTyM9AbeIMse16N4M4yZvYU0JNgiuONwF3AbGAW0AFYBwxy9+qd4FnHzM4FXgZe54u27XEE/RY59bxmdgpBJ2cBwT/iZrn73WbWihx71lhhM9St7n5prj6rmR1DUJuAoOl/urtPzLbnVbIQEZG41AwlIiJxKVmIiEhcShYiIhKXkoWIiMSlZCEiInEpWYiISFxKFiJpZGYPm1kjM5tSrbybmV0fVVwi8ShZiKSJmbUkmFDOgRPMbIKZzTAzc/dlwDeijVDk4JQsRJLMzL5mZmvN7MZqh7oCKwhmz33G3ScAnwLNwuO7zKxN2gIVqQUlC5Ekc/fXCeY8+j/VDrUEthBMIvfPsKxROHEgwCdA0zSEKFJrmqJcJDU+BE6uVvYOwUyyXYCjzOxKgokSK7UjmCNIJOMoWYikxr3AEWbW0d3XhmWvAyPcfVj1k8M1O7a6++50BimSKDVDiSSZmfUBGgN/IKZ24cGsnU+aWaMaLjsauD89EYrUnmadFUkiM2sALAb6A9cC2939vmijEjl8qlmIJNftwOPuvoag2Snu0qhm1t/M9NqsZDT1WYgkiZkdD/QiWDYUgmQxLjz2PeB8YCewASgkSCRXErwl9Xl4znnAu8Dn7j4xjeGLHJKaoUTSIEwEe9x9upnNd/cLzGwcMBc4FdhEsPrhTnefaWZPuft3IgxZ5ABqhhJJn63h/qNwvwc4oto528O9pSUikQQpWYiISFxqhhIRkbhUsxARkbiULEREJC4lCxERiUvJQkRE4lKyEBGRuJQsREQkLiULERGJS8lCRETiUrIQEZG4/j90Ry0uEjylngAAAABJRU5ErkJggg==\n",
|
|
411
|
+
"text/plain": [
|
|
412
|
+
"<Figure size 432x288 with 1 Axes>"
|
|
413
|
+
]
|
|
414
|
+
},
|
|
415
|
+
"metadata": {
|
|
416
|
+
"needs_background": "light"
|
|
417
|
+
},
|
|
418
|
+
"output_type": "display_data"
|
|
419
|
+
}
|
|
420
|
+
],
|
|
421
|
+
"source": [
|
|
422
|
+
"# read specimen level data from publication\n",
|
|
423
|
+
"dir_path='find_flat'\n",
|
|
424
|
+
"df=pd.read_csv(dir_path+'/specimens.txt',sep='\\t', header=1)\n",
|
|
425
|
+
"# filter for maximum angle of deviation less than 10 degrees \n",
|
|
426
|
+
"df=df[df['dir_mad_free']<=10] # NB: this was already done, but here you find out how\n",
|
|
427
|
+
"# first pick out the directional data and put in array\n",
|
|
428
|
+
"di_block=df[['dir_dec','dir_inc']].values\n",
|
|
429
|
+
"# do the reversals test of Heslop et al. (2023)\n",
|
|
430
|
+
"result=ipmag.reversal_test_bootstrap_H23(di_block=di_block,plot=True)\n"
|
|
431
|
+
]
|
|
432
|
+
},
|
|
433
|
+
{
|
|
434
|
+
"cell_type": "markdown",
|
|
435
|
+
"id": "663473b3",
|
|
436
|
+
"metadata": {},
|
|
437
|
+
"source": [
|
|
438
|
+
"## Next steps:\n",
|
|
439
|
+
"- if data pass the reversals test, then do this:\n",
|
|
440
|
+
"- try 'quick' version first: \n",
|
|
441
|
+
"- the function svei.find_flat() first tests if data are compatible with GGP model with svei.svei_test() as in an example above. \n",
|
|
442
|
+
"- if the data are not compatible, then you don't try unflattening them. Mission aborted!\n",
|
|
443
|
+
"- if they are the program continues with the unflattening procedure. \n"
|
|
444
|
+
]
|
|
445
|
+
},
|
|
446
|
+
{
|
|
447
|
+
"cell_type": "code",
|
|
448
|
+
"execution_count": 13,
|
|
449
|
+
"id": "5d43e0d7",
|
|
450
|
+
"metadata": {},
|
|
451
|
+
"outputs": [
|
|
452
|
+
{
|
|
453
|
+
"name": "stdout",
|
|
454
|
+
"output_type": "stream",
|
|
455
|
+
"text": [
|
|
456
|
+
"using model: THG24\n"
|
|
457
|
+
]
|
|
458
|
+
},
|
|
459
|
+
{
|
|
460
|
+
"data": {
|
|
461
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEOCAYAAACO61blAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC36klEQVR4nOydd5wTVdeAn7NL7yB2QCwgUgQEQUUUC3as+FqwgGJ/FV/F+qkh9q7YFQt2UbFhQ0FFrDRREBGliUrvsCywu+f740zYbNiS3U0yk+x99je/JFPuPXN3bjJnThNVxeFwOBwOh8PhcDgc5SfLbwEcDofD4XA4HA6HI11xCpXD4XA4HA6Hw+FwVBCnUDkcDofD4XA4HA5HBXEKlcPhcDgcDofD4XBUEKdQORwOh8PhcDgcDkcFcQqVw+FwOBwOh8PhcFQQp1A5HA6Hw+FwOBwORwVxCpXD4fAdEYaL8GFJn1PZd4La/EoE9Zb9ota3E+E7EaaLMEqEOlEyRPbvm0hZHA6Hw+FwJBenUDkcjnKTAoVnEHBWIhv0lJzHUtGXxwvAjsBkr/9awJvAZaq0B2YB/aNk2DEJMqQVItJIRJpEL37L5HA4HA5HWVTzWwCHw+GIRZXVGdBXjiqLoj6fCIxR5Sfv80xgpygZVoskSZIAIyK7AE8BhwDVozcBCmT7IZfD4XA4HPHiLFQOh6PSeNafJ0S4U4RlIiwR4X6Rwu8YEUSEq0X4Q4SNIvwtwl0ltBfrAhhP+0eJMF6ElSKsEGG0CHtF2gMOBi6Lcq1rWUJfNUV4WITFIuSK8IMIB5ZHlhLYC5gW9bkDMKPs0c14XgC2B84DDgMO9ZZDvFeHw+FwOAKNs1A5HI5E0Q8YChwAdAJew9zdXve23wlcAlwFfA1sC3ROYPt1gYeBX4DawE3AKBHaYi51rTGr0I3e/ktL6Ode4D/YDf4cT95PRWilysI4ZSmOf4E9AUTYGzgcuCaO8850ugH7qep0vwVxOBwOh6MiOIXK4XAkihmq3OK9nyXCBZjF4XUR6gH/A65U5Xlvnz+B7xPRPoAqI6N3FmEAsAbopso3Imxiazc8Yo6piyl9A1X5yFt3MWYpuQxT0sqUpQReBkaIMM2T6z+qbIzz3DOZuUBNv4VwOBwOh6OiOJc/hyNNEZGvRKS4JAuR7RNE5OQUivRLzOd/ge28922xm+axSWofEXYX4TURZouwBliMfce1KEcfu2NxPN9GVqiSjyl+beOVpThUyVGljyodVOmhirPIGIOAu0RkD78FqQwisp2ILBWRZn7LkkhEREWkb0mfHQ6/EZEPRWR41OdU//Y5HE6hcjgymNuAe0QkVfN8c8xnpfA7JhHpFkprH2AU5kZ4EdAdcyfMA2qUo4+InFrMtuh1ZcniiJ/3gV7A7yKSIyJrohefZYsbVV0CvASES9pHRLp4CsmBJWx/U0S+9d5fICLjRWSFiKwSkS9LOq40RKS/12fscmWcTeyIzS2HI12I67dPROaVMDfuLk9nMe3kiMh0EbmoUmfgSDucy5/Dkbl8DAwDjgZzX/ORGcBGzC3uj0Q3LsI2WNKHy1T50lu3D0W/4zZRdsa4P739DsTipxAhG9gfi5NyJJ7/+i1AAnkBmCQi16jqitiNqjpZRH4Czge+id4mItsAxwOXeqt6ASMwa2kO5jI7WkQ6qWp551AOZn2NJi5lVVVLdJF1OAJKeX77bgWejFm3rgJ9Rtqph5XDeEpEVqnqiAq05UhD3BNVhyO9qSYiQ0VkpbfcF3kqp6r52A/LGf6KCKqsxZI43CXCAM89r5sIlySoi5XAMuACEfYQ4WAsFXde1D7zgG4itBShaXFZ+VRZj/0o3i3CMV6WwCexLHRPJEhWRxSq+mJpi9/yRSPG1SLyh4hsFJG/RWRLpkovsca/QGnuRs8Bp4pIvZj1Z2GWzxFeW/1U9TFV/UlVf8di+9YCR1VAdFXVRTFLjogc5VnBVnqWsNEislfMOTsXP0dgEJE6IjJcRNaJyGIRuTF2n3L+9q0tZm5URKGKtPOnqt6EPTg80ZP5bhH5XUQ2eNase0WkVtQ5NReR9705mCMiM0Xk9Kjtt4jIfO87Z5GIvFQB+RxJxilUDkd60w+bx/tjrm4XAldGbZ+ApQsPAjcA9wA3A78BI4GExJuoUgCcBuwNTAce9/qJTvpwP2Z9moFl+Csptuo6rADvC8BUr82jojL8ORKMiNQUkfNE5H7voUB/EQliooo7sevqLqAdcCqwIGafsubcq5il9LSY9ecBb6jq+hKOqwHUwh4eAEXc+VrGewIxRDJjdsMsYquBUSJSHjdZhyOV3A/0Bk7BPB46AwcVs19Cfvs8BWh4BQ7NpbCu3npsfu+FWaBPB/4vat8ngDpYqYh22G/4Kq//U4DB3nGtgOOwc3MEDVV1i1vckoYL8BUwC5CodTcBf0d9Ph4oAKr5LW9VWkC/An2sAscpaF+/5U/tWNEW+Au7gRjvLauA+cBefssXJWc97Cbp4jL2exAYX8Y+rwDfRX3eF4vD617KMfcBfwMNotadhJUC2LmU4/p7ba+LXkrYty6QDxwYtU6BviV9dotbUrV4c3Aj0C9m3SpgeMy+Zf72YV4LG2PnBnBc1D5jgbvKkGseMNh7Xy1qzl1Swv4XA39Gff4FCJWw71XA70B1v8ffLaUvzkLlcKQ3P6j3revxPbCziDTwPm/AEi3U2upIR7K5UIR1Iuxb1o4iPCVSIb/9TGAo8BPQQlV7qmpPzHr4M2Y9CQrxZqrcgNVBK43ngP1FpI33+Txguqr+WNzOIjIIs0CfrKpbYp9U9V1VbaOq/5TRXw5WLy16QUR2F5HXRGS2lwCkIpkxHY5UsTtmqd1SbkPNPW9aMfvG+9v3IFvPjS+j2j9MVW+IQ7Y7RGSd1+/j2AOQpwFEpK+IfOO5660DHqLoHBsK3CQi34vI7SLSJWrbW945zBWR50Tk1IBa76s8TqFyODKbJkCuVswn3FFx+mE34J3YOsV6cdzi7dsK+CRpUgWTHsCNMYrCGswlptxZ7ZJIvJkqm1By0egIX2EJUM4TkdpYrMdzxXZqytTtwDGqWlFXH1WL7diyeOsTkRnT4UgV5ckWG+9v3/LYuaElu92WRkQx2wWop6rXqmqBiOwHvAGMBvpgc+wmCt0BUdXngF0xN/PWwHciMsTbtgArCH8RlkjmAWCyiNStgIyOJOIUKocjvekuItE/MvsB/0bdnLYHpqRerKqNKv+o8qe3lFm8V5UlUftX5Mc8nckFGhWzvqG3LShEZ6osjTLnnGdVfh44B1OmamOFn4sgIlcBdwDHquo3sdsrg5dVcC/gTlUdo6q/AfVx2X8dweVPLHHLfpEVnmLRvph9U/3bF1HM/o3xGukB/KOqt6nqRLUMnbvEHqyqf6vqM6r6H+wB24VR23JV9SNV/R/mHtzOa9cRIJxC5XCkNzsBD4vInl4mrmswd4IIPYFPfZHM4YiPUcAwEekhItneciDmLvOBz7JtQVWjMlXKAM9drpuIbMlUKSJ1gC7EN+eGA02xIPv3VHV59EYRuQa4G3MHnCUiO3hLw6h9TvIygu1cgVOKyowpe4hIcZkxHY7A4FmbnsNqTPUWkXbYg4niymHE+9tXP2puFTfHxkZn8qwAszA3/H4ispv3fVEk+6CXqfcob3snLJPnDG9bfxEZKCIdRGRXYACmVCa8/IijcjiFyuFIbyIZw37E6m48h6dQeTdZB2BuBA5HUBmE3RyMxyxSucA47EbkSv/EKpayMlWeAPylquPLakhVF2KpnRsDzxazy2WYW9AIYGHUMjRqn4aYO1D1rY4uu/94MmM6HEFjMBbj9K73Oh34OnqHcv723ULR+bUQmwsRdseKW1cIVR2FxVM9jLl/9/b6jCYLeBRToj7HYhnP9batwurWjcfO9RQslnJuRWVyJAm/s2K4xS1u2XrBXHG+wNIY/wmcFLP9MCy7Vw72o7JLMW3cBzwTZ3+nYzeI64HZQM/y9FWO83oF+8Fag90wDyzveZWjrybYj+56LGPcmQn8/5R4Hok8h7L+P4nuq7TrLhnnFdN3KyzG4Hhgj0S2naoFS2ecsOvMLW5xS/mX8vz2ucUtiVqchcrhCBgiUg14H/gQUwouBF4Rkdbe9qbAO9jT5CbAJLxioDEs8fYpq7/e2FP3AVgMxUHAnHL2FS93AS1VtQF247wlo1ES+nocqzu1PZYk4knPRSQRFHseSTiHEv8/ie6rtOsuGecVi6r+oaqjVPUDLUyakDaIyHbA28DrfsvicFRx4vrtczgSiahq2Xs5HI6UISLtgR+A+upNUBH5DPhRVW8WkQuB/qp6gLetLhYL0VlVZ1agv++A59QyDcVuS2hfMW3viWU7G6SqbyayL+/YlUB7VZ3lrXsZCw6+vjJyF9PXlvPAkiskdLxK+v8k4Too8brDitcmsq9HgBtUdb33vkRU9Yrytp8sREQxC93Dqvp/Ze3vKBkRCWPuW3WwGjsudstRJm4OVi28B8lTsMQ9F6lqce7RgcBZqByO4FFcalihMJNRO6xGDwBqKV5ne+vL15FINtAV2FZE/hSRv0XkMS+Vc0L7iurzCRHJwdzHInEkie6rNZAfUaY8fq5gW8VSwnkkdLzK+P8k+n9T2nWX6L46UBj306GMJWh0jL6RE5FnROR3ESkQkf6xO4vI/7z6M6tF5PlIDRkRqenVlZkvImtF5CcRObqkTkXkdK+f1SKyRERelMJ6c3EjIv8VkUkislFEhsdsa+ttW+ktY0SkbdT2Rl6/S7xlSCn9lNqWqoZI4Hx0VCm2zEHPgv6+iCwVkRUiMtp7yFUsIjJcRDaJyLqoJTtqu4rI+qhtSbuBF5H2nrzLPEWxrP1LlE1Enoo5p40isjaJspf4PVLMvqWeZ4zc60QkX0QeBVDVWapaD4shCzROoXI4gsdMzGXhGhGpLiJHAAdjT3LBKsOvjjlmNeYOVl62x25s+2JZkTpRWCcj0X0BoKqXesf3xNzIIkHwiewr4XLHUsJ5JLrf0v4/ie6rtOsuoX2p6iGquirqfYlLBc8llfwMXEoxKZpF5Ejgeiz+rCWwGxD2NlfDLH8HY8klbgbeFJGWJfTzLdBDVRt67VTD6lNF+to+Tnn/9Y57voRtfTG3zqZYlsU3orY/hF0PLYFuwNkiMqCUfkpry+FIBI2wa2tP7PtyAua6XBr3qmq9qCU/ZnvHqG0D4xFCRBpK+QvubgbexJJOxEuxsqnqxdHnhLkevxUlX7zfD/FS2vdILKWeZ4zc22PFkd8qbt8g4xQqhyPFiMhX3pOm4pZvVHUzcCJwLLAIuBr7Mvrba2IdEPtkugGw1dOosvrCvrgAHlXVhaq6DCtQeEwS+tqCquar1dVpBkTSTsfdVxwksq0SKeY8Et1vaf+fhPZVxnWXtPEUkVvE0o3Hrq8tIrHZsAKHqj6uqmMpvmbWuZi75q+quhK4DejvHbdeVYeo6jxVLVDVD4G5WNr14vpZ4P3/I+QDe0R9Hi4iE0TkEhFpVIq876jqe8DyYrat8uRRzDoZ20cf7GY0R1XnYVlFzyuhn7LacjgqjapOUNXnVHWF9x32ELCnWJ21pCIiWSJyuIi8ij0caVqe41X1d8+V+9cEy1UXywb4YtTquL4f4qW075Fi9i3PefbFHuwF3iIVi1OoHI4Uo6q9VFVKWA709vlFVQ9W1W1U9UjsifQEr4lfgY6R9rwvz90p5suqrL68m7y/gZLcDRLWVwntV/PaK1dfcTALqCYiraLWdaxgW/EQOY9EngNl/H8S2pfXX0nXXcL7iiKEWcBiqeNtS2eKuEp677cv7mbPe4LcmlLGVEQOFJHVmCJ7CpaKOcLxwJ3AEcB8EXlNrFZPuX/nRWQVpiA+6rVZZHPM++KKqsbblsORaA4CFmlMXbcYLvXcAyeLyCnFbP9azE33neIsxmL1om7FHoA8iFmnW6nqP972M0VkVSlLi0qcX6myeZwCLKVoOvm4vh9E5MNS5P6wEnLHy7nAS96DmPRCA5Bq0C1ucUvRBasNUwu7qRyMfXHX9LZti7lbneLtcw/wQyX6uhWYCGyH1cQZD9yW6L689k/Hbp6zgSOxNOAnJOm83sDcHupiVeVXA+0S8L8p8TwSfQ6l/X+S1Fex110y+orqswDYtpj1hwNLE9FHohZMsS02pTvwDZa4I3rdbOCoqM/VvTZaxuxXHRgDPB2nHDsDQ4DWJWxvClyB3ej9Bfy3mH1uB4aX0kddzJXx2Kh1r2DurfUxa9NsYGMc8m7Vlre+pTce1fz+37olPZYy5mAz4B/gjFKO3wfYBnsIdgz2cKJH1PaDgBqYK+FjWO2nat62jlgCoiXAI8A+CTqnPQCNY78SZYvZbywwpJR2yvx+KIfspX6PlOc8gRaYJXvXYrZ9RUyZlaAtzkLlcASTs7FEB0uw+IveqroRQFWXYje2d2CZ7LpjN/gV5Tbshn0WVuvoJ6/tRPelmFvc315b9wNXqur7SegL7AauNjaGrwOXqGoiLColnkcSzgFK+P8kqa9ir7tk9CWWiGENNp5zRGRN1LIeGI25HKYzsa6SkfdbXCW9J8QvYyn+/xtPo2pPwj+l5Jik5VgR0amYEr5reYT2+lgPPAW8JJYSHuwmbANWiPl9bF79XXwLZbblcCQMEdkW+Ax4QlVLLF2gqlNUdbmq5qnqx8CrwMlR279W1U1qMZ6DsLmzl7e5EdAGq9H3s/eaMsqQDQARaY7FZb5USlOV/n5IEucA32iaFi2u5rcADodja1T1GuCaUraPwb7YE9HXZkz5uDSZfXk35QeXsU8iz2sFFhOUUMo6j0Seg9deif+fJPRV4nWX6L4w5UGwoOb/o2jSi03APFX9PoH9+UHEVTKiGHYEFqvnjiQigsUhbQ8c4/2v4yXaXRavvVbYTcnZ2HgOB67zrtmKkIVZK3cGlnhzql9Uf3dS6IpcrrYqKI/DsRUi0hhTpj5Q1TvKeXgkxq/M7ao6TkSaAUdjdQEfEJFPsFilz9VLbiEi/YCnS2mzrar+VU4545X9HOA7VZ0Tu3M83w/e+fQsob/xqlpiJtIEcA5wdxLbTypOoXI4HA5HylHVFwFEZC7wraZpHSIRqYEpCwJUF5FawCZVLcCeEg/3gtYXYtkZh0cd/iT2hPlwVd1AKXg3aeOx4PcWmLVwbNT257E4ideBU1R1cgntVMN++7OBbE/ePFXNEysivQx7el0Xc+dZiVlGEZHdgVXecgRW/LnYhwtlteVwJAKx0gGjse+QMmsMikhfzLqbg7kVn4UlW0Gs8Ht1YBrm3XA75kK45Zr1vqdGAaPECp73wwq9Py8inVR1iaq+ilm+ypJFMJfqGt7nWtaFbixm3zJl8zgHc8mOPT6u74d4FabSvkcqcp4icgD2sCXtsvtFcC5/DofD4fCT7bDMgkUQkRO8m5+g8xnmBncA8Iz3/iAAVf0UuBf4EpjvLSEAEdkFuAhLhb9ICmuw9PO2t/A+RwLY2wLfYW6E3wK/AxdEyfEUsJOqXl7SzZLHTZ6M12M3kxsoLJPQCLvhWo3FR+2BxYBFMhh2wW7o1mI3kf2i3WhF5NeI/HG05XAkgpOAfYEBUrSWUQuwBxEiEu3qPQhTRFYB9wEXqOpX3rbtgRHAGmAOFuN3XEmWY1VdpqpDVbUzZrXKKafsu2DzLyLfBmxe48n+iYjcGK9sIrI/FkdWnFIS7/dDvJT4PVLMd1ep5+lxLvCOqiatdlayES/Yy+FwOByOlOPd7FylqqNj1h8OPKyqpWaRSyUikovVG3tEVW/2W550RkRCwFXYk+u6unUtIIdjK9wcrFp4booTMevWpao63F+JSsY3hUpE3sb8PB/0RQCHw+Fw+I6IbAD2UqtrFL2+JTBDVbeqUeVwOBwOR5Dw0+UvDNwkIg1L20lEhlcm971YsdHHKnp8TFs3iMhELwvVUhEZJSJbPT0VkR1F5EVvn1wRmSEiJfmZx9VmKhCRIbJ1QdZFxex3qYjM9c5tsoiUFMDocDgcZbESaFXM+tYkuBCzw+FwOBzJwDeFSlWnYX6gZ/klQwXoBTyB+cofCuQBY0SkSWQHsQrU32IBysdiAceXU3JWozLbTDG/AztGLR2iN4rIacBQrEBcZ8yn/xOpXKG6tEVE/isik0Rko4gML2Pf/4kV5FstIs+LSM04+7gwIcJW0b4y8ZwyrK/3gYdEpHVUf3tiBTPfS2K/DofD4XAkhKQpVCJylIiMF5GVYhWpR4vIXjG7fQCckax+vBvcg4HLoiwuLSval6oeqaovqOp0TyE8Gyt42SNqt2uBhap6jqpOUNW5qjpWVYvNbBRnm2UiIvVFpEBEenmfm4vIzyLymIhkl6OpPFVdFLXEptu9CiviNkxVf1PVy7HsVZeUR94M4l8s287zpe0kIkdiwZuHYcGku2FW2ngo8WZWRPqUZ31Z20rqq6LtBaSvco9fUPqqyPiluq8EcC2WuGCGiCwQkQVY8PIaSikd4HA4HA5HUEimhaou8DDQDbPCrMbSTNaI2mcC0E1Eaiepn0HA98ALFFpcFhTXiIj0r4DCVR8bw5VR604EfhSRESKyRESmelaM0uoclNpmnLJ1xKxiv4jIvpjlaJiq/ldV88txfruJyD+eS98bIrJblBw1sCxPn8Uc8xlmYatyqOo7qvoeViivNM4FnlPVX1V1JVastX8CRCjpJri0m+PStlXkGNdX8vqqSD+p7qtSqOpaVe2BZcl6BHgUOArooapr/JDJ4XA4HI7ykLKkFCJSF3vieLCqfuOt2xurNr2Hqs4u4bjhQFNVPa4i/YjIV8B0VS21Ar2InISlgT3Mq0IfT19vYr7/XaMKukVSwj6EFXPshN0gXK+qZcZyldBmmbKJyGXAdcD/gMeA/tFZs+Js42hMoZuJpTK+CSvk2U5Vl4vITli60YNV9euo427B0ufuWdb5ZSoicjvQTFX7l7D9Z+BOVR3hfW4KLMWu7a2UMc/FKmIV6FKnTvFx+fn5+WRnb22ALGl9Wdvy8vKoVm3r8nQVbS8IfZXUT6X6yssjG6CgAC0oIK+ggOqYv64ABVjBkHwsHVUtrAKjYhVra3v75Xmfa2AFPfJitm/y1kU+b/aWOt56jfpM1PaaWHEQO74BWdSigGrYM6Vc4A+gOZbZegMwC9gVaACsB/7EjKj1ve0zVFWrdJmNpk2basuWLSt07Jyl6wHYbdu6CZTIUdWYPHnyMlXd1m85/KIyc9AP3LzPPEqbg0kr7CtWAPA2oDvmwpblLdGxNpFChhW2UMXZT5mo6rvAu+Xo90HgQODAmHSvWcAkVb3B+/yTWNrHyzBFp9xtxilbJ6Ax8AZW82NM9MZ42lDVT2Lk+QGLczsXi2fYsmus6MWscxSlHmY9jRB5X59irFuq+gxW04a6devq+vXrky6gowyWLoUXX4QXXoAZM7asvhF7UrEREBH+V7Mmz2/axOouXaB2bahTp3CpXRtq1oTq1aFatbKX7Gx7FYGsrMKljM+b8gq44PGpfDNjEHMWNaaAgcCn1K/zAx13X0fLHTbSYoeNbNc4j/r1Cqhfp4D69ZS6dZTqNSA7W8iu5i3Z0OHk1qUWna0sItIdc4fdjhjPCVW9Ipl9x0vLli2ZNGlShY497envARhx0f6JFMlRxRCR+X7L4CeVmYN+4OZ95lHaHEyaQoVVkv4HK1z4D/ZAdQZepWSPSOKF2DidRPeTUETkIeB04BBVnROzeaHXfzS/Ye6HFW0zHjoCPwGDMXe/s4AXK9DOFlR1nViNmEgGrmXYQ/cdYnbdDlhcmb78QETeA54FPlbVgiR3tw57/B8h8t5lMQs6mzfDvffCXXdBRLGtVw969oT99uP21q05OT8fOeIIaNKEu/PyuD0vD+qm9qnkpk2b+PXXX6lXrzPnnrue778/CVjMrrs+ydlnP85RR+XTvXs1srIapVSushCRwVjx2z+xmMTohzPuQU0lGTZsGAAXXHBBGXtmPm4sHO4a8I9MH/ukKFQisg2W3e4yVf3SW7dPMf21B/5V1QrdjMfZzybM+yUhiMhQTPHppaozi9nlWyDW9a01UKJWG0ebZcmUjY3lWao6QUReBW4RkVdVNa+87UW1Wwtz+fsSQFU3ichkoDdFK3H3BkZWtB8fWY9VHl/tuZa+oKp/JKmvXzGl903vc0dgcXHufo4AsXAhnHoqfPutfT7qKLjkEjj6aPKzspg2bRqdOnWia9QhNbOzqVkzrgSOCeXOO+/kjjvupHbtmaxd25JttpnOQw+14swzITs79fKUg0HAFfG4RDvKz4gRI4DMvYkpD24sHO4a8I9MH/tk+cSvxKwZF4jIHmI1mJ7CrEfR9AQ+jaO9BiLSKWZpGWc/87DEFy1FpKmIZMGWdNdblBcROUlEZorIziUJISKPAwOwzIQrRWQHb6kXtdtDwH4i8n+eTKcCVwCPR7Wzpe842yyL1pjb5FTv823ALsB55Ty/+0XkYBHZ1XPBeRtL+hFt6XoQ6C8iA0VkL08Z3Akb97RCVfthQSW3AYcDv4vI1yJyTryJUkSkmqd4ZgPZIlJLRIp7UPEScL6ItBWRxlh82vCEnIgjOSxeDL16mTK1884wZgx88gkcfzxUr86tt95K586def/99/2WFID27QcBT7N27W4cf3wWs2a14+yza1BCGFiQaAB8XJkGJAXlC9KVMWPGMGbMmLJ3rAK4sUgu6TAP3TXgH5k+9klRqDz3qdOAvYHpmDJxMxZmAGyxfpwEDIujyZ6YO1v0cn88/QD3Y1aqGZhrYSS2qilFLUkNvc/VS5HjUizmZSzm2hdZBked+0Qs099/PJnu8GR6Iqqd6L7LbFPKztDXEXMdm+vJ8CfwClY4OfIlFc/5NQNex2pRvYON436qusW65iVVuBJTCKZiMV/HRO+TTqjqGlV9UlW7YTW3JgNPA4tE5GnZOtV/LDdhsYDXY26WG7BxbyEi68Srz6Wqn2JuTV9i1sr5QCgpJ+WoPBs2mDVq1izo2BGmTIHDDiuySzgc5qOPPuKYY47xSchCpk2DAQMak5c3gIEDYeRIaOJXJbvy8zqW1a8ypKJ8gcPhKB03Dx1VlpRl+duqY8tKd4KqHuGLAGmEiISBvkDHyrjwOUrGy2DYH7MW7oC55u2IuTPeoKr3+yWbS0rhA//9Lzz+OOyxh1motttuy6bNmzczduxYevfuXWIWwFRy+eVX8uyz48jNfZkzzmjPq69ajopEIiI5qpqUoDAR+T/sIc1nwC9YosItqOqDxRxWUltlZdt8DZinqjd6nw8DXlXV2LjQrejataumY1KKJ56wZ3mXXnppyvsOGr6OhSrk50NensVl5uXZsnatWcMXL7bENwMHljiBRWSyqnYtdmOASNY8rMwcjJDKa8AlpSiKH/NP1UKf162D3FzYuLHsZccd4YgSNJPS5mAyk1KUxWbgch/7TyeOAf7rlKnEIiLVgRMw18jemOXzXuB1VV3n7fMfLNuebwqVI8VMngxPPGGZ+N58E7bbjvfff5958+YxaNAg5s6dy0knncS7777LUUdV1rBSeURuITf3WnbdtSnPPpt4ZSoFDMSSthzA1vXslKIZRitLOyDaR/NnYHsR2aas8gUtWpQrcWxgGDVqFOAUKihjLHJy4M8/zRo9b57dheXmFl02bCj6OVoxKul95HN+/tZ9Fsdpp0GDBmXvl97EPQ8TPQfdfPCPio79pk2wciUsXw7ffWdTb80aexaxdm3p79etM6WqPBx9dMkKVWn4plB5aaEdcaCq+/otQ4ayEEv5/hpWJ+yXYvb5nKKFm1OGiPQB+viR4KDKogqDBtnrlVdC584ADB06lGrVqjFo0CBat27NueeeS+/evX0Vdfny5cya1ZDHHmtCVtazvPaaZWZPN1R11xR2V+HyBV27dk3LjIOffPJJ2TtVEYqMRX4+TJoEDzwAEybA/Biv9dq1balVq/ilQQMrgRBd5iC2HEI8n+vUge23hx12sNd65QmfTlvinoeJnoNuPvhHPGO/fj18+il8841Ny2nTTDkqjmrVbBrWr29Lgwbm6r7LLluvr1fPpms8S0WfZ/hpoXI4/OZ/wFuqmlvSDqq6Eqt4mnJUdRQwqm7dupmZEieIfPJJoYvfTTdtWf3555+zdGlhdYennvI/B8vtt9/OsGFjUP2Fq64S9tvPb4nSAle+oCqzfj2MHQtffgkff2wxkvXqwbHHwvnnQ6tWFjO5xx6m7DiShZuHVZC8PFOWxo41Y/CiRVu74S1bZs86ROCAA+Dcc+05Q5MmtjRsCF26FD7PCJJHhlOoHFWZQ4D3gCIKlYjUBR5V1fOKO8iRwQwdaq+DB0ODBuTn57NgwQKaNWvGDjuUGWaTUrbd9hDWr69NgwbCjTf6LU3FEZFHStue4MK+Va58wVDvmh40qNRSiJnN2rUwYgRDL7kE8vIYlJUF++8PV1wBJ55oWTwdqcS3eejmQ+rIyYHZs+35xXffwYgR3u8rg+jQwaZdrVpFrUONG8OBB1pOqHR7puEUqgoiIg0wy8WuWGHbpt7SCKjpLad4u4/AMublYObsZd6yAJiD1eKK08HakUDOxTINxT4Vqw2cQ1TaeUcV4Lff4LPPzAVn4EAA5s2bxx577MHzzz/PgAEDfBbQ2LRpE7m5G/nkk+OA47n66rTK6FccHWI+V8fq31UDpsTTgFeqoBpR5QuAvGLiTl8Chnu1+hZSBcoXjB07FqiiN5CffQZ33GFW5/x8xtaoAfvsw6AvvrBH3Y6Ekg7zsErPhxSwcaOFIY8ebd60kXxazZvDjjuOpV49+OKLQTRr5q+cycApVGXgFc3tAOwDdPKWvTDlKZZ1wCpMeYpWkDphClZdoAlbFxreLCJzsMDMqd7rj5n81NRPRKQJFjslQGMRif6yzwaOBSpUbNqRxkTc+M4+2x6TAY0bN2bYsGEcfPDBPgpWlPHjx9O7d29Uv6JJk4O48kq/JaocqnpI7DrvRuw5YHyczdxE0TIEZwFhEXkeK5nRVlX/UtVPRSRSvqA2VpA8o8sXfPDBB36L4A833gh33WWPvf/3PzjySD448EB7JO5IFoGfh1V2PiSZTZvg4YdhyBDL3QLQoYNNvR49oHVrgMwee6dQxeAV/u0MHAEcBPTAAiUB1mNpfd8FZmPWpbnYE5blsbE4IvIVgKr2imm/IWbVaoFZuHbDakTti9Wviuz7K3ZD8RUwWlVXJe5MqzTLsOxhin3Jx6Jk+E2WI4b8fPCquEesU6tWraJWrVoM9D4HhZYtW7L33mF+/rk9F16YmQnBVDVXRO4ARhNH0XBVHQIMKWFzkSh/Lw17IjMHOoLG0KGmTB13HLz2mkWmO5KOm4dVk1dftecXf/1lKcfvuw/69rXYp6qEU6gAEakBHIml0D4Gqz8E5uf7CqbUTATmeMWE42Vq7Arv+JXe8nsxsjTE/Il7YAWN+wEXA/ki8g3wIZZIIS0L6QaEQzDr1BeYW+aKqG2bgPmq+q8fgjl8Ytw4qwOz++4W8Yr52t9xxx2sXr2a2rVr+yxgIY0b787MmTcDW3S/TGVbYm7CHOXn/vut4sPgwYPL2DNDeOsty9B58snw+utQo8aWTVVuLBxb4a6BxJGfD7fdBuEwtG8PH3wAffqUvH+mj32VVahERDCl5SzgVMwVbzX2RPRD4FNVXVpyC2Wjqldu1W9YdgU2a0j/LuGY1cDX3nKX53LYDTgOc0W7D7jPU65eA0ao6ori2nIUj6qOAxCRXYG/1K/q1o7g8O679vqf/2xJG3TUUUfRqFGjQClTBQUF3HHHFDZu7Ezv3tnsvrvfElUeEbkqdhX2UKsf8HHqJcosvv/+e79FSB2ffWZzePvtt1KmoIqNhaNY3DWQGJYsgVNOsfTmJ51kDh5lJZHI9LGvcgqVZwE6G7gEaIslingPeBX4XFU3J63vsDwCXOC9D2tI7y7rGC9Zxffe8n+eEnAGdrPxBPCgiLwOPKGqlSshXgUQkX2AqZ6lcBtgGykh76aqxhUQnyxcHaoUMnq0vR533JZV3bt3p3v37j4JVDw///wLDz64L/AyF110lt/iJIrYAu8FwFLgBeCu1IuTWYwcOdJvEVLDk0/CpZdaPadilCmoQmPhKBF3DVSO1avhvfcs18sff8A998A118SXvjzTx77KKFQi0gy4GlNo6mIufOdh7nPrkt5/WLYBLgIi3/K3SVju01D5svup6lzgThG5C3MNvAhTEAeIyI/YDciocromViUmATsAS7z3ij0Rj0XZOnlISnF1qFLE7Nn2y9CoEXTrBsDcuXNZuXIlHTt2JDvb18ugCLm5uwKv0bjx4Rx/vN/SJIYUF/Z1ZCJDh5qbX7t2lqN52239lsjhyDhWrLB05hMnQtOmFjt15pl+SxUcsvwWINmIyK4iMgxLIHE58A7QTVW7qeoLqVCmPDZiN+nRnyus9KgxVVUvAXbCzm1bzNr2i4ic6bkLOoqyK/b0O/J+NwrT30cvu/kinSP1RKxTvXtb6XVg2LBhdO/enc2bk2awrhCffdYQOIOTT9427Wp0xCIiU0SkcdTnM7wacI4Ecvfdd3P33WU6Q6QvEybYI/L27eGnn0pVpjJ+LBxl4q6B8pOXB5dfbp60U6bAI49YyHF5lalMH/uMtVCJSFMsheelmOLyDHC/qs7bsk9YagKioaLZ+SrUX1gaYy54uwB3a0iL5IfUkK6TsAwAngTygH4aSkzsjqquAR4TkaewLIE3Yi6M14nIdViGQBcnBEQn83CJPRxAoUJ11FFbVl1yySX07NmTWgFKsfzaa6/xxBOzgCGcckqZu6cDnbCaUxGeBn7EHn45EsTUqVP9FiF5/PGHBXLsvDOMHVtmEEdGj4UjLtw1UD7+/BN69oRFi+D00+Gyy6zwbkXI9LHPOIVKRKpjVqgjsPN7DhgSm7VNwnIh8Jj3/moN6aNx9xGWTpgF40sN6UoJi2C1o5p7u4yQsOytIf0j+jgN6evA6xU6sTjwiue9JiJvYIk27gQ+AVaISD9V/TRZfacLXgxVXPgdQ+VIAQUFluEP4PDDt6xu3rw5zZs3L+Egf/joo29ZsmQ8DRsO4bDD/JYmKcThhe8oL2+88YbfIiSH2bOhUyeLlfryS9huuzIPydixcMSNuwbi459/oH9/GDMG6taFxx4zZaoyZPrYZ5RCJSIHYRagtt6qk1X13a32C0t14FEKn44+IGF5TkOaE7Pf4cDOwIcasiK7EpYzgWFY4d71Epb2QBsguu5zDWB3oIhClSgkLK2APsBMDelWWbC8+KkRIvIuMBloB4wSkQeA21R1fTLkShNKi5uKxvcYKkcK+O03i7Jt3hxatABgypQpzJgxg1NPPZUgJQRp3/5xQOnTp9h4e4ej6lBQAKedZkV7v/wSOnb0WyKHI2OYOtWqDixYAOedZ+GJHTr4LVXwyYgYKhFpICLPAuOwhBOnA8vZOntU/G2G5f+weKTHgV8kLJHymYOBOlix33qYJSwLq18UoQDLyoeE5QwJy8cSlpskXPmYJglLS0xJugt4U8JS2jn2BNoDtwEvA9cBM0QkM59vx0dpcVMuhiqIDBli8RElfa4MkTSuBxywZdWIESMYOHAgWVnB+np8/30AyRR3vwjHisjJInIy9j16ZORz1HpHJbjtttu47bbb/BYjsdx9N0yeDA89VC5lKiPHwlEu3DVQMgUFcMUV0LmzJaD44AN47rnEKVOZPvZpb6ESkYOBFzF3u3uBsKrmiEgO8Fdxx2hIN3uKyGPeqv/FWqeACzHlDO/1JwlLN2AmZvGpgVk55gITMOXrFCw+qq+GdLWE5VDgWUwBO9hr6/bKnTG9sBuPGt5yFmZtK45vgUHA06q6UURewKxrY0TkEeAG1a3OO6PJmLip/v3hxRftfbVq0LixZbjq2xcuvLDsghCppmVLmB8z9A0bwqpVZR87eLBFxCaD776z1/3337Lqjjvu4IILLqB6gMZwzpyV/PjjZWRnX8bhh/fwW5xE8lzM58djPjtLcSX5/fet6senN0uWQCgExx4LZ5WvdEDGjYWj3LhroHjefNMsUQsX2q3EN99Y4ttEkuljn7YKlYhUw5STa4E/gQNVdUvVMC/ldIloSJ+RsLxIyUkppmPufpEf82bANViSi+qYUjVUQ/qDt/10CUtDIEdDW2pZdaJwjOsAhXdtFecXCt3VNgDflbSjquYCj0R9Hu/FEN2JKVpHisipqjotAXKlBdF1qMqKp/I7hqrMOlSHHw4vv2zlypcuhS++sBuNl1+2AO26AUuYdsstcMklhZ/jtQDVq2dLMogoVFEWqmrVqrHHHnskp78K8uGHS4EfaNPmjKQNRapR1WCZADOUV155xW8REsudd9p33p13QjlLGmTcWDjKjbsGtubjjy3hRIcO8OCDVhs7GQ4amT72afmDJiI7AmMxF7ZngM7RylS8aEg3FqdMSVh2xtwHF1CY6jwLqKkhXaUhPVVD2lZD+nRMe6ujlCmA0cBmLEX6eizzXnQ/ImF5QsKyRsIyQcKyg7e+roSlj4Rl32JkngKcBnwIPOiNQfznrJqjqlcChwMNgB9F5JzytJHmTAKaRr2f6L3GLhN9kS4KVR2lqheWWAepZk0rYrnzzhacfdVV8NVXltf03nsL99u0Ca67Dpo1MyVr330LM9tFmDkTjj/erEb16pnFZpqnZ0+bBocdBg0aQP365mLz5ZflP6H69U3eyLLddnZjdP75sOuuULs2tGplshdEVRRIpItfNMuXw++/W7+dOgGwYsUKwuEwM2fOTHx/leDXX1sDczjzzD5+i+Jw+MfmzfD002aZ2ntvv6VxONKeOXMsTqpFC/OAP/305ChTVYG0s1CJSA9gJBbDdJaqvlrGIeVr3wrw/oy5+RUAKzHr0lLgvvK0pSH9VcLSHXNj2R+4VcIyWUMasXseD5zj9dUZGCph6Y/FSO0EZEtYbtKQPuTFXw0AWgCvaEgrdWelqmM9C83rwIveuP5XtYhCmInE1qHKLNq3t/TfI0dCOGzrBgywjFivvWZK1ccfQ58+Vp2vY0f491/Lg9qjB3z+udn5J0wwZQes2ETHjrauWjVTsKLTibdsCb16wfDh5Ze3oMAUwjfftPoxEyaYy+I225iilUwmT7bXffbZ4iL5559/Eg6H2XfffWnTpk1y+48TVfj0U8ujcsQRfkvjSDduueUWAG699VafJUkAt94Kublw4okVOjyjxsJRIdw1UJS774aVK02ZqlMnuX1l+tinlUIlImcCLwDzgcNU9dckdHMcpkBF7hiXYokdlmpI8yrQXhOgKxbvtBsWU9XT29Y4ar9qWGHe7pgyVd9bfzXwkLec78k1SMLSWkO6uALybEFVF4lIb8x18jpgDxHpq6orK9NukKkSdajatrVcp2CK1Ouvw7x5W7LY8d//2vann4YnnoDHHzfL1VtvFaaPa926sL358y2OKaJgxLrD7b477Lhj2XL93/+ZtSnCjTfaEv3l2rKlWdhefz35CtXPP9urZ50C6NatGzk5OYFKSDFhwlL++qs79es/TufOR/stjiPNWLBggd8iJIa33oLbb4fjjoMTTqhQExkzFo4K466BQpYutQiBc8+154rJJtPHPi0UKhER4GYgjLninayqKxLej7n6PQLUjlq9M7CThnRhaceGw+EsTBk6RtEueeS1ziKr9o3cmLWEJbWWspT5zJdZzGoSddg7WBHeHbG4qFuARRT+X/KxpBdg1qzI8wMFugBbpUwvL17tqutF5DcsYcV3InKsqlaJ4pqe++glFKba/w14MrZuWVqhCuKF2U2ZYp/bti26z8aNcOih9v6nn8xCVVIu7quugoEDLQnGYYdZIc1o683YsfHJddVVRZWkJt5UeOopePZZU9w2bDC3nl12ia/NyhApMtipEwUFBbz//vtkZ2dz/PHHJ7/vcvDxx6uANhxwQIvyhow4HLzwwgt+i1B5cnPh2mvtrm/kyHLHTkXIiLFwVAp3DRj5+ZbRLzcX/ve/1PSZ6WMfeIVKRLKAocB/gZeAC1R1U+lHxdm2FeQ9HTgI+ADYjq0zSmVjVqIzi2sjHA5XB87LI+/GalRroWjBSlauX8KSOrnksgM7TBak9p7s2bAznVG0dTgcfhm4TUM6S8LSAbuZX6AhXebJ1R8IAX9jbn4AXwH/wSxU1bDkFAlDVV8UkXnAu8A3InK4qs5IZB9Bw7POvY/Fyv3orT4VuFpETlTVz+JspwmWrewIYBmWPfG1YvYTLIX9ACzl/k/AZQm3tM6YAbt5Wd8LCky5mjhx68x/tb3nBqqUypAh0K8ffPKJxV6Fw6YEnXde+eTaZputrVsjRlhqofvvt8QQDRqYxezdrcrHJZ6IhapjR5YtW8bo0aMZO3Zs4BSqGTNaAR9nWrp0hyN+Ilb2Bx90Rdgcjkqiap71b7wBN98Me+3lt0SZQaAVKi+T3zCgP/AAcI1qWXd/5eIc4AnM8nMOlsUvtuDrJuAfCUsPTOHqBkzUkL4TDoe7YCnb2y1mccEEJuTPZOamjWysSaFitjvQJJvsPc7jvJ12ZueTMNe908Ph8N1DGHJrKBT6KbpDDembwJsxclyEFQreFXhSQ/p3YoYgql/VcV5x5M+BcSJypN+Z7pLMI5gL5qDo60pEhmJKfLxfM49j18n2WGbHj0Tk52IUpVOB84ADMbfV27H6YIkztk+fDp9+CjfdZJ87d7Zvz0WL4JBDij9mn33glVcseUVJNyutWtlyxRWWqe/ZZ8uvUBXHN99A9+7mhhhh9uzKt1sWGzZYIo6sLGjfnoZZWdxzzz2siieNewrJydnAuHH5QD169ixzd4djK2644QYA7rrrLp8lqSAbN8L115sbciUfdqT9WDgqjbsG4Mkn4fnn7ec8leFMmT72wQkUiEFEsjGLVH9gCIlXpgCOotCNrhaW/e1CLBX5b1j81OfYjfVnmIve9cDIXuFen3r7NfqWbx8ZxrANP/Nz9kY21sbSqhsbacgGcvPJf3QYw34OhUKDMCXrNeAm4LNwOBwdS4WEZUcJSzcJy5bIfy8j4R0a0oEa0skJHoctqOp0LMYrB/hCRLokq68A0BJ4rJjr6nEgLp8zEamL1R+7WVXXqeo3mLXz7GJ23xX4RlXnqGo+8AqFroblZ+NGU5T+/desLQ8+aMkhunSxmCewm5B+/axu1dtvW0qfSZPMIvTOO7bPpZfCunWWK3XiRPjzT3siPHWqKR6XXWbZA+fNgx9/NCUo2oXwsMPA+6IsN61bm1viJ5/AH3/AbbfBuHEVHpK4+fVX83lo04bFa9Zw2mmnkZ2dzS6pcDUsB8OGfcDSpfVp3PhX9tzTb2mSg4g0EZEnRWSWiKwSkTXRi9/ypTvLly9n+fLlfotRccaMsdpT991XYVe/CGk/Fo5KU9WvgY0b7We2Vy+ri51KMn3sA2mh8lyjngLOwNyn7k5SVx9RGJuUC4zTkI4jKr25F1c1G9hSDKgTnTiEQ44EvgRO/ZzPWwADo08BBTaRRzZZ1CQLK8h7HzAwFAotBs4Nh8NjMFexMd3D3U+ZwIQNWAKMD7D4qUUSlq4a0pTeVKjqnyLSE/gaGC0iBycpAYjfTAI6ALNi1nfA3PHioTWQr6rRbfxMYSHnaN4AThOR1lhs3LnAp8U1KiIXYso9NUqyGo0ZY8kgsrMtM1/79laH6qKLilqaXngB7rjDYhD+/ttil7p1K7RY7bwzfP01XHONrROxghTPPGNtr1xpUauLFpnb3nHHmUIWYfZsaN48nrHamosuMsXtzDPNknbKKXD11fb4LJlEufvNnz+fzz77jPHjx3P00cFK+rB2bQfgLg48sOWWsLgM5Dksy+kzwL8UlqpwJIBnnnnGbxEqx4gRViIiASku034sHJWmql8DjzxiP+Uvv5z69OiZPvaBU6g8ZeoBTEG5I4nKFFgc0lNY2vK3NKTjJCw9sR/4LE+G5UQpUy1pyfEcz1zmbtyVXY8JhUK5IULLJSx9gXsxa1Y2AtRkldd2bSzLX7PozkOh0MvhcHi5oqNa0Wr2RCbmKbqJQquZAH2IqV+VClT1LxE5DBgPfC4iPVU1Bb5YySWmmO8TwEMi0gqIFGjeD0tScX2cTdYDVsesW01hlsZoFmLj+TumMC8ADi2uUVV9BrvBpG7dulvfYA4fHn+a8urVLQ4qOsNeLO3aWTr14nhtq3CwosybV7YMJe1TowY895wt0XjpVYGtZS/rXOLhFy8Ece+96datGytXrgxUZr8Ic+e2BdrSq5ffkiSVw4DeqvpjmXuWQODiGB2J4eOP7c7v6quLlmpwBBI3D4PNe+/Zc9XjjzfHEkdiCd4dBFwJ/A+Lb7k5WZ1IWM4Gpnh9nQNkSViOwKxWrTC3vA+Bk7F6VNSkJidzMitZmT+e8T2GMKSlhGWWhGUNFlt1MUXHtBFm+VqDFfa9M1aOIQz57GM+phWtsrrRrQb25RIhG/tS8gVPgTocUwY/EZFt/JIlgUQX830VU3LvBL7wljuB5pg7XjyswwokR9MAWFvMviFgX6/9WljWyi9EJMnVHxxb8btXCs6Lxq1ZsybVY5N2BIAvvpgH5GR6/NQSbB5Vhug4xn7AkyLSrpj9InGMPbGSFt9jcYwZy+DBgxkccQFOJ9avNwt2u3ZmYU8AaTsW6UPg52FVvQby8y20ulUre0bqh8dDpo99oCxUInICZp16G/hfEmKmormfwsQRtbEU5BsoalmoCSzGlKI6B3NwXn3qVxNk/9mh2ZMlLD8Be2CWpGsx10ClMLFFNnaDPgGYrSH9R8JSE4vd6YEpj39MZOKm1rSudQiHMI1p5JAT6X8iFrvlG6o6w/u/fAG8IyK9E5Vl0ScSXcx3FlBNRFqp6h/euo5AcU/aOgIjVLckFBkuIg9jcVSTEiyXozRmzrTXNm0YO3Ys3377LTfeeCPVqgXnK3HxYpg3rxfZ2QfSqVO8+n1a8n/ArSJyrqqWW7GKimNs7x3/jYhE4hhjLc1b4hi9Y1/BHqplLBs2bPBbhIoxbJi5KA8fbi5/CSBtxyINSJd5WFWvgVdftdDhRx+1spN+kOljH5i7BxHphCVqmAico6oFSe4yP+ZzNUyZ2gzkYVaptzG3q73qUOekbnTbaROb3rqLux4bEh7SlaLWqHzMvW8TUEsQalGroBnN3vmDP04BPpCwrPD2qUehW9+ewIzRjO50GZfRne58yZeRNn/WUFKVyrhQ1W9FpD/2/3laRM5LsrKbNBJdzFdV14vIO9gN4UAsy98JwAHF7D4ROFVE3sASnvTDEpj8mUiZHGWwYQP89RdUqwa77ca4V1/lvvvu4+abk2YQrxDffgtwDx077rBVxvsM4ybsIdMSEZmPfQdvQVX3LuP4pMQxQtFYxhaRwthpxuOPP+63CBXjqaeKxnomgLQdi/Qg6fHEiZiDVfEayMszI2+nTpaDyi8yfewDoVCJSCNgJLACOF5VU6HGXopl7Ys1fOZh9Z6WYOnRFRgUDofnAQ++wRvrsJvmWHfJ+kD7znT+pi1tD29JS6pTPRuYvYIVOp3p8j3fN9jABmL6rAHUXMayH2cxq3sXujCOcRSYl2HD6A68rH8FGkq9hUhVXxeRPTG3te/x4nvSHS81fzegBfa/2IKqvhRnM5cCz2PXzHLgElX9VURaADOAtqr6F3APlnp/KqZY/wmcoqqrKn8mjrj54w9LgLH77lC9Orfeeiu33HILErCsDxMmAJxGwPJkJIO3K3l8UuIYoWgsY9euXdPyIVJaMmeOueU+/HDqI+cdFSXp8cRuDlaM666DWbPgzTfddEomvitUXnDicOyG9iBVXZyKfjWk70lYNlP0JlqBIRrSD4s55CTg5z/5M5dixq0a1TiJky5pR7vs1axmMpNZxarNu7DL6OpUP7onPbO70EXe5m2dy9zIYZswBe4h4Pk1rHloT/a8vDnN189nPljCDAAkLNdidYsKJCznaWjrQM8UcCuWtOFREZmsmrz07alARNoAozD3A8G+2KthT8g3Ymn7y0RVVwAnFrP+L6Ji4lQ1F7jMWypF//6wbBl8WNyV6hPDh8OAAYWfd9gBevaEe+6BXRPtaFkZIu5+e+7Jpk2bEJHAxU/l5uYyYsTdwEnsu29Hv8VJKqoarmQTFY1jXASchcUxtlPVnGL2T3uuvPJKAB5++GFf5SgXn3xir8cck9Bm03Is0oe0mIdV7Rr48EOrqNK/P5x6qr+yZPrYB0FXvRJzkRqsqt9XpiEJS20Jy5USlpslLNvHcUhxWet2imorLGF5ftvwtvthisRo7Ma7yKPsLLI4jdNoS9vsL/gi7xEe4VM+5Qd+qD6CEaNf4ZWvn+KpDTnk6FmcRQtabMayyt2OpSY/ClgxlrHnK6qHcMj7QAcN2XhIWJpgGXGqY3Fdz0k49Y/TPTfMs7C4srdFJPbLM914GJiMWQJzsAyNXTEL0im+SZXG1KkDCxdaaazXXrOM6McfbwGxgSGSkGLPPRk5ciS1a9dm1qzYzPn+Mn/+AubNuxWYxr77+i1NahCRQ0XkvyJymYj0KsehW+IYo9aVGceoqnmqOhxoTGXqwTkSz1dfWSmGVq3K3NURGNw8DBhffgl9+lgI4rXX+i1N5uOrQuVlf7kLq7v0SAKafM9r72ZgkpcAojSewsvg51GAmaABXsASTfSvTvWxmDIzCUsmUUSZ6U53WtGKj/ho49d8XS2/MDyrAFPaDl/M4m4Tmdg+i6w/z+XcZS1ocaHX/pFYJsEGueTWWcEKaUzjnTWkc6O6aExhAo0IWRKWbSUsKf0fquoy4HTMopjisnAJZ1/gdlVdj/2vqqnqFOz/8oCvkgEi0kdEnsmPQxvp39/KQw0damWlGjc2a1FO1LM+VXjgAbtHqVkTmjUrWo/31lthl11s2w47wDnnVERmO3bHHS30IRSC6dOtVvDEiVZKpmlTaNAADjwQvo95hPL001brt1Yt2HZbOPJI8/8GmDbNUr02aAD160PHjvaDUW4iClWbNrRt25YbbriBZs2alX5MymkFbGDHHfuy005+y5JcRGRnEZmAFVG/DgtgHysiP4pImWfvzd9IHGNdEemBPaQrLmtYJI5xexHJEpGzyfA4xocffji9ngjn5MCoUQmpOxVL2o1FGpEu87CqXAOrVkG/fubZ/s8/WxLa+kqmj71vLn8iUgObaGuACxKU5KAXhS58jbBA599L2BfMRJ1LYYKIuRTGBvXEUlvTkIYR2eZjgZO7e8doNarl9qRn7T/4g0lMqgmwDdtwMAfTjGYFjWg0JIuslsDTQxiSvYIV68/irFY7s/Pkv/hrEzHK2SpWUZOaB0pY9tCQ/ilh2RVT5KIVp5AnS1NgtoSlh4ZSF4ejqt+JyD3ADSLyvqp+kKq+E4zAlpSKS4Gdsevlbyx7o6+o6ihgVN26dS+IZ//x402RGTMGFiyA//zHlJOI0nTjjfDkk2b+P+ggWLoUfvLKF48cabV6X3/davouWQI//FDYdsSdb+5caNky/nOoXdteN2+GtWvh7LNN6ROBxx4zj54//jAla9IkuOwyePFFU7ZWrYIvvihs68wzTYmaMMHySUybVsHSNFEufx07dqRjx+C51E2cCFCTbt38liQlPIK52+6hag+SRGQ3rHTBI0DfONpwcYyZwpdfwsaNVuTbkW64eRgQHn7YvEUmTYJtMqHgTRrgZwzV9UBn4ERVXZKgNicDXbDzygX+KmP/N7AvgPaYcnW8hjRiDvgQc2+rWcPT0fLJX4spXUsx39+89rT/ow519v4ee9S+AzswgAEoiiCjc8ndsw51nsgh51BBnv2TP3f/m79pT/vq3/N9FoUZraoDbGIT9aiXDXwvYTkacw2Mtk6t885xB2/97sAFwH3lHy6QsDQC3sT+FyOAKzQUV4bFIcAxwDARGa+qKyvSv89Mx1wP5mCp7a8TkXxsPNPuiXWDBqYwVatmT6NOPRXGjjWFat06eOgh+5I97zzbf489YP/97f38+aaMHXGE1QFu0QK6di1su2FD2HNPypVt7u+/4b77zBLWujW0b190+6OPmiL36adw1lmWeK9uXXMRrF/frGXRus78+TB4MLRpUyh/uVHdYqEqaN2aP37/nZ133pl69eqVcWBqefXVN4C/2XffzK3ZEUVvoFdEmQJQ1TkicgUwNp4G/IhjTBcuu8xONW0ybEXM7AnM7hch7cYizUiHeVgVroE//oA777RnEl26+C1NIZk+9r64/InIHsCNwBuq+n4Cmz4Gi4t5BthPQ6VnC9SQ5mBuXy2BHTWkvwFIeEts0Dzgte50vw7gRV58AhgK7IKNXY1t2KZdPvl4SSQ4juPYyEZe5uU77uKuLvdy765f83V+Her07UnPQ4GsOcxhR3Ykm+yfMffEi4HfwOKxFAV7avMCW7v6VceyEEb+d4oltqgod2FpTZsC/bGCe2Xi1aLq7x2XmKqLqecOCi2EN2FK8pdYlfcr/BKqorRta8pUhJ12MksTwIwZ9tC3pOrop54KubmWPOL88+Gtt2z/CCedZIadnXcuXYb166FePVOMmjeHTZvgnXegRg2T5aKLTLlq2NCUpiVLTJEC6N3blKhddzVXhRdfNKtWhKuugoED4dBDLQVsxNBULhYuNO1ym21YDrRp04bhw4dXoKHkMnnyaOClKhM/VQLJLp1RJahduza1I6bioLNypVmo+vWroPm5dNJqLBxJIdOvgY0bLW6qVi17gBokMn3sU26h8rL6PYtlUbsqkW17bm/XlfMYxbLMRPM8cByWAKLletaPBsgm+yBilNB61JMCCpbnk1+jHvXqN6MZn/GZ/sM/1+C5H45jHN3pTn3qXw28sZa1p2WRVa0jHa+cHJo8HkDCcg9AHepECvtuZOv/T7RbZEQRmEqcKcwlLFJMXaudKHSTzMbM8HGhqlNF5FHgChH5QFVLrOcSRFR1dNT7OUBbEWkCrEzHOlux1iMRKPBuScs6m+bNzXAzdqy5DF59NYTD8OOP5SsCWKeOJaLIyoLtty967LnnWrHahx4yt8GaNU3B2+QVAahfH6ZMga+/hs8/h7vuMjfFiRNNORwyxO6zPvkERo82+Z56qtDiFhdR7n516tTh1VdfpUuQHuERcY98AcgrYiXMYMYCj4jIGaq6AMBzERpKnBYqR8ncf//9fosQP598YkGTJ5yQlObTaiwcSSGTr4GcHIun/v13+Ogj8w4JEpk89uCPhepezCLyPRY/FUQ6Y8oUQN5kJlcH2IZtYserIJ98NrN5G0DqeKFYa1ijRCk/+eSznvXUolY2kHMsx14HcDzH/yphES9j30aApjRlBSsAHsesJLFKVOS2uQB4RUO6v4Z0fWknI2GpKWH5FMiTsPwSkwHxLmA99r9Yibn9lYePMQvZSBGJtaalBSJSW0Tai0h7YEM6KlNl0batKTBjS7k9rVULjj3WFJ6JE62quhWXjR8Rc8XbbbetFbFvvoHLL7c+2rUzBWrhwqL7VKtmFqi77oJffjGLV3Rq+Fat4Ior7Mfi/PPh2WfLJx+zZ29pqG7dupx55pnsueee5Wwkufz6q1kLd9+9Gk2a+C1NSrgCi0mdIyLzRWQelsynDmloKXZUgpdfNjP1fvv5LYnDkVYsXmyx0W+/DXffnfCKA444SKlCJSLVsXTUq7Hsdh+nsv9y8AKmZGwANs5iVv11rKMFRap0bwKylrEsqw51qE/9eitZST75tKBFFlHuKg1ooI1oxHKWbwbmrmDFETnk6BCGLMaUkdXAy9uy7eba1GYhC3OARzSknwPXUNSlT7zPy7A4pnjojyXZyALaYPWkANCQ/oDFYR0DtNZQ/PFsInIklkp+LXbz8594jw0CIlJTRB7GCkr/DPwCrBCRoSKSeH8TH6lfHwYNsniqF14wvWLCBIu5Aks68eyzluhh7lzbp3r1wqzF775rsUv//FNxGVq3hldeMffDiRPh9NPNFTDChx9a+MRPP1m81GuvmcvfXnvBhg2WsOKrr2DePLOcffONKYrlYr655tKyJcuWLWPGjBls3ry59GNSzAcf/AYMoE2btAvjqxCqukBV98G+g+4HHgSOVtUuqvq3v9KlPxdeeCEXXnih32KUTV4efPed3Qkmqfpo2oyFI2lk6jVwyy322/nBB1bIN4hk6thHSLXL30CsiOrx2E1sjdJ3rxwSlpOBYVgGqXM0FLdL2h3AFCw1+I+K/jCHOezO7mSRRYHpSjUAZnulrNrRjh/4gZ/5ma50ZRGLav/ET9SnPn3pK/nk60xmjjqO456sRa07veMi418fuKwvfR8FrmpBix6TQpOWAGhIH5CwdMMyXUUUtVexeJ/nJSz/05BOKeN8alOoPGdj8Vlb0JAuxmpLlZexwCDMRfJb4A4ReUdVN5Z+WGB4EouXGghEEnjvj1nt6gPlcSYLPHfdZenUb7vNEkZsv31havRGjawA7+DB5nLWtq3FPkUK8q5ebW4EldE9nn8eLrzQgmQjLnxLlxZub9QI3nvP0rfn5Fi612efteLAmzZZeMW558KiRZa16LjjLDNhuYgoVLvswiOPPMLtt9/OkiVLaNq0acVPLMF8//184GP23vv//BYlpajq51jqdEcC2SZdUny9/DKsWWPBlEkibcbCkTQy8Rr45x/7rbzoIvtdDCqZOPbRSKq8m0SkDpZNbRZwcLLdqiQsdbC0nRFLQw5QP5LBznOzuxA4FHOdG1VMG4Jl+ztmT/bkDM7gDd5gJkWj4c/jvM2NaVz9cR5HUc7kTHZhF/LIoxrV2MxmBDn9ttBtI0Lh0C1ZZIWf53n+KpqEcGOI0GxB1oVCoe5RMuyIKU+fYErcZsxC1RSzVq0CtteQbiplLBoBPwLNvHHooSFNaCVTETnKk/EKVX00kW0nCxFZC5zs3chFr+8NjFRVXwsXi0gfoE/NmjUvyM3N9VOUzKFnTzNtjR3L0g4d+OKLLzjttNP8lqoInTvD1KnKuHFw0EEpr99dLCKSo6rliKYrs72rgCdUNdd7XyKq+mCi+q0MXbt21UmTJlXo2NOetuc1Iy7aP5EiZQ7r15ufcO3aVrSuWsrDu9MCEZmsqlUjsrIYKjMH/SBV837IEHsQOXOmeYI4kkdpczCV31rnA9sDp6YoRqUGRTPkRT5HXPGeAwZ47/8jYTlbQ/pKTBsdgMMB/uAPVrGKAzmwYCYzNbrtT/k09wIukPM5/6+neXrTi7y4tCtd1zegwVEb2MCv/LppFas2SFiOFSQ0gxmb/uKvaOtc3iEc8pwgl2LueUhYGmP1pi71+voa6Oq9bxx1bG2s5laJrnoa0lUSlnZYnaVFGkqKBWk0MB64VkSe9rIABp31QHFObP9g7p6+Ut46VI44iHL523bbbQOnTOXmWiHkrCxhn338liapXA68iJW3uLyU/RRzAXRkMoMHm7l61CinTDkc5WDZMitB0ru3U6b8JiUxVF4R32uB8ao6PhV9ehn/nsBujHOBOzSkmwEkLPXwFJco/ltMMxvxFKcCChjPeJrRLKsd7bKIShbxL//qr/z61LZsu9tN3JRzC7dcO4EJv45hDN/yLRvYUOMwDntNkFGLWcz7vB+tTK1vSctmB3NwLywQ+3UJy/WYC94gLAlFFla0uC7QwOt7E1aT6nusLhYSlj0kLG09y1rseORpSOcnSZnCU5LvxKxgZyejjyTwKBASkS15PL33N3vbHJnE5s3mGyHCqnr1eOedd1ga7XMYAH76aRN5eb3Yaaf3CVhprISiqruq6vKo9yUtu/kta7ozYMAABgwYUPaOfjJmjPkqHXtsUrtJi7FwJJVMugby8qzg/bp18MADfktTNpk09sWRqkdB/bAb7YEp6g8ADemVEpZHgXwN6byoTS0wS1W0BauZhKVlzH5/Y8WBdwX4iZ/oQheO5miZz/z8dawrwBSe2m/z9lPtaT9G0WGCfD+YwfmLWKQ1qCE7sRPVqFZ3GtP0Qz7M2kgRnab2OZxzJdAWOG4IQ+pjSSOKK6GqmJtfLvASFm8wSkOqEpZbsGLJihXq9eOqHY3Fnl0vIsNVtxRJDgwi8kHMql7APyLyi/e5AzYvEube5AgIf/9teeSbNePn337jlFNO4bPPPqN3EmM2ysu33y4D8th114xLNFkiInIOMCI29tJ7EHe6qr7kj2SZQfPmzf0WoXQWLjQ3v0suSXpXgR8LR9LJpGvgySetxMjQodC+vd/SlE0mjX1xJF2h8upOXYFlUPss2f3FoiGdXczqOcBCzAUuYs3ZAXgLK/Qb4TZgR+/9xgIKNr7Luw0u5EJO47Tsl3hJNrMZTDm7cAhDRtegRo292Ztd2CW7CU0ooGDjRCbWnMY0/uXfSIa+LePejnZkkXW9os+FCR8LvM/WxXzBlKjZnjyfApdHWdyyMKtKpN0zJCw3aEhj62slFVVVEbkXeIPgZnFcHvN5ZMznuakSxJFiohJSdOvWjcmTJ9MqksYwIMyfvxPwTaADi5PAC9h3Wqzbcn1vm1OoKsGtt95a9k5+Mm2avXbsmPSuAj8WjqSTKdfAqlVwzTWw997w3+L8qwJIpox9SaTCQrUf0Am4KCj1fTSkuRKWLliM0nlY4opsoIWE5SEsccNDQGsKk1oIUHcpS3mHd/gP/+EMzsh6gzfYxKaaQG/ggk1sqj0J+/P4DuhOoXVpMPAIUK0tbTmZk7MU/eYxHnsaGEdRZWojEMbc/PbEYnseiLGi4bW9DoulisjaT8LysYb0t8qNVrl5FyuUfCkBVKhUNXPtzY7SiVKoateuzT4BDFKaOtVeU3BvGSSEovX2IrTASko4MpkXXrC4qX33LXtfh8MBwPvvw8aNluk2SVUGHOUkFf+GS7Gisa+loK+48eot/Q/4HaujlIMle7gSuBGzqA311q/xXgsAfuM33uVdWtKSgQxke7bfgClDRV3cFPiWXXib2Zj74FxgRnWq33IIhxT8h/+QQ84sQY5bzvJ6WIKJCOuAOhrSuzC3tGOBS4AfJVy0RpKGVIETvT5Wez3fBkyUsKT01sxLRjEMOEZEdk1l3xVFRHYTkeNE5FgRcTEbmcq8efbasiUff/wxY8aM8VWcWAoK4IcfTgYG06mT39IkHxGZ5rnaKjBORH6JWn7FktwE65+Uhpx11lmcddZZfotRPN99B2+8AeedBw2Sn1Q10GPhSAmZcA3k5cHjj1tpkcMP91ua+MmEsS+NpFqoRKQhcCrwrKquS2ZfFUFDuknCsh9wMLAPllQhwvbATKAj0A64GugW2fgLv7CWtfSlLxdxUU1g86M8+tdKVrYA6pAPzGM5X/A3g+gG1MgiK6sNbT7tS9/5WWRlFVDwUn3qXxwKhTYMCQ/JxhJNRBJW5EZSvGPZ/SL/q7pYPFqRqp8a0nFAcwnLG0AkdVk+0AcrWptKhgE3AecSf/HhlCMiDbBsj6dQmP1RRGQkcL6qrvVNOEfi8SxU2qIFgwcPZo899uDwAP0azZsHeXnNqFdvO7bf3m9pUsLb3mt74CPsIVKETcA8tnbJdZSTPffc028RSubVV+319ttT0l2gx8KREtL9GlC1IvcTJ8Jzz8HWKciCS7qPfVkk2+XvJKAm8HKS+6kwGtJcYLSEpQC7qY5Y7TZjKcY3S1iygS7YuYA9UdW5zJUneGLl1Vz9ThZZl13BFbqOddPXsnZSfnb+j5t237Ri95t3X/0+73/SjGZZrWhFAxrUyie/5od8+OkkJp0K7DMkPOQY4F+vf8XipeZIWK4EhmNPavfH/l8roWgBqxh2jHpfgFnaUoqqLhCRL4F+IhIOiqtnMQwF9gYOwVwzAXoATwEPY6n+fSOqDpWfYmQOnoVKWrbkxx9/ZNmyZf7KE4O5+z1Cjx4+C5IiVDUMICLzsKQUrthaErj55pv9FqFkxo6FPn1g221T0l2gx8KREtL9Gnj4YXjmGbjxRjPsphPpPvZlkWyFqh+WSGFCkvtJBGOAx4ELMBe/4yJJH4AVFCavUEz5mQpUW8/6weFQeHo4HL5DkAvqU//Y+tQ/n6ib8RM4gVxymcc8/YRP8mcyc4mih2LWqL2AZ4DOmAKUh7kgdsCsYxdjFqqLMevUUyUV8ZWw1AUOiFqVjWUC9IPXgGexJB9B/f8fD5wYk8r/KxG5EIsF81WhcnWoEoxnoVrWsCFN6talfv36PgtUlJ89O3JVcPeLRlVf9FsGhw/k5cHcuXD88X5L4nCkBXl5FjPVvXvKjLqOcpA0hUpEtgMOBe4MsIViC14c0hXeErttqYTlTKzA5GrgbA3p9Oh9QqHQPOD/JCz31aLW4iY0qVGLWuSTn38qp7Z7gAfOU/QKLMnFvhQqaNnALkAdbwHYLqrpFkATDen9cZzGJsyyFvm/5nqf/WAkVgfsdIKrUNVm66x/YAp0rWLWO9KV/HxYsIC/gUPOOovrrr+egQNTWsWhTN5772ngHnbbbSKwjd/ipAwRWUvxSSkAUNXkB9dkMKeffjoAb7zxhs+SxDBlCmzaRCorWAd2LBwpI52vgc8+g3//hcceSy9XvwjpPPbxkEwL1dGY+9w7SewjZWhI3wPei2PXTbnkFvzLv5HPG+/n/j8wV71IBr/YqfAoEFGYNmKKUB1v/3VYkd94ZNwsYTkVeN5b1V9DmhfPsYlGVVeJyBfAccBVfsgQB98Ct4nI2aqaAyAidbHMit+VeqQjvVi4EDZvpnrTphx9zDFst912ZR+TYhYubAEcyIEHNvFblFRzOUUVquqYxf4U4A5fJMogOgXV5Pntt/Z60EEp6zKwY+FIGel8DTz/PGyzTdLrXyeNdB77eJBkGY9E5C3M/axZOlioEomE5T/A01hSiLM1pJ9IWJoDP2FKbAMKkyAsBppjlpyrgN+wG/prMCvJbRrSP0lDROQy4DFgT1Wd5bc8sYhIB+ATzJUykm2sI7AeOFJVf42znSZYcosjgGXADapabFZLL4vgI1gilI3A86p6bWnt161bV9evXx/XOTlK4Ntv4cADoVs3+PFHv6XZipUroUkTqFUL1q61LNJBQkRyVDWlxa5F5HzgMFU9M5X9lkTXrl110qRJZe9YDKc9/T0AIy7aP5EipTfdusHy5VbUNx0ft/uAiExW1a5+y+EXlZmDfpDIeb94Mey0E1x5JTzwQKWbc1SQ0uZgUn62vQr3RwKvVyVlSsJSHUtfrsB2UTFYaEgXSFj2wGpyrcVcCwW4RUNaIGGZAJwD/Oa5H16UYvGTwUeYQnUc5i4ZKFR1moi0As4C2mD/j1eAV1V1Qzmaehxzt9we+/9+JCI/xypk3rz43Nv/NEzhbl3Z83DEwfz5TAAm5+UxcPNmqlev7rdERfjww1nADnTo0CBwypSPfIklh3FkGsuXW5qy225zypTDEQcPP2ylNTI463jak6yf7i5YlfvPktR+UPkAONB7fyFW7HcLGtJVwFfex3Mj6yUstwDXY4rYCKzY8FZIWLbDUgxP05AuTaDcSUFV54nI71gWvUApVCJSHViAPQEfVol26mKuSe290gDfiMgHwNnY/zSa/sC/qho9FinPwlglmTePccC1U6bQ9rvvOPjgg/2WqAih0HlADp06TfFblCBxOmbxLZNkW4nTmVNOOQWAkSMDlIH+O8+jumfPlHYbyLHIINJhHqbjNZCfD089ZflbOnf2W5qKk45jXx6SpVBFnKLHl7pXBuFl2OtNYZxULwlLQw3p6jKOywJupvB/caaE5UYN6aKY/doC3+PFGkhYumtIf0/kOSSJ8UBfEclS3VJXy3dUdbOIbKaUYPg4aQ3kx7g0/oz9SMSyHzBPRD7BEpNMBy5X1WmVlMFRFvPncw1wxUMPUTNgyhRA27YPMnfuSjqmtAx3MBCRaRSdh4JZe5tgxczjwVmJS2D//QPoZjhmDNSubW5/KSSQY5FZBH4epuM1MHkyrFoFp51W5q6BJh3HvjwkS6HqCfyuqkuS1H4Q2YBlh2vqfV5N0UKVJaHefo2iPhcXMHMxZvUTb5/zgXR4qjoeGIhZ1oJmjXkUuEFEBqhWOHlHPex/Hc1q7H8VSzPMWnc8MBYYBLwvIm1Ui6bC91K3XwhQo0aN2HYc5cVLmV5zjz18FqR4/vnHbiwzPGa3JN6O+VwALAW+UtWZZR3srMSlM3jwYL9F2Jpff4V27UypSiGBHIsMIV3mYTpeA8OHW3zt0Uf7LUnlSMexLw9ZZe9SPkREsCK03yS67SCjIS0AemH1rMYAvTSk+XEcp1jc1d/YTcRZGtK1xez6N5b9D+/179gdvALEQSNyHRxQ6l7+0BM4AfhHRMaKyAfRS5xtrMOSjETTAIuTi2UD8I2qfuIpUPdj+bH3it1RVZ9R1a6q2rWaC6qpNE9PncqRwJqmTcvcN9W8++6HTJ9ugdZ77+2zMD6gquGY5TZVfSoeZcqjJCtxu2L23WIlFpFlIvKVl5ymWETkQhGZJCKTli4NvJd1erB4MYwfD/vt57ckjsSSlHlY1efg+vXw6qvQty80buy3NI7SSMadWjPMVaPKBQNoSGdIWI7Enr5cJ2H5QEP6VhzHjcMy/ZXGUGBvrLbXZ8CTkQ0SlkaYxaOzhGUKcFhZroYpZC5msQmiM9MyrF5WZZgFVBORVqr6h7euI1BchsBfgB6V7M9RXlRZu3w5OwIN2hX32+4vl19+BXl5Xdl99zcJWK3hlCIihwJtvY8zVPWLOA9NipUY7MEGVnidrl27pmWCpeO9wrkffBDvM6Ik89FHVn/qgtTXKw/cWGQWSZmHiZ6D6XYNjBgBa9b4Ml0STrqNfXlJhkIVuXGemoS2E4KEZT9gT+AzDenCBDd/DuZKVhc4WcKSoyH9qLKNakg3YtnoiuMqzKVOgA7AlVjqdd9RVRWRqZg/daBQ1QEJaGO9iLwD3CoiA7HzPIHiLXKvAFeLyOFYBrMrMKXut8rK4SiFJUsYnJdnj/cCqLFce+13DBqUU1Xd/RCRXbF6hR1gSwG/nbzYqlNUdU4ZTVTISuz1fT9wE2Yl/rliZxBsDjvsML9FKMqrr0KzZubyl2ICNxaZRVrMw3S6BnJy4NproWPHlOdvSQrpNPYVIZkKVSAD7SUsZwNPYXFImyQs7TWk/5ZxWHnohSlTYMV5D8DShyeTGhS6b2Z5n4PEz8D5QUlMISJZwNWYq2V1zEXzVlXNLe24UrgUK6a8BFgOXKKqv4pIC2AG0FZV/1LV30XkLOz62w6z4h5f3JNxRwLx4qdo2dJXMUpi/vwdAKpkQgqP54A1wG6q+heAN3deBJ7FrPKl4azEpTBo0CC/RShk5Ur46iu48UbITr2HeqDGIvNIi3mYTtfA+PFWYeD55zOjukA6jX1FSHgMFeZH+7dqsXFAQeAyTNGpiykeRyS4/feBHExhyyE1qeMfxp7s5gL/YKlIg8RMbLx39FsQj+uAu7HkHwsxC1+Fx0xVV6jqiapaV1VbRNLEekpUvchNorfuHVXdQ1UbqGqveIsHOyrOyBEjaAbMDmD81A8//MBHHz0DbKrKCtX+wBUx8+Qv4H/etlJR1fWYhetWEakrIj0wK/HLxez+CrCfiBwuItmYNd9ZiVPF+PFWTKd377L3daQVbh4mls2b4dZbLW/LgQeWvb/Df5KhUO0KlOWi4Se/UJjcQYCEph7XkL4HnAzcBhzlxUclFS/F+u7esoeGdHGy+ywnkethN1+lKKQ/lq78CFU9AbNUneMlVHFkGDvk5nI4sF0AM/yNHPkOv/9+BVCtyrr8AX8BxaV7q4XViouHS702lgCvE2UlFpF1nsULVf0dc51+CliJ3fBltJX46KOP5uigpAf7+muoXh26dvWl+0CNRWYS+HmYLtfAkCFWrm3oUGjSxG9pEkO6jH1FSYbL325YfYGg8j/vtSPwhIb0+0R3oCEdDYxOdLtl9JlHYfxB0IhWqIJQm2wX4MOoz6Mx5XonzMIXCESkD9CnZs2afouS1vQQMd+S1sErN3T55Xdx//3/o1GjLJqXlZYmc7kaeERErgAmeuv2xSzvV8fTgKquwB6MxK7/CwuWj173DvYkvUrQp08fv0UwVOG99+Cww6BOHV9ECMxYZCjpMA/T4RooKICnn4ZDDoGBA/2WJnGkw9hXhoQqVCJSHdgZmJ/IdhOJhnQ9Xn0fR8qIuPLs4qsUhdTAgmKBLYkzNgGB0lxUdRQwqm7duhmQ38cf/vzzTz4fN47TgCa7BOXyK2T69GxgRzp1ygwf+XgRkbUULeZbC/gWq0EF5j2RD7zK1oHujnJw6aWX+i2CMX06zJ5tUfY+EZixcPhGOlwDf/5psVNnnplZvwvpMPaVIdEWqohhsioV9HWUgapuFJHVFBY9DgJ3iUhO1OcaQMiTEwBVvSL1YjkSyRdffMGl06dzLMFTqFSV++8fAhxFx46ZXUG+GC6nqELlyHTefdfuDr3UyQ6Ho3ieeso8YzM8KV7GkWiFKnLDvCzB7TrSn2UER6H6Gos3i+Y7oEXUZ3ezlwFcMHAgR1x1Fc3Xrw9clr9Vq1bx1Vd3Ao2rnEKlqsP9lqGqcPjhhwMwZswY/4RQNYVq//1hhx18EyMQY+HwlaBfA3l58Npr0KcP7Lqr39IklqCPfWVJlkK1PMHtOtKfpQREoVLVXn7L4EgNsmoVLdevh3r1AldmvnHjxrRqtYFZs/KqXIY/EWnixVsgIqWGXEf2c1SM0047zW8RYNYsmDoVHnzQVzECMRYOXwn6NfDll7B4MfTr57ckiSfoY19ZEq1QRYIOg5oy3eEf6yisz+VwJJ2lS5dy+6BBDAA67bJL4JzR16+HP/6oRrVq1Wjb1m9pUs5SEdlRVZdg1uviLMLirU99waIM4oILAhCCOXasvfqcLj0QY+HwlaBfAy+/DA0bwjHH+C1J4gn62FeWRCtUkaD+jYloTES+guRYFJLZdqr6SLPx2QgEy0TgyGgWLVrEC++9x2FAp4C5+wE88MBrqM6lTZv/o1Ytv6VJOYcCEcvTIX4K4kgBL78MHTpA+/Z+S+JwBJZVq+CNN+C006iKvwlpT6LrUEUSPA4TkYcT3HZa4SkknYBOEeWkKiIiD3vn3x1o6a80jqpEhw4dWHPnnfQBCFhCCoAxY8YBb1Y5dz8AVR2nqnkiUg1oB/zhrdtq8VvWdKdXr1706tXLPwFWroQffoBTT/VPBg/fx8LhO0G+BkaNsoK+mWrICfLYJ4JEW6giCpoL6HfE4lx3yomrQ5UA5s9HIHAJKQA6dHia8ePzq3JBXzyl6j7gI79lyVT69+/vrwCTJtnr/v4nXvF9LBy+E+Rr4J13oHlz6NnTb0mSQ5DHPhEkWqEaDhwJ9FfV3xLcdlqhqr1S4VYYdFT1SgAReZetM+s5SsHVoaoc77//PmM++ICHgewAWqimTgXIrpIWqhh+ALoQ4PqF6YzvNzETJthr167+ykEAxsLhO0G9BnJz4Ztv4MgjAxfumzCCOvaJItEKVSR2KiGP1JOpiKRCyUl2H2k2PjVJUGxdIhGR7YGzMWXvZlVdJiI9gH9Vda6/0jkqw4wZM3hvwQIehcC5/E2b9isTJtwJhOjYsbXf4vjNMOB+EWkBTAbWR29U1Sm+SJUhbN68GYDq1av7I8CECbDnntCokT/9R+H7WDh8J6jXwGuvwbJlkMk6R1DHPlEkOoYqoQqVI6OoQcAUKhHpAvwO9APOBxp4m3oDd/gllyMx3HDDDSyoX98+BMzlb9Kkv8nLG0fTptlst53f0vjOa1h85YPAOGBS1DLRP7Eyg969e9Pbr+x6qvDjj7Dvvv70H4OvY+EIBEG8BhYvhv/7P9hnn8wu5hvEsU8kibZQrfFeGya4XUf60xCrRRUk7geGqmpIRKJT/Y8GBvgkkyNRrF0LK1ZYuqSAaS0NGx4J/B0EL6ggkGHlK4PFwIEDy94pWUyebHeLAblL9HUsHIEgiNfACy/AokUWQ5Wp7n4QzLFPJIlWqJZ5r4Eo4OoIFNsCQYur64JZpmJZCGyfYlkcCeaqyy5jT+CiFi0C9ytl8VO4+CljF+A7Vc2LXullADwAF1tVKc466yz/On/xRahZE044wT8ZovB1LByBIGjXQF4evPSSGXEDkLclqQRt7BNNol3+IhYIp1A5YmlKocIdFDZQfG2sNsCSFMviSDDTpk1jBgTO3W/jxo089tgBwLtOoTK+BJoUs76ht81RCXJycsjJyfGn8x9+gAMOgMbBKEHo61g4AkHQroGXX4bffoNrrvFbkuQTtLFPNIlWqFYC+cAOCW7XkcaISF2gLsFz+XsfCIlIJOZPRaQlcA8w0jepHAnh84EDeRgCl5Bi+fLl5OTUArKrdMr0KITiS21sQ0yCCkf5OeaYYzjmmGNS3/HKlTBlCvTokfq+S8C3sXAEhqBdA2++CXvsAX37+i1J8gna2CeahLr8qWqBiPyFK+DqKEokRmKen0IUw2DgY0zRqwN8g7n6fQvc5KNcgKtDVWkiNagCplDVqbMTGzd+Qa1a0KqV39L4h4h84L1V4BURiU5akw20B75LuWAZxiWXXOJPx59/DgUFlgc6IPg2Fo7AEKRrYPp0GD0aBg8OnFd6UgjS2CeDRMdQAczBBRk7ihK5Hub4KkUMqroGOFBEDgX2wSy2U1R1jL+SGa4OVcUZOnQo373xBm8AEjCXv59/ttf27aFaMr6B04fl3qtg3g0borZtwh5wDEu1UJnGaaed5k/Hjz8OLVrAfvv5038x+DYWjsAQlGtAFS67DKpXh0GD/JYmNQRl7JNFMn7O5wLBiEB1BIXdvNdAKVQi0lFVf1bVL4Av/JbHkThyc3PZsHZtIC1UF1zQG+jMPvvc67covqKqAwBEZB5wv6o6974ksHr1agAaNkxh8t2cHKtSesMNgXpq4MtYOAJFEK4BVTj5ZPj6a7j8cth5Z99ESSlBGPtkkugYKoCZwLYi4hJTOCK0A1YQvKQUP4nINBG5VkSa+S2MI3Fcd911fBBxlQyYhUpkL2AXunTxW5LAcBtR1ikR2UFEBorIAT7KlDGccMIJnJDqLHvTppm7X8Aucl/GwhEognANTJ8O770HZ58NDz7oqygpJQhjn0yS8ejIc2ihIzA2Ce070o+OwM+qWlzguZ+0wYr6DgTuFJHxwMvA2547oCNd2bDB6t9UqwY77ui3NDE8AuBqUBXyEfApMFRE6mEFfesC9UTkfFV9qawGRKQJ8BxwBPbg5gZVfa2MY74ADgGqx6ZszySuuOKK1Hf6ySf2us8+qe+7FHwZiypEOszDIFwDTz9tMVP33hsoA27SCcLYJ5NkWKgiClWnJLTtSDNEJBvoAEz1WZStUNVZqhpS1dZAD2AacCewSETejLcdEWkiIu+KyHoRmS8iZ8ZxzBciol6tHUcC+fDDD9m7UyfzL23eHLKz/RZpCytW5DFrFtSoYTFUDsDqwUVcbk/GCsRvB1yAJY6Jh8exuKvtsYckT4pIu5J2FpF+JOeBYuA4+eSTOfnkk1PXYUEBPPooHH984NxtUz4WVY/Az0O/r4HVq+Gpp8w6tUMVy4ft99gnm4QrVKq6FPgHcM9fHQB7AbUJoEIVjar+qKpXYPF/vwOnlOPwwP+IVCVq165Ni0aN2BEC5+7Xv/9lQCc6dDClygFAfWCV9/4I4F1V3YwpWbuXdbBXluEU4GZVXaeq3wAfAGeXsH9DIARcW3nRg8+yZctYtiyF3tZz5sCKFXDccanrM05SPhZViHSZh35fAx9+CPn5cM45vongG36PfbJJhoUKLDtTT5GqkAjSUQY9vddvfJWiFERkNxG5SUR+w+RcibkBxnNsWvyIVCUOO+wwPhw4kNoQuCfkDRocDPwnaKElfvMX0MObS0cCn3vrmwDxVIFsDeSr6qyodT9jsZvFcSfwJLCorIZF5EIRmSQik5YuDVoZvfjo27cvfVNZ5OZz79/Xs2fp+/lAyseiapGUeZjoOejnNbBmDdxyi9WdOuQQX0TwlUyff8l6Sj4eOA2rRzU3SX040oODgH8J4HUgIpdhFqXuwHTgBeBVVf2nHM2U9CNycAn7x/0jAlwIUMOZMsrPvHn2GjCFqqDAvEFd/FQRHsRiF9cB84GvvfUHYW64ZVEPWB2zbjVm+SqCiHTF3HsHAWUmolHVZ4BnALp27Rq0GNC4uPrqq1Pb4dix5mq7556p7TcOUj4WVYukzMNEz0E/r4HnnjMD7rhxkJUsc0aAyfT5l0yFCuwHMXA30o7U4FkoDwLGBzAhBcD1wOvARaoaz41bcST9R6Ru3bpBHLtAUlBQwA477MB1zZpxNQRKoVq3bh0TJwpQ11moolDVp0VkMtAc+FxVC7xNs4Gb42hiHdAgZl0DYG30ChHJAp4ABqlqXlVxoOjTp0/qOsvPN4Xq5JMDWak0pWNR9UiLeejnNfD009CtGxx0kG8i+Eqmz79k6cjTgcXA0Ulq35EedAB2AgJRKLcYWqjqtZVQpqCCPyKV6M9RChs3buSMM85gr9xcW7FrcGqMP/vsq/z5ZwOqV1/gElLEoKqTVPVdVV0Xte4jVf02jsNnAdVEpFXUuo7ArzH7NcBie0eIyCJgorf+bxEJnn9agli0aBGLFpXp3ZgYJk2CVaugd+/U9FdOUjoWVY+0mId+XQNffgm//w79+qW868CQ6fMvKRYqVS0QkY+Ak0Wkuhdg7Kh6HOu9fuSrFFGIyD7AVO8peOfSno6p6pQ4mtzyI6Kqf3jryvoRAYiknvtbRE5V1fE4Kk3t2rUZOnQo7LSTrQiQQlWvXncgzN57N6vyCSlE5CrgCVXN9d6XiKqWWqlFVdeLyDvArSIyEMswewIQW8dqNfaAJ0JzYAKWZTA9A6Ti4PTTTwfgq6++Sn5nkfipww5Lfl8VIKVjUcVIl3noxzWwdCmce679LA2MKzo7M8n0+ZfMTGMfAudhLk5fJbEfR3A5Dpisqgv9FiSKScAOwBLvvQLFaVVKodJTIunyI1JVWL9+PXVEkIULrcBHs+DUa169uhPQycVPGZcDLwK53vuSUCzGqiwuBZ7H5vVy4BJV/VVEWgAzgLaq+hdRsYsiUst7uziTrcbXX3996jr7/HPo3Bm23TZ1fZaDlI5F1STw89CPa2DYMFiwwGKn6tRJefeBIdPnXzIVqs+xH8tTcApVlUNEmgH7A2G/ZYlhVwoVmESZLwL/I1JVOOuss1g4dy4/ALRoEZgaVCtXrmTMmL+ADnTpUgWjkWNQ1V2Le1+J9lYAJxaz/i8szrG4Y+ZR/MOUjOKoo45KTUfr1sH338NVpRocfSVlY1FFSYd5mOprYPNmuO02OOCAqhs7FSHT51/SFCpVXScio4DTROQq5/ZX5Tgd+5IstUp6qlHV+dEfgQXFJczwlKF42wz8j0hV4dRTT2X9jz/Czz8HqgbV+++/z6efDgB+pkuXvf0Wx1GFWLBgAQDNmzdPbkfjxtndY0DjpyCFY+EILKm+BhYtgtxcuOeelHQXaDJ9/iW7uOhrwKnAYcCnSe7LESzOBCZGxRUFkbnAjphlaQsiso23LRjmDUfcnHnmmVaKHgIVP7XffkcDL1OjRnuXkCIKLxPoOZgnw27YQ445wFtYCQOX4bKSnH22lcRLetzCZ59BrVrQo0dy+6kEKRsLR2BJ5TWwahXMnQvHHBPoaZEyMn3+JVuh+gQrknouVUyhEpGvoj+rai9/JEk9ItIB6Axc6bMoZSHYDVws9TB3VV8RkT5An5o1a/otSlrw3Xff0bZtWxpFalAFSKGaO3d74Cz23Zcqn5AihpGYdXeatwjQFngJOAlTtByV4Kabbkp+J5s3w6hR5tNUq1bZ+/tESsbCEWhSeQ38+SfUqg0vPxrIKgIpJ9PnX1IVKlXdKCIvAZeKyPaqujiZ/TkCwyXARuAVvwUpDhF5xHurwF0ikhO1ORvoBkxNtVyxqOooYFTdunUv8FuWdKBv37706NGDtyK/XAFx+Xvvvfd49dV84BT2399vaYKDiPQDjgCOVNXPY7YdCYwUkTNVNVBuw+nG4YcfnvxOvv/eHsXfcUfy+6oEKRkLR6BJ1TUwdiysXw977AFNmqSky8CT6fMv2RYqgCexQqbnA3emoL9AUJUsUtGISAPgbOANVV3utzwl0MF7FWAvYFPUtk3AFOD+VAvlqDiqyptvvkmTJk0sPy0ExkI1YsQIPvpoEk6h2oqzgHtilSkAVR0tIvd5+ziFqhLMmTMHgN122y15nYwZA1lZcMQRyesjAaRkLByBJhXXgCpcfjnU3h923DFp3aQdmT7/kq5QqervIjIGuFhE7nPJKTKeczCXuSf8FqQkVPUQABF5ASu0u8ZnkRyVREQ48MAD7UPAXP5efPEVGjc247xTqIrQESjNB+Qj4KIUyZKxnHfeeUCS4xa++AK6doVttkleHwkgJWPhCDSpuAZ+/BF++w16/seeMziMTJ9/qbBQATyM1aU6A/ONd2QgIlIdGAz8QGH188CiqgP8lsGRGGbPns2cOXM4aJ99qLlsmcVx7LCD32IBMHNmNjk5O7HLLu5pZQzbAKXVqFsIOGeZShIOJ7lyxbp1dgc5eHBy+0kASR8LR+BJxTXw3HNWb2q77ZLeVVqR6fMvVQrVx8AvwA0i8oqqFqSoX0dqORPYBfhvumTnEpFDMEW/BVAkXYCqHuqLUI5y89JLL3H77bez5rvvqAmwyy6BiAKePHkyN9/8LnAl++/f1G9xgkZ1oDSPhTxvH0clOPjgg5PbwfffQ14e9OqV3H4SQNLHwhF4kn0NzJwJL7xgnufrXJ7gImT6/EuJQqWqKiJ3Am9gWZveSkW/jtQhItnA9Zji/JHP4sSFiPQHngLeBXoB7wOtsYK/gUyo4SieK6+8kiOOOIK6i728NwFx95s4cSKff/4wcC0HHOC3NIEkNilMNHVSKkmG8vvvvwOw5557JqeDH3+01+7dk9N+Akn6WDgCT7KvgZEjIT8fQiG45pOkdJG2ZPr8S5WFCuBt4DfgNhF5V1XzUti3I/mcC7QBTk0X6xTmnvhfVX1WRNYCN6jqHBF5DFjns2yOctC4cWN69OgBQ4faioAoVBdffDH33HMG8+Y1cArV1nwN7B7HPo5KcNFFFoaWtLiFCROgTRto1Cg57SeQpI+FI/Ak8xpQhTffhAMOgBYtEt582pPp8y9lCpWq5ovIDcB7wAVeQccNqvpCqmRwJBYRqQ88AjwA3ApMwOrKpAu7AWO89xuxZBoAjwFfYRY333B1qOJDVXn++ec54IAD2OsPr470Hnv4K5THX3/BvHkNadgQOnXyW5pgUVUzoaaaO+9MYnLdmTPhk09gQHqEoyZ1LBxpQTKvgR9/hF9+gUceKXvfqkimz79UWqgAPsBcwh7x+h4JOIUqfekM9MXSpGcDZ6eRdQpgOVDfe/8P0B67PrcBavslVARXhyo+VqxYwcCBA3nooYcKFapWrfwVCrj33nsZMeJ74B0OOkjIdv70Dh84IJmm0Q8/tPipa65JXh8JJKlj4UgLknkN3H67GWrPOSdpXaQ1mT7/UprQ0bvZfgxTpt4HTk1l/47EoqpfY7FHCixS1S/9lajcjMcKiwK8CTzipVJ/HdiqNo4jmDRq1Ih58+Zx9tlnQ4AUqqysLFasqAFIOsTrOzKU6dOnM3369OQ0/vXXVkA7APMtHpI6Fo60IFnXwMaN8Omn0L8/NGyY8OYzgkyff6m2UKGqw0RkPyzmph2QuaNbNbgRy9R1oN+CVID/ArW893dhWcV6YMrV7X4J5Sgf2dnZ7LLLLrBpE8yfb4U/AlA4cPDgwTz+uL0/5BB/ZXFUXf773/8CSYhbWLgQRo8Gr/10IGlj4UgbknUNPP20JaNw3/Ulk+nzL+UKlce1wAnAUyJykEujnp6IyLHAycCNqjrbb3nKi6quiHpfANzjoziOCjJ16lQmTpzIWd26UbugwBJS1KhR9oFJZOPGjfz7bw3mzRMaNYK99/ZVHEcV5r777ktOw88/bw8xLkqf2stJGwtH2pCMayAvDx5+GPbdF/r0SXjzGUOmzz9fFCpVXS4iVwPDgSuwwr+ONEJEmgDPAL9iSSnSAk/uuIhWuBzB5ZNPPuHGG2+k31teNYYAJKS47777eOKJV4FJHHxwXRc/5fCNfffdN/GN5uTYI/levaB168S3nySSMhaOtCIZ18C778LcufDAA4EofxhYMn3+pTSGKoaXsCQVd4tIWx/lcFSMx4DtgHNUdZPfwpSDZcDSMpbIPo404Oqrr2b+/PnUWbDAVgQgnqN9+/Y0bHg0UNfFT8WBiGwvIoNF5EkRaeqt6yEiwch/n8ZMnTqVqVOnJrbRt96CBQvg6qsT226SScpYONKKRF8DGzfCtdfac7zjj09YsxlJps8/v1z+IsV+L8RiqF4WkQNUdaNf8jjiR0TOAM4AblbVKX7LU06ch3OGUaNGDVq0aBGohBTHH38iF1xwIgBHHeWvLEFHRLoAY4G5WFztfdhDjd5Yoe0z/ZMu/bnyyiuBBMctvPmmudYee2zi2kwBSRkLR1qR6Gtg5EiYN8+mhPNEKJ1Mn3++KVQAqrpYRAZitakewJIEOAKMiLTBXP2+A+72WZxyo6rj/JYhXlwdqrLJz8/nqquu4rzzzqNjQBSqJUuWMGNGHZYtq0fLlpChReETyf3AUFUNeQW2I4wG0qPAUYB5+OGHE9vgH3/Axx/DBReknX9TwsfCkXYk+hoYNQq23x5OOSWhzWYkmT7//HT5A0BV38eUqcs8y4cjoIhIXeBtIBc4TVXzfBapUohIk9IWv+VT1VGqemG2e+xVIjNnzuTZZ59lxowZ8NtvtrJNG19luvXWWznqqGZAAUcfnXb3nH7QBXixmPULge3jacCbs++KyHoRmS8ixVq1RORcEZksImtE5G8RuVdEfH2wmGw6depEp0RWlX7R+1d5T5vTiYSPhaMI6TAPE3kNbN5sqdKPOcaSyzpKJ9PnX1AugRuAb4BhIuLyYQUQERHgWaAtcKaq/u2zSImgrHgqR8Bp164da9asoW/v3vDPP1CrltXF8ZEzzjiDnXd+CMji6KN9FSVd2AA0LmZ9G2BJnG08DmzCFLB+wJMi0q6Y/eoAVwJNge7AYcDgcsqbVkycOJGJEycmrsFx46BzZ2ibfqHPCR8LRyyBn4eJvAZGjoRVq+DEExPSXMaT6fMvEE/mVHWziJwGTAA+FJHuqrrQb7kcRRgCnA7coKqZUvQ2Np6qOtAZuAS4KfXiOCpCdnY22X/+aR/atPHdkb1Nmx7MnduDGjXg0EN9FSVdeB8IiUik0LuKSEusjMHIsg72LOenAO1VdR3wjYh8AJwNXB+9r6o+GfXxHxF5lQyPq7zmmmuABMUtTJ8O334LN99c+bZ8IKFj4ShCuszDRF0DqnD77bDXXrgHZ3GS6fMvEAoVgKr+KyLHYZaqUSJysKqu91suB4jIWcAtwAtkUK2mEuKpxojIHGAg8FqKRXKUg7Vr13L00Udz9913c+Dvv9vKdsU9DE0d33//PePGNUC1HT17Qt26voqTLgwGPsaswnWw34DtgW+J78FGayBfVWdFrfsZODiOYw/CSj8Ui5c46ULAEp+kIY899ljiGnv5ZXtgcdlliWszhSR0LByxJGUeJnoOJuoa+PJL+PVXGDYMqldPSJMZT6bPv8AoVACqOlVETseeWL4tIie6zH/+IiLHAM8DXwEXq6r6K1FKmIp9wceFF2/1HHAE5kZ4g6pupYyJyLlY3bVWwBpMYbsx3WPR/GLhwoVs2LCBDRs2wIwZttJnN6SrrrqKX39dC0zjxBNd8FQ8qOoa4EARORTYB3NFn6KqY+Jsoh6wOmbdaqB+aQeJyACgK/bwpCTZnsGS8NC1a9e0/O5r37594hobOxZ69IDttktcmykkoWPhiCUp8zDRczBR18B999k0OOushDRXJcj0+ReUGKotqOqH2NOIo4DXMz1gOMiISC/M5WY6cFKa1ZuqECJSD/PtXlCOwwLvN56JtG7dmsmTJ9O7d+/AKFTDh79Nbu7biIjL+hQnItIRQFW/UNX7VfXecihTAOuABjHrGgBri9k30ueJWJbSo1V1WTlFTiu+++47vvvuu8o39PffMGVKWvuxJmwsHMWRFvOwstdAQQFcf70lo7jiCgvbdcRHps+/QCorqvqcd2P7MDBcRPqn21N8Efkq+rOq9vJHkoohIgcAo4A5wBGquspfiRKPl6I5+omXYErPekwxiqeNtPAbz3gColBNmbIzmzdDz56w446+ipJO/CQivwIvA69VIOHNLKCaiLRSVS93Ph0p2YXoKGAYcKyqTquo0OnCjTfeCCQgbuHNNy1wpE+fygvlEwkbC0dxpMU8rMw1sGkTnHmmJaPo398K+jriJ9PnXyAVKgBVHSoidYA7gVoicmZVsJAEARE5DHO7/BfoncFPcGPrnhVgcRw/qurKONtIut94jRo14hSlajFgwAC22WYb7g+F4K+/oEYN2G033+QZN24c998/Dzibvn0DZ/wPMm2wBxgDgTtFZDymXL3tuQOWiqquF5F3gFu9uoadgBOAA2L39dwKX8Us7hMSdwrB5emnn658IwUF8OijcNBBluEvTUnIWDiKJV3mYWWugZdfNmXq7rtNmXIlMcpHps+/wCpUAKp6l4jkAg8C74lIX1XN8VuueEg3i1QEr5jsW8AfmDK1yGeRkoaqFlf7prwk3W+8bt26aRm7kWzq1q1LnTp14OefbUXbtlDNv6+05557iSlTPgbOde5+5cB7GBHCMv11x5SrO4HHRORDVf1PHM1cisV6LgGWA5eo6q8i0gKYAbRV1b+Am4GGwMdSeDc0XlUzNk/XnomoLP3BBzBvHtx5Z+Xb8pGEjIWjNAI/Dyt6DfzzD9xwA7RvD9dc45SpipDp8y/QChWAqj4kIuuAp4EvROQEVV3st1yZiIhcAjwKTAGOUtUVPouUErykEtsRE1OoqjPiOLwyfuOHZ7D1L+lsyRj0yCP22qWLf8IAPXs+w8svL6RnT9h5Z19FSVtU9UfgR88d9inMnTae41YAJxaz/i/soUfkc5VzsR03zpKZHnxwPEbzYvj3X+jXD1q1gpNOSqBkqafSY+EolXSYhxW5BlThnHMgJ8c8X10R34qR6fMv8AoVgKoOE5GlWFa0H0XkWFUtMdWto3yISDZwH/A/4CPgDFUtUSHIFESkM5YKvkNkFRZTFXmNp6BRWviNZzSTJ9urzwrV889nA804/3xfxUhbRGQ34EzMQrUHMJ5SMvA54iMUCgEVjFtYsQIOOADy8+GVV9I+Ar9SY+HICCpyDbz5JnzxBTzxhNWdclSMTJ9/aaFQAajqeyJyEJYo4XsvUcU7fsuV7ojINli8wtHAI8BVqprvr1Qp43ngH2AQsJiiCSriIl38xjONqVOn0q9fP4YNG8YBU6bYyn328U2esWP/4YcfnqRevQGceuruvsmRjojIZZgS1R3LKPoC8Kqq/uOrYBnC888/X/GDb7kF5s+HJ5+Ebt0SJ5RPVGosHBlBea+ByZMtAcVOO9mro+Jk+vxLG4UKQFUniUg3LJX3SBF5AKv5s9ln0dISEdkXeBvYAfN1fspnkVJNK+BUVf2zku0E3m8808jOzqZNmzY0qlnTMvxlZ8Pee/smz+OP/wbcTe/ex1GnjlOoysn1wOvARc5qm3h2q2iilnnzYPhw83W6+OJEiuQbFR4LR8ZQ3mvgwgth82YYMwZq106SUFWETJ9/aaVQAajqAhHpiSWquBrYX0TOVtU5PouWNohIFmaVuRtYBByoqhP9lcoXvgH2AiqlUKWD33im0aFDB0aOHAk//GAZyDp08O3Xbt06+Oqrw4Ecrr/eOddXgBZVpGC4L4wZYyW9Dj/88PgP2rQJTj0V8vLgppuSJFnqqdBYODKK8lwD69bBTz9BKORc/RJBps+/tFOoAFR1I3CZiHyDBS7/IiL/A551P8ylIyItgeFYWu9RwABVXe6nTD5yPvCsF7sxHShi6VTVr32RylEmy5Yto2nTpoXxUz66+z37LKxcmcf++9fIBK+olCAi+wBTVbUA6CylpMxS1SkpEywDuf3224Fy3sQ8+SRMmgTPPGPJKDKECo2FI6MozzUQKb3mc3huxpDp8y8tFaoIqvq6iHyLuVs9A5wiIpep6mwRuRJYpqqv+Cqkj4hIc2AIcA2Wyvti4C5v83nA8CqugLbCYp6OLGZbvEkpkoaXwr5PzZo1/RQjcMyePZs2bdrw0ksvccY339jK/ff3RZZNm+D22z8GruG88z4GdvFFjjRkEuZqvMR7H0kGE4vv8zDdefnll8t/0IcfQosWcMEFiRfIRyo0Fo6MIt5rYPFiuPJK6NoVjjoquTJVFTJ9/qW1QgXmViUiR2BxLHcB00XkCeAyLNaqyipUQGOgP1AXy5rVBRgDXKCq8/wTKzA8DYzFrpsKJaVIJqo6ChhVt27dzLqrqSTZ2dnccsstHNSzJwwebCt79vRFltdeg+XL61G3bnNOP31bX2RIU3bFimhH3juSRPPmzct3wOefW8DIffclRyAfKfdYODKOeK+Be+6xNOnPPedrecOMItPnX0ZcJp7byGMi8i7wEHAVdnM8XkSkClthVmBpvU8DlgFnACOq8HjE0gw4RlVn+y2II35atmzJzTffDLNnW42cpk19cXD/6qvvGDKkLXAQjz9+EPXqlXmIw0NV50d/BBYU973kJXZxVIJPP/0UgKPiecxeUGAPKXbdFS6/PMmSpZ5yjYUjI4nnGvjhB3jsMSu75mOuo4wj0+dfRihUEbw0u/8Rkf8DLgGeBM4TkeuBL6uKIuEVqr0WSzyRBUzEstnNL/XAqsfnmNXOKVRpxMyZM9l9992p/rUX4nbggSkvW79p0yaOO+4E1q8/lLZtR9CvX0q7zzTmAjti7n9b8Eo6zMW5/FWKu+++G4jzJuaVV+CXX+CFFyADXY3LNRaOjCSea+D++6FRI3j66RQJVUXI9PmXUQpVBFW9Q0TuBs4GbsPcur4TkTuBjzNVsRKRHTHr3CVAHczd8WanSJXIp8ADIrI3MI2tk1K4OmcBIycnh/bt23PDDTdw2z9emaKDDkq5HKtW1cAunxo88IBzCakkkULasdQDclMsS8bxxhtvxLfj3LkwYADssguccUZyhfKJuMfCkbGUdQ388AO8+y4MGgRNmqRIqCpCps+/jL0N8IrTDheRN7AEDNcCHwLTRORR4DVVXe+njInCy5h1GXAW9j99HbhbVaf7KljwecJ7vbGYbS4YPoCICK+88grt2raF446zlSlUqJYuXcrFF19M9erPsn59F446ygUsVxQRecR7q8BdIpITtTkb6AZMTbVcmcYOO+xQ9k6LFsHBB5vL31tvZaR1CuIcC0dGU9o1sG4dnHKKeZHfcksKhaoiZPr8y1iFKoKq5gJPiMgwLIboaiwj4H0i8iKWQnxqulmtRKQBcApwEdAdyMGyHd7vYoLiQ1Vd0aA0o3bt2px++ukwdSosWAA77ACdO6es/19//ZWPP/6M3Nw/qFWrGw8/nLKuM5EO3qtg9eA2RW3bBEwB7k+1UJnGqFGjAOjTp0/xOxQUwMCBNp8efxz23TeF0qWWMsfCkfGUdg3cfruF5X7zjbn8ORJLps+/jFeoIqjqZuAlEXkZOADLCngxcAXwm4i8CrylqrN8FLNURKQOluL7TKAPUBOYiZ3DS6q62kfxHI6kc8kll3DAAQdw9ty5tqJPH8hKnV7ctm0v6tdfQW5uNnffDXvumbKuM45IoWsReQEYpKprfBYpI3nggQeAEm5i5swxS+9vv8E118Cll6ZYutRS6lg4qgQlXQMjRlhmv7PPhh49/JAs88n0+VdlFKoIniXqW+BbEbkC6Av0A24HbheRPzDXwI+B7/10CxSrdrkH0Bs4DjgUU6KWYFa2V4EJ6WZdCwoiclVp21X1wVTJUhyuDtXW/PDDD+Y24D3p4vjjU9b32rWbOOkkZenSmhx8cEYmQfMFVR3gtwyZzNtvv138hoULoXdv+Ocfi77PsJpTxVHiWDiqDMVdA//f3nnHSVVe///9oag0UWmixgaSiAX9YsCY+NXY0BgTv2piYgsaSxQSsP+MiaKxxBILthgbGhsYUSMiCQpYEqOSEKkWRBAsCNI77J7fH+eOOwyzZXZnd2Znz/v1uq+Z+9x7z3Pmzr0zz7nnPOcMHw5nnw377OOF2oP6odTvvyZnUKVjZl/itYjuTdLzHgMcjXuvzgc2SJoIvIZnynsHmJmkaa8WSbcl/Qyu4f5bAXsD+wLfBv4X6JJsnolnLXwBmGBmG2oiM6iSzCFxSzzb2GrcaC2oQRV1qDZl0qRJ8PHHMGQItG4Nhx7aIP2aQd++FzFjxttst90Ennhi84Z0jJU8kr6Lh2TvCGyWvs3MDimIUiVCx44dN2388kufM/XppzB+fMEKYzc0Wc9F0KRIvwY++gjOOAMmTIA99oAnnoDNNqv82KBulPr916QNqnTM7GPgLuAuSW1wY+bA5HUwPtgGWCVpGjArWT4CPsPrPC0ElgBrk2UfAEmtcM9SG6AD0BHoBOyEF7XcFfh6sp5iLl6E91XcgCraUMTGipltUlBUUhfgIeC+htcoqBGpauvf/z60alXv3ZnB4MEwY8a+tGy5A6NGbU7XrvXebZNBUn/gj8AzwMHAc0AP/LexKRdmzwsjR3qy0uOOOw7KyuCNN+CUU9xDNWpUkzGmIONcBE2SkSNHsnIlfPzxcVx3nbfddpt7qBrg76RJU+r3XxhUWUjC/F5MFiRtAfTEDaReyfv98KQQNTmHq6rY9iVulL2Be8v+C7xjZp/WTvugLpjZ/KSO2Qh8gBcUCY8//jgjR47k4UmTaAOe4rmeKStzY+rOO2GzzU7n2WcbNAdGU+EiYKCZ3S9pOXCZmc2SdCewosC6NXqG3nYbzJ3LcTfe6DWmVq/2GfcvvACHHVZo9RqUoUM9sWSpDuiC6rnkkqHMng1lZcdx9NFw000FqQvfJCn1+y8MqhqQZAr8T7J8haQWwPZAZ9zj1BHYCvdGbY7PezL8ietaPJRsARXerHmRSKIoaUZFqGVQQKZPn87SpUvZb7/92LBhA+9NnEjrOXNg++3rfTC4dCmcdBKMHl1GixbPMHz4MRx1VMxnqwd2xb3x4L+TbZP3dwITgP9XAJ0aJ2Vlnq1v5kx4/30YN47npkyBJUv88fs55/hEke9/Hzp0KLS2Dc5zzz1XaBWCArF+PTz7LHz44XMcdJB7pfbZp8BKNTFK/f4Lg6oOJPOY5iRLNq5pQHWCHJGU+ZhE+ByqAfi8uaCAbNiwgREjRnDDDTcwb948TjvtNE4dNgzNmQO/+lW9VtN97TX42c88xr5du5dYvvxHlJc/DZTmk7UC8yXQLnn/CbAnMBkPj65REI6kbYAHgCPwh1WXmdnjlex7PnBpIvtp4FwzW1uXD1AQNmxwo2nyZJgyBcaM8df1afXJt92W9j/8oRfqPeIIkAqnbxHQvn37QqtQ0hTjfThnDowY4XlXPvwQevRoz+OPw3bb5bunoDpK/f4LgypoymSmnDHcgzgOr1cWFJAWLVowePBgvvWtb9GuXTsYNw6NHw/t2nnAez3wxRdw5ZX+52vmTzCfeupwPvro7xx88MH10mfAa/gAbAoeajtU0uHAocDYGsq4C69d1QUPzX5B0jtmNi19J0n9cI/XIcCneFjvVRSbF8wMVq2CxYsrlkWL/PW992DsWJg2DdYm48/mzWG//eD882G33aB7d+jWDbbfnuFPPQVLlnBiEzemAIYPHw7AiSeeWGBNSpaiuQ/ffdfD+YYN81Jr++4Ljz8OGzYM57XX4hooBKV+/4VBlUESt7+nmR2cwzEG/MjMSjsnZIkRhX2Lm3nz5tGpUyf69esH69b5YBHg0kvzXnXx009h6FC4+25YvtzHp0ce+SCdOv2D7t0foHv3w/PaX7ARA4EtkvfXAxvwLKcjqIGXP0kidDz+u70CeF3SX4FT2XSA9jPggdQAT9Lv8PITtR/IjR3rCR4WLnTvUFmZj+DSXzf0dCPp4pG+nrnPunWwYoV7mxYt8njTdesq73OHHTxvf69esNde8I1vQCXlFe655x6gdAcxuRDnov4o5H24eDGMGwfTp8O8eR7xOm6cbzvqKLj9dn/OAHDwwXENFIpSv//CoKpnJA3DfzwqxcyU7NfRzL6fcfx+eMr2Xcxsdlr7sfhA5H9wl/lcPLHFnWb2drLPcXjx4n3xAct04Foz+2sluv4UeBx4IVOPoOFp6nWoDjzwQA444AAee+wxdxtNngy77OJZIvJAWZmny33kEXjyyYrx61FHwc03wwMPTGPixJl56SuoHDNblPa+HLghRxE9gLKMTKjvAAdl2XcPfE5r+n5dJHVIymjkTv/+bpFXRrNm8JPrPKD4mbt9vXnzjV9btnTPa7t2PtfpjDNg661hm238NXNp377G4XujR4+u1ccqReJc1CsFuw+nTYMTTvD3nTv7FNvLLvMpgzvttPG+cQ0UjlI/92FQ1T+D2Pipy4fAr4HhtRUo6Vo89vgO4GrcmPoacABwE556GPyHbBzwG2ARXsD4GUkHm9lrGTJ3TY4t+blDko7Ca3r1ykwKIqk9/uN+tpn9vRD6pWjqdaiuvfZaunbt6gHwN9zgA89HH4U2bWotc+lSL7vz97/Dc89VjIMlOP54uPhi6NvX2/7whz+wYUOUe6sPkrkWNSLd4KqEtkBmcp+lVMzLqmrf1Pt2+FyujZB0NnA2wI477pi999GjoW1bT/Kw+eYbG0qpYmX3vuGvjzZ8nfjWrVs3eJ/FSpyLeqVe7sOa3IO9e8Obb7qztrrU53ENFI5SP/eNxqCSNAGYgacgPx0ow8NB/ogXYD0ZWAZcbmZ/To7ZC7gVDx9ZDfwVGJQaREtqjj8N/XnSzcNA84x+BVwMnANshxfYvcHMalQfJenrqx+OJDxwqZl9ntMJqDi+L26QDTKzoWmbPgJelfTV010zG5Rx+FWSjgaOJc1wktQSeAK4HPgunq2wlBkI3JQtw6KZLU3O4SCgoAZVU+ekk05y19Gpp3q41HXXwQEH1Ph4M5g1C956C95+28vvvP22e6ZS7LornHwynHaaTztJsXLlStq0aUOLekx80cRZiM9ZrAol+zSvZr8VwJYZbVsCy2uwb+p9tn0xsz8BfwLYb7/9suvbq1c16hWWRx/1v6pTTjmlwJoUnjgX9Uq93Ic1uQdbtYI+fWqmZFwDhaPUz31jGy2cjBtPfYEfALcBRwJj8LpQPwPul/QyXmB3DB4u1wfYBi/W+iAe5wueeOCsZJmMZ3c7mY3To18DnJBsew/4FnCfpMVm9kI2JRPjj1zmYeXASfiP0d3ZNppZdYOUdsDijLZrgdlm9rCk79ZdxaJnb+CCKraPw43LoED86dZb+d+33uLrTz6JwF1Hl166yX5lZZ5IYu5c+OADT3qWvqzIqGLUogV85zue8KxfP/jmNysip1avXk2rVq1YtmwZu+66KzfddBOnN0CtqyZKPn9n3gdaSNrNzD5I2noB07LsOy3ZNiJtv/m1DvdrBNx///1A6Q5iciHORb3SKO7DuAYKR6mf+8ZmUE0zsyEAkm7BQ+nWm9ntSdvVeCjcAcDWuFv5VDNbnmw/GxgvqbuZzQQGAzea2Yhk+yCgX6qzZJLlBcARaSFyH0nqgxtYWQ0q4ONafr4jJWUWssxMnNADmJWkbE/peR5wY9o+Pc1sEx0kDQB2AP6c1nYEcCKekaep0Akor2K74Smba0QxpoptlGzYgL31NosfeIJbH3qWQbYNzzU7gkWnXcDCrx3BwqvEwoUwf75PPP7kEw/ZS/c4ZdKlixtNffr46wEHwJaZz1CBUaNGcdFFFzF+/Hi6du1Kz5492X///evvszZxzOyVPMpaKWkkcLWkM/Hfsh/i/wOZPAIMk/QY8BkeDj0sX7oUI2PH1jRRYukT56L+aCz3YVwDhaPUz31jM6gmp96YZ3L4Ak+1m2pbL2kxXmi3OzA5ZUwl/BMfSPeUtACvOfRG2vHlkt7E5yMB9MSTOYxJQvVStARmV6akmZ1Wu4/HqySxwmnsiacUrYrH8PC01L6bZK+TdDw+R+onZjYnaeuI/4idZGaZXqtSZh7upfqgku174/VwakrRpIptCNavh9WrN17WrNm0LXNZvGgNsz/4jJblbVm7ohmLv1zH/C/WUL52M1asbsnSNZuxgj6U8y3Ao1n7leNX6LDK9enUySchd+8OPXpsvNS0dunWW2/NrrvuSufOnQGYMGECzZptchsF9UB186lqMIcK4Dw8+uALfA7GuWY2TdKOeDKenmb2sZmNkXQjMJ6KhxpX1ukDFDktW7YstApFQ5yLeqfo78O4BgpHqZ/7xmZQrc9Yt0ramlERf5+N6sLiUqRGVMewqdcps998sCrxnH2FpK0y9nkfOFBSSzNbDxXztLLsm5JxPO6VOi0jw9+euFH5kioyRjVLjtkA7GFm79XpExUnLwC/kzTazFanb5DUGk/0UZn3cSMaIlXs+rWtufPUF2nTsi1r1q1l3qLP2ab1NrRu2ZY169bx6eLP2KZVB7Zo0ZpV69Yyf/kXbLVZR1o2a82yNev4YsUi2rTsSDPasHLtehauWswWzTsjWrFi3TqWrl3KZs06U26tWLV+HSvXL0V0ocxas2bDWlaXLae8vCtrytuwasMGylmG244tgJV4dG1qfQU+ZXBbfOpLar0r/myiIz7VsSt+qS3Dw+Y74bfsMlpoAR077Einri3ZaqultG+/gq99bXs6doTWrZew5Zar2Guv7dhhB18vL1/tySuAxYsXs2bNmq/WFy1axLp169h2222/Wl+/fj1dunQBYNKkSXTv3p3evXszatSor4yoMKYalOrmU1U3hypldB2bpf1jPFIhve0WPHS8STBs2DAA+vfvX1A9ioE4F/VLY7gP4xooHKV+7hubQZUL04EzJLVL81IdgI/iZiTJBz4D9sfnzKQSUPTBXdApGWuBncxsXINqXzlPAL8CfkkNfowk/RhPtvGzLHWy3gb2ymi7Bg+XHIAnuihFrsXnxX0g6Q7g3aR9dzxhhYDraiir3lPFri9byC8fXQAchedlORx4EvheIuJwYGSy/jY+rXBUosLrwE/w+qipS/2HwCvJ+ovJcf/CHXPP4f+H/wG6AU8BPwamJuo/CpxKKybRlu1YxcOs5BJ2YzQd2IpZDOcLbucw7qMLW/A6o5jDcM7mCrYBxjd/hTfLXuHhXS6k1ZYteGjR67w49x/M/OOL2J47ccVd1/Lkk4/z2QKPyLz00usYOnQoq1e73Xv++Vdx/fUPsnSp5xMZMOByRowYwYIFCwC4+OKLGTNmDPPmzQNg8ODBvP7668yaNQuAc889l8mTJzNjxgwABg0axOeff857772HovBpocicT9USL/VwLh4KFNSBUh/E5EKciyCugcJR6ude1ecwKA6SRA9TzWxgWttU4C+peVVJ2+e4UfAgnpHvTeAK3Ei4L5FxfLLvpcBlwJl46OB5eAbB/6QSSki6Bv9jvxgPyWuLj0TLk+wzmxT2lfQIZA/9S+ZIDTSzYRntw6hhHaokC91FwJ3AX3DvWRc8XPDnwI5mNlfST3DP1EVsnKZ9XWVhNJXpUWpI2glPnd4PN6DAn5L/DTgvveZXNXIOBJ4ys23T2s4CTs5MSiLpQ2CAmY1J1lvioYK7ZPaXnioW6I1nt0ynOZ7psjZtLfDiqSGv+rbGoGNDyGvV0IWwE8/6mWZ2VEP2WxlJmPicWhzaEffCFTuNQc/GoCPUn547mVmnepDbKKjiHmws10VDEudkU/JxTiq/B82sUSzABLxobXrbVGBIRtvnuMEC7n15GU+ZvhifidE+bd8WeFr1JclyBz7InpC2j3BvUMpbtQB/3H942j4GnJCh64RKPscKoH+W9mHAqCzt+yXyd85oPx53NyzGww/n4W6LAzP0sCxLVt2q0qNUF9zQ/ibumdy6Fsfvi4dqprddCDyfZd93gB+nrXdIvo8O1fQxMUvbn+rQFvJqeGxj0LFQ8up7wV2kKxu633r4HA1+7kpVz8agY2PSs1SWON9xTorhnDSakD/LkoLczPbM0rZt2vspwKFVyNwAnJ8sle1juKF1RxX7KGN9E13TtrWtpL1/Je0TqfCgpLc/jU/krJSq9KjimKx6lCrmyTjeroOIQqWKfb4ObSEvt2OLXcdCyas3JLXFs7DOLbAqQRAEQVAtjSbkLwiKFUlP4p6mVKrY0cABtmmWvyNxD+Ah+Dy9p4G3zKzKpBSSJprZfnnUN+QVmcymJi9D9nI2TkohoDWe8eRkMyu4gVcX6vPc5ZPGoGdj0BEaj56lQpzvTYlzsin1fU4ajYcqCIqY+k4V+6c86xvyik9mU5OXzsCM9XI8tPpNK41yDvV57vJJY9CzMegIjUfPUiHO96bEOdmUej0n4aEKgiAIgiAIgiCoJeGhCoIgCApOUuC3MxmFyc1semE0CoIgCIKaEQZVEARBUDAk7Qs8REVNvFRR9tRrtYV9gyAIgqCQNGhdkSAIgiDI4EHgEzxZyx54ge2eaa9FiaSBkiZKWpvU70vfdqikdyWtkjQ+qXuX2iZJN0j6MlluVD1Vla5MR0k7SzJJK9KW3xZCx6S/zSU9IGmOpOWSJkk6Km17wc9nVToW2/lsClR1/zVVqruPmiqSHpX0maRlkt6XdGZ99BMeqiAISgpJuwOn4oPzdsByPGX9n81sRiF1C7KyG14YfWahFcmRT/Ei8v3wJDMASOoIjMSzfj4P/A4vrL5/ssvZwLF42QTD6xrOAv7YUDqmsVVSPiSThtQRfCwyFzgIL1T/PWCEpL3w2o3FcD6r0jFFsZzPpkB113ZTpNJr1MxmF1KxAnM98HMzWyvpG8AESZPM7N/57CQ8VEEQlAySfgq8AewAvAo8DrwCbA/8U9KJeeijraR2dZTRQ9L/STotee1RV70aMa/j3qhGhZmNNLNn8cye6RwHTDOzp8xsDTAE6JX8kQP8DPiDmc0zs0+APwD9G1jH6mgwHQHMbKWZDTGz2WZWbmajgI+A3hTJ+axGx+po0PPZFKjDtV2y1PEaLVnMbJqZrU2tJku3fPcTHqogKDIknY3/2e4BtMWf0E4DHjKz+3KUtXP6k6nEoDgBn5/yrJk9Wksde5DhATKz92sjK4vstngG0uW1OPw64Ggz+0cWud8GHsOfbtdUl8vN7NrkfYfk+CMAkzQeOMnMvshB3o5J/72AD4GlwJZAN0nvAD8xs49rKi+RmffvOJ/XYA34OXC/pF2BqcD69I1m9mqe+6tv9gDeSa2Y2UpJHybt72ZuT97v0aAaVjBHUspjcrGZLUzaC6qjpC5AD/yaO5ciPJ8ZOqYoyvMZNE0quUabJJLuxv/TWgGT8HqheSU8VEFQREi6ARgE3I/PKfk68N1kfZCk63MUOTlN9i+AW4GJwFvA7yUNyFG/HSW9AfwXuBoPZbkKmCTpn4nBkIu8y9Ped5A0BlgGLJH0kqTOucgDOgH/qWTbJKBjjvIuTXt/E248dgW2AxYCN+Yo7yHgNaCjme1lZt8xs73x7Hav4YWfcyXf33G+r8Hq2A0viH0rPhCdkLaMz3NfDUFb3FBOZyn+8CHb9qVA2waeU7MQ+CawE/70uh3+sCBFwXSU1DLR5WEzezeLLil9CnY+s+hYtOczaJpkuUabNGZ2Hn5fHoiHEK+t+ojcCQ9VEBQXZwB7m9lnGe3/SYyNycBlOchL/8MeABxvZm8ASJqAD+DvykFeyiA41MxWfdWJ1Aa4IpF3SA7yLgWuTd6nGywAt+MGS/8c5I0FHpT0GzP7ME2/brgBODYHWbDx+TsM6G1mCxKZA0gzZmpIX+AoM1uX3pg8db8CWJSjvEwd8/Ed5/sarI57gZfxOPf5eDhGY2YF7nVMZ0v82s62fUtghTVgUUgzW4Eb3QDzJQ0EPpO0pZktK5SOkpoBfwbWUVHwuajOZzYdi/V8Bk2TSu6jJo+ZlQGvSzoF93wPzaf88FAFQXFR3RPLXJ9opv9hdwX+9dUGs7fwuUa50Bf4TboxlchaiRtUfXOUl2mwnGdm881sPm4cHJ6jvDOS1+mSVkr6VFIqXE1p22uKJRm6mifHp8frL2LTgV51zAW+X8m27+ETiXMl399xvq/B6tgBuDKJc19oZl+mL3nuqyGYhod0Al89bOhGRdjNRtuT94UOyUldQ6nvtsF1TLw1DwBd8IcCqdDPojmfVeiYScHPZ9A0yeEabcq0IOZQBUHJ8wAwTtIf8Dj71BybXsAFQK7zV7aQ9Ejyvjn+I/s5gKSt8CdYuZAyCEZm2VYbg8CSP4Bm5MFgMbPFwE8ltcZjx1Pzf97PNAJrSFtgAxU1kfahIqRwN2BBjvIGAk9LuoCNv9998DkVx9dCx3x/x/m+BqtjLB4m9WF1OxYTklrg/6HNgeaStsCvlWeAmyQdD7yAP2iYnBZ28whwgaTR+DV1IXBHA+vYG1gCfABsjT+pnWBmqbC0BtMxjXvw5CSHmdnqtPaiOZ+V6SipL8V3Pkuayq7tSrIsNiUqu4+aJMm0gUOAUcBq/MHtT4GT8t5XeJyDoLiQdA5wGpsmBHjEzO7NUdaVGU3DUwMRST/AkyDU+IdF0qHA03jygKwGgZmNy0FeORsXcf2mmf0n2dYDGGNmu9ZUXr5RWr2bhIWJNw5JfYBdzezJHGV2wDOXpb7f5cB04Jm0Sey5yMvrd5wcl7drsAZ9/QK4HHgYmMKmSSmyGe8FR9IQIPPcX2VmQyQdBtyJz6l5E+ifShySPEC4AU8DDj437dL6CP+qTEfgPTyBS2d8zuJY4BIzSxniDaZj0t9OwGx8XkP6gPgcM3usGM5nVToC5RTR+WwKVHX/Nbw2xUF191FBlCowkjoBf8EfCDYD5gBD6yG5UhhUQRDkRhaDIDXYztkgqA+DpSGQNBHoV5uQNEnd8TpZewKtgXl4AolhTTE8IzGqK8PMrHmDKRMEQRAEtSAMqiAoMuSFQbvhYS2rJe2Nu6nfMbOX8yR/e2BGZnKEYGPSQukyOQEPIVhjZqflIO9Y4FHgH7hX7iA8jXo3YFvgcDObVRedk37q9B3X9zUYBEEQBKVEJKUIgiJC0g9xl/TzwHuSjgLG4Kk+h0sanKO83SW9I2mFpMskfQ+v3fIGMEvSnrXQsbukqyQ9LelFSfdJOitJ05oXJE2UtE2+5NWBH+FhRjPxOT6ppQz/nnKd93MjcIyZ9TOzI4BjgE5m9m089j3neRX5/o7zfQ0GQRAEQakTHqogKCIkTcVj70eneTMONrOJkvYFnjKz7jnI+zs+MC7H05APxNNUNwduwUPqKss6l01eSqe8eFjy7QHKN5J2w+duLAYuNLNPkvbPgF65FPVNjlsCbJ2aO5FMrP7MzDoliTQ+N7OcEnHUw3ec12uwBv1dUNV2M7slX30FQRAEQX0QBlUQFBGSlppZ++R9M2CtmbXMtr2G8r7Ei9k2B1YB7VOZfyRtCXxgZl1ykPc+PsF1fLJ+BHC+mR0l6SLgu2Z2dA7yVuPzh15m43TcFwF/xGu1XFVTefWFpJ/gk/nvA27DsxnuUwuD6mXgr2Z2e7J+EfB9MztY0ua4cZWTZ64evuO8XoM16O+jjKaWePr31cAXhUxKEgRBEAQ1IUL+gqC4+CQxUgCOBtYkXgEk9QJyGsDjD00sSSW7MiON6gqgVY7yOgMT0tbHAfsl7+/Gw8JyYW9gDdATuN/MrkoMqBXATcVgTAEkiTG+iddM+i9ecb02DADOk7RM0jLgF1QUXuyBZ//KlXx/x/m+BqvEzHbJWHYAtgNexdNLB0EQBEFRE3WogqC4GAI8L2kxMAMYBIyV9ApurAzJUd6HknY0s4/NbOuMbXsDn+Qo79/Ar/DQMoDBVBSoLGPjVK3VYmYfAP0SD9A4SSkPUNG5zs1sGTBY0j54qOOyWsh4V1JP4Bu4R+7dVN0UM5sCXFIL1fL9HQ8hv9dgzpjZfEmXAyPwOkRBEARBULREyF8QFBmStsM9IRPNrDypwdILeNvMXs1R1u7AJ4kxkLntMGArM/tLDvK+ATyHh2SBeyuONbOpkvYCTjWz2hgFqfC0q/FscjsB3XINqWuK5Ps7To7L2zVYWyT1BsbnOqcsCIIgCBqaMKiCIMgJSc3J4mHJo/xewMHAvWa2Jp+ymxrJd3W5mV1djPISmcdlNuEG+wBgVi5z8oIgCIoVScOAjrkkCWoMfWXpexReU7J/Q/ddSGIOVRA0EiQ1l3RFoeWZWZmZTTOzqWa2QVK+PRZ3mNntYUzlhRbAlUUsD7yKffoyAvgNMAk4M899NUokDUsGKSXVV5a+RyUDwSBodEjqJOluSbMlrZU0X9LLkg5PdhkEnFJIHStD0gRJdzZwn+MkWZblhYbUI1/EHKogaDykBrP58g7kS96386BLfcoraSQ9WMXmnH/j8y2vOsysyT/Yk9QJzyL5Pdw7twSYCvzezMbiAzFVKqCASJoATDWzgdXtm6f+JgMvmtmlWbadjc/vvBo4Dvg6sBb4F3CZmU1tCB2DJsvTQGvg53jtws74fNsOAGa2tHCqFSX7ApcDmf85qwqgS50JgyoIiojGPjgOCsJJwAPAoizbmheBvKB6YiBWcyYDe2U2SmoPXIMXzz4Yzzr6Nm6IXg28JKmnmWW7roOgTkjaCk/ac7iZvZw0z8GvwdQ+w0gLw0seRszADYjT8cRO1+AlQ24BTsaTH11uZn9OkzOBjIcY1YX4SToSN172xJM+vQ0MNrMZybEHAQdJGpAcsouZzZYk4GLgHDz76kzgBjN7NJHbGr/XTgBWUpGwqrrz1Q3YCnjFzD6vyTHFTgyogqC4iMFxkCtTgL+Z2V8zN0jaAvh/BZaXFUlHAffgBZKXZmxrD7wDnG1mf89Hf8VKDMRyG4jhBlU2b9gVeO2y32eUDkDSqcBS3Pv9fA37CYJcWJEsP5D0eg4h6yfj92xf4Ad4ltsjgTF4SZKfAfdLetnMPq2Dfm0S2ZPxUhq/wbO59sQ94D2Ad4FfJ/svSF6vwe/RAcB7wLeA+yQtNrMXgJuBw4Hj8YyyVwL/C4ysRp/e+O/WpDp8pqIiDKogKC4a5eA4KCjDqHw+7Ho8lKyQ8ipjIF5rbBPvi5ktlXQD/kdf0gYVMRDLdSA2GfiapC1TmS0l9QB+Cfw005hKaIdf04tz+uRBUEOS+cT98eLvZ0uaBPwDeMrM3qzi0GlmNgRA0i34f/L6tOLvVwOXAgfgc0xrq9/T6euSTscfuvQxs9clrQNWpXuLJLUBLgCOMLPXkuaPJPUBBiSlNH4OnGFmf0uTO68GKvXGH+p+4c9evuJFM/tRrT5kgWnysetBUGQMo3EOjoMCYWZ3mdmzlWwry7U4cr7lVcHewEtVbB+Hp2ovaZIsmf3xyepLJL0h6WZJfas5dJqZDUlqud0CLCQZiJnZTDzMTfhArC76PZ0sH5jZZNwjtgs+EFsKfDUQS5aytIHYmWY2xsw+MrPH8cHmAElt8YHYJWb2t2Ru0+lAeQ1Umpy87pnWdgvwauagMY3b8YLcb1QmVNLfJO1Z2fYgqI7k+tsOOAZ4Eb/3/iXp11UclrqeMU+7/QX+IDTVth5/ENC5LrpJ6ibpcUkfyovKz8fHBjtWcVhPYAtgjKQVqQU4F+iWLJuRdl+Z2Yp0/augNx7qvE/Gcl5OH6yICA9VEBQRZnZXFdvKyNEAyre8Ssj3ZPminHwf5J1OVD2ANpI5RKWOmT2dZLY6EPfkHAlcKOlyM7uuksM2GohJ2mQgJi/OXOeBGPA73BPWCR+E5TIQS6/N0hKYTSUDMUnVDsTM7FNJC/F5VP+U1A/oRyXGd/LU/zvAd5LfvMr4Bu5pC4Jak3iYxybL1ZLuB4ZIurmSQ9ZniqikLf3BaDmb/k+2rEa153FP8DnJ6wZgOn4fVkaqz2OAjzO2rQcyC8nnwr7ANcnDn5IgPFRBUOTkOy15PaQ5f6XI5QXFyTzcS1UZe+N//E0CM1tjZmPN7GozOwCf+zhEUmUDnoYciHXCB2J98YHQBmo+ENsnbdkDOCKLDrkyBdhTUgvgVuBOM5ueuZOkW4GfAoeY2ayMbT0lvS7pHUnnA4tSNfUk7ZakcJ8o6TVJ2ybtX5P0nKRJkqZJ2kXSWcn6FEnP1PFzBaXHdNx5sUUeZS7As4GmU6k3X1IHYHfgOjN7ycxm4GGw6U6VdWw6r3o6niVzJzObmbHMwedFrgf2T+urDRt7j7PpswuwDSU0fwrCQxUEjYGiTktuZt8tZnlB0fIC8DtJo7MkEWiNh6w1ynokeaIhB2Kzs+2cNhAbYGbjk7b/IbeB2Lgscr+kYiA2K2lLDcQ+rMHnmJzoPQD3Yg7J0sftwE+Ag83s3YxtLfBUzWea2VRJI/AkKEjaHE/ucbqZfSzpTDxM8XfAaOBXZjY+SZyyBT4XsHcyh2arGugelCDJvfIUfl1NBpbjcxkvAV42s2UZc4XqwjjgNkk/wOcnngN8jUruYzxkcCFwlqS5wPbATfiDkRSzgT6SdsbndC4ys+WJZ+3mJMnMq0Bb/L4tN7M/SXoAuEHSAuBTPDlMdQmveievn6ceVqSxMPVgo7ERBlUQBEFQCK7FkxZ8IOkOKsKtdscHqQIqC3crGWIgltNALMVkPOlGL+DCLFki7wJOBY4FFqcN2lYkczyOAyZaRV2q96hIWHEsfg3+NTnvmwFPAv8HvJUyLJPEKeV46ucbJA0zs5rMHQlKkxV4vbNBQHdgc9zD/jieoCWfPIh78FNlUe4GngE6ZtvZzMolnQgMxevbzQQuxOcwpbgZeBh/GNIKnyc5G/gtPt/qIjwr6zJ8PuKNyXEX4YlrnsGzjt6RrFdFyqCakakq7rlaUs3xRYl8DlwQBMWKpDIzy1uK83zLC4LaImkn/E+6HxVhYAb8DTjPzGYXSLUGI/GIXIlnvEsfiD2PzzFYpOxp0zPTn08F/pLKGJa0fZ7IuDNZb4ln7Dsx2eVufC5UuuzMvg7BB2Ld2XggNtDMhiUZ9h7GjZtWbJw2fSAVE9i/GoiZ2djEI3UPbtykBmJ98SfU/as5Z72BicBbwP6WMZDJmLeVzlVmNkTSNcAcM7sv2X808AczeznZNsPMHsuQeQ0w18zuzWjfEjfCLgWuqCIxRhAEJUwYVEFQ5IRBFZQ6krbGB+wCPjCzSG8d1BvJnKmdzWyQpEPxBAJdzGyBpIG4h/D0JNnHXmY2RdIvgR5m9ktJzfAJ+dskWRaRNBR4M9MQC4KgaRAGVRAUOWFQBUEQ5A9JHfG01i3wEKiDzGzHZFsb4FE87G8NMM7MLpDUDg/92xmf/zUQOAsPY1yFh3sNrCaTYBAEJUoYVEFQ5EgqN7O8ZeTMt7wgCIIgCIKmTAyqgqD4ibTkQRAEQRAERUp4qIIgCIIgCIIgCGpJeKiCIAiCIAiCIAhqSRhUQRAEQRAEQRAEtSQMqiAIgiAIgiAIgloSBlUQBEEQBEEQBEEtCYMqCILiQxqGNGqT9w3Zb37lTkCyZNk/adsD6Z9IU5GeR2qdoUdq/xPyrk8QBEEQBHkjDKogCGrGxoP89UhfII1HGoDUsh57HgScknepbuTc2SB9OQ8BXYF/I20BjAAGYLYn8D7QP0OPrvWkRxAEQRAEeSQMqiAIcuElfKC/M3AE8DxwFfAaUpt66dFsKWZL6kV2w/a1CrPPMVsPHAu8hNmkZNu7QKcMPT6vJz2CIAiCIMgjYVAFQZALaxOj4BPM/ovZLcDBwP8AlwAgCekSpA+RViNNQdrY6+P7XIj0AdJapHlI12ftMTMMzz1LdyNdh7Qw8ZTdjNQsbZ8jkV5DWoy0COlvSLtvJBMOAgaked12ztLX5ki3Ic1HWoP0L6TvZOhXvT6bsjswJW19L2B6FfsHQRAEQVCkhEEVBEHdMJsKjAGOT1quAX4ODAB6AtcD9yIdnXbUdcBvk217AD8C5ubQ68nABuAAYCAwGDgxbXsb4DagD27wLQWeR9os2T4IeIOKMLyulfR/YyL3DGBf3Agag5QZjledPpl8CnwdAGlv4DDgr1XsHwRBEARBkdKi0AoEQVASTAcOS8L+LgCOwOy1ZNtHSH1wA+sFpLbA+cBgzB5M9pmJGzg178/siuT9+0hnAYcCTwBg9vRGe0unA8twA+t1zJYirSMVhlexX/oxbYBzgTMxeyFp+wVwSPJZflNjfTblz8BwpCmJXj/GbG3NP34QBEEQBMVCGFRBEOQDAYZ7pLbAvTiWtr0lMDt53xPYHHi5Dv1Nzlj/FOhcoY26Ab8D+uJzk5oly4459NEN1/sfX7WYlSG9gX+GmuuTidkq4JgcdAmCIAiCoEgJgyoIgnzQE5hFRRjxMcDHGfusT15F3VmfsW5sHML8PPAJcE7yugH3om1GzUnpaVm2ZbZVp08QBEEQBCVK/OEHQVA3pD2BI4G/4EbLWmAnzGZmLHOSI1L7HFpP+nTAkz5ch9lLmM0A2rHpA6R1QPMqJM1M9qlIQiE1B75FJJAIgiAIgiAhPFRBEOTC5kjb4g9jOuFG0a+BfwM3Y7YS6WbgZiQBrwJtgf2Bcsz+hNlypNuB65HWJvt0AHpjdk8edFwMLATOQpoLbA/chHup0pkN9EHaGVgBLNpoq3+We4DfIy0EPsLnfnUB7s6DnkEQBEEQlABhUAVBkAuHAZ8BZcASYCpeh+pezNYl+/wWmA9cBNyDJ134L54xL8VluOHzW2CHZP9H8qKhWTnSicDQRL+ZwIXA0xl73gw8jHubWgG7ZJF2afL6ELAVMAk4ErPP8qJrEARBEASNHpllmx4QBEEQ5A1pAjAVs4E5HmfAjzD7S32oFQRBEARB3Yk5VEEQBA3D2UgrkL5Z7Z7SH5FWNIBOQRAEQRDUkfBQBUEQ1DfS9nhYIcDcamtOSZ2BLZO1zzBbWY/aBUEQBEFQB8KgCoIgCIIgCIIgqCUR8hcEQRAEQRAEQVBLwqAKgiAIgiAIgiCoJWFQBUEQBEEQBEEQ1JIwqIIgCIIgCIIgCGpJGFRBEARBEARBEAS1JAyqIAiCIAiCIAiCWhIGVRAEQRAEQRAEQS35/9cTHs3BtKDaAAAAAElFTkSuQmCC\n",
|
|
462
|
+
"text/plain": [
|
|
463
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
464
|
+
]
|
|
465
|
+
},
|
|
466
|
+
"metadata": {
|
|
467
|
+
"needs_background": "light"
|
|
468
|
+
},
|
|
469
|
+
"output_type": "display_data"
|
|
470
|
+
},
|
|
471
|
+
{
|
|
472
|
+
"data": {
|
|
473
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAALECAYAAAAfGaoaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeZyN9ffA3x+Mfd9aDSkUFUV7MmWLooWiKPQrWlQqLdoofaX1+22TJCkkLUooe0RUKFkqihqylKXsDDPn98e5Y65xZ+bOzL33uct5v17Pa+59ns/zPOd+5nPPPc8553M+TkQwDMMwDMOIZYp4LYBhGIZhGEZhMYPGMAzDMIyYxwwawzAMwzBiHjNoDMMwDMOIecygMQzDMAwj5jGDxjAMwzCMmMcMGsMwDMMwYh4zaAzDMAzDiHnMoDE8xTk3wDn3Wz7PGemcmxEumQzDMIzYwwyaKMf3gy8BtpMCtG3rnFvinNvvnPvDOXevFzJ7TQ795b/94WuXo2Hka9fV731l59zTzrmfnHN7nHP/+Pr6P865GtnOvd85t8DX5l/n3Dzn3KW5yHuJcy49v4adYRiGkUUxrwUwguIP4Lxs+zb7v3HONQEmAC8A1wHnAEOdc3tEZGgkhIwijvF7fTbaL2cD63z70vNzMZ/BMg84CAwAfgT2AScCVwB9gbv9TrkEGAEsBPYCtwCTnHPNROTrbNc+CngHmA4cYaQahmEYwWEGTRhxzhUDdgE3isgHzrnywFggCegkIv8Eeal0EdmUR5t7gYUi8pDv/c/OuQbAg0DQBo1zbjawGtgI9ASKA68BjwGPAnegnr1hIvKI33lJwEDgBqAa8BvwlIi859emBPA/4HogA3gf+DeADHf67lMLNUJGAs+IyMFgPoN/Xznntvlebg6iD3NiCNoPp4nIDr/9q4AvnHMu2/3bZDu/r3OuNXA1cMigcc4VAcag/VsSM2gMwzAKjIWcwkt9oATwgy9E9A36Q99GRP5xznX3hTZq5XGd451zf/q2L5xz5wdocwEwJdu+KUAt59zxAPm4X0fU6LoQNZQeBiYBZYGmqEfiYeec/w/3INQT0Qc4FRgNjHbONfdrMxjoANyIepx2o4bLIZxzA3zX7wecgno+egH9cxI2H58r3zjnKgNtgVeyGTOHkDxWePUZLuWALdkOPQYI8GwIRDUMw0hozKAJL2cAO1FPw1zgBRG5W0QyQx7bgZXAgVyu8S1qALRFQ0n/AHOdcy2ztTsGyO6B2OR3LNj7AfwuIg+KyCoRGQH8BNQQkQd8+94BlgLNAZxzpYG7gMdE5ENfm0FoqOcRX5sywG3AIyIyQUR+EZG+qJcDv+s8APQSkU9E5HcR+Rz1DN2Zi7zBfq5ApDjndmXf/I6fhH5PfvY/yTk336/9ijzu8TBQERjld/7FwK3ADSKSUQC5DcMwDD8s5BRezgCKAhNRb8RH/gdF5BPgk9wuICJfZNs11zl3HHA/mncRDBLs/Xz8mO39JgIbS9V9r09CQzJfZWszB/W0gOablADmZ2szD7jc97oBUAr42Dnn7/UoCpR0zlUTkc3Zzs/P5wrEt0C3APt/9f11AY4BdEI/z+1oKCkgzrnbUYOmvYj86dtXFfVg3VSIMJhhGIbhhxk04eUM1APRDf3h7ouGGQrLAo78Ed0IHJ1t31G+v/n90czu6ZAc9mX38GUPvTi/fS6HNv5kXu8a/Dw3fmwLsK+w7BWRI2YX+aXF/Irm+9THz2gSkXW+djnK5JzrCzyBGjP+s6lOBY4FJvrdp4ie4g6iOVfvYRiGYQSNhZzChC9RtCHwmogsRZNh+zjnqud6YnCcQdaMnUy+Blpn23cpkJrpGQgjvwH7gWbZ9l8ErPBrk4bm+vjjnw+0Ap09VFtEfguw5Wt2UigQkW3AF8CdzrkKwZ7nnHsSzftpm82YAZ39dBrQyG8biv5PGwGTCym2YRhGwmEemvBRG6gAfO97/wLQG80puRvAOXcV8DTQXETWB7qIc+5FNCH3D6A8mnjbEp0u7M9/gfnOuf+guRpno3kn94TsE+WAiOxxzr0MDHTObQaWoF6WK3yyIiK7nXNDgaecc3+hOS//B5wM/O1rs8s5NwgY5PNcTEfH6GnAGSLyYKD7B9OPheR21GD8wZe0vASdvVYPDZcdZmg55/6HJjJfB6x0zmV6zvaKyHYR2Q0sz3bO30CaiBy23zAMwwgOM2jCxxlomGY5gIhsd849D/R3zr0oIqmowVMPnVGUE8cA76JTobejybgtRGSWfyMRWeicuxKdbdQXDTM94l+DxjnXHXgbOEFE/gjBZ/TnETQ08z+ypm13FZGZfm0eQqcnZybHjkOnLF/j9zkGOuc2oMbY82gdl1Xo1O2cCKYfC4yIrHXOnYHmLfVDk7wBfgemAi9lOyWzJk32vJ53gO7hkNEwDCPRcXnMODXiCF8YpAPQMNiaLoZhGIYRC1gOTWJxOdDbjBnDMAwj3jAPjWEYhmEYMY95aAzDMAzDiHnMoDEMwzAMI+Yxg8YwDMMwjJgnbqdtV61aVWrVquW1GEYAVq5cCUC9evU8liS68bKfFi9evEVEqkX8xhHC9EN0YrohOEw3BCZuDZpatWqxaNEir8UwArBliy46XbVqVY8liW687CfnXGrEbxpBTD9EJ6YbgsN0Q2Di1qAxohdTVsFh/WQkGjbmg8P6KTCWQ2NEnPHjxzN+/HivxYh6rJ+MRMPGfHBYPwXGDJo8+Oyzz+jcubPXYsQVL7/8Mi+//LLXYkQ91k/RQa1atZgxI/v6orB06VLOP//8AGcYBcXGfHBYPwXGQk550L59ex5++GGWLl3K6aef7rU4ccGECRO8FiEmsH6Kbk4//XQqVqzIxIkTadeundfixAU25oPD+ikw5qEJguuuu45hw4Z5LUbcUKFCBSpUqOC1GFGP9VP006VLF9544w2vxYgbbMwHh/VTYMyg8TF48GBOPPFEypUrR/369fnkk6yFklNSUpg8ebKH0sUX48aNY9y4cV6LEfUUuJ+eegp69w69QHFEair88Ufw7RcuXEj9+vWpVKkSPXr0YN++fYDqhpkzZ7J///7wCJpgmG4IDuunwJhB4+PEE09k7ty5bN++nf79+9O1a1c2btwIwCmnnMIff/zBjh07PJYyPnj99dd5/fXXvRYj6gm6n0RgwQL9C/DPP7BtW9Z74wi2boU6daBXL1i7Nu/2Y8aMYerUqaxevZpVq1bx1FNPAXDccceRlJR0qC6IUThMNwSH9VMOiEhcbo0bN5bC0LBhQ/n0009FRCQtLU0ASU1NLdQ1DWX37t2ye/dur8WIevLsp927Rd58U+S000RAZOZM3Z+RUeh7A4skCr7H4dpOO62x3H67SPHiIklJIv/5T859UbNmTXn99dcPvZ88ebLUrl370Ptjjz1W5syZE1S/GrljuiE4vOynaNYN5qHx8e6779KoUSMqVqxIxYoVWb58+aHiRTt37gSgYsWKHkoYP5QuXZrSpUt7LUbUk2M/7dgBDz4Ixx8Pt9wCRYrA8OFw3nl63LnIChqDFC8Or70Gv/0G//d/ULu27t+9G9avP7J9jRo1Dr2uWbMmGzZsOPR+586dphtChOmG4LB+CowZNEBqaiq33HILr776Klu3buXff//l1FNPRY1R+Pnnn6lVqxbly5f3WNL4YPTo0YwePdprMcKPCCxdCpMmwZIlGueQ4MNAh/WTSNYvbcmS8N570Lw5zJkDP/ygv8qlSoX+M8Q5NWrA669DZmWGIUPgxBPhrrvAz2Zh3bp1h16vXbuWY489FoANGzaQlpZmpfpDRMLohkJi/RQYm7YN7N69G+cc1arp8hRvv/02y5cvP3R8zpw5tGnTxivx4o7hw4cD0LVrV48lCSOpqWpwrF59+P6hQzVxY/VqTd6tUQOSk/VvjRrqKihZEvD1U0YGXffuhVdege3b9bzixWHlSrAntJDTsaN27ZAh8Oab+q9KT4fXXnuNyy+/nNKlSzNo0CA6deoEwOzZs7nkkksoUaKEx5LHBwmhG0KA9VNgzKAB6tevz3333cd5551HkSJFuPHGG7ngggsOHR87dqxZwyFk+vTpXosQWg4ehLlzYfx4OOYYePhhDQc1bqyhodNOU+/KunXQtKmes2kTTJsGGzce7rWZOBEuvxzmzmV68eKwcCH07AkNG0L//lltzZgJCyecoNG7hx9We/PVVyEpCW6//XpatWrFhg0buOKKK3j00UcBTRa+9dZbPZY6fog73RAmrJ8C4yQfLvBYokmTJhKKxecmTpzIqFGj+OCDD0IglRFXzJgBY8fChAkaTipVSkM/r7wS/DUOHNDYxrp1ul1yCRx1FEyZAo88oh6bO+9UQyiCuTHOucUi0iRiN4wwweqH336Dffvg1FP13/Tyy2pXlioFy5Yto2fPnixYsCACEhtGdBDNusEMGiPijBw5EoDu3bt7Kke+2bULvvxSPSjOQbdu8Omn0K4dXH01tG4NZcqE7HZe9lM0K61QUBD9MGoU3HgjnH46fPgh1K0bJuESmJjVDRHGdENgzKAxIk5KSgqg+QdRz9q1GhqaNAmmTtXH9aVLNYy0eTOULw9hyp/wsp+iWWmFgoLqhylToGtX2L9fc2xsmbfQElO6wUNMNwQmIgaNc64EMARoAVQGfgMeFpEvnHO1gN+B3X6nPCMiA33nOmAwcLPv2FvAg5KH4GbQGAVi1y7NialYUX+9MpPBjz8errpKPTEXXgjF4jv9LJqVVigojH748081ZL7+WmdIWQqNkUhEs26IlFYuBqwDmgFrgbbAB8650/zaVBSRgwHO7QlcCTQEBJgOrAGGhlNgI0HIyNBpz9Om6fb11/DEE9Cvn9Z1+e9/oVUrOOUUq+9iAGrbfvklPPOMzooCzdW24WEY3hIRg0ZEdgMD/HZNcs79DjQGFudxejfgBRH5E8A59wJwC2bQxCxvvvkmALfccos3Auzbp1OjDx7UaS1//qn7GzaEPn2gZUt9X6GCvvcIz/vJyJGkJPBNdOLAAWjfXvPBMw0co2DYmA8O66fAeFJYzzl3FFAXWOG3O9U596dz7m3nXFW//Q2AH/3e/+jbF+i6PZ1zi5xzizZv3hxyuY3Q4MnCasuXQ9++mvtyySW6r1gxuP12zfbcuFGL3z37LDSJDm+qLUAXG/z7r27XXKMT0mydyoJjYz44rJ8CE/GkYOdcEvAFsFpEejnnygInA0uAKsBrQDkRae1rnw40EJFffO/rAKuAIrnl0VgOjQHo1OqnntKKusWLw0UXaV7MPfdYjCAXojlOHgpCrR/S0jRK+eKLag+PG5e1nIJhxBPRrBsimtnonCsCjALSgN4AIrILyNQsfznnegMbnXPlRWQHsAvwX3OgPLArr6RgI4H56y+dPl22LKxZo1V7n30WbroJqlTxWjojDileHF54Qe3l7t3huuvgm2/MZjaMSBKxkJNvttJbwFFABxE5kEPTTEMlUxWsQBOCM2nI4aEqI8YYMmQIQ4YMCe1FRfQXpGtXXULAV6eBHj20Otr998ecMROWfjLCyhVXwPffw4gRaszs26feGyM4bMwHh/VTYCKZQ/M6cArQTkT2Zu50zp3jnKvnnCvinKsCvAzMFpHtvibvAvc6545zzh0L3AeMjKDcRoiZOHEiEydODM3FRNR4OessnZX02Wdw221a5A40e7No0dDcK8KEtJ+MiHHCCdDAl+V3553qtUlN9VamWMHGfHBYPwUmUnVoagJ/APsB/6nZvYAMYBBQHdiBTst+QEQ2+c51wDNk1aEZjtWhMf75BypV0tdNm8K2bdC7t3poypXzVrY4wKs4eW41qwK07Y56fff67b5cRGbndZ9I6YePP9ZIZ5Ei8NJLcOmlUL162G9rGGEj4XNoRCSVrBBSIMbmcq4AD/g2I5HZv18LgAwdqjVj/vhDfx0+/RQqV7aEhfggx5pVIvJHgPYLROTCCMqXLzp0gEaN4NprdaUMgNGjoUsX2LJFF09v1ChsxaYNI6GI73KnRlTy0ksvAXD33XcHd8Ly5fDQQzB7NuzeDVWr6iylIr6IaYzlxgRLvvspDsijZtUfXshUWE48UdO7vvkGvv0Wzj9f90+erAnExYvDmWfCOefAuefqUmFly3oqsmck4pgvCNZPgfGkDo2R2MycOZOZM2cGPrhtG3z0Edxyi/rrQWcs/fKLPuJOmKCrUv/nP2rYxDG59lOCkEPNKn/OcM5tcc6tcs495pzL8SHNyzpVSUkaGe3bV3NsAC67TIf43Xfr8WHDdHbUrl16fMIEePppdUquXatLh2Uei1dszAeH9VNgbHFKw3syMnS5galTYeFCfV+hAjz+ONx7r9fSJSTRECfPXrMqwPHa6KzIVLTY5jhglIg8nde1o1E/HDgAP/+sq3mDJhS/+urhbapU0VAVaLrYtGlQqpQWvi5VSo2lTz7R408+CStXqiMzU83XrKnPAgCPPaZVDfx/Ak4+Wb92oE7RZs0078eiuUYm0aAbcsJCTkZkyciAX3+FWbNg+3bVmkWK6ONo6dKqZVu1grPPjvsFII2cCVSzKjsissbv7TLn3JPA/UCeBk00kpSUZcwAvPKK2vnffQfr18PevYdP2LvoIs1/37dPj+3bp6lkmfz+u56bkaHvnYMdO7KOr1gBy5ZlHctO5npVzZvDc8/BGWeE7rMaRjgwD40RPvxX7Bs+HMaMge+/53mfVu172mnw44/a5sAB1ejGIZ5//nkA+vbtG/F7e/kU5pvZOAKoBbT1L/OQx3md0BmQZ+bV1vRD3qSlaf79k09qJLhrVxg8GI49Nnz39HLMxxKJqhvywh6BjdAgolM2Fi/WbdEiWLpUg/+lS+sCkLt3Q5cuLPj2W81/mTIly+AxY+YIFixY4LUIXpFZs6pFbsaMc64N8L2I/OWcOxl4DPgwQjLGPcWLw113wY03ai7P0KHqMQonCTzm84X1U2DMQ2MUjK1bYeZMXeixalX1j991lx4rXlxXrm7cWB/vqlXzVlYj33hYhya3mlVzgZ+A+iKy1jn3PHADUBb4CxgNDMylCvkhTD/kn507s0o8deumtSx79bJnkUTDPDRGfPH113DVVTrtYvx4fd26Nbz5phoxDRqoUWMY+SSImlVl/dr2BSw2ESEyjZndu3Wi4bvvwssva57NlVda4rDhPTZt28gfI0bAxRdDxYowd67OPQWoWxduvlkzB/MwZgYPHszgwYPDL2uMY/1kRCNlyqhzdtIk9c5cfbUmKK9Zk/e5eWFjPjisnwJjHhojeF54QQtptGwJ48ZlLT2QT5YsWRJaueIU6ycjWnFOn2Vat9ZnnFdeyapvefBgwSco2pgPDuunwFgOjRE8v/0Gb70FAwfalOo4J5rj5KHA9ENoyZzQmJ6uFReaNYOnntL5AEZ8Ec26wUJO0cC2bVrtauhQzU/Zvj3vcyLFypVaK0YETjpJpzuYMWMYhh+Z+TN79ugyDv/7H6SkwMaNXkplJBr2y+Q1v/wC7dqp9yOTpCStcV68OEycqAbOaadpGc9IrmI3dSp06qRy3H47JCeH5LIDBw4E4LHHHgvJ9eIV6ycj1ihXTucGtGsH11+v3prPPgu+KJ+N+eCwfgqMGTRe45yW/5w3D44/Xkt3rl+flVj7yiswfbq+LloU6tTRqdKvvab7/v5bp00XCaGzTQT++1+4/341pD77LGTGDMDKlStDdq14xvrJiFXat1eV1q6dPgvNnx/cLCgb88Fh/RQYy6HxAhH4/HNo2zYr8Oxf09yfAwd0qYBly3Rbvlzrm48YocdPPln9uu3bwzXXaJZeYb0499yjPuMOHeCdd3Rag5FQRHOcPBREtX6IIzZuVBWWnKyVh5OSbHp3rBPNusE8NJFm3z7o2RNGjYJPP4UrrsjZmAHVAPXr69ap05HHH3oIvvpKrzV6NJQvr/k4vQMufxMcl12WtThkKD0/hmEkFMcco38zMnQl8UqVYMgQK1NlhAf7tYokGzdqptyoUVpDvH37wl+ze3f11vz1F3zxBXTsmBUeWrNGS3pOmgT79+d+ne+/h9df19ctWsCAAWEzZh5//HEez1zS18gR6ycjnmjQQCdJtmqlhcYDYWM+OKyfAmMemkixeLF6Y/75Bz76SMM5oSQpCS69VLdMfv5Z81/efVc9LldeqWGpVq0Or1f+wQdqGFWvrgu3hDnEtG7durBeP16wfjLihSJFdBWUevXgppvg3HP1OatevcPb2ZgPDuunwCRmDk1Ghi6kuHXr4dsZZ6gHBbSsfyjXIPriC7jjDvjkE13nKFKkpcGMGfDhh3rv3bth0yatgrVunU5JGDgQzj9flzE46qjIyWZELdEcJw8FlkPjHfPn67NVhQr6zGVVIGKLaNYN8WvQHH20LGrVSmu8ZBosV12lC48cPBh4RbU+fXR2z+rVWso/JQW6dFFvSoUK+RciIwMWLIALLtD3+/dHdtp1dtLS4Icf4Jxz9H2zZpp/06OHhpu8lM2IKqJZaYUCM2i85Y8/9Lnq3HOzivIZsUE064b4zaH591/9sd64EcqW1WpPmf7NYsXgvfdg8mT45hudRbRtm5b2Bw25PPYYrF0L//d/6rXo0CF/i5Xs3Jm1yMmyZbrPa4OhePEsYwbgwQdhwgQNbEdQtn79+tGvX7+I3S9WsX4y4pVatdSYAXUQ33uvTva0MR8c1k+BiV9n36mnQm5PYNddl/Oxo4/WpNj+/WHhQhgzRsMxmV6a2bP1saJZs8CJs7//rgm/P/+s059PPbUQHySMtG3ryW235pQRaByG9ZMR74hoWuH//gerVkG1alsDOs+NwzHdEJj4DTmF2qXs7xdt1UqL3R13nBpG118PjRrp8Tlz1JuTnq55Ky1ahE4Gw4gQ0exWDgUWcoouXn8d7rxTq1NMnAg1a3otkZET0awb4jfkFGr8g7yffgrvv5+1aMmZZ8INN+ixRYs0mfi778yYMQzDCILbbtN5E2vXQvPmWfvbt9daNsnJcOKJWke0c+es4//3f3DxxfqMedll0K+fznswEpP4DTmFk9Kltchdp06abPzRR1mzg+69F2691arr5kLfvn0BeP755z2WJLqxfjISiZYtoUOHvvzxB4CO+Ysu0gyAAwd0TsOBA5p/4096utYr3b9fC7CvW6c1RuMZ0w2BMYOmsFSpAr16Zb13zoyZPNi7d6/XIsQE1k9GolGy5F5OPjnrve93O0feeuvw919+CTVq6Ovt26FUqfisSmy6ITCWQ2MYxhFEc5w8FJh+iH+uvhpSU7Uwe/36XksTP0SzbrAcGsMwDCPuuPFGDT+deaaWF8vI8FoiI9yYQWNEnD59+tCnTx+vxYh6rJ+MRCOUY/7KK2H5cmjdWlMbmzeH9etDcmnPMd0QGDNoDMMwjLikenWdlDpiBPz5Z3zm0xhZWA6NYRhHEM1x8lBg+iHxOHhQi8QfPKg1U+++Ww0eI39Es24wD41hGIYR92Qugrl4sa5yc+qpuvKLET+YQWNEnDvuuIM77rjDazGiHusnI9GIxJg/5xytf3rccZpnc9NNsGNHWG8Zckw3BMbq0BgRp1SpUl6LEBNYPxmJRqTG/KmnwrffwpNPwtNPa37NtGkRuXVIMN0QGMuhMQzjCKI5Th4KTD8YmSxYoOGos87SujX33w8dO+pSClYj9UiiWTeYh8YwDMNIWM47L+v1r7/q+sIffqhVhtu2VePmiiv0vRHdWA6NEXF69uxJz549vRYj6rF+MhINr8d8ixawYYMuodCjB8ybB126wM6denz16qzXXuJ1P0UrZtAYEadKlSpUqVLFazGiHusnI9GIhjFftCikpMBrr2khvu+/z5re3auXvr7qKnjvPe+SiaOhn6IRy6ExDOMIojlOHgpMPxgF4euv4YMP4KOP1JNTogT06QODB+vxjAwoEudugmjWDRHpeudcCefcW865VOfcTufcD865Nn7HmzvnfnHO7XHOfemcq+l3zDnnnnHObfVtzzrnXCTkNgzDMIxMLrgAXnpJ14iaNw9uvRXq1tVj//4LVatCmzbwn//A7NmwZ4+X0iYekUoKLgasA5oBa4G2wAfOudOAXcB44GZgIjAQGAec6zu3J3Al0BAQYDqwBhgaIdmNENOjRw8A3n77bY8liW6sn4xEI1bGfJEiatxccEHWvr174dpr1dB59FHdV6wYjBmj+3fuVAPnqKMKf/9Y6adIExGDRkR2AwP8dk1yzv0ONAaqACtE5EMA59wAYItz7mQR+QXoBrwgIn/6jr8A3IIZNDFLjRo1vBYhJrB+MhKNWB7zxxwDQ32/Stu26XTwr7+GRo1032efQdeucNJJcOGFWQZRvXr5D1PFcj+FE09yaJxzRwGpQCPgNqC4iNzmd3w50F9EPnbObQdaici3vmNNgC9FpFxu97AYuWEUnGiOk4cC0w9GpPntN10oc9483bZu1f0bNqgxNGmSrg7eoIFutWpFZz5ONOuGiNehcc4lAWOAd0TkF+dcWWBztmbbgUyDpazvvf+xss45J9msMedcTzRERXJycjjENwzDMIx8c9JJ0LevbiKwahV89x0cfbQenzoVXn01q33p0urdmTcPnIOfftJCf8nJ+t44kojaf865IsAoIA3o7du9CyifrWl5YGcOx8sDu7IbMwAiMkxEmohIk2rVqoVUdiN0dO3ala5du3otRtRj/WQkGoky5p3TUNMNN2QZJ6+8oonF8+fDm29Cz57qqck8fscd6rUpXx6qVu1K3bpdWbPGq08QnQTloXHOPQTMFJGFfvvOBlJE5Nkgr+GAt4CjgLYicsB3aAWaJ5PZrgxwom9/5vGGwHe+9w39jhkxSL169bwWISawfjISjUQf8xUqaOVi/+rFmTzzDPzwg4alJk+ux++/a12c6dMjL2e0ElQOjXNuI3CSL7k3c19ZYJWIHBvUjZwbiubMtBCRXX77qwG/ATcBk4EngGYicq7v+K3A3UALsmY5vSIiuSYFW4zcMAqOV3Fy51wJYAj6fa+M6oaHReSLHNrfAzwIlAI+Bm4Tkf153cf0gxHrbNgAu3dDnTr6esIEuOUWnVkVTqI5hybYkFNx4EC2fWlAyWBO9tWV6YUaNJucc7t8WxcR2Qx0AP4D/AOcA3T2O/0NdDr3MmA5avS8EaTchmHEFv4lHioAj6ElHmplb+icaw08BDQHagG10Qciw4h7jj1WjRmAUaPg9tuhYUOYMsVbubwkWINmMXB7tn23At8Hc7KIpIqIE5GSIlLWbxvjOz5DRE4WkVIikiIif/idKyLygIhU9m0PBMqfMWKHzp0707lz57wbJjiJ2E8isltEBojIHyKSISKTgMwSD9npBrwlIitE5B+0hlX3CIprhJhEHPMFIXs/PfAAfPIJpKVpYb82bWBFAiZmBOucugeY7py7AVgNnITmwrQMl2BG/NIoszCDkSvWT4dKPNQlcN5cA2CC3/sfgaOcc1VEZGsk5DNCi4354MjeT87BlVfq6uCvvQZPPgnPPQcjR3ohnXcEXYfGlzNzOVADdQlP8s+FiTYsRm4YBSca4uS+Eg9fAKtFpFeA46uBO0Rkil/7NOAEfy+vX3v/sg6NU1NTwyi9YXjHli26rlT16ppIPGMG3HWXrj1VWKJBN+RE0NO2fcbL18BcEXk/mo0ZwzBimxxKPGQnUEkHyCr5cBhW1sFIFKpWzVohfPx4DUnVrw8ff6w1cOKVoAwa51yyc+5r4Bdghm9fR+fc8HAKZ8QnHTp0oEOHDl6LEfUkaj9lK/HQwa/EQ3YySzpk0hD4y8JNsUuijvn8kp9+GjhQi/aVLg0dO0KzZrBsWZgF9Ihgc2jeQGcXNQUylcV04IVwCGXEN+cFKrJgHEEC99PrwCloiYe9ubR7FxjpnBsDbAQeBUaGXzwjXCTwmM8X+e2nVq009DRiBDz+ePyuAh5sHZqtQDURyXDObRORyr79/4pIxTDLWCAsh8YwCo6HdWhqAn8A+4GDfod6AXOBn4D6IrLW1/5eDq9Dc6vVoTGMnNm3D0oGVXAlMNGcQxOsh+YvdGbTqswdzrn6wNpwCGUYRmIiIqlAbivVlM3W/kXgxbAKZRhxRGGMmWgn2KTg54FJzrkeQDHn3HXAOOCZsElmxC3t27enffv2XosR9Vg/GYmGjfngsH4KTFAeGhEZ4Zzbhk55XIcWtHpMRD4No2xGnNK8eXOvRYgJrJ+MRMPGfHBYPwUm6Do0sYbFyA2j4ERznDwUmH4wjIIRzbohRw+Nc+6mYC4gIiNCJ45hGIZhGEb+yS3kdIPfawdcAGxCQ041gKOBeYAZNEa+aNOmDQBffBFwAWXDRyz2k3PuZRG5y+/9/4nIW37vPxYRKzRiBCQWx7wXWD8FJkeDRkQuznztnHsF+FRE/ue3727gxLBKZ8Ql7dq181qEmCBG+6k7cJff++fQInmZ2PpvRo7E6JiPONZPgQm2Ds0/QFURSffbVxTYIiKVwihfgbEYuWEUnILGyZ1zO0WknN/7f/x1hHNuh4iUD3x25DD9YBgFI5pzaIKdtr0JyD5HrB3wd2jFMQwjxsn+hBSfsw4Mw4g6gi2sdxfwkXPufjSHJhmoD1wTLsGM+KVFixYAzJgxw2NJopsY7adizrmLySqOl/19UW/EMmKBGB3zEcf6KTDB1qGZ7pyrDbQFjkXXdZpsi8AZBaFTp05eixATxGg//c3hEwW2ZntvXl0jR2J0zEcc66fAWB0awzCOIJrj5KHA9INhFIxo1g155tA45651zr3knOvpnEvKdmxI+EQzDMMwDMMIjlwNGudcX+BZ39tbge+cc8f4NekaLsGM+CUlJYWUlBSvxYh6rJ+MRMPGfHBYPwUmrxya24BWIrIKwDn3BDDPOXdJEKviGkZAunfv7rUIMYH1k5Fo2JgPDuunwOSaQ+Oc2wFUFJEMv329gQfQAlkLo6GmRCAsRm4YBSea4+ShwPSDYRSMaNYNeXloUoHTgSWZO0TkVefcHmA2UCJskhlxy4EDBwBISkrKo2ViY/1kJBo25oPD+ikweRk07wAt8DNoQBekdM7tBwaGSS4jjmnZUqvfz54921tBohzrJyPRsDEfHNZPgcnLoLkPGO2cO1VElvsfEJExwJiwSWbELTfffLPXIsQE1k9GomFjPjisnwKTVw7NFehMpsuBn1GPzXsisjky4hUci5EbRsGJ5jh5KDD9YBgFI5p1Q67TtkVkgohcAxwDvIEudbDOOfeZc65D9ro0hhEMe/bsYc+ePV6LEfVYPxmJho354LB+CkxQi1OKyL8i8oaIXAicAiwC/gtsDKdwRnzStm1b2rZt67UYUY/1k5Fo2JgPDuunwAS7OCUAzrkSwFnAOcBRwPxwCGXEN7fddpvXIsQE1k9GomFjPjisnwIT1FpOzrkLgRuBa9HF5UYB7/qK60UlFiM3EpqtW0EEqlYt0OnRHCcPBaYfDKNgRLNuyGvpgwHOudXARN+uy0SkrogMjGZjxohutm/fzvbt270WI+oJup927YKvvoIXXoBOnaB2bTVkhg4Nv5CGEUJMNwRHYfrpl1/g5ZdDLFCUkFfI6VzgEeBTEdkXAXmMBOCKK64ArIZCXgTsp/37YelSWLgwa/v5Z8jwFfNOToazz4Zbb4VLL4280IZRCEw3BEdB+ikjA4YMgfvvh7JloWtXqFw5TAJ6RK4GjYiYRjRCzl133eW1CDHBXb17w59/wsiRarh8950aM2lp2qBaNTjrLOjYUf+edRZUr+6pzIZRGEw3BEd++2n9erjpJpg2Ddq0gbfeij9jBoLMoYlFLEZuxBwZGbBsGcyaBV9+qWGkTLdyuXLQuHGW4XL22eqNceFZHzaa4+ShwPSDkSh88IE6bPfv16h0r16FUxvRrBvyNcvJMELBli1bAKhawITVuEEEfvpJjZcvv4Q5czSZF+DEE9nSrh2ccw5VmzeHevWgSFBVFgwjZjHdEBzB9NO//0Lv3jBmjD7/jBoFdetGSECPMIPGiDgdO3YEEjBOLgK//qrGy6xZMHs2/P23HqtZE9q1g4sv1q1GDTqmpMC6dczu3dtLqQ0jYiSsbsgnefXTrFnQrRts3AhPPAEPPwzFEuDXPgE+ohFt3HfffV6LEDn+/BOmTs3ywmzYoPuPPRZatcoyYE444YhTE6qfDAMb88GSUz/t26fGy3//q96YBQs0Qp0oWA6NYYSa336D8eN1+/Zb3Ve9epbxcvHFUKdO2PJfQkE0x8lDgekHI95YskRnLq1YAXfcAc8+C6VLh/4+0awbzENjRJxNmzYBcPTRR3ssSYgQgeXL1YD5+GNN7AVo0gQGDYL27aF+/XwbMHHXT4aRBzbmg8O/n9LT4fnn4bHHoEoV+OKLxK3YYAaNEXE6d+4MxHicPCNDp1JnemJ++00NlqZN4X//g6uu0llIhSAu+skw8oGN+eDI7Ke3357NjTfCvHnQoQO88YYaNYlKxAwa51xvoDtwGjBWRLr79tcCfgd2+zV/RkQG+o47YDBws+/YW8CDEq+xsgTgoYce8lqEgnHwoGqOTCNm/XrNtGveXKtVXXEFHHVUyG4Xs/1kGAXExnxwPPjgQ8yYAQ0b6nPUu+9quCmKo9gRIZIemg3AU0BroFSA4xVF5GCA/T2BK4GGgADTgTWA1XWPUS6NJX9oRoZOpx4zBiZMgC1boGRJ9ekOHgyXXQaVKoXl1jHVTzFGZmFlI7qwMZ83y5bB889fyqxZ0KwZvPOOTpI0ImjQiMh4AOdcE+D4fJzaDXhBRP70nf8CcAtm0MQs69atA6BGjRoeS5ILqamqKUaOhN9/18J27drB1VerMVOmTNhFiIl+ilF+/BFuu00LjjVs6LU0RiY25nNmyxZ4/HENK5Urt46nnoJ+/WpYeSo/oqkrUp1zfzrn3nbO+VcLagD86Pf+R9++I3DO9XTOLXLOLdq8eXM4ZTUKwQ033MANN9zgtRhHsncvjB0LLVvqNOr+/eHEE9U789df+rdDh4gYMxDF/RQHVKqktmqjRnDeeWq77t3rtVSGjfkjOXBAF5OsUweGDdMZTKeeegPTp99gxkw2oiEpeAtwFrAEqAK8BoxBQ1MAZQH/ZUW3A2Wdcy57Ho2IDAOGgU7LDK/YRkF59NFHvRYhCxFYvBhGjID33tOlBmrVUmOmWzd97RFR1U9xRq1auq7Nu+/qouTdu0OfPvq3Vy84+WRv5UtUbMwfztSpcM89uv5sy5ZaX6ZBA5gxw/opEBGvQ+Ocewo4PjMpOMDxo4GNQAUR2eGc2w60FJHvfMcbA7NFpFxu97E6E0aubN4Mo0erIbN8uebFdOigK7ilpCT8MgPRXGsiFPjrBxFNkxo6VHO9DxzQIXDrrTpZrXhxb2U1Eo9ff4V774VJk9RJ/OKLGvGOhqTfaNYN0ai1My2szH/dCjQhOJOGvn1GjLJmzRrWrFkT+RsfPKgaokMHrdR7771aeWroUK0RPno0XHJJ1BgznvWTxzjnevtCx/udcyNzadfdOZfunNvlt6Xk/35qwLz/vhZ2HjxYU6g6d4bjj4d+/SAB/w2ekKhjPpPt23XCZIMGamQ/+6wWymvf/nBjJtH7KSciOW27mO9+RYGizrmSwEGgMfAv8CtQCXgZ9cBkhpneBe51zn2OGjv3Aa9ESm4j9Nx0001ABGtNbNkCr7+u28aNUK0a3H039OihmiNKiXg/RQ95zYj0Z4GIXBiqG1evDg8+qD8q06errfvss/DMM9C6tYajLrsMkpJCdUfDn0Qd8+npmtP18MPqPO7RA/7zH8ipvmCi9lNeRDKH5lGgv9/7rsATwEpgEFAd2IFOy77Or90bQG3AV36V4b59RozyxBNPROZGK1dq0Pmdd3SRk0svVaOmbduY+EWKWD9FGYWYERkyihRRA6Z1a/XavPUWvPmmhqCqVYPrr9cUq0aNoiMMEC8k4pifN0+fr77/Hs4/HyZP1iLjuZGI/RQMtpaTEV+IwFdfwQsvwMSJUKIE3HCDZtbVr++1dDFDNMTJg8i3645OItgLbANGAU/nUM8K51xPtK4VycnJjVNTU/Mlz8GDMGWK2seffQZpaXDaaZpI3KVLSGsqGgnATz/Bk0/CuHEa2nz2WQ1zRruBHA26ISeiI1kg2ohTIy9aWLlyJStXrgztRQ8c0CnXZ52lCRELFmjRhtRUfbSOQWMmLP0UX3wFnIp6dzugnt37c2osIsNEpImINKlWrVq+b1asGFx+OXz4oUYuhwyBUqXgvvvguOOyju3bV9CPYyTCmJ8/X4uKN2ighvHjj8Mvv8B11wVvzCRCPxUE89Ds2wezZumqyJluvK5d9Qfyjjt0bZ5oN5ljjJSUFCBE8d/t29VgefllWLcO6tVTb8yNN+qvTQwT0n7KJ9HwFJaXhyZA+87A/SLSOK+2ofTg/vKLem1GjdLVMCpW1B+nbt3g7LNNfeQHL8d8OBGBzz/XhPN586ByZbjzTujdG6pWzfv87CS6bsiJaKhDE3k2b9ZwxMSJWoxizx4tlnbHHRogT07WbMAPPlCfcu/e6lOOUEG1eGfQoEGFv0hqKrz0EgwfDjt3qldmyBDNj4mSWUqFJST9lFgIWbMjI8bJJ8PTT8NTT+mz0ciRur3+utrX3bpp1PN4T7KBYot4G/MHDujsuWef1eoQNWro2rU331y4n5N466eQISJxuTVu3FgOkZEh8uOPIn/9pe9HjRIBkeOPF7n9dpEvvhDZu1cOY/dukeHDRRo21LaPPSZGFPDddyKdOokULSpSrJhIly4iixd7LVXcASwSj7676INWSeBpNC+mJFAsQLs2wFG+1ycDy4H+wdzjMP0QBrZvV/XRtKmqD+dEmjcXGTo0Sw0Z8cuuXSIvvSSSnKz//wYNRN59VyQtzWvJCo+XuiGvzXMBwrU1PvNMkSlTRO64I2tU/fe/+h/591+RH35QQycvMjJE5s0TWb9e30+eLNKmjf5NT8/7fOMIli1bJsuWLQv+hIwMkRkzRC65RP+PFSqI3H+/yNq1YZMxGsh3P4UQjw2aAai3xX8bACQDu4BkX7vngb+A3eiCtU8CScHcI9wGjT+//Sby+OMidero8C1SROTii0Vee01k48aIiRETeDnmQ8HmzSL9+4tUqaL/6wsvFJk4MfQ/FYmqG/La4jeHplgxWZSernkULVtqmcV27Qo/FWHsWM0C3LhRSzjefrsWDQh2xWUR2LpV54KuX69/U1LUN535v4jzoHvQ8d+MDM2aGzQIFi6EY47Rvu/ZUxeLjHMsTh4+vJgFKaJhhw8/1O2XX/Sr3rQpdOyo654ed1xERYo6YjWHJjVVq/kOH64ZDO3baz2j888Pz/1MN+SA1xZVuLbGxx0nMmmSyJ49Qdic+SQtTWTcuCx/8imnqBchPV0kNVVk/nyRDz5Qj1DfviLTp+t5P/0kUqKEnuO/DR2qx6dOFTnvPJEJE+La+/Pdd9/Jd999l3ODtDT1z9avr/1Tu7bIG2+I7NsXOSGjgDz7KYwQxU9hodgi6aHJiRUrRAYMEDn11CxVcP75qjbi3PmYI16O+fxy4IAGAa67LisC3q2byPLl4b+36YbAW/x6aCL1BPbjj+qtufRS9bxkT1kvUUJLPt53n87IGTRIH8OOO06zBI87TstBFium3oi774Y//tBpxg8+qNMlYqAIXEjYuxfefhuee0774NRTtXTmNddo/xgRI6qfwkJAtNWp+uUX+Phj9dz8+KPuO+cc9dx07OjpGqmGHyLqLB4zRuvH/PUXVKigTvp779Wk33gnmnWDGTShRERLih57bJaxUrly/kJIBw/q7KrBg2HZMjjvPC1cEEcsWbIEgEaNGumOHTt0VtmLL6qGOPdcNWQuuyxuZiwVhCP6KYJEs9IKBdFm0Pjz669Zxs333+u+hg21anGrVnDBBbqWajzi5ZjPjVWr1Ih57z347Td9Tm3XTitGt22r7yOJ6YbAmEETrYjAF1/A7t3qoThwQOf73XQTVKnitXSF4lD898MPtX7Mq6/Cv/+qtu7XD5o1i/s8omCwOHn4iBX9sGaNGjeffw5ff61qoFQpTbtr1Uq3U06Jn69LNOXQbNyoU67few8WLdI+vuQSreBx9dXqmfEK0w2BMYMmVpgxQ5Oby5TRpNh77olZ/+aSKVNg1CgaffKJFja86io1ZPJawCTBsKew8BGL+mHXLpg9W0tnTZumS5WBOoMzjZvmzQtWqC1a8NpDs2MHjB+v3phZs3ReQuPG6onp3Fmd79GA6YbAmEETSyxfrhWa3ntPHxe6doVXXoGyZb2WLDhWrND8mDFj1APVtavmCZ1yiteSGdmIZqUVCuJBP6SmZhk3M2aok9M5/QFu1UpDVOeeC8WLey1pdLNxoy7/9tFHWmt1/36oXVs9Mddfr4UTjSyiWTeYQROLpKbq4osLF2p+jXPw/POab+KfbHzssd5rMxGt9f3MM7qMbOnSLGzXDq67jrOuuMJb2aKchQsXAnDWWWdF/N7RrLRCQbzph/R0DYtMnaoGzjff6L6yZdWoadJEt7POUsdutIaowj3mRWD1apg7V7evvtL3oEXiO3VSQ+acc6K3j8B0Q06YQRPLZGRkJc3WrAlr1x5+vGNHzSwEnS1VseLhBs/JJ6t2E9HgfFJS6L7FGRkwYYJ6lL75Rv3gd90Ft99OSocOQHTEyaMZi5OHj3jXD9u3w5dfqnHz7bewdKnONwD94fY3cJo00RJP0UCox3x6ujq2M42XuXNh0yY9VqUKXHih1gG66CI444zYmUxpuiEwMfLvMwLiPwPojz/U55xZrG/9+qzFYw4ehJ9/1v1bt2adc++96unZsUONHVCPTokSuvXrp23++kunpWfuz9yuuUYXgfRn3z4YPVpDS6tWwQknwGuvQffuULo0AK+++mqYOiS+sH4yCkqFCnDllbqBfi2XLlUvTuY2dao+d4A6c/0NnMaN1fCJNIUd8/v362fL9MB8/bUad6DPbpdcosZL06b6PBerkyhNNwTGDJp4wTmtVlypktZv8adYMfAlkbF3L2zYoAZP9eq6LylJV9bbv1+3tDT96x88rlEj6/jOnfD331nnr1unYaXff9ecnk2b4MwztVDD1Vcf8dhzanb5jIBYPxmhomRJXfn77LOz9u3erWrB38iZODGrYHlyMpx0kj4X1aiRtWW+r1gx9GGZvMZ8Roaql7VrA28//6zGG6j66tRJjZemTdWJHS+YbgiMhZyMwvHnn3DttbBggb6vU0eXHr766hy13XxfXZ3zw1UXPE7wsp+i2a0cCkw/BGbHDq19s2iR/k1N1eeVDRs0fONPmTKHGzj+Bs+xx+pzTKYKcC64199/P5+0NKhS5fyABsu6dRod96d8eTVWkpOhbl01Xi680BsPU6Qw3RAYM2iMgrF8uYarxoxRTXf++eq9WbhQw1Zdu+rCJgGMmmiqNRHNWJw8fJh+yB/p6Tob6M8/1ajIvv35px4v/M9Jiu/vbACKFtV0v+TknDcv68F4hemGwFjIyQie/ft1buPQoRpiKlUKbr1V82wya7P/9JMeT0vLMmYmTIAWLfSRDnjjjTe8kT/GsH4yooWiRdXzcvzxOmsqEAcOqCdn3ToNC2V6dDJXqgrm9caNb5CUpPdITtZk5VhJ1I0kphsCYx4aI29Wr4Y33tB1lrZs0cD6rbdqom9eVYtXrtRgdoUK2v7229UvbEQ10fwUFgpMPxhGwYhm3RCjOd5G2Dl4ED79VGc3nXSSrrN00UUwfboaKffdF9wSDHXr6nSDtm1hyBCoV485TZowZ+zYsH+EWGfOnDnMmTPHazEMI2LYmA8O66fAmIfGOJz16zX35c039fVxx+lSCzffXPi633/9BW+9RcpTT8GZZzJ73jyYM0enczdpEt2VrDzA4uThw/RDdGL5dcFhuiEwFp00dC7kzJnw+uvw2Wf6vnVrrR9z2WWhC2IfdRQ8/DAjOnXKMl4eeUSLRdSvryGprl2jp8qXx4wYMcJrEQwjotiYDw7rp8CYhyaR+esvGDVK82N++02r+d50E/TqpYuZRILt2+GDD2DkSF3GoUgRuP9+GDw4Mvc3AhLNT2GhwPSDYRSMaNYNlkOTaPz9t85CuuQSDSHdf796RMaM0bmXzzwTdmNmxowZzJgxQ99UqAC33KJempUr4aGHslbd3rIF7rgDvvsuFPNBY47D+skwEgAb88Fh/RQY89AkAps3w/jx6gmZPVtDSiefrAXxOnXScE8ECTr+O2UKXHWVlv485ZSskFRhc3liBIuThw/TD9GJ5dAEh+mGwJhBE69s3gyffKJGzJdfqhFTr54aMddco8sjeJSEu27dOgBq1KiRd+Pt23WBzZEj1YtTpIiuWVWunK42t2MHnH56dC8hXEDy1U8hJpqVVihIeP0QpXg55mMJ0w2BsaTgeGLLlsONmPR0XYrg4YfViDnttKj40c/Xl7BCBZ1hdfPN8OuvMHmyGjOgU8knTMhqd/rpWrE4M/8mPV0rgsUoptSNRMPGfHBYPwXGDJpYZ/16+Pxz9WLMmqU/4iedBA8+qN6Y00+PCiPGnylTpgBw6aWX5u/EOnWgT5+s9+++C8uW6TLCmVvmIpwAF1wA27ZpHzRsqAtmXnppzBg5Be4nw4hRbMwHh/VTYCzkFGts26bel1mzdKr1ypW6/6ST1Atz7bX64x1lRow/EYv/PvusJhQvXaqzuESgWzcNX8UAFicPH3GrH2Icy6EJDtMNgTEPTbSze7eumzRzpm4//KA/zGXKQLNmOkOoRYuo9MTkxPvvvx+ZGz3wQNbrXbs0PJU5g2vHDs0rqlgxMrIUgIj1k2FECTbmg8P6KTBm0EQbaWnqVcg0YL75Rld9S0rS/JABA6B5czj7bN0Xgxx99NGRv2nZstClS9b7hx/WMN3zz+vMqSg0Bj3ppwRl714oWVKHwfLl6tTbsiVr27lTSzYBTJqk1Q+aNNEJgrZ4YuiwMR8c1k+Bsa+i1+zeDd9/r4bLrFm67tHu3apZzzwT7rlHDZgLL9QlAuKAiRMnAtCuXTvvhLj5Zli8GG68UZd6GDIEGjTwTp4AREU/xSm//gqNG2cZLHv2qNOuXDl45x21c0G/hpUra83JzOeKt9/WKgigC86fcYY6SwcN8u7zhIODByNvrNmYDw7rp8BYDk0kSUvTR7+FC7O2n37S0AdobZjmzXVr1kw1aRwSNXHyjAwYMUITqHfsUMOmWzdvZfLD4uTho2zZJpKSsoiqVTm09e6tjrw//9QIZdWqUKnSkTnkGRmakrVwISxapFu5cpqbD1qzMiNDPThnnaV/a9eOSifgEUyYoB6ob7+FFSugenVo2lQnToL2TfXqULx4eO4fNbohyjHdEBgzaMJFerom7PobL0uWqFEDqi3POuvw7aijvJM3gmzZsgWAqlWreiyJjy1bdE2pBx/UX57du9Ub5vEvkJf9FM1KKxSEUz/cc4+u4uH/db/xRvX8ZGTAFVdoeCtzK1UKWrWCyy+H/fvVWZi5P/Nv/fo6yS9TXRd2aK5fr0bLt9/Cjz9qNYSiReG222DcOI1oN2qkq6MUK6Zr1YJ6tZYu1Wev00/X7YIL1IEcCqJON0QpphsCYwZNKNi/H1at0keaxYvVeFm8WB/zQB/7Gjc+3HipVcvzH0wjACL6yyICr7wCJ57otUSeEM1KKxREQj+kpalKWLQIkpN1vdd9+9QA2LdP83b27dPt7ruhf3+th1m9+pHXevppXRUkNVWLZh9zDBx9tP495hi4/no47zy1xVeu1H3Vq6uRsmuXelSKF4f334e+fdWgAQ2hNWoEEyfq81Retvz48araMqskrF2rxcYzc1Svuko/a6ax06BB3ETKDR/RrBsshyY/7NgBv/yiYaKff87a1qzJChsVL64aolu3LOOlXr2YqX0SCcb7EhCuvvpqjyUJgAi0bAmPPaba+OGHdbZUyZLBX2PfPvjnn6ytYkV9xM6nARvV/WTkSfHiml9zxhlZ+0qWVIMgJ6pU0SGTaejs3atb5gL0JUrA7bfDxo26/fSTzh04+2w1aJYsyfKWFCmi19u6FaZP11DYMcdoNPucc7K8MP5Du0yZ3D/T1Vfrlsk//6gRBJqHtGmT3itzX5Ei8OST6gDdv1+P5VbY28Z8cFg/BcY8NNkR0cekTGPF33jJfKwBfbSpW1cfl/y3+vXDF2COE2IiTr5hA9x3nz56nnSSPpqedhpMmwYLFhxusBw8mJVAcf31MHbs4deqWlV/fYoV079HHx2UcWNx8vDheUg6xIjokNq6VVcE2bhRjYtNm9SIueEGHcaRICNDn/EyvTgXXaTG1JIlWcZdxYpZ9S5vvllfQ95jPi1NPU67d+vfXbv0GsWL671Wr9bPeeKJ8e0ZMt0QmMQzaDIydM5lamrWtnbt4e+3b89qX7asBowzjZVMw6V2bZuvWUC2+/q3QoUKHksSBDNmwMCBmi1ZsSLcdZeGosqV04zRSpXUYJk+XX9RPvpIw4+ZxypV0kfgZs30V+eEE/SxtUMH6NhRH5NzMG687KdoVlqhIN4Mmlhg716d0Ll0qebtZBo848drDtGUKXDnndupWRPS0yscMlgmTNBnx5df1tBcdv74A2rW1LDcww9n7T/uODVuJkzQlVFWrVIvUTwYO6YbAhMxg8Y51xvoDpwGjBWR7n7HmgOvAcnAt0B3EUn1HXPAYOBmX/O3gAclD8Gb1Ksnix5++EjDZe1aHdX+VKig34jM7aSTsgyX44+3XBcji7171TtXEGP24EFdruGjj9RQOnBAfe9PP314jZwoIJqVVigwgyY6yMhQO79oUa0f+sILsG6dhr7KlNHnycGD9flx4UJ1kGbuz9wuvlj3/fOPeoZ++02n5f/2m6r9mTP1GeL//k8nNYIaO3Xq6DPqa6/pviVL1MOVKVNGhl63aVM9PmeOFmrPyMhqU6WKTkoFNcy2btX5IAcP6t8aNbJCdP/7n8rof7x+fejRQ4//97+6r3hxDS2WKKGG3Pnn6/GZM1XtlCihbcqU0Z+nvMKEoSaadUMkDZqrgQygNVAq06BxzlUFVqMGy0RgINBURM71He8F3As0BwSYDrwsIkNzu18T5+SQujr66MMNlpo1NXMt83UseAriiHHjxgHQqVMnjyXxkH/+0UzMjz6Cnj01EXnlStWuHTvCBRcw7qOPAG/6KZqVVigwgyY6Cadu+OUX9Qz9+mvWBjojDTR1bsaMw8857TT1IgGce67OCvPn/PPh66/1dYMGmqHgT6tWMHWqvk5OVmOtaFHdihXTr/o77+jxihUPDw4A3HQTvPWWvi5aNCtVE7Sfbr+9E6+9ps9G11yT9bOW+bdOHXUSh5Jo1g0RDzk5554CjvczaHqiHpnzfe/LAFuAM0TkF+fcfGCkiAzzHf8/4JZMgycnmtStK4smT1YTOT8JnUbYiYkcGi8YNw66d9ds0OrVSSlaFMqUYfaqVeol/Pxz1agHDmRtRYroquOgxtCcObq/fn34z38KLEo0K61QYAZNdOKlbli6VA0K5/RrVaSIhqYy83tWrVIHbfbjtWrp8Q0b1OAoVizLYMn0pIB6X4oUydnhf+CABg/S0vTv/v06Zf+oo9QbNH9+1v77708hPR3efns2556raZ+XXKIeqZ07s66ZOTtuwwYtHZCcrNtNN+nfghDNuiEakkAaAD9mvhGR3c651b79v2Q/7nudd0nX8uXVPDWijs8zE2iNw+nUCS67TA2Xjz7i80mTNLvzwAHVjJMna5GSYsU07JWUpD73TIMmNVVXH09KUl+4YcQYXuqGTMMlJ+rWzf34scfmfjyvia6ZX+lAOKfT/TNp1kz7KTMXqFo1/eqLqFGWmRZar54e37lTE6mnTlWVcuWVBTdooplo8NC8BWwWkYf82nwNvCkiI51z6UADEfnFd6wOsAookj2Pxuft6QmQnJzcODU1NRIfyTDCw759qomqVlWNltcjXgiJ5qewUGAeGiNR2b8/y4tUEKJZNxTxWgBgF1A+277ywM4cjpcHdgVKChaRYSLSRESaVKtWLSzCGoVn9OjRjB492msxop7RH33E6KlTswyYokUTIkHdOdfbObfIObffOTcyj7b3OOc2Oee2O+dGOOdKREhMIwyYbgiOwvRTiRLxWxYtGgyaFUDDzDe+HJoTffuPOO57vQIjZhk+fDjDhw/3WoyoJ4H7aQPwFDAit0bOudbAQ+iEgVpAbeCJcAtnhI8EHvP5wvopMBHLoXHOFfPdryhQ1DlXEjgIfAI855zrAEwGHgeWZoaYgHeBe51zn6OznO4DXomU3EbomT59utcixASJ2k8iMh7AOdcEOD6Xpt2At0Rkha/9QGAMauQYMUiijvn8Yv0UmEh6aB4F9qLKpqvv9aMishnoAPwH+Ac4B+jsd94b6HTuZcBy1Oh5I3JiG6EmKSmJpJyy34xDWD/lSaAJA0c55ywjOkaxMR8c1k+BiZiHRkQGAANyODYDODmHYwI84NuMOGDkyJEAdO/e3VM5oh3rpzwpC/hX7sh8XQ7Ymr1xtkkDYRfOyD825oPD+ikw0ZBDYyQYI0eOPPSFNHLG+ilPAk0YgKwJBYdhkwaiHxvzwWH9FJhoqEMTFhYvXrzLObfSazkiRFW0GGFM4Qo+YycmP28Bqeqc8+Kz1vTgnvklc8LAB773DYG/ROQI70x2TD9EN6YbgsJ0Qzbi1qABVkbrXPlQ45xblCifFRLr8ybSZ80kpwkEInIwW9N3gZHOuTHARjRPb2SQtzH9EIfYZ01sLORkGEa0EXACgXMu2Tm3yzmXDCAiU4BngS+BVN/W3xuRDcPwmnj20BiGEYPkNoEATQT2b/si8GKYRTIMIwaIZw/NMK8FiCCJ9FkhsT5vIn3WSJJI/WqfNT5JpM8aFBFfy8kwDMMwDCPUxLOHxjAMwzCMBMEMGsMwDMMwYh4zaAzDMAzDiHli1qBxzvV2zi1yzu13zo3Mo+09zrlNzrntzrkRzrkSERIzZDjnKjvnPnHO7XbOpTrnrs+hnXPOPeWcW+/7vLOdcw0iLW9hCPaz+trWds5Ncs7tdM5tcc49G0lZC0t+PqvfObOcc+Kr12Jkw3SD6QZf25jWDWD6Ib/ErEEDbACeAkbk1sg51xqtZ9EcqAXUBp4It3Bh4DUgDTgK6AK8noMyuga4CWgKVAYWAKMiJWSICOqzOueKA9OBWcDR6MrMoyMoZygI9v8KgHOuC1ZuIS9MN5huiAfdAKYf8oeIxPSGKq6RuRx/Dxjk9745sMlrufP5Gcugg7qu375RwOAAbR8EPvB73wDY5/VnCNNn7QnM9VrmSHxW37EKwCrgXECAYl5/hmjeTDcc0dZ0Qwxtph/yv8WyhyZYGgA/+r3/ETjKOVfFI3kKQl0gXURW+e37Ef1s2XkfOMk5V9c5lwR0A6ZEQMZQkZ/Pei7wh3PuC59LebZz7rSISBka8vNZAQYBrwObwi1YgmC6wXRDNGP6IZ8kgkFTFtju9z7zdTkPZCko2T8DvveBPsNGYC6wEi0Zfw1wT1ilCy35+azHA52Bl4FjgcnABJ+7ORYI+rM655oAFwCvRECuRMF0g+mGaMb0Qz5JBINmF1De733m650eyFJQsn8GfO8DfYb+wFlADaAkmhMwyzlXOqwSho78fNa9wDwR+UJE0oDngSrAKeEVMWQE9Vmdc0WAIcDdcuQCjUbBMd1guiGaMf2QTxLBoFkBNPR73xD4S0S2eiRPQVgFFHPO1fHb1xD9bNlpCIwTkT9F5KCIjAQqAfXDL2ZIyM9nXYrGimOVYD9reaAJMM45twlY6Nv/p3OuafjFjFtMN5huiGZMP+QXr5N4CrqhmdwlgafRRKmSBEiCAi5FY4r10S/vLHJIqormDY1/j0UTxS5AXY8NArTrD8xDs+KLADcAu4GKXn+GMHzWesAeoAVQFHWfrwaKe/0ZQvlZAYfO1MjczkKV9XGx9Fkj2KemG0w3xLxuCPbzmn7w6wuvBSjEP3qA75/mvw0AklFXXbJf23uBv4AdwNtACa/lL8DnrQx86lNAa4HrffsP+7w+5f0aGi/fAXwPXOq1/OH4rL59VwO/+T7r7EDKLZq3/HxWv3NqkaCzGILsU9MNAcaQ6YbY0g35/bx+5ySsfrDFKQ3DMAzDiHkSIYfGMAzDMIw4xwwawzAMwzBiHjNoDMMwDMOIecygMQzDMAwj5jGDxjAMwzCMmMcMGsMwDMMwYh4zaAzDMAzDiHnMoDEMwzAMI+Yxg8YwDMMwjJjHDBrDMAzDMGIeM2gMwzAMw4h5zKAxDMMwDCPmMYPGMAzDMIyYxwwawzAMwzBiHjNoDMMwDMOIecygMQzDMAwj5jGDxjAMwzCMmMcMGsMwDMMwYh4zaAzDMAzDiHnMoDEMwzAMI+Yxg8YwDMMwjJjHDBrDMAzDMGIeM2gMwzAMw4h5zKAxDMMwDCPmMYPGMAzDMIyYxwwawzAMwzBiHjNoDMMwDMOIecygMQzDMAwj5jGDxjAMwzCMmMcMGsMwDMMwYh4zaAzDMAzDiHnMoDEMwzAMI+Yxg8YwDMMwjJjHDBrDMAzDMGIeM2gMwzAMw4h5zKAxDMMwDCPmMYPGMAzDMIyYxwwawzAMwzBiHjNoDMMwDMOIecygMQzDMAwj5jGDxjAMwzCMmMcMGsMwDMMwYh4zaAzDMAzDiHnMoDEMwzAMI+Yxg8YwDMMwjJjHDBrDMAzDMGIeM2gMwzAMw4h5zKAxDMMwDCPmMYPGMAzDMIyYxwwawzAMwzBiHjNoDMMwDMOIecygMQzDMAwj5jGDxjAMwzCMmMcMGsMwDMMwYp5iXgsQLqpWrSq1atXyWgwjANu3bwegQoUKHksS3XjZT4sXL94iItUifuMIUaRIESlVqpTXYhjZSE9PB6Bo0aIeSxLdeNlPe/bsERGJSmdI3Bo0tWrVYtGiRV6LYQQgJSUFgNmzZ3sqR7TjZT8551IjftMIUqpUKXbv3u21GEY2TDcEh8e6YW/EbxokTkS8liEsNGnSRMygiU62bNkCQNWqVT2WJLrxsp+cc4tFpEnEbxwhypQpI2bQRB+mG4LDY92wR0TKRPzGQRC3HhojejFlFRzWT0aiYWM+OKyfAhOVcTAjvhk/fjzjx4/3Woyox/rJSDRszAeH9VNgLOSUC5999hnvvfce77//foikMsDi5MHicZzcQk650L17d44//niuvfZabr31VubPnx9C6RIX0w3B4bFusJBTLNK+fXsefvhhli5dyumnn+61OHHDhAkTvBYhJrB+in5OP/10KlasyMSJE2nXrp3X4sQ8NuaDw/opMPEbclqzBkLgfbruuusYNmxYCAQyMqlQoYJN2Q6CRO0n51xl59wnzrndzrlU59z1ubSt7Zyb5Jzb6Zzb4px7NpKyAnTp0oU33ngj0reNSxJ1zOeXwvTT9OnT2bdvX4glig7i16D55x8YPjzo5uvWrePqq6+mWrVqVKlShd69ewPq2ps8eXK4pExIxo0bx7hx47wWI+pJ4H56DUgDjgK6AK875xpkb+ScKw5MB2YBRwPHA6PDIdAPP/zAmWeeSbly5ejUqdNhPwgpKSnMnDmT/fv3h+PWCUUCj/l8UdB++vTTT7n00kt56qmnwiBVFCAicbk1LldOpFQpkRUrJC8OHjwop59+uvTp00d27dole/fulblz54qIyNatWwWQ7du353kdIziaNWsmzZo181qMqMfLfgIWiQffW6AMaszU9ds3ChgcoG1PYG5B7lO6dOmg+2L//v2SnJwsL774oqSlpcmHH34oxYoVk0ceeeRQm3LlysmPP/4Y9DWNwJhuCI6C9NOcOXOkRIkScvbZZ8vOnTsLfG9gt0TBb3ygLX5zaE44ATZuhM6d4dtvIZeqoN999x0bNmzgueeeo1gx7ZILL7wQgHLlygHw77//Ur58+fDLnQB8/vnnXosQEyRoP9UF0kVkld++H4FmAdqeC/zhnPsCOAtYDtwpIstCKdA333zDgQMH6NOnD845OnbsyIsvvnhYm3LlyvHvv/+G8rYJSYKO+XyT335aunQp7du3p1atWkyePJmyZcuGSTJvid+QU1ISvPMOLFsG99+fa9N169ZRs2bNQ8aMPzt37gSgYsWK4ZAyISldujSlS5f2WoyoJ0H7qSywPdu+7UC5AG2PBzoDLwPHApOBCb5Q1BE453o65xY55xYdPHgwaIE2bNjAcccdh3Pu0L6aNWse1mbnzp2mI0JAgo75fJPffnr00UcpW7Ys06ZNi+saNvFr0AC0aQP33guvvQaffppjsxo1arB27VoCKbmff/6ZWrVqmXcmhIwePZrRo8OS6hBXJGg/7QKyf9nKAzsDtN0LzBORL0QkDXgeqAKcEujCIjJMRJqISJNADy85ccwxx7B+/frMMBcAa9euPfR6w4YNpKWlUa9evaCvaQQmQcd8vslvP40ZM4Yvv/yS5OTkMErlPfFt0AA8/TQ0bgw33QTr1gVscvbZZ3PMMcfw0EMPsXv3bvbt28fXX38NwJw5c2jTpk0kJY57hg8fzvB8JGwnKgnaT6uAYs65On77GgIrArRdCoS9kNZ5551HsWLFePnllzl48CDjx4/nu+++O3R89uzZXHLJJZQoUSLcosQ9CTrm800w/bRr1y769u3L7t27KVeuHHXq1Mm1fVzgdRJPuLbGjRtnZTGtWiVStqxI06YiBw8GTHRKTU2VK664QipXrixVqlSRO++8U0RETj31VFmyZEnAc4yCkZaWJmlpaV6LEfV42U94lBSst+Z9YCyaIHwBGnJqEKBdPWAP0AIoCtwDrAaK53WP/CQFi4gsXLhQGjVqJGXLlpVrr71Wrr322kNJwW3btpUJEybk63pGYEw3BEde/bR//35p2bKlFC1aVGbNmhXSexPFScGeCxC0oBor/xnY7VNaTXNrf5hBIyLy7rv6cQcMyOPflcVnn30m11xzTdDtDSNe8NigqQx86vuurwWu9+1PRkNSyX5trwZ+A3YAswMZPoG2/Bo0ObF06VI599xzQ3ItwwgF6enpct111wkgI0aMCPn1o9mgiYmlD5xzLYHhQCfgO+AYABFZn9M5AZc+uPFGGDMGZs+Gpk3DJq+ROyNHjgS0fLyRM172ky19YHiB6YbgyKmfRIR77rmHl156icGDB/Pggw+G/N7RvPRBrBg084G3ROStYM8JaNDs3Alnngn798OSJVC5cmgFNYLC1msJDlvLKXyYQROdmG4Ijpz6adOmTTRs2JDrr7+eF1988bCZeaHCDJpC4Jwris5meBy4GSiJuqPvF5G92dr2RIttkZyc3Dg1NfXICy5eDOedB5dfDh9/DGH4hxtGrGMGjWHEJhs2bODoo4+mSJHwzPmJZoMmFmY5HQUkAR2BpkAj4Azg0ewNxW9aZrVq1QJfrXFjGDwYPvkEhg4Nm9CGYRiGEQk+++wz+vXrh4hw7LHHhs2YiXZi4VNnemFeEZGNIrIFeBFoW+Ar9ukDl14K99yjhfeMiPLmm2/y5ptvei1G1GP9ZCQaNuaDw7+f5s2bR6dOnZg5c2bcLjoZLFFv0IjIP8CfhLLeRJEiWkW4YkVdGmHPnpBd2sgbW4AuOKyfjETDxnxwZPbTsmXLaNeuHcnJyUyePJlSuSzxkwhEfQ4NgHPuSaANcBlwAPgMmC0ij+V0TsCk4OxMnw6tWkHPnvDGGyGU2DBiG8uhMYzoJjU1lfPPPx+A+fPnH7EcR7iwHJrCMxBYiFYR/Rn4AfhPoa/asiU8+CAMGwYffVToyxmGYRhGJFi6dCkHDx5k6tSpETNmop2YWG1bRA4At/u20DJwIHz5JdxyC5x1FtjACDtDhgwB4PbbQ//vjCesn4xEw8Z83mRkZDDUN6Fl9erVcbtydkGIFQ9N+EhKgrFjISMDrr8e8rEKr1EwJk6cyMSJE70WI+qxfjISDRvzubN9+3aaNm3KsGHDmDhxohkz2YiJHJqCEFQOjT9jx6pB8+ij6rUxjATGcmiMRGLPgT0UK1KM4kWLey1KjuzatYvWrVvz3Xff8fHHH9O+fXtP5LAcmljguuugRw/4z380BGUYhmHEPXsP7OWMN87g5s9u9lqUHNmzZw/t2rXjm2++YezYsZ4ZM9GOGTT+vPIK1KkD3bvrMglGWHjppZd46aWXvBYj6rF+MhINL8b8oLmDWLV1FZNWTSI9Iz2i9w6GAwcOcNVVVzFnzhzeffddOnbsaLohB8yg8adMGRg5Etat09lPRliYOXMmM2fO9FqMqMf6yUg0Ij3mf9nyC898/QzJFZL5Z98/LN64OGL3DpZixYpx5plnMnz4cLp06QLEhm5wznV2zv3snNvtnFvtnGvqnKvlnBPn3C6/LcfyK/m+p+XQBOC+++DFF2HWLLj44tAKZhgxgOXQGPGOiHDJu5ewZNMS5vWYx6mvn8pTFz/FIxc94rVoABw8eJD169dH3ZTsYHJonHMtgeFAJ+A74BjfoSTgdyBJREI+A8c8NIEYOBBOOgluvhlM6RmGYcQdo5eOZvYfs3mmxTM0qN6AM44+g+lrpnstFgDp6el069aNs88+m61bt3otTkF4AnhSRL4RkQwRWS8i68N9UzNoAlG6NLz1FqxZAw8/7LU0ccfzzz/P888/77UYUY/1k5FoRGrMb9u7jfum3ce5x5/LzWdqMnDL2i2Zv24+u9J2hf3+uZGRkUHPnj1577336NOnD1WqVDmijce6oZhzbpHf1tP/oHOuKNAEqOac+80596dz7lXnnP+6DKm+/W8756qGTLBQXSjuuOgi6N1bE4WvuQYuvNBrieKGBQsWeC1CTGD9ZCQakRrz/Wb0Y9vebUy/bDpFnD7XtzyxJc/Of5avUr+ibZ2Cr31cGESE3r17M2LECB5//HH69esXsJ3HuuFgHuHoo9DQUkegKbpc0QTgUeBp4CxgCVAFeA0YA7QOhWCWQ5Mbu3bB6adDsWKwZIl6bgwjAbAcGiNemb9uPheMuID7zruP51tleTn2HdxHpWcqcWvjW/nvpf/1RLYhQ4Zwxx138MADDzB48GCcc57IkRt55dA45yoB24DuIvKOb18H4FEROSNb26OBjUAFEdlRWNks5JQbZcvC8OHw66/Qv7/X0hhGQuCcq+yc+8Q3OyLVOXd9Du26O+fSs82YSImstEYscSD9ALdOupXjyx/PgJQBhx0rWawkTZObeppH0717d15//fWoNWaCQUT+Af4EgvGWZLYJyYc1gyYvLrkEevXSWU/ffuu1NHHB4MGDGTx4sNdiRD0J3E+vAWmo67oL8LpzrkEObReISFm/bXakhDRCT7jH/Mvfvsyyv5fxSptXKFv8yGUDWtZuyYrNK9iwc0PYZAjEyJEj2bFjB6VLl+bWW2/N05iJAd3wNnCnc666z2PTB5jknDvHOVfPOVfEOVcFeBmYLSLbQ3FTM2iC4dln4bjjtJLwvn1eSxPzLFmyhCVLlngtRtSTiP3knCsDdAAeE5FdIjIP+Ay4wVvJjEgQzjG/dvta+s/uT7u67bii3hUB27Q8sSUA01dHzkvz7LPP0qNHD1555ZWgz4kB3TAQWAisAn4GfgD+A9QGpgA7geXAfuC6UN3UcmiCZepUuPRS6NcPBg0K3XUNIwrxKofGOXcGMF9ESvnt6ws0E5F22dp2R705e9GY/Sjg6ZzqW/hmY/QEKF68eOP9+/eH5TMY0clV465i2upp/HT7T9SsGLi2S4ZkcPTzR9PqxFaMvnp02GV6+eWXufvuu+ncuTOjR4+maNGiYb9nYbG1nOKB1q3VQ/Pss7A4+qpJGkacUBbI7n7eDpQL0PYr4FSgOurVuQ64P6cLi8gwEWkiIk2KFbMJnonEZys/49NfPqV/s/45GjMARVwRWtRuwYw1Mwj3w/4bb7zB3XffzVVXXcW7774bE8ZMtGMGTX548UU46ig1bNLSvJYmZhk4cCADbUXzPEnQftoFlM+2rzzqoj4MEVkjIr/7CnctA55Ep4oaMUo4xvzutN3c+cWdNKjWgHvOvSfP9i1rt+Sv3X+x7O9lIZXjMJl272bQoEFcdtlljB07lqSkpHydn6C6IU9i4jHFOTcbOBfIdCWvF5F6ERekYkV44w1o105X5X7iiYiLEA+sXLnSaxFiggTtp1Vo4a46IvKrb19DYEUQ5wohmi1heEM4xvyTc55k7fa1zO0xl6SieRsO/nk0px91esjlAShTpgzz5s2jWrVqlChRIt/nJ6huyJOYyKHxGTSjRWR4sOeEPIfGnxtugPffh4ULoVGj8NzDMDzEyzo0zrn3UePkZqAR8DlwvoisyNauDfC9iPzlnDsZ+Aj4UETyfNKwOjSJwfK/l3PGG2dw4+k38tYVbwV93imvnULNCjWZ0nVKSOV5//33+frrr3nppZcoUiQ2AySWQxNvvPQSVKmioacDB7yWxjDijduBUsDfwFjgNhFZ4ZxL9tWaSfa1aw4sdc7tRo2e8YBl7BuAJvjeNvk2KpSowDMtn8nXuS1rt+Sr1K/YdzB0s1o//vhjunbtytKlS7GE9PAQSwbN0865Lc65rz0vnlW5Mrz+ulYPfiZ/XxQDHn/8cR5//HGvxYh6ErWfRGSbiFwpImVEJFlE3vPtX+urNbPW976viBzla1dbRB4XEXvCiGFCOeZHLhnJvLXzeK7lc1Qtnb/lglrWbsneg3uZv25+SGT57LPP6Ny5M+eccw6TJk2iVKlSeZ+UC4mqG/IiVgyaB9H568cBw4CJzrkTszdyzvXMXDBr8+bN4ZXoqqugUyd48klYEUx438hk3bp1rFu3zmsxoh7rJyPRCNWY37JnC/dPv5+myU3p1qhbvs9PqZVCsSLFQlKP5vPPP6djx46ceeaZfP7555QrF2jCXv4w3RCYmMihyY5zbgowWURyrEQU1hyaTDZvhvr14YQTYP58XfPJMOIAW8vJiGVumnATo5aOYkmvJTSonlOR6dxp+nZT9h7Yy6KehfsdmTx5MoMGDWLSpElUqlSpUNeKBiyHJvREx2yGatXg1Vc1OfjFF72WxjAMI+H5KvUr3l7yNn3P61tgYwagVe1WfL/xe7bu2Vqg87du1fMuu+wy5s2bFxfGTLQT9QaNc66ic661c66kc66Yc64LcBEw1WvZALj2Wg0/Pf44/PKL19LEBP369aNfv35eixH1WD8ZiUZhx3xaehq3Tb6NWhVr8VizxwolS8sTWyIIM3+fme9z586dywknnMAnn3wCEPKFJk03BCbqDRogCXgK2AxsAe4ErhSR6JiI7xwMGQJlysBNN0F6utcSRT1bt2499PRi5Iz1k5FoFHbMv7jgRX7a/BOvtnmV0kmlCyVLk2ObUKFEhXzn0SxYsIC2bdty7LHHct555xVKhpww3RCYmMyhCYaI5ND4M3q01qd57jno2zdy9zWMMGA5NEas8fs/v9NgSAPa1GnDx9d+HJJrXj3uar7f+D2/3/17UF6WRYsW0bx5c6pXr86cOXM49thjQyJHNGE5NIlAly5w5ZXwyCPw449eS2MYhpFQPDHnCYq4Irx06Ushu2bL2i1J3Z7Kb9t+y7Pthg0baNmyJVWqVGHWrFlxacxEO2bQhArn4M03tUbN9dfD3r1eSxS19O3bl77mxcoT6ycj0SjomM+QDL747QuuPPlKji9/fMjkObQMwpq8w07HHHMMjz/+OLNmzaJGjRohkyEQphsCYwZNKKlaFUaOhJ9+goce8lqaqGXv3r3sNYMvT6yfjESjoGN+6V9L+Xv337Q6sVVI5Tmx0onUqlgrV4Pmp59+YunSpTjnuOeee6hVq1ZIZQiE6YbAWA5NOLj7bnj5ZZgyBVq39kYGwygElkNjxBLPfv0sD854kPX3rufYcqEN9fSc2JNxK8ax9YGtFCtyeK2xZcuW0apVK6pWrcqPP/4Ys+sz5QfLoUk0Bg+GBg2ge3ctvmcYhmGEjelrpnNq9VNDbsyA5tHs2L+DhesXHrZ//vz5XHTRRRQtWpQPPvggIYyZaMf+A+GgVCl47z3Ytg1uuQXi1AtWUPr06UOfPn28FiPqsX4yEo2CjPm9B/YyN3UurWqHNtyUySUnXILDHRZ2mjp1Ki1btqRq1arMmzePU045JSz3zgnTDYExgyZcnH46PP00TJgAw4d7LY1hGEZcMnftXPan7z+UwBtqqpSuQuNjGx9m0AwdOpS6desyb968iOTMGMFhOTThJCMDWrWCBQt0Ze46dbyVxzCCxHJojFih77S+vPLdK/zz4D+FLqaXEw/PfJjn5j/Hxrs3UrV8Vfbs2UNaWhoVK1YMy/2imXDn0Djn1pDH0kYickKg/baaYjgpUkRnPZ1+utap+fprSEryWirDMIy4Yfqa6VyYfGHYjBnQPJqnBz/NOe+fww8LfqB8+fKULh2++yU4Nxf0RAs5hZvjj4dhw3QByyef9FqaqOCOO+7gjjvu8FqMqMf6yUg08jvmN+3axNK/loYtfwZARJg8ZDLMgGLVilGqVKmw3StY4lw31MhpE5FZIjIrpxPNQxMJOnbUGU+DBuk07gsv9FoiT4kGhRALWD8ZiUZ+x/yMNTMAwpY/k56ezq233srw4cNJbpGMa+9IigIve5zrhv/L9v5ooBbwLfBObidaDk2k2LkTGjXSvJolS6BCBa8lMowc8TKHxjlXGXgLaIUuSNtPRN7L45xZwMVAkogczOselkMTH9z4yY188dsX/NX3L4q40Acc7r//fp5//nkeffRRKrapSN/pfVl3z7qQViOONYLNoXHOdQb6A8nAJqC7iMx1zjUHXvPt/9a3PzWPa90EnCIi9+fWzkJOkaJcOV3Acu1auPNOr6UxjGjmNSANOAroArzunGuQU2PnXBfM25xwiAjT10ynZe2WYTFmAO68806GDh3KwIEDD1Uhzu/q24mIc64l8AzQAygHXASscc5VBcYDjwGVgUXAuCAu+TZHem6OIOwGjXOuknOutXPuOt/fSuG+Z9Ry3nnw6KMwahSMC+Z/GJ/07NmTnj17ei1G1JOI/eScKwN0AB4TkV0iMg/4DLghh/YV0KfAByInpREu8jPml/+9nE27NtGydmjDTdu2bWPgwIFkZGSQnJxMr169ADi1+qkcXfbooNZ1CjcxoBueAJ4UkW9EJENE1ovIeuBqYIWIfCgi+4ABQEPn3Mk5Xcg5VwroBfyT103D+lTjnHsMeNh3ny1ANeCAc26wiDwRzntHLY89BlOnwq23wvnnQ5gXMYtGqlSp4rUIMUGC9lNdIF1EVvnt+xFolkP7QcDrqEvbiHHyM+anrZ4GhDZ/ZsOGDbRu3ZpVq1Zx+eWXc8YZZxw65pyjRe0WTP1tKhmSETavUDBEs25wzhUFmgCfOed+A0oCnwL3Aw3Q7zMAIrLbObfat/8X3/npHDlteyNBeGjCZtA4564F7gS6AhNE5KBzrhhwJfCqc+4XEUk8N0WxYhp6atQIunWDGTN0encC8fTTT3stQkyQoP1UFtiebd921G19GM65JsAFwN1AnkkNzrmeQE+A4sWLF1pQI/TkZ8xPXzOdU6qeErJ8ltWrV9OyZUs2b97M559/fpgxk0nL2i0ZvXQ0S/9aSqOjG4XkvgXBY91QzDnnn6A6TESG+b0/CkgCOgJNgQPABOBR9PudfT2g7N/v7AXbdonI30EJFkyjAnILcK+IfJy5w5es95FzrgSqWBLPoAE46SRdvPL//g9eeAHuzzXPyTBiFveEq44qsUNIf1mTyym7gPLZ9pUHdh52XeeKAEOAu30PS3nK4lO6w0CTgvM8wYha9h3cx5zUOfRq3Csk18tcZDItLY2ZM2dy9tlnB2zXonYLQPNovDRoPOZgHhMGMpcBf0VENgI4515EDZqvyOP7LaL6wTl3NDpde0+wgoXTNdAI+DyHY58DDfN7QedcHefcPufc6MIIFhX06AFXXw2PPAI//OC1NBGlR48e9OjRw2sxop5Y7if3hLvUPeHWo67i3/y2X/M4dRX6BOj/lNYQWJGtXXnUrT3OObcJyFw58E/nXNPCym94Q7Bj/uu1X7Pv4L6Q5c/8+++/lClThrlz5+ZozAAcW+5YGlRrwLQ100Jy34ISzbpBRP4B/gQCPTSswO+335czdyJ+32/nXEXn3ETfNSaj3+nJweTfhtNDU0JEtgU6ICL/OOcK4vN9jSzFFds4pwX3TjtNqwgvXqyLWiYANRIwb6ggxHg/vQYMBN6R/rI3r8aZ+GLq44EnnXM3ow9GVwDnZ2u6HfBfWrkG8B3QmCNd2kaMEOyYn7Z6GklFkmhWK6fUquBYtWoVdevWpWnTpvz8889B1ZhpWbslry96nb0H9lIqyRudHQO64W3gTufcFDTk1AeYBHwCPOec64AaK48DS0XkF79z/4d+vyuLyA7nXHngDeAF4KZc7yoiYdlQF9IJQO0ctp35vF5n4AM0K3p0Xu0bN24sMcG0aSIg0ru315IYxiGARVKY7/8AtjFA61zl+1ydzvkpsBtYC1zv25+MhqSSA5xTC30iLBbMPUqXLh2urjMiQKOhjSRlZEqhrvHqq69KkSJFZMKECfk6b/KqycIAZNpv0wp1/1gF2C15f4eT0JDwv2jC/stASd+xFmgC8F5gNlAr27mbgIrZ9pUH1ud133CGnMpwuKs5+xb0Qhg+C+1J4L482vV0zi1yzi3avDlGHtJatoQ+feDVV+GLL7yWxjBCxVtoDYp8IyLbRORKESkjIsniK6onImtFpKyIrA1wzh8i4iSIonpGbPP37r9ZsmlJgcNNIsIjjzxC7969ueyyy2jRokW+zm9WsxlJRZKiYvp2tCIiB0TkdhGpKCJHi8hdotO0EZEZInKyiJQSkRQR+SPb6Unog4s/u9HZUrkStpCTiITSWBoIvCUi63JL/hO/pL8mTZrETtLf00/rbKebboJly6BqVa8lCitdu3YFYPTo2E+FCicx3k/nAne5J9xDZJtSLf3lIm9EMqKdYMZ85nIHmYXu8sOBAwfo1asXb7/9NrfccgtDhgyhWLH8/QyWKV6G82uc76lBE+O6IS++BM4D5vrtOx+Yk9eJUV9d0znXCHVRHTmHLl4oWVKncp99NvTqBR99pDk2cUq9evW8FiEmiPF+Gu7bDCNoghnz09dMp3KpypxxdP5/EqZNm8bbb79N//796d+/P8HMjgtEy9otefTLR/l7999UL1O9QNcoDDGuG3JFRDoG2DeXww2cgIR1LSdfLZoL0Azmt0XkgN+xISJyexDX6AP8h6xpXWWBosDPInJmTudF3VpOwfDcc/DAA/D227qYpWEUkCVL4NRTtexRQfByLadIYGs5xSYiwvH/PZ4Lky9kXMfgq35kZGRQxFfva9GiRTRpUrih/d367zhn+Dm8d/V7XHfadYW6VqwR7FpOhbh+UJneInKExyZsBo1zri/QGy2o0xSt/NdWsual7xCR7PPRA12nNIfPW++LJgDeJiI5JsrEpEGTng7Nm8P338OPP8IJJ3gtkRGDbN8OxxyjxahffLFg1yiIQeOecDdIfxnle53jbATpLyMKJlXoMIMmNvlp8080GNKAN9u9yc1n3hzUOWvWrKFDhw4MHTqUc845JyRypGekU+25alx58pWMuMLz4RxRImDQHJEjF6iZiBwx1SucIafbgFbiK2HunHsCmOecu0R0Zc2gfH0isge/wjrOuV3AvtyMmZilaFF45x04/XS48UaYPVv3xRmdO3cG4P333/dYkuimoP30/vuwdy/4To8k1wGjfK8Drr2EzkRKrF8AI2jyGvOHljsIMiH4hx9+oE2bNqSlpZGenh4aIYGiRYpyyQmXMH3NdESkwKGrghLPOlREkgt6bjgNmmrobCYARKS/c24zMNe3EmeBXEMiMiA04kUpNWvqjKcbb9QQ1EMPeS1RyGnUqJHXIsQEBe2nt97ScNNZZ4VWnryQ/tLW7/XFkb27EQ/kNeanr5lOvSr1qFmxZp7XmjFjBldffTUVK1bkyy+/5JRTTgmRlEqrE1vx8c8fs3LrSk6umuPaimHBdGhgwhlyWgbcICJLsu2/Cc2JqSwiJcJyc2I05JSJCHTqBJ9+Ct9+CwHWFDGMQCxbpg6+//5XqwEUlFDl0LgnXHmOXPpgQ2GvW1gs5BR77D+4n8rPVuamRjfxSttXcm377bff0rRpU+rVq8eUKVM47rjjQi7P7//8Tu2Xa/PypS9z5zl3hvz60UoEQk5ryCGCIyIn+NosF5FTsx8Pp4fmHXR20pJsAo1wzu1Hp2IbgXAOhg6FefMSroqwUThGjICkJOh6bRrg3QKM7gnXEq3uWSvbIUGT+g0jX8xfN589B/YENV27SZMmPPzww/Tp04eKFSuGRZ4TKp3AiZVOZPqa6Qll0ESAYJKjAk4oClthPRF5XkSez+HYGOCkcN07LqhcGUaOhJ9/jruwU4cOHejQoYPXYkQ9+e2n/fth1Ci4ut0Bqp5zooYsvWM4MAhN6E/y22yZayNHchvz09dMp1iRYqTUSgl4PCMjg//85z9s2LCBokWLMmDAgLAZM5m0rN2S2X/M5kD6gbwbh5B41qEiMiunza/NV4HOjXgdGufcacCNQBcOX4vFyE6rVnDnnboy9+WXa1XhOOC8887zWoSYIL/99NlnsHUr3H/6VBj/J3hbq6Ik8Lb0l9BlYhpxT25jftrqaZx3/HmUK1HuiGP79u3jpptuYuzYsSQlJfHAAw+EU8xDtDyxJUMXD+Xb9d9yYfKFEbknxLcOdc71z+mYiDyR67nhrENz6CbOVQOuB7qhK23OBV4TkQ/Ddc+YzqHxZ+9eOPNM2LFDEyQqV/ZaIiNKadMGli+HtWd3xM39Ctav1/hTAShsDo2vQrADBkv/CCiZfGI5NLHFlj1bqP5cdZ5IeYLHmj122LHNmzdz1VVX8fXXX/P000/z4IMPRmzW0b/7/qXKs1V4+MKHGXhJYmRRRCCH5t1su44GLgQmikin3M4Nm4fGOZcEtAe6A63RGU9jgZrAtSLyd7juHVeUKgVjxsA558Btt+mc3DiuImwUjHXrYOpUeOqerbhXJ8LttxfYmAkRHwNTgX7uCbfF/4D0l9reiGTEKjPXzESQI/Jn1qxZQ6tWrfjzzz8ZN24c1157bUTlqliyIhfUuIBJv05KGIMm3IjIjdn3Oedao06RXAnn4pR/oUmBK4FzRaS+iAwE0sJ4z/jkzDPhiSfggw/UuIlx2rdvT/v27b0WI+rJTz+NHKmT43qWfx/S0qBbt/AKlzcfoZ7Y64Fbsm2GEZCcxvz0NdOpWLIiTY493GlYuXJlatSowZdffhlxYyaTdnXbsWTTEtZtXxexeyagDp0GXJVXo3Dm0CxF3UTnAL86534XkX/CeL/45sEH4fPP4Y474KKLILnAtYc8p3nz5l6LEBME208ZGbpaxiWXQNXJ70DDhuB9nYoTgDOkv2R4LYgROwQa8yLCtNXTaH5Cc4oW0QlyEydOpGXLllSsWJFZs2ZFvLCdP+3qteOBGQ8wadUkbjvrtojcM551qHMue5Gh0mihztQ8TxaRsG1oeOkx4FdgPzAR2AEcF877igiNGzeWuGP1apGyZUVSUkTS072WxogSZs4UAZHPnlmhL158sdDXBBZJYb77AxjFAFoU5hrh3EqXLl3oPjIiwy+bfxEGIG8sekMyMjLkscceE0AGDRrktWgiIpKRkSEnvXyStBndxmtRIgKwW8JrN6QDGb6/6cBuYAFwZl7nhnWWk+gSBwOBgc65C9HZTRnAj865ESISmVT0eKF2bXjpJfi//9NFevr29VoiIwp46y2oUAEu/esdXSrj+jxDzZGgBPCZe8LNRcPPh5D+R8bIDSMnMpc7uOjYi+jSpQtjx47l//7v/+gbJfrPOcfldS7n9UWvszttN2WKhy1fNlE4LPlPJHgvbzhzaA5DROaJSE80Y/lO4LRI3Tuu6NEDrrwSHnkEli71WpoC0aZNG9q0aeO1GFFPMP30zz/w8cfQ9bp0kt4fDW3bwlFHRUjCXFkBPAPMB1Zn2wwjIIHG/LQ10zgh6QRuvuZmxo4dy+DBg3nzzTdJ8jbp/TDa1WvH/vT9TF8zPSL3i2cd6jNg6gHH58eYAQ/q0IjIPnS209hI3zsucA6GDYPTToOuXeG776BkSa+lyhft2rXzWoSYIJh+GjtWC+r1aTAdhm7QmkVRgPTPvV4E6NRu6S+DIyGPERtkH/Np6WnM/mM27aq2Y87vc/jggw+45pprPJIuZ5omN6VCiQpMXDmRK0++Muz3i2cd6pwbCNwHFHHO9RSRd51zHYCTROSZXM/1xazijripQ5MTn38Ol10G990HzwcsyGwkAI0bQ3o6/HDKdbhp02DDBihR+CXSQrWWU673eMLtkP5SPsC9KwNvAa2ALUA/EXkvQLvOwBOo13c/8AVwp4jsyOveVocmNnh35rt0m9uNTzp/QuuarSkVxUvAdP6oM7P/mM2G+zZQxEUs+BFxIlCHZitwLlAVGCIiZzjnjgK+FpFcVxiI316Pd9q2hVtv1VyaL7/0WhrDA5Ysge+/h9uu+xf3ySdw3XUhMWYiSE5TU15DyzschVYUf9051yBAu6+BC0SkAlAb9Tg/FQ5Bjcjz7rvv0uPSHrhFjotrXRzVxgzo9O2/dv/FwvULvRYl1kkHVovIAnxrwYnIX0D1vE40gyaWef55OOkkrTmybZvX0gRNixYtaNGihddiRD159dOIEWq/dC3+gcadvK89k1+OcA8758oAHYDHRGSXiMwDPkOnbR5+ssg6EfEv2peOrREX07Ro0YLmzZvz2GOP0a1bN8qeVJazLj2LCiUreC1anrSp04airigTV00M+73iXIe+i64qcAjn3DXA2rxONIMmlilTRgvtbdqkycIxEj7s1KkTnTrlWsHaIPd+2rcPRo+Gq66CMh+9A/XrQ5OwRogiRV0gXURW+e37EQjkocE5d6FzbjuwEzWE/hd2CY2wcfXVV7Nr1y6eeuoputzYhZ3X7KTtqW29FisoKpeqzAXJF0TEoIlzHdoYGOac+wEo4/v7NvBoXidGPCkYwDmXgc5+eEJE8kwLd86NBpoDZYBNwLMiMjy8UsYIZ50Fzz4L99wD//0v3Huv1xLlyS23WLHYYMitnyZM0BlOvVutgpvmwzPPxOKSGIEELgtsz7ZvO3DkioTo7EmggnPuOLQK8R853sy5nkBPgOLFbdHvaKRhw4Z8//33PP3005zY7kTGfDSGlifGzqK87eq24/7p95P6byo1K2avDxc64lyHjvJtoF7cLcB3vrBTrnjlobkYGAoEm67+NFBLRMqj60M95ZxrnNsJK1euZOTIkQAcOHCAlJQURo8eDcCePXtISUlh3LhxAGzfvp2UlBTGjx8PwJYtW0hJSWHiRLW0N23aREpKClOmTAFg3bp1pKSkMGPGDEDXE0lJSWHOnDmH7p2SksL8+fMBWL58OSkpKSxcqLHVJUuWkJKSwpIlSwBYuHAhKSkpLF++HID58+eTkpLCypUrAZgzZw4pKSmsWbMGgBkzZpCSksK6dVpqe0q9eqRUqcKmBx6Ab75h4sSJpKSksGWLeuPHjx9PSkoK27fr78S4ceNISUlhz549AIwePZqUlBQOHDgAwMiRI0lJSTnUl2+++eZh7s0hQ4YcNmXwpZdeOqwM9/PPP3/Y0vaDBw+mc+fOh94PHDiQrl27Hnr/+OOP06NHj0Pv+/XrR8+ePQ+979u3L3fccceh93369KFPnz6H3t9xxx2H1aTo2bMn/fr1O/S+R48ePP7444fed+3alYEDs9Zd6dy5M4MHZ0226dChA8/7JVq3b9+el1566dD7Nm3aMGTIkEPvW7RowZtvvnnofUpKStjH3rPPzqBmTTh64UukAHNOPBEI3diLEHMD7NsFZE8ULo96YHJERNYDU4D3c2kzTESaiEiTYsU8eZYzcmDHDs3jvuCCC1i1ahUPPfQQ09dMp3yJ8px93NkeSxc87erq7KNJqyZ5LIm3OOdmO+f2Oed2+baVvv21nHPit3+Xc+6w1UZFZITf9raITBSRv5xzJ+d1X0++1SIyx/dydJDtV/i/9W0nAotDLFps4hycfDKkpkKnTvD0015LlCsjRow4ZEwZOZOSkkJaWtoR3oR9+zQZeMDjGbg3P4FKlaBqVY+kDIx7wrUFmgKVgW3AV9JfvvBvI/0lUCxhFVDMOVdHRH717WuI1rXJi2KoXjBiiFmzZnHttdcycuTIQw8SX375JdNWT+OSEy6hWJHYMT7rVa1Hncp1mLhqInecfUfeJxSQzIeO2bNnh+0eIaB3LpGUiiJyMNAB38LWl6CTAvy9uEOdc7cBIiLvBDw3XNO2nXN5rqgrImvycb0h6MrdpYAfgItEZFdO7eN+2nYgFi6ECy6A1q3hs8+iNgSR6b3o3r27p3JEOzn104AB8OSTsHH0TI7q0kKL0fh5wEJBQadtuydcceBz4DxgEbABOA6Ni38DtJH+kusCtc6599GHlpuBRr7rnZ/twQbnXBfUy7MOSEaTCbeKyNV5yWnTtqODt99+m549e1K3bl0mTZp0yMt9QbsLqPtqXYa0HRKx9ZFCxX1T7+PVha+y5f4tlCsRMFJaaLzUocFM23bOzQZGZzdonHO1gN+BpFwMmoloztyf2Q6dhy6B4ESkacAbh3E9hsy1GDJy2NILcM2i6IKXj/o6JPvxnqgSXZScnCwJyUsv6Xo+zz/vtSRGGEhPF0lOFmnZUkS6dhWpUEFkz56Q34cCruXEAB5kAD8wgBrZ9tdgAIsZwEN5XkO9Op+ia7isBa737U9GQ1LJvvf/8Sm93b6/w4Aqwchpazl5S3p6ujz00EMCSMuWLeXff/897Phr370mDEB+2/qbRxIWnC9//1IYgHz808deixIWCGItJ2A2sBnNf/kaSPHtr4U+rKz3fWffBqpmO3drDr/vO/O8b14NonFD82/uyq1NXC5OGQwZGSJXXy1SrJjI/PleSxOQtLQ0SUtL81qMqCdQP02bpt/aj97eIVK6tEjPnmG5dyEMmoUM4KIcjjVjAIsLct1Qb2bQeMuECRMEkF69eh02xjPH/BVjr5AT/neChxIWnLSDaVJxcEXp/mn38N3DQx2KFrFc5Lf1lCN/o89BE/lLoFOwd6Lh4LJAEzQ8fBTwETA127l/Z7+eb/+2QPv9t9gJTh6OxcpzwjldrfDMMzWf5ocfoEoVr6U6jJYtddZClMd/PSdQP731FlSuDO3TPoI9eyD6wnZ1gJwqi32H1YlJaDIyMihSpAjt2rVj2rRptGjRAucXGm/ZsiUiwpI2S7ju1Os8lLTgJBVNos1JbZi8ajLpGekULVI05PfwWIcelDzC0SLyrd/bd5xz1wFtReQV1AgC+Ms51xvY6JwrL74K3yISsICeiFTOS7CwGjTOuWuBC9CEvrdF5IDfsSEicnsQ16iOJghNAvYCLYDrgKhYUjgqqVgRPvhA82m6ddN8miLRU3Lo5ptv9lqEmCB7P23bBp98Ar16QdKYkVCnDpx7rjfC5YyT/rI30AHpL3vdE9GZ12WEnxUrVnD99dfz3nvv0aBBg0M/yv7cfPPNrNqyiq+2f0XL2rEzXTs77eq2Y+zysXy3/jvOq3FeyK8fgzpUCFymITOJ99Ax59zbOV5EpIevzesickRyVdgMGudcX6A3MAG4FbjNOddWRDb6mnQF8jRo0A98GxpmKgKkAn1EZELopY4jmjSBF16AO+/Uv/ff77VEh/Cfsm3kTPZ+GjMG0tLgttZr4JWv4KmnojHxu7h7wvUg52UNomeJZCNiTJs2jWuuuYYyZcqwf//+HNt17dqVAbMHUOSrIlxywiURlDC0XHrSpYeqBofDoIlmHeqcq4iGnOYAB4FOwEVAH+fcOcC/wK9AJeBlYLaI+NeeWhfEbbInDAPh9dDcBrQSX8VP59wTwDzn3CUikkrOCu8wRGQz0Cx8YsYxd9wBc+ZAv37qrTn/fK8lAjg0Zbt06dIeSxLd+PeTiIabGjeGUxa+q4bMDUesBhANfAvcmMdxI4F44403uOOOO2jQoAGTJk2iRo0aObbds2cPX/z0BWcdexaVSlWKoJShpVKpSjSt2ZSJqyYyqPmgkF8/ynVoErqm2snoxKBfgCtFZKUv9DQIXZdpBzAdjbgcQkQeJw9E5D85HQhX4u4OoEi2fb3RWQv1gB3hurckclJwdv79V6R2bZHjjxfZvNlraUREpFmzZtKsWTOvxYh6/Ptp8WJNBn7tlXSRE04Qad48rPemgEnBsbJZUnBkeP/99wWQtm3byo4dO/Jsf0HTC4RayGOzHouAdOHlhfkvCAOQ3//5PeTX9lKHEsQsp8JuaJrJcLRkw3DgkmDOC2diRSpwejbj6VVgADqlK6aWBY5ZKlTQfJq//9Z8mowMryXitttu47bbYqu2hBf499Nbb0HJknDDCfPg99+jMRnYMI7gyiuv5KWXXmLChAmUK5d3TZZzrjwHmhDT+TOZZFYNnrgy9Gs7xbMO9S1RMhad8j3R93eccy7P9R7CWVivL4CIPB/gWBdgoIjkWXyvoCRkYb3ceO016N0bBg+GBx/0WhojH+zdC8ccA5dfDqOL3wQffqgLkpbJtbZVoShEYb11BFhFO/MwINJfkgslXAiwwnrhY926ddx///0MGTKEypXznJhyGJ0+6sSMNTPYdN8mkorGfrrVya+eTHKFZKbdMM1rUUJGMIX1Cnn934CrRWSp376GwEciUie3c8OWQxPIkPE7NsY5NzZc9zYCcPvtmk/zyCOaT3PhhZ6JkrmmVIUKFTyTIRbI7KfJkyuwfTvccv1u6PQhXHttWI2ZQhK92YpG2Pn888+54YYbSEtLY8WKFTRtGrigayD+3v03438YT8/GPePCmAH10rz07Uvs2L+D8iWyL1FWcOJch1YEVmbb9xOaRJwrEZ/L65w7zTn3HDlkKRthwjl4802oVUvL5PsWrvSCK664giuuuMKz+8cKmf301ltwwgnQdPN42LVLQ4dRivSXOdJf5qAlypsDb5EVB2+BJQXHJQcOHOChhx7isssuo0aNGnz//ff5MmYA3lnyDgfHHGThCzmVMYo92tVrx4GMA0xbHVoPTZzr0PnAs865MgC+vy8A8/I6MSKF9Zxz1dC6Md3QhebmAndH4t6GHxUqaLji3HN1hszkyZ7Up7nrrrsifs9Y5K677uKvv9S5NnAgFBn1jlo2HnrX8sHraPL/nWg+XU2gH7qu000eymWEgYceeogXX3yRXr168b///Y+SJUvm63wRYdj3w6h/eX0euuShMEkZec6vcT6VSlZi4qqJdKzfMWTXjXMdeivwPvCPc24rUAV9QMp7wbowZiknAR3QpJ401GX0GLpOQ/VwZ0nbLKdcGDJEBESeftprSYw8ePRREedENnyTqi8GDIjIfSnkLCcGsJUBVMy2rzID8i5fHonNZjmFhgMHDoiIyMaNG2XcuHEFvs6sNbOEAcjoH0eHSrSoocvHXaTqs1XlYPpBr0UJCURglpPehhrogpTJwZ4Tzsfzv4A30FjYuSJSX0QG+owbw0tuvVWXRXj0UZg7N+K337JlC1s8DHnFCn/9tYW33tpC69ZwzIxRIAI35lbiJarYBGQvklEK2BigrRFjHDx4kH79+tG6dWvS09M5+uijufbaawt8vWHfD6NSyUo0q94s7nRDu7rt2LJnC9/8+U3IrpkIOlRE1onIAhFZG+w54Qw5LUVXxj4H+NU597uI/BPG+xnB4hwMGwaLF6th8+23kEuxq1DTsaO6Xm0tp9xp2bIjGzfCyy99CY+8A82aacgpNhgFTHFPuFfQfLkawB3Au+4Jd6gErPSXWR7JZxSQP//8k+uuu4558+bRs2dPDh48SNGiBV+vaPPuzYz/eTy3N7mdrp01pzyedMOlJ11KsSLFmLhqIhckXxCSa8azDnXOpZND4V0RydUJE85ZTinOuZpo1dC+wMvOuWlAGaz8ufeULw/jx+uMp8svV09N+dBl4efGfffdF5H7xDplytxHuXJwRfUF8OuvWvE5dujl+/twtv23+jbQ6d1hK91ghJ4pU6Zwww03sHfvXkaPHk2XLl0Kfc13f3yXtPQ0bml8C6vvWx0CKaOLCiUrcFHNi5i4aiKDWwwOyTXjXIdmn5p9FJp/NzmvE8NWh+aIGzl3IWrcXIuu7zBCRB4I1/2sDk2QTJsGbdtCy5YwcSIUi9UF2OOLyZPVznz8cXhiUy8YPVprzwRRnCwUFLQOTaxgdWjyT1paGqeccgplypThww8/pF69eoW+pohw8msnU71Mdeb2iHz4O1L875v/cc/Ue1h912pqV4ptGz7cdWhyuGc5YLGI1M2tXcSmuIjIPBHpCRyNznw4LVL3NnKhVSt4/XWYMkUL70XAwN20aRObNm0K+31ilW3b4JZb4OSTN3HT9b/D++9Dhw4RM2YMw58NGzawf/9+ihcvzpQpU/j2229DYswAfJX6Fau2rqLnmT2B+NUNoa4aHK/9lAsV0dlOuRLxObsisk9ExopIm0jf28iBW27R6sFvvAHP51gPMWR07tyZzp3znoGXqNx5J2zeDGXKdKbbVZfBjh1RXXvGiF+mTJlCw4YNefTRRwGoU6cOpUqVCtn1h30/jIolKx6a0hyvuuHEyidyStVTmLgqNAZNvPYTgHNuhHPubb9tHLAYXQ4hVyy+YCiDBukaQQ88oImnHUNXMyE7Dz0UP3UmQs1HH8F778GTT8JZZz2kM9Fq1ICLL/ZaNCOBOHjwIP3792fQoEGcdtpp3HzzzSG/x9Y9W/nop4+4tfGtlEpSIymedUO7uu148ZsX2b5vOxVKFq7Cbzz3E0cW3d0FvCUieVcnjMR8ci82q0NTAPbsETnvPJGSJUUWLPBamoRj0yaRqlVFmjQRSUsTkfXrRYoUEXnkkYjLgoerbQOVgU+A3WhRvutzaNcNfXLb4VOCzwLFgrmH1aHJmdTUVLngggsEkJtvvln27NkTlvtkrka97K9lYbl+tDE3da4wABm3vOD1eqIBIlSHpiBb5MvEGtFLqVIwYQIceyy0bw9r1oTlNuvWrWPdunVhuXasIqLlgXbuhHfegaQkWPfqq6zLyIil2jOh4jW0XtVRQBfgdedcgwDtSgN9gKpoeYjm6IxKoxDs2rWL1atX89577/Hmm2+GNMSUiYgwbPEwzq9xPqdWP/XQ/njWDecdfx5VSlUJSdgpnvupMFjIyTicatXg88/hvPPgsstg/nyolOeaYPnihhtuAOKzhkJBGT0aPv1UU5jq1wf27eOG//4Xypdndt1cE/vjCt+6LR2AU0VkFzDPOfcZcANwmJ9dRF73e7veOTcGsNhcAdi7dy8ffPABN954I/Xr1+f333/P9/IF+WHu2rms3LqSkReOPGx/POuGokWK0rZOWyb/OpmDGQcpVqTgP7/x3E+FIeoNGudcCWAIurBdZeA34GER+cJTweKZevX017VlS7j6apg6FYoXD9nlMxMMDeXPPzUR+MILoU8f387nnuPRffugf38vRfOCukC6iKzy2/cj0CyIcy8CVuR00DnXE+gJUDyE4znW+fnnn+nUqRPLli2jQYMGNGnSJKzGDMCwxcOoUKIC1zS45rD98a4b2tVtx6ilo1iwbgFNa+Zv8U5/4r2fCozXMa+8NrQQ3wCgFjor63JgJ1Art/MshyYEjB4tAiI33CCSkeG1NHFJRoZIq1YipUuL/Pabb+eaNZrH1LGjZ3LhUQ4N0BTYlG3fLcDsPM7rgebRVA3mPpZDI5KRkSFvvvmmlCpVSqpVqyZffPFFRO67ZfcWKTGwhPSe3Dsi94smtu/bLklPJsn90+73WpQCg+XQFBwR2S0iA0TkDxHJEJFJwO9AY69li3u6dNHpNqNG6d8QsWbNGtaEKT8n1hg2TGsbPv88nHiib2efPlC0KGv69EnEftoFZC9ZXR59iAmIc+5KYDDQRkTie4GbEHL77bdzyy23cP755/Pjjz9y6aWXRuS+o5aOYn/6fno27nnEsXjXDeVLlKdZrWaFzqOJ934qKBGrFBwqnHNHoTMfGonIL9mOHXIpJycnN05NTfVAwjhDBHr00EzVd98FX+y2MKSkpAAW/12zBk4/Hc4/X6N6zgGTJkG7dvDMM6R8/jngTT95VSnYl0PzD9BARH717XsX2CAiR8xVdc5diq4bdZmIfBfsfaxSMHz66af8/PPPPPDAA4Vaiyk/iAgNhjSgQskKLPi/BUccTwTd8PK3L3P3lLv59c5fOanySQW6hpf95EWl4GCJKYPGOZcEfAGsFpFeubW1pQ9CSFoaXHopzJun7gTfl6mgzJkzB4BmzYJJi4hPMjK0G3/8EZYv960NuncvNGgAJUvCkiXMWaAK34t+8nLpA+fc++g6TzcDjYDPgfNFZEW2dpcAHwJXichX+blHIho0GRkZvPDCC5QoUYK77rrLExnmrZ1H07ebMqL9CHqc0eOI44mgG37/53dqv1ybF1u9yD3n3VOga3jZT9Fs0Hge8wp2Q/Nn3keVW1Je7S2HJsRs2yZy8skiFSuK/Pyz19LEPC++KAIiI0f67ezfX3fOnOmVWIfA+zo0n6J1aNbiq0MDJKMhqWTf+y/RdeF2+W1fBHOPRMuh2bRpk7Ru3VoAue666yTDo5y4G8bfIOWfLi+79u/y5P7RQoPXGsjFIy/2WowCgeXQFA7nnAPeQutSdBCRAx6LlHhUqqTTuYsX1+ncmzcX+FIrV65k5cqVIRQutvj5Z104u317vxIzq1fD4MHQuTNccgmQuP0kIttE5EoRKSMiySLynm//WhEpKyJrfe8vFpFivn2Zmy2pko3p06fTsGFD5syZw9ChQxkzZgyqUiPLtr3b+GDFB3Q9rStligd+wE+UMd+ubjvmrp3Lv/v+LdD5idJP+SUmDBrgdeAUoJ2I7PVamITlhBPgs89gwwb9Nd5bsH9Fr1696NUr14hh3HLwoC7LVLasLp3lHJqndOedWk3vhRcOtU3kfjJCwx9//EGbNm2oUqUKCxcupFevXp4YMwCjl47OMRk4k0QZ8+3qteNgxkGm/DalQOcnSj/ll1ioQ1MT6AXsBzb5fRl7icgYzwRLVM45B8aM0bWerr8ePvhAf4jzwaBBg8IkXPTzzDOwcKF229FH+3Z+9hl88YUaM8cee6htIveTUTi2bdtG5cqVqVWrFp988gnNmzendOnSnskjopWBzz7ubBoe3TDHdoky5s857hyqlq7KxFUT6Xxq/heZjPZ+cs7NBs5FQ8IA60Wknu9Yc7QaeDLwLdBdREIzg8frmFe4NsuhCTOvvCICIlddJbJ/v9fSxAQ//CCSlCTSubPfzt27RWrWFGnQwLeAU3SAhzk0kdjiNYcmIyNDhg0bJmXLlpWZUZCLlcnXa78WBiDDFw/3WpSoodsn3aTS4EpyIP2A16LkC4LIoQFmAzcH2F8V2A5cA5QEngO+yet6wW6xEnIyoo3eveGll+CTT+Daa3UmVJAsX76c5cuXh1G46GP/fg01VakCr77qd2DQIEhNhSFDjvB0JWI/GQVny5YtXHXVVfTs2ZNz/5+98w6Tosr68HuGHAQEFMyKGNaEcU0gmHPOcc3ZT11zxrDmrKuueVfFnHMGA2ZFMWBCVFQUJc8Aw8z8vj/Obaanpyf3THXP3JfnPkNVV906VV11+9S5J6y3HiuuuGLSIs3n1o9uZYGOC7DnKnvWul1buue3X357ps6Zyus/vN7gfQv4Ou0CfCHpYUlz8KS5g8wsNzdrrjSjfGvRQtNCpCw1O+xQb0vN0KFDNXTo0OaVK88480y/TE8/nbby66+ljh2l/fbLuk+S14looSkoXnrpJfXv318dO3bU1VdfrfLy8qRFms+UkinqfFFnHfn0kXVu25bGhuLSYvW7op+G3T2swfsmPDbMBT5Ma4cr4/nCLTSTgT+Bt4FhYf11wM0Z236OB/s0+bnOex+aSJ5z7LHu2Xrsse5X8/DD0KlTrbtcccUVLSRcfvDeex7AdNBBsN12YaWCI3DnzlDD9Whr1ynSeL766iv69OnDCy+8wKBBNfuoJMF9Y+9jTtmcWp2BU7Sle75rh66cMfgMTnjxBF7/4XU2Xqb+dVUTvk5lqjtH1WnAl0ApsBfwtJmtDnTHFZ10pgML5EKwgkqs1xBiYr0W5uab4eijPaT70UfrVGraCiUlsMYaHhA2diz07Bk+ePRRVwCvuw4SSnJWG0km1msJWkNivbFjxzJx4kS23nprJDF37txmLyrZUCQx6JZBdGrfiQ8O+yBpcfKOOWVzGHj9QJbutTRvHvRmYhFoDaExifXM7AXgWWAgnkfu6LTPxgLDJT3aVNmiD00kNxx1FNxyCzz7rFfonjOnxk3HjBnDmDFjWk62hCgvdx3vm2/gzjvTlJniYq/XtNpqvkENtJXrFGkYFRUVXHfddayzzjqceOKJlJeXY2Z5p8wAvPfLe4z9YyyHr1m3dQba3j3fuX1nzhpyFm///DYvff9SvfcrwOskwIAvgPkmxFDqZNmwPgdHyYP57OZo0YcmIW69VQJpq62k2bOzbtIW5slLS6V99vFLcd55GR+edpp/8NZbtfYRfWiiD00mv/766/yMv9tuu61+//33pEWqlYOeOEjdL+6uGXNm1Gv7tjA2ZDK3bK6WumYprXPrOvXO4Jzw2FBrlBPQC9gSj2JqD+yLZ/1eAVgIn2LaNXx+GTmMckp8YGmuFhWaBLntNr+1ttwyq1LzySef6JNPPml5uVqIOXOkHXf0S3DxxRkffvml1L69dOCBdfaT5HWKCk3+8euvv6pv377q3LmzbrrppsTKF9SXabOnqctFXXT4U4fXe5/WPjbUxO0f3S6Go6fGPVWv7RMeG+pSaBYCPgBmAtOAd4HN0z7fDBgHzMadh5eurb+GtOhDE2ke7rwTDj0UNt8cnngCunRJWqIWobgYdt4ZXn4ZbrjBfaXnI/n1+Ogj+PprWHjhxOSsi+hDkz9Imu9bceGFF7Lbbrvxt7/9LWGp6uamD27imOeO4cPDPmStRddKWpy8Zl75PFb894r06NSDjw7/iCLLX2+QfC5Omb9XLVLYHHww3HGH/7LvsIN7xwY++OADPvig9TkITp/uRclffdX1uSrKDHh64FdfhX/9q17KTGu9TpH68+6777LGGmvMzzlyzjnnFIQyI4n/fPQf1lxkzQYpM231nu/QrgPnDT2PMZPG8MS4J+rcvq1epzrJlakn31qccsoT7r5bMpM23dSz4qp1zpP/+ae01lo+m/Tgg1k2mDFDWnRRaY01pLKyevUZfWiar+X7lNPcuXN15plnqqioSEsssYTefvvtpEVqEO9NfE8MR7d8cEuD9muNY0N9KSsv0wo3rKBVblpF5RW15xHKZx+aJFvMQxNpXv7xDygq8r/bbQdPP82NVVLlFj6TJvlM0rff+uzatttm2eiCC7yo56OPQrt29eq3tV2nSP347LPP2H///fnss8846KCDuOaaa+g5P0SuMLj1o1vp1qEbe6+6d4P2a8v3fLuidgwfNpy9H92bh754qNYaT235OtVG9KGJtAz33utKzUYbwTPPQLe8nIJtMD/+CJttBr/95jUmN9kky0ZffAGrrw4HHgi33dbCEjaO6EOTHGeccQZ33XUXt912G9tvv33S4jSYGXNnsMhVi7DPKvtw2w6Fcb/nCxWqYNAtg5hXPo/Pj/6c9kX5Z3OIPjSRyH77wT33wBtvMHrwYEa/+mrSEjWZb7+FIUNg8mR3FcqqzEhwzDGwwAJwySUN6n/06NGMHj06N8JG8ppvvvmG9957D4Dhw4fz+eefF6QyI4n/e/7/KJlXwpFrH9ng/dv6PV9kRZw/7Hy+/utrRowdUeN2bf061UjSc17N1aIPTZ4yYoSGgoZ27Sp9+mnS0jSasWOlfv2kvn2ljz+uZcM77pBAuqVhvgRS4vPk0YemBSgvL9f111+vLl26aI011sj7UOy6uP7d68VwdN7r5zVq/7bsQ5OivKJcq9+yugZcN0ClZaVZt4k+NNlb4gI0V4sKTf4y7rbbNK5PHy/MePXVUh4V0qsPH3wg9e7tPr5fflnDRuXl0oUXukP0kCH1dgROZ9y4cRo3blzThG0kSSo0QG/gcTwZ14/APjVstwrwIl4ATw05Rj4oNBMmTNAmm2wiQFtvvbV++eWXpEVqEq//8Lrand9OO9y/Q51OrTWR5D2fTzw17ikxHN3+0e1ZP094bMhbhSb60ESSYfJkz1Pz1FPuhHL33bDYYklLVSdvvulOv336eAT2gAFZNpo50/1lHnvMp9puvbXg8vAk6UNjZvfj0+GHAKvjNWA2kPRFxnYrAINxheYJSfUuhJO0D81XX33FuuuuiySuueYaDjnkkIKo41MTP03/ibVuXYu+Xfvy3qHv0aNTj6RFKmgksd4d6/H7rN/55rhv6NiuY9IizSf60DQRMzvWzD40s7lmdnfS8kSaxqhRoxj15ZceEnTrrTB6tNc1erTJtcmalZdegi23hEUXdcUmqzLz7bew3nrw5JNw9dXwv/81WpkZNWoUo0aNaprQBUao7bIrcI6kWZLeAp4C9s/cVtLXku4gV3VgWoDy8nIAVlhhBY488kg+++wzDj300IJWZmbPm83OD+5MaXkpT+z5RJOUmbZ4z2fDzLhg2AX8OP1H7vj4jmqfx+tUA0mbiOrTgF2AnYCbgbvrs0+ccspfqs3/fv21tPbaEnhJgBn1q/vSkjz+uM+QDRok1Vg+57nnpJ49pT59pFdfbfIx26IPDbAGMDtj3cnA07XsM5ACmHJ66KGHNHDgQE2cOLHFj91cVFRUaL/H9pMNNz399dNN7i/60FRSUVGhDe/YUItdtZhmz6taQib60NQwFiQtQIOEhYuiQlP4fP/99/r++++rriwtlc46SyoqkgYMkEaPTka4DIqLpYsuktq1k9ZdV5oyJctGFRXSv/7l/jKrry798ENOjp31OrUQCSo0Q4BJGesOA0bWsk+9FBrgcOBD4MOOHTs2w1XLzqRJk7THHnsI0DrrrKPvvvuuxY7d3Fw9+moxHF046sKc9JfkPZ+PvDb+NTEcXfvOtVXWJzw2RIUmJ8JGhab18+ab0tJLuwZx3nnSvHmJiFFeLv33v9Lii/tTsssuNRiOZs6Udt3VN9p77/nZkAudhC00JRnrTipUC829996r3r17q2PHjrrwwgs1L6H7uTl45ftX1O78dtrlwV0a7QQcqZthdw9Tvyv6qbg0P8aWfFZoCsKHpr6Y2eHB1+bDyZMnJy1OpAZeeeUVXnnllewfDh4MY8bAPvvA+ef78nfftah8r74Ka63leQD794dRo9y9Z4EFMjb87jtYf314/HG48kq47z7o2jVnctR6nVov3wDtzWy5tHWDKCA/mXReeOEFll9+eT755BPOPvts2rfPv0RpjeGHqT+w5yN7skLfFbh7x7tzVkyxjd7ztXLhxhfye/Hv3PTBTfPXxetUA0lrVA1pRAtNq6De878PPCD16iV16+b5XJo5R8fnn0vbbCOBtNRS0ogRtUSUP/+8y9a7t/Tyy80iT1v0ofFD8wBwP9AN2BCYDqycZTsDOgMrAQr/71SfYzSXhaa8vFw333yzPvvsM0nSrFmzVNaIkP18pri0WINuHqRel/bSt399m9O+ow9Ndra4Zwv1vbyvZsxxM3H0oalh7EhagAYJGxWaVsFPP/2kn376qb4bS8OGaf68z59/5lye336TDj/c3Xd69pQuv1yaPbuGjSsqpEsucX+Z1VaTxo/PuTwpGnSdckzCCk1v4Ak8D81PhDw0wJLALGDJsLx0UGTS24T6HKM5FJpvvvlGQ4cOFaDjjz8+5/3nAxUVFdrrkb1kw03Pf/t8zvtP8p7PZ1LFPv/1xr8kJT42RIWmSUJC+/D2dQlwT/h/+9r2iQpNK6K83LWMDh2kRRZxhSIHSaVmzZIuuMANQO3bS//3f9LkybXsMHOmtPvu/tjsuad30EpJUqFpiZZLhWbevHm64oor1LlzZ/Xs2VO33357wWf8rYnL37pcDEeXvHlJ0qK0ObYbsZ0WvHRBTZs9LVE5okLTVCFheJY3seG17RMVmvzl+eef1/PPN+Lt7pNPpPXX99sWpL/9TTrzTE/d24AfkLIyn8FadFHvZtddpW++qWOn77+XVl3VzTiXX97s019SE65TDogKTf254YYbBGiHHXYo+Gy/tfHidy+q6Pwi7f7Q7s2msCV5z+c7H//68fyyEgmPDXmr0MRMwZEWZ9iwYQCMHDmycR38/LMn5Xv8cXjjDSgvhyWWgJ139jZ4MNTgfPnSS3DyyTB2LKy7Llx1FWy4YZYN58yBr76Czz7zdtddvv7BB2HzzRsndwNp8nVqArHadu2UlpYyYcIEll9+eebMmcOLL77IDjvsUNAJ8mrj+ynfs85t67B4j8UZfchounfs3izHSfKeLwR2eXAXXv3hVVZ9blXaF7VPamzI20zBUaGJtDiTJk0CoH///k3v7K+/4OmnXbl56SVXRPr0gR12cOVm882Za5158UX49799k2WWgcsug912A0Pwyy+VikuqjRvnihJA584ezXT77TWkB24ecnqdGkhUaGrm/fff5+CDD2bWrFmMGzeOzp0751i6/GJW6SzWv2N9fpnxCx8e/iEDFmy+ZyDJe74QGPv7WAbdMojjVjqOM4ackdTYEBWaliYqNG2QWbPghRfg8cfRM89gM2Ywp303XmBrHirbmU97b8JZB/zM7it8Roev0pSXKVMq+1hqKS/DkN4GDqzR4tNaiQpNdUpKSjj33HO55pprWGSRRfjPf/7Dtttu20wS5geS2OORPXjsq8d4ft/n2WLZLZIWqc2z1yN78cw3z/DD8T+wULeFWvz4+azQtK1ROpIXPP300wBsv/32Oe23vEt33uy7Gw8ssBtPti9lNV5nT3ucXdo/yU5lj8AU4NqwcbdusOqqbqYZNMgVl1VWgV69cipTU2iu6xRpOD///DNDhgzhxx9/5IgjjuCyyy6jZ8+eSYvV7Fz61qU88uUjXLH5FS2izMR7vm6GDxvOQ48/xBFXHcFj5z6WtDh5RbTQRFqcXM6TV1TAu++6a8tDD8GkSZ7bbocdYK+9vJhk545ho3fe8Smj1Vbzeaei/M4rGX1omo/6Wmjmzp1Lp06dkMThhx/O/vvvz0YbbdQCEibPc98+x3YjtmOvVfbivl3uaxH/oOhDUz/6r9KfycWTeeuNt1h/ifVb9Nj5bKGJCk2kxfnzzz8B6Nu3b6P2l+Djj12JefBB+Okn6NQJttnGlZhtt3UDTKHT1OvUFNq6QjNv3jyuu+46rr76aj788EMWXXTRFpQuWcoryrn949s59ZVTGbDgAN4++G26dshdBuzaSPKeLyQ+++Ezdrx/RyZpEvfsfA+7rbRbix07nxWa/H5FjbRK+vbt26ABS4KJE+HJJ+GMM2D55WHtteGaa3yW6H//gz/+gMcegz32aB3KDDT8OkVyw9tvv82aa67JKaecwjrrrENrfenLxps/vsnat63Nkc8eyaB+g3hyrydbTJmBeM/Xl9WWWY33j3+fNfqvwe4P786Vo6/My/vUzJYzszlmdm9YXtrMZGaz0to5uTpe9KGJtDiPPebzvrvssku1zyT48Uf46CO3wqT+pkpzFRXBxhvDaad5EFOfPi0pectS23WK5J7y8nKOOOII7rjjDpZYYgmeeOIJdtxxx6TFahF+nv4zp75yKg98/gBL9FiCB3Z9gD1W3qPFw9DjPV8/Utfp1QNe5R9P/INTXj6F8VPHc/3W19O+KK9+1v8NfJBlfS9JZbk+WKudclpjjbX18ccf0krTQhQ0qXny114byfjx1ZWXqVN9u3btYOWVvVDkmmt6GzSo9Vhg6iL60DQfNU05HXroofTu3Ztzzz2X7t2bJ9dKPjF73myuHH0ll759KRWq4NQNTuW0wae1qFUmnehDUz/Sr1OFKjjz1TO57O3L2Ga5bXhwtwebLU8Q1H/Kycz2AnYBvgQGStrPzJYGfgA6RIWmAZitrfbtP6R3b3+Lz9Zq+qxjx6Slbz3MnQu//uq58CZO9Pbdd9P58ksYO7YnM2b4dh07etBRSnFZay1fbuUpPmpl+vTpAIlE07QVhebzzz/nuOOO49prr2XQoEGebbQNvAVJ4vFxj3PSSycxYdoEdltpN67Y/AqW7rV0onIlec8XEtmu038+/A/HPHcMq/ZblWf2fobFeizWLMeuj0JjZj2AD4FNgUOortD8imf8fxk4RdKfuZAtr2xTuWTxxWH//T3vWqqNHw8ffOD/nzu35n27dYMFF6y59epV82edOrXYKSZOSYnnpEspKtnaH39U32+BBXqy0kqw776VysvKK0dFMpM4qDcfkjjttNO4+uqr6dmzJxMnTmTQoEFtQpkZ+/tYTnjxBF774TVWXXhVXjvgNTZeZuOkxQLiPV9fsl2nI9Y+giV7Lskej+zBenesx7P7PMtq/VZrjsO3N7P0iJtbJd2asc2FwB2Sfs54pv4E1gHGAH3wKan7gC1zIVirtdDUFuUk+Y9xStGZMqWq4jNlik97ZGt1RXq2b+8KUbduHj6c+n9dy127+r7t2/tUS+pvTf9PX9eunYcvN6aVlvo5zZrV8L8lJdXPv3dvVyZraostBs8//yAAe+65Z1O/5lbNgw8md51au4WmqKhIkjjkkEO47LLL6NOanbECU2ZP4bzXz+OmD2+iV+deXLjxhRy+1uF55XOR5D1fSNR2nT6d9CnbjtiWGXNn8Mgej+Q8f1BdFhozWx1XUtaQVGpmwwkWmizb9gd+A3pKmtFk2dqiQtMUSkth+vSaFZ7UD31xcWVLX878rKIi5yI2mW7doHv3uv/27u0llNKVla71mHqP8+T1I/rQNB9FRUV688032TBrIa/WRXlFObd+dCvnvH4OU+dM5ci1juSCjS+gT9f8U+Li2FA/6rpOE2dMZNsR2/LFH19wy3a3cOiah+bs2PVQaE4A/gXMDKu6A+2AryStmbFtP2AS7iQ8vcnCJV0ds7laIVTbrqiQ5syR/vpL+vln6YcfpO++k8aNk774Qvr0U+njj72Y9DvvSG+9JY0aJb36qvTSS9Jzz0lPPy09+aT/ffZZ6fnnpRdflF5+2bd7/XXf5803pbff9n7ee8/7/Ogj6bPPvJD0779Ls2ZJ5eXNf97FxcUqLi5u/gMVOEleJ1p5te2ioq666y4/19JSaehQ6Z57fLm42JcfeMCXp03z5Ucf9eXJk335qad8+bfffDlV/Pinn3z55Zd9+fvvfXnkSF8eN86X337bl8eO9eX33/flTz7x5U8+8eX33/flsWN9+e23fXncOF8eOdKXv//el19+2Ze/+X62nv3mWS1z7FFiqde1/rU769NJn+qpp/zzyZN9+0cf9eVp03z5gQd8OXXr3XOPL5eW+vJdd/lyiltvlTbdtHL53/+Wttqqcvnaa6Xtt69cvuIKaZddKpcvuUTac0//f3Fxsc4+u1j77lv5+TnnSAceWLl8+unSYYdVLp90knT00ZXLxx/vLcXRR/s2KQ47zPtIceCBfowU++4rXXBB5fKee7qMKXbZxc8hxfbb+zmm2GorvwYpNt3Ur1GKoUPV5Hvv4Yd9bKjt3ps+Z7o2uvpAsdTr2veqW1VeUZ6Te486qm0DXYH+ae1K4BFgIWBdYAU8ZUwf4EHg9dr6a0jLH1tjG8TMfW46dXJrR1uha33MOJF4nSINYva82bw6fjR3j/mZMZMGsfLNuzGv+3gWKt2flRZemUf3eJRF+hk/Ji1oLXTt2jX60tWDTp260rUr84MqstGjUw9u2/42ht35PfeNPY+yR1/lzL/9F2heR09JJcB8hwQzmwXMkTTZzDYDLgYWBmbgTsF75+rYccop0uLce++9AOy3X7Up1UgaSV6n1j7l1JRq2/lCcWkx70x8h5ETRjLqx1G8N/E95lXMo8iKWGuRtRi61FCGLj2UTZfZlC4duiQtbr2IY0P9aMh1ksQVo6/gtFdOY8MlNuTJvZ5s0nRjPmcKjgpNpMWJ8+T1I/rQNB+FqNDMKp3F6J9Hz1dg3v/lfcoqymhn7Vhr0bUYttQwhi09jA2X3JAenXokLW6jiGND/WjMdXroi4c44PEDWLLnkjy373MM7D2wUceOCk0CRIUmf5k3bx4AHTp0SFiS/CbJ65SkQmNmvYE7gC3wMM8zJI2oYdsTgdOALsCjwFGSaknK4OSjQlNWUcYfxX/w28zfmDRrEr/N+o3fZv7Gb7N+45NJn/Dhrx9SVlFG+6L2rL3o2gxbahhDlx7KhktsyAKdFkha/JwQx4b60djrNPrn0exw/w6YGeOOGdcoS00+KzTRhybS4sTBqn604ev0b6AU6AesDjxrZp9K+iJ9IzPbEjgd2ARP1PU4cH5YlygVqmD2vNmUzCuheF4xJfNKmDZn2nwFJfU3XXGZXDKZClUPe+zdpTcr9l2RUzY4hWFLD2ODJTZo1kywSdKG7/kG0djrtMESG/Duoe/y0vcv5WWUW1OJFppIi3P33XcDcOCBByYqR76T5HVKykJjZt2AqcAqkr4J6+4BfpF0esa2I4AJks4My5sC90nqX9dxOnXppJvevomyirJqrVzl2ddXlFNaXkpJWQnFpcVVlJXM5ZJ5WZI0pVFkRfTr1o9FFliERbqHFv7fv3v/Kv/v1L7tZOuMY0P9SHhsyFsLTVRoIi1OnCevH23Rh8bM1gBGS+qStu5kYKik7TO2/RS4WNKDYbkvMBnoK+mvWo/T0cRZdcvToagD7Yra0b6oPe2L2tOhqANdO3SlW8du/rdDt+zLWdb36NRjvqLSt2tf2hW1a/D1ae3EsaF+JDw25K1C02qnnD766KNZZvZ10nK0EH1xX4OCoglp5gvyfBtJXzNL4lyXSuCY4Em4MhNsTQeyOYlkbpv6/wJANYXGzA4HDp+/Yji1m1GAeeFfgdMeyHkhwOakCWNDwZ1rE2hvZkmca96GzLVahQb4ujVHaaRjZh+2lXOFtnW+belcA7OAzBCdHlRmHa1t29T/s22LvN7MrdC2rms819ZJWzrX+lKUtACRSCSSxjf4m+dyaesGAV9k2faL8Fn6dr/XNd0UiURaJ1GhiUQieYOkYuAx4AIz62ZmGwI7Avdk2fx/wCFmtpKZLQicDdzdYsJGIpG8ojUrNJnlzFszbelcoW2db1s61xRH4/P0fwD347llvjCzJc1slpktCSDpBeBy4HXgx9DOq+cx2tJ1jefaOmlL51ovWm2UUyQSiUQikbZDa7bQRCKRSCQSaSNEhSYSiUQikUjBU7AKjZkda2YfmtlcM7u7jm1PNLNJZjbdzO40s4JLvWlmvc3scTMrNrMfzWyfGrYzM7vIzH4J5zvSzFZuaXmbQn3PNWw7wMyeMbOZZvanmV3ekrI2lYaca9o+r5mZzKw1p11oNHFsiGND2LagxwaI40NDKViFBq/dchFwZ20bpdV72RRYGhiA13spNNLr2+wL3FzDYLQ7cDAwBOgNvEP2CJF8pl7namYdgZeB14D+wOLAvS0oZy6o7/cKgJntS+vOH5UL4tgQx4bWMDZAHB8ahqSCbvjAdXctn4/A06OnljcFJiUtdwPPsRt+Uy+ftu4e4NIs254GPJS2vDIwJ+lzaKZzPRx4M2mZW+Jcw2c98Twt6wEC2id9Dvnc4thQbds4NhRQi+NDw1shW2jqy8rAp2nLnwL9zKyQSo0uD5QrFOsLfIqfWyYPAAPNbHkz6wD8A3ihBWTMFQ051/WACWb2fDApjzSzVVtEytzQkHMFuBi4GZjU3IK1EeLYEMeGfCaODw2kLSg0tdV7KRQaUt/mN+BN4GtgNm5mPrFZpcstDTnXxYG9gOuBRYFngSeDubkQqPe5mtnawIbADS0gV1shjg1xbMhn4vjQQNqCQtOgei95SkPq25wHrAMsAXTGfQJeM7OuzSph7mjIuc4G3pL0vKRS4EqgD/C35hUxZ9TrXM2sCLgJOF5SWym81xLEsSGODflMHB8aSFtQaFpDvZeG1LcZBDwoaaKkMkl3AwsCKzW/mDmhIef6GT5XXKjU91x7AGsDD5rZJOCDsH6imQ1pfjFbLXFsiGNDPhPHh4aStBNPYxvuyd0ZuAR3lOpMFicoYCt8TnEl/OF9jRqcqvK54fPf9+OOYhvipseVs2x3HvAW7hVfBOwPFAO9kj6HZjjXFYASYDOgHW4+/x7omPQ55PJcAcMjNVJtHXywXqyQzrUFr2kcG+LYUPBjQ33PN44PadciaQGa8EUPD19aehsOLImb6pZM2/afwO/ADOAuoFPS8jfifHsDT4QB6Cdgn7C+yvmGwfvf+Hz5DOBjYKuk5W+Ocw3rdgG+C+c6Mtvgls+tIeeats/StNEohnpe0zg2ZLmH4thQWGNDQ883bZ82Oz7EWk6RSCQSiUQKnrbgQxOJRCKRSKSVExWaSCQSiUQiBU9UaCKRSCQSiRQ8UaGJRCKRSCRS8ESFJhKJRCKRSMETFZpIJBKJRCIFT1RoWilm1sXMnjaz6Wb2sJkdaGZvJS1XCjObZWYDmqFfM7O7zGyqmb2f6/4jkUInjg1xbGitRIUmTzEzmdnAjHXDzezeenaxG54RtI+k3Rt47GrHCdVqD21IP7Uhqbuk8bnqL43BwObA4pL+3thOzGyYmU3MnViRSG6IY0OjiWNDKycqNK2XpYBv1PaKlS0FTJBUnKQQZtY+yeNHIrUQx4YEiWNDM5J0quLYsjc8dfXAjHXDgXvD/4cBE4GTgD/wdOYHhc/OB0qBeXh67EOAA/Hqs6m+rgN+xtOCfwQMCeu3ytj3U+BfQDkwJ6y7MWy7IvAyMAX4Gtgjrf+78TTrz+LVYd8Dls12fvXYdovQ/3S8quwo4NAs1+yQIGN5kPN8vEbPM8BkYGr4/+Jp+/TGU97/Gj5/Aq+bMhuoCP3MAhYFOgHXhm1/Df/vlPF9nIbXB7on6XsottbZ4tgQx4bYang2khYgthq+mPoNWmXABUAHYBu8GNuCmduG5cxBaz+gD17I76TwoHXOtm9YNzJ9oAgP9s/AQaGPNYE/CfVSwkA0Bfh7+Pw+4IFs51fbtkBffGDdJXx2PD6gVhu0ajjPPsCuQFdgAeBh4Im0z58FHgyDWwdgaNr1nZjR9wXAu8DCwELAaODCjO/jsjC4dUn6HoqtdbY4NsSxIbbsLU45FTbzgAskzZP0HP62sEJ9dpR0r6S/JJVJugp/0Oq1b2A73Hx7V+jjY+BRfH4+xWOS3pebtu8DVq+lv5q23Qb4QtJj4bPr8QG2XoRzfFRSiaSZ+BvlUAAzWwTYGjhS0tRwHUfV0t2++PX+Q9Jk/C1v/7TPK4DzJM2VNLu+MkYizUAcG+ogjg2tjziXl7+U428F6XTAB6oUf6nqPHgJ0L0+nZvZScChuLlUQA/8jae+LAWsa2bT0ta1B+5JW04fXOqSraZtF8Xf9gCQpIY45JlZV+Aa3Fy+YFi9gJm1A5YApkiaWs/uFgV+TFv+MaxLMVnSnPrKFok0kjg2OHFsiFQhWmjyl5/wMvDpLEPVh6ZRmNkQfD53D9wM3Qufg7awSbYS7JnrfgZGSeqV1rpLOqqp8mXwG7B4muyWvlwPTsLfLteV1APYKNUVfg69zaxXlv2yXYNf8cE6xZJhXW37RCK5Jo4NThwbIlWICk3+8iBwtpktbmZFZrYZsD3wSA76XgCf050MtDezc/G3sBS/A0ubWVHGuvTcEM8Ay5vZ/mbWIbR1zOxvOZAvnWeBVc1spxAdcAzQvwH7L4A78U0zs97AeakPJP0GPA/cZGYLhnNIDWq/A33MrGdaX/fj38lCZtYXOBeob6hsJJIr4tjgxLEhUoWo0OQvF+COZW/hHvaXA/tK+jwHfb+IP6zf4G91c0gz3eLOcQB/mdnH4f/XAbuFpFTXhznnLYC98DeRSVQ6veUMSX8Cu+Pn/xewEvAhMLeeXVwLdMGdEt8FXsj4fH/cVD8Ojwg5IRx3HD5IjTezaWa2KHBROPZnwFjg47AuEmlJ4thAHBsi1TEpWsIihUN4M5yID+CvJy1PJBLJD+LYEIkWmkjeY2ZbmlkvM+sEnInPcb+bsFiRSCRh4tgQSScqNJFCYH3ge9w0vD2wUwx9jEQixLEhkkaccopEIpFIJFLwRAtNJBKJRCKRgicqNJFIJBKJRAqeqNBEIpFIJBIpeKJCE4lEIpFIpOCJCk0kEolEIpGCJyo0kUgkEolECp6o0EQikUgkEil4okITiUQikUik4IkKTSQSiUQikYInKjSRSCQSiUQKnqjQRCKRSCQSKXiiQhOJRCKRSKTgiQpNJBKJRCKRgicqNJFIJBKJRAqeqNBEIpFIG8bMNjOzr8zsOzP7Vy3btTOzT8zsmZaUL1I/zKyHmT1gZl+b2ZdmtnVt6zP2XcLMXg/3wedmdmzLn0HTaZ+0AJFIJBJJBjNrB9wEbA1MAN4wsw0kjc6y+fHAV0CPlpMw0gCuBUZJ2it8rz3rWJ9OGXCSpI/NrDvwkZm9KumrlhA8V0QLTSQSiaRhZheb2e9mJjM7MGl5mpl1gB8kfS+pHPgfsEvmRma2OLAtcHuuBTCzu83slVz325Ywsx7AxsAtAJLKJU2paX3m/pJ+k/Rx+P8s4Gtg8ZaSP1dEhSYSiUQCZrYucAZwOLAI8GALHXcbMxtjZnPNbIKZ/bOO7YcHhSuzDczY7hQze8fMpprZNDN7y8y2SttkceDntOWfgMWyHPJa4FSgonFnWCvHA7s3Q78tjpn1NbObzezX8F3+YGZHZmzToO867NPNzC41s/FmNsfMxprZbmmbDAAmA3eEacF7zGzBWtbXdqxlgDWB9xt6/kkTFZpWSBjsvmvgPsPCgJhTrby5+s1nzGzpcM6Dk5Yl0mCWAyokPSlpkqTZzX1AM1sbeBJ4AVgdGA5cnPlDmIUJuNKV3n7I2GYT4E78LX1d4F3gGTPbsCZxssi3HfCHpI/qPpuGI2m6pKnN0XdLEqZq3gAGAnsDKwD7AF+mbdPY7/pWXOk7Alg5LD9gZluGz9sDawF3SloD+Bb4Vy3razqHBYBHgRMkTa/nqecPkmLLwwb0A27AB61SXMt+BFi9Hvt2B/o28Hgdgf5AUY7PYxggYPGM9V2BEmC1tG1SbSowGtimgccaHPZfuhFyfgcMz9E5Lx3kGJz0fRRbg763uzPuQ4X1g4G3gZmhfQpsmcPjjgBGZ6y7Ap8Kqmmf4cB3jTzeWOCq8P/1gBfTPjsCuDJj+0uAiWEsmhSe2wdyfN1fSVseiU9tnROONyVs0y1jv2NwZWEu8AfwSNpnzfqd1XAe54dr1CnH33VnYB6wV8b6J3HfGMLY/UvaZ38D3qtpfQ3H6QC8BJzSnNepOVu00OQhZrYE8CGwAXAUrvFvi9/U72aYjNP3KzKzdpJmSfqzIceUVCp/I20Ok3I2tgJ+k/RZ2ro18bfMDYBPgCfMbOUWkicSOR44ASgnWDyCE+VT+I/DmqENx3/UMbMzzWxWHe3MOo67If7Gns4LwNJ1WDYXN7OJoT1vZhvUdYJmVgQsAKTGhw+AAWY2IJzrAcAT6ftIOkPS4pKWBvYCXpO0V13HCsc7MFgrl67P9mnsBvTGX3b2AXbCp7xS/Z4PXIY7NK+Kjydjwme1fmc1yJmL73FX4C3gGjP7zczGmdkVZtY1bZvGfNcdgHbAnIz1s4H1zKyDpEnA92a2SvhsU+CLmtZnOX8D7gC+lHRFHeeZvyStUcVWveEP4ySgR5bPngufdSG8pQF7AuNwT/VVyPL2hg/UE/GH+kVgf9IsJ2RYUtKWN8fNqCX429CWGf3+C498KMHn4m8BeqZ9XqXftPX3Et4Es22DD7oCjktbtwjwADANf5hHAmuHz5Ym4+0aGBk+WxN4Hn+Lm4UP4lul9Tsyy75Lh88G4ibYabjl6CVg1Yxz2SN8D3Nwy9IORAtNQTbgQKAsbXnB8F0Oq2H73uEeqa31ruOYpcDhGetWDsddp4Z9tg733WrAEPzNvxzYvI5jnR3u5fRnbQt8/PgeuDRt/XPAohn7DwOeacD13Dn0vVgt29xNdQvNZxnb3AK8E/7fLTz/J9fQX63fWTN+j7PDGPBfYO0wDvwE3NeU7zps82YYt5bGXUW2DscTsEjYZlVcifsMH+/617Y+/Tum0rr9Ga4YjgF2SPp5bGhLXIDYMr4QfxjLgbNr+HxIuPF2oPKtYxRuOl4eVwSGk6bQ4FELZfgb6HL4oP0r9VNoPsXffpbDIyCmAb3S+j47yLQ0rv2PA/6b9nmVfsO6DrhysGENx+4InBzWHRHWWXgox4SHb1XcYXMq0Bd/g0kpEuvgptbeaf3/A1gpXKOL8IFl+fB5b9z34MqwX//QXz9cebw5HG8FfBrwL2ChsO8auKPkJeHzXUJfUaEpwEaGQhPW3YZPazwPnA6skONj1vYjt3YD+hkFvFTL50fj48VmSV/nDLnuprpC87+Mbc4Bxof//z1cm9Vq6bNZv7MajjkX+AVon7ZutyBraixq1HcNLAW8EsaaMtzKckPYb+Gkv8N8aXHKKf9YDtfAq5kFA6n1K4S/nYH9Jb0r6RtJM7PscxJwv6TrJH0r6W5cOakP50t6QdK3uMm3J+5cCICkiyS9KWmCpFfxCJG9gmm7JjbGH/53MtZ/bWaz8LecK3CrRyrKZBN8INtH0luSxuLm8TnA0fKQ01Q44mT59NmUIONISf+V9GW4RmfjVqXdw+dTcCVyVthvUujvKGCCpKMkjZX0NfB/uFK3bzjWScC7crP815IeA66q36WNFAKSDsMdK18GhgKfm9kRkLOpit9wJTqdfuHvpAaI+g7+YlENMzsZf6Z2kPRKxmd1JtazWpKzhUidsSFyZ0xwLG0qpRnLonoQi2raubbvLBs5/B6/lVSWti41Xi+Vtk2Dv2tJP0raDPePXFLSyriFZgZh+rCm76Gu78fMVk37bIyZzTCz4+s417wkJtbLP6pFGWSQ+RD/LumnOvZZCTdJp5OpTNTEmPkHliaZWTmVDyBmtgs+nTUQT7hVRKWD8a819LkL8KSq++tsCfwe5L0KOFDStPDZysBfkuZHDEiaa2bvhc9qxMwWwh32NglytccVwaVq2w+39KwVlKx0uuCKJ0HWVzM+f6uOfiMFhqTPgc+Bq83sFjys+z/4VMhDdexeLe9HBm/j9/4Faeu2An6UNLEBYq5B1RBsAMzsAuBE3Ml+VMZn9U2sdy21J2fbWA3022sCX+IvMlviDs5ZqeU7y0Yuvsc3gWHBj7E8rEu9eE4If5v0XUsqAUrMrCNu/XkiYxyt6Xuo8fsJL4erw/z74Rfg8bpkyUeiQpN/fIubFVch+02Vcu76GvcNKa5nvzW+zdRB5psShDcl85wdD+PTLafg0z/r4XPIHbN1FpzPdgQOyvLxhPBQf2tmc4HHzWyltAcx2zlYDevTuRtYErcw/YC/2TxQk4xpFOHKSrY04KmQxvocP1KgmOd1OQx4GlcWFsWnWFNJyKZQ9w9dXVwDjA7WkXtwS+RxuBKSkuNY4FhJK4blq4Fn8B/KHkHGzfFnK13+a/HIpb1xC2jKOjBbHpY7P7Fe2D6VWG90Wh+p5GyHhHNOt4a2OJJmmdlVwHAzm41bYbrgCtsldX1nNfSZi+/xStyv6cZw3RcN6/6nyrD0Bn/XYd3m+Hj1FbAErhB1AeqyGjWUzXErU10vyXlJnHLKM8KD9TxwTBhIMjkTt2K83IBuvwTWz1i3XuMkrMJg4E9JZ0t6T9I31J1dcgM8ZPu12jaS9AI+5XReWPUF0NfMVkptY2ad8AEhZdZNKV/tMrrbCLhJ0lPhbeQ3POFUOqVZ9vsQt/78Ium7jDY5Ta7MnB415fiIFB7FuDXuAeAb3EF8NNmV3EYh6QM8imc73GftQuAsSbekbdaXyrd9cAf5/+E/cC+FzzaT9HRG98fj1sjH8fs+1a4Ln9cnsV5dydkEvGRmH5vZiek7NiHKqS7OAc7Cp4A/x6/BmuGzZv/OsiHpU2Ab3CH4U+Au/LoflbZNY75rcKX1Wvz7fgy3oqwn6Zd0Ecj+PdT4/WRhb6pb8wuHpJ14Yqve8KmQX/Af1K1wjXwd/EabQ4jQoYZcFJnr8TeuefibwEDc9+QX/EZfLGwzjFqchNP6KsOngsAfygr8zW1A6HciVaOEMvu9EhiR0WdNx9oZ97VZhqpOwRvilqr5TsFh+364L8xxwMKEaKtwHd/CHXtXx6PIpgN3px3rWVzJWhIfUIpCf7/iUWEpx+fBeGTXBmG/tcI1+BfucLwzMJ7oFBxbATR82uL2tOVtcH+79G3WDs/V4LB8Lv6CkPo8NYYsiE+77JT22QW40t++OeSPrcr3lPV7qO37ydi/M+6P06AcZvnUooUmD5H0Iz6IvIfP+X6PW206AevLrRcN6e8xfLrldHzOeV/cpwSq5zZoSL/P4D/kF4d+98KnnmpjZ+o/P/skblK/QP7E7YRHUT2LhzD2x8NU/wzy/I47JZ+Ov4U+Gfo5CFdQ3sdzbLwQ9k/nPNwv4Gv8bXTJ0N/6+EP+WPjsPlzh/C0c8yM8T8Ze4RqcTpr5OBLJcybiL0wplsBfdjK3mSQp5Rv2MK7IA6BgJZBPqzxIVevvdvj0SbqjbKQZqOl7qOP7SWc7POleS/lC5RwLmlmkjWFm5wLHS+rTgscchCtpfeUF0CKRSIIEJ9BxuKPqj3jOqdPSlJfUdm/g0YSfBx+PNSUdbGbdgHaSZoQp4MfxvCv3teyZtG1q+h7wF7h6fT9m9hjwaCF/d9EpuA1gZh3w8OLn8PnljXFLyr9bWJRO+NtaVGYikTxAUrmZHYOPDR2Ah1PKjJk9Bxwq6Ve8zMAdZtYFt+CknPr7AY8FZ/9Uht7C9cEoXGr6HpapYT1Q+R3jvwtD8YSrBUu00LQBzKw9HhGxFp547wfcofCKaAqORCKRSGsgKjSRSCQSiUQKnugUHIlEIpFIpOCJCk0kEolEIpGCJyo0kUgkEolECp6o0EQikUgkEil4Yth2JBKJRFqMUFixb1rrhqd06AScjNdAOh2vuTY3tKl4gss/gemqXtg2EolRTpFIJBLJLWbWFxgErIiXRUm1paheqbuhlAOT8BIjqfY9nql7nKRsBXUjbYCo0LQSzOz/gEUlnZ60LJFIpOUxsxXwgowD8dptZ6pq0cPmOu4CeImQwXiuq0FULXA5G1c6fsBLmfxOpbXlL2AmlZaYe/EEcHviif464TWGFqTSorMQbsVZBleSFsNrvYGf9xd44cd38dpFX0WLTtsgKjStBDPrjFenXlPSH0nLE4lEWhYzuwOYIelEM1sEr122bK4tFmHKaCNg6/B3DVwJKcerQY8J7VNcuZikev7QmNlIAEnDGiBPZ2BZYDVcmVo9yLRw2OQvvDjta8Czkr6vb9+RwiIqNK0IM7sN+FrSlUnLEolEWhYzewV4QNLtYfll4D+SHslB332A7fEChlvgGcfn4rXZ3sAtIe9ImtnE41wLIOmEJvZjuPVmI2BI+Lts+Hgcnjn9aeCtaL1pPUSFpsAws0WBG/AHdBZwjaTrw2f74rVXNk5Qvi7AkvjbUcpE3AfoCnTETcgn4Gbom6k0Nc+k0gw9GZ8j/1VSecueQSRSeJjZa3gtnnlAGbAmsDswUNJBte1bS59dgR3wavJb4VNAv+DKwLPAa5KKmy59y2BmywLb4krZMPx8JgL34/WNPq2vJSmSn0SFpoAwsyLgA+BJ4FJgceAV4ChJL5rZmsArknq3gCz9qDTvrkKl098itexWiisvC4TlYlzBqSnabh4+5z4e+Bb4DDdlfy5pdlPkj0RaG2G65t40C80uwNmS1mxgP2sBR+N+LN1wJeZ+3D/n49bwox/8frajUllrj0+P3Qr8T9K05KSLNJYYtl1YrAMsJOmCsDw+TDPtBbyIWzmaGkFQjVDccnXcdDsEdwDsn7bJL7j/zgu48jGB6o5/s1MDYeY8uZm1w5Wc9FDOxah0+hsAbAh0D8erMLOvgLcJ5m5JP+X4tCORQmcm0Ks+GwY/lD3wqtp/B0pwBeYe/PlqVZbSMDV2P3B/iMjaDa8gfh1wiZndB9wkaUxyUkYaSlRoCoulgEXNbFraunb4/DW4UjA9FwcKU1vb4G8xm1KpTIwHXgY+wa0ln0n6q4Hdj0lfCIPltNC+q0GeIlzBSVmF1sYVucPD5xOA53Bz+OuS5jRQpkiktbEA/kzViJn1AI4E/gn0w/1L/g+3UuRkLMl3JP0J3ALcEqxTRwH7AYcFP6SLgVGtwTLV2olTTgWEma2PDzTL1fB5k3xozGwpYG/8bWWtsPonXFEYhb+p/dKYvpuDYNlZFfcn2gTYHPfVKcGVrgeApySVJCZkJNJCZJlyOosafGiCk+/xwHG4Fedl4DLcL6bN/yiY2YL4y9KJuKL3Lq7YPBOvT/4SSx8UFu8DM8zsNDPrYmbtzGwVM1snfD4UeL4hHZpZTzM70szexKeKLsF9V87AlYWlJR0l6YHmVGbM2NyMJ8141IwN6rOPpHJJYyRdL2kn3Pl4K+BO3IJzP/CHmd1jZlsEK08k0laoNh6YWVczOwO3tJ4DvA78XdIWkl6NP9aOpKmSLsOtwsfgvoFPAW+b2eBEhYvUSLTQFBhhKugqYGPcofZr4Gw8z8J3wFqSfq9HP6tTaVrtiuePuA8YIemHZhG+RlnYBng4yAFuYdlcYnTj+7Qi3HKzL25x6oVnE70FuKsR02SRSF6TbqEJeWg+AAZIKg25Y07HrQ6L4SHLZ0kam5jABYSZdQAOBM7HlZtn8JD4Z5KUK1KVqNC0EszsOGAJSafWsk0RnkviVGADPHR6BP4j/1FSb2dmvIlnGU3nMYldc9O/dQJ2xiM3huCRVvcBl0v6OhfHiETyCTO7Cvhe0k1mti6uwCwEfAT8U9IbiQrYAMzojisTCwIvS7ybnCzWDU87cQ7+QnkXcHxT8+9EckNUaNoAIUppT3waaWU8BfkNwN2SpiYpG4AZo/HIqXSektgx98eyVXHF5kB8QHoYuCRGM0RaG8EP5BLcKjMZjx68TdKRiQrWAIIy8zGeoqITMAc4WOLB5GSyfrg1fAqec+sX3B/psThllyzRp6AVY84e+HTSvWH1fsDykq5pbmXGDDPjIDMeNOMqM/rWsOk1+DRTihJc4co5ksZKOgqPGLsU97n5xMyeMLO/NccxI5GWxsx2w6ejD8NDkZfDn6nDzGz5JGVrIPviU2Rd8N+rrjTT2NAAzsaVq81xS/efwCPA02GqL5IQUaFppZjZ9rgT8YP41NLOwGqS7pNU5ttQZMbZZow340szdsqxGCOA2/H8FscDH5vRI3MjiYdxi8k7eAj6bhKv5FiWjGPqD0ln4orNuXiU1OdmdmtUbCKFipktaGb34pbHn3CfuhMlzcD9P3bHk1QWCr3wDOPpdM+yXUsyHNhT0jeS3sEDEE6icgzZI0nh2jJxyqmVYWZL4kXYlgV+xud6782WGMuMs/BpqG5hVQmwrcTI+h+PhfG3kw3wnBeHSDxpxrpQba67FDcX39eQc2oJzGwh/M3raDw/0+3AMbku7BeJNBdmthlwN5708kLgYknzmtYnHfCijwZ8KtGk/hpx/DXwgIdUwMAc4HmJXVpSjvoQqp3/D09MeD8+fiQ+pd+WiBaaVoKZdTCzU/HppcXD6hsl/beWLJ8HU6nMgA8a+1Tvm0XM5r1mNqPEbMxMs/UeMLNe4eMngPXwBH99gBFmrIwnvcukA2lvW8FC1Cz3oBldzLjfjGIz/jSj1no2kibjOSe+wgfNQ4ExZja0OeSLRHJFSN9wPvASMANYT9L5OVBmeuJOxCPx8O6PwroWQ+ITPDfWL3jm42eBA1pShvoSAgw2xF8idwc+Don6Ii1EVGhaAWa2Nu44dxmeIGsFPP/EWWZWW12nzIRzFXjBy7S+aQcaBTYMenSBVbvD83tCv9Fme3QA1sUVlUB5EVRshNdpyjT/CXgxKDI3EQpTmnGXWc6zVt8E7IQraX2AG83YpI599sVz7xyKZ0juAow0szvNrEUH8kikPgTL4vP4tOl/gbUlfZij7i8GlseneLqH/1+So77rjcRTEotL9JDYTao6RuUTksokXYRHbbYDRpvZ4aH6d6SZiQpNAROsMsPxqZ0FgR0k7STpR9zacABQm8nzDCqVmgpgJtz1QPgBf90zjf4+ELQ4tA8PZDt8WnvMitB+E1xxSWN2Zzj2YJh8O16GIaXUlAOnSfyKhz0egE/ttMd9bM6u4RwXNrNLzexuM2tIGPe2QOe05S7A1nXs8zieRGuEpGfxiLBLgqxjzawuhSgSaTHM7O94CZKN8AzhB+U4K/ZquPNrik546ZFIHUh6D694/jrwH+DuUC8r0pxIiq0AG26F+QBXGO4BFmxcPxoMuhl0Jby6CjARzxQsoBiWfRjK54JUtZUK/ngNtA+UVECJYIbgLUGHWcABoGVA14LuAm2RdsxXq/en97Kc44LAr7jvTZCHk+t5Xt9k9D8HdGojr/Xf8YgR4REjnZP+/mNr2w3YFXf2/wFYo3mOoatBs9Oeodmga3PYv4F2Ap0N2h1kLXPttAzoENCeoC7N/D21w52IhfsCLZT0vdOaW+ICxNaIL80tGjPxcMHdctjvLvgcvCpblzIofRrmVVRXQiq+9v3WmQXHC/YWtBdu7Tm/5uPoLtC8tL7KQI9W326Vf8KDZfCF4H5BHwEzQh9FoD6gdjUcY3NQMagUVAL6EdSrCdema1BmhPsVLJP0fRBb22u4c+6p4T4cDSzcfMdSN9Do8BwVg94Bdcth/zeBZoHKQTNB/2v+66cNwjFnhWN+mctzquV72yMooN8DKyZ9H7XWlrgAsTXgy3KH2uvSBrPFc9z/blUVmmUEEwUV06GiDMrTlJqKOaD7wn6jgbI0RWgWsHPNx9FioN/DgFIKmgsaDipK26YDTJ4Ec8Lx5gi+EnSYDfo76M+w30zQlmn7Wei/P2hV0Cmgo0A9cnSNtsen8aYC2yd9T8TWdlp4278lPGP3t4SlMLw4LAdaPv35bEQ/i4IGgbqG5SXCi0z6S1IJqFl/7EGfZxxzNuikFvr+1gN+D2PH4KTvp9bYEhcgtnp+UZ62/O0wmF0DdGiGY/QEfqucchpdDmXplpmyoETMAn0K6h32WxIvdjcLd/S9hpASoOZjaTHQH2mWmlmgW9M+HwTls6oOPjME2z0DmpoxKM0C9QN1B70ZBqk5oCdBzXGdBgQrjYI5uUVM5bG13YY73t8f7rmLgUYrF80no3YHjcCnqvqnrb8oPI8zQH8FxeacjGdYYWxZr5ll/CPLca9qwe9xaWAc8+vVJf+9taaWuACx1eNLgpWCwjAb2KOZj7U4MAL6fQDzMt+gBLovvLG1y9ivffih71u/42inMMCl910G6hw+XykoKmmfz5kH03fMst800Ma4CTt9zr8YdHYzXafOeB0X4XWhol9NbM3Swr32ZLjXGuUH1vwy6pTwvCm8pEzCp4Q3yniOK/Dp30ezjC1loO7NLOeDQblKHyO2beHvc2FgTHj52zHp7641tRjllOeEZFmjcR+OoZIeas7jSZoI2g8mdYT22e6PHYGZEuUZ+5VJGi/pz5r6NmMFMw43Y3c86qja4amMvBuHOz3PDsuzodPb0ONNqmcO7YjnqdiAqpFNXfG8EDlH0hw8j8+ZeO6eV0IIbSSSM0JkzFPADniitssTFqkmzqYy+V17oAfuN7IyVaNpDVgCz2KckSdnbDHYM2Y2MlQObw4OxfPqlOMKxbkSzzbTsbIi6Q9gYzxC7dGYWTh35Dr3RySHmNnuePmAccB28nDsZjgOHYHT8AKRX+DZLgfig08m7fF8LVfVo98BwD/wuf8fgWvDRxV4cbdSfGBphysur0keRi5RYcZWuAPkmniencsl5ppxEnA57rfTDrhW4hszvsatWam8OHOBL+t9IRqI/HXrEjP7Dr9mb5nZpq4URiJNw8w64CUMNgMOknR3shLVSocsy2vh41dFxme/Av/CffZ64eNMORz6dTPLiMRMYKuQ96pcqpYrq0WQNNXMNscTBd5nZrMlPZ2ELK2JWPogTzGzA4E78PpG20qa3jzHwfA3wE3wN6w5eCjoAKrmoEhRBpyHD1Tt8bwUk4E30wcHM1bEa0l1xQesVEtRDFyA59BYCs/XcJo03yJTl9yr4G9/30l8FNb1B96jcpD8EdhQYkZ9+mwKZjYYH5ymAJtJ+r65jxlpvZhZO3wqc0/gSEn/SVikWjHjdjyjb9e01cXA07gj7BH4CwbAFhLvh7puO+AW1hfkOaow42DgStyK+wzwj9SLTmvDzHoAr+A5f7aV9GrCIhU0UaHJQ8zsWLyi7Mt4tFBxHbs09jgGvy0G/b+jqvIyE/gQzwLcNWO3Ejxh3oJUnd4ZDywn+duYGffiA1wN05plgvElsPzzwM0SrzX9jMCMrng0QTnwjkSL1WIKac5fwgfuzSQ1m3Uo0noJWWVvAw4BTpF0ZcIi1Umo+XQlcBzVX1yG4XXeFga+kKjx5cyMTfEXrPTaTQ9L+VnuIBeYWR98GmwZ3FH4nWQlKlyiD02eYWZH4srMk3hYcHMpM6cCJbDuBJibaS4WXtzudNwS8xo+7TUaNxf3o6oyA27R+Xfack9qvb/aGSzfDdgNKp41u+kcM1uxbrkxM043Y5IZv5lxSrAyueCiROI1iVEtqcz4sfURMBQf0F8zs+Va8viRVsPZuDJzYSEoMwDyopVXQzULaxnQV+I7idG1KTOBLajqX9cZ2Cp3kuYfkv4CNscjTJ8yswEJi1SwRAtNHmFm++G+GM8Bu6iZKj2b2U64OTu8Bb1TAWsKOrbDHfV+wX1RinArTRnwrkSpGfOo2fdqjMQafgz2wqfMMi08NfBuOaxfig/iVerFmLEccDxeT2YKcDiVRTWLgeMl7qjfcZofM1sJGIUP7oMl/ZSwSJECwcz2xl8i/gccqAIaoM1YEp/yXZjKl5mZwECJP+rZxyn4y1S6xfgbiRVyKWs+El6A3gX+ADZQrNTdYKKFJk8ws52Bu3HT4+7NpcwEtmC+orE48EOR6wn8CjwOgy+BZZ+AP/+A8ifxeeyPzFgBd8Ktic+DBWUA7lx8Op5Eqh6DclE7/M3sHDMbmFprxrJ4zpejcAfjE6laIbwb7qScN4Sppi1xK9WrZtY/YZEiBYCZbYiPAW8AhxeKMhOe+evw8iAL4M97Of5itHV9lZnArfg4VIIHDZTg9dXSj7ekGSeZcbIZS4V1Xc04yIwTzFg5bdvVzbjGjCuCX1/eIulbPFv7ssAjZpYZzRmpi6TjxmMTeLjxHFw7b9Y8DOF4Z/nx+ghmCirSckSMGwsnzYW35fWalGpzQC/g2Twz8kdUCComg3qGPA8lIVfMhJBvJls+m7SEfbME+wofCKfh/idBVl2Dp0bP3D+9n2plE5p4fYqAnfGBdO0mfq/FuD9Ss6dXj61wG7AY/mb+DdAnaXkaJru2zZJr5vMm9LcA6HDQP0ErZ3y2Amg6noRvbvj/mqBxQYY5IbfMlniZg+IgT0X4fNWkr1c97oUDwlh4Q9KyFFpLXIC23nDfk8l4GHO9ktLl4Jg9gG/hirlpykyacjJb7rSrzPYxXmogbV1ZBexeDp3nwYWvQUVx2ufzQG9CRTaFZC6UvQcflVUqM0WCxUrgrT1AY0A/gcbWosykjrFyDq9NEfA8biovCQrJQU3ob3v8bfVx8jC7a2zJNzzE+S080/ZKScvTcPl1GlVrswk0Nwf9FoHaZ6x7OOMFpzyMFZkvWhOoXgS3AjQi6etVz3vi6qDU7JW0LIXU4pRTgpjZgniobztgG9WSlC6XSJoBrA7bf5JFKtwPrx1UnSkqwR2Vp0HK2bZ0HlxRBusWwcT2cObGYOk+M+1BK8PcjHw2ApgA7faGJT+DSwWvlbtP3IT2sOGDeDj4EsByPhhlPROAjyS+qPfJ183mwGDcX6cLPjV3s5k16lmR55b4J7ATcFmOZIy0Li7BE0AeqsKMjPuBqoOFgAlN6dCMc3EftDlmPGs2f5p5Iaq6ShThaRoyU0z0wp/hKt3iU2KFwGl4EMbtZva3pIUpFKJCkxDhB/I+fL50Z0nftLAI68Hr42vfJJVMs6IUeBGvIbMGcD3wIPzzFyjvAEcCfch+O80WlGRRaOYeCoyGvqvB4gbD2vlY1T4z4qpTeLPK0rcBv61gZiPMbLvaz6XeLJxlXcq/p7Fcj0eAnWxm+zehn0grIzjonwT8W9IDCYvTWA6gaqi2AYuHjOANxozd8ISaHfFnbxMqIygfxq2mKYqBJ/Ap+xRz8dwud2ZsW4L7KOU9kubhmZZLcH+aegZXtHGSNhG11YaHZgo4KoFjXwLMgqLZ8FV51Wmn9P8Xl8G/9gUtXEM/T8C3tU0HCeaVwsh5UJ7W92xByYVQNrP2fVOtfCp8EeTMnCJ7P+V7UwydDgT9H14n5hIaUWEbz5BcHPoUHuH1RQ6ueXvc4bsEWCXp+y+25BvQH/gT97HqlLQ89ZdbA8M0z2zQN2T3kVPwX1mtEf3fmqWvn8NnBhqOF6idhhe+NNA/wrq5oKdxPxwDnQj6AfQd6OCkr10j7pHNwjh0XdKyFEJLXIC22MJNWgHcSwtXagYWxU254Qf76poUiQrQcVn274sXZXwXuBM+r2kwS1dqsigiv5S6Q3Jd+6oYdCzcfCncXAolaf3NEgxT5bk8MJPKAnlzQF+Asv5Q4FVvL8Nz/qyf8dk24YemHC+5sESOrn1/fF7ta2CBpO/D2JJrMD9D92zgb0nLU3+51RE0kUo/lopant0S0NGNOMY5VC0gWQH6IOlzT/BeuTaMcZsmLUu+t8QFaGst/Kj9gYc15zSiCbQ/6CvQ16CjQNWUJTzF9oxKJeBAuZKgbArNRaHfZUEfusPvuFJYuTTsXwITSqsrK5kt2+czBG8JisPy7KCoTA2KStkXoClQVgZzwrrZ5VA2GyY/ADdM8dw5qfNYQBlRWcIjrbbIcg2WwX2ByirPg22ybJdzZRNPvFcO3J/0vRhbcg0vbCrg+KRlaZjcWpFqgQGaS9Uq96k2E7RrA/peA7QHaF3c8jMTj0yaCVoz6XNP8F7pAnwF/Az0SlqefG4xsV4LElKaP4U7nq6pHDoAmrEzbvFJzbWWAMdK3JUhQxe80m0fwPxFcSZVU7sAnmDvVOAmqJgA1g+syA1LU3CdYDbuH1ynK5aoVujyR2B54P+Av+Elq0YC2wJ/zYa7ZkO7BcGs6u7CFZxFy2FaWoK/JUpgQhcoSj/ODHx+/3NgisTUcA2uDgdOz6nzmaRBdZ1ILjCzs/HkYXurcP0mIo3EzBbDf6A+xFMUZBZvzFtCvbQJVHXCLcGjcjbHC8nOwweKcH6U19LfYsCqwHbAQfhLRnvgXGAiPp69IvFzrs+lkDCzdfBB8r+SDklanrwlaY2qLTU8nbmAE3Lft57N8ob0TjjuinhdpQ3C8qp4mHg58COUFWfZ909Qd9j2arempH82VbBBsIxMq4c1JrPNE1yVZl1B0F/wnWB6sBhV1DKVVSHPk9Mh7LtQBUybleXYf4F+DW95c0HnhvO/reqxEfBtC94H7fEpuynAYknfl7G1bMMdW2cDA5KWpXHy6+rwTM0Lf0ekrMGgVYN1eFdQO9DaoBNAl4GOAS2X1s/2+BTxjCzP+RxQi6SxKJSGT5EL2DBpWfK1JS5AW2m4SWMmXhcp5/lIQA9RfT77VWA/3Ml1RhhE3wI2DjKlBqFnww9+ugl5S2AILFri00Hp/c4SrBQUgf8TzFWl02+682+2ViH4WtC/AtadA0vOAn6AZ8q8n5r2y2xlglcEK8vlq3bMeUGZSc9ZMQu0MbAxVR1/i4GzG3i9NwG9BHoNtGMj7ofl8TfbF2hhP6rYkmt4XSIBZyUtS+PPQYYn0zsDtBtZprbDdvtTmdgu/dk8DtSeSn+3bG0GqF7O86DeoJVBXZO+Ns1873TDretjgQ5Jy5OPLXEB2kLD50ueD0rFUs1zDK0efrBTg0cx/DkMD2fMtEaUABel7bsg6PXw418COiLIfbwrQQ+qMtneTMGI0M8xch+YTCWmvIKszoIVcuvOjXIrzOw5UD4X5p0Nc3/Osv08KK3w42ZTkmbJLTpZFai5WdbNAZ0Yzm1X3Dn3R+C8hiiZoI0yBuNi0C6NuC+ODd/Hfknfo7E1f8Mr1P+BF3otmKim7Oei7UHX4Un1qjm4B6WnJoWlArQIVR1/M1sZ6H1QNd+2jOMcHfqZgUc9bZD0tWnme2inMGbclbQs+dgSF6AtNGC3cBMe37zH0SqgG0A3g9bGHZDTIpqqtDlA/4z926W/bQHbw/VzXXGYJbegXFcBVgG31aRICErmwdzy6p+nIpOq7VcBGg8qzVASboWSM+HIMa40ZR5ntqCkpiiLbOtngnbIwXV+NEvfoxtxXxThxfx+BxZM+j6NrXlbmGoSMJ4CjlgBnZL2rFaAfgZ1BQ0AvRye5RHUXrJkWdDkWj5PHweqXaswVg3KojT9BWqVGbnxRIEX4q4CFeQo+rI1tcQFaO0NT9Q2EfgEaN/Cxy7Cw4Qrsig0M4BaSwZA6ZowJ8OXpXQeHDa59pDreYKXVb18QrY8MvPbXNxvJxV6/Tyog8sxs2925Wimqvv31Nhmg+6lBvN49XNXF9AWoK1B3TM+eyRL/2838jtaIwxQtyZ9r8bWfA1PdzAdeD8oNKIA8xHhlpfMMgcC3R6UidR4MYfsVtKUErQAaB08d0xdz+6DGce/KMhQTvUXl9nUkDer0Btwe7hvnsKdp2Otp4wWMwU3P8/ghedul1TWkgeWR09sDkzK/Ai30Hxfew+Tl4fSjOikduVwxuvVs4qnuhXu87ox1aOfjGrBTpV0xEOpN8QjJfYEzKttd++cfb9bp7r1XrWfhlupDgf2l+re2IzewGfAI8ADwFdmLJK2yXX4tF2KEuCKuvqtgS9xB+HDzCyvqoZHcspZ+ENzILASsJukzxOVqHEU4Q94JgcBvamMHOyEP9OZVACnS8yU+ADYH/ctrAnhUVMpdgdOCDIUUX1gKAP+qv0UCpZ/4Q7BO+DKzZFmNjBhmfKLpDWq1tyApfCHcSb+YP4vITkM2BR3KCsHvqUeb4ew0eWVeWJSbWoZzJuaPbtwNiuKGtI+BW1FVUfCuf62V/FX1f7K5sFGF0PXYphS27Hm4Ll5Otb/eunfGW+XpWQUtQMNxZ2pXwJt28jvZWlcqRServ0tooNwq2t4QEAp/lKTuDw1y6n+oLWoI8M22XPO1NdKenqwft4B+gPP4pvN4pOy5BSTloOG7FmE09uWLXi9DLRQQ8aWHN5Ti+DBDA8lfd/kU4sWmublQvyNYXXgDOCDljy4Gf3NeBU0BQ+13A6f9lpO9Xo7fGMB+AdugJiN+zNOA9r1ql66Jf1v5vpaSVlMZuNWjsfx3BOpnTsCnWDugl5moQL4S3DKCHhjOJSMhr+XeKHiaszBlbhfgIPM6icQsAJV3y47AMtVEVqMkthWYguJZ+vZbyY/4z40WwCn4NapLRrZVyR/OQt/kTgvaUFqwoyT8PwyrwETzdiols2PhZpzywSKccvw3LR184B7cOvC3njxtqWpmg8qxWxgBDBE4mMzlg4yLlrbMSVerEOunGDGcnhRzp+BmWYc1hLHTSHpNzz3z+5mtmpLHjuvSVqjaq0NrxZdAVyazPFVBPoy7e2nAp+v7pNl24Xx+exOVdezO1AM7QULCzaoaITVpa42DXQjaMNgnSnNvt10wd6C+fNa83CzswErwef/hoqSDMvMXObP6ZeXwOOvA8OBleq4dudQ1dmwBHRNM98vHXFrzRiaIaw/tmQaXjG+FLgxaVlqllGrUt25dhqoXS37/F8NlpV5eJ2no0C98HQSk8K6tUEHU3Ptp/T2E6gfaAU8mmpuGBtqi4wa04LX7GuqOj0Xg9Zo4XurN/4md1/S91C+tMQFaK0NeBJPnNYrmeNrUaqbhqeBtk7bxsKAk27i/UeQfxHgaOA5oBx6yC0j2RSabFNNZaUwtyIjpLuM6k5831GZlGsLaoyMmClYN12hKQO6grYEvQcah6dLnxOOUV594JwpPxdmAX+v5dp1wCOZSsNA+iKoSwvcM3uFc9sz6fs3tpx9p9cG5XuppGWpWUbtDpqe8czV6lwLOhRPE5H5rJaCBtawz111KCTp7Y+0bWurF5Xevgzj3nNBIXoBlPPElXg9q0yZZoEOS+D+uiKMacsmfR/lQ0tcgNbY8Ey8As5NTgb1oLq1YyZocNo2J2YZFMrhuHWBqVTONVXAEGWv+VRT5FKJ4A7B8YKvy2HGPJj1HlRk1IEpnQPvnwzaC7eEVFTvf44yMgvPhZ2+g79ehIrMc6xl8CtO7+P1elzDBcli0WrG+6YIT4k/huhLU/ANn1IpIc9zhoBWo7qFZjq1W2iG1qDQlIHuybL9QnUoM+nWnlJq9qtJ3yZ9eS7oQdD3afvOw310cprzB38RnJplbG0x/520e2wRfGo9RkkqKjTNc1HhPtwRuHeycujKtEGnGPQqaTkacN+aLIPFXq9RWbgxtFVVeybfbErNu6raByUe0p25X6mgogZFZK48GzAVwXT/Jxw+p7qzcl1tluD6IEcvwTk/g84mz4re4U5LIkuxzNgKq+G+M6IAqmnjCfJm41bcmaBN6rHPzTU8b6+FzxcCDQYtFVptmYEb0orDs/tm+P9M3PF/KNXLKMxojmccT+dQjCt+M0kr/5DAfXZLUGpa7OUrX1viArS2BiwbTICXJy+LDK+pcgnocEJel7TPs0zvVAien+N+M+nKSCfB78oe3ZRtuUzwQNr+B8mnrGoqjVCTb06ZoOM83GFxRVjkee8n27ZZ21z44zs4txSKBL0Fv1TAvHn422QJdWQjbeH7pwOevbhReW1iy4+G+3f9BLyUtCz1l1lL4JWu65XkEZ8izpZr5kLQNuEHf1pQlE7B80w1VZlJTSWn+t4LT7DXAffBy+afUwp6BZTTF0xcSdsV9/9LzKIKrBLG2ZOTvoeSbokL0NpamDMvBRZJWpa6ZdUP2QeNYsHwdIWmHO77oapVpKappvQQ7p8FKwo+yaIIZcv8m61VlAHdg7yXu8WmzvDwlK9OMWif8L0cA/wK58yCeZmD3ndJfxcZ99Bx4bqvk7QssTX6O9wxfIc7Jy1L852j1qb6tFM5Hv6dub6kBmWjtjaNSuf+OWQPGJiL+7SsSu3h5HNBr9bjnAbjNaoOJoFw7Cbcb2/gQQVtOqAgOGNGcoGZdcNDhJ+TtE8LH3sz3Hfnm3B8ZXxuwFC8HMIHkr43Yy3gVWABqmXB+wC4GPefHVkGpd+C/a3qNqL20OwZ+MxVr+rdz8/t1yUslylYhbJt2AHYGk9y1636sQVYGW4Z+x0YhX8Pz0u8UfU6cDlwcobgU/FMgJ9LdYajNjtm1gP4FXhY0kFJyxNpOGb2IrAysLRaOKFmSxHSIDwMbAl0xkO0rwX+g2e87Jq2+Qw8sWA9U4VMmgP998CLuG4DDKtl3/8BewQZaqNMokNNH5pxOHANHnE4F/gCGCxVSeyXl5jZXsD9wNaSXkhansRIWqNqTQ04DP91HdzCx70M1zzmhL+3ZnxueNbbEjw/RDGwvX+mXnhUQJoT3rw0C0yZ4IuSYLJNm6LKLGuQrZWo5hIJFYJP5b4tsyugfAZoz/Aml/629yWwK9zwQ3bLzPiZMHNbPLRzdmgzQQ+QxQxM9cKSFeHNbxYeLdUt6fsofGc34w7ZbX5evNAanlBTwHlJy9L856oi0B54wrwtw7qOVI+aKgGNpOZyCBnP9Q0T8IreufK7EWhKLedhGWOPwjiya9LXuJ73XEc8UdgjScuS6HVIWoDW1PB6TZ/SghEqVHq5K62VACukbbMLbr1I32ZmSk688u2voBkehVRNcagAXYB79s+EWeWurNSWk6YkKCzZai1VCH6sgEO+hIq5UFbuNaOmTITyY8OgNxc0Hnb4P1fA7sxyvPJSV9bUNctAOQu0XvZrpr3D+ZZS1Y9oNuiypO+j8J2lIuXa/Lx4oTXg9PDdDUhaluSugc7PeGk4HXfirU8I9jzQZ3j+mlwoMuVBMaoxHQLug5PpUzgLdGjS17IB99314begZ9KyJNVipuAcYWar4RmBb1O4u1qIPrjPTjqleDG8FEdS3VzbjZANV+I34G/AoWC3gGXIbxaOsyL8cJpPQYmqUz6Zh78fWB/4sgLK51ZuV4H7Sm5SDDf2B+sI7YqgUzvouBjcuAXQE69Qfiy8dwjQ1WeSMimaHa51L6pnLi3DC4NWQ+J+iUWBzzOuS2f8O0wcSWOBd/Cop0hhsQ/wjqTxSQuSC8zoYcbVZrxoxnCzrDWa0rdfDZ/WTVEBnAkMpn7pw9vjCn2/LJ9V1FPsdH4HNpJ4sKYN5NNK71J1LDV8+rpQuA+vobVL0oIkRVRocse++I9qjQ9NM/EdPjWRrlUI/7FO0ZXqlEqan5ZcYrrEQ3hCwGx+JG+CTYUBx8MqHat2mTlGVVTAv2ZCyXew9zD4/Qr4bzmcivvmngH80RnUq+p+HYHJW4NexNOej4BvVnZXhGmZYpUDMmMUMBCYTNXBrj3wUZbzcImNdlRPo14OfFjTPglwH7BKUJYjBUBIQ78qfv8WPEF5eQtPsrkF/hA/WUcZkfUzltvhfnpNpYSGF54sBV6Tah4L0tgReBMfT38Bdpb4toHHS5L3ccfgtlvkNmkTUWtouGL4E/BsQsdfCfgat0r8AKyV8fmZuJNbarqpArgn7fPFgc2AgWEu+ekM8+vLvp61gRnwRebUT3mYvpkW5qGPzDi+wbpvwTS5T80MwQTBs4LZGVNRxYKKNH+eigr4tqIywmp+dFVm2vEd8Uyh5aDfQRvXfs20DtkjNPIm4yaemK2MhMpnxNao7+wiXDGuMctuITU8JDkzt8tsasnAC9oJ9z/JxXRRqv2KZwPPljurtuimMgrEDyZH99+FYXxvFfdfQ1u00OSGDfGaLfclcXBJX0paQVJ7SctIynwbuQJ4Fn9bmYubUY8AMLM98MioR4DPwE7B31R2xU0pm0hsLs2vn1Tk1uRiKnPdVcwA1gS2AgZK3JIhn+DtclhAHuiwAB5s9S1eCy9lXDJCXcr2lXubwYCKSouQhVbl3u0CbCyxEtBBop/E63Vcts5Ut0SlfJHyAkmTgReBfUKUWiT/2Q7PIfRH0oLkiHZUfyZEWkFJMw4042czJplxIfA0Pl06Cx8ocvFMLYIXjV0wY305cAhVi2Cm0w74nxkDciBDIfAEPkBunbAciRDDtnOAmV2FV6DtIylr2ed8wMz64g/4H5JkZt1xz/guaZvNBlaX9E2W/Ytwk+wa8PcusEcZdPgZDhssdfm19mPzNR6CmcYDeIDWKEGP2n6wZ1KryboCuHMSHPYy7kRb54+JGV1xRa4fPj1VGpYHSY2ap28WzOwfwN241e3jhMWJ1IKZLY5XXz5N0uVJy5MLzOiMhy8vgadPmAN8jIczy4yjgJsydvsPPre8LW7VPacZRJuDB2D8F1gNDx1fkuyVu2fiWZv/xMPHX1IBhGI3hjBGTwTekrRH0vK0NFGhyQFm9jXwg6StkpalIZjZQDwyq3va6ul4ccQXa9inCz6FNQj3UblUab44NR+LG/A3qaA8zcJ1wFfmwE9FUFSDo6GAmRdBjxOZn4OG0vBBJ1dmSoC1gG/m4Q/zypJm10OmJfDBd4VwLkdJDZ6jb1bMbGFgEjBc0gVJyxOpGTM7Ak9Dv7KkL5OWJ1eYsTCen+VvuOPsqRKzwmclVH0hgrR8L2a8iPve5JqfgAuAf+OOsLVRglstUvmAxgFDpBqtOgWNmd2G5+VZSFJmwEirJio0TcTMlsf9V46TdGPS8jQEM+uMRwD0SFtdgtee+Sm3x6IzcC+wkysht/4GR38Husjn6TnVt1Q311WKcCvyZxWw3odQeje0Owqf9jofMCg+Ap7YAv7Vzms6Av4GtrOk13Ipf5KY2TtAO0l/T1qWSM2Y2ZO4Q/CyaiMDq1mN00n7SowwYyKwWI4PW4E7768OtUdc4W9ORuXLELh152yJq3IsV15gZjviU0+bSKpr6r1VEX1oms424e+ziUrRCCTNAXbAlYBUYr5Dc6nMmNHVjH8D7+EDywAo6igduYRUsbGkVyUuwJ2S/w9eOhc+KvdEuc8CWxRBv1XhpxWAl4BjJZ6SeBK6HwT7laUpM4RjtLYfk2eAdcysf9KCRLITTP0bAa+2FWUmUFzD+tvNWBWPFqoPf1D/5/Z13CRbmzJTgddEOxSqTS91Bi4z47R6Hq/QGIlfy6EJy9HiRAtNEzGzp4AVJS1f58Z5SphGWgL4TdLM3PWLAa8AG+CDSBkeXr2CRNbjmNna+IAVpsH6A2OBPmVg7XAfn70lngrbP4uXLegCzIXOP8LkS6B7T2CkxKe5Op+kMLN18JDMvSS1dFqASD0IofWfAv+Q9L+k5WkpzNgFd4bLLClQBkzBp4N65viwpdSuzJTg48RgiXFmPIe/MGXKWAJsJvFOjuVLHDP7BJgiadOkZWlJooWmCYS3ssFQtV5QoSFptqRvcqnMBHrj1ydVY6U9bvodXMs+Y/BcCmF++5h50Esh8ikVBnVl2vY7A1cBr0O3u2DGHOh+I+5t/I4ZO+fsbJLjE/xNeEjSgkRqJPXdFPRY0FAkHgPWwa276bTHE1vmWpmBui0zU4AVJcaFdftDjS82g3IpWB7xBrC+mdU1JdeqiApN01gZDyN8M2lB8pRyqmfdS3fOq4a8kN8Q3LnydVhjDLTP7KNb2valks6RtAnMehc6LBs+74Rbbf7T9NNIlnBNRhMVmnxmI9wh/cekBWlpghV0HyotIy0uQtr/i/DM4fOzDAdH/0+pPqVVhL88tUbexMe/NZMWpCWJCk3T2Cj8bVNvZfVFYhrwGD7QgVtdfqEOBVDSTEknuJKy7T/T9if8//4adu1LdbNyc7whJsEbwKpmlpmHI5IfrA2828b8Z+Yj8Tju11LTs5mrVAjZrm9m3+2onpdmKNVfribiU+KtkXfD37UTlaKFiQpN01gbd2abkLAc+cx+eFTSM8AdwF5kL62QFYm3Qh/fA7/hlpvTa9h8JFWtP6VkKE9mdDDjZDNGmHFqXXVp8oh38QG5Tb1xFQJm1gMYgE+XtlnCFM8FZK+rVpvlqoxarLYZZMtXlW71LcGzdWZaXiZSVfEpBR4MCUNbI7/gZSJa65RaVqJC0zQGAWPa6ltZ/bDBYKvAdX2g4jDgbeBnM1apbw8Sj0sMlFhU4iQp++Anr9dyEDAVH+DewvMxuCTupPwMrmDtDZwHPFtHXZp8IeUD0KYGqAJh1fC34B3Qm4rEj3jk50zcmvIn7mPzMdWjjcpwBWQbvFhbYykKx7sfOBevwZQ5Jh+F59iaGdoEPIN6qyT8Jo2hjY0XMcqpkZhZBzzU+TpJpyYtT0MJ0QmH4wPKxVLuizKa2XbAg7B2VzeeVLq+AD9JLJ3rY9YuDyvgA2t6Zc0SYG2paux3PmJmv+BhwQckLUukEjM7BrgRWELSxKTlyUfM6Ie/zCyMTwn9CtwKPB0ikeZSd06Z2vhAotY8TWYshEdEzsWzBSfh79NihAz2RwMLBD+8Vk/7ujeJ1MCK+AM4JmE5GowZ++NTN6kf9i3MGCzl/FyG+zEGkTH1bcCSZnRq4Wyd2eo3lVMZhZXvfIonE4vkF6ly8PXNudLmkPjdjJVxa1Yp8HmqxIgZi+DOxA1VaBT6KgNuCHWk5gJ3SlQrxSIxGXio8WdRcIzFx7ZloKCqhjeaqNA0nhXC30JMcX46Va0UXYEjQ8slISX5+GyfTU0g9fiXeBmBzrjz8DzcB+qLFpajsXwBbGJmRZLypt5UhAHA93HquXbC817FEmxGFzyCL308EvAkXp+pM9n9ZsrxKaaP8Wf4Vjyqpxz4pxmrS+Q023kBkvIjGkAbUWiiD03jSVVvzfprnedkfu+WZV0uuAUo8Tx59+KpVOYV41N1uzfD8WolFKQbgqcgHg88hyffKpR6J+NxJXGRpAWJVGEAhTkO5ANr4fmq0qMTZwMnAWvg9d9uw0u0pNMO6CNxDXAirhAZ/pLeAzjRDDNjbzMuNuMAszb3e5e6J9tKpfFooWkCA4C/JM1IWpBGcCVwPZVvRSX4G06uSVXhPQqOmgtf3AU3fAuMkaoNUC1COG6hJttLH6Di9EYeYGbtgKXw9ARtkuBUvyQ+nnzXwErW86j+MtUeKJUYj9fJu8uMZUjLLYNbcVI+MD0y9m+H56K5C9gNd94rBrY3Y49WHNmUyW/4FNwySQvSUrQ1jTWXLEOBvpVJ3IFPL72F10faojmcguX8W9IqktaSbrhR4sWklJlWQOp+azMDVAGwCO778UPSgiSBGe3w0gfj8PIcXwWfmPryUdg33betHdWnvy+gMh+Vwv8vCcsPUD1X1ShgTyojEbrh0VR/a4BsBU2Ylp5AG7LQRIWm8SwO/Jy0EI1F4h6JIRJbSrydtDyRepG635ZIVIpIOimrwaREpUiOg4FtcV+X7ri16q767hxSMPwf1RWaU8zok7bdm8AwfPrpVmDDtJew84F/4740E/HIno/IHiaeac1p7UzCI8vaBHHKqfEsRCx5EGlBJM0xs1l4RuRIfpD6LiYnKkVyrElaPgb8N2W1BvbRlepRTvPwaaO/UiskPgA+yNxZohw4NTQAzOiE553piitIFXi9qbENlK3QmYxH4bUJooWmEYSilH1ou4NYJDn+JCo0+UTqu/gzUSmS43OqTveUA980sI8xVI1kqsCTYza6LlaIqBqCK0DT8WiowRLFje2zQGlT40VUaBpHL/zatdVBLJIcbWqAKgDaukLzH9xSXQzMwKORDmxIB6F45Ka4H9I8PD3BxjVlBG9AvxMk1pfoJbGO1DZClzP4E+gTXsJbPXHKqXGkCgROTVSKSFtkKpX3XyR5Uj4ZhRjt2GQkyszYGk+Y1xX4TKpisalvPx/ShpxXW5Dp+Mt3VzxdRqsmKjSNIySMY06iUkTaInNw/61IftAJqGgrqeWzEcKgP0tajkhWUjm2OtEGFJo2YYZqBlIKTbMkZDOzkWY2sjn6TvJYbeWYzXysuVTef5Hk6QTNm/G6pZ+XJJ7PtnrsFjhm6t5sE2NGVGgaR8ob/4JwQ16bpDCFRHh4VwdWT2rgKkTM7NpwvTYCFk1YnEglmwEd4jjQdOLYkDvSxosTw6qmFP4sGKJC0zhSabrbSsbJSP5QQXxu84ki4jgQyV9SNd861LpVKyH60DSOVMKmMyQ9l6gkBYakYam3L0nDkpWmcJB0AoCZ3Qesm6w0kTRGAkvFe7npxLEhd6SNFwcBd1I9yWCrJCo0jSM1L9ksZryWfJiTGDha+zGb+VjN7rMRaRBzaWZzfks/L0kqE23t2C1wzNS92SbGjKjQNI50z/FIgWBmC+BVfJcE3gVuD/VOColONJMzeqRRRCftSD6TujfbhEIT5+IbRypcu3OiUkTqjZl1Bl4HlsWVmYOBaxIVqnFEC01+UQoUmVl8OYzkI80akZtvxIewcaQS6sUEZ4XDJvhDfYAkmdlDwG9mdoakBicCS5DeeBG+SH4wPfztSVrdoUgkT+iJl6MopDGu0UQLTeOYjt8kMQV94dAJmC4pFZFSjH+HhabU96XtptnPR1LfRRwLIvlIX+CvApxabxRRoWkE4eb4i5ixtZAYBaxsZieb2brAXcBISYWWsj4qNPlFVGgi+UybGi+iQtN4JhMVmoJB0hR82mkw8G/cyrZXokI1EDPrAnSjDQ1QBcDk8DeOBZF8ZCEq79FWT6GZ2/OJiXi0TKRAkPQdsFPScjSB1P32c6JSRNL5PfxdJFEpIpHsLAKMSVqIliJaaBrPeGJ12EjLkrrfxicqRSSdSXjU2TJJCxKJpGNm7YClaEPjRVRoGs94YEEz65W0IJE2Q1Ro8ozgTzeB+HITyT8WxRPr/ZC0IC1FVGgaT+pHJQ5kkZZiAJ4DaVLSgkSqMJ5ooYnkH6l7ss28AEWFpvGMC39XTlSKSFtiFWBcWuh5JD8YDww0M0takEgkjYHhb1RoInXyDT53PihpQSJthkG0IQe/AuJzoAcxSCCSX6yGJ9SbkLAcLUaMcmokksrMbCywetKytAbMrCtwCrA8/gNxtaSY4j9gZv2AfsCnScsSqUbqOxkE/JikIJFIGoOAsZLKkxakpYgWmqbxKbB6NDU3jeCN/ww+ffcisCHwYLyuVUhZAsckKUQkK2MBEV9uInlCGDtXp42NF1GhaRofAH3wgocFhZntamY/mNl0M3vIzHomKM4gYHFgb0n/A3YB1iU6WqazPv6j+UnSgkSqImkW8B1RoYnkD0sAvWhjFt2o0DSNN8PfjRKVooGY2VrATcC+eOTMLOC2BEXqgEfvpOqNlOH+SR0Skyj/2AgYI2l6nVtGkuADYL1oVYzkCeuHvx8mKkULExWapvEVnoZ+SNKCNJBNgBGSRkv6C/dd2TJBecbg1ocrzWwjXNn6BX/rbfOYWUd8gHqzrm0jifEmnpW14Ky1kVbJRviLapuy6EaFpgmE8Nm3gKFJy9JApgArpL1NrhjWJUJw/t0c6A1cAhiwXVtyZquDNYEuwBtJCxKpkZSyWWgvN5HWyRDgHUllSQvSkkSFpum8CixjZsslLUgDGIH7/jxrZtcAjwEnJSWMmS0JnA90B/4HHClpah37dDWzS8zsGTO7JtMHyMw6mtm/zGy0mT1hZoWcL2hL3II1KmlBIjXyFf5SEBWaSKKY2YJ4zqo2Z9GNCk3TeTb83TZRKRqApNnAMOBR4FdgG0mP5fo45hxuZk+b2X1mtkqWbRYG3gb+whWrI4DhdfUbtl0W9/1ZAHjJzNJ9bm4E1gJOB14BXjWzxZp+VomwHfCupFhlO08JJRBGAZtFP5pIwmyCW7lHJixHi2Mx6WjTMbMvgN8kbZa0LPmEmZ0K7AecBywNnAGsL+n7tG2OBIZI2jcsL4U7vy5YS7/L4ErQkiEfkOGhs4dIes/MioBiYBFJ08I+/8MV+BVxa8eNkv6b41POOWa2CK50niXp4qTlidSMmR0C3A4MkvRZ0vJE2iZmdhewE7BQW5tyion1csMzwD/NrGdbjUIxs/bAsXjo6nfAVcCRwI6SxoZtlgL2Bi5K27UdUJq2XBrW1Xq48HeAmVUA3+NKSl8z+1tYLsOnsKaFbVcCFgP2wKOn7jCzWZIebei5tjDbhL/PJCpFpD48F/5uB0SFJtLihJe5bYHn25oyA3HKKVc8jiuHOyUsRyIEC8n/8IH8TVypeQ5XMjLN75kmwSeBrc3sn2a2JfAQ/pZbG6VAT+ALPFz2Z2Bh4B7gadxacyfwjJkdZGbX4grNSZLeBF4HrgQOaOi5JsCeeLXcsUkLEqkdSb8BH+HPQSSSBOsAC1HpCtGmiApNbngP/9HZN2lBEmJR3HF1e0l34D/C/XCl5j4z283MTgL2Ae5P31HSRGBjPJHeKcALQLmZfWJmL4WcOfMxs4XwH/c/gY+BrkBn/F4eIGkg7lezKnBd6LsMn0/uEkosPAVcDmxlZg+GsOi8w8z6A5sC98WClAXD03g+mkWSFiTSJtkJKMfH0TZHVGhyQPixGQFsGn6E2hod8cR4cwFCuPUs4GFcqdgft9psLKla5VdJX0naM/ggLYNbUw7HlZ/nCfejfwAAHh5JREFUg89MiiOAGcDxwMHAhbgVaEbKXwa31Kwm6S5JB0g6GZ/muhQvrTAAL9o2BJ+WOiU3lyHn7Ik/oyOSFiRSbx7E78c9kxYk0rYI0017Ay+H/GJtjugUnCOC78aXwImSrk1YnBYlPEifAd3w6Z9fcQVmTUklDeyrGFhC0pSwfDvwsaSbwvKVuDWnJx56PhH4O+4EfDcwHpgNHCBp/Yy+18SnBz8Ahkv63Mx2x0su7NLwM29ezOwDoJ2kNZOWJVJ/zOwjoELSOknLEmk7mNlgfMp/f0n3Ji1PEkSn4Bwh6Sszex84wsyuy+cpgqCAHI7Pt/6IV7ae1YQuN8bnbb/Ca4isDRyTTZkxs5Hpy5KGZWwyB1iQykR/vQmWn8BzwD+AHrjytFLYpys+5afw/3Uzjy3pYzN7CZgWlBkDNsOnC/OKMNW2Nm6JihQWI/Cs18tL+iZpYSJthn3xl7knkxYkKeKUU265CQ8LHpawHHVxIz4N9B4u78tN9CM5BB/El8T9ab7D/WUawyV4wr+jzewm3BdmfiSSpNfwHDRzcSvNi7gSMw/PNrwjbilbuIb+zwa2NbPRwPu4deeiGrZNkqPwabH/JS1IpME8gN+TheB0njeY2cj0lrQ8hYSZdcYjOJ+UNDNpeZIiKjS55SHcsnB00oLURMioewCwtaRbca2+A00rsNkdODS0hXCLR7VpEjPrhP9AvwFcg1t2qiDpSuBcvAL3VDxvzbSMzW4FZuKJ847AfRam4tah94BJuJWmGpJ+xy0f5wKnhf5rzUrc0oRMn/vgzsDTEhYn0kAk/YJbEg/JV4fzSKtjd9yaXVeEaKsmTjnlEEmzzexO4EQzW0LSz0nLlIWOeNRPCbhDs5lNAzo1oc/PgS3wzL1L4VaPHmbWWdIcM+uHW3A2xj3wnwZ2wxWLczI7k/QQrhxmRdJHZnZpOO4sPMrpD9z6cgVe9+jtWvYvwbMH5ysH4+dwU9KCRBrNTXjo7E7Uci9HKsky/RypP0cDXwOvJS1IkkQLTe65ETc3J1YbqQ7+xK0Yt5nZumZ2GjAQL7LZWN4BJuAhxlvhisVsKn1f7sGtJl8D6wEbAMfhil/PzM7qg6QbcIvMX7hl6E28BEJP4C5gashB8y8z2yOX6ejNbAEzW8LM6koA2Ji+OwH/BEZKGpPr/iMtxou4pTJvrbWR1kEIdlgPuDmffTdbgqjQ5BhJPwL3AoeHnCl5Rbjhd8eVjX/jzrNbASsHBadeVjsz62ZmR5rZGcDveHTR4uH/FwAnpD1cQ/EQ7omSPgIeAVbGI5MWCP31NrNbzextM7uzPtcuZGVekMopp/uAO8LH9+OWjrnAmcDV9Tmvugj5dH7FlcIvzGxgLvpN4wDcD+lfOe430oKE1AW3AEPNbLWk5Ym0ao7FXyDzvpRLcxPDtpsBM1sRd0y9WNLZSctTG0FxeAWowKejpuD+NbMytlsMf3B6Ai/hPig/A9/iDsbH4L44iwCjJb2btu9PeHbevXHFpwKPiFoaj7Qqwi1EH+F5PHbGHavXlZReFiGb/B/jU10XhL52wWtGHQ2sJGmumfXCLUjLS/qjQReo6rGG4MrqhpImmtkJeMh3tYiqRvbfHhiHfwfrtvW3rULHzHrjUYRPS2qsk3wkUiNmtiRe6uUWScclLU/SRIWmmTCzh/HsuQPyuUpyyPMyE5/mSJUw+FHSWWnb9MdztzyMD9Dnhr9rBR+cIcBdIUtvZv9H4sn1OuKRSO1wBWYssJWkX81sZTx778DQn+FlDQ7EfXJ6A29I+iqt33a4ReiT0Nd6uG/QeOB5XOnYMGxrhCkxSd814VodDywn6diw3An34emYC+XDzA7Ep8t2lvREU/uLJI+ZXQacDKzQlHsvEsmGmV2Hv7wtK+mnpOVJmjjl1Hychyeay2sLDbAc/gYpSRV4dMZyGdv8Ay929k9J1+FWlKXTfsS/wad+qmBm2+LWknJcQfkq9P85nhH4NzPbBI94WhTYNezaDnf0vQHPw7IOMCr0R5jm+QIYHY77Kp6XZgHcn+cPYMkwJbYk7ng8A1dqMOdwM3vdzJ43s03rea1+AAabWZewvBkwIUfKTBc86/EHtOE8Eq2Qa3BF/tSkBYm0LsxsYeAw4J6ozDhRoWkmJH2JF0g82sxWNbNLggNuvvEZsL+ZtQshpntTvVJwZ9z5NsUrQE8zGxweqqtwq0gmm+PXQMCHwH749NAMPIpnY9zXZQTue/OAmX2C/6AXh7aRpEPxHAvXh37vxU2si+FWo9PwMOe98emqx/FyBhfjOXH2BbZLqz57FHACcBnusHy/mVXJKlwDT+MWoc/N7EXcmnJQPfbLipm1N7OnzWxX3El6ceDUONXUepA0CffrOtDMlk5YnEjr4iR8bL4saUHyhTjl1IyY2aL4W30FfuPdIumoZKWqipn1wKd7lsPD+N8B9pQ0N22bQbgSczQ+1XQF7uexGtALL4R2ZGZCJzM7F0+2tyywPq58bIIrM2NwH5z3Qh/74IrOqrhF5wagu6QTQ1+9cKfi7mZWCvQMYfJdgsz98Ciq00M/o3BT/wS8htMrks4Jfb0PnCJpVFg+FS+3UOccdJi+Wgfoi5dkmFTXPrX0tSQe2rsKPl32dgxdbX2Y2eK4r9kjkvZPWp5I4WNmS+D31EOSYgLHQLTQNCOSfsWz0XYGjso3ZQZA0gxcydgIj3jaOV2ZCdt8ikdGHQv8B1cWdpe0rKQ+kvZNKTNm1t3MRphZCT5dtB0wDa+5tB+ueHwM7IVbbgz339kRj0R6G5+W6gjsGaxbHYHheMVscCVx84xTOVLSsOCMvBtwt6T/BqXlQKpmbS3DlaoUXcO6+lwvSXpf0nNNUWZCXz8Ba+AO0e1xX6NIK0NeUf46YF8zWz2E/Tfashdpm5jZCma2ZVi8AB87q+XxastEC00zE/KsjMHD6lavK2qn0DGzu3BloyvuC9MBN7mPB56T9HXathvi00Pd8Wmj03Er0Hb4tNc04FrcP+Y1YD9Jk9P2G4Pn0BkJHJKaqjGz04GlUgqkma0N3C9pubC8B648XYA7HJ8EDA3ThC2Kma2HW5iuk3RCSx8/0jIEC+P3eMh/X6A/XhF+bJJyRQoHM7sNz7k1Cn8BvVrSyclKlV9EhaYFCM6szwCnS2rV851mNh1XRD7GrVMHAH9JGlzD9kPwdN0L4krGDNwas07I6YOZtQt5PdL364eXV/gT+DDd7ySEmH+AV9/+AVeULpf0n/B5f1yZWRM3276LW9E+x5WuFnkoQpj2h/gP3N8yp+wirQszux+3TH6NV4N/P2GRIgVEiKo8HvcNLAIWk/RbslLlF1GhaSHM7DE8gd0gSd8mLU8uMC9XvxbuV/MUPo0zA88ncwVwJJ5Ab4qklWrppz2e/G5z3Pn4XEmZjsk17TsUz1nzBz7NNDusXxo4EbfuPC3psbB+KXxa60XcanYoHoUi3KJ0r6Qj6nsNmoKZnQJcDuwm6dG6to8UNmbWHc8zVAqsoizV6COR2jCzvfBAihtj3pnqRIWmhQhWg8/x0OWN0iJuCpLwY3wi7tS6Fh5G/RAe1dQNz2ezDF7j6S3gMEnjcnTsdrgicBReg+otPJdOH2BjSXNq2fcGYIaks8xsVXza6ns8Z9Ae+NtPs+cMMbNVcMXvOWCXGNnUNjCzjfHp038pz5NuRvKL4L4wDvgFT7xZXscubY7oFNxCyCvwHo1H+5ySsDhNIuSOuQy3cOyOV79eF1gJV9p+xq1RqQrevwBvpjm0NZVT8UijOeE4PXGfmtl42HZtLIhPM4FHF5UDkyT9EKYDS/FaU81GcHK+B5+aOzwqM20HSa/jaQdODRnFI5H6ciEeVHFkVGayExWaluUBPHT5fDNbI2lhGkOwjozArRzL4hWzz8edHX/Ew7QfxX1Y5uChqnvhYdnX19DnADN7ysw+N7N7zKxPHWLshmfo7YkrBVfg01Xj8fw4K5nZ+WZ2rpktk7Hv88BpZrYS8BvutPynmfUyL2XQHvdxaE7OA1bHlZnJzXysSP5xMp5j6U6rZ+20SNsm+BoeC9wk6cOk5clXokLTgoQ38aOAycDD1shK0wmzMH7fTDSzk3Hry3g8/PgN3CqzSFgeh4dqgyek65fZmZktgGf6fQtPgDcNeMrMst6bwcqzMm6N+Tocc1t8mmtH/NqOwqeiFgTeNbMV0roYAdyG16N6AJ8C3BJP7Hc+nm+n2Zw1zWwrPHvynZJiRuA2iKTfaSXW2kjzE8bI/1IZ4BCpgehDkwAh7HgUnnm2oPwnzKwDMAk4As8fszau4Bwq6e607TbEfWq2wLP1Xo2XN3gCV3LmhnVFuBPwRmG/Itzasw6evG833LH3JUlfm9kLwMv4tNOLeIh3L7z8wrF4kcznwzbleOHMpSUdVsP5rI4rOP1wRWZvSfOaco1qIiTS+wTPybN+dAptu4QEjQ/gU6R/lzQmWYki+YqZ3YoHLwyR9HbS8uQz0UKTAOGmPBXYCc+BUjCEH/v9gVtwhWEacHaGMtMVzw78Oh5RNAsYEJbPxqeeHsQH9GWB3mEqC9zS0gWPOHob2BO3yLwVHCo74laVtfFprRfwbJkr4grQOrhj7/t4SPTOuEJUDTMbgFtq7gIOxi1LFzb+6tRM8Jt5GJ/i2i0qM22b8BJzNB7Vd09afbBIZD5mtj1er+nyqMzUTbTQJER4Q3sY/8HdTlK2Wkh5S8gDsxLwc3pEUAhNHYVP/fyGRw69hk/1HAsMl/Ry2PafwAp4crxZ+HTP3nj17K/xCtqH49W9NwSWwHPUnITXPuoK3IQXz5yGRwzNwJOWzQXOwv1rngl+PJnncDKwjKRjwvLSwHuSqk2NNYXwXd8V5Iwh2pH5hCnU5/GUAwcnLU8kfwj+fx/jU03rZ2Zwj1QnWmgSIryhHYhnxH3IzFZLVqKGIel3Sa9nCW8+BK+fdBhefHIsHtZ9CR7G3Slt2054yYFtcR+alXCH4jfwSKOv8amjBfAkeb3CtpfjKb+Px0tKvBz+fwEeYTUCzy1zOW4JKgKfzjKzE8zsGTO7G3cq7pwmTxfc6pRrzsCVmeFRmYmkI+lF4CLgIDOLCk0EADPrDDwSFneLykz9iBaahAmF697Df0jXLfTMj2Z2EbAQbpmpwM9rIbw8wTA8X8yJuDJxBrBZqBVFyAvzMj7VNBD4G+5wvA4+xbUIMAQPu74HuExSRdj3YTy531DcSvM2Po30F17U8kwzuyx8fikesn1MEPsO3AfnNPxN+YocXo898am1e/HssPGBi1QhTLe+AAwGNpD0ScIiRRLGzG7B/RR3lPRU0vIUClGhyQNCCPdb+A/1xpKmJixSowk5al4ARuN+MH8HUoUqbwOm4wnlJgE3SPo4bd+XgYcl3Rqmab4AVsStLWOApXCrzn741NOjki4N++6E++acivvQLIZnD/4Z2FLSTDObgVt+JkqaZmb34P44i1FZNfzeXCkdZrYpnnjwA1xxi29ZkayY2UK4w3jqxaZJhU8jhYuZHYVPpV8mKUY1NYCo0OQJZrYFHvX0MbC5pFkJi9QoQij6FCpLCQA8BiyPKyidcaXhkSz7foFHGX0Wlu/Ep+Um4uHiU3HFZhs8kd9NktZM238v3OrSDndAfgav8zQv+PZMxZWrItx/qSPwlqRbcncF5suyAW5tGg8Mk/RXro8RaV2Y2Vr4dOsX+D0THcfbGCGtwzO4X9VOMYFew4gKTR5hZjvjP7SjgG1rS+Gfr5jZJbgSch1u8fgQVyCexq0qLwKDJX2TZd9bcT+WQ/Bpqh/x6aHeuO9Mf3ygf8fMdgBOranoZZa+rwM2w52Pr8Z9evrgZQ5y+jZsZmvijtB/4GUu4tt2pF6Y2Y541uvHgD1SU6qR1k+Ycn8bL8UypFBfapMkKjR5hpnth9dBehXX0IsTFqlBhIrC7+FOwT3wStId8MR13fEcM7+ntpc0LG3fBXBfk1SJhHKguyQFj/+vcCXpXeAE4BBJz9ZTrtG4z84awKa4D88USTs17kxrPM7auNI2Cx+Ufspl/5HWj5mdiCvd1wL/jH5XrZ+Qo+ot3Lq8rqSJCYtUkMQopzxD0r3AQcAmwIsFmE34Q2B7fEpoY9x8+m/cd2UR0pSZTCTNxKOBtsHzzEzBc/WA+87Mwn1v+uGe/3UqM2bWxcyOwSOlDpZ0LbAD/hb0RYPPrvZjDcEtMzNwX6iozEQaw7W4hfMEvExGpBVjZv3xF9geuGU+KjONJFpo8hQz2w0PPx4LbFUoNX9CbZrbgV1wC8s7wO71sTQF68bT+FTTUrgfzNDQT0/g/yT9twGydAp9/IVnKz4OL9XwR9hkU0kzsuzXG4+sr7dzdsgn8jjwE+4AHAelSKMJGbNvwyP1TpZ0VcIiRZqBMNaMxBOPbi7pnWQlKmyiQpPHmNk2eF6WX3DNvbmLJuaM8KC2A/6sr8nczL7Ec7U8FCxT7+BRS18CfzR0TtnMdsedhDfH89FsgPvm/IRbUCZkbN8Zn/LaAjA8DPzAukohmNkheFj5F8AWkv6obftIpD6EcO778GzZx0m6MWGRmhUzG5m+nD4d3RoJY+QLwGrANpJeS1ikgidOOeUxkp7Dp556AO+Y2bBEBWoY03GfmYXTV5rZemZ2vZldZWYrpq03PBLqSQBJ03HrygBJ4xvpINcDt/YcHWRZFrf23I8n3cvkHFwJWyjI3RtXqLISEvVdilukXgOGRmUmkitChMv+eP2zG8zstGQliuSKkGn9dWAQsGtUZnJDVGjynGCCXA/3HXnJzA5NWKQ6MbOFccfdN4FxZnZL+PHfDLd6TASKgTfMbCWYnzn5c7zidiovx5ZhXWN5HffH2RqPHLsGr930EJ60L5N1gFslzZU0G0+4t3YN57hA6Oc04D94+YrpTZA1EqlGsA7ugU8/X2pmFwXlv9UhaVh6S1qe5sLMlsDD8wfilvd6BTZE6iYqNAWApPH4dMlI4DYzuzMUgMxXbsQViCWAJYHVcWffU3A/mMslnYs7Ph6btt9+wHlm9hWeufeepry5hOu2K17c8hzcD2c/3IT/ZZZdfsQdmVMWo2H49FQVzGxlvPjlzsDJePmFZqnQHYmEe+sA3KfmLNxa0672vSL5SLBKv4mnoNhC0isJi9SqaJ+0AJH6ETLbbo3ncjkbWMvMds1SSykfGIT7wgiYaWYP4UpNZ9xBN8Vf+FsKAJI+N7NUsco/c5G/RdIbIeT7frzA5Tt45uEts2x+DjDSzNbDp5564ErNfMxsX+BWPOJqM0mvN1XGSKQuJJWb2RF4EdZTgKXNbO8QGRgpAEIW9UeBUtyH7+M6dok0kOgUXIAExeZePL/LCcBd+ZSrwsyeA16VdFWIenoaz3xZhvuzHIn7tNwOHKYGVBoPjruX4o67fwGnS3q7HvsZsByeuO8rSaU1bNcN2AjPdDwqTD2lMiBfh1ua3gT2kvRrfeWORHJFSI1/Az4du12MqMt/QuHR/+AFd7fLDEiI5Iao0BQoZrYU8F88rPkp4HBJNeZ4aUnMbFngFTyJXl88ZHpn3DJyHG4+nwdcI+mhBvZ9R+jzHNwP5kZgw2yZh3NFeLO6G1gUzzB8vqSy5jpeJFIXIU3Aw7ilcPf6KPWRlsfMOuAvYP/E/ff2iL52zUdUaAqYkKviePxHdiZurRkRMuuuik/z3JdE+vTgNLsWXjvpw1zJEApMDpD0Z1i+CfgmJMxrat+9gcOBK4KJvyfwLzz0+xu8WvZ7TT1OJJILzGwVPPfR0ng03rX5ZKlt65jZYni6iA3xF69/Rl+75iU6BRcwkiokXQOsiRdBvBd4JTieXYdnHM15pmFzDjGzO8zsQjPrlUW2mZJGSno/xwpVCVVDwfuFdblgC1w5PNDM9gbG4VNk1wNrRGUmkk9I+hyPwnsaL5XwSAFmFm+VBKvux/hL5d6SjovKTPMTLTSthBD1cBj+g9wdd/hulgyjZnYZXg/pVrzEwdrA+mqB6sBmdjQeWXQjsBIwBPh7Lsy4wc/m49BvR7yMw5GSPmpq35FIcxHu238Cl+EpEf4haVSyUrVNgo/fhcBJ+AvRrpK+SlaqtkNUaFoZIWHTK8AqwJ/4w3VLTU6wjei/Az69tZikv8Jg+ipwo6THcnGMesiwHZ79969w3Ck56HMJ4ALc6Rc8Z82pIblZJJL3mNn6eGHbZfH79yxJc5KVqu1gZmsA9+BpIv6Dv1DGitktSJxyamVI+l3SqsBg4DN86ukrMzsgKCNNpR1eFmBWOJ7wrMAdm9qxma1lZh+b2TQzey04PldD0jOSjpd0QVOVGTPrZ2ZXAN8C+wBXAUtKOikqM5FCIiThXB24GbfYfGxmG6Y+N7OFzOyg4HsXaSRmtpiZ7Z+23NnMzsNzU/XGyxgcGZWZlife2K2UEPWwGZ4ldyYeEfWNmR0VzKKN7XcOPmd/j5mta2bH49NOTUrdbWZ9gWeBK/E3zFeAZ5srgZiZLWVmNwIT8MH/IWB5SafEMNhIoSKpWNIxeJ6l7sBbZnZ7eL4uxKeJl01SxlbAKcBdZraKmW2OvzgOx8eQVRqShiKSW+KUUxsgvJFtC5xJZRmFW4DbGpNLJWQpvhi3Av2CT800qXBmCEM9VdKmYdlwf4D1JVXL1tvIYxiecfloPJ28cEXvcknf5uIYkUi+EHIqnYsr7LPwAIEbJB2fqGAFjpn1wVNRzMWDEr4FjpH0cqKCRaJC05YIP+hD8fpDW+GFGh/HTdQjkwjvTpPt73i9mpUlzQ31oL4HlpA0rYl99wD2xhWZ1YAZeJ2mq6M1JtLaCeHdLwCL4SU/TgWeiyHeDSdEdJ4BnIgnNr0BfxGLvkp5QFRo2igh+d2RwMH4vO/PeHmAEcBnLT3YBWVrBLAMXrNqZ+B+ScMb2V9HfLptX2B7vOzCp8C/8Vw9xU2XOhIpDMLzdTSeq2ogXmvtdEnvJilXoWBmXfDrdxbQC7gPD7aICQ3ziKjQtHHCg7oT/sO/JR7u/SWeffgZ4N2Wco4NU2N7AgOAjxs6Fx3enrYAtgttQTzS60E8R8978a000pYJgQGH4T4fC+ERihcDr8dnozohr89RuEVmYeBF4DRJnyYqWCQrUaGJzCc4Du4e2hBcuZmCP8Qj8RpG4/Jl4AvK2N9xWTcNf9vh4dzP4RanV2JCq0ikKmbWHTgCz+nUH3gPz2PzdCzrAWa2KG6RORb3PXoRuFjSG4kKFqmVqNBEshLeTFLWji1x5zeAycBo4BNgDD6N82NDlBwzuxZA0gkN2KcTnvBuEB6aujawDh4uLmAsHiX1DG6JiSHXkUgdhIjHA3G/uqVxR/z/ALfnotp9IRGm5YbhisxO+MvRY8AlMblmYRAVmkidhAd9IF6FeggeKTQQz0cD7mT7PfADXoJhAvA7rvz8iVtMSvCogFLg9bDfprhC0gnogRedXCj8XRSfehqA+9Usg1uMAGbjitSbob2di+R6kUhbxcza4y8vR+NJK8uAJ/Cp2udzlZgzHzGzJfGggX/gBW+nAHcC/5H0XZKyRRpGVGgijSKEhK6KW0xWoary0amO3UWlMlQbU3AFaTweJvlpaN9FC0wk0jyY2fJ4wMD++MvFVOARfAr3rdYwhRsyqu+E+w4OCavfwa1TD0manZBokSYQFZpITgmOvf2otLSkWhcqrTHbAhX4FNHc0GZRadGZDPyei/pMkUikcQQH4s3wH/2dgG7ANDwE/BngBUl/JSVfQwhW5kFUBgz8HX+pGodHLI2QND45CSO5ICo0kUgkEqmVYJHdCn8Z2RaP+BFuMX2DMP0r6fcmHudaaJh/XQ39tMNzTqWmyYdQKfMHuEL2NPBpvgQ5RJpOVGgikUgkUm+CFXZtPM/TEGB9oGv4+CcqgwU+BT4HJkiaW8++RwJIGlbP7Q3oAyyHKzCr45aY1XCLErhP35t4eZbnm6p0RfKXqNBEIpFIpNGEqak1ceVmTVyhWJHKWoHCS6T8ENofVE4t/4lPN6cCBm4K2x+BT093xJNiLkjl9PVCeNbjZXC/vQXSxJlOpTL1Lm41+jn3Zx3JR6JCE4lEIpGcEnJErYJHDaUUj2Xw0PCFcCWlsUwFfsODBVKRlePxIpENSiERaV1EhSYSiUQiLUaYJupKpcWlG26N6YRHVxlwG5UBA3NxJeZPYEpM/BepiajQRCKRSCQSKXiK6t4kEolEIpFIJL+JCk0kEolEIpGCJyo0kUgkEolECp6o0EQikUgkEil4okITiUQikUik4IkKTSQSiUQikYInKjSRSCQSiUT+v906IAEAAAAQ9P91OwJd4Z7QAAB7QgMA7AXYGAZo+lxlyQAAAABJRU5ErkJggg==\n",
|
|
474
|
+
"text/plain": [
|
|
475
|
+
"<Figure size 576x720 with 7 Axes>"
|
|
476
|
+
]
|
|
477
|
+
},
|
|
478
|
+
"metadata": {
|
|
479
|
+
"needs_background": "light"
|
|
480
|
+
},
|
|
481
|
+
"output_type": "display_data"
|
|
482
|
+
}
|
|
483
|
+
],
|
|
484
|
+
"source": [
|
|
485
|
+
"quick=True\n",
|
|
486
|
+
"# not exactly quick but quicker than not quick... \n",
|
|
487
|
+
"flat_df=svei.find_flat(di_block,plot=True,quick=quick)\n",
|
|
488
|
+
"# then the full way (much slower, but way better)\n"
|
|
489
|
+
]
|
|
490
|
+
},
|
|
491
|
+
{
|
|
492
|
+
"cell_type": "markdown",
|
|
493
|
+
"id": "2b06267a",
|
|
494
|
+
"metadata": {},
|
|
495
|
+
"source": [
|
|
496
|
+
"Figure Caption\n",
|
|
497
|
+
"\n",
|
|
498
|
+
"a) Range of values of V2dec for a range of unflattening factors, f. Empirical data are the solid red line and the bounds for the simulated data are red dashed lines. The dotted vertical lines are the bounds for which all four paramters 'pass'. The kappa used was 50 and the GGP model was THG24. \n",
|
|
499
|
+
"\n",
|
|
500
|
+
"b) Same as a) but for the elongation, E. \n",
|
|
501
|
+
"\n",
|
|
502
|
+
"c) A2I (blue) and A2D (red) for data after applying unflattening factor. Horizontal dotted line is at 3.07, below which the data are compatible with the model. \n",
|
|
503
|
+
"\n",
|
|
504
|
+
"d) green line: pID_min values (see paper for definition) for data. dashed black line: inclination of data after applying unflattening factor. \n",
|
|
505
|
+
"\n",
|
|
506
|
+
"e) Black symbols: Original data set. Blue symbols: after rotation and flipping of reverse directions to antipodes\n",
|
|
507
|
+
"\n",
|
|
508
|
+
"f) Data after \"correction\" using the optimum value of f. \n"
|
|
509
|
+
]
|
|
510
|
+
},
|
|
511
|
+
{
|
|
512
|
+
"cell_type": "markdown",
|
|
513
|
+
"id": "1f1b898f",
|
|
514
|
+
"metadata": {},
|
|
515
|
+
"source": [
|
|
516
|
+
"## Results from the above experiment\n",
|
|
517
|
+
"- The program tested the data against the chosen model and finds that the V2dec criterion fails\n",
|
|
518
|
+
"- The program then runs through a series of values of the unflattening factor, f. \n",
|
|
519
|
+
"- For this data set, it finds the optimum value of f (0.52) ranging from 0.4 to 0.65.\n",
|
|
520
|
+
"- The corresponding inclination is $\\sim$61. Your results may vary (a little)\n",
|
|
521
|
+
"\n"
|
|
522
|
+
]
|
|
523
|
+
},
|
|
524
|
+
{
|
|
525
|
+
"cell_type": "code",
|
|
526
|
+
"execution_count": 13,
|
|
527
|
+
"id": "1f3cf3fb",
|
|
528
|
+
"metadata": {},
|
|
529
|
+
"outputs": [
|
|
530
|
+
{
|
|
531
|
+
"name": "stdout",
|
|
532
|
+
"output_type": "stream",
|
|
533
|
+
"text": [
|
|
534
|
+
"using model: THG24\n"
|
|
535
|
+
]
|
|
536
|
+
},
|
|
537
|
+
{
|
|
538
|
+
"data": {
|
|
539
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEUCAYAAAAspncYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACyNUlEQVR4nOydd5gT1deA37NLX4o0EUQEFFFAAUHsiiKKBcH2gR0s+LNi77rEXrA3xK7YUVTACoqCjaIIWOgCAlKk9y3n++NM2GzYkt1NMpPd++6TJ8nM5N4zd+cmc+5poqo4HA6Hw+FwOBwOh6PkpPktgMPhcDgcDofD4XCkKk6hcjgcDofD4XA4HI5S4hQqh8PhcDgcDofD4SglTqFyOBwOh8PhcDgcjlLiFCqHw+FwOBwOh8PhKCVOoXI4HA6Hw+FwOByOUuIUKofD4XA4HA6Hw+EoJU6hcjgcviPCqyKMKux9MvuOU5vjRFDvcVDE9rYi/CDCDBFGilAjQobw8afHUxaHw+FwOByJxSlUDoejxCRB4RkInBPPBj0l5+lk9OXxCtAYmOL1Xw14D7hclXbALKBfhAyNEyCDw+FwOByOBFPJbwEcDocjGlXWloO+Nqnyb8T73sAYVX713v8FNImQYa1IgiRxOBwOh8ORMJyFyuFwlBnP+vOsCPeJsFKE5SIMFsn7jhFBRLhOhNkibBXhHxHuL6S9aBfAWNrvIcJ4EVaLsEqEL0TYJ9wecCRweYRrXfNC+qoqwuMiLBNhiwg/iXBYSWQphH2A6RHv9wX+KH50Kw4ispOI1It8+C2Tw+FwOBzF4RQqh8MRL84GsoFDgCuAq4E+EfvvA+4A7gfaAmcAi+LYfgbwONAF6AqsBUaKUAVzqfuRPDe8xkX0/ZDX7gVAR0wJ+lwkn0tecbIUxBKgNYAI+wHHAJ8U85lyj4jsLiKficgW4D9ghfdY6T07HA6HwxFonMufw+GIF3+ocqf3epYIFwPdgLdFqAlcA1ytysveMXMwJafM7QOo8kHkwSL0B9YBXVSZIMI2dnTDI+ozGcClwEWqjPa2/Q84GrgcuD0WWQrhDeBdEaZ7cv2fKltjPPfyzCvATpgCuwRQX6VxOBwOh6OEOIXK4XDEi2lR75cAO3uv2wBVgbEJah8R9gDuBg4EGmIW+DSgWQn62AOoDHwf3qBKjgg/YucQkywFocomoGcJZKkodAEOUtUZfgvicDgcDkdpcAqVw+GIF1lR75U8t+J4pFsoqn2AkcBi4BLvORuLUapSgj7CchZkJYncVpwsjtiZjynbDofD4XCkJO4GwOFwJIM/gK2YW1zcEaE+lvThPlXGqPInUIv8i0bbgPRimprjHReZhCIdOBiXQCJRDATuF5E9/RbE4XA4HI7S4CxUDkeKIiLjgBmqekUh+ycCD6jqh0kVrABUWS/CE8D9ImwFvgPqA51UeS4OXazGkhhcLMIiYFfgYcxKFeZvoIuX3W8DsEqV3Cg5N4rwHPCACCsx68k1QCPg2TjI6diRjzEL1UwR2Ur+/xmqWtsXqRwOh8PhiBGnUDkc5Ze7gUdF5CNVzS326MRzC6b43AE0BZYBr8ejYVVyRegDPAnMwCxN10G+RBWDgdcwS1N1oAWmZEVzk/ccTpbwK9BDlaXxkNWxAwUuCDgcDofDkSqIqkuo5HCkIjFYqNKxWKILVXV0MmWr6IgwDpihWjJlQQQFzlBleEIEczgcDofDEXdcDJXDkdpUEpEnRGS193hYRNIAVDUH+BQ4018RKywDRNggwgHFHSjCEBE2JEOoICIiVUXkAhEZ7F3D/UTEJapwOBwOR0rgLFQOR4riWag6Aa8CzwD7AS8AIVV91Dvmf8BtqrqbT2JWSETYFXMrBFhUXL0pEXYGwrFCS1XZmEj5goSItAE+x85/urd5X6wwcw9V/dMv2RwOh8PhiAWnUDkcKYqnUDUBWqs3kUXkduB/qtrUe38y8BFQRVWzC2nK4fANEfkK2AScq6rrvG21gWFAVVU9zk/5HA6Hw+EoDufy53CkNj9p/lWRH4FdvRtSgM1YbaVqSZfM4YiNQ4Fbw8oUgPf6NiLS1zscDofDEVScQuVwlG/qAVtUtcLG5zgCzxYsm2I0dbx9DofD4XAEGqdQORwBRET2EZGvRWStiMwRkVOi9ncDugDniMg3IrK7t+sgYEnEan874JcY+usrIn+KyEYRmSsih0f2JSJ/icimqL5Kc17DRGSpiKwTkVkiclH0ecWxr3oiMsI7pwUiclZp2yqg7ULPI57nENFmgf+fePdV1HWXiPPyGAm8ICKHiki69zgMeB74JE59JBwR2VlEVohIU79liScioiJyemHvHQ6/EZFRIvJqxPuJInKqjyI5KiBOoXI4AoaIVMKKnY7CLEwDgGEispe3vwHwIVZ0diMWzP+xd5NzA/BYRHOHYwH/RfXXHXgQ6A/UAo4A5kX1dYcny2Tg3TKc3v1Ac69Y68nAPSLSKUF9PQNsw4ryng08JyJty9BeJAWeRwLOodD/T7z7Kuq6S8R5RTAQmA2MxyxSW4BvgVnA1XHqI+Go6nKsrlqosGO8a0Q9hbGg/e+JyPfe64tFZLyIrBKRNZ4SW2IXSC9johbwuDrGJhpjSq/DkSrcDTwoXsbbwhCRvwuZGw+UpLOodjaJyAwRuaRMZ+BIOVxSCocjYIhIO+AnoFZEsokvgZ9V9Q4RGQD0w5SFv7yPXQKsA14EblTVHBHZFVO6WqrqP0X09wPwkqq+VMC+AUA/VT3Ee58BrAQ6qupf0ceX8DxbA+OAgar6Xjz78j67GminqrO8bW8Ai1X15rLIXUBf288Dc12L63gV9v+J9/+mqOsOWBTv8yqg/1bA3ljM3x+qOice7SYTbwwnA01UdVUhx/wC/Kaq/aO218fqxl2mqi+LyJtYTOT3WNKOa4BzgQ6qOrsEMvXDFhf2iNq1TlU3xdpORHterTR1tdIcgUBERgErVbWf9z6mGowi8jdW7P25qF0bSuImH9VOTez3+Tagr6rGa+HJEXCchcrhCB5SyLZ23uu22A1ZV1X9n6r+D/gduEBVr/PqT4Gt7r9ajDKVDnQGGnouXv+IyNMiEk753Rb4LXy8qm4E5nrbS3dyIs+KyCZMGVyK1cqKd197ATlhZcrjt1K2VSCFnEdcx6uY/0+8/zdFXXdxvw6iUdXZqjpSVT8JqjIlxnUiMltEtnr/j/vD+1V1BrAEKMrd6CXgDBGpGbX9HCALz/Knqmer6tOq+quqzgQuBdYDPUohuqrqv1GPTSLSw7OCrfYsYV+IyD5R5+xc/ByBQURqiMirIrJBRJaJyK3Rx5SwBuP6AuZGaWKOw+3MUdXbMat7b0/mB0Rkpohs9qxZD4nI9kRRIrKbiHzszcFNYq7VfSP23ynmtr5VRP4VkddLIZ8jwTiFyuEIHn8By4EbRKSyiBwLHAnU8PbXxGr0RLIWcweLZDnmolUUjYDKwOmYe2AHoCNwewn7ihlVvcz7/OGYG1m4RlM8+4q73NEUch7x7reo/0+8+yrquotrXyLypGflCr8u9FHKc0kU92Fz6n5MmTwDs95FMhEbt8J4E0gH+kRtvwB4x1NWC6IKlq1zdXhDhDtf81hPIIoM4HEsHrMr9j8dKSJVStmew5FoBgPdgdOAbtj34REFHFfcPIwJTwF6tRQf3YJ9d4O55l8A7ANcBvTFLFhhnsW+Z4/CvleuBtZ4/Z8GXO99rhVwEnZujoDhFCqHI8mIyLhC/LZVRCaoaha2snUi8C9wHfAeELY0bSCvCGyY2tjq9XZU9WHg3aL6wtKqAzylqktVdSXwKHBCSfqK5byiZMtR1QlAU2zlvUR9xUA82yqUAs4j3v0W9f+Ja1/FXHfxPq99ybvZ2LeYRyDwLErXADer6sveSvSPqvps1KFLgOaFtaOqa4APgAsj2j4AK8z9YhEi3IP9HyITdawFZmKWraLI8Fb0tz88WT7wHrNVdRoWp9cCU7AcjkDhzcELMbf2LzyLcH8gt4DDl2AlRCoV0+y90XNDRE6K2D8X80CIVcZKnpvtvsBYAFW9W1W/V9W/VfVTbGEm0nq2OzBBVX9T1fmq+rmqfh6xbynwpaouVNXJqvp0rPI4kkdxF5rD4Ygzqto1hmOmEbG6JhZH85r39nfg/Ih9GVh8xO+l6UtE/gEKC6aMa18FUIm82I6Y+4qBWUAlEWkVEW/SvpRtxUL4POJ5Dqjq6iL+P3Hty+uvsOtO49mXqh5V0OuA0waoineTVASbgerFHPMS8LWI7O3FoF0AzFDVnws6WEQGYnGSx0TV6xoBjIhB9k2YdTO63T2wAP4DgYbYImsa0CyGNh2OZLMHZqn9MbxBVTeIyPQCjo2swViUC9+j2HyMZLsCpardYpTtXhEZhH1HbAMexjKV4rnMXg3siVn7071HmCeAISLSA/t+GaGqU7x972PxufNF5AssydQnqroVR6BwFiqHI4CIyH4iUs3zF78ey7T1qrd7BNBORE7z/LDvBKaVITnAK8CVYmmf62Jf/KPi3ZfXfl8RqSmWGvs4bJXu63j35blNfQjcJSIZInIo0At4o6RtlfA84v2/gcL/P3Hvq4jrLhHnFe7zThGpUcD26iJyZ1nbjyMFxZgVRD1gRTHHjAPmABeIxcOdyY43ddapKVP3ACeoamldfdSzqG1/eNtHYorUJZhS1RHIxm5aHY6gEeschNhrMP4XPTeKcLstikexRYvdgZqqeqOq5orIQcA7wBdAT/JctsMWetQSDrXAvuv3An7wlDNUdRHQmrzEU48AU8Iu044Aoaru4R7uEbAHtrq1GltZ+wzYM2r/MVjMy2bs5qx5GfqqjPlwr8FcvZ4EqsW7L+zG7Vuvn3XAdODiBJ5XPeAjzH99IXBWnP43RZ5HPM+huP9PAvoq9LqLd18R7eYAOxewvT6WWKTMfcRJzlpYXMT/ijluPHBvDO3d4v0/L8Di7+oXcMy13v/iiDLI3Q/LWlbQ+CpwVMS2/b1t/SK2KXB6Ye/dwz2S9cCsO9siv8uxOMDVWAKmyGPvBr4vpr2/gevjIFeh7WCu0wuitj2JLXIU1t5NWD3JgvY18ubgsX7/P9wj/8O5/DkcAURVb8BqShW2fwyWYjoefWVhAa+XJbIvVV1BMUHCcT6vVXhZluJJcecRz3Pw2iv0/5OAvgq97uLdVwRCwS6NHYECU4/7gaquF5EngPtFZCvwHaaUdFLV58AykAGdgB0yjxXAq9hN32DgI1X9L3KniNwA3Itl/5slIrt4uzar6lrvmFOwBBndVHVxCU9pNZb6/mIRWQTsiinU2SVsx+FICmrufS9hNaZWYHFSd5LffS5MsTUYPWpFzK0wkXNsLDBRVW8ppdizsFiuszFXxbBHw3a875XPvGNrY5k8//D29cNcyn/GFlf6YDGTMZdOcCQHp1A5HA6HI+mIyHpMkVKsUHGkUpWOxT4M8UO2IrgFU0TuwBKRLMOK+YbpBSxU1fHFNaSqS0XkU8wNqKBkFJdj1snoOjavYVYngDqYO1BlSoiaO1IfbLV8BuaCeB2WMMPhCCrXY1apEVhs4FPe++2I1WA8BFuMKI47vUckb0Z8dg92zOQZM6o6UkQexrJpVge+9PqLTGaThp3Hbliin7HYXATzTLgJW3ipjClap6rq/NLK5EgMrrCvw+FwOJKOiJyPWadexuLCItOybwP+VtUfC/hoYBGRicDjqvqW37I4HBUVT4Gpo6oD/JbFUXFwFiqHw+FwJB1VfQ1AROZjsQ4p7WomIjsDw4G3/ZbF4ajgLMcsOg5H0nAWKofD4XD4hoicAWxT1Y+jtvcCKqvqcH8kczgcDocjNlzadIfD4XD4ySAse140G719DofD4XAEGqdQORxlQESuEJHJIrJVRF4t5thrRORfEVkrIi+LSNUkielwBJmWwMwCts/x9jkcDofDEWh8U6hEZLiIXOtX/w5HnFiCFd18uaiDvOKvNwPdgObYjWIolg5EJGmBteWxr/J4TuWsr9VAqwK274VlvHI4HA6HI9D4aaEKAbeLSJ2iDhKRV0VkVGk7EZFxIvJ0aT8f1dYtIjJJRNaJyAoRGSki7Qo4rrGIvOYds0VE/hCRAuvWxNpmMhCRQSKiUY9/CzjuMhGZ753bFBE53A95g4CqfqiqHwH/FXPo+cBLqvq7qq7G6s/0i7GbQm9mRaRnSbYXt6+wvkrbXkD6KvH4BaWv0oxfsvuKAx8Dj4nIXhGytAYexQozOxwOh8MRaHxTqFR1OjCP2OoEBIWuWO2AQ4CjsQKIY0SkXvgAEdkJ+B5LB3wisA9wJZZ1plRtJpmZQOOIx76RO726JU8A92GFN38APhORZkmWM9VoC/wW8f43oJGI1C9ju4XdBBd1c1zUvtJ8xvWVuL5K00+y+yorN2Ip0/8QkUVekdnfgXUUUdza4XA4HI6gkLAsfyLSA7gNaIcVbpwEXK2qf0YccydwrKoeVkQ7rwINVPWkkvbjffb8qI+0UNW/S3la0X3XxG4EeqvqSG/bfcCRqnpovNqM8XO1vM8drarjRGQ3YBQwHhioqjkxtDEIOF1VC7WQicjPwDRVvThi22xgeBkqiac8InIP0FRV+xWyfy5wuap+7r2vjNXaKfB69FyswlaBTjVq1Ciw35ycHNLTdywSX9j24vZlZ2dTqdKO1RRK214Q+iqsn1L3pUpOdjbpqpCbC6r2ALZiKylVgBysnH0172PbsC+ocOBctndMVe9ZI96H92dHfD7LO6aK9z6yr+j9OUAuoFRCqU4O6Vh9yhxgOtAE2BnLBbEYWzupAWzGvFgbez1vwmrXrlFVTegCnIh0Bzp4p/ULMFYDlIa2QYMG2rx58wL3zVuxEYCWDTMK3J9IZs608LPWrVsnve+gUl7HZMqUKStVtaHfcvhFUXMwFhJxXfg59/2mvM6zoihqDiayDlUGVhl6GlYd+nZgpIi0UdVt3jETMbe/6qq6Od79AAMxP/y/gFu941cU1IiI9ANeoWQKVy3Myrc6Yltv4HMReRc4Crs7eRF4Jsabgx3ajFG29tiNyDQROQD4EHhQVZ8uQRsALUVkMXb/9zNwq6rO89qoAnRix/oOX2IWNkfhbABqR7wPvy4wRkRVhwJDATIyMnTjxo2Jlc5RPL/9BoMHw4gRkJW1ffN9wN7AqU2acHVODnNzchjZrRvstJM9atSA6tWhWjV7VK8OVatCpUoFP9LTd3yfng5paTE9VIRb73mYRUuO5oNPurNlSyYwjmrVvuWgA5Wdd55Mx467s+9+jWjQAOrVs0eNGnldiuQ/dREp7fdzzKjqV8BXie6ntDRv3pzJkycXuK/P81Z/+N1LDk6mSABkeddi5cqVk953UCmvYyIiC/yWwU+KmoOxkIjrws+57zfldZ4VRVFzMGEKlap+ECVEf8yFowswwdu8BKiMLZfOjXc/qjpBRLYBm1R1h1igKNZi7m5ZxRwXyRPAVODHiG0tgcuAx4AHsBXXp7x9scRyFdRmLLK1BxZhStzTQD9V/aKEbfyMxfX8hS1f3w78ICJtVfU/oAGQji1ZR7IMOKaok3LwO/Y/es973x5Y5o2rI8isWQM33AAvvpi37YAD4JhjyO7UiWE33UT3Hj049emnedwvGSP4ZYrywOMPYutLx3LSSXdx0UVw3HFQrZpgX8HBQkQOxBK27EyUK7qqXuWLUClCRbqZiRU3Jo6CcNdFfHHjmZ+EKVQisgcWeH8g0BD7kUwDImNtwque1RPcT7Go6ghgRAn6fRQ4DDgsyp0uDZgc4f72q4i0Ai6nGIWqsDZjlK0DUBd4B1NOx0TujKUNVf0sSp6fsDi387EA8e2HRotewLbAIyIfYdbDT1U1t5RtVMLmUTqQLiLVgGxVzY469HXgVRF5E1iKKauvllJ0R7KYPx969IBZs6BKFbj0Uhg4EFq0YNOmTeTk5DDjlFPYvDnhBpwiUVWuv/56mjQ5j9tvbw8onTrB00/DQQf5KlqxiMj1wENYmvQl5P8uiel7RUSuwBaD9gXeLsz11jv2GuAm7HfnA+BSVd1aGtmDwKuvvgpAv379fJUjSLgx8Yegz0N3XcQXN575SaRP/EhMwbkEU3Y6YiEBVSKOCSdeKNANL479xBUReQw4E4tXmhe1eynwR9S2PylGwSumzVhoD/wKHArsSRySfajqBsyyEk5pvBILwtgl6tCd2dFqlQpsBN4F/hGR+zzFt6Tcji0M3IyN+WbMjbWZiGwIJ+vwYqceAr4BFniPzDicgyNRLFwIhx5qytR++8Gvv8Ljj0OLFgD07duX8ePHk5aWRkaGv/7zM2fO5LXX3uHGG79iyxa48EL4/vvgK1MeA4GrVHUvVe2qqkdFPI6OsY2Ely8IKq+++ur2GxuH4cbENwI9D911EV/ceOYnIRYqL3PZPlgQ/jfetv0L6K8dsERVS3UzHmM/2zDrQVwQkSeAvkBXVf2rgEO+B6Ij9PbCbqBL22ZxMqVjY3mOqk70rCB3isibBVhKStJuNSw85BsAVd0mIlOA7sD7EYd2x1aYUgpVPVtEagNnA/2Bm0VkAma1ej+WuD5VHQQMKmR3zahjHyW/pc8RVDZuhF69YOlSOOIIGDkSaueFwOXm5tK6dWt+/vlnTjjhBB8FNbZu3ZstWxaQm5vGddfBww/vGAcVYGoDn5alAVX9EEBEOgNNizh0e/kC7/i7gTexm7uUZNy4cX6LEDjcmPhD0Oehuy7iixvP/CTK5W81Zs242EuBuyvwMGY5iuRw4PMY2qstIh2itq0BFsbQz99AFxFpjiUGWKWquZ5p+gpV3RtARE4B7ge6qerigoQQkWeAc7HEE6tFJGyp2eBZc8Bip34Qkdsw60dH4CrykmIQ2XeMbRbHXpjZfKr3/m4sDuoCvMQGMZ7fYMzitxCzOt2BJf14LeKwR4E3RGQipjz+D4uBGxKjrIFCVdcBzwHPiUhb4CLgeeApEXkHeDwyM6WjgnDjjTB1Kuy5pyWhqF073+60tDTOPvtsdt99d3/k81i6dCl9+vTln3/uZePGwzjrLHjooZRSpgDeBnpg5SMSTVus7lWY7eULXDyjI6mowsqV8Pff8N9/sHYtrFsHF12UchO4FLh56IgbqpCTA9nZli8qKwu2bbN10fAjK8v2h4+LfI7etuuucOyxJZcjIQqVp7D0AZ4EZmC+8dcRYcXwrB+nAMfF0OThmDtbJB+o6unF9YNlpHsNc8OrDrTAlKwG5Lck1fHeFxVld5n3PDZqewjPSqGqk0SkN5b86w5MObmD/DcLkX0X22YMGfraY9ni5nsyzBGRYZjr2WueX3Is59cUu7lpgLlh/gQcpKrbrWuq+q5nGbwdy608Azgh8phURESaAL2AkzCFfDiwG5Y18RZVjc5s6Civ/PwzPPecpbv74ANLgRfB+eefT8+ePTnllFMKTbmeLNavX8/Mmf+xfHk19twTXnjBkv2lGIuAkIgcimVrzZc4x7PsxotwWYow4de1KKA4d2T5gmbNgllq74UXXgDg4osvLubIikOJx2TbNvjzT9i0CbZsga1b7bF6tbn8Llxoz7m5BT/CJRRKsn/LFigo9rJvX6hVK46jEUhinofxnINursSXko7nli22hrBypa0fhNcQIp/XroVly2DRojzlKKwMFfU6nhx/fOkUqoTVoSq2Y5HLgV6qWgqxKxYiEgJOB9qXxYXPkR+vFlQvzJLXHVPaX8CCaTd4x/wfMFRVd/JBvp5Az6pVq168ZcuWZHdfceneHcaMMSvVgw+iqvTr149zzjmH7t2706dPH7KysnjvvfcKrW+VLP78E/bbT8nOFr75Brp2TUw/IrJJVRMSKCYi84vYrarasgRtFVcP7jfgXlV9z3tfH/NyaFDcynjnzp01iGnTjznGEqyOGTOmmCMrDjuMyebNNqdnz7ZEM3PmwPLlsGqVKU1r1xbeWKVK0KABtGwJdevmL1MgUnQZg6L2V64MzZpB8+bQsCHUqWOPJk0KXRURkSmq2jnOwxV3EjUPi5qDsZCIuVKR06ZHj+fatTBhAsyda9Ns8WJYssQey5ebpagoKle2KVC/voUqV6li2ypVsufwI/J9Ya8rV4aMDKhZ00qCVK2aV5EkXIkkskpJ5HNGhk3JgihqDvp5N5AFXOlj/6nECZiLoFOm4stSLEPhW8DNqjqtgGO+In+dsaThFXYemZGR4ZbTksX48XbjVbs23HQTYG5148eP56ijjgLg3Xff9VNCwOp/DB48mIkTLyU7eycuvDBxylSiUdUWSeyu3JUvcIrUjowZM8ZWG159Fd57D774wqxCYNafVq2gcWNo08Ys0HXr2h1co0Z251Wtmj1Xrw577WV3WY544ss8dHMlvowZM4bcXPj0U7j7bpg82SxGYErJbrvZ+sAhh9jUatDAHvXrW4nGOnXspzb8XK1akd0FHt8UKq9wqSMGVPUAv2Uop1yDJZ8o1PyjqqsxN1FHReCBB+z56qu3u/o1adKEOXPmkBu+IQsA27Zt49ZbbwWWUKXKUwwa5LdE/uLKFzgA8xsaOxaGDoXPvfDs+vVtPh9+uCWYqVu3IsQo+YKbh+Wf9evhpZdsmi1davXus7NNITrxRJtqbdua4lTRppm//ioOh78cBXwE5FOoRCQDeEpVL/BDKIdPLF5sN2GVK8OVZjzfsGEDs2bNYu+996ZGjRo+C5hH9erVOfHEeYwe3YyLLoKmReXTCjgi8mRR+2Ms7Hs7+csQnIPFZb2Mxc+2UdWFqvq5iITLF4Tr36R0+YJnn7Xw3Msuu6yYI8s5W7dCt24weTLPVq4MXbpw2WuvmYUpBQMLU5RAz0M3V0rOpk3w44/w1Vf2PHmybWvTBuBZOneGvn0v47LL7KezIuO+ZRwVmfMpuKh0deC8JMvi8JvXXze3oJNPtuU1YMqUKXTq1IkffvjBZ+Hy+Pfff/nkk18ZPbopVaqkc3PKJvzezr5Rj/2Bs7A52C6WBlR1kKpK1GOQd/NWU1UXRhz7qKo2UtXaqto/lYv6AowcOZKRI0f6LYa//PKLxThNngy33MLIrl0ZWa8e7L23U6aSSNDnoZsrsfPll3DYYeaad8wx8Mgjlrvlggvgp5/g99+hWbOR7LTTSAYOdMoUOAtVXBCRKkB9LDveTkBV7/EIFmh5N7AV2IRlsFkJrFO/MoJUcESkHhY7JUBdEYl0R0gHTiQ1CxU7SouqxVuA/WJ4tG3bluHDh7P//vv7I1cBDB8+nCuvvBJYRN++TdltN78lKhuqelT0Ns9V6CVgfPIlSi0+++wzv0XwD1V491244QZz93vgAbjpJirwiDiKoELPlRhQtdDDoUPhiScsrPCaa+DII63GfZ06+Y9345kfp1DFiIhUBdoAHbBiwi29RwtMiSqM1hRcaytLRP4B5mHpzudgtRimquq/cRPcURArAfUefxSwX0lxNyBHCZk+3dIiN2q0PV/qggULqFatGqeddprPwuWnV6/TuOOOxqxZsyvlNfuvqm4RkXuBL0jRGneOJPD003DVVebz+t130LGj3xI5HCnJH3/AGWfYM8AJJ8Arr8DOO/srVyrhFKpCEJHGWP2r8KMteeO1FatlNQ/4EQuqXOk91nj7t2G1o7KBSzCLVQZ5lqydgWaYQnay9z7c93KsBtR44DvgV1WNc6b9Cs1RmHXqa+A0YFXEvm3AAlVd4odgDp8YPdqeTzzRcqcCt956K9999x2LFi3yUbAd+fXXxqxZcxqtW9uqYTmmIVavxlEETzzxBAADBw70WZIk8957pkx17GjBHVWrbt9VYcfEUSTuutiRrCxbl7j3Xksi8dhj9jPYqlXxn3XjmR+nUHmISDpwEObudRLmyw+wEfgBGI1ZkH4D5qhqTgxtfgmgqj/GcGxdYD8sfWhH4FBM0QJY57U1CvhMVZfHfmaOaFT1WwARaQEsDKrrZUQdKr9FKf98+qk9n3DC9k233347U6ZM8Umgglm2bBmDBo0BTuTCC3cqF1mUROTa6E1Y0fCzgU+TL1FqMXas1YSvUDc1M2fCgAGWk/mNN/IpU1BBx8RRLO66yM8ff8App+Q5Z0yYAHvuGfvn3Xjmx7fCvkFARATogv1w98GsRNmYZegzYBxmHfKl/pOI7AIcARyDKXpNMHe0b4A3gQ9VdY0fsqUqIrI/5laZ670uFFX9JUliFUlGRoZuLK4inqP0rFplVfzS062Ee+3afktUKEOGvMGll55HWtpUlixpT6NGyek3yYV9c4EVmAX5flVdn4h+S0pQC/tWOJ59Fi6/3CzJ06db4okKQqoU9k0UZS3smwhSce7n5sLAgTBkiKU8v/56s1BVqeK3ZMEnqIV9fcOryt0fc8XbE3PRGwkMB75IlJIiITkEeBIrajxAM3V6Ucd7sVTvAe95yl8HoDeWAesl4FkRGQE8C0wIqqUlYEwGdgGWe68VWxGPRrEEFY7yzpdf2i9M167blakpU6awbt06unbtigTIDFS9+llAG448ct+kKVOJJsmFfR2pzIIFpkx17gx33FGhlCmHIx7k5sJtt5mb31lnwX33we67+y1V+aBCKVQi0h4r5toXi2kaD9yHWXrWJrTvkFTDAqxrYjfrX0lIGmtmbEqQpyz9CvwqIoOAzliNh/Ow85khIk8DrxVVqNZBC2z1O/zaUdH57jt77tZt+6bBgwczYcKEwMVPffxxOtCJU07xW5KyIyK/AN284tmIyJnAJ6rqzLElYPDgwQBcf/31PkuSBD75xJ5feQXaFZ5Rv0KNiSNmKvp1MX26JbGdPBl697ZKIellWDau6OMZTYVQqETkEOBWzG1uA2bdeU5VZyRRjDpAOFO/YAHXaUCxsVjReMrVJGCSiNyCKVSXY9mwBonII8DzQXGVCRKquqCg144KzPff2/Phh2/fNHToUGbMSObXQ/HcccddfPLJYuB5evf2W5q40IG870SA54GfsWQ/jhj58cdiQ3TLBxs2wD33wIEHQtu2RR5aYcbEUSIq8nXxzTdw9NFQvbpVCDnnnLIpU1Cxx7MgyrVCJSIdgQeB7lj9p9uBZxLs0rcb8IVm7tDHcuBb4BDv/QeaWXxii+JQ1U3AyyLyCtAVUxwfBm7x0g4/k+qFK+NJcXFTkQQlhsqRQNassWW7ypXNjcijVq1aHHxwsHzi//xzCzk5G+ncmZSvPVUIwfGtTCE++OADv0VIPFlZ8L//wfLl8OabFJeNpUKMiaPEVNTrYutWOO88aN4cRo0qdj0iZirqeBZGuSwhLiKHishXwC/A/sB1wO6qem9YmZKQtJCQvCcheV9CUoK8JoX0GZKnsBTnbwDTJSS1Ivd7rn0nAv+HxUH1L2uf+do3vlHV7sCBmAXrEWCWiDwlIuXyf10KJmNjM7mYxyS/BHREMWhQfvee6Pdl4aefrJph5862dAd8+eWXPPPMM+Tm5sanjzhRq9Z9wLBy4e7ncMTMli1w7rmmSN1yCxxzjN8SORwpw7BhlgL9n3/gySfjp0w5dqRcWahEpAqmPN2DKYuPAHdHx0dJSASLn2rsbTpMQtI02mLkHZcWuV1C0gJL5dscqzN1ObC79yxYIoNdsLTn+Qr6aqZmQ9mLuHty7QSs99rMh6pOBHqISDfgdeAK4HAROSfJbo5BpHzETfXrB6+9Zq8rVYK6de2b8vTTLZ1w5cpFfjzpNG9uAeWR1KljFqLiuP56uPLKREhleWIBDjts+6bhw4fz6aefcvnllyemz1KgCp973yY9e/orS5w5UUTC389pwHEisizyAFX9MPlipQ4PPPAAADfffLPPkiSIE0+Er782d7/bbovpI+V+TByloiJdF6oQCtmjfXt45JH4/3ZUpPGMhXKjUInI4ZgP/j5YWvGjgOxCkk1Ux5SesNWmPlAbWL29vZB0xhSinSQkzwNXeFam54C9vM+eC3xEXixUeDzTgfleO/Ww1Ox/aab+XebzDEkVTCk7HFgvITlKM3VaIYf/icVu/YoVEf5VRB4DMlV1c1llSUVSKW6q2DpUxxxjNVhycmDFCrvpyMy0bWPHQkZCslyXnjvvhEsvzXufFqPRtGZNeySCsA94RIXc559/nlWrVhXyAX8YM2YB//57KnXrPky7dkf7LU48eSnq/TNR7122zWKYOnWq3yIkjokT7XvttttiVqagnI+Jo9RUpOvimWdMmdp9d1s3TMRPaEUaz1hIeTcwEakmIoOx+KTqwImqejTwIlbPZAc0UzcBE7CivRuBKcCaqMNexhStdCy9+v2eZagO+cetNjARWOf1lwt8rJk6U0KyKzATeBf4XUJyZJlPGHphClploC7waBHH7gzMAk4H9gZeA24AfhGRA+IgS8ohIvuH3R+914U+/JZVVUeq6oD0wiJHq1aFXXaBXXeFDh3g2mth3Dj45Rd46KG847Ztg5tugqZNTck64AD44ov8bf31F5x8slmNataEgw+22CKw527dLKV4rVq23PXNNyU/oVq1TN7wY+edTRm88EJo0cJc7lq1Mtkj3e3i6eIXiaqNFeSLnxIR6tevH//+ysA332wBdubAAzPKRTFfAFVNi+HhlKlieOedd3jnnXf8FiMx3HOPWdsvu6xEHyvXY+IoNRXluvj7b3PqOOQQmDcvceuRFWU8YyWlLVQi0gErcNsGsxzdqKobvN0DiqnL1AM4E1OO3iogfXlkibN04CrgD+AmzOUPTFkZpZm6RULSHlNc/gHCkXqnA7WwFO1g7ojfluQcCyBaSSw00ENVp4pIp4hxuEhE3sFcFX8UkXuAe/wqXOwT5bsOVbt20KMHfPCBLU8B9O8Pc+fCW2+ZUvXpp2b7nzTJlKMlS8zl7dBD4auvYKedbGU4x/N0PessO27ixLximtWq5fXZvLnVcHr11ZLLm5trCuF771lx3YkTzWWxfn1TtBLJggXmctiwITRpAsDixYt55JFHGDBgAHsHqMbN9Omtgc/o29dvSRyOJLFihX1XXXvt9vnpcDiKJjfXfrKrVIEXXojdEcRRdlJSofKK3F4IPI1l7+uhqvmW3IsrcquZugVTLArjOmAEeWl9qwOHaaa+LiFpit2Uzw7HV2mm/gM8HtXGYiAbU6i2UkA6YAnJAcAZwHRgWAx1qT7GlLLjsXpKA4s6OHocVHWMiOyLFRjOBI4UkTO9IsIVgfJfh6pNGxgzxl7PnQtvv21LVs2a2bYrrrD9zz8Pzz5rvgEZGfD++3ml0vfaK6+9BQssjimsYOwZlcNljz2gcWOK5bbbzNoU5tZb7XHXXXnbmjc3q9Hbbydeofr1V3vu2HF71rC///6bIUOG0Lt378AoVFlZ8M03a4E6kaWyHA4A7r77bgDuuOMOnyWJM+++a4s6Z55Z4o+W2zFxlImKcF088oh5sj/7rN0KJJKKMJ4lIeUUKhGpATwLnA98BZytqiuK/lQJ2g9JGmb1Oh3YRl5s1DZMwcJLib4mhuY+ADp5sm4GlkpIKmumZnl9tQHGATUw18MmwIMSktuBmzErysmaaYkkJCR1MDe/nkA1YEushYEj8TIdniciYzHL3i8i0kdVx5e0rVSjQtShUs1LK/zLL/Y++pt161YrSgGmWBx2WJ4yFc2118JFF1kSjG7d4LTT8pQrsHitWLj22vxKUr169jxkCLz4oilumzebBpGM0u2RCpXHoYceysaNGylmPSapvPXWNDZu7ELTph/StOkJfovjCBgzZ870W4T4s22b3RkeeKC5M5eQcjkmjjJT3q+LrCzL5Netm1UZSDTlfTxLSkopVCKyC/AJ0BkIYRn8ylzLKYrDgZOwsakEzMEsWRM0U78rSUOaqSohGQJciWUUvBOrU3WFd8ihEYdnACdLSD4DbsGUrOaYctdeQnIc8CHmnjYBOKE0ylQ++VRfE5FfMMXvaxEZoKpFWe3KHSLSGLgUcxsFS+TxnKouKUEb9bDg+mOBlcAtqvpWAccJcDeWMr8mlizkclX9vUwnEc0ff0DLlvY6N9eUq0mTdsz856UJp7jLaNAgOPts+Owzi70KhUwJuuCCkslVv/6O1q1334Wrr4bBg83hu3Zts5iNGFGytktDhEK1bt06brrpJjp06MAll1yCBChQ6ddfawMD6NHjQL9FcQSQYcOG+S1C/BkxwqzqjzxSbM2pgiiXY+IoM+X5usjNtZ/pf/6Bp54q1bQpMeV5PEtDyihUItIOGA00AE5V1Y/i3kdI0rEb3sgQvobAk5q5PTarUEKhkGBuZJ2wVOq1+tGv1QxmpC1nOUtYUiOb7O4RH/k54vUmLKtgbfLiosJJMMDcCWt4rw8GjgC+LsHpFYiqTheRLsD7WIHgVsDtqhqsIjwJQES6Yy6Ui8j7X5wBXCcivVX1yxibegazYDYCOgCjReS3AhSlM4ALgMOABVh6/zewWmnxYcYMy699++32vmNHU5j+/ReOOqrgz+y/vxWr2LatcCtVq1b2uOoqy9T34oslV6gKYsIEW4W+4oq8bXPnlr3dWIhQqDZs2ICq8ks4SUWA+P335sCT9OjhtyQORxLYsAFuvtms4OWsRoDDkShuuMG89h98EHr39luaiklKKFReSvRRmFvcEao6JW5th6Q2pgTNBo4DOkYdUg2zLN1YWBuhUKiBov9T9Pw00vItwTf3/gCyyGIZyyQUCh0NfKOZOk1C0gM4G5gKDMWUqJ+AQ7zX13pNbSIvgYJgYxEXVHWNiJyAKQa3AM1EpL+quSaWY57EskEOjIw1E5EngCewFPxFIiIZwGlAOy8hygQR+QRLqR9dnKEFMEFV53mfHQZcU2rpt241RSk31wK4x46F++6DTp0s5gksFurss61u1SOPmPK0apVlA2zZEk491TJoDRkC//d/FudUt65ZtPbZB1q3trbOOMPim5Yty1OCwnTrBl26wP33l/wc9trLkll89plZr955B7791mRIJCtXwuLFlv5ozz1pkpbGkCFDEttnKVi2bCXff/8P0IZDDilE2XVUaO68804A7oqMRUxlHn3UrFOjR5e6nl65GxNHXCiv18WECTZtLr/cFKtkUV7Hs7QEXqESkeOw2KWFQHdVXRS3tkOyD/ADls1tPTCogMOqAk0jPlMV2KaZqqFQqDJwnaK3CVJzAQv0L/7avIAF6atYVWUrW3PTSf/zAA64RpBL2tCmflOatgPGAt+GQqHLNVPHY0WGI+U6Dqt1tUozdbm3uR+WXbARpnhNjNc4AKhqlohcAvwN3AvU9OKqtsazn4DRHHi6gAQmzwAXx9jGXkCOqs6K2PYbUFCK/HeAPiKyF1an7Hyiij+XiDFjLBlEerpl5mvXzupQXXJJfkvTK6/AvffCjTeaP0C9eqYAhS1Wu+4K331n38RHHWW+AvvuC0OHWturV8P555vyVr8+nHSSueiFmTsXdtutdOdwySUwdaqlJVK1+KzrroOXXy7tqMTGH3/Yc5s2LPn3Xx577DH69+9Pm0RH8ZaQF174lM2bz2fXXf+icePWfouTEDyX2XuBbliph3x5qVS1th9ypQqLFsXtJ9F/Vq+276peveCE0scLlqsxccSN8nhdZGfDLbfYGuRDDyXH1S9MeRzPsiBBCr6ORkR6Ya5ofwDHqm5XLuLTfkhewW5qBcjC4rJ6kFfnKWwFCmGWogbe9m17s/cZfel7M3DwalZPeou32q5gRQ3MipRLOOX2VrKZwiIOYaBm6shQKFQNy1AYwlwLL8vMzEzw3WPJEJErgKewpB+9ymsRYBEZDzyuqh9EbT8NuFZVDy34k/mOPRx4X1V3idh2MZYspWvUsVWAh7EU/DmYq+HRqjq/gHYHAAMAqlSp0mnr1vKs1/rA889b1O755zPxsss44ogj+OSTTzj22GP9liwf9923mNtu+5Ezz+zJW28VUuA5CYjIJlVNSKVoERmBeQYMBZZg36HbUdXXYmgj4XGMnTt31smTJxe4r8/zViD63UsOLq4ZR1G8/75Zyr//3mIqHfkQkSmq2rn4I/0h0fOwqDnoF37P/bvusnXURx6xvE+OxFLUHAyshcqzTL2PTbQeqro6Ad38hylSVbzn/7DYpJ0xpagtVldqOub6B8BO7FTleI4fgWXu6/sET2RhRXPBlLN0FMgml0qkcxAtgLclJNdqpg4FngmFQu8Dw4CXQqFQk8zMzHsAJCT1yautNUQz9b4EnHeRqOrTIrIBK248XEROUdVtyZYjEUQV7H0WeMyLG/vJ23YQlqQi2l2vMDZgcW+R1MYsntFkAgdgiUn+Bc7BkoG0VdVNkQeq6lDsBpOMjIzgrnqkKn/+ac/77EOXLl3YvDmYawZ//LErcDqHH+63JAmlG+Z98HOxRxZOcOIYHaVn2DBLTNM5sDqDo2jcPEwSqmbMHTQITjkFril98IAjTgSy5Je36j8C+J3EKVNgKyQ/YDfFn2EKRA1ssp+JFX7dSkSR3+pU51zOpQpV0oAjMzMz38UyD36Nrazaza+gVGYh6Wz1RjkD2F6WMzMzczlwAvA6cPcRoSP+kpB8h2Xy64bddN8qITk6QedeJKr6KvA/T8ZhIhJY5buETAYmec9vYu6c92H/v6+917thym4szAIqeUpZmPbYtRtNe+BdVf1HVbO9Ma5LXoZBR7KIUKgARCRQmf3CfP31BGBOeV+sX459B5eKiDjGO1R1g6pOwL6Tzy3g8O1xjF6G2GGk+Py75ZZbuOWWW/wWo+z89x+MGmWBIIUlx4mRcjMmKUQqzMPydF2MGAF33AFHHAFvvplcV78w5Wk840HgFCqv6OwobNXiuEQpU15x3mlYmvRvgT6aqduwm+qHgAeB74ATiXBB6U1v6lCHL/hiyCAGTZOQXAk8gCVzuBgr5AtmqYoMLNkEfBMpQ2ZmZvYSllw4l7lbu9K1dWMaH45ZyCKVl13jdtIlxLOSXIcpmM9IEO84S04LoKX3XNSjZSyNqepGTAm+S0QyRORQoBe22hbNJOAMEWkkImkici7mQjqnbKfkKDERCtXo0aO57rrryM7OLvozSWbpUli69CwqVbqLdu38liah3IbNn5rFHlkwhcUxti3g2HeAPUVkLxGpTFnjGAPAf//9x3///ee3GGXnjTcswU6vXmVuqtyMSWoR+HlYXq6LxYthwABo3x6+/DKvAkqyKS/jGS8CZXXw6kyNwlYr4x4zFcVIoJn3+kSs6G4lLE15WNFshxXbVYA2tNHWtJZlLHvo18xfb5KQPI+5bVXH4l2OIf+YCnZjXQe7mX5s+46QNPL6XVSd6pUv4zJ60pMXeAHN09+ysfHwDVV9VEQaYi5ws4BH/JSnrCSomO9lmHVzOeY2eqmq/i4izbD4vzaquhBT0nfGMjpmYIrUaV6hZUeyWL8eFi2CqlWhRQumvvcer7/+OoMjE20EgB9/BPiQzp2rk57utzQJ5XYsQcxyEVmAuV9vR1X3K+bzNYG1UdvWArUKOHYplgRoJhFxjIU1HBnL2KxZs8IO85WhQ4f6LUJ8+Phju0Ps0qXMTZWbMUktEjIP4zkHy8N1oQpXXgmbN1sZxzIac8tEeRjPeBIYhUpEamDm4frA4fHM5lcIzaPeN/SeFZvgAMuA54EBglTvRreaWWTNfoEX/ngu9NzHwPGYhQEs5qor5j8cjh4XzK1sCXARcIWEpDHQG1PmcgE2s3nml3y5z2mcRhva8Huet9hQzUyYu2NJuA3YA3hYROapahKqriYHz5WxC/b/yPfVpKqvx9KGqq7C/qfR2xcSUdNMVbcAl3sPh1/89Zc977UXVKrEbbfdxm233eavTAUwcaICnTnmGL8lSTjDy/j5hMQxQv5Yxs6dO7tYxkTxzz95mUbLhSNEhSTh8cRuDlo+pREjbKq0Lp+JX1OWQChUnivZEKAzllXu1yR0OwqbxNFsxrLbrQYGaaYulpDscQZnXFSf+o9PZOKYbLKfJa/IbpgMYG466av2Zu9GzWkuDWn4367sevUEJvSYzvQqq1iVjVm/osc9bQYzsrrStfJBHBSpUDWO29mWAVXNFZHzMaXjDRE5QFX/9FuusiIie2OWyhaY8puD/W+ysNi5mBQqP+jXz0opjfLVfpmfV1+F/v3z3u+yCxx+uBUabNHCN7F2JMLdb9OmTWzbto2ddtrJV5Gi2bp1K88/fyzwKp07B2nw4o+qhsrYxPY4RlWd7W0rNo7Re/+qiDyOxW8EK31YjFzv1ZwLmoW1RLzyirn7nXdeXJorF2OSegR+Hqb6dbFihSlUVataQgq/SfXxjDdBiaG6GAtczFTVkUnq8wJgS9S2XOBn4DTN1P6aae5hmqkb29CmC7DyC76oyY7KFEClVrR64zquq3kGZ6Tty75SjWr1csk9+CiOqnYlV6b1pGeVKlSJVqa2Ar8q2mE605ftxm7sxE5gMVfbv1gkJG0kJB9ISN704r+Sipc6/VQslfwHZYh3CBKPA1Mwl8xNWCHfzphL3mm+SZXC1KhhsT9LlsBbb1mJqZNPhpycYj+aPGZ7v/WtW/PJJ59Qt25dZsyY4a9MUSxfvoK1a/8GfuCAA/yWJjmIyNEicoWIXC4iXWP9XEWPY9y8eXNgs1TGxLZt8OSTcPzxEKc6cCk/JilIKszDVL4utm2Dbt1sPfCdd0pd8zqupPJ4JgLfLVReGuungC+w4o5la8/SjlfTTF1c1HGaqVkSkiwi0qFjMUvfaKbmeG01Bxo2pvGvl3DJscBnOeTMLai9jnTkZE6uvoIVOR/yIXOZi6IC3FuLWvcezMG1DuIgGtOY13ht3Va2VsFWdBZi5uwL5jP/q650Pacd7WZNYMIb2LiEiwmPxzLC5WA3/Uk39qrqEhE5C/gSeF5EzimgKG4qcQBwpKpuFJFcoJKq/iIiN2JjX1zsRkIRkZ5Az6pVi68/FLZYde9uxf02bYLeveGZZ0zJAfO9fvRRGDIEFi6Ehg3h3HPh/vtt/113wUsvWf3eunXh2GPh9RLa6ETMMgVWczgzE845B+bMgXXr4Lbb4Jdf7Mdhv/3g4Yfh4IjyHc8/b/U0Fi6EWrVg//1h9GioVAmmT4err4ZJk+xcWraExx/Pq08cM3O9KbzHHnTo0IGHH36YFoEyocGWLU1RXUDjxtCkid/SJBYR2RXL6toJc48GaCIik4FTVHVJoR/Oo8LGMT7zzDN+i1A2xoyxL68BA+LWZMqPSeoS6HmYytfFpEn2G/jKK/bbHgRSeTwTga8WKhGpDrwFrADOUdXcMrUXkouAxcAcCclzMXwk2k5ZCS/mRUJyDvYF8HUWWROxor4TgJ7RjTSlKT3pyTzmZQ9laPoc5oQTSwiwdj3rD/qSL5/+mq9fbUzj7Eu45K900ttjVpEjgTHANQtYcPZGNnIkR/6kmXqPZm4fj4aYVUw8GfeUkPjyv1PVscAg4CwstXwqI9j/AOwaDGdU/AfY0xeJIlDVkao6ID3GjATjx8OMGXZ/8u675mf9xBN5+2+9Fe6+26qq//671dDczctD+cEHMHgwPPusGXBGjcofG/7qq6Ys/f13yc4hnH0oK8tyQZx7rsk5cSJ06AAnnGD3UgCTJ1vG5MxMmDnTzqNHj7y2zjrLlLSJE+HXX63+RrVq0T3GQIRCtffee3P99deTkZGQmrWlJly7soJYp57EFor2VNXdVHU3oJW37clYGlDVVaraW1UzVLVZuJioqi5U1ZreTRyqukVVL1fVxqpaW1X3V9WUzvKX8rzyCjRqlH+yO1ISNw8Tx/DhZpU64QS/JXEUht8WqvsxS0t3VV0Zh/YeJy8hRD8JyQNht71CWIW53IU/kw087b2+F8veRx3qhK1BM4E1mGvgdoWmBz1Yz3re471K2V7W9Ba0oClNs/djvyYNabgyMzPzSoCzQmdVbU3rM/dir/f+5M89sdWZ7fzHf6ST3ktCkqaZmuspTvdFyJiDWYgyJSRHYQHdT2lmUi1F9wE9sFTq30X4QacaMzBf7nnAROAmEcnBXFBTzgWodm147jmz5uyzD5xxBowdawrUhg3w2GNm0bngAjt+zz3zrEMLFpiycuyx9qXdrFn+2pp16lgAbEncDP75xyxQTZta/ofo1N9PPWWK3OefmxVr4ULIyDAXwVq1YPfdLelXmAUL4PrrYe+98+QvFZ5Cldu8OVMmTaJly5bUr1+/lI0lhpdeGgpMoXPn5/0WJRl0B7qq6vzwBlWdJyJXAWP9Eys1uPrqqwF4/PHHfZWjVOTk2JdU796lXB0pmJQeE0fCSNXrYvNmeO01K+C7885+S5NHqo5novDNQiUiRwEDgadUdUycmo2MiRJ2jJGK5mtMicrGklEM1Mzt2QWX46VLr071sIngP+BWLCtNLrCyGc2mN6UpE5jAVrZSmcqcwzmcz/l0o1ulhjS8X9E5oVDoJAlJu/d4r9cGNrAf++2Hp7BFsolNpJNeBxjuufpNwuLLwqmPcjBF4HqshtZ9WGxTqZGQnCwhyZSQdIrleK8Q3/lYVryXUrg+1b3kjevtWMahb4Bjgav8Eqq0tGljylSYJk1guVd44I8/YOtW88EuiDPOgC1bLHnEhRea9Wrr1rz9p5xiyfF2LaYq2saNULOmKUa77WaufR9+aKldly+HSy4x5apOHVOali83RQrMXXH33U2Gs8+2H5D1Efmhrr0WLroIjj7aAnLDyfpKxNq1VkC0enXW1qhBly5deOONglz8/WXWrH+AvyqKhaowyuSx4EgBpkyB1att8jscjgIZPtymySWX+C2Joyh8sVCJSDUsHfkcrL5RvOgLvI/FRd2ombqsqIM1U/+QkByC1YOappk6OmL33cATQM0mNBkNnD+KUQd526pjN+INmtGsFrA9M9+xHEtLWvIzP3/9Hd9NzCBjYG9612xIw4/2Yq9LZjEreyYzaUtbwZS2HCyj4J5AVUURu8c/Hku5vn8Bop9JXmKM6ljhvA9KMlBhJCT9MatcNeBGCckhmqm/Ffc5VZ0jIjcAz2Duf2+Wpn8/UdUvIl7PA9qISD1gdSrGhkVbj0QscRZYzFFR7LabudmNHWuudtddB6EQ/PyzKUexUqOGJaJISzMvnsjPnn8+LFtmlrLmzS1TUbdupnSBKVi//GLZk7/6ymK7br3VfMebNDEXv7PPhs8+gy++MPmGDMmzuMXEvHn23LIl1WvUYOTIkeyzzz4laCDx5OTAqlV3AfmthOWYscCTInJmuFyGF3PxBM5CVSwpvTr8hfcVHOfaACk9Jo6EkYrXRU4O3HefeWaUOF44waTieCYSv1z+bsR85I8rqPZHadFMHYMlbijJZ6YB0yK3SUgGYEV4c4AV7Wj3CXD+v/w7BMgX0FKXupWyyFq/iU01K1NZOtKRX/iFz/isDdB1IxvT3uM9BjIwvRnN7p7FrPUrWVm1GtWqNqTh4OWZywd7fc4B9qhKVbaxDcx6WNjtVDjL3zYsxffHJTnnKP6PPOUsHSuuV6xC5fE8Zql6VERGp2pgtxfLt4f3dm4qKlPF0aaNKTBjx0KrVgUfU60anHiiPW6+2ZJLfP+9uQHGikjhrngTJlgyrxNPtPfLlllGwEgqVTIL1NFHm8K0884WzxWOV2/Vyh5XXQWXXgovvlhChSoifqpatWqcdNJJJfhwcpg1yyx9u+8ODRr4LU1SuAr7DpsnIkswz4Bdse/llLMUO2Jk2zYYOhSOPNIy5Dgcjh34/HPzxnj7bVeiLegk3eVPRI7Girp9pqpfJrv/GLkRUzJqAQ2+5/tdAHZip+jsANvSSGMrW2sA83diJypRib/5OxfYCW9817CG1aymDnUaAcOa0WwYwOVcHulrVN/rg7VWbPwL7CYj8uY+l/xK8O9A51gsSp5b3zAJySUSyjctvyYvMUMO5mIYE57r35VY0ox4uW0mDRGp6tW+WIUpkdOAVSLyhGdFLTfUqgUDB1o81SuvmF4xcaLFXIElnXjxRcsiNH++HVO5cp7yNWKErZAtLjJ3ZtHstRcMG2buh5MmQd+++au8jxplSTR+/dXipd56y1z+9tnHfMgvvxzGjbPEGD//bApaibMsRyhUy5Yt46effmLLluI8g5PLmDF/A4fTrNkPfouSFFR1karuD5yAJQp6FDheVTulcHxm0rj88su5/PIUrBX+yy8WaJkA2VN2TBwJJdWuC1VL0tS0KfTcIR2a/6TaeCYaPyxUd2GKRncRuV9Vb/FBhuKYC+yOjU+lP/hjZne604QmzCBfvZq0daxLr0ENKlGp5RYvZKsWtdKIsGSlk04NarCZzWlAnZa03JBLbu693PvMoNAgxbLKfVWd6qfXo578yq+5WGzUJOAILH13GnkKcC4WH/aQZmqxkSRe8oq3MSWxNxb79JS3+xGvrYOBtzRTJ8Q6SCLSEXgVc3/cX0TaqOofsX4+ADyHxUtdBPzobTsYS5ZSC6tVVm64/35Lh3733XYf06hRXh3NnXayArzXX28Z+dq0sdincDbxtWvNJTArq/T9v/yyWZo6dcpz4VuxIm//TjvBRx9Z+vZNm2CPPUzJO/xwW8xevdrcBv/9F+rXh5NOssyEJSJCofrggw+4/PLLmT9/Ps2bNy/9icWZqVPXALm0br1DiGW5RlW/woqqO0pA9eopep1M8xxD9i/Iq71spOyYOBJKql0X48ZZmOHLL5fM9T5ZpNp4JpqkKlQi0gU4FLuJr01+60v8+wvJzpjLSA7wuGbq6hg/eh7wCtASGLye9e8uYhEtaRl9XKV/+Ic00mhJS2YxiyUs4UAOZBrTKm1kIwCHcIhWo5rMZvaGdNKfWMe6XzezOS2HnHDx2Gxgxv7s/wXQI4ecuzRTf/LO4Sis2PBeEf3+gMUWZElIqmimbivmfA7ElCiwrIJH4SlUXmr2p8hTsErCcixL4nnAs1iSh1NK0Y5fnAGc6t3IhZknIsuxmDRfFaqi6lC9+mrR78EUlkGD8t6npZkr380FRC327l10bYt+/exRFMUd0769WZYiOffcvNeHHQbffFPwZ6tUMYtVmYlQqM4//HAaNGjA7rvvHoeG48eyZR2A7znuOL8lSRwici3wrKpu8V4Xiqo+miSxUpLBJV5VCAjffQf16uWt2sSRlB0TR0JJtevi5ZfNze/UMqUdSxypNp6JJmkKlZcJ7kGs3k9IVdcnMjucl278B6AZprj1xlJkRx5TCaijmfpf5HYvmcUJ3jGXAnVnMpMe9KAhDVlB3rL6POaxgQ0czME6i1kymtH0ox8DGSjTmc5O7MQe7CHrWDd2IQtPv4mbDqhClWqjGBXZZSVgv2M45m9g+bEce0+ELGskJLdjlqAa5LnnXec9T5aQHF1M2vSxwB2Y1WwzVs28zKjqYhHZX1VVRJpjFdIPVdXv49F+EtiI1S2LZjE2Tr6iqiOBkRkZGRf7LUu5IaxQtWxJRkYG//d//+evPAUQXrhv377o41KcK4HXMOv4lUUcp5gLoKM8sWyZmaP79rWVHofDkY9Zs8xF/pJLLCuuI/gk85vsCKArcI+qrgdIcPB/fSx5Q2XMOrOvhGR7xIaE5FDsx3ylhGSDhKRpdAMSkl2w5BRp05hGNtl0oUs+mXPIYSIT57WghRzEQRsWszjrZV7eOo956/dmb2pTm7GMzX6Jly6+hVvS00l/aQ1rcqcyNV8zDWjwsyA9gVczMzNzvP4PkJD8ANwEPIxlRdyCWflqeo+DsRimQtFMnQR0w9wt+2imDot1EIsj4n/4KLAMi49LFZ4CMr2kFMD2BBV3UDqLnSPIbNsGixZBWhobGzbk1VdfZWE4Z3tAWLVKWbSoPZUrP0bLHQzi5QdVbaFqC1ne68Ie5XgU4sOAAQMYEM7akio89ZRlXrn00oQ0n5Jj4kg4qXRdDBkC6en5vUyCRiqNZzJIpsvfrdgN9wtJ6u8/zNKwG7bKOTPsGuclZfiKvDinDOBFrFhtJM3wlM5NbGIqU9mf/eUHfti2mtXblbPxjN+5M51/Po7junSm84Ov8doz7/DO/7CU8OmANKbxK5vZ3LwylXcbzvDccAFgzBISupRL98NSpD8lIWmHFSnuGiHj/lhGvyre+SgWu7QZKzZcJJ4L4U/FHVdaVHWjiDwKPCgiB6hqzMktkomIfBK1qSuwWETCmR73xeZFAD2WHWXi778tj/zuuzN7wQL69+/P+++/T7NmzfyWbDuTJ28FOtKsWWPSo1PglFNE5DzgXVXdGrW9CtBXVV/3R7LUIGhFqWPi44+ha1cLqEwAKTkmjoSTKtfFnDmWoOmccyzbblBJlfFMFklRqESkMxb8f5OqJsWVSjM1V0JyMHANpog8HrG7FVZ3KZImEpI0L6YozDTMxa4OwLd8y77sy0mcVGUYw3IVTQNQVF7ipbuu4ZoLG9Dg5qu46owZzNg0hzm5VaiS3oIW6W1pe+Q2tvEWb/EP/0RaBqvdxm1T0kl/AHhgEIP+BaYC9cgrOov3OqzEKfA3lsziGs3UbRKSjsDLQFXgSs1UP+q3DAFu8R4B9frlv6j30fW75idLEEeS+ftve27Rgnbt2jF79mx2DlLZeWDmzGrAq4GrN5JgXgE+x2IyI6nl7XMKVRHcf//9fotQMn79FWbMKEVGmdhJuTFxJIVUuS6uusrW/m67zW9JiiZVxjNZJMtCdR2wFrvhThqaqcuxm/to1mA1nCKj/ffAlK7Iuic9MZfBHEDWsz7rS76s2pOeHM7had/xXdhKVG0ta9Me4IELOtGpzj7s021f9qUjHQHYzGamMIXv+I4NbMgmYtxrUzurMpXfAGY+xVPhVOl1ya9MgWX2y8XifhQ4VjN1bsT+z4Hw3eEnEpKdNVM3xjRQcUJV14nI08DtIrKnqs5JZv+xoKr9/ZbB4RNh977dd6dSpUrsWVjBLB+ZOjUHSGe//fyWJKkIBScoaob9bjjKEz945QDOOMNfORyOALJsmdWeuvJKKzXiSB0SrlCJyC7AacDTqrou0f3FgmbqcgnJecDTWKxVGpbwoa+E5C6gsmbqUizLW7jo7Vag0hSm0IxmHM3RbGQjU5gC5pZ39xa21Pqe71t+z/dUoxq1qY2ik1eyso2i4YQS07Cse5JBBudwThVFM2Yys+9//DcaczXLxZS4LZgCVQ34C0vnvR74TTN1Zfh8vAQckbbXdKARMC/ug1c8z2GujpcAN/jQf4kRkZZAG+ym7k9V9WPcHIkmrFA1a8Znn33G+vXrA5eUYsSI/wM2st9+n/stSsIRkenkuS9/KyLZEbvTsdIVn/ohWyrRv7+tEb3yyis+SxIjkyZZxe7ddktYFyk3Jo6kkArXxbffWv2pM8/0W5LiSYXxTCbJsFBdiFl5kmqdKg7N1PckJOOB2ZgSsw37YV8B5EpIngMmYsk0apCn5KR/widUpzo96Sm1qMW3fJuj6AbMyiUAW9jCFt0Cf9GUTfxHJ1ZihXj7AuN3ZudWfelbrTa1cwXp9Q7vKHkWszRM+eoPfIRZ+O4EhgEjgbOiziVXQjIE6OdtEmC2hGQKcLRm6oa4Dl4RqOoSEfkIuEBE7kyWi2dpEJHawEuYwp+bt1k+AC4MJ09xlBMiFKrXXnuNv/76K1AKVU4ObNhwDLC5oliohnvP7YDRQOT31DbMrTnaJdcRxW4JVEziTk4OfPqpxU8lLslvao2JI2mkwnUxeLDViOzc2W9JiicVxjOZJFShEpE0YAAwVlVnJbKv0qCZulRCchzmFqjASd6uNOBSLKFFOnAIMAtTDskhh3d5l570pCtdaU3rzQtZ+PhnfPZaXuNANjl8zQKOoTmmtB1RmcoTruO6EVWocksOOeuzyDrx7sy7JwwKDTqWiGLAQLZm6vsAEpJB5ClbvTFXmAVRp3Ml8KZ3Lsd757CvJ/MTZRqokvMscLr3eCPJfZeEJ7CiyUdhKfbBMigOwdw/L/RHLKOoOlSOUhChUL355pvMnj3bX3mimDsXsrIuZbfdrABzeUdVQwAi8jeWlGKLvxKlJnfddZffIsTOjz9aNe/TTiv+2DKQUmPiSBpBvy4+/NAMuDffDJUr+y1N8QR9PJNNotOmH4bd/L+c4H5KjWbq95qpJwHvRO0SYJNm6u3AmcD5RCigOeTwkf3l7MIu2w7kwOE3cMPvXejyez3qfY5wGpVppMv1oPTW6XWb0rRmN7plXM3V+1aj2p0b2fj9EIYMf5AH23gueyswFz8wdWyhhCR8WxXtKrmD5UQzVTVTf8QsLWE5heSmxg8zDltdPseHvkvCycBFqvqtqmZ5j3HYIkBvXyXD6lCp6oD0ipLuLdEsWmTPzZqRnp7O3nvv7a88UUyZsg3IqijWqe2o6mtOmaogjBhhd4o9ohPqOhyOJ58069QtBUX+OwJPol3+zsZc1z5OcD/xYDSm1IRrOj2jmbrGe12HPJcwMHcUAKYyNbM3vYcAV2aQ8b8TOKEJ0HYLW7pvZWv2naE719zKrVXSSSeXXGYzO3c+8x//iZ/+h6Xs7gvsCjQhzwq1DmgN/CsheRi7uX8bqA4M1ExdVdAJeIWKu0VsqoxlyUoqXqHft4CbRaSRqi5LtgwxUp0ds/4BrGLHLJCOVCY3FxYtQoEL77uPps2bEwqFSGBt8RLz0UefA6fRqNEkoIPP0iQPEVlPwUkpAFDV2kkUJ+U45xxbtxo2LG7lBRPH++/DMcckvFJpSo2JI2kE+bqYPNnipx5+GGqnyDdekMfTDxKmUHk1RM4APlJNbra50qCZukZCsgdwEDBfM/NlqJsNjAWOxiw+dwJDAdFMDWehujsUCt27gQ0HfM/339albtVqVEsHdmpBi6e/5uuuM5m5zyY2gWUSDI99DaAPplSlYTcWtcnL8ncD8IRm6u4xnEZ18isCuVjKeD94C6s91gd40icZiuN74G4ROVdVNwGISAYQIs8F0FEeWLECtm4lp149Wrdty6hRowLnrrBiRUvgRg49tMLVsr2S/ApVZaAjFtt4ry8SpRCtW7f2W4TYmDPHrMTXX5/wrlJmTBxJJcjXxTXXWK6Wiy/2W5LYCfJ4+oGoFrowWLaGRY7GlJDeqpoKFqoi8dzyOgDrNVMLDb6QkDTACgqHa0blYkrOjdiNekH+W+8CJwI1Iz4TdtXbBjQuzCpVQP9vkxcL9olm6tmxfC4RiMjvwL+q2q3Yg31ARPYFPsPi26ZhN3XtscyKx6nq7zG2Uw9LbnEssBK4RVXfKuTYlpiCeSSWOfJlVb2xqPYzMjJ048bAr0kEm0mToEsX6NCBrIkTSUtLI2iulC1bwvz58Pvv0KaN39LkR0Q2qWpSi12LyIVAN1U9q9iDk0Dnzp118uTJBe7r8/yPALx7ycHJFCm1ePxxu2ucPRsCWLIgFRCRKaqaAukKEkNRc9Av4jH3x441w+0TT1gNKkdwKWoOJjK+5iTshnFMAvtIGpqpuZqpvxSlTHn8B3yFZazaALylmZoFTMLGI5ps4GJgCrAZu5m/w3udBdwQqzLlcTY29ifhfwzTSOAIEUmsf0cpUdXpWJHnG4HJwC+YRbBVrMqUxzOY4tsIG//nRKRt9EGe1fYr4GtgF6AplrnRkWi8hBTT6tRh8+bNgVOm/v57FfPn/0LVqq72SATfYLUAHeWBN96A/fZzypTDEcG6dXDBBVZF4EJf02A5ykqiFaqvU8HdLwH0wjLc9QbOA9BM/RJLg/4B5g63zXtcppm6Hss0tzfQSDP1PsxaVV0ztUTucp7i9633SIz5MXZGYa6Nx/osxw6ISGUR+RdoqaovqOp1qnqtqr5YklTvnovgacAdqrpBVScAnwDnFnB4P2CJqj6qqhtVdYuqTovH+TiKYeFCZgLtv/2Wm266yW9pduDRR18DOrHHHrOolKxy68GnL2bxLRYRqSciI0Rko4gsEJFCrVoi0lJERonIehFZKSIPxU1iH+jbty99+/b1W4yiWboUfvkFTjqp+GPjQEqMSTkk6PMwiNfF+PG23vfss5CRVB+AshPE8fSThPx0i0gLbOU/qLEzCUFCchbm+iXAxZqp+VKGa6a+B7znHXu+ty1bQtIRy4RYFYsnGKuZGpkEI1X5CVgDHAe8768o+VHVLBHJoohg+BjZC8iJKgvwG+bSF81BwN8i8hlwADADuNKzlDkSycKFtAZ+u+Yaql96qd/S7MDuu/cDmtClS8UzT0UU+N2+CbP21sPKV8RCpJW4AzBaRH6LtjRHWImfweI7c7A5nLJ06NDBbxGK50dzi6Jbcry/U2JMyieBnodBvC7GjIG0NDiyoDuGgBPE8fSTRK2FHuE9j0tQ+4FDQlKZPKUI4EUJyfuaWXA6YM3U7Ii3nwM7e68/lpA00sz8lj0JSTWsztSRmBvl+ZqpBbkQBgZVzRaR8cDhfstSCE8Bt4hIf9V8/4+SUBNYG7VtLVCrgGObYpbIk7H4woHAxyKyt6puizxQRAZg6dupUqVKdDuOkuK5/O134IHQqpXPwuzInDl1gT4VLmW6x/Co97lYxtVxqvpXcR+OsBK3U9UNwAQRCVuJb446vB+elThiW0pbiW++OfoUA8g339jy+8HJiTFLiTEpZ6TCPAzadfHLL/Dcc9C3L9Qq6I4h4ARtPP0mkQrVauCPBLUfRNLI70IZUw0oL9lF/YhNlbA07dGuktcAJ2AJLk4GLgMeK4O8yWI80FNEdlHVf/0WJorDMQV1sYjMIGrMVfXkGNrYgGVljKQ2BdQKw+LiJqjqZwAiMhi4HdgHs2pF9j0UyyRJRkaG366bKc+0mTO5BHh60yY6+S1MFJ9//jljxiwHzquQClW4wG8ZcFbioPPLL9C+PVSv7rckjsTh5mEJUIUrroCqVeGhlHY6doRJVAzVYdiNY3lwW4sJz1p0K3mxUXdqpqXiLuZzucBz2M38Bsz6tLSAQ3chz/pV1XufCoz3ng/1VYqCWYnFtH0KLMQSikQ+YmEWUElEIs0e7YGCklqEMwk6kkzO0qXkAPX32cdvUXbgpZdeZt68+wAqpEIVRkSOFpErvMfRJfhoSa3EfTF39CZY/cGPPRekgmQaICKTRWTyihUrSiBS8jjttNM47bTT/BajcFasMJe/rl2T1mXgx6R8kpB5GM85GKTr4pdfbFrcey/suqvf0pSOII1nEIi7hUpEamErFW8Ud2x5QzN1sITkJcz3f2cJSZ2IOlVFcRWWqKIqML6QZBLPYgkuBHOJGRreISERLOHF8dgX02sBSEgRZiqWyXB/THkJDKraPw5tbBSRD4G7ROQizG+8F3BIAYcPA64TkWOwDGZXYUrdn2WVw1EEW7bQcdUqJlaqBAcc4Lc0O3DffW8zfPgKdtkFGjYs/vjyhhdz+yGwL7DE29zEi606TVXnFdNEQqzEkN9S3Llz56B8p+bj4CS50ZWazz+35fhTT01al4Efk/JJwr01yjoHg3RdDBli1qmzfStsU3aCNJ5BIBEuf+E11qkJaDtuSEjSEpT4oQl5RWGzJCSdNFMXFPUBT/n5sZhjZnqFh/cG/tBMXROxuw8WD1QDcwvchJf8wm9UdYuI/IkpGoFARNKA67AsjJUxq+BdqgXHu8XAZVj83HLMsnWpqv4uIs0wt9c2qrpQVWeKyDnAECxm7hfg5Oj4KUd80UWLAJCmTSFg6dIBfv89HdilIlunXgLWYRk3FwJ4c+c14EWsoHpRbLcSq24va1GUlTiI1vJSc30SCuWWiU8/hUaNoGPHpHUZ+DEpnwR+HgblulizBl5/Hfr3h7p1/Zam9ARlPINCIlz+2nvPO6z2BQEJyZ4Skr8xZeddCUm877AGYibu2sBOwAXxalgzdZVm6g9RyhSYi2UN73UNCraO+Mlv5F0XQeAm4AHMzXIpcC1lyEipqqtUtbeqZqhqs3BRX0+Jqhm+SfS2faiqe6pqbVXtWsJ6V45SMG3cOOoCYwMY9Tt16lQeffRWYDntgzRDksvBwFVR82QhFjda7BKoV5ojbCXOEJFDMStxQV4Sw4CDROQYEUkHrsZZiRNHdrZZqE44wVKZOcotbh7GzldfwbZtcG5BxVUcKUsivuHaYH6z/ySg7XjwBLAbdu4nEP/CkUvJK+C7DVgW5/YL4mPMKpWDmdJHJqHPkjAd2DVABX77YQGwx6pqL7x6YSIivkrlSAjV//uPs4HdW7TwW5QdmDFjBhMmPARsq8gWqoVAQdkKqgGLYmzjMq+N5cDbRFiJRWSDZ/FCVWdiBc+HYImTepHiVuKTTz6Zk0+OJX+OD/z0ky3Hn3BCUrsN9JiUbwI9D4NyXUyfbusL++/vtyRlIyjjGRQS4fLXEpinGpgYnmiqkV+RrBbn9h/C3NsOw9KhvxDn9ndAM/UrCcnxWNa67zRTxxf3mSQTjoFoQTBcQXfHig6H+QKLTWsCLPZFIkfC2GvbNp4BaNvWb1F24JxzziEU6sucOekVWaG6DnhSRK4CJnnbDgAe9/YVi6quwhZGorcvxILlI7d9iK2klwu6Jam2U6n47DOoXBm6d09qt4Eek3JM0OdhUK6Lzz4zZSrVk14GZTyDQiIUqhYU7DMbFG7EagBVxVJ1john4179qF7xbDPGfr8Dvkt2vzESVqhaEgyFqgpmyQNAVVVEtpGXRdFRTlBV3h83jjMAadbMb3F2YONGmDu3EpUqwd57+y1N8hCR9eTPeFkN+B5LuAO26JWD1d6LDnR3RDBw4EC/RSic776zC7tOcp0TAj0mDt8IwnWxYAFMngz33++3JGUnCOMZJOKqUHkuUy3Iv/ofKDRTp0hIdgEaAIsDlA2vPDPfe27pqxT5uV9EItPaVwEyRWR7VkZVvSr5YuUhIj2BnlWrOj2vtPzxxx/0+eYbngXGBVChuuqqO1Hdk332OY8KVr/5SlwJgfKNquWGHjDAb0kcjsAwZow990r6srsj0cTbQlUbW+UvqI5SYNBM3UJwY7zKI2uwuLKdfZYjzHfAHlHbfgAi77h9v9lT1ZHAyIyMjIv9liVVadu2Lf+1akXV2bMhgArVmDGjgYPYb7/z/BYlqajqq37LUF44/vjjAfjss898liSKOXNg0yZo1ar4Y+NMYMfE4StBuC6++w5q1IDWrX0TIW4EYTyDRLwVqnAVlZVxbteRwngudSswq6DvqGpXv2VwJAlV6i32wuICqFCdfPIUnn5aK1z8lIjU8+ItEJF6RR0bPs5RMD17xjuvUpz49FN77tEj6V0HdkwcvuL3dbF4Mbz9NlxwQflIeun3eAaNeCtU4Rtmp1A5ollJQBQqR8UgJyeHs08/nRs2baJTnTpQO3ihONOmAUhFTJm+QkQaq+py7LuhIIuweNuDVzwsQFx22WV+i1AwP/0Eu+0GLZPv6R3YMXH4it/Xxf33myfsTTf5Kkbc8Hs8g0a8FaqdvOc1cW7XkfqsBlK4hJ0j1Vi7di3jxo/nSKBTAK1TY8d+zY8/vgoMZr/9guINmzSOBsKWp6P8FMSRALZuhXHj4LDD/JbE4QgEWVnwxhtw+ukQwAoejjgQb4UqHD2/Jc7tOlKfrUCG30I4Kg716tXj35degt69A+nuN336ErKyvqF+/Qx22cVvaZKLqn4LICKVgLbAR6q6xF+pUpNjjjkGgDHhaPcg8Omn8O+/cNZZvnQfyDFx+I6f18WoUbBuHfzf/yW964Th5ll+EqVQbS3yqBgRkXGQmJiXRLadrD5SbHy24tKSO5LNwoX2vNtu/spRAHvueQ5wDu3bQ0UtKa2q2SLyMDDab1lSlT59+vgtwo4MGwYNGsBJJ/nSfSDHxOE7fl0X27bBPfeYZao81cF18yw/8VaoLvCeXxaRH1X16ji3nzJ4CkmH8OuKmghBRB7HxqENial75nAUyHfffcfrL7zA/UDDAFqoLH6KCpeQogB+AjoBC/wWJBW5+OKAJQFVha++MutU5cq+iBC4MXEEAr+ui6eesgoC774L6eUoItTNs/zEO8+I76mmHYFFyCvaGRhEpJGIXC8iz4lIA2/boSLiu5eziPQUkaE5OTl+i5KSLFq0iE9nz7YvuYApVKrKk092B952ChW8AAwWkatF5HAR2T/y4bdwjhKycCGsXw8dOvgticPhO9u2weDBcPDB5cvdz7Ej8VaoXvSeL67I1inY7io3FZhaUa1TAKp6tXf+PxGwFWgR6QTMBM4GLsTqqAF0B+71S64wqjpSVQekl6clrSRy9tlns6RjR+pD4BSqDRs2sH59FrDVKVTwFtAceBT4Fpgc8Zjkn1ipQdeuXenatavfYuTx5Zf23LmzbyIEbkwcgcCP6+LXXy2c8Oqrk9ptUnDzLD/xdsHa5j3HJVYmkYpIMpScRPeRYuNTlbzrIygMBp5Q1UwRWR+x/Qugv08yOeJJOIYqYApV5cq12LJlHGlp0Lat39L4ju/W4FSmX79+fouQn3HjoEkT6NTJNxECNyaOQODHdfHTT/Z86KFJ7zrhuHmWn3grVJu85xpxbteR+tQANvstRBSdMMtUNEuBRkmWxRFn7gmFyFq8mFBamt3gBYjff4fcXNhnH6hWzW9pfGd34AdVzY7c6GUAPISAWbaDRuBuaiZNgi5dfM20ErgxcQQCP66LESOgVSvYddekd51w3DzLT7xd/sIFfevHuV1H6tOA4BV83kzBtbH2BpYnWRZHnJk7YwazwZQpn4LjC2PgwP7Axey7r9+SBIJvgHoFbK/j7XMUQVZWFllZWX6LYaxZA7NnwwEH+CpGoMbEERiSfV1MmQLffgsDBiSty6Ti5ll+EqVQNYhzu47UJ4gK1cdApoiEXVRVRJoDDwIf+CaVIy68cuWVvAWBTJm+dWsToDEdO/otSSAQCk5oVB/YmGRZUo7u3bvTvXt3v8Uwfv7Znn1WqAI1Jo7AkOzrYtQoSEuD8mrIcfMsP/F2+QvfMDeMc7uOFEZE0rEV6KApVNcDnwIrMJfECZir3/fA7T7K5YgH4fip3Xf3V44CqFHDcp5U5ERoIvKJ91KBYSISWb8wHWgH/JB0wVKMiy66yG8R8njnHahVCw45xFcxAjUmjsCQ7Oti7FjYd18ryVYecfMsP3FVqFR1q4isBIIVAe7wm6bYKvQivwWJRFXXAYeJyNHA/pjF9hdVdWW/U5wZM2Zw9aBBPAK0D1hCipycXKZONeeAiqxQAf95zwKsJn+M5TZsgeOFZAuVapxzzjl+i2BkZcFHH8Gpp0JGhq+iBGZMHIEimdfFtm3w449w7bVJ6zLpuHmWn0QUWp2Hy9rkyE/4epjnqxRRiEh7Vf1NVb8GvvZbnmhEpCfQs2rVuCTNrFCsXbuWtevWWXacgClUt976MOvWPcfOO//JLrtU91sc31DV/gAi8jcwWFWde18p2LTJckHVqOFzLqhx4yyGqlcvf+UgQGPiCBTJvC5mzYLs7PJduN3Ns/zEO4YK7Ka5ZQLadaQu4eshUAoV8KuITBeRG0Wkqd/CROPqUJWeQw89lEmdOtEKAqdQpae3AU6iY8eKq0xFcTcR1ikR2UVELhIRf/3GUoQTTjiBE044wW8x4L33oGZN6NHDb0mCMyaOQJHM62KSV0GvPCcecvMsP4mwUM0FzhCRqqq6tdijHRWBvYAs4B+/BYlib6yo70XAfSIyHngDGO65AzpSmcDWoOoJ9Kzo7n6RjAY+B54QkZpYQd8MoKaIXKiqr/sqXcC59NJL/RbB3P0+/NCsU9X9XygIxJg4AkeyrgtVePJJS5ferl1SuvQFN8/ykwgL1TQsoLhNAtp2pCbtgT9UNVD5NVV1lqpmqupewKHAdOA+4F8Rec9f6RylJScnhzZt2vDC3Lm2IUAKVVZWFlOmmDHGKVTb6USey+2pwDpgZ+BiLHFMsYhIPREZISIbRWSBiJwVw2e+FhH16l2lLH369KFPnz7+CjFmDKxaBWec4a8cHoEYkwpI0Odhsq6LL7+EqVMtfiotEXfZAcHNs/wk4l891XvukIC2HalJB/Kui0Ciqj+r6lVAL2AmcFqsnw36j0hFY8OGDXRo04aGW7eaC9JOO/kt0nZ++uknRo+uBYxzClUetYA13utjgRHe4svXwB4xtvEMlsiiEWZ1fk5E2hZ2sIicTWI8NJLO2rVrWbt2rb9CvPOOzbMAuPtBQMakYhLoeZis6+Kxx2CXXaB//4R35StunuUnEQrVXGAT4CqsOBCRRsAuwG9+y1IYItJSRG4XkT+xzGKrMTfAWAn0j0hFo06dOrx1xx30BrNOifgsUR7VqzcGbqVatba0auW3NIFhIXCoiGQAxwFfedvrYb8lReJ97jTgDlXdoKoTgE+Acws5vg6QCdwYB9l9p1evXvTyMxGEqi3J9+gBAUmg4/uYVEBSYR4m47pYvhy++sqUqYBMh4Th5ll+4n5Tp6o5IjIJcAHFDjBXOoCffZWiAETkckwBOhCYAbwCvKmqi0vQRvhHpJ2qbgAmePV1zgVuLuD48I/IecCPZT4Jxw7k5uaSFtAaVOvX7wncRfv24HKNbOdRLHZxA7AA+M7bfgTmhlscewE5qjorYttvwJGFHH8f8Bzwb6mkDRhXXXWVvwL89Rf8+y906+avHBH4PiYVk8DPw2RcF/ffD7m5gfF+TShunuUnUavk3wG3iUgtVV2foD4cqcHhwBYs0Dxo3Ay8DVyiqrHcuBVE4H9EKhonn3wy1Rcv5n0IVPwUwJgxc4HmdOjgtKkwqvq8iEwBdgO+UtVcb9dc4I4YmqgJRPudrMVcCfMhIp2xRZ6BWH28IhGRAcAAgGYBu5bCnHrqqf4K8LUX/nb00f7KEYHvY1IxScg8jOccTPR1kZUFw4bBYYdVjBhZN8/yk6hwufFe285K5TgC+ElVt/ktSAE0U9Uby6BMQel+RJ4qrlERGSAik0VkcnZ2dhnEq3h069aNQ+vWtTcBugnevHkz99/fGghViB/bkqCqk1V1hGflDW8brarfx/DxDUDtqG21gXyLeSKSBjwLDFTVmCaVqg5V1c6q2rlhw4axfCTprFy5kpUrV/onwDffmCW4RXDKT/o+JhWThMzDeM7BRF8XU6fCypXwv/8FytM8Ybh5lp9EWah+xNJkdwe+SFAfjoAjIg2whBR3+SzKdkRkf2CqtwreUYr41lPVX2JoslQ/IkX16/U9FBgKkJGRoTHI4fC45ppr4GfPwzRAChVA06avsGjRfhVeoRKRa4FnVXWL97pQVPXRYpqbBVQSkVaqOtvb1h74Peq42kBn4F1v/oXNhP+IyBmqOr5EJxEQTj/9dADGjRuX/M5zc02h6tUrUHeQvo5JxSXw8zDR18WHH0KlSnDccQlpPnC4eZafhChUqrpBRMYBJxJj2ltHueR4zFI52m9BIpiMJclY7r1WoKA7ASXvi74oAv8jUpHIyrLM/JUDWIMqLa06S5eeS1oa7Lef39L4zpXAa5g78JVFHKdYjFXhB6huFJEPgbtE5CJsEacXO3pIrAWaRLzfDZiIpW1fURLhg8R1113nX+fff2/p0o86yj8ZCsDXMamgpMI8TOR1oQoffAAHHAANGiSsm0Dh5ll+EplpbBRWqHFPVZ2TwH4cweUkYBkQi6UnWbQg70u7zD4qqfAjUpEYO3YsvXv3ZkLt2nSGQClU77//G9nZ9dhnn92oUcNvafxFVVsU9LoMXAa8jC2U/Adcqqq/i0gz4A+gjaouJCJ2UUSqeS+XxeoCGER69uzpX+dPPQXVqpmFKkD4OiYVm0DPw0ReFwsXwuzZcPnlCesicLh5lp+EK1TAyRSzwugof3hfkj2A4RFB5r6jqgsi3wKLVHUHlzrvByBWAv0jUpFo2rQpV1x2Ga0ee8xckHbd1W+RtnPjjecAjenS5Uu/RSl3qOoqsEz5UdsXYnGOBX3mbwq2TqcU//5rXyu77LJL8jv/4Qfo3RtqR3s9+4uvY1KBCfo8TOR1EfYyP6QCZQ5w8yw/CVOoVHWel7npTJxCVRE5HnNze89vQYpgPtAYU4S2IyL1vX0xpWIL+o9IRaJdu3YMvuoqq6zYpAlUruy3SNvZf/9XGD06mwMO8FuS4CDm/3oeVnqgJbbIMQ94Hyth4OIHi6Fv376AD3EMixbB4sXQMXglJ30bE0egSeR1MWGCxU+1LbQCZfnDzbP8JLq46FvAIyKyV1RaaUf552xMURnrtyBFINgNXDQ1sdgOR4qxcOFCdvv7b9NUA+TuBzB/fmcAp1Dl5wNsMWK69xCgDfA6cAqmaDmK4Oabdyh3lxxeftmeA5g62bcxcQSaRF4XH39s3+0VyZ3bzbP8JFqhegcYDJwD3JngvgKFl5RjO6ra1R9Jko+I7ITFTw0NojubiDzpvVTgfhHZFLE7HegCTE22XI6ysXTpUnbffXce6tOHGyBQCtULLwzjjz/aUblyB9q391uaYCAiZwPHAsep6ldR+44DPhCRs1T1LV8ETBF69OjhT8dffw1dusCee/rTfxH4NiaOQJOo62LtWouhuu22hDQfWNw8y0+i6lABoKpLgC+BC0UkOL43jkRzHlAVeNVnOQpjX+8hwD4R7/cF9sSSaPTzS7gwItJTRIbm5OT4LUpKUKtWLZ599llOaeLl/giIQrVt2zauv/5q4Bn22w+qVvVbosBwDvBgtDIFoKpfAA97xziKYNGiRSxatCi5nW7YABMnwkEHJbffGPFlTByBJ1HXxZIlULMmeB5wFQY3z/KTaAsVWO2dj4GewIdJ6C8QVCSLVCReTMSlwM8x1nFKOqp6FICIvILVhVrns0gFoqojgZEZGRkX+y1LKlCzZk0uvfRSuOgi29C8ua/yhKlSpQrXXTebzMzNzt0vP+2B24vYPxq4JEmypCznnnsukOQ4hu++gy1b4Pjjk9dnCfBlTByBJ1HXxdq1cOKJgcvNknDcPMtPMhSq0cBCLBNahVGoKjBHAXsD5/stSHGoan+/ZXDEhy1btvDll19y4IEH0mjePNvYsqW/QkXw++91gbpOocpPfWBpEfuXAvWSJEvKcvvtRemkCWLUKAsWCVj9qTC+jIkj8CTiuti0CbZuhcMPj3vTgcfNs/wkXKFS1RwReRZ4QEQ6quqvie7T4SvXAyuxLF2BR0SOwjJRNgOqRO5T1aN9EcpRYubOnUuvXr148803OWv+fNsYEIXqxhtv5JtvDgJOdQpVfioDWUXsz/aOcRTBMccck9wOc3Nh9Gg45pjA+q8mfUwcKUEiroslSyAtLXCl2JKCm2f5SYaFCmAIcCtwC/B/SerTkWREpCOWLv02Vd3stzzFISL9sGtzBNAVc03dCyv4O8w3wRwlZo899uDnn3+m5W67WXSwCOy+u99ikZ2dzbvvDmfFiqrUrn0qbdr4LVHgiE4KE0kFypdVeuZ5FtmWyVpAmDrV5tigQcnprxQkfUwcKUG8r4uNG2HZMqhfH5o2jUuTKYWbZ/lJikKlqmtF5GngFhHZW1X/Ska/jqRzK7AOi5tLBa4HrlDVF0VkPXCLVz/taWCDz7I5SkC1atXo0qULzJtnK+hNmwZi9bxSpUoMHjyP//u/HA46CNJjqmxWYfgO2COGYxxFcMEFFwBJjGOYOtWeA+zjlPQxcaQE8b4upk+H7Gxo2DAuzaUcbp7lJ1kWKoDHgauBTMzFylGOEJH2WM2YB1R1jc/ixEpLYIz3eit5RXifBsYBrshCijB69Ghq167N4Vu32oYArZj98ANAOoce6rckwaKiJu6JN6FQKLkdTp1qKc0CNMeiSfqYOFKCeF8XTz5p7n516sS12ZTBzbP8JE2hUtUVIvIYcJuIPAL8A9R2BX9TFy+j32HABOBBYA2W6jhV+A+o5b1eDLQDpmHB8tX9EspRcm699VZ23XVXDu/d2za0aOGrPACqyvHHH89ff50CXMIhh/gtkaM8cuSRRya3wx9+gPbt7U4yoCR9TBwpQTyvi8WL4b33oMO1UKVK8ceXR9w8y08yLVQAD2FpcN8GGgG/Au4/krp0B77A6jbtD1yvqqv9FalEjMcKi04H3gOeFJHuQDdgh9o4juDyxRdfkJ2dDc88YxsCsHq+YcMG0tOrsGhROmlpcOCBfkvkKI/MnDkTgNatWye+sxkzYMoUePTRxPdVBpI6Jo6UIZ7XxahRkJMDO+9c5qZSFjfP8pNUhUpV14nIWKAPMBlw9XVSm6+BgcCjWEau5/wVp8RcAVTzXt+PncOhmHJ1j19ChRGRnkDPqgGIBQo6u+yyi70IUMr0WrVqceONn/Dpp9CxI9SqVfxnHI6ScsklVqorKXEMb7xhgYDnBLveclLHxJEyxPO6eO456NChYn+vu3mWn2RbqAAuALoAO2NuVo4URVWzRaQSkA7coKqFZesKJKq6KuJ1Lua2GBhcYd/YWLVqFW+//TYnnngizcMp0wPi8vf99wLg3P0cCeO+++5LXmeffAJHHx34KPykjokjZYjXdbFwIfz2Gzz4IEyJS4upiZtn+Um6QqWqm0TkXCzu5k7gpmTL4IgPItIUCGHFmx/xWZyYEJGYC4VGKlyO4DJz5kyuuOIKWrRoQfMAWagOOuggli07FHjUJaRwJIxDkqWtz5sHf/0F//tfcvorA0kbE0dKEa/rYsQIe+7VC6aMi0uTKYmbZ/nxJapUVb8HXgauE5HOfsjgKBteQornMKX8SlVVn0WKlZXAimIe4WMcKUCXLl1YunQpXfffH/77D6pVg7ALoE+oKocf3pWlS/cF4KijfBUn8IhIIxG5XkSeE5EG3rZDRcR/U2PAmTFjBjNmzEh8R195YaXHH5/4vspI0sbEkVLE47rYtAnuvBOaNIG99oqTYCmKm2f58cPlL8z1wHHA6yLSKRUKwTrycQFwEjBQVef7LUwJcLe25Yz09HSLofrtN9vQooUV9vUREaF37wd55BFo08Z3/S7QiEgnYCwwH2iLZQpdiSW92Qs4yz/pgs8VV1wBJDiOQRVef90qmLZqlbh+4kRSxsSRcsTjuvjxR1i3zlKm+/wz4ztunuXHN4VKVVeLSH/gS+A+4Bq/ZHGUDG/V+HEsKcXT/kpTMlT1W79lcMSXMWPGMGvWLC4Lay0BcPebNWsWY8a0AoRu3fyWJvAMBp5Q1UyvwHaYL4D+PsmUMjz8cBIqVfz5p6VLHzw4Je4ikzImjpQjHtfFmDGWl+WUU+IgUIrj5ll+/LRQoapficgzwNUiMkZVR/spj6N4RKQq8A6QC/T3kjmkJMXFU7kYqtTg3XffZdSoUVx21VW2wWc/jA0bNtChQwcaNLgGuJejj/ZVnFSgE3BhAduXYuU1HEVwwAEHJL6TsWPtOUXuIpMyJo6Uo6zXxaZN8OKLcNxxULt2nIRKYdw8y08QKvNdj9WjekNEmvssi6N4BmNZGvup6kK/hSkjxcVTOVKA559/nj/++AO8mhj4XBNDRHj88edYuvRM0tKga1dfxUkFNgN1C9i+N7A8ybKkHFOnTmXq1KmJ60AVnn8e2rULRPbMWEj4mDhSkrJeF0OHwsqVcOut8ZMplXHzLD++K1SqugU4w5PlfRGpVsxHHD4hImditZseUdURfssTB44Cjo54HAfcDCwAzvVRLsDqUInI0JycHL9FCTRpaWnUrVs3MApVRkYGzZufT3Z2O/bfH3bayVdxUoGPgUzP+g2g3uLag8AHsTQgIvVEZISIbBSRBSJSYNyViJwvIlNEZJ2I/CMiD3mlH1KWq6++mquvvjpxHYwcCb//DmedlRLufpCEMXEUSNDnYVmvi9dftwLtLmur4eZZfgLxQ6Kqc0XkPOyH9RUROTuVXcnKIyJyEJaZcTxwi8/ixIVC4qnGiMg84CLgrSSLlA9Xh6p4Jk6cyOuvv87tt93GLgFRqH799VeGD98Z2NXFT8XG9cCnmFW4BlZSoxHwPXB7jG08A2zzPtcBGC0iv6nq71HH1QCuBn4GGgKfeP0/UKYz8JHHH388cY2rwh13wB57QNilNgVI6Jg4iiLQ87As18V//1neI2edysPNs/wEQqECUNVPRORmbELNAe7wWSSHh7da/DGwBDhNVbP8lSjhTAWO8FsIR/HMnDmT119/nbsHDoTVq61svc8p9c4//3zmzm0KfMqJJ/oqSkqgquuAw0TkaGB/zFvhF1UdE8vnRSQDOA1op6obgAki8glmZb45qq/nIt4uFpE3SfHMnx06dEhc4yNHwrRp8PLLkJGRuH7iTELHxFEgqTAPy3JdPP885OZa7SmH4eZZfnx3+YviIeAl4HYRuchvYRwgIvWx1eMqwImqWq5ji0SkJrZytshnURwxcO6557JmzRrqLltmG1q39t0t6fbbh7Jp053UrQsHH+yrKCmBiLQHUNWvVXWwqj4UqzLlsReQo6qzIrb9hqVgL44jgOjV85Ri0qRJTJo0Kf4N5+bCbbdZkpdzffeALhEJGxNHUQR+Hpb2ulCFV16BI46Azq5y6nbcPMtPYCxUAKqqInIpsCswVEQ2qOo7fstVURGROljq4pZAD1X9y2eR4oqXojmyILFgrggbgbNL0E49bCHgWCzRxS2quoO7oIicD1wFtALWYS6Ft6pqdmnPwWExVEGJnwL455+DAKt/WilQ37CB5VcR+R14A3hLVf8p4edrAmujtq0FahX1Ia9sR2fMvbewYwYAAwCaNWtWQrGSww033AAkoBbM7bfDjBnw1lspdyEnbEwcRZGQeRjPOVja6+Kbb2DOHLjppjJ1X+5w8yw/gfuWVNUsETkN+AzL/LdJVT/xW66SIiLjIt+rald/JCkdnvl+FNAe6K2q4/yVKCFcEfU+F4vj+FlVV5egnUD7jZdXvv32W+666y6GDh3KHrO8RVGfFar777+fjz46Bdibnj19FSWV2BtbwLgIuE9ExmPK1XDPHbA4NgDRSYxrA+sLOBYAEemNzbtjVHVlYcep6lBgKEDnzp21sOP85OmnE1AKcP16eOQROPts6Ns3/u0nmISMiaM4EjIP4zkHS3NdqMLNN0OjRnDmmWXpvfzh5ll+AqdQAajqJhHpCYwBhotIX1X90G+5KgqeZWoUcAjQt7zWB1PV18raRir4jZdXNm/ezLp166hXr54VHgVfFaqNGzdy++23Azmkp9/Occf5JkpK4bkIZWKZ/g7ElKv7gKdFZJSq/l8xTcwCKolIK1Wd7W1rTyEuRCLSA3gBc2GeHpeT8JF27drFv9Hhw2HbNrjgAt9daEtDQsbEURyBn4eluS5mz4ZJk2x9IYXCCJOCm2f5CaRCBRaoLCLHYvE774lIf1V9w2+5YiXVLFJhvJipL7AvwjNV9X2fRUo4nsvezkTFFKrqHzF8vDC/8SNj+GzKx2/4SY8ePejRo4e9mTbNnvfbzzd5MjIyGDJkLQMGZHPkkVC3oMpKjiJR1Z+Bn73FhiHYYkVxn9koIh8Cd3mxtx2AXtiCUD68xBdvAqeo6sR4yu4XP/zwAwCHHLLD6Zael16yulNHpeZ6T0LGxFEkqTAPS3Nd/O79Qh9+eCIkSm3cPMtPYBUqAFVd4ylVHwOvezf7T6hqIF0vUh0R2R1TYPfA3PzKpWUqjIh0BF4B9g1vwmKqws/pMTSTcL/xKlWqxCBGBWbtWliwAKpVgz339FWUDz+sCUCfPr6KkZKISEvgLMxCtSdWoiHW5ESXYWUdlgP/AZeq6u8i0gz4A2jjFSK/A6gDfCp5lpfxqnp83E4kydzq5XGOWxzDnDnw/fcQCqWkdQoSMCaOWAn0PCzNdfHVVxZCuM8+CRIqhXHzLD+BVqgAVHWDiJyIrWY8BrQSkYEukD++iEgXYCRQFUtAMc5fiZLCy8BiYCCwjPwJKmIl4X7jGRkZbgGhALp27UqPHj24+bDDbEPbtr4Gzz/yyFC++CKdSpUu5IwzfBMj5RCRyzEl6kBgBrbI8aaqLo61DVVdBfQuYPtCbNEj/D41TS5F8Pzzz8e3wWeftXl0ceqWv4v7mDhiIujzsKTXRVYWfPYZdO0KNWsWe3iFw82z/AReoQJQ1S0icgZ2E3oD0FJEziph4gBHIYhIH+BVYClwZHnL5lcErYAzVHVOGdoIvN94eURV2XXXXWnYsGEg3P0Ahg59F9WqHHvshTRo4KsoqcbNwNvAJW5OlJzW8Ywb3LABhg6F00+Hxo3j126SieuYOMoNJb0u7rwT/v4bnnwyMfKkOm6e5SclFCoAVc0FbhSR2VhWtSkicrqq/uKzaCmLiFQBHsZSeX+P+TOX6zpTUUwA9sEKSZeKVPAbL4+ICG+++aa9+d//7HnffQv/QBLYeeexzJq1zWWCKjnNnBt36fn2228BOPLIWMI2i+G++2DjRktGkcLEdUwc5YaSXBfz58PgwdC/Py5jayG4eZaflFGowqjqCyIyHXgP+EFErgaedz/IJcOLl3oHOAh4HLhRVbN8FSr5XAi86MVuzADynb+qfhdjO4H2Gy/3TPeMGj5aqObMgQkToHr1KvTq5ZsYKYOI7A9M9RbKOkoRsTpu0axoMjMzgTjFMXz+ORx6KBxzTNnb8pG4jomj3FCS6+KhhyAtDe6+O8FCpTBunuUn5RQqAFX9yftBHgY8B5wkIhep6r8+ixZ4xO5czgfCRuz/qwiZ/AqhFWZRKijBdaxJKQLvN14e+eqrr7jsssv46MMPaRsAhSozcyLwCieffAe1ajXxTY4UYjKwC7YIMZm8ZDDRxDwPKyovv/xyfBqaMQN+/dWql6ZoMoowcRsTR7ki1uti9WoYNszKsO26a4KFSmHcPMtPSipUAKq6UkROwIqzPgjM8IKb31NVFZH9gEUVPc5KRA4HJnhj0hhTQHsB3wH9VHW+rwL6y/PAWOB+Sp+UwuEDtWvXplOnTtRbtcqKkDZtCg0b+iLL5s3w8cfzgHe44IKQLzKkIC2wItrh145S0rJly/g0dPXVKZ+MIkzcxsRRroj1urj1VvteHzgwwQKlOG6e5SdlFSrYHlf1pIh8CbyOubD1F5FrgOHYTXKFrR4gIsdjadDPFZG6wD1YFr/rgce88avINAVOUNW5fgviKBkHHngg77zzDoRXyA4+2DdZ3nsPNm7sS6dOfeje3TcxUgpVXRD5Flv82mFBw3ObdRTBmDFjADimLG56H38MY8fCbbfBHnvESTL/iMuYOModsVwX06bBkCEWmtu+fbIkS03cPMtPSitUYVT1LxE5BItluQeYhp3bLb4K5j9fADOx+J7KwJfAFRHZ6Co6XwGdgEAqVCLSE+hZtWpVv0UJFOvXr2fLli2W4e+nn2zjQQf5IosqPProUqA+l19eJdU9pfxiPtAYc//bjld3cD7O5a9I7rnnHqAMNzXZ2XD99dCqFdxxRxwl848yj4mjXFLcdZGba1MgLQ288CBHEbh5lp9yoVABeHWpnhSR4Zg72x7AsyLSCHihoiVcEJG2WJr51kAOcCMw2CXvyMfnwCOee+h0dkxK8aEvUuX1PxIYmZGRkfo+OHHko48+4sILL+TPP/9kD58VqlGjspg27TiqVGlBnz4f+yJDOSBcSDuamsCWJMuScrzxxhul/7AqXHWVZVX56CMoJ4s3ZRoTR7mluOvitdfgk0/g3nthl12SJFQK4+ZZfsqNQhVGVZcAe4rIYcC9WIr1a0XkAeANVd3qq4AJRkTaYXVdzsSKzt4CDFHVNX7KFVCe9Z5vLWCfC4YPKPvvvz+DBg2ief36FkhfuTJ07Jh0OVTh3nsrA7dx3nl1qVEj6SKkNCISToyjwP0isilidzrQBZiabLlSjd122610H1SFe+6B556Do4+Gk0+Or2A+UuoxcZRrirou1q+3mKnGjeG665IoVArj5ll+yp1CFUZVJ4hIV+BEIBMrpjpIRB4FXi5PCoaXue9QLDaqF7AReBR4QFX/81O2IKOqaX7L4Cg5bdu2pW3bthbzoQodOkD16kmX48YbX+fnn0+kYcM+PP540rsvD4QLhwlWD25bxL5twC/A4GQLlWp8/vnnAPTo0aNkH3z5Zatc2rmzWafKkb9qqcfEUa4p6rq44QZTqkaOLDeG2oTj5ll+yq1CBeC5t40SkdHAMZgl4hHgbhF5E3hWVaf6KGKZEJGawNlY7Nh+wGpgEPCUl8rb4ShX5ObmMnXqVNq2bUvVr7+2jYcdlnQ5Vq1ayxNP3Aps4LrrLiMjI+kipDzhMgIi8gowUFXX+SxSSvLAAw8AJbypWbECQiHo0gV+/NGCRsoRpRoTR7mnsOvi66/hhRfg/PPB1aiNHTfP8lOuFaownmL1FfCVV7/qMuAc4GIR+Q14E3hbVf/xUcyYEJHKQHfgLKz2UQbmFjMAeEtVN/omXIohItcWtV9VH02WLI7Y+PfffznqqKN45JFHuOjLL23jsccmXY53361DVtaVNG16LldemfTuyxWq2t9vGVKZd955p2QfWLoUDjwQli+Ht94qd8oUlGJMHBWCgq6L5cuhXz/YfXd48MHky5TKuHmWnwqhUEWiqr8AF4nIDcC5mIXnIeBBEfkRGOU9ZgQlgYOI1AGOxdwXTwQaYNaoN4HXgB+DImuKEX0rXBnLNrYZyzjmFKqA0aRJE8477zyOO+AAGDAAqlSBI45IWv+TJ0/m0Uef5dNP7wJu4okncLFTcUBEjsLiPpsBVSL3qerRvgiVIuxSkuj5Tz+1aqWbNsHnn/ti3U0GJRoTR4WhoOvi3Xdh0SKzUjVq5INQKYybZ/kpf0tTMaKqq1X1SVU9EGiFxVlVBe7D0q4vFJFhIjJARPYRkRKPlYg8LiKPl+JzdUTkeBG5T0QmACuB94CTsdTnvYDGqnqJqv7glKnSoaotoh5NgSZYlkgXlhpQnnrqKXb76y+Lnzr88KRqNHPmzOWDD0aydm0G3bvDKackretyi4j0Az4DagFdsYK/dYH9gT98EyxFGDlyJCNHjiz+wCFDoFcvaNIEfv4Zjjoq8cL5RMxj4qhQRF8Xubnw4ovQvDl07eqbWCmLm2f5qXAWqoJQ1TnA3VhsVRPgBOA4LO7qbO+wDZ574G/ADKx20Xxggapu27FVADoU1qeXSKIB0AJoCewFtPc+Ey4/nQ1MweK+RgE/eenhHQlCVZeJyG2YAjvCT1lcHaodOffccznxxBPp65O73/r1fdi27f+oVUt47rlyFcfvJ9dj9fFeFJH1wC2qOk9EnsYylTqK4JFHHgGgZ8+ehR/0ySdw6aUWIPLRR7DTTkmRzS9iGhNHhSP6urj7bivkO2yY+y4vDW6e5ccpVFF4addfBF70lJ49gcOBjpiycy62krr9IyLyH2ZFWgmsAbZ6j9aY7vQOZv3KAOpjilRDIDI1mQKzMQXqZeAnTIFyMVHJJw3w3fjv6lDlJycnh99++43999vPbgoBTjwxaf1/9tkirrqqCZDOkCGwxx5J67q80xIY473eitWfAngaGIeVgXAUwvDhwwvfuX49vPEGXHONlRYYMaLcK1NQzJg4KiyR18WwYTBoEOy7L/Tp459MqYybZ/lxClUReK50s70HsN2ytCt5lqUWwM6YgtQAaIopT1WxGwPFlLGtWGzOUqyI7EpgETAPs3TNd8pTchGRU6M3YTFUlwPjky+RoyjS09OZNm2a5bVdvdp+Cdu2TUrf8+fn0rPnseTkHEz//i9z1llJ6bai8B95i1SLgXaY23V98i86OQqgQYMGBe+YNctipFasgPbtLX6qbt3kCucThY6Jo0LToEEDVOHtt+Hccy3J5bhxUMndCZcKN8/y4y6jEuIpWf94D3fTndpEL68oFr/xNS6GKri8/bY9n3lmUrpbsgSOPz6XnJwb2G+/pjz3XFK6rUiMx5LuTMdcbZ8Uke5ANyw7q6MIPvzwQwBOPfX/27vzOCmqc//jny+LIqsLIEQFjUoUcbt4XWOMcePmqjEal7jEXaNgMK4/Y+KKGtcoGncjGr1Ro/Gq0ZCLu8Y9URHRiCK4I8g6MMwMzPP746lmeppZumdqprtnnvfrVa+Z2k6drq6aqVPnnOck74e++grGj4fLLvP5q6+GU07xAbA7iZXOSQjATTf9heuvh/fe25+11vJ/JUUYwrDDiPusvihQhU4rBvYtLzfccAPPTprEA5MmeTSdQw5p82NOnw677w4ff9yNESOO4bnnYtDHNjAG6JH8fhned3QnvHA1rliZKhfjr7sO5s5l/7ffhrfegkmToLLSL9zf/Q5GjCh2Ftvd+PHjgXjQC3Vqa+H008dTUwPXX78/xx0HPXo0v19oXNxn9UWBKkfSEXqEmX2/gH0MONDMokFpCCmpqanhsssuY80112TMmDFUV1ez+IMP6FJZ6SGZNtigTY8/aRIceijMmTOPb3/7Cf72t/1ZffV4nZm27EHIzawWKHg0GElrAnfgNV1z8MAW/9PItr8EzsabEz4EnGRmVS3IenFVV8Mjj/DI9Onw2WcwdSp85ztw4IFw5pmdsiCV8cgjjxQ7C51Sqd6HM2d6gMvKyke49VY4PnolpyLus/riDX0bkzRBkjU1ZW331wb23ybZbv2c5ftJelLSXEmVkj6QdJek/8zaZn9J/ydptqRFkl6VtG8Tef1pcqyV8tGRJCHpZyTje+Wu65esa//RYkM9S5YsYfbs2Ss6vp42Zgx/q6z0laee2mbHrayEc86BvfaCOXNgs83+wvTphzNnzr/b7JidjaQ1853yTPL3QDUeTOYw4CZJK3Wwk7QXHuRiN2B9vB/shal8qPbwxhtw223+RDhoEBx0EP2Afjfe6AEopk6Fu+7q1IUpgH79+tGv30p/3kPbK6n7sLYWHnjAb4epU2H8+H4cd1xcF2mJ+6y+qKFqe2OpH6XqI+BXwP0tTVDSJfibneuBi/DgFusBOwJX4mO5AOyC9wf6NTAX/wP3sKTvm9kLOWl+O9m3M/QLGwNcaWYLcleY2QJJl+Pf2/+1e87CCv369eP666+vW3D77f6qcZNNYO+9Uz+emUeXPvNMmDYNoIozzljApZcezRtvDGerrbZK/Zid2By8z2JTlGzTtcmNpF7AAXjLggrgRUmP4hFZcyMEHgncYWbvJvtejA+Q3v6RBM1g1iyfFi6smz77zHvKz5sHS5fWTfPn+zKArl19ELS99+b+6mro25eDY4TpFe6/3/+9Hhzh29pNKdyHtbUeBv3FF+Hzz33s6rfegi228GHYPvnkfh54IK6LtMR9Vl/ZFKgkPQu8BywBjgaW4+3rbwauwQsLC4FzzeyPyT6bA7/D2+NXAo8CYzMP0pK64s1Ljk0Ocxc5/7yTqH5nAifig75+CFxuZvfkk+/kWCse3JMaqQVm9lVBJ6Bu/+3wAtlYMxuftepj4PmkMJA59tic3S+U9N/AfmQVnCR1B/4EnAvsikcr7Mi2AE5rYv3T+Lkoqs4+DtXMmTMZOHAgq622mlcVnX++rxg3zh8oU1Jb6/94zz/fKwAAhg+Hrbc+j/XWW4fu3X/BDjvskNrxAuB/Z9IyDFhuZh9kLXsbf6GUazPgkZzt1pa0lpl906KjX3ghVHzbC0jH3eFN8aqroaam7vfc+ZoaL0h908ghe/TwCH39+/vvPXpAnz4wbJi3XRo8eEVnvpuSEUnjoabOTUnkmDgn7apo9+GHH8IVV/hoGrNn+7Lu3f12uftuj1/UrRucc05cF2mK+6y+silQJQ7DC0/bAfsC1wKjgInANvhbj9slPYWPBzUReB3YFlgTuA0f4+mAJL3TgeOTaTIeLvsw4F9ZxxwH/CRZ929gB+A2SfPM7PGGMpkU/iikH1YBDsUHu7yxoZVJFMKm9AHm5Sy7BJhhZndJSvNBp1QNAGqbWG94yOai6uzjUG233Xbsvffe3H7bbTBmjBeqdt0VUuoA+8UX/s/2tts8+ATA2mvDr34FJ54IY8cu4NVXP0vlWKE+M3suxeR6k/XSKrGA+uMFNrZt5vc+ePj2eiSdAJwAMGTIkIaPfs89sMMJoC7w1ERYZRV/mltllfpTjx7Qt2/d/E47eVukddf15dlT//6+TR6eeOKJvLbrTOKcFEWb3If53IMVFX4bfu973u911139tsodrDeui3TF+ayv3ApU75rZBQCSrsGrh2vM7Lpk2UV4U7gdgTXwm/YIM1uUrD8BeEbSRmb2IXAqcIWZPZCsHwvslTlYUoV9GrBnVhO5jyVtixewGixQAZ+08PONklSRsyy3n9swYLqZLcvK58nAFVnbDDezlfIgaTQ+TtYfs5btCRyMD1rcWXyG11JNa2T9Fvh4OKFIzIyrr76aoUOHwuWXw/33Q69ecMstLR7S3gymTPFmfY88Aq+/XrduyBAvs40eDZmWUzfffDPNv58IrdVcP6nsoBWNqAD65izrCyzKY9vM7w1ti5ndCtwKsM022zR8MUybBre87L/f1f6jLfSMpn4riXNSFG1yH+ZzD26xhbeWbW48qbgu0hXns75yK1BNzvxiZibpa3zsksyyGknz8IF2NwImZwpTiZfwmonhkmbjg7i+nLV/raRX8f5IAMPxcL4TM8EjEt2BGY1l0sx+1rKPx/Mkb2KyjAAebma/e/H+PpltVwo2IukAvI/UIWY2M1nWH5gAHGpmubVWHdnjwMWSnjCzyuwVknri/dIaKyyHdiCJww491AtT55zjCydMgI03zjuNOXPgX/+CV16pm+ZlXeWrrQajRsFxx3kAiuxWhIsWLaJPnz6ohYW3UJDm+lM1177zA6CbpI3NLPOSZEvg3Qa2fTdZ90DWdrNa3NyvBNxzj7c+P/zww4uck9IR56QoinYfduniU3PiukhXnM/6yq1AVZMzb40s60Jdh+aG5PvaOXOL7sPKtU65x03DkqTmbAVJq+ds8wGws6TuZlYDdf20Gtg2k8YBeK3Uz8zs0axVI/BC5ZNZD45dkn2WAZuZWUcMbXYJ3oxzmqTrgfeT5ZviASsEXFqkvAXgt2efzb6vv86mzzyDwANS/OQn9baprfVuKJ9+6v34Z86E99+H997zac6cldMdPNgLUT/6EeyxR11tlJmxZEklPXv2ZMGCBQwcOJA777yTQw89tM0/a1ipP1V3YGvgJDygTpPMbLGkvwAXSToOr23/Ed5SIdfdwARJ9wJfJulPaHHOS8Dtt98OxENNtjgn7a8c7sO4LtIV57O+citQFWIqcIykPlm1VDviBYb3kmhuXwLb40EIMgEotsVv8EwaVcBQM3u6XXPfuD8BvwBOwfuTNUnSQXiwjSMbGCfrdWDznGXj8OaSo/FAFx2OmX0taUfgJrzglClNGvB34GQzm5VveirRsTfKTc2CJSya+A9m3f0wtz/xEtcwgGtXO5o5h/yCOTO3YvZJXkj66isvQH3+ufftb0zv3rD55rD99j7tsEPD7eoB/vSnPzFu3Dief/55+vfvz7bbbstOO+3Udh82rNBIf6onJU0HjgMavJdynIz3j/0a74Nxkpm9K2kI/nd8uJl9YmYTJV0BPEPdPXh+Gp+jWCZNmlTsLJScOCdFU9L3YVwX6YrzWV9HLlDdi49rcLek8/BCwi3AX7Jqga4DzpH0Ad508GS8xuZLADNbJOkq4KqksPU83i9re6A2adu7Ekl3J/u3tOlfo8zsleQP0ZWShgIP4rVna1PXXHB5ko9D8JqpM/AIgIOS9dVmNtfMFgNTcvI+H+hmZvWWdzRJs8cfSloDbx4qYFoLmz5mj72xFfC4pLczIWEzssbe+AHwBd4880KKEbK5BcygqsrHaaqs9EjODf2eO79oESxaaMz+cjGfzJhDd/qydHEX5s5dxtz5y6mp6cGiqlVZaj2BPZLJHVYJ3Nl4nvr3h/XWq5uGDYNNN/VpnXXy727Vp08fRo4cyVpreSySF17oDKMHlLy3gO/ls2HSz2q/BpZ/gv/Nzl52DXm8jCoX3bt3L3YWSk6ck+Io9fswrot0xfmsr8MWqMxsSfIAey3wGrAUD9OZHUr8amAQcHsy/0e8ILZp1ja/AWbhhZKb8NDsb1E/CESuRsJBpcPMzpb0Gl6L9DP8D9Us4EXge2b2abLpz/Hv+NpkyniOurGqOrWkAPV6sxs2oj3G3qip6sn1h/2NXqv0ZmlVFZ/N+4o1eqxJz+69WFpdzRcLZrFmjzXp0a0ni6uq+HrRbFZftT/duvRk4dJqZi+aS8/u/elCLyqqavimch6rdR2A0ZPF1TUsqJrPKl0Gsry2J0uWVVNRs5CuDGSZ9WRxzTIWL6ugunZdqmp74aMWzMPLjt2AxXhAzcx8BR6waRDe9SUzPxi/TA2/hQbjlcUL8X7IfenCcmr5nH495rPe0E0Y8K1V6NdvAX37VrDBBuvQvz/07Dmf3r2XsPXW32LddaGqaj6VlZUMHjwYgHnz5rF06dIV83PnzqW6uppBgwatmK+pqWHttdcG4M0332SjjTZi1KhR7LPPPgV996HtSOqNBw36tJlNO70JEyYAcNRRRxU1H6UkzkloSFwX6YrzmcPMYoopphZOeF+PypxlZwCPNbDt28DBWfP9SUK0N3MMg7vM64imms/fl8y/lcz/JZl/LZn/azL/QjI/KZl/Kpl/Lpl/Ipl/JZn/32T+X8n8A8n8FAOzLvzBAFuDl2x9pls/LjbANudB241JNpiTDLC9GW8ncLNtyI8NsLM5xa7qNsZ2W2U7A+yJ4Sfa09/9hR04bAcDbP7/TrLZ0z+2I4880iRZxllnnWU9evRYMX/qqada3759V8yffPLJ1r9//xXzxx57rK2zzjor5o844gjbYIMNVswfdNBBtskmm6yY33nnnW3jjTe22tpaC40DFlvb3UOL8JJ1ZlqE17IvBPZpq+MWOo0cObLR83PQzS/ZQTe/1IIz23q77LKL7bLLLkU5dqnqqOcEeMNK4F4o1tTUPZiPtrguinnvF1tHvc+a0tQ9KF8fQmgJSTsDfzazQVnLjgcOs5xxyCR9BIw2s4nJfHe8qeAGZjYjZ9sVY28AI/GqoWxdSZp2tmBZN2BZHttFeuWRx/ZIbzUzyyOOVuEkHZmzqBaYDbxqJRR9NIkMO7OBVf3xvpPlopzyW055hbbP71AzG9CG6Ze0Ju5BKL9rJV8d9XNBeX62xu/BxkpaMcUUU/MTXkO1JGfZ6TReQ3VQ1vxa5FdDtdIbEeDWViyL9PLctxzyWKz0YirPc1NO+S2nvJZjfjvS1FHPfUf9XB3xs3XYPlQhtJNijb3xWCuWRXqF7VvqeSxWeqlKomUOJGccPTObWoz8hBBCCPmKJn8htJKk+/CapszYG08AO9rKUf5G4WNt/ACPJPkQ8JqZNRmUQtIbZrZNivmN9Eoszc6WXk7aW+OxHDNDOGTGEBQ+hntzA/sWVVuem7ZQTvktp7xC+eW3I+mo576jfi7oeJ8taqhCaL22HnujwfD8rRDplV6anS29bH8APscjsM4i/4HXS0Vbnpu2UE75Lae8QvnltyPpqOe+o34u6GCfLWqoQgghFI2kCmArqxsfMIQQQigrbRK1KYQQQsjTi9Qf+y+EEEIoK1FDFUIIoWgkrYMPrj4RmALUZK83s+eLka8QQgghX1FDFULoUCRtKulSSY9Iejr5eamkqAUpTRvjwVx+B0wCns2anilSnpA0RtIbkqokTchZt5uk9yUtkfSMpKFZ6yTpcknfJNMVklSMvEpaX5JJqsiaflPMvCbHXVXSHZJmSlok6U1J/5W1vmTOb1N5LdXz21k0dY+Ws+buj3In6R5JX0paKOkDSccVO09piKAUIYQOQ9JPgZuAR4HngQVAXzxE/UuSfm5m97fyGL3x2v1FrUhjGLAZ0AdYBLxrZh+0Jl9l7BbgKeAySisoxRfAOGAvPIgMAJL6A3/Bo3o+BlwM3A9sn2xyArAffs0ZXkicDtzc3nnNsrqZ5Q70DMXJK/izx6fALsAnwA+BByRtDlRQWue3qbxmlNr57Syau+7LVaPXnJnNKGbGUnIZcKyZVUnaBHhW0ptm9s9iZ6w1oslfCKFgbVkgaE2BRdLHwOFm9o8G1u0E3Gtm6xeQ3rlmdkny+1rAvcCe+MPRM8ChZvZ1AekNwR8OtwQ+oq7AtyE+8PMhZvZJvul1BJIWA1uY2UfFzktDJI0D1jWzo5L5E4CjzGzHZL4XMAfY2szel/QSMMHMbk3WHwscb2bbN3iAts3r+sDHQPeGHviLmdcG8jIZuBAf8Lwkz28Def0nZXJ+O7Lc674jylxzZvZQsfOSJknfwVsjjDWzB5rZvKRFk78QSoykEyS9JGmBpOXJz5ckHd+CtNbPmT9Y0p8lPSjp8BakN0TSy8BbwEX4G9gLgTeTPA4pML1zs35fS9JEYCEwX9KTkgYWmMUBwL8aWfcm0L/A9M7O+v1KvPA4GPgW/pB3RYHp3Qm8APQ3s83N7LtmtgU+oO0L+DhlBUn7O07SSO0azMMkYGQbpNtWNsMLvwCY2WK8cLxZQ+uT3zejuGZK+kzSnUkNW0ZJ5FXS2sAwfPDzkj6/OXnNKOnzG8pbI9dcWZN0o6QlwPv4uJxPFDlLrRYFqhBKiKTL8fF4bscHAP4OsGsyP1bSZQUmOTkr7Z/j/VTeAF4DfitpdIHppV0gSLvAMgn4g6QNsxcm87cl6wuR3d9hd+BkM5tlZrOA0cAeBaa3HfBrM1uSvTB5aDwvWV+oVL/jNrgGmzMRuFrSuKQwuH/2lPKx0tAbr1nMtgCvrW1o/QKgd5H6zswB/hMYihda++C1rBlFz6uk7kme7jKz9xvIUyZfRT+/DeS15M9vKG8NXHMdgpmdjN8vO+NNfKuKm6PWiz5UIZSWY/DmT1/mLP9XUnszGTingPSy/3GPBg4ws5cBJD2LF4B+X0B62wH/ZWbV2QvNbLGk84C5BaSVm7/dgZFmNjvJ32iyCgt5Oga4EZgqaRl1Teq64X+0jykwPUsefrokef0ma93cJO1CfArsneQl1w/x9vKFSvs7TvsabM6Nyc9fNbDOgK4pHisNFaz8vffFXwY0tL4vUGFFaF9vZhV44RpglqQxwJeS+prZQoqcV0ldgD8C1cCYZHFJnt+G8lrq5zeUt0bujw7DzJYDLyYtKU4Cxhc5S60SBaoQSktzby4LfbOZ/Y97MPDKihVmr0lat8D00i4QpFpgMbN5wE8l9cSbSPTGH2o+yK0VylNvYFmSN8Oj0WWaFG4MzC4wvTHAQ5JOw5v/ZAp8W+FNgQ5oQR7T/o7TvgabZGbl1lLiXeDIzEzSx2dD6prjvIv3kXstmd+S0mmqk7lWMt9h0fKa3Pd3AGsDPzSzTLj8kju/TeQ1V8mc31DeCrjmOoJu+D1e1qJAFUJpuQN4WtLV1H/g3hI4DW+2Vogeku5Ofu+K/3H+CkDS6vibr0KkXSBIu8ACQFJ4eqsl++bYIGd+Ttbvq9NwrUqjzOyppPnh/vj5Goi/eb8LeNjM5jS1fyPS/o7TvgbLkqRu+P/IrkBXST3wa/Vh4EpJBwCP4001J2c1x7kbOE3SE/g1fTpwfZHyOhKYD0wD1sDfAD9rZplmaO2e1yw34QM6725mlVnLS+78NpZXSdtRuue3w2vsum8k4mK5aez+KGtJv+gfAH8FKvGWKT8FDi1mvtIQUf5CKDGSTgR+hj9wZ2pY3gXuNrNbCkzr/JxF92ceTCTti0eVK+gPmTzaXaZAkJ2/ggsEyhpfJjEn6U+EpG2Bb5vZfYWk2R4kvQHsZWbfNLvxyvtuBBwBjAB6Ap/hb7AntOQtZBt9x6ldg3kc67Sm1pvZNWkeL1+SLgByz+2FZnaBpN2BG/C+M6/iUelmJPsJuBwP+w3e9+zstmzm1VhegX8Dl+IF94V4H8KzzCxT4G73vCbHHQrMwPtNZD/8nmhm95bS+W0qr0AtJXh+O4um7tH2z016mrs/ipKplEgaADyIv6DrAswExptZ2b+oiwJVCCE0IqvmJ9dP8DdsS83sZwWktx9wD/APvFZuFzyM+obAIGAPM5vemjyXG3mo+2zd8aaLlcDXZvbt9s9VCCGEkL9o8hdCiUnC7m6IN3OplLQFXi3+tpk9lVL66wDv5QaXyHP/VGtYGjnGG8CeZlZokIu0HYh/tqeo33doOf5mraLA9K4A9jGzZwAk7Qn80sx2knQG3hzov1ub6RS+4za9BrOZWW6zykyY4DvpJM0LQwghlLeooQqhhEj6EfA/wGJgKd6s5A682cvOwDgzu7aA9DYF7sMfji/B+8TcjReE5gKjzGxKAentR4o1LGnXAKVN0sZ406N5wOlm9nmy/EtgSytgUN9kv/nAGpkmP0kfgC/NbEASSOMrMysoEEcbfMepXoMtJWlr4AEz27itjxVCCCG0RrlFVwqho7sEONDMBgK/AP4M7GtmP8bHPCo0dOp1JO32gYuBIfjgt33xSH2/LTC9TA3LXma2J7APMMDMdsI70Rba4fpAvJ/Eh/jgnZkpUwP0UYHppcrMppnZXsD/4oEazkgKQS19E/VP/HvNOJW6qF/Lqd9ePl9pf8dpX4Mt1QUPsBFCCCGUtKihCqGESFpgZv2S37sAVWbWvaH1eab3DdAfj4K0BOiXiRgkqS8wzczyfmhNu4Yl7RqgtpScr4vwpm9DgQ1bUEO1CfAI3kcI4GtgPzObImlz4AgzO6vANNP+jlO9BvM4Xu7gvcLPz2hgupm1uglkCCGE0JaiD1UIpeVzSXua2f/hfWmWStrazN6UtCX+AF4IJYWfZZIW54RfrQBWKzC9TA3Ldcn8qbSihsXMpgF7SToErwG6DbiWltcAtZlkoM5TJW2FN3Vc2II03pc0HNgELzi8nwnxa2bvAAUVphJpf8dpX4PNeTBn3vBw+U/jYaZDCCGEkhYFqhBKywXAY5LmAe8BY4FJkp7D+69cUGB6H0kaYmafmNkaOeu2AD4vML3RwCOSLk7mvwb2S34fhjc9K5iZ3ZeM1XIRPn5Un5ak0x7M7C1aMcaV+ejwaQ7umfZ3fAHpXoNNsvIb2DeEEEKoJ5r8hVBiJH0LWBd4w8xqkzFZtgReN7PnC0xrU+DzpHYld93uwOpmlltD0FyaXWmghiUtSS3I94FbzGxpmml3RG30Had2DYYQQggdXRSoQgitIul5M/teqabXmSWF33PN7KJSS0/Sf+GBTLY0swU56/rh0QpPSJoedmqSJgD9zWzvjnSsBo79V3xw76Pa+9ghtLW4jzu2aGoRQpmQ1FXSeSWY3k4ppNGW6XVm3YDzSzS9McCVuYUpgGTZ5Xhzww5P0gBJN0qaIalK0ixJT0naI9lkLHB4MfPYGEnPSrqhHY83WdLljaw7QVKlpHMkvS5poaTZkh6TNKK98hg6p7iPCz7m05Ksgenx9sxHWqIPVQjlI/Mwm0ptQxukF4pA0h+aWF3w3/i002vCFsBpTax/Gjg3xeOVsofwccOOxYcQGIgHPlkLVhQwg5sMbJ67MKnVHIcP7fB94Ebgdbxp8kXAk5KGl8Bg4aHjivu4MFvjf+Nz/+csKUJeWi0KVCGUkDJ+OA7Fcyg+8G5DD4pdSyC9xgwAaptYbyQPIh2ZpNXxYB97mNlTyeKZeGEgs80EsprvSHoWDxiyBDgaj7A5DrgZuAY4DI9Cea6Z/TErnWeBKWY2prG0G8jfKPyhZwT+nbwOnGpm7yX77gLsIml0sssGZjZDkoAz8YGhv4U/YF5uZvck6fbECz0/wQeRvo78TKbhsdDOAyqB3+ZEukTSEcACvPb7sTyPE0Le4j4u7D6WtCGwOvCcmX2Vzz6lLh6oQigt5fpwHIrnHeDvZvZo7gpJPYD/V+T0GvMZXks1rZH1LYlQWI4qkmlfSS8WEIjlMPyhaztgX3y4gVHARGAb4EjgdklPmdkXrchfryTtyXgI/l/jUSCH402YhgHvA79Ktp+d/ByHP2SNBv4N7ADcJmmemT0OXIUPFH0A/j2fD3wPH4y6KZOB9ST1zQRikTQMOAX4aW5hKtEH7+Iwr6BPHkL+4j4u7D4eiRcg32zFZyopUaAKobSU68NxKJ4JNN4ftga4sMjpNeZx4GJJTzRQo9ATb6ZVlm3pC2FmyyQdBdwGnCDpTeAfwJ/N7NUmdn3XzC4AkHQNfi/XmNl1ybKLgLOBHVl5rK9C8vdQ9ryko/G35tua2YuSqoEl2W+ZJfXCm3PuaWYvJIs/lrQtMDoJwX8scIyZ/T0r3c/yyNLk5OcI4KXk92uA53PzmuU6fKiDlxtLVNLf8cHFp+SRhxDqifu44Pt4JP5S92uvBFvhb2Z2YIs+ZJFFgSqE0jKB8ns4VvObFDW9Ds3Mft/EuuUU+B2nnV4TLsHffE6TdD3+dhRgU7xJl4BLUzpWSTOzh5KO2Dvjb4BHAadLOtfMGjsHk7P2N0lf4y9QMstq5GOJDWxN3pKmORfjb9AH4H9PugBDmthtONADmCgpO5Rwd2AGsCGwClkFHDOrkPQOzTCzLyTNwftRvSRpL2AvPKx/Q/m/Bvgu8N3k+m3MJtRdgyEULO7j/O9jvED1ECu/1C3bfmZRoAqhhJTpw/FzKaTRlumFEmRmX0vaEQ+dfil1BWkD/g6cbGazipW/9pY0EZqUTBdJuh24QNJVjexSk5tEI8uyX6jUsvILi+7NZO0xvCnPicnPZcBU/EGqMZlj7gN8krOuBsgdgLpQ7wAjJHUDfgfcYGZTczeS9DvgEGBXM5ues244cCveHHACMDczpp6kjZN0B+H9sg40s68krQfcgD+ErgLsDewOnIw/T31oZj9u5WcLZSzu47xtDYwzsw9bkUZJiQJVCCVOJT7Ok5ntmlZabZFeKF1mNhP4oaQ1gI3wh4RpZhZ9Xfxhpxv+hjgts4HBOcu2xN82r0TSWniN4WgzeyZZ9h/Uf3aoZuX+mFOBKmComT3dQLrf4A9k2wPTk2W98GZ8H+XxOSYn+R6NBy65oIFjXIcXpr5vZu/nrOuGRxY7zsymSHoAH/cMSaviQQGONrNPJB2HN2+6GHgC+IWZPZNEFeyB16aOTJp8rZ5H3kPnEvfxyvttAKxJB+o/BVGgCqEcxDhPoUNLClCvN7thB5Q87PwZf8CfDCzCO6OfBTxlZgtz+hi0xtPAtZL2xTuYnwisRyMPYngQhznA8ZI+BdYBrsTfbmfMALaVtD7eKX+umS1K3shflUQJex7ojT941ZrZrZLuAC6XNBv4Ao/Sl2+gnMl4Z/0t8X5PuQND/x44AtgPmCdpULKqwswqgP2BN7L6S/2buoAV++EPn48m530V4D7gx8BrmQdSM1sgqRaPVHa5pAlmlk9Tp9ABxX1c0H08Mvn5Vda9mTEnU1NcbqJAFUIIIRRPBfAKHmlrI2BVvEnO/+ARttL0Bzx6YmY4hRuBh4H+DW1sZrWSDgbGA1PwkMmn430fMq4C7sLfZq8GbIA/nP0GmAWcgTfrXIgHhrgi2e8MPPLYw3jY6OuT+Xy8jRdkXsOb6+U6Ofn5VM7yC/HarC2SNDJGAlcnv28OnGlm92bvKGlccrwVkgfOzfFC2H2SzmsiMEbo2OI+zv8+zhSo3svNKl5zNb+Z/UuSzKz5rUIIRSNpuZmlFuI87fRCCKGcSPolsL6ZjZW0G97fZW0zmy1pDF6zcHQSJGBzM3tH0inAMDM7RVIXvP/ImmY2LUlzPPBqbkEshNA5RIEqhBIXBaoQQkiPpP7A3/BWOlOAXcxsSLKuF3AP3uxvKfC0mZ0mqQ/e9G99vN/IGOB4vPnTErx2YkwzkQRDCB1UFKhCKHFRoAohhBBCKF2NjU8TQigdMc5TCCGEEEKJigJVCKUvxnkKIYQQQihR0eQvhBBCCCGEEFooaqhCCCGEEEIIoYWiQBVCCCGEEEIILRQFqhBCCCGEEEJooShQhRBKjzQB6a8r/d6ex0033WeRLJm2T5ZthvQS0hSkx5B65uQjs/1PUs9PCCGEEFITBaoQQn7qP+TXIH2N9AzSaKTubXjkscDhqafqhZwb2uVY7k5gMPBPpB7AA8BozEYAHwBH5eRjcBvlI4QQQggpigJVCKEQT+IP+usDewKPARcCLyD1apMjmi3AbH6bpN2+x1qC2VeY1QD7AU9i9may7n1gQE4+vmqjfIQQQgghRVGgCiEUoiopFHyO2VuYXQN8H/gP4CwAJCGdhfQRUiXSO0j1a318m9ORpiFVIX2GdFmDR8xthuc1SzciXYo0J6kpuwqpS9Y2o5BeQJqHNBfp70ib1ksTdgFGZ9W6rd/AsVZFuhZpFtJSpFeQvpuTv+bzs7JNgXey5jcHpjaxfQghhBBKVBSoQgitYzYFmAgckCwZBxwLjAaGA5cBtyD9d9ZelwK/SdZtBhwIfFrAUQ8DlgE7AmOAU4GDs9b3Aq4FtsULfAuAx5BWSdaPBV6mrhne4EaOf0WS7jHA1nghaCJSbnO85vKT6wvgOwBIWwC7A482sX0IIYQQSlS3YmcghNAhTAV2T5r9nQbsidkLybqPkbbFC1iPI/UGfgmcitkfkm0+xAs4+R/P7Lzk9w+Qjgd2A/4EgNlD9baWjgYW4gWsFzFbgFRNphle3XbZ+/QCTgKOw+zxZNnPgR8kn+XXeednZX8E7kd6J8nXQZhV5f/xQwghhFAqokAVQkiDAMNrpHrgtTiWtb47MCP5fTiwKvBUK443OWf+C2BgXW60IXAxsB3eN6lLMg0p4Bgb4vn+x4olZsuRXsY/Q/75yWW2BNingLyEEEIIoURFgSqEkIbhwHTqmhHvA3ySs01N8lO0Xk3OvFG/CfNjwOfAicnPZXgt2irkL5NPa2Bd7rLm8hNCCCGEDir+4YcQWkcaAYwCHsQLLVXAUMw+zJlmJntkttmtjfKzFh704VLMnsTsPaAPK79Aqga6NpHSh8k2dUEopK7ADkQAiRBCCCEkooYqhFCIVZEG4S9jBuCFol8B/wSuwmwx0lXAVUgCngd6A9sDtZjditkipOuAy5Cqkm3WAkZidlMKeZwHzAGOR/oUWAe4Eq+lyjYD2BZpfaACmFtvrX+Wm4DfIs0BPsb7fq0N3JhCPkMIIYTQAUSBKoRQiN2BL4HlwHxgCj4O1S2YVSfb/AaYBZwB3IQHXXgLj5iXcQ5e8PkNsG6y/d2p5NCsFulgYHySvw+B04GHcra8CrgLr21aDdiggdTOTn7eCawOvAmMwuzLVPIaQgghhLIns4a6B4QQQkiN9CwwBbMxBe5nwIGYPdgW2QohhBBC60UfqhBCaB8nIFUg/WezW0o3I1W0Q55CCCGE0EpRQxVCCG1NWgdvVgjwabNjTkkDgb7J3JeYLW7D3IUQQgihFaJAFUIIIYQQQggtFE3+QgghhBBCCKGFokAVQgghhBBCCC0UBaoQQgghhBBCaKEoUIUQQgghhBBCC0WBKoQQQgghhBBaKApUIYQQQgghhNBCUaAKIYQQQgghhBaKAlUIIYQQQgghtND/BzuinQ4/SilBAAAAAElFTkSuQmCC\n",
|
|
540
|
+
"text/plain": [
|
|
541
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
542
|
+
]
|
|
543
|
+
},
|
|
544
|
+
"metadata": {
|
|
545
|
+
"needs_background": "light"
|
|
546
|
+
},
|
|
547
|
+
"output_type": "display_data"
|
|
548
|
+
},
|
|
549
|
+
{
|
|
550
|
+
"data": {
|
|
551
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAALECAYAAAAfGaoaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5gUxdOA3ybnrCBZUBGUJJhFThAVFAwYQFFBEX/mhAEMgBgwfoqKiiIoqIiKBFEQUJCkgIAEESRIBkGQcKQL9f1Re9zecWHv2N3ZUO/z9HM7Mz0ztX1zdTXV1VVORDAMwzAMw4hmCngtgGEYhmEYxrFiBo1hGIZhGFGPGTSGYRiGYUQ9ZtAYhmEYhhH1mEFjGIZhGEbUYwaNYRiGYRhRjxk0hmEYhmFEPWbQGIZhGIYR9ZhBY3iKc66vc25VHs8Z5pybEiqZDMMwjOjDDJoIx/cPX7JoJ2XRt51zbpFz7pBz7m/n3MNeyOw12YyXf/vb1y9bw8jXr4vfdgXn3IvOuT+cc/udc7t8Y/28c65GpnMfdc7N8fX5zzk30zl3WQ7ytnLOpeTVsDMMwzDSKeS1AEZA/A2cm2nfdv8N51xzYCzwGtAZOBt4zzm3X0TeC4eQEcQJfp/PQsflLGCDb19KXi7mM1hmAslAX+B34CBQF7gS6Ak84HdKK+AjYB5wALgD+NY511JEZmW6dmXgY2AycJSRahiGYQSGGTQhxDlXCNgH3CIio5xzZYDPgcLADSKyK8BLpYjI1lz6PAzME5EnfNvLnXOnAY8DARs0zrlpwGpgC9ADKAK8AzwNPAXcg3r2BovIk37nFQb6AzcDxwGrgOdE5DO/PkWBN4AbgVRgJPBfFjLc57tPbdQIGQa8JCLJgXwH/7Fyzu30fdwewBhmxyB0HBqKyB6//SuB751zLtP922Y6v6dz7lLgGuCIQeOcKwB8io5vMcygMQzDyDc25RRaGgBFgYW+KaJf0H/0bUVkl3Ouq29qo3Yu16nunNvoa987587Los/5wMRM+yYCtZ1z1QHycL9rUaPrAtRQ6g18C5QCWqAeid7OOf9/3C+gnogHgdOBEcAI51xrvz4DgI7ALajHKRE1XI7gnOvru34voD7q+bgT6JOdsHn4XnnGOVcBaAe8lcmYOYLkUuHVZ7iUBnZkOvQ0IMDLQRDVMAwjrjGDJrQ0BfainoYZwGsi8oCIpE157AZWAEk5XONX1ABoh04l7QJmOOfaZOp3ApDZA7HV71ig9wNYKyKPi8hKEfkI+AOoISKP+fZ9DCwGWgM450oA9wNPi8iXvj4voFM9T/r6lATuAp4UkbEi8qeI9ES9HPhd5zHgThH5RkTWish3qGfovhzkDfR7ZUWCc25f5uZ3/CT072S5/0nOudl+/Zflco/eQDlguN/5FwH/A24WkdR8yG0YhmH4YVNOoaUpUBAYj3ojvvI/KCLfAN/kdAER+T7TrhnOuWrAo2jcRSBIoPfz8Xum7a1kbSwd7/t8Ejol83OmPtNRTwtovElRYHamPjOBK3yfTwOKA1875/y9HgWBYs6540Rke6bz8/K9suJX4NYs9v/l++myOAZwA/p97kankrLEOXc3atB0EJGNvn2VUA/WbccwDWYYhmH4YQZNaGmKeiBuRf9x90SnGY6VORz9T3QLUCXTvsq+n3n9p5nZ0yHZ7Mvs4cs89eL89rls+viTdr3r8PPc+LEzi33HygEROWp1kV9YzF9ovE8D/IwmEdng65etTM65nkA/1JjxX011OlAVGO93nwJ6iktGY64+wzAMwwgYm3IKEb5A0cbAOyKyGA2GfdA5d3yOJwZGU9JX7KQxC7g0077LgHVpnoEQsgo4BLTMtP9CYJlfn8NorI8//vFAy9DVQ3VEZFUWLU+rk4KBiOwEvgfuc86VDfQ859yzaNxPu0zGDOjqp4ZAE7/2Hvo7bQJMOEaxDcMw4g7z0ISOOkBZYIFv+zXgXjSm5AEA59zVwItAaxHZlNVFnHOvowG5fwNl0MDbNuhyYX/+D5jtnHsejdU4C407eSho3ygbRGS/c24g0N85tx1YhHpZrvTJiogkOufeA55zzm1DY15uB04F/vH12eecewF4wee5mIw+ow2BpiLyeFb3D2Qcj5G7UYNxoS9oeRG6eq0eOl2WwdByzr2BBjJ3BlY459I8ZwdEZLeIJAJLM53zD3BYRDLsNwzDMALDDJrQ0RSdplkKICK7nXOvAn2cc6+LyDrU4KmHrijKjhOAT9Cl0LvRYNyLReRH/04iMs85dxW62qgnOs30pH8OGudcV2AocKKI/B2E7+jPk+jUzBukL9vuIiJT/fo8gS5PTguO/QJdsnyd3/fo75zbjBpjr6J5XFaiS7ezI5BxzDcist451xSNW+qFBnkDrAUmAW9mOiUtJ03muJ6Pga6hkNEwDCPecbmsODViCN80SEegcaA5XQzDMAwjGrAYmvjiCuBeM2YMwzCMWMM8NIZhGIZhRD3moTEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKKemF22XalSJaldu7bXYsQsK1asAKBevXoeSxJ/hGPsf/vttx0iclzIbuAxph9Ch+kG74h33RCzBk3t2rWZP3++12LELDt2aOHoSpUqeSxJ/BGOsXfOrQvZxSMA0w+hw3SDd8S7bohZg8YILaasvMPG3ohk7Pn0jngfe4uhMfLF6NGjGT16tNdixCU29kYkY8+nd8T72JtBkwvjxo2jU6dOXosRcQwcOJCBAwd6LUZcYmMfXmrXrs2UKZnri8LixYs577zzsjgjvrHn0zvifextyikXOnToQO/evVm8eDGNGjXyWpyIYezYsV6LELfY2EcGjRo1oly5cowfP5727dt7LU7EYM+nd8T72JuHJgA6d+7M4MGDvRYjoihbtixly5b1Woy4xMY+crjpppt4//33vRYjorDn0zvifezNoPExYMAA6tatS+nSpWnQoAHffJNeKDkhIYEJEyZ4KF3k8cUXX/DFF194LUbskJIScNcsx37vXmjQABo1gv/+y9u9//sP/v47b+fEGfPmzaNBgwaUL1+ebt26cfDgQUB1w9SpUzl06FCO5//zD8SLCjHd4B3xPvZm0PioW7cuM2bMYPfu3fTp04cuXbqwZcsWAOrXr8/ff//Nnj17PJYycnj33Xd59913vRYjNtixA847D0aNCqj7uwMH8u4772Tc+dxzsHy5GjXlyum+55+HDz+EQ4dgyxZ47TX488+M561dq/du3z5PRlW88emnnzJp0iRWr17NypUree655wCoVq0ahQsXPpL/I/vz4YorYOvWcEjrLaYbvCPux15EYrI1a9ZMjoXGjRvLmDFjRETk8OHDAsi6deuO6ZqxRGJioiQmJnotRvSzfbtIYqLIBReIFCkiMm1azv3/+UcSK1SQxIYNRf77T/ctXy5SuLBIt27p/VJSRM47TwREKlQQKVBAP//f/+nxWbNE3nlH5LjjRMqXP+q+wHyJgL/jULW86IdatWrJu+++e2R7woQJUqdOnSPbVatWlenTp2d7fkqKyPTpOvzjxgV826jFdIN3hGPsI1k3mIfGxyeffEKTJk0oV64c5cqVY+nSpUeSFO3duxeAcmlvvgYlSpSgRIkSXosRHcyeDZs2ZX3suuvg6qth7FioWxeuvBJ69oS//tLjCxbArl3p/Xv3psSePZRYvhw6dIADB+D++6F4cXjxxfR+BQrAzJkweTK0aQO9eqkH58EH9fhLL8E990Dp0jBnDrRsGZKvHqn880/e+teoUePI51q1arF58+Yj23v37s1RN/z+O7RqpZ/nzcvbfaMR0w3eEe9jb6ucgHXr1nHHHXcwdepUzj33XAoWLEiTJk1QYxSWL19O7dq1KVOmjMeSRg4jRowAoEuXLh5LEsFs3KjTPx06QJ06MH26Gh5prFwJ06apIVKhAkycCOeeC2+8AQ0b6r4LL4RLLoGvvwbn4LHHGFGgABQqRJd339Vppauvhuuvh8qVM97fObj4Ym2ZGTUKRo9WYycOk3HlNcxow4YNRz6vX7+eqlWrArB582YOHz6cY6r5X37R2bzSpePDoDHd4B3xPvbmoQESExNxznHccVqeYujQoSxduvTI8enTp9O2bVuvxItIPvzwQz788EOvxYgstm/XWJRVq2DoUDjlFI1ZGTJE/5P16AE+IxmADz6AQoWga1fdrllTX+c3b4Zbb4WKFaFfP/jmGxg0SPucfDIfrljBh8uWwZgx0Ls33HUXdO+eN1mLFoXOnePSmAGNod6+PbC+qakwcOA7bNy4kZ07d/LCCy9www03ADBt2jRatWpF0aJFsz3/l1/U1rzuOn0M/B+BWMR0g3fE/dh7PecVqpbXGJrevXtL+fLlpWLFivLQQw/JhRdeKB988IGIiJx++umyaNGiPF0v1jl8+LAcPnzYazEig/37RV56SeSzz0TKlRMpVUqkaFGR1q1FkpK0z3PPaRDFE09ozMzBgyKVKol07JjztVNSRNq21XPr1hVJTAzL2BPB8+TBaNBMPvww93FITBQpUKCWNGnygtSvX1/Kli0rt9xyy5E4hXbt2sngwWPlk09EUlOzvsYpp4h06CCycqXIihXZ94sVTDd4R7zrBs8FCFU71qDgNMaNGyfXXXddUK5lxCjffad/ShMniqxbJ9KypcjJJ2vAbxqpqSI336z9Pv9cZNQo/TxpUu7X/+cfkerV9b9imP4bRrLSCkYrUqSZtGuX8xj8+6/+Cnv31l9V5rjfxYsXy5lnniMnnSTy4INZ/2r+/VfPfeGFnO9lGNFCJOsGi6HJhfbt21sW0CwYNmwYAF3TpkvimQkToEQJDawtVkzjYlJSoGDB9D7Owccfw513wtln67zD2LFZx7dk5rjjYMUKnSZyzsY+CFStCjfemHOfN9+EV17RUKcRIzSGesECKFxYj592WkOqVp3DwoXQsaP+ijOTkgJPPQWXXabbw4ZBqVJw7bVB/ToRhT2f3hH3Yx8OqwkoCgwB1gF7gYVAW9+x2oAA+/za037nOuAl4F9fexlwud0zWB4aI2tatmwpLVu29FqM4PPffzov4M9HH6mHZNCgo/unporUri3Svn145JPwjD0R/BYWjJabfjh8WKRKFTnixfnmG8mw6l1E5MUXdd8bb4gsWSLy9NO5O9DOOksdeLFMzOqGKCDedUO4PDSFgA1AS2A90A4Y5Zxr6NennIgkZ3FuD+AqoDFq+EwG1gDvhVJgI2emTZvmtQjBZe1a/XnNNVCkiEZyOqfLYR59FA4f1oDdzPz5p2bZffzxsIkac2PvERs36q/08suPPjZmjCbBu/tu3b7ySmjbFpYt0+0ff9SV8J066ar5jz+G/v01ed5ZZ6VfZ/FiXeBWqpRun3mm9s3swIsl7Pn0jngf+7CschKRRBHpKyJ/i0iqiHwLrAWaBXD6rcBrIrJRRDYBrwFdQyiuEYv89huceCKUL6+tbt2My1zuvx/OOQduvx3mzk3PUz9gAOzcqUuu33xT9y1ZAjNm6OfFi3UOol278H4f45h58UVdeXTXXdCsmS4qmzxZjw0aBLVrp08VOaeLzT74QLcLF4Zu3XTbObjqKrWDR45Mv74IJCTAQw+l7zvzTNi3T2cQU1Ph3nvhppvC8GUNIw7wZNm2c64ycAqwzG/3OufcRufcUOec/1rS0wD/V+Pfffuyum4P59x859z87YGuyTTyxQcffMAHado9L4ho3Eg403OL6H+OAwfgllvg5pvhiSc0NgVg6lT49lt45BGNcalTB555BjZs0JwwXbpA06YawyKi/8muvVbLCdxwgxo8NWuG7evke+yNDNx4oz4Sn32mNu7ll6t3ZccOSEqC//0voxfFf2V2ixbw0Ufpnpdy5dSD88UXaqiA5kbctUvt5DTOPFN/zpunTr133tH7b9wY0q8aVuz59I64H/twz3EBhYEpwPu+7VJAc3RaqjLwFTDJr38KcKrf9sno1FOOcTQWQxNaWrduLa1bt877iT//rIEH550XfKGy47//dOnzkCFHH5syRaRWLW0HDui+jz9WGUeNEnn/fV255M+yZSIlSmgwRNqy7DCS77HPA0TwPHkwWpp+2L5dV8Zn5vHHRXbsyNuYff65ZFgNNWSIbi9Zkt4nOVmkdGmRhg312JVX6s+hQ/N2r0gmHM+nkTXxrhvCezP1CI0EvgMKZ9Onis9gKePb3g2c5Xe8GbA3t3uZQROhdO+uj13hwprkI5xkjthMTRW56CI5spQ6jeRkkVNPFbn//uyv9ckneh6IbNwYGnk9JJKVVjBaKPTDvn0i1aqJDB8u0quXSMGCGkuenHx0v6Qkkffe02N//nn0o/nXXyKLFwddRMM4ZiJZN4Rt2bZzzqErnSoD7UQkKZuuaXk00xZBLkMDguf6thuTcarKiCaefhpOOEGDcHfv1uXOwWTnTi0H0KyZRmhOnw6nn67xM5nX1TqnS6fnzNESAGkULKj7cqrddfPNMGWKTldlLjlgxCUlS8L69VpGa+hQuO8+LcuVOfi3ZEn9eeed+jNz1YSkJK12sXkzfPddeh0owzByJpx5aN4F6gMXi8iBtJ3OubOB/4C/gPLAQGCaiOz2dfkEeNg59x1q7DwCvBVGuY0sGORLxX932jKQQKlZE559NgQS+fj5Z3j9df3sy9tC27ZatygrSpfW/x6ZCaQQ6bBh+t+nUHjTOeV77KMA51xRYBBwMVABWAX0FpHvs+jbFX1JOuC3+woRmRZ6SbOmgC8qsVu3wM/ZtQseeEDDsjp0gE8/VXv/zDPBryYmoI9bgQKRvUIqlp/PSCfexz4sQcHOuVrAnUATYKtzbp+v3QTUASai+WmWAoeAzn6nvw+MB5b4jk/w7TM8ZPz48YwfPz5vJ/Xtq6+coJM1fhWLg8ZVV2mw7syZGtXZpImuVAoFzunSljCTr7GPHvxTPJQFnkZTPNTOpv8cESnl16aFR8zgUaaM1iX9/HNIToYXXtAY9F9/hZNP1iXeTz4JF12kfatVg8ceSy/CPm8evPceLFqUv/uvWqWGUrCI8eczoon7sfd6zitUzWJoIoxNm0QKFBB58kndfuYZrXeUFoibHQcPiuzcmXOfpCSRN98UGTcuOLIaETVPDiwGOmaxvyswMz/XjDT9cPvtImXKiMycKVKkiCbyS+P55/VP54wzRB54QAOJK1XSEmIi6aW+ihSRgOpT+fPWW3rurbcG53sYsU8k6YbMzaptG+Hhs890Pestt+h28+Zw6JC+hmbH1KlaSqBCBU0Ysnt3+rGZM3Xt7Akn6NTSAw/A8OGh/Q5G2MkmxYM/TZ1zO5xzK51zTzvnorKcy5VXwp49kJio000dOqQfe/xxffR/+02zCIwZA+vWQfHievyNN2D5cq280b27ZijIzeMiojO/992n2w8/HIIvZRhhxgwaI1+8+eabvJmWaC4Qhg/XhBynnKLbLVrolM306el9Dh1S7d2nj26fcooG+D76qGY1a9483a8+frzmibn8cvXHDxmiKVjjgDyPfZTinCsMfAp8LCJ/ZtHlZ+B04HigIzpV/WgO14vYPFVpJb3GjtU6UwX8NHPBgun5btLwj6U/5RQ49VSdzX3kEQ3tymn6KTVVMyD36QO33qrGT6NGauRs2XLs3yVens9IJN7H3qkHKfZo3ry5zJ8/32sxYpYOvlfIcePG5d75zz+hfn0YODD9lRA0UKBCBfXEbNumwbsLF2rq1nfeybgqadYsTWJXp44aQYcOacBBZk0fB+Rp7POJc+43EWkeshvkfv8CwGdAGeBKyX5VpP85nYBHRSTXDOSRqB+uvlqNl6++OrbrbN+enjPSn//+S491v+QSaNhQi2+mGU9PPKHvHQsXwvHH5//+4Xg+jayJB92QE2bQGKHn55+1VPHEiRrRmMaDD8L772se+LZt1df++efqf8+K7dvh4MGjl34YQcdLpeVL8fARWri2nfitiszlvBuAx0XkjNz6RqJ+SErSAOBixYJzvXfegb171VB68UUYNUorh1evru8D/pmPQetaNW2qsfvPPBMcGYzYI5INGptyMkLPhRdq/SN/Ywaga1fNH3/JJVrg8fvvszdmQF87zZiJB9JSPLTPyZhxzrX1xdjgnDsVXRE1NjwiBp/ChYNnzIhoKqVevdQ5OmqU5r1JW5SX2ZgBaNxYDZoffwyODIYRbqIygM4IIQcPqudk924N5M2cjM7Hq6++CkDPnj1zvt7evdlr6iZNtBUsCFWqqOFj5ErAYx+F+KV4OISmeEg7dCcwA/gDaCAi64HWwDDnXClgGzACeCHsQkcgzum7QsmS+h7wwANZT0NlplUrnRnevz//OS9j+fmMdOJ97M2gMdLZskX902krj269Nb3ccCbmzJkT2DXfflvzwKxbl32yuuuvz7uscUzAYx+FiMg60rOEZ0Upv749gfjU3AFQpIjO6OaFVq3g1Vdh9uz0QOW8EsvPZ6QT72NvMTSGsnSpGi+7dumKoT//1ODcQNL6P/WURhZmlQG4WTP10PzyS/BlNkJGJM+TBwPTD1mzb59W9GjVSpP4RQrJyeo8jsM1ABFHJOsGi6GJdaZPh9tv17WaOXHiibqWc9Ys6NRJIwMDrVFUrRr07w+ffJJx/5o1sGCB5nQ3DCPiKVVKk237GzMiMG6clknzim7dtEpJjL5/G0HCDJpoRkR9wx9+eLTBsnGjelwSEmDSJA26zYmSJaF3b41pSWPGDOjRI0stMmDAAAaklRS44w7N6nXXXbDML//Z11/rTzNogkqGsTeMILN+vc4S79mj2198obH6DRvC3Lk5nwuheT737dOfoaiWEkvEu24wgybUrFihKT6DSVISvPWWapjzz1eDYuHCjH0eekgNkldegb/+0nN8AWMZ2L9fjZGsljasWgUffADffnvUoUWLFrHol1/gmmv0+p9/rq93112Xrn0mTtRkeLVrH/t3No6waNEiFuW3cI9h5MLq1bo6asYMOHxY81bWqwcnnaS1ZXMjFM/nvffqz5Urg3rZmCPudYPXtRdC1UJaq2XUKJHFi3Pvl5oqctFFGQuvBIMnn9QCLGedJfLee0fL8scfIs6J9O6dvu+NN/SchQsz9u3fX/fPmHH0fZKSROrWFSlUSOSkk0QuuURk2rSMcjgnsmKFbk+ZkvEe334rMnv2sX5bwwOI4HotwWiRVsspkjhwQMusPfywyNtv65/0d9+lH09JEbnuOpEvv1QVl5mdO0Vee03k0KHgyLNqlaoSEHn33eBc08g/kawbzEOTV7Zu1VU555+fe6Drl1/CTz9Bz546/ZLmw82Jf/+Ffv0gu4BFEZ1OuukmXY10553qqQE44EvZUby45nh58MH0826+WZNPfPBB+r5t2+Cll3TS/IILjr5XoULqnXn0UQ3uLVoUzjpLj+3bB4MG6blp5Qxat9aEF2nJLi6/HM49N/fvbBhGxFCsmKq3H39Up+v112dc7Lh9u3pKrrtO92/dmn4sJUVD8B55RMs4BIN33lFHcMGC5qExcsFriypULWRvYB9+qK8KLVtqBens2LtXpHp1kSZNRKZP13M+/zzna2/ZInLaadr3+efT9ycnH903KSnjdvfuIhdemPP1u3TRkr779ulrVKtWIgULivz5Z87nZWb3bnm2cmV5FkTmzMnbucYx8+yzz8qzzz4b0nsQwW9hwWjmocmZ555TNbRjR9bHk5K0UnfJkurEXbNG9z/xhAg8KwUKPCuPPRYcWZo0UUf33Lki//wTnGvGKvGuG8xDk1fGj9dstT/9pFXkkpNh3ryj+73wgnpS3n5bvR+VK8Po0dlfd8MGTSy3dq0uKUibNP70Uz1//XqtOJcWdFsoUwqhhg21xMB992Vfma5HD/USjRqlSfNmzNAl2vXq5W0Mtm5lRWIiK044QQtOGmFlxYoVrFixwmsxjBjmoougfHlVS1lRqJCqqClTdPXTTTfpgsYBA+Ckk1ZwzTUreOmlY5dj504tyXDRRXDmmYElB4xn4l43eG1RhaqF5A0sNVU9M3ffnb6vXz+RwoVFxo7N2HfAAJE770zfvvNOfZ05cODo627bJlK7tnpPZs7MeGz0aJHSpUUqVBA55RSRWrWO9s6IiCQmihx3nL5W+d83s/xnnCHy4ov6+Y8/AvnWWZOSInL4cP7PNyIaIvgtLBjNPDQ5k5KiKmzz5tz7Ll6c7uQdPVrk4MHgyfHNN6rSfv5ZZOlSdVwH8/pG3olk3eC5AKFqIVVY/lNAu3ZpcG7hwiIjR2Y/BTNpkg73uHFHHztwQKRvX/WpZsXKlSKNG+v5w4dnL9err4oUKyayenX2fVJSsj9mGD4iWWkFo5lBE1pSU3WG+6mn0velpKjxk1UgcXbcf79I8eJqxIwYoSpw2bLgy2sETiTrhviacsprRNl//+ly5zTScr0ULJi+r1w5+OEHOOMMjYZr3Rr++efoayUkQNmyWjEuM8WKQZ8+6lPNipNP1vOmT1ffbnY8/LBOc9Wpk32fAsH5lT/zzDM8YyV5PcHG3ohknnnmGfr0eYZdu3TGXHxprJ56Cho1gtNP1ywPgdC/vwYnFy2aPjNugcHZE++6IX4MmgUL9C9i5EgYOlT/+R8+nH3/H36AWrWgc2fdFoEGDTQ2JjNly2r/7t1hxAg4/vij+xQpon+J/ucfPKiVpqdMyV3+4sU1xiabYpGAHqtYMfdrBYENGzawIbsJdiOk2NgbkUza89mhg4YELlumC0JfeknVXdGisHx5YNcqUyY9TC9tMWU8h4jkRtzrBq9dRKFqzRo3zugnu/tunY7ZuVPk0UfVd3n++Rq/kpnBg3X1D4gsWqT7Fi3S7SFDju6fF1JTdSnAd9+l55OZNOnYrmkYQYYIdisHo9mUU+jZvFnV23PPiTRrJlKzpsju3aoC03LUfPutTktltZDz559Fnn1WZM+e9H1Vqoh06xYe+Y2siWTd4LkAoWrNnBP5/Xf9DezfL1K2rMhNN6X/Vj7/XCdna9ZMN1r27hW54w4dlrZt0/+SUlI0qRyIbN161C84T6xdK1KihF4LRDp1OrbrGUYIiGSlFYxmBk14OOsskTPP1LC+X345+vjDD6sabN0643qJlBSRFi10LYT/2oOWLXW/4R2RrBtid8qpQAFdwiyiSe1279YpoTQ6ddJlyykpmkVq0yYoUQKmToUHHtCl06VLa9933tEppapVAy/YmB21a2vyvO+/h2ee0RIGUUivXr3o1auX12LEJTb2RiTj/3zeeSe0aaNq7+yzj+772mua63Pq1Ix5QD/8ML1yS+HC6fu/+ipjlZZZs2DYsKOvO3KkJgCMN+JdNxTKvUuUUq2a5mX5/HMYPhzq1tWaRf40a6Y5ZMaP1/6gk7tpmW7T6N5ds/J27Bgc2YoV0xSb/uk3o4x///3XaxHiFht7I5Lxfz5vuy33/t27azm4l19WFZ2QAI89prlnunXL2LdSpfTPyclwyy2aouvyy9Nz1KxYoaGPfftq6q0TTjjmrxQ1xLtucOpBij2aN28u851Tz8u8eWqu+1eSNgwjW5xzv4lIc6/lCBXNmzeX+dmVFzHCTlKSGjDnnqvJ/MaMgSVLdIGnP3//rYbPPffoOo9bblFn/NdfaxUWgBdfhN699fP998Obb4bxi8QBkawbYtdDA5qlt0ULffLbt/daGsMwDCMLChfWxZ7Fiqkhc8UVRxszoIbPu++qc/3ll3UZ+OTJGReWjh6tJecqV9Z6Um+8kfPiUCN2iG2D5uyzYd26+PI5homePXsC8Oqrr3osSfxhY29EMvl9PosV058NG6bX281M7dpadmHlSs1rc/zx6caMiE4/zZ+vS8QrVNBogsWLoXHjfH6ZKCPedUNsGzRgxkyIOJBW2dsIOzb2RiQTyuezcGENh1y1iiO1opKToV07LXmXllP0mmt0TYdz6qWJF4Mm3nVDbMfQ2By5YeSLSJ4nDwamH6KXSpV0oeihQ+nrNy6+WONr/voLtmzRBakA552n/X77LetrDRumi1zTprdEbHoqNyJZN8Tusm3DMAwj5njxRU2a7l+BpksXWL1aMxKnGTOgAcFffJHx/NRUNVz27oWePbUUw9NP63VPO033G9GJGTRGvnjwwQd50D9xhBE2bOyNSCbUz+cdd2hZO3+D5ppr9Od558G+fen7zzwTTjopfVsEHnoI/vc/KFlSA5CvvRaee05XRtWood6fwYM1+DgrUlL0Gv75cCKFeNcNZtAYhmEYUU2ZMroy6rjj1FDx57vvNIbmjDM0z83AgdrHOQ2x/PRTXQi7ZAlMmqSBxxMmaC6cLVuOvtfAgbpyKnO6MsN7LIbGMIyjiOR58mBg+iH2SEpS70naaqk0pk7VaafNmzUt2UUXwauvav6a7PjrL51+6tIFPvooff/q1boCq3VrTSYfj/E2kawbzENjGIZhRD2FCx9tzIAaH4MHw7ffwsKF8PrrORszoEHCDzygQcMzZ+o+EZ3uKlxYp6NWrtTVVZs3Zzz3v/800d+aNcH4VkZeMIPGyBf33HMP99xzj9dixCU29kYkEyvP51NPQZUq0KEDHD4MQ4fCTz9pfanq1TUfztSp2m/mTF0eDjB3rsbl1K2bdZ2pUBIrY59fzKAx8kXx4sUpXry412LEJTb2RiQTK89n2bIaWzNypMbLtG+vwcN33KHH69bV0grDhmlszrPP6gqqCy/UajtnnAEvvKD7wkWsjH1+sRgawzCOIpLnyYOB6QcjGOzerfWnzjoL3npLk/mlMXKkFsn89lstnpkbqalw8CCUKBE6eYNBJOsG89AYhmEYRj4oWxb++EO9NP7GDEDHjlCtGkycmPt1Dh3S5eXPPx8SMeMGM2iMfNGjRw969OjhtRhxiY29EcnY86kULqxTTwMH5tzv8GHYtk0NmpEjNfg4v8T72JtBY+SLihUrUrFiRa/FiEts7I1Ixp7PdE44QZd2HzqUfZ/Ro+HEE3Vl1Zo12ZdpCIR4H/uwxNA454oCg4CLgQrAKqC3iHzvO94aeAeoCfwKdBWRdb5jDhgAdPddbgjwuOQiuM2RG0b+ieR58mBg+sEIF599psHDS5fqqqnMtGyp+XF+/VUNoAce0JVUmfn9d82J8/zzUKpU/uUZNQq++QY+/zx/50eybgiXh6YQsAFoCZQFngZGOedqO+cqAaN9+yoA8wH/6hs9gKuAxkAj4ArgzjDJbRiGYRj5pkkTDR6uUwduvRV+/jl9WmnZMt2+806oWBEuuUSTAPqvjErrW6SITl9lV5IhEEQ0WeDixcc2tRWphMWgEZFEEekrIn+LSKqIfAusBZoB1wDLRORLETkI9AUaO+dO9Z1+K/CaiGwUkU3Aa0DXcMhtZE+3bt3o1q2b12LEJTb2RiRjz2dGGjTQ3DS33KKekZYttRYUqHFStCikDdcTT8CgQenGxhdfwGWX6Xb9+lpV/LXX4MCBrO+V29hPn64ZlR97LDazHHsSQ+OcqwycAiwDTgN+TzsmIonAat9+Mh/3fT6NLHDO9XDOzXfOzd++fXsoRDd81KhRgxo1angtRlxiY29EMvZ8Hk3TpvDee1ob6r334KabNBh45Ei47jqoVEn7XXCB1qQqWBA+/FCXfR84kG7APPmkBhD7l2PwJ7exHzxYV2bt3RuZxTWPlbDnoXHOFQa+B1aLyJ3OuSHAdhF5wq/PLOADERnmnEsBThORP33HTgZWAgVyiqOxOXLDyD+RPE8eDEw/GJHAli0aMFy7dvq+NWvgnHNg+3b1znz9dXpuGhE1ejZuhFWrdCVVairs2QPlyuV8rx07dBn5//6n17zoIhg+PO8yR7JuCKuHxjlXABgOHAbu9e3eB5TJ1LUMsDeb42WAfbkFBRuGYRhGJHPCCRmNGdDsxNu3Q5s2MGZMxkR7zkGfPnDDDZqEb+ZMNX7Kl9cSDb/8kv29Nm6EU0+FHj20+vjvv2ffN1oJm0HjW600BKgMdBSRJN+hZWjAb1q/kkBd3/6jjvs+L8PwlC5dutClSxevxYhLbOyNSMaez2OjY0eYMQO++07jazJzySXw8sswYQK0aKErpO67D2bNgrZtsx/7Jk1g0SKtIt64MSxfnvNy8mgkIIPGOfeEc+7MTPvOcs49lod7vQvUB9qLiH9I0zfA6c65js65YsAzwOK0KSbgE+Bh51w151xV4BFgWB7ua4SAevXqUa9ePa/FiEtieeydc0Wdc0Occ+ucc3udcwudc21z6P+Qc26rc263c+4jX4oIw0Ni+fkMB87ptFKhQjn3u+IKGDBAq34PHAjr1sHNN+vY79sHs2drv9RULaq5d296IHDjxpCcrFmOYwoRybUBW4CSmfaVAjYHeH4tQICD6BRSWrvJd/xi4E/gADANqO13rgNeBnb62sv4Yn9yas2aNRPDMPIHMF8C+NsOdgNKoisda6MvXFeg08+1s+h7KbANXSRQ3qc7BgRyH9MPRizzyCMiBQuK3HyzSI0aIiDSsKFIcrIeX75c9332Wd6v7ZVuCKTlYgMeoQiQlGnfYaBYICeLJsnLdpGYiEwBTs3mmACP+ZphGDGM6CrHvn67vnXOpaV4+DtT91uBISKyDMA51x/4FHgCw4hjnnkG1q7VVVSXXAIvvaQxNgUL6vFTTtE4nbTVVQAjRsCKFdC/vzcyB4NADZrfgLuBN/z2/Q9YEGyBjOigU6dOAIwcOdJjSeKPeBr7TCkeMnMaMNZv+3egsnOuooj8Gw75jKOJp+cz0vAf+6+/hpSUdCPGnwIFMhozSUlwzz3QvfvRfaOJQA2ah4DJzrmb0RwxJ6HBvW1CJZgR2TRp0sRrEeKWeBl7X4qHT4GPJT2mzp9SwG6/7bTPpYGjDBrnXA808zg1a9YMrrDGEeLl+YxEMo99VsZMGt99px6cjz/W1VR79uhS7pQUja/JKiA50gk4D41zrhQ6n10DLWPwrYjsC6Fsx4TlmTCM/ON1rglfiofP0DQNV0r6qkj/Pr8Dz4vIKN92RWAHUCk3D43pByPeeecduPde2LBBE/1t2KAlES68EC6/PPupJ691Q04EvGzbZ7zMAmaIyMhINmYMw4heckjxkJmsUjpss+kmw8idNGfO8OFaT+ruu7XoZYMGuix87FhdQr53b46XiSgCXbZd05e9909gim/ftc65D0MpnBG5dOzYkY4dO3otRlwSB2OfXYqHzHwC3O6ca+CcKw88haV08Jw4eD4jlryMfaNG+vOjjzTL8G236fbLL2shzKuuUkMnmpZ2BxpD8z4wAWhB+tz0ZLRQpBGHnHvuuV6LELfE8tg752oBdwKHgK0uvYLencAM4A+ggYisF5GJzrmXgZ+A4sDXQJ/wS234E8vPZ6STl7EvXVorgDdtCsOGpWckrloVhgyBX3+F3r21Cni0EFAMjXPuX+A4EUl1zu0UkQq+/f+JSLkQy5gvbI7cMPJPJM+TBwPTD4YBXbpotuAvvwz8nEjWDYF6aLahK5tWpu1wzjUA1odCKMMwDMMwQsuIEV5LEFwCDQp+FU1w1Q0o5JzrDHwBvBQyyYyIpkOHDnTo0MFrMeISG3sjkrHn0zvifewD8tCIyEfOuZ1oDocNaIbOp0VkTAhlMyKY1q1bey1C3GJjb0Qy9nx6R7yPfcB5aKINmyM3jPwTyfPkwcD0g2Hkj0jWDdl6aJxztwVyARH5KHjiGIZhGIZh5J2cppxu9vvsgPOBreiUUw2gCjATMIMmDmnbti0A33//vceSxB+RPPbOuYEicr/f9u0iMsRv+2sRsSQlMUwkP5+xTryPfbYGjYhclPbZOfcWMEZE3vDb9wBQN6TSGRFL+/btvRYhbonwse8K3O+3/Qqa9TcNq/8W40T48xnTxPvYB5qHZhdaHyXFb19BYIeIlA+hfPnG5sgNI//kd57cObdXREr7be/y1xHOuT0iUiZYcuYX0w+GkT8iOYYm0GXbW4HMa8HaA/8EVxzDMKKczG9IsbnqwDCMiCPQxHr3A1855x5FY2hqAg2A60IlmBHZXHzxxQBMmTLFY0nijwgf+0LOuYvQuLustgt6I5YRLiL8+Yxp4n3sA81DM9k5VwdoB1RF6zpNsKq28csNN9zgtQhxS4SP/T9kXCjwb6Zt8+rGOBH+fMY08T72lofGMIyjiOR58mBg+sEw8kck64ZcY2icc9c75950zvVwzhXOdGxQ6EQzDMMwDMMIjBwNGudcT+Bl3+b/gLnOuRP8unQJlWBGZJOQkEBCQoLXYsQlNvZGJGPPp3eEYuwPHYJt24J6yZCRWwzNXcAlIrISwDnXD5jpnGslIutID/Qz4oyuXbt6LULcYmNvRDL2fHpHsMd+50646irYswfmz4dCgS4j8ogcY2icc3uAciKS6rfvXuAxNEHWvEjIKZEVNkduGPknkufJg4HpB8PImTVroF07WLsWPvkE0uKNI1k35GZvrQMaAYvSdojI2865/cA0oGjIJDMimqSkJAAKFy6cS08j2NjYG5GMPZ/eEayx/+UX6NABUlJg6lS44IJgSBd6cgsK/hi4OPNOX0HKnsCmUAhlRD5t2rShTRvLYu8FNvZGJGPPp3cEY+w//xwSEqB0aZg9O3qMGcjdQ/MIMMI5d7qILPU/ICKfAp+GTDIjounevbvXIsQtNvZGJGPPp3ccy9inpkLfvtC/P7RoAaNHQ6VKwZMtHOQWQ3MlupLpCmA56rH5TES2h0e8/GNz5IaRfyJ5njwYmH4wjHT27YOuXeHrr+G22+Ddd6FIkaz7RrJuyHHKSUTGish1wAnA+2ipgw3OuXHOuY6Z89IY8cP+/fvZv3+/12LEJcc89snJsGKFvoI99xzceCM0aQITJwZNRiN+Md3gHfkZ+7Vr4bzz4Jtv4LXX4MMPszdmIp1ASx/8hxo07zvnTgRuBv7Pty/KnFJGMGjXrh0A06ZN81aQOCTgsU9KglWrYNky+OOP9LZiBRw+nN6vdm1o0ACKFQuZzEb8YLrBO/I69j/+CNdfr8G/338Pl1wSQuHCQJ5WlTvnigJnAmcDlYHZoRDKiHzuuusur0WIW7Ic+337YNEi+O03WLBA259/qjcGwDk48UQ1XNq105/162srVSqs8huxjekG7wh07EXglVegVy+oVw/GjoWTTw6xcGEgoFpOzrkLgFuA69HicsOBT3zJ9SISmyM3YpY9e9KNlzQD5s8/VUsBVKkCZ5wBjRrBaaelGy4lSgR8i0ieJw8Gph+MeGXvXujWTeNlrrsOPvoob+80kawbcvTQOOf6otNLFYAvgctFZFYY5DIinN27dwNQtmxZjyWJcZKSYOFCXT85dy789hu7V64EoCxAtWpqvNxwAzRrpp+rVvVUZCO+Md3gHbmN/eLFasSsXg2vvgoPP6zO21ghtymnc4AngTEicjAM8hhRwpVXXgnYPHnQ2b1bjZdZs7T9+iscOKDHatSAZs248vBhKF2aaZMnQ+XK3sprGJkw3eAd2Y29CAwZAvfdB+XLa7K8li09EDDE5GjQiMhl4RLEiC7uv/9+r0WIDfbt07ScP/2kWmbePE0IUbAgNG0KPXrA+edr83le7h89Ws81Y8aIQEw3eEdWY79nD9x1F3z2GbRpAyNGwPHHeyBcGAgohiYasTlyIyLZuxd+/hmmTNGfv/+uSwwKFoSzzoKLL9Y0nWefDSVLeiZmJM+TBwPTD0Y8MG8edO6sS7P79oXevVXVHAuRrBsivHamEans2LEDgErRlkoy3CQl6bTRlCnafv1VVx4VLQrnnqvLDC64QD+XCazOq429EcnY8+kdaWNfvnwlXnsNnnwSTjgBpk+PrhIG+cUMGiNfXHvttYDNk2fJjh2a1OHbbzVZ3Z49UKAANG8Ojz6qXpjzzst33hcbeyOSsefTO6699loOHYJixaYxbRp07AiDB0OFCl5LFh7MoDHyxSOPPOK1CJHF8uUwZowaMXPmaBRelSqataptW7joIo3GCwI29kYkY8+nN4hAs2aP8N57+v40dCjcemtsrWLKDYuhMYz8smwZfPmltj/+0H3NmsEVV8Dll+vnArkVtI9MInmePBiYfjBiiX/+gf/9T8sXnHcefPIJ1K0bmntFsm4Im4fGOXcv0BVoCHwuIl19+2sDa4FEv+4viUh/33EHDADSyogOAR6XWLXEooStW7cCUKVKFY8lCSMisHSpGjBffaVeGee0NO1bb8HVV2temBATl2NvRA32fIYPEVVH99yjM9tPP72VO++EatXic+zDOeW0GXgOuBQonsXxciKSnMX+HsBVQGNAgMnAGuC90IhpBEKnTp2AOJgnF9GVSGlGzMqV6nVp2RLuvVeNmBNOCKtIcTP2RlRiz2d42LIF7r5bZ7qbN4dhw+Ceezrx88/xO/ZhM2hEZDSAc645UD0Pp94KvCYiG33nvwbcgRk0nvLEE094LUJoWbJEEzd89ZUWeCxQQONgHn4YrrrK0xwwMT/2RlRjz2doEdH4mEce0ZybL72kaqlQIRv7sMfQOOeeA6pnMeW0mXQPzKMissN3fDdwiYj86ttuDvwkIqWzuHYP1KNDzZo1m61bF7GlpoxIZNs2zTo1fLh6ZQoWhFatNFf4VVfBccd5LWHYiOR58mBQsWJz+fbb+ZxzTnwFTRrRzcqVcOedMG2aznR/8IEWlwwnkawbIiFicQdawbsW0AwoDXzqd7wUsNtvezdQyhdbkwERGSwizUWk+XFx9M/HCzZs2MCGDRu8FuPYSU2FSZPg2muhenXo2ROKFIGBA9Wn+8MPcMcdEWXMxMzYe8h//2nwZPPmWpwvrbqEcezY8xl8Dh7UxHiNGmlpt8GD1ajJbMzE+9h7vmxbRPYBacsNtvmCh7c458qIyB5gH+CfcawMsM+Cgr3l5ptvBqJ4rnbzZv1PNmQI/P03VKwI998P3btrZeoIJurHPgJo3FirSrz9Ntx+u9qxt92mK0VOOslr6aIbez6Dy8SJGq63ejV06gT/93+aESIr4n3sPTdosiDNUEnzwCxDA4Ln+rYb+/YZHvLUU095LULeSUlR7fDBB5ovJiVFp5RefFGDe4sW9VrCgIjKsY8wChRQ4+XOO7UCxTvvwBtvwGuvwaWXau2byy/XuAQjb9jzGRxWr9bYmHHj1BMzZQq0bp3zOXE/9iISloYaT8WAF4Hhvs+FgLOBeuj0V0XgCzRGJu28/wHLgWpAVdSY+V9u92vWrJkYhoiI/POPyPPPi9SoIQIixx8v8vjjIn/95bVkEQswX8KkGzI34F7Ua3sIGJZDv65ACurFTWsJgdwjK/2waZNIv34iVavqY1K9ukjfviIbNgRnTA0jEPbsEenVS6RIEZGSJUVefFHk4EGvpUrHS92QWwtnDM1TwAHgCaCL7/NTQB1gIrAXWOpTYp39znsfGA8s8R2f4NtneMiaNWtYs2aN12LkzKJFOo9Qo4YWNalXT1ctbdgAAwZE7dxCVIz9sZGW4uGjAPrOEZFSfm1afm9atSo884zOQI4eDaedBv36Qa1acOWVMGGCOvWMnImD5zMkpKSo8/jkk9VpfMMNGgT8xBOBO4/jfewtU7CRLxISEoAInKtNTtbEDAMHwowZUKKE5v++915o0MBr6YJCOMY+ElYyZF4RmcXxrkB3Eclz2b1A9cPatfpP5qOPdBFcjRpqI3frpoaOcTQRqxsiFBGdCX/8cc0Wcf758PrrcNZZeb9WvOiG7LAZYiNf9OvXz2sRMrJjB3z4IQwapB6YE0/UgIjbboNy5byWLqhE3Nh7S1Pn3A5gJzqV/aJknaAzX5x4Irzwgnpqxo3T1SXPPqutTRsNKL7yyqgJvwoL9nwGzty5ashMmwZ16mj+zo4d859KIN7HPv48NIcPQ1ISlCyZ8wU2b9YnrV076Nw5576Gd6xerYbL0KG6trFVK3jgAY3oLFjQa+milkh4CwvAQ1MHXUSwDjgNjb8bLiIvZtM/KHmq1q3Tx+2jj9R2rlgRunRRr03jxvm6pBFnLFkCTz8NY8dqRohnntFVd0WKeC1Z7kSCbsiOSMhDExr++w92+9LXpKSAr74IQ4ZA7dqaXnH6dHjvPV3e4M+oUXD66ZpkrW/f8MkcRaxYsYIVK1Z4J8Bvv+kk8ymn6O/0ppu0ztLUqdChQ0wbM56PfYQgImtEZK2IpIrIEuBZ4Noc+gclT1WtWqoW1q7VqYJWrdQx2KSJtv/7Py0WGK/Y85k9f/yh78eNG8NPP+lztHq1zogHw5iJ+7H3Oio5VK0ZiFSoIPLKKyLt24ucfLJIYqLI3Lkil16qyxjS2oknpodwt2ql+846S2TKFJEDB+QoUlKO3udPYqLIJ5+IbN+ec78opmXLltKyZcvw3jQ1VWTSJJHWrfV3VKaMrlbavDm8cnhMOMaeCFjJgAYGD8tD/xuABYH0DfYqyB07RN5+W6R5c300CxYUueIKkS+/zFqFxDKe6IYIZ/FikeuvF3FOVy716iXy77/Bv0+86IbsmucChKo1q18/3XApUEC1jT+//Sby/fci69frP0oRNVRuvVXXySUlpfdNOy6iT2HNmmr4rF6d8ZqHD4u8+67ICSfofS+5JOO5McSsWbNk1qxZ4blZUpLIZ5+JNGmi41q1qhqqu3eH5/4RRjjG3kulRTYpHrLo1xao7Pt8KroKsk8g9whlWoelS9XOTlv+XbasSPfuItOm5f4uFAuEVTdEOHPm6Ps0iJQuLdK7d2jfc2NdN+TWPBcgVO2IwpoxQ2TmzNx/S9kxdapI/foiW7fqdo8e+vpVurRIiRLphtKSJZq4AkTOP1/kqadEvvoq//c1RPbtE3nrLZHatXVcTz1VZMiQyErKEKN4bND0RWNj/FtfoCaaa6amr9+rwDYgEViDTjkVDuQe4chTlZwsMnmyviOVKiVHcts8+qjIggUx+64T96SkiHz7rUhCgv7OK1TQfEah8Mh4gRk0HrSgKaw//tBhevll1UD9+6uZvX69yGWXidx1l/bbs0ekQwd9kjNrqqw0V2KiyDvvRO1TvmTJElmyZEloLr59u2qAihV17M87T2Ts2Ph4vQ2AkI69j0hWWsFo4U68uW+fyOef6zRUoUL6WJ98ssjTT6tHJ5YIx/MZiSQmirz/vr53pRmvr78usndv+GSId93guQChakFVWOefL3LKKVkbKocO5XzuW2+JtGt39D/jUaN0+Fu21Kmq/JCaqlMx3buHfaI+JHO1a9eK3HuvSPHiOjbt2x+bdy1Gifd58mA0LzOJ79ih//hatdLZcFAncJ8+atxEu+cm3mJo1qwR6dlTpHx5/V02bSry6af5V+vHQrzrBs8FCFULqsIaNkyH6uGH837u4MF6bosWIl9/nfEp79VLj919d96vu3ixyIUX6vmtWqmHyJ/Zs0Vuv1393iFg7ty5Mnfu3OBcbOFCkc6ddSqvcGGRbt3UM2ZkSVDHPhsiWWkFo0VKaZQtW9RR27KlBoyCSL166gSePz86jZtwPJ9ek5QkMmaMSNu2+nsrWFDk2mtFpk/39ncW77rBcwFC1YKqsBITdajOOSfv56amirz5pkitWnJkVdWvv6Yf79lT9733nm7v3Svy3Xciw4eLDBwo8swzIrfcIvLTT3r81181fgd0Smbw4KyNlqJFtc/EiXmXOVzMnJkeuF26tI7Fxo1eS2VIZCutYLRIMWj82bxZZNAgXcRXsKD+WdSoIXLffbrg0os3fiMjf/2lxma1avr7OeEEnTZcv95rycJHJOsGzwUIVQu6wtq0SWT//vyfn5ws8s036on45ZeM+y+7TI2l5GRdOeW/pNw51Wqffqr9160TeeghkRdeSI+/OXRIp7BWrdLtmTP13A4dQuahWbhwoSxcuDDvJ6am6mtM2tLr447TVWW7dgVbxJgl32OfByJZaQWjRaJB48+OHSJDh4pceaVIsWJyZLVU586qCnbs8FjAHAjH8xlOdu0S+eCDdId4gQIaRTB6dOQZmfGuG+IvU3Aksnu3ZlUqXlxrEc2dq+kjy5XTVrhwzuf/8w9Urw733adZc6+6SusYrV+fe0bkfJLnmiGpqZo7/uWXYc4cqFwZHnsM7rwzZDLGKvFeryUYRJN+SEyEKVP0z2f8eNi+HQoU0Fo/bdvCZZdBs2aRk0syFmo57dunxUhHjYJvv9UE8/XqwS23aGm4atW8ljBr4l03mEETK9xwg2bJXbkSzjxTc7E/8wz06qXlW++4Q/stXaoZkrt3P6YCNIsWLQKgSZMmOXc8dEgzLr/yCqxYocVxevaErl21cKSRZwIe+2MgkpVWMIhW/ZCSokmyv/tO2/z56sqtWBEuvji91a7tnYzheD5Dwc6dasR88w18/71WUqlSBa6/Hm6+WY3G/NZYChfxrhvMoIkVpk5VTfbZZ3DddfpKUaKElm79919Yvlw1X5MmWkjk9NO1IE1zv+dy714oVSr7v9qpU9WDdOmlucuzeze8/76WldiyBZo21dpYHTtCIauJGulEstIKBrGiH3bsgMmTtQTD5Mn6pwb63pCQoK1lS6sMnhUi+o41YYK2n39Wg7FqVbj6ajVkzj8/cjxfkUIk6wYzaGKF1FQ44QQt2TpnTvr+jz7SksAzZ+pf55o16r9+9lnVfm3bqi/7v//0+A03ZF2/6ocftOBjqVKwaRPzli0D4Mwzz8zYb/NmePNNrZG1Z48aWY8/Dq1bR/7rTZQwb948IIuxDyKRrLSCQSzqBxH48081bKZNU0fszp16rEYNaNECzjsPzj0XGjUK3XtFOJ7P/PLPP1pDacoUbX//rftPPx2uuEINmebNdUovGol33WAGTSzRr58aI3v2QOnSum/fPvVHHz6sRk+aUfHff2pozJ2rBk21ajot9dFH8Nxz8OST6dddsEBf88qUUYNlwgQSXn4Z8M3VLlqkvu9Zs+DTT/U15/rr4dFH4YwzwjgA8UG8z5MHg3jQD6mp6oydMSO9pXlwSpTQKZQzz9TWrBnUrRucf+SREkMjAn/9Bb/+qu9zP/+sBh9A2bJaVLRNG2jXLnY8WPGuG8ygiSVSU7WqeNWqGfffdJNORU2fDhdemP35KSnQrRsMH67Butdeqx6W//1PJ5Vnz4YDB+Ckk1i6dCmIcPqqVerVSUrSa5x6qhpDXbqE7nvGOUuXLgXg9NNPD9k9IllpBYN41A8iuk5gzhxt8+bpu8qhQ3q8ZEmtAt2oETRsqF6L+vWhUqW8OVfD8XxmJjlZq1b//rt+pwUL9B1r1y49XqaMeqguvFDfzZo1i82Z73jXDWbQxAP79mkw8Dnn5N43JUU9NcOG6aqpN9/UfVu26Eoq0GUXn3wCb78Nf/yh2q5tW9WIkyapgTN4sPZNTY1e/20cE8lKKxiYflCSklQ1LFyojtZFi9Sr899/6X3Kl9cVPnXrpreaNbVVr64LNMNBcjJs2qRG2Zo16n356y+Ng1m+XJ3QoItCGzZU5/A558DZZ6thZrEwwSGSdYMZNEbWJCXpq1upUun71qyBd96Bt95idlISnHIK5z35pK4bPf547XP4sE55Vaqk01+TJmWM6TGOmdmzZwNw3nnnhewekay0goHph+wRUcNhyRI1FtLa6tWwYYMe96diRc3CULmy/tkfPjybMmWgQYPzKF1aVUjRotqKFNH3H+f0OklJ6aomMVHfvfbsUc/Kzp26nmHrVm3//KPvVmkULKiruerVg9NO05bmWQqXkRVpxLtuiEGnmxEUChfWdvgwjB0LH3yg0YYFC0LVqvTevBmKF2fazTdn9EcXKaJaDTSXzi+/6Gtf5mWE+/fbsu180rt3b8D7GAUjNnFOPS/Vq6vj1Z/Dh2HdOvWSpLVt29Tg2LYNFi+G1at7k5wMMC3fMpQpAxUqqLFUtap6W6pU0ViXWrXUkKldO34Nl+yId91gBo2RNVu36rLr997TzzVr6sqo226DlSt5v1UrnbAeOlT3ZUXnzvDww9rnzTfT9y9dqtF4Q4eqd8fIE++//77XIhhxSpEimtbq5JOz77NixfuIqOGxd696XQ4d0nb4cEYPT9p7U5Ei6skpVUpnrmMxviUcxLtusMfGSCcpSaeIhg/X7FJJSboE4N574ZJL0iehq1al3sknq4/4hhuyv16FCpq1+NNPNbFeoUJwzTW6AqpSJU25uXix+qozYx6cbKlXr57XIhhGtvg/n8WLp89GG6En3nWDRWsaGtj70EO6dLt9e/jxR7j7bs06PGGC+p39I+qcY3qfPkx/6aXcyxZ066YT4ePHaw7xsWM1UPjzz3WyvGtX3fZnyxb1M999d9C/aiwwffp0pk+f7rUYhpEl9nx6R7yPvQUFxyt79sBXX2nemVmz1O/boYN6TS67LNf6UQHnO0hJgeef19zhN96o01d//aXemkGD4J574K231AuURlrWY4CRI9O9QHv36jm33KJJBOOUeM81EQxMP4SOSMlDE4/Eu24wgyaeOHhQp5Q+/1w9JQcPwimn6DLtW27Jk294zZo1ANSpUyewE6ZNg4su0lVSaZ4XETWeKlRQmfzZv1+NmqVLNaFE4cKayvOPP1TWjz8OWNZYI89jnw8iWWkFA9MPoSMcz6eRNfGuG8ygiXUOHNBCL19+qdM+aZmDO3VSr8lZZ4WnJMGFF2qq0v37dWI9jcREjZVJk2H5cjWyChbUNaJNm+o02GuvaTxP+fK62mrVKm8r8MU4kay0goHpB8PIH5GsGywoOBbZv18z+375pcatJCamGzHXXaeeklymlHJjypQpAFycNjWUG2efDXfdldGYgfQYnDVrYPt2rRd1zTWamK9GDS28Uq+eLoOYM0cTZNSpA6++qon94pA8j71hhBF7Pr0j3sfePDSxwr//qidm7FgN5N2/X/PAXHONljBISAjqWsigztWmpqpXZvNm9SilFdLMjo8+0hSgDRoc+72jkHifJw8GcacfwojF0HhHvOsG89BEK8nJGlsyZYrGxcyerYZB5coa2HvddVq8JEQJHYYPHx68ixUooAUxO3dWmXMyZiD7vDf55cCBoz1HEUxQx94wgow9n94R72Nvy7ajiX/+0WDY667TKaRzz4Wnn9YppSef1LKymzfrSqCLLgppdqoaNWpQo0aN4F3whhvgjTc0I3EgrFihwcF//x1Y/82btfr3tm26nZqqMUUXXKBpSQcOPDqnexpz5uj9QKfyGjTAlwrVE4I+9kYG1q+HJ57Q+kZG3rHn0zvifezNoIlkNm2CESO02nXDhpr7u2tXXWZ9/fUwapTGnSxYoFl8zzorbIUgJ06cyMSJE4N3QefggQc0XiYQEhN1ZdSJJ2rluQcf1KXoWbFtG7RqpXE3Zcvqvscf12XqGzaoUfPAAxpzlMb+/Rp/dOGFcN556gUD2LhRA5cXLcrvNz1mgj72xhE2btTZ2Zde0nT7N93ktUTRhz2f3hHvY29TTpHExo1qrMyYoblY/vxT95ctq96YTp00yV3TpuFZmZQDAwYMAOAyr0oXnHGGVs+bMEHHauBAXS31wgsZ+23fDq1bq+EyfToUK6b7nVNj8frrdUXVZ59Bx456rGnTdIOlZk0t25A2zXX55frz55+huTfTyJ6PfYyQkgJz58JJJ2m42b//qt27Y4cupJs/P702a2qqpk+K80SsAWHPp3fE+9hbULBXJCfDsmVqwMyapYGw69frsRIloGVLzcPSqpV6Z/wz9UYAW7duBaBKlSoeS+LjscfUEOncOX3f7t3qYVm5Er77TqfhAuHFF3X66bTTdKl45hVhJ5+sx8aMCZr4eSEcYx/JgX/BoEmT5nL88fOZPFm3x4/XX/XDD6uNm7lY8WefaZaDW2/V2dELL4yqsKuwEnG6IY6Id91gBk04OHxYE8L99lt6W7xYE9uBpvk///z01rjxMS+rNlBDMa2W1CWXBO+6t9+uxsz27WGb4gs3kay0gkGRIs2lQIH5PP+8liy77bac80ru3An9+mk2gYMH1dF32WXw4YcazpZGaqrOfJYrF/KvEBB//aXqJbcKJYYRKJGsG2zKKdgcOqTZbdMMlwUL1Hg5fFiPlymj0yX33KM/zztPy9J6PIWUV8aPHw9A+/btPZbEj337tLBm9+5qEJ5/PqxbF/wil1dcob/nvXvTY3LGjNE2aFDIi2pG5NhHGc7pwsAzzgisf4UKOvP44os62/j997B2bfqvH3Sa6tFHtQh927bqFMwJEa348dtv8H//p7PKgTBmjDob/e+dFWvWaDaEJk1UDYVLxdjz6R3xPvbmockvKSmqMf74Q6eO0n4uW6avfKCvaWecoa1ZM21168bEW31E5pqYMEGNjUGDNBFft27hGeuUFH1N371bP6fd8/Bh/U+VmKiv90H6jxLvuSaCQZMmzWXRomPTDyL6K922TW3n1av13eS22zT0qmtX9ezccYcWm8+cjb5PH43lL1NGbeMePdRoKlpUjS3n1Lty/PGaKPvGG3Xh4skna57KiRNztp1nz07PgPDNN+qsTGPjRi14nxZSFkwiUjfECXGvG0QkJluzZs0kKOzaJfLbbyJffinSv79I584ijRuLFC0qojpNW40aIpdeKvL44yKjRomsWiWSmhocGSKQ7du3y/bt270WIyMpKSINGog4p23RotDdKzVVJO37f/utPgNffKHb69aJfP+9SP36ur9gQZEtW4J263CMPTBfIuDvOFQtaPpBRN54Q6RiRZFXXhE5cCDjsZkzRcqVEylTRmTwYJGdO3V/SopIly4it90msmePyEMPiVx+ebrKqFw5o3oBkRde0GMjR+rj3batyOjRIlu36v4JE0SWL894/8OH9U/ixBPTZRs7VqRwYZGqVUU+/jhowyCHDunPiNQNcUK86wbz0IAu0V27Vj0ua9bo6qI0r8u//2bsW7u25iGpX18DQ9M+lykT9O9g5INhw9Qz89BD8PrrobvPXXdpVuZNm3Tl06JFOr0lAqefrsELtWppMc7zz897UMWuXXr91FT17DVoENa4qoh+CwsCwfbgimTvgPv7b/WuzJmjzrtWreCHH/RYSkp6uqiUlPTY/9mz1eG3aZN6Uxo3hquvTr/mBx+oRwe0mP3DD+v0UnKyTn1Nngx33qmBy1OmQJs2MG6c9u/YUa9XtKiWSXv88fQUTPl1Ig4cqNNt//d/6bVnjdgkknVD7MfQiKhRkmasbNgAW7ZoW79e9/kiw49QrpwaK9dco1qiTh3Nd3LyyenrOOOc0aNHA3DNNdd4LEkm0qqGt24d2vs0bgzvvaf5ab7/Hvr2TTc4Bg7UNb8PPZQejXn4sCY3ue++wIybNWvUMEujaFH9T/TKK4z+5RcgAsc+jsnJEKhdWzMxzJ2r00SJien9/XNf+i9kzLzKKjN33KHvUKmpmmezUCF9DBMSdIb78GFdHNm6tS6WXLECSpdWVda0qRpUZcqoEQUwcqSWRnvjDT1v714Nfg4kR9tLL2kiwuOP19DA+fNHc8UV6c9ncnLWOT7Hj1d13Lx5uoFlHBsRq5fDRbhcQcC9wHzgEDAs07HWwJ/AfuAnoJbfMQe8BPzray/ji/3JqTUrVUqkTh2R4sWP9t2WLCly0kkiF10k0r27yPPPi3z2mcivv4r8809MTxUFi5YtW0rLli29FsM7li3TZ+mll0T69hXZvDnn/gsWiBQqJFKrlsh554m0bq3n+j9rs2aJdOsmsnevzkn8/rvIihX6bN57r85brFiR+9j/95/IM8+ITJmS769HBLuVg9GCOeUUSSxcKFK+vMh112V9fPx4nUXPzJdfHj3Ndcop6cevvlrkiitE3npLH/0VK0T+/luPjR4tcuutIomJIh07ipQq1VJatGgpEybo7DyIlC2rM7BnnKH9RERuvDH9XuXLi4wbl36/1FSRt98WueYaffwPHkw/tnt3+jSbkZFw6OVI1g1hm3Jyzl0DpAKXAsVFpKtvfyVgNdAdGA/0B1qIyDm+43cCD/uMHgEmAwNF5L2c7te8dGmZ3749nHACVK+uwbh16mi0nk0PHTO7d+8GoGxuSy1iFRF9Jb38cp3mCoRRo+CTT/TVd8cO9QwuWqQZoHfv1tfUAgV0X1bP6N69ULo0u//7D775hrK33HJ0fqLvv9e5iI0bdXvIkHzVvopkt3IwiKi0DkFm716daspr5ZM9e7Tu64ED6s2pVUunpEADmEeMUMdhGtdfD198kfEaycmwadNuypWDBQvK0q+fJuLes0erjyQm6ixsnTr6J7R+PcybBwMG6GqvN95Q71PHjurNKlcO/vtPY+4nTdLZ1/vuU29SvXrqgTrzTD2eJuvGjbouo1gxdZoWKaLbacvrx4/XP8HKldUR77/sPhC2bNHFlI0awaWXRtYC1XDo5YjWDeG2oIDn8PPQAD2A2X7bJYEDwKm+7dlAD7/jtwO/5HafWH0DMyKIxo3V65KSkvdzU1LSvTqpqSKdOmnw8Jw5uZ87caK+1j71VMb9ffro/gYNRKZNE+nVS2TbtvRzvvhCZN68jK+72UAEv4UFo5l+yB9//SUybJjIiBGBPaqBsn+/SI8eInPn6p9Dly4igwaJJCeLTJqk2/v3a9+FC9W52batOttBpEqV9Gu1by9HOeUbNEg/3qxZ+v6CBUXatBH5/HM9dvCgyIsv6vfLKrb2o49EihRJP/+SS0SWLNFja9eK3HST/tlNmZIub6wRyboh7EHBzrnngOqS7qF5EygiInf59VkK9BGRr51zu4FLRORX37HmwE8iUjqLa/dADSRq1qzZbN26dSH/PvHKF75XsxtuuMFjSTxk2jSNtHzttfy/pqWmagKSuXM1urN371xP+WLkSBg8mBt++glGj06PFl20CL76SguWZg5IaNNGo0NB1/peeKGu473zzizvEdFvYUEglj00XhNO3XD4sMbhHD6sazNAK5ysXatemKQkbRUq6DJ60HyYW7dqmzZNHaetW2tIXEqKenRSU/VP+qyz1HR56in1AC1dCu++q/mDJk3SbAxnnqkxSf/9p+sBtm5Nv07lypqM8bLL1LMza5bGOM2cCV9/DT/9pGsJypdXuSdN0hrE//6r9y1fHoYOVbnff1/XGpxySvpalAoVVM7UVK0A8+yzX7BuHbRrdwNt2mj8VNmyOgarV+u4rF2rKbtq1ND1CjVrZhzT/ft1mf/OnerczZyUMaJ1Q7gtKI720AwBBmTqMwvo6vucgs9b49s+GZ16yjGOxt7AQkvcx9AEiwMH9BXxiiv0dTQAWrZsKS1btBA56yyRUqV0zW9u7NmjMTlffily330a0HDFFenH33orQ3ci+C0sGM30Q+iINt2Qmpoe1yMism+fOjL79hU591yRhARdEp8VO3aoZ8afPXs0k8Njj4l07arhcyIiQ4ZIBq9R9er6p5jGtdeqw7dqVZGGDdUBfNFF6cdvukmkWLGM12jYUI8lJ4uccIJIwYItpVy5llK6tB5/9VU9vmJFxvPS2iefpB//3/9E7rhDQ/VAf2blzI1k3RApHprCInK3X58lQF9J99C0EZG5vmPNgGmShYfGH3sDCy379+8HoESIs+LGDZLDut9MHBn7nTvhnHM0PmzixLwXF0rL4X/4sAYF3H77kUMR/RYWBEw/hA7TDVlz+LBmbF6wQFd2nXlmxj/5Awf0zzEnNZCaqnFHf/yhJeqKF093si5ZAtWq7ffFDpVg7lz1rjRpoiF648frirs6dXSx7saNGr5XoYIeu+km9Sxdd50usGzQQIu2ZiaSdUMkGDQ9gFtF5HzfdklgO3CGiPzpnJsNDBWRD3zHb0Njas7J6T6msIy44PBhjXwMcmRiJCutYGD6wTAykpysBk1uy+cjWTeELQe/c66Qc64YUBAo6Jwr5pwrBHwDnO6c6+g7/gywWET+9J36CfCwc66ac64q8AgwLFxyG1kzYsQIRowY4bUYcUmGsS9SJLKWWQQB59y9zrn5zrlDzrlhufR9yDm31Tm32zn3kXPOspl4jOkG7ziWsS9UKPpzAYWzqNBT6OqlJ4Auvs9Pich2oCPwPLALOBvo5Hfe++hy7iXAUmCCb5/hIR9++CEffvih12LEJXEw9pvRWLuPcurknLsU1SetgdpAHaBfqIUzciYOns+IJd7H3kofGPkiyVeAs3AY0/EbSjjGPhLcypmnp7M4/hnwt4j09m23Bj4VkSq5Xdv0Q+gw3eAd8aIbsiP2Sx8YIcGUlXfY2B/hNGCs3/bvQGXnXEUR+Tebc4wQY8+nd8T72IdzysmIIYYNG8awQDPkGkHFxv4IpYDdfttpn7NcAemc6+GLzZm/ffv2kAsXr9jz6R3xPvZm0Bj5It7/cLzExv4I+wD/GhFpn/dm1VlEBotIcxFpflxW61GNoGDPp3fE+9jH7JTTb7/9ts85t8JrOcJEJWCHFzd23qyw8ez7ekC23zXEY18rlBcPEsuAxsAo33ZjYFsg002mH0KP6YaQY7ohEzFr0AArIjVwKdg45+bHy3eF+Pq+8fRd0/ClcyiEX4oHIFlEkjN1/QQY5pz7FNiCrqQcFuBtTD/EIPZd4xubcjIMI9LIMsWDc66mc26fc64mgIhMBF4GfgLW+Vofb0Q2DMNrYtlDYxhGFCIifYG+2Rwulanv68DrIRbJMIwoIJY9NIO9FiCMxNN3hfj6vvH0XcNJPI2rfdfYJJ6+a0DEbGI9wzAMwzDih1j20BiGYRiGESeYQWMYhmEYRtRjBo1hGIZhGFFP1Bo0zrl7fWnMDznnhuXS9yHn3Fbn3G7n3EfOuagrku6cq+Cc+8Y5l+icW+ecuzGbfs4595xzbpPv+05zzp0WbnmPhUC/q69vHefct865vc65Hc65l8Mp67GSl+/qd86Pzjnx5WsxMmG6wXSDr29U6wYw/ZBXotagATYDzwEf5dTJOXcpms+iNVAbqAP0C7VwIeAd4DBQGbgJeDcbZXQdcBvQAqgAzAGGh0vIIBHQd3XOFQEmAz8CVYDqwIgwyhkMAv29AuCcuwlLt5AbphtMN8SCbgDTD3lDRKK6oYprWA7HPwNe8NtuDWz1Wu48fseS6EN9it++4cCALPo+Dozy2z4NOOj1dwjRd+0BzPBa5nB8V9+xssBK4BxAgEJef4dIbqYbjupruiGKmumHvLdo9tAEymnA737bvwOVnXMVPZInP5wCpIjISr99v6PfLTMjgZOcc6c45woDtwITwyBjsMjLdz0H+Ns5973PpTzNOdcwLFIGh7x8V4AXgHeBraEWLE4w3WC6IZIx/ZBH4sGgKQXs9ttO+1zaA1nyS+bvgG87q++wBZgBrEBTxl8HPBRS6YJLXr5rdaATMBCoCkwAxvrczdFAwN/VOdccOB94KwxyxQumG0w3RDKmH/JIPBg0+4Ayfttpn/d6IEt+yfwd8G1n9R36AGcCNYBiaEzAj865EiGVMHjk5bseAGaKyPcichh4FagI1A+tiEEjoO/qnCsADAIekKMLNBr5x3SD6YZIxvRDHokHg2YZ0NhvuzGwTUT+9Uie/LASKOScO9lvX2P0u2WmMfCFiGwUkWQRGQaUBxqEXsygkJfvuhidK45WAv2uZYDmwBfOua3APN/+jc65FqEXM2Yx3WC6IZIx/ZBXvA7iyW9DI7mLAS+igVLFyCIICrgMnVNsgP7x/kg2QVWR3ND578/RQLHzUdfjaVn06wPMRKPiCwA3A4lAOa+/Qwi+az1gP3AxUBB1n68Ginj9HYL5XQGHrtRIa2eiyrpaNH3XMI6p6QbTDVGvGwL9vqYf/MbCawGO4Rfd1/dL8299gZqoq66mX9+HgW3AHmAoUNRr+fPxfSsAY3wKaD1wo29/hu/rU97voPPle4AFwGVeyx+K7+rbdw2wyvddp2Wl3CK55eW7+p1TmzhdxRDgmJpuyOIZMt0QXbohr9/X75y41Q9WnNIwDMMwjKgnHmJoDMMwDMOIccygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+op5LUAoaJSpUpSu3Ztr8WIWXbv3g1A2bJlPZYk/gjH2P/22287ROS4kN3AYwoUKCDFixf3WoyYJCUlBYCCBQt6LEn8EY6x379/v4hIRDpDYtagqV27NvPnz/dajJglISEBgGnTpnkqRzwSjrF3zq0L2cUjgOLFi5OYmOi1GDGJ6QbvCJNuOBCyix8jTkS8liEkNG/eXMygCR07duwAoFKlSh5LEn+EY+ydc7+JSPOQ3cBjSpYsKWbQhAbTDd4RJt2wX0RKhuwGx0DMemiM0GLKyjts7I1Ixp5P74j3sY/IeTAj8hk9ejSjR4/2Woy4xMbeiGTs+fSOeB97m3LKgXHjxvHZZ58xcuTIIEkVO9g8uXeEaZ7cppxyoGvXrlSvXp3rr7+e//3vf8yePTuI0kU3phu8I0y6waacopEOHTrQu3dvFi9eTKNGjbwWJ6IYO3as1yLELTb2kUOjRo0oV64c48ePp3379l6LExHY8+kd8T72sTvltGZNUC7TuXNnBg8eHJRrxRJly5a1JdseYWMfWdx00028//77XosRMdjz6R3xPvaxa9Ds2gWTJgXcfcOGDVxzzTUcd9xxVKxYkXvvvRdQF96ECRNCJWXU8sUXX/DFF194LUZcYmMffhYuXMgZZ5xB6dKlueGGGzh48OCRYwkJCUydOpVDhw55KGHkYM+ndwR77P/999+gXSscxK5BU7Qo3HcfBKBkUlJSuOKKK6hVqxZ///03mzZtolOnTgDUr1+fv//+mz179oRa4qji3Xff5d133/VajLjExj68HD58mKuuuoqbb76ZnTt3ct111/H1118fOV6tWjUKFy7MihUrPJQycrDn0zuCOfaff/45derUYcGCBXk6zzm3L1NLcc695Xe8tXPuT+fcfufcT865WkERGEBEYrI1O/lkERB5/nnJjdmzZ0ulSpUkKSnpqGOHDx8WQNatW5frdeKJxMRESUxM9FqMuCQcYw/Mlwj4Ow5VK1GiRMBjMX36dDnhhBMkNTX1yL5zzz1XnnzyySPbVatWlenTpwd8zVjGdIN3BGvsJ02aJIULF5YLL7xQDhw4kOEYkCgB/p0BJYF9wIW+7UrAbuA6oBjwCvBLoNfLrcWuh6ZMGejYEZ57DtblnPR0w4YN1KpVi0KFjo6R3rt3LwDlypULhZRRS4kSJShRooTXYsQlNvbhZfPmzVSrVg3n3JF9tWplfKncu3ev6Qgf9nx6RzDG/ocffuDKK6/k1FNPZezYsRQrVuxYLnct8A8ww7d9DbBMRL4UkYNAX6Cxc+7UYxLaR+waNACvvw7Owf33g2S/PL1GjRqsX7+e5OTko44tX76c2rVrU6ZMmVBKGnWMGDGCESNGeC1GXGJjH15OOOEENm3alPbGCcD69euPfN68eTOHDx+mXr16XogXcdjz6R3HOvYLFiygQ4cOnHLKKUydOjU7I72Qc26+X+uRwyVvBT6R9D+e04Df0w6KSCKw2rf/mIltg6ZmTXj2WRg3Dj75JNtuZ511FieccAJPPPEEiYmJHDx4kFmzZgEwffp02rZtGy6Jo4YPP/yQDz/80Gsx4hIb+/By7rnnUqhQIQYOHEhycjKjR49m7ty5R45PmzaNVq1aUbRoUQ+ljBzs+fSOYx37Ro0a8eijj/Ljjz9y3HHZ1qZNFpHmfi3LZcDOuZpAS+Bjv92l0Cknf3YDpfMttP89JQfPRTRzJLFeSgq0agULF8KSJVAr6/ij9evXc//99zNjxgycc9x4440MHDiQhg0bMmLECBo3bhzmbxDZJCUlAVC4cGGPJYk/wjH2llgvI/Pnz+eOO+5g1apVtGvXDoCTTz6Z5557jssvv5w777yTDh06hErcqMJ0g3fkd+wXLlzICSecQJUqVXLtG2hiPefcU0AbEWnpt+9NoLCI3O23bwnQV0S+zuIyeSJqEus55zoBfYCawFagq4jMyPksoGBB+PhjaNQIunaFqVOhwNGOqZo1azJmzJgM+8aPH0/9+vXNmMkCU1beEetj75yrAAwBLgF2AL1E5LNs+tYBBqJvgoeAj0TksWDL1Lx5cxYuXHjU/iVLlrBz504zZvyI9eczksnP2K9atYpLL72URo0aMWXKlGCKcwswINO+Zeg0FADOuZJAXd/+YyYqppycc22Al4BuqGvqQiDwzHm1a8Obb8K0afB//xfwae3bt2fUqFF5kjVeGDZsGMOGDfNajLgkDsb+HeAwUBm4CXjXOXfUHLtzrggwGfgRqAJUB8IavNGwYUPmzJkTzltGPHHwfEYseR377du307ZtW1JTUxk0aFDQ5HDOnQdUA77MdOgb4HTnXEfnXDHgGWCxiPwZlPtGw5STc242MEREhgR6zlG1nETgmmvgu+9g3jz12Bj5xuq1eEcs13LyvbHtAk4XkZW+fcOBTSLyRKa+PYCbRaRFXu9zrLWcjOwx3eAdeRn7nTt3cvHFF7N8+XJ+/PFHzj333IDuEciUk3PufaCEiNycxbGLgbeBWsCv6GzL3wHdPDfZIt2gcc4VBA6gllx3dO36GOBRETmQ3XlZFqfcsQMaNoRKldSoObblaIYRs3ho0DQFZotIcb99PYGWItI+U9+PgMJoboszgaXAfSKyJLf7mEFjxDu33HILX3zxBWPHjuWyyy4L+LxILk4ZDVNOlVGldS3QAmgCNAWeytzROdcjbSnZ9u3bj75SpUowbBgsXQpPPHH0ccMwvCYvqyCqA53QGJqqwARgrG8q6ij89UNWKRoMI554/fXXmThxYp6MmUgnGgyaNC/MWyKyRUR2AK8D7TJ3FJHBaUvJsl1ydumlWhLhzTfzVOvJyMgHH3zABx984LUYcUmMj/0+IHPSpzLA3iz6HgBmisj3InIYeBWoCNTP6sL++iGrJJpGcIjx5zOiyW3sd+/eTa9evTh06BCVKlXioosuCqN0oSfiDRoR2QVsBII3N/bSS3DaaXDrrbBtW9AuG09YATrviPGxX4km7jrZb19jsl4FsZhg6gUjKMT48xnR5DT2e/bs4bLLLuO1117jt99+C7Nk4SHiY2gAnHPPAm2By4EkYBwwTUSezu6cLGNo/Fm6FM48E1q0gIkTs1zKbRjxipd5aJxzI1FDpTs6xfwdcJ6ILMvUrx6wEOgA/ATcD9wL1Pd5bLLFYmiMeGLfvn1cdtll/PLLL3z55ZdcffXV+b6WxdAcO/2Beejb23JUiT1/TFc8/XSddpo8GV5++dglNAwjWNwNFEdrwHwO3CUiy5xzNX3Ve2sCiMgKoAvwHroy6kqgQ27GjGHEE/v376d9+/b88ssvfP7558dkzEQ6UeGhyQ+5emhAl3J36gRffw0//wznnRce4WKAtJwFd999dy49jWATjrG3TMFGfjHd4B1Zjf3SpUtJSEjgrbfeonPnzsd8j0j20MS3QQOwezc0barGzeLFUDooJSVinrT6Vt9//73HksQf4Rh7M2iM/BItuuHHtT9SsnBJzq5+tteiBA3/sU9NTaWAL5Ri9+7dlC1bNij3MIPGAwI2aABmzdJYmttvB4vON+KM1FT4/nt1UJYvr/vMoDFimY17NlLv7XpULV2VlfeuxDnntUhBJTk5mU6dOnHGGWfQu3fvoF47kg2aaImhCS3nnw+PPQYffgjffuu1NIYRVv78E664AsaO9VoSwwgPj095nP1J+1m1cxUz18/0WpygkpqaSrdu3fj6668pUaKE1+KEFTNo0ujXT7MId++uGYWNHHnzzTd58803vRYjLgn22P/6q/48O3Y874aHRLpumLV+Fp8t+YyHznmIUkVKMXTRUK9FChpvvPEGF1xwASNGjOC5557jwQcf9FqksGIGTRpFi8Lw4bBzJ/zvfxpTY2TL1KlTmTp1qtdixCXBHvtffoGyZaFevaBd0ohjIlk3pKSmcN/391G9THX6X9Sf6xtcz6hlo9h3eJ/XogWFt956izlz5tCrVy+efPJJr8UJOxZDk5kBA6BXLzVuunQJvmCGEWE0aQLHHacZDNKwGBojFvngtw/o8W0PPu/4OZ1O78TM9TNpMbQFQ68cStcmXb0W75gZMmQIS5Ys4f/+7/9CFhcUyTE0ZtBkJiUFWrbUxHtLlkCNGsEXzjAihMREKFMGeveG/v3T95tBY8QaIsJJb51E5ZKVmXXbLJxziAj13q7HCaVPYHrX6V6LmG82b95M1apVw3KvSDZobMopMwULwscfQ3IydOumS0CMo3j11Vd59dVXvRYjLgnm2P/2mz7iFj9jBItI1Q2/bPyFNbvWcGezO494L5xzdGvSjZ/X/cyqnas8ljB/vPXWW5x00knMnTs3Ysc+XJhBkxV168Lrr8PUqfDWW15LE5HMmTOHOXPmeC1GXBLMsbeAYCPYRKpuGLF4BMUKFePq+hkz5d7S+BYKuAIMWzTMG8HyiYjQp08f7r//fi655BIaN24csWMfLmzKKTtEoEMH+OEH1fpNmgRNNsOIFK69FhYsgDVrMu63KScjlkhKSaLq61VpdWIrvrj26OKNbYa34e///o6anDQpKSncf//9DBo0iG7dujF48GDCVUHeppyiEefgo4+gUiUtj2DKz4hBfv3VvDNG7PPD6h/YsX8HXRpmvdCjY/2OrNq5imXbsyrqHnmMGDGCQYMG8eijjzJkyJCwGTORjhk0OXHccTBiBKxcCffd57U0EcWAAQMYMGCA12LEJcEa+02bYONGuLDRf9C4MXz33bELZ8Q9kagbPl3yKRWKV+DSky7N8vhVp16FwzF6+egwS5Y/br75ZsaNG8fLL7+cwaMUiWMfTsygyY2LLoInn4ShQ2HkSK+liRgWLVrEokWLvBYjLgnW2KfFz1xUeKbWMYuzrKJGaIg03bD30F7G/DmG6xtcT5GCRbLsU6VUFc6veX5EGzS7d+/mhhtuYN26dRQoUID27dsf1SfSxj7cmJ8qEPr0gSlT4N57oVUrOP54ryXynJFm3HlGsMb+11+hcGE4aeM0TSx5zjlBua4R30Sabhjz5xgOJB+gS6Oc84pdc+o1PPzDw6zeuZq6FeqGSbrAOHjwIFdeeSWzZs3i5ptvplatWln2i7SxDzfmoQmEQoVgyBDYuxceeMBraQwjKKTFuheaOU2NmWLFvBbJMILOZ0s/o3a52pxX47wc+6Wtfvrmz2/CIVbApKSkcNNNNzF9+nQ+/vhjrrjiCq9FCgjnXCfn3HLnXKJzbrVzroVzrrZzTpxz+/za08G6pxk0gdKgATz9tE47jRvntTSe079/f/r7Z2IzwkYwxj4lBebPh4Qm/8HChZCQEBTZDCOSdMOO/TuYvHoynU7rlOvqpdrlanPGCWfw9fKvwyRd7ogId999N6NHj+aNN97gxhtvzLF/pIy9c64N8BLQDSgNXAj4r6UsJyKlfC1oAtuUU1547DH48ku46y7NJly2rNcSecaKFSu8FiFuCcbY//GHLtxrW2qGZtYzg8YIEpGkG7764ytSJIXODTsH1P+aU6/hqZ+eYtOeTVQrUy3E0uXOwYMHWbRoEb169eKBAGYHImjs+wHPisgvvu1NAM652iG9q4hEfAOmAQeBfb62IrdzmjVrJiFh3jyRAgVEevQIzfUNIwx8+KEIiPzb9WGRokVFDhzIcByYL979vVcAvgESgXXAjdn06wqk+OmFfUBCIPcoUaJEEEfTiFRaDm0p9d+uL6mpqQH1X759udAXefvXt0MsWc4kJyfL/v37RURk7969AcsfDoBEyfnvtyBwGHgCWAVsBN4GigO1AUENnI3AUKBSTtfLS4umKad7Jd1F5V1d4ObN4eGHYfBgmB69tT+M+GbePHUwll88Dc49N9LiZ95BFWJl4CbgXefcadn0neOnF0qJyLRwCWlENpv2bOLndT/T6fTcp5vSOLXSqdSrWI9xK70LK0hKSqJLly506NCB5ORkSpUqFWnJ/go55+b7tR6ZjlcGCgPXAi2AJkBT4ClgB3AmUAtohk5HfRoswaLJoIkc+vWDOnXgjjvgwAGvpfGEZ555hmeeecZrMeKSYIz9vHnQsvF/uAiLn3HOlQQ6Ak+LyD4RmQmMA272VjIjUCJFN3z5x5cIwg2n3ZCn8y476TJ+XvczB5LCr9sPHTrE9ddfz8iRI7n44ovznDAvTGOfLCLN/drgTMfTBu4tEdkiIjuA14F2vr/p+SKSLCLbgHuBS5xzZYIhWDQZNC8653Y452Y55xKy6uCc65FmNW7fvj10kpQooR6av/6CZ58N3X0imA0bNrBhwwavxYhLjnXsDx7UtDPXHDdDS3xEkEEDnAKkiMhKv32/A9l5aJr69MJK59zTzrls/wP464fk5ORgymz4ESm6YeTSkTSt0pR6lfLm0L+07qUcTD7IzPUzQyRZ1hw4cICrr76aMWPG8NZbb/H444/n+RqRMPYisgudTgqkrlJan+C4oII1dxXKBpyNuqaKArcCe4G6OZ0Tshgaf267TaRgQZEFC0J/L8MIEnPmaPzMyvZZx8+IeBdDg7qot2badwcwLYu+dYAT0RezhsAfQK9A7mMxNLHN6p2rhb7ISzNfyvO5+w7tkyL9i0jPST1DIFn2dOrUSZxz8sEHH4T1vnmFXGJotAvPAvOA44HywAygv+9/eT3f32xF4Avgp9yuF2iLCg+NiPwqIntF5JCIfAzMAtp5LRevvqrlEW6+OW6nnozoY948/Vlr7bRIjJ/ZB2R2P5dBX2IyICJrRGStiKSKyBJUiV4bBhmNCOeLpVqAMq/TTQAli5TkgpoXMGn1pGCLlSNPPvkkn332Gd27dw/rfUNEf9SgWQksBxYCz6MvIRPRv+elwCEgsCVoARAVBk0WCMFyUR0L5cvDsGGwbBk88YTX0oSVXr160atXL6/FiEuOdeznzYNTjv+PwssiK37Gx0o06PBkv32NgUCqBkaGXohzIkE3fLX8K86pfg61ymWdUTc3Lq17KUv+WcKWvVuCLFlGfvjhB3r37g3A6aefTqdOnY7pepEw9gAikiQid4tIORGpIiL3i8hBEflcRE4UkZIicoKI3CIiW4N134g3aJxz5ZxzlzrnijnnCjnnbkKT9ITXfM6OSy/VwpUDB8KkyBApHPz777/8+++/XosRlxzr2M+bB7fUnIYT0VplEYSIJAKjgWedcyWdc+cDVwLDM/d1zrV1zlX2fT4VeBoYG055jaPxWjds2L2BBVsWcFW9q/J9jUvqXgJole5QMWLECNq2bcu3337Lvn37gnJNr8fec4I1dxWqBhyHuq72Av8BvwBtcjsvLDE0aezfL3LaaSJVqoj880/47msYeeS//zR+5tez7xMpXlzk0KEs++F9HpoxaB6a9fjy0AA10Smpmr7tV4Ftvn5r0CmnwoHcw2JoYpe3f31b6Iss374839dISU2Ryq9Ulhu/vjGIkqXz8ccfi3NOWrVqJXv37g3JPUIFAcTQeNUiPlOwiGxH161HLsWLw6efwllnwZ13wtdfQ2TlDTAMAH77TX/W3zIVWrSAIllXH/YSEdkJXJXF/vVAKb/tnkDP8ElmRANjV4ylXsV6nFrp1Hxfo4ArQJu6bZi0ahKpkkoBF7zJjGHDhnHbbbfRunVrxo4dSwmrch80In7KKWpo3Bj694dvvoFPPvFampDTs2dPeva0/yVecCxjP28eVGELpdf/Aa1bB1kyw/BWN+w+uJtpf0/jynpXHvO1LqlzCdv3b2fR1kXHLpgfZcqUoV27dowbNy7oxky862UzaILJI4/oW+9998G6dV5LE1IOHDjAAVvZ5QnHMvbz5sENx/+kG2bQGCHAS93w/arvSUpN4spTj92gaVO3DQCTVgUnNnL9+vUAXHPNNYwfP57ixYsH5br+xLtedjolFns0b95c5s+fH/4br10LjRppiYSpU6GA2YxG5FCzJnxc6HYu2jUaduyAggWz7Oec+01EmodZvLBRsmRJSUxM9FoMI8h0/rozP679kc0Pb6Zggayf7bzQ+L3GHFfiOKbcMuWYrjNkyBDuuusufvjhBxIib2VhnnDO7ReRkl7LkRX23zbYnHgivPkmTJsGr7zitTSGcYRNm2DDBuGM/6bq6qZsjBnDiEYOpxzmu7++o/0p7YNizAC0qt2KWRtmcTD5YL7OFxFeeOEFunfvTqtWrTjnnHOCIpeRNWbQhIJu3eC66+DJJ+Hnn72WJiQ8+OCDPPjgg16LEZfkd+x/+AFOZC1ld62DVq2CL5hh4J1umP73dPYc2hOU+Jk0Wp3YioPJB/ll4y95PvfQoUPceuutPPnkk3Tu3JkxY8ZQLMRJLONdL5tBEwqcgw8/1AKWnTrBtm1eS2QYTJoE15SZqhsWP2PEGGNXjKVE4RJcXOfioF3zwloXUsAV4Me1P+b53FGjRjF8+HCeffZZPv3005AbM4bF0ISWxYvh7LPhvPP09dhc/IZHpKTA8cfDhDKdOOfQzzr/lENqAYuhMaKNugPrctpxpzGu87igXvfsD8+mcIHCzLwtsGKVSUlJFC5cGBFh7ty5nH322UGVx2tCHUPjnFtDLhm/ReTErPabhyaUNGoE77wDP/4IAwZ4LY0Rx/z2G+zcKTTZ+aNON1meJCOGWLVzFWt2reHSupcG/dqtarfi102/kng4dwP4xx9/5NRTT2XFihU452LOmAkT3YHbc2lZYgZNqLntNp126tsXFizwWpqgcc8993DPPfd4LUZckp+xnzQJGrGEYnu223STEVK80A1pS6svPSkEBs2JrUhOTWbm+pw9NN999x2XXXYZxYoVo2jRokGXIxBiRC/XyK6JyI8iku38X8RnCo4J3nlHg4NvvllflWNgLjUUORSMwMjP2E+aBF2rT4GNwMXBizEwjMx4oRsmrZ5EnfJ1OKnCSUG/9vk1z6dwgcL8uPbHbA2mKVOmcM0119CwYUOmTp1KuXLlgi5HIMSIXs7sgakC1AZ+BT7O6USLoQkXP/yghSwffhhee81raYw4YvduqFgR/qjVllMKr4U//8z1HIuhMaKFwymHqfBSBW5pfAuDLh8Uknu0HNaS/Un7mXfHvKOOLViwgBYtWlC3bl1++uknKlasGBIZIgUv8tA4524D6ovIozn1symncHHJJXD33fB//weTJ3stjRFH/PgjFEw5RN1N06FNG6/FMYygMmv9LBKTEkMSP5NGq9qtWLBlAbsO7DrqWP369enWrRtTpkyJeWPGQ4aSQ+xMGiE3aJxz5Z1zlzrnOvt+lg/1PSOWl1+GBg2gc2f4+2+vpTkmevToQY8ePbwWIy7J69hPmgSti8+h4KEDNt1khJxw64ZJqydRqEAhWp0YutxKrU5sRaqk8vO69Lxin332Gf/++y/Fixfn7bff5vjjjw/Z/QMlFvWyc644cCdwtDWZiZAaNM65p4HNwLfA68AEYLNzrk8o7xuxlCwJY8boGtqrr4b9+72WKN9UrFjR3kY8Ii9jL6IGTbfqkzVtQJSnXTcin3DrhkmrJ3F+jfMpXbR0yO5xdvWzKVG4BD+u/ZHU1FR69+7NTTfdxGsRFj4QC3rZOZfinEtNa0Ai8DSQa7RzyGJonHPXA28DdwFjRSTZOVcIuMq3/wER+SIkNycCY2j8+f57uPxy9dSMGGFLaI2Q8ddfcMopsLX22VSuWghmzQroPIuhMaKBrfu2csJrJ/BCqxfo1aJXSO/V+pPW/Lv3X06fczqffvopd9xxB4MGDaJQofhaWxOGPDR1Mu3aJyL/BHJuKH8TdwAPi8jXaTtEJBn4yjlXFOgBhMygiWjatoXnntPSCJdeCrfc4rVERowyeTKUYxfHr58PtzwV9vu7fu54oJT/Pukja8IuiBGT/LD6ByA0y7Uzc1aFsxjQdwC/r/2d5557jt69e+PsZTToiKh+cM5VQZdrBzyVEcoppybAd9kc+w5onNcLOudOds4ddM6NOBbBIoInnoAzz4TevaNy6qlbt25069bNazHikryM/eTJ0Om4H3GpqWENCHb93GWun9sEbAFW+bW/cj3XuQrOuW+cc4nOuXXOuRsDOOdH55z4vMCGh4RTN/yw+geOK3EcTao0Cfm9mh3fDPbAwwMe5sknn4xIYyYW9LJzrpxzbjyaZGICsNE5NyGQ+NtQ/vEXFZGdWR0QkV3OuSL5uOY7wNHr5qKRAgV0+faFF+rKpyef9FqiPFGjRg2vRYhbAh375GRd4TS22hQ4UErLcISPd4D+wMfSRw7k49zDQGX0xWiCc+53EVmWVWfn3E1YTq2IIVy6QUSYunYqF9e5mAIudO/ma9asoWbNmrRr2o6C9xSkSLP8/OsKDzGil98AdgMVRGSPc64M8D7wGnBbjmeKSEgasBc4EaiTTdubx+t1AkYBfYERufVv1qyZRAVXXy1SqpTI1q1eS2LEGLNni4DI3sp1Ra64Ik/nAvPlWP7++7KTvhqjl6fzoCRqzJzit284MCCb/mWBlcA5gACFArlPiRIl8jQeRuSxdNtSoS8yZMGQkN1jxowZUr58eenZs6eIiJzz4Tly/pDzQ3a/aABIlMD/Zy9Hg3pXAy18+1sDf6JTST8BtTKdtxUol2lfGWBTbvcM5ZRTSTK6mjO3EoFeyGehPQs8EnwxPWbAADh4UEsjGEYQmTwZTuYvSm1brXmQwssQID++71OAFBFZ6bfvd+C0bPq/ALyLKsEccc71cM7Nd87NT05OzodoRiQxZc0UAFqfGJpSHmPGjKFNmzYcd9xx3H333QC0qNmCuZvmciApr07H+MI51wZ4CdUBpYELgTXOuUrAaHTVUgVgPkfH0hYG9mXalwjkmmI/ZAaNiBQQkYK+n1m1vJSe7g8MEZENOXXyV1jbt28/ti8QLk45Be66CwYP1rIIUUKXLl3o0qWL12LEJYGO/eTJcHe1sbrRoUOIpTqKc4B3XT+30vVzP/u3XM4rhbqb/dmNKsUMOOeaA+cDbwUikIgMFpHmItI83lamhJNw6YYpa6dwUoWTqFWuVtCvPXjwYDp27EijRo2YNWsWJ56oxZ1b1GxBUmoSczfNDfo9g0EE6eV+wLMi8ouIpIrIJhHZBFwDLBORL0XkIDrj0tg5d6rfuT8B52a63nnA9NxuGvF/1c65JsDFQNPc+orIYGAw6LLt0EoWRPr00fw0HTrAr79C9epeS5Qr9erV81qEuCWQsd+7F375BT6pMg4aN4ZawVf6ufChr+WVfah72Z8y6BT2EZxzBYBBaPqH5EgM0IxXwqEbklKSmP73dG5qeFPQr71161YefvhhLr30Ur788ktKlkxfoXxBzQtwOGasn0HL2i2Dfu9jJRL0snOuINAcGOecW4V6VsYAj6Ke1t/T+opIonNutW//n75912a+pojMAGbkdu+QGjS+XDTnA8uAoSKS5HdskIjcHcBlEtDCVOt9SqsUUNA510BEzgi60F5QsSJMmADnnw/t28OMGVCqVO7necjTTz/ttQhxSyBjP20alE3eQe3Ns6Bb+APOpY/kWEQuB1YChZxzJ4tI2oqoxqgO8acMqjS/8OmFNI/vRufcdT4FaHhAOHTDvM3z2Ht4L63rBG+66d9//6VChQpUqVKFmTNnctppp1G4cOEMfcoXL8/px5+eIWNwJBEmvVzIOeef5G2wz5mQRmV02uhaoAWQBIwFnkL/f2eePsnggXXOBWQpishRHpuQGTTOuZ7AvegX+R9wl3OunYhs8XXpAgRi0AwGRvpt90QNnLuCJ20E0LAhjBoFV1wBnTrB2LGa2dUw8sHkyXBN4W9xSalw5ZVhuafr526WPjLc9znb1QjSRz7K9pi+sY0GnnXOdUdXOV2Jupz92Q1U9duuAcwFmnG0wjRijClrpuBwXFT7oqBcb+LEidx8880899xz3HnnnTRp0iTbvi1qtuDj3z8mOTWZQgUifpIjFCRLzkk30wKM3kr7f++cex01aH4mdw/s8ABkcOjffAZCGRR8F3CJiDzg86SMA2Y659J83wH5iEVkv4hsTWuoS/qgiMSe0rrsMhg4UL01773ntTQ50qlTJzp16uS1GHFJIGM/eTLcWn6sTl+eETZHZme/zzdn0wKZ4L8bKA78A3wO3CUiy5xzNZ1z+5xzNX0LLvz1Qpo+2CYih4P1hYy8Ew7dMGXNFM444Qwqljj2NP9Dhw7l8ssvp2rVqrRsmbtz4MJaF5KYlMjCLQuP+d7BJhL0sojsQnPIZBX2sQy/HHTOuZJAXfw8sCJSM4CW5fr0UJqXx6GrmdKE7OOc2w7M8EVA5yvGRUT6Bke8COWuu+CrrzSu5sYboXxk1vLM6Q3GCC25jf2KFfD3nwc4q8gP0L1r2EprSB9p5/c536/Oovmrrspi/3oyZR32O/Y3Ab4kGaEl1Lph3+F9/LLxFx4+9+FjvtYrr7zCY489xiWXXMLXX39NqQCm+lvUagHAtL+ncWa1M49ZhmASQXp5KHCfc24iOuX0IFrT8RvgFedcRzRp3jPAYhH5Mxg3DWUtpyXAzSKyKNP+24Dn0aQ5RUNycyK8llNu/P47NG0KDz4Ir7/utTRGlNGnDyx49lvG0x4mTtTyGnkkWLWcXD9XhqNLH2w+1useK1bLKXr5/q/vafdZO37o8gNt6uY/+/Xvv/9O06ZNuf766/nkk08oUiTwhHlnfnAm+w7vY9ndy0Ka1C8SCaSWk3OuMPAmcCNwEM0h95iIHHTOXYzWc6wF/Ap09b2QpJ27hmxeTkTkRF+fpSJyeubjofTQfIyuTlqUSaCPnHOH0KXYRlY0bgzdu8Nbb8H//qdLuw0jAETg009hYNWxsLe0Z9W1XT/XBs3uWTvTISE9gNcw8szkNZMpUrAI59c8P1/nJyYmUrJkSRo3bsxPP/3EBRdcQME8xis+cPYD3PzNzUxePTksdaSiDd8CoLvJIk5WRKYApx51UjrdA7hFlvG3ocxD86qIvJrNsU+Bk0J175igf38oXhwefdRrSbKkY8eOdOzY0Wsx4pKcxn7uXFizOpWEfeO1CGrRkDlBc+NDNOldGXTFQ1qL3LzxRlAIpW4QEcb8OYbWJ7amROGAc7Me4bvvvqN27dr8+OOPALRs2TLPxgzA9addT5VSVXjj1zfyfG4oiQW9LCI/Ztf8+mS5zCzsIdrOuYbALcBNZFylYPhTubLWd3riCfjyS7juOq8lysC552bOe2SEi5zG/tNPoWXhOZTYsy1sq5uyoRgwVPpIipdCGOEnlLph8bbFrP1vLb0u6JXnc4cPH063bt1o2LDhMdc8KlKwCHc3v5tnpj3Dnzv+5NRKOTkcwkcs6GXnXJ/sjolIvxzPDVUMTYabOHccOpd2KxrhPAN4R0S+DNU9ozqGJo3Dh3XKYMkSffWuX99riYwIJjkZqlWDD8r2pMPfA2H7dihbNl/XOtYYGtfPPYHOgw+QPmFQMnnEYmiik77T+vLs9GfZ8sgWKpeqHPB5gwYN4p577qFVq1aMGTOG0qWPSjydZ/5J/Iea/1eT25rexqDLBx3z9aKFQGJojvH6n2TaVQW4ABgvIjfkeG4Ig4ILAx2ArsCl6Iqnz9Fo5/oi8k9IbuwjJgwagE2bdNlt+fJq1JTJvITfMJRJk+Cyy4R9letS8oxT4bvv8n2tIBg0JwOTgErADv9j0kfq5FuwIGEGTXTS+L3GlClahhndAs+b+Msvv3DuuefSvn17Ro0aRbFiuZYECpjbx97OyGUj2fDQBioUrxC060YyoTZosrnnpcCNInJrTv1CGZ69DQ0KXAGcIyINRKQ/WknXCJRq1TTh3qpV0LWrRn1GAB06dKBD+OsDGWQ/9p9+CheUXkzJbWvh6qs9kCwDX6Ge2BuBOzI1I4YJlW5Ys2sNi7ct5upTA3u2U1NTATj77LN5//33+frrr4NqzAA8cM4D7E/azye/Z3YqeEMM6+UfgFx/8aGMoVmMuonOBv5yzq31Jdwx8krLlvDyy/DII/D223DffV5LROvWoalwa+ROVmN/4AB88w18evJoWOS8jp8BOBFoKn0k1WtBjPASKt3wzfJvAAIyaH755RfuuOMOvv76a0455RR69OgREpkaVW5EvYr1mLp2Kg+e82BI7pEXYkEv+yXfTaMEmpRzXa7nhjKGxifYLb5WE7WyWqJTTptCdmNiaMopDRGt8zRlCsybp6USDMPHN9/ANdfAnhMbUbp6Ofj52GrNBGHKaTjwsfSRKcckSIiwKafo44KPLtAMvXdmn6FXRHj77bd55JFHqF69Ot988w2NGzfOtn8wuGPcHXy9/Gt2PLYjLnLShCGGJgWNv0szTg6iDpJ7RGRBTueGdPRFZJ2I9BeRk4HWwBYgFfjdOfdyKO8dczgHH30E5cppBuEDB3I9xYgfRo2CM8uvovTaJWrZeE9RYJzr5ya5fu4T/+a1YEb0sW3fNmZvmJ2jd2bv3r106tSJ+++/n8suu4zffvst5MYMaObgXQd3seyfzPVTjXxSGJ09KgwUFpGSInJubsYMhNig8UdEZopIDzRi+T7AXAx55fjjYdgwWLoUHn/cU1Hatm1L27ZtPZUhXsk89gcOwPjx8NjJ6pLnqqu8ESwjy4CXgNnA6kzNiGFCoRvGrhiLIDkaNC+88AJfffUVAwYMYMyYMZQPU9mYC2tdCBARFbhjQS+LSCpQD6ju+xwwYc9DIyIH0dVOn4f73jHBZZfBAw/Am2/C2WfDTTd5Ikb79u09ua9x9NhPnAiJiXDx3tG6Iq52bW8E80P65JwvAnRpt/SRAeGQxwgfodANP6z+gZpla3L68Udluz9Cv379uPLKKznnnHOCfv+cqFW2FtXLVGfG+hncc9Y9Yb13ZmJBLzvn+gOPAAWccz1E5BNf7aeTROSlHM8NRx4aL4i5GBp/Dh3S+jxz5mhMTYsWXktkeEjnzrB80noW7aoFzz2nCRmPkWDVcsrxHv3cHukjnuQhsBia6CFVUjn+leNpX689Q68cmuHYpk2buP/++3nvvfc47rjjPJIQbvz6Rqb9PY1ND2/ChakYrFeEIYbmX+AcNOXDIBFp6pyrDMwSkRwrDMR+BFMsUrQojB4NJ56o0wsrV3otkeERadNNT588Und06uStQHkjtjW/ERSW/rOUfw/8S0KthAz7Z8+ezVlnncUPP/zAmjVrvBHOx4W1LmTLvi2s2eWtHDFCCrBaRObgqwUnItuA43M70QyaaKVCBZgwAQoUgHbtYFd4V8RffPHFXHzxxWG9p6H4j33adNMlOz7TKci6dT2WLk/Epns4zgm2bpj29zQAEmonALqS6Z133iEhIYHixYsza9Yszj777KDdLz+0qKle8hnrA0/4FwpiRC9/glYVOIJz7jpgfW4nhj2GxggidevC2LGap+bOO+GLL3Q1VBi44YYcM1AbIcR/7EeNgvPK/UHpNb/DA296KJVhKMHWDT/9/RMnljuRWuU0Pcmrr77KY489xhVXXMHw4cMpV65cUO+XH+ofV5+KxSvy87qf6dqkq2dyxIhebgY84Jy7HyjpnFsInAx0ye1ETwwa51wquvqhn4hM9kKGmOG887Qyd69eGldz++1hue0dd1jCV69IG/s9e3S6aeQpn8PvBeD66z2WLM9kaX075yoAQ4BL0LIJvUTksyz6dQL6oSsnDwHfA/eJyJ6QSWzkSjB1Q6qkMv3v6RlWN91yyy0UKFCAhx56iAIFImOSoYArwAU1L/DcQxMjenm4r4F6cXcAc33TTjni1dNwEfAeEFAJaefcCOfcFufcHufcSudc99zOWbFiBcOGDQMgKSmJhIQERowYAcD+/ftJSEjgiy++AGD37t0kJCQwevRoAHbs2EFCQgLjx48HYOvWrSQkJDBx4kQANmzYQEJCAlOmaM6wNWvWkJCQwPTp04/cOyEhgdmzZwOwdOlSEhISmDdvHgCLFi0iISGBRYsWATBv3jwSEhJYunQpoHPDCQkJrFixAoDp06eTkJBwZJ54ypQpJCQksGHDBgAmNmpEQrlybL3vPvjzT8aPH09CQgI7dmgJndGjR5OQkMDu3bsB+OKLL0hISGD//v0AjBgxgoSEBJKSkgAYNmwYCQkJR8bygw8+yODGHDRoUIalgW+++WaGdNuvvvpqhhL2AwYMoJNfbEf//v3p0iXd2H7mmWfo1q3bke1evXplyOzZs2dP7rknffXAgw8+yIMPPnhk+5577qFnz55Htnv06EGvXunVeLt168YzzzxzZLtLly7079//yHanTp0YMCB9sU3Hjh159dVXj2x36NCBN99M9360bduWQYPSi9FdfPHFfPDBB0e2ExISwvLsffopJCau5uVlrzK9aVOoUiVoz16YyE77v4OWSKkM3AS865w7LYt+s4DzRaQsUAd9QXsuFIIa3rB422J2HdxFpS2VuP7660lOTqZy5co88sgjEWPMpNGiZgtW7VzFlr1bvBYlqhGRj/zaUBEZLyLbnHO5ljT3xEMjItN9H0cEeMqLwO0icsj3paY55xaKyG+hkTDKKFBAK3H/+acueXn66ZDf8tdffyUhIYFp06aF/F5GRhYtWsQjjzyCyO9cWXsx//19ECJs3tz1c+2AFkAFYCfws/SR7/37SB9pd9R5zpUEOgKni8g+YKZzbhya+vyJDOeLbMh0egqQ4yoII/SkGcTB0A0/rf0JZsGrU1+lfv367NixgypVqhzzdUNBWj6aGetncP1p3nhLgzn2XuErbN0KfaHx9+K+55y7CxAR+TjLc0NYbTvXiroikueQcOdcPWAa8ICIjMquX0wv286O8eOhQwd4+GF47bWQ3irNA9G1a9eQ3sc4mmHDhrFqFTz/fFd+b/UQjWYOgm3bNIt0kMjvsm3XzxUBvgPOBeYDm4Fq6Lz4L0Bb6SPZFqh1zjUFZotIcb99PYGWInJUkg3n3AXABKAMsB+4WkR+yE1OW7YdOoKlGxITE6l3ST02zd7Etddey9ChQylVqtSxCxgiklOTOf6V42l3cjtGXBPou3pwCYdeDsOy7fHAacDGTIfOBeagdkvWuUpEJCQNLXGQ4vuZVUvJ4/UGoQpLgAVAqSz69ECV6PyaNWtKXHL33SIgMmmS15IYIeTWW0XKlkySlMpVRK66KujXB+ZLfv7u+/I4fVlIX2pk2l+DvvxGX57I8Xz16mzNtO8OYFou51UD+gKn5NDniH4oUqRI0MfMCC6XXXaZ4JAzbz5TUlNTvRYnIHqM6yElny8piYcTvRYlZACJEiK7QS/Pv2jJg8z79+Z2bsgmIUWkgIgU9P3MqhXM4/XuBkqjCm80GgSYuc9gEWkuIs29TLLkKa++Cg0awK23wvbtIbtNUlLSkZgbI7xs25bEyJFJPNdyMgW2bYVbbvFaJH+uBR6QPhmng3zbD5N73Nw+1NviTxlgb04niRa7nQiMzKHPEf1QqJAt8AwVx6IbNmzYwJ49GtPd6Z5O0BUe6PlA1CSr69ywM4lJiYxfMd6T+8eIXk4Rkay+RK5fLLKiqnJBRFJEZCZQHbjLa3kikuLF4fPPYedOXfEUoinFNm3a0KZNm5Bc28iZ889vw6FDbeiSPAwqVoTLL/daJH9OBuZlc2wuuce4rAQKOedO9tvXGK0NlRuFgKhKxBOL5Fc3zJgxg2bNmh0J2N9eYTvUSs8/Ew20qNmCaqWr8dnSoxblhYVY0MsikmUCPRGpkNu5IX1Ncc5dD5yPKqOh/laXc26Qz+uSH0xx5USjRvDKK1rz6dlnoU+foN+ie/dcF5oZISA1FRITu3Na7UTKTbtf8w8VKeK1WP446SNZloKXPnLA9cv5TVtEEp1zo4FnfasZmwBXAucddSPnbkJXSm0AagLPA1OPSXrjmMmPbnj//fe59957qVOnDrf7Uk+MXj6axpUbU61MtWCLGDIKFihIp9M7MfDXgew6sIvyxcNTIDONSNHLzrlpaPmCZN+uTSJSzzlXG1gL+AewvSQi/f3OzVjfwg8R6ebr866IHOXUCJlB4wvkuxcYC/wPuMs5105E0ta0dQFyNWicc8ejEc/fAgeAi4HOwI2hkDtmuO8+WLgQ+vaFU0+FICdc8l92bYSPCRNg69YujO36Lgw7DJEXlF3E9XPdyL6sQeEArnE38BHwDzqffpeILHPO1QT+ABqIyHqgAVrRuzywCw1G7pX1JY1wkRfdkJSUxAMPPMC7775L27Zt+eyz/2fvvOOkKJoG/NQFcg4iSYKYUQRFUMw5R4zoK+acE58JjBgw+75mQRFzQDGCARUQBRUQVHIQJGe442J9f9Qst7e3e7d3t7uzu9cPv/4dM9PTU5N6a6qrq96kSZMmLFq/iJ8W/8QDhz4QR0njw9ldz+axnx7jg78+4OIeiVUwkqxfvlpVX46wrYmqFkbYFjp7MRyhDsNAfC00VwBHquosABG5B5uCeaiqLiT6PC7qtfU8NkS2ELheVT+Og8zpgwg8/zzMmWM/ep07Q8+eMWs+EMOmXr16MWvTUTFDhkDbtjns+sersPvu0L273yKF8jNQnlPPzxU1oKprgJPDrF8ENAhavgOofiZOR0ypTN+wcOFCRowYwS233MLgwYPJzDTXyvf/fB/At+nP1aFH6x7s2HxH3vzjzYQrNOnQL6vq3VHUCavpxlOhaQnMCRJgoIisBH4UkSOIMo+Lqq4EDoqPiGlOIInlPvvASSfBH3+Yz0UMOPZYCyGSyvEOUo1ffoEffoCd2h/M8b9OZuxjjyUs1UW06EA92G8ZHP4STd+wePFi2rZtS5cuXfj7779p3bp1qe3vzniXHq170KVZ6oUVEhHO7no2935/L/9u/Jc2Ddsk7NgJ6pezRCQ4JsqLqvpimHqDReQhYCZwh6oGC7VQRBQYA9yiqquCdxSRQ7FRmDZY6Ic3VfXbigSLp1PwQmCP4BWq+iw2tXIsUDuOx3YEaNnSlJqVKyEoum51ueKKK7jiCueXnUgefRQaN4Y7d2/NFSLQr5/fIjkcZaiob/j000/ZZZddeOGFFwDKKDML1i3g5yU/c8auqWedCXB217NRlA//+jChx01Qv1wYmC3olXDKzG1Y9O62wIvAKBHZHktj0BPogMWmagiMCN5RRC4F3vLqjvL+viMiFeZ1iGdgvZsBVHVImG39gPtUtcLge1WlRgbWK4+777acT598AieUiU/mSHLmzoUdd4TbbizgwREdoEcP+PTTuB2vGoH1/iGy9VUA1YG6XbWEiwEusF7iUVWGDBnCbbfdRo8ePRg5ciTt2rUrU2/IhCHcMuYW5l47l85N4/YTEXe2f3p7dt9md0aeNdJvUWJKVQLriciXwGeq+kzI+m2BpUBj9XKwicgc4FRVnRZUrxvwvqoGz34sQ9yGnMIpMkHbRojIW/E6tiMMd94JI0farJj994em1fO+D+SFaty4cQyEc1TE449DZibcvPOnrF+6FPr1I0mvfFJ5JToST7i+Yf78+Vx55ZV8+eWXnHHGGQwdOjSin8e7M95l7zZ7p7QyA3BYp8N4d8a7FBYXkpWRmLhHSdwvK+H9ZgMfP8HbmmDDVMH8iTn/l0vC49CIyO4i8igRvJQdcaJWLRg6FFasiMnQ00knncRJJ51UfbkcFbJ4MbzyCpx3HjR793lOqlWLk55/3m+xwqID9XsdqN9jIcoPw7Jmfw68jM1QrNAp2JHahOsbFixYwPjx43n66ad5++23Iyoz89bOY9K/k1J6uCnAoZ0OZX3een5b+lvCjpkM/bKINBGRo0SkjohkeSMyBwJfiUgvEdlJRDJEpDnwNBYFfH1QExOAR7y8boH8bo8B4yo6dkLURhFpiTn4nI8FyfoRuC4Rx3YEsddecPvtNvS0115w7bVVburaauzrqBwPPGDxZwadNxcOGc21Z54JZyR9h/8csBNwDeZP1wGbUt0WuNBHuRxxJtA3rF+/njFjxtC3b18OOeQQFi1aRJMK8o0FZjf13bVvvMWMO4d0PASAb+d/yz5t90nIMZOkX87Gst7vjKU/+hs4WVVnisjZwIPANsAGzCn47JD9L8cifq8VkdVAc+wD6ayKDhxPH5ps4ESgP3AUNuPpLeB6YBdVXRGXA3s4H5oIFBVB377w8cfw0Uc2+8mRtMybBzvtBJdcAv9reJslHV24ENrGN9hYVX1otu5/j6wGtteBui5oXTNgjg6sOOJnvHE+NPFl/vz5HH/88cyZM4c5c+bQvn37qPbb75X9yCvK49dLf42zhIlh9+d2Z9sG2zLmvDF+ixIz4p2cMug47bGsAEu8kA0VEs8hp+XAC9hYWG9V3dWLBhgx064jAWRmwogRsPfecPbZMClSlPryWbVqFatWraq4oqNa3HMPZGXBnbfkwauvwoknsqp27VS49suA0HGFupgDoCONeeONN9hnn334999/+eKLL6JWZpZuXMrExRM5eaeT4ytgAjms02GMWzSOLYVbEnK8dOqXVfUfVf0pWmUG4jvkNA3YH+gFzBaR+aq6No7Hc0RLvXowahT07m0znn77DdpULlZC375mEnZxaOLHX3/BG2/ADTdAm4kfwqpVcPnlqXLthwNfyj3yDOYv1x64Cnhd7pFDA5V0YMWxJRypwwUXXMCwYcOoX78+v/32GzvuuGPU+46aNQpFOXnnk+MnYII5tNOhPPXzU0xcPDEhOalSpG8oFxEpIkLgXVUt1wgTz1lOB4tIByxq6M3A0yIyGqhPdOHPHfGkVSub9turF5x+Onz3XaVyAt10001xFM4BloKrXj0YMAA47XnYfns4/HBuyiuTaD4Zucz7e3vI+su9AjbDIbWnsjgIuC2ICD169KCwsJBTTz21UsoMwMi/R9K5aWe6btM1HmL6wkEdDiJDMvhm3jcJUWjSpF8OnZrdCvO/+6zCPVU1IQWz1rwIrMMC5TwSz+Pttdde6oiCd95RBdWrr/ZbEkcQP/1kt2XgQFX9/XdbePTRhB0fmKwJ6hv8KPXq1Yvh1aq5zJ49Ww855BB96623qtXOhi0btNZ9tfTGL2+MkWTJQ6+Xeum+L+/rtxgxA9isCX5fsQB8syqql7Bp26o6TlUvBbbFZj7snqhjO8rhjDPgxhvh2Wdh+PCod1u2bBnLli2Lo2A1F1W4+WbYdlv7yzPPmKnGy0Lsrr0jGXj33XfZY489+PXXXyksLMkzWJXn88s5X5JflJ9Ww00BDu10KL8s+YWNeRvjfqw07huaYLOdyiUx0X6CUNUt2GwnF1gvWXj4YfOjufRS2G03i0JbAWedZTPoUnmsNlkZORLGj4cXXoAGW1aZE/cFF2wNhuiuvcNPVJVHHnmEAQMG0KdPH9555x3aBs26q8rzOXLmSFrUa8F+7feLtbi+c1inwxg8bjDfL/ye43c8Pq7HSoe+QURepbQPTT3gEKLQGRKu0DiSkKwseOcdm/l0yikwebLlgCqHAQMGJEi4mkVBAdx2G+y6K1x4IfDIi5CXB9dcs7WOu/YOPxk/fjwDBgzgrLPOYujQodSpU6fU9so+n/lF+Xw26zNO3eVUMjMyYylqUtBnuz40rt2Yd2a8E3eFJk36htCgu5uAV1R1dEU7xi0Ojd+4ODRVYPJkS4uw334werQpOo6E8uyzprt8+ikcd2QBdOoEu+wCYxIbx6K6cWiSHReHpvIsXbp0ayLJ0aNHc/jhh5ORUX2vhTFzx3DkG0fy8Vkfc+JOJ1a7vWTkslGXMXzacJbdvIxGtRv5LU61SFQcmqqQ8NQHjiRm773hxRdtxtPNN5db9Z9//uGff/5JkGA1g5UrLYfooYfCscdigQ+XLIHrSgfVdtfekUhycnK46aab6NSpE9OmWb7AI488MqIyU9nnc/i04TSq3YjDOx8eE3mTkf579ie3MHdrJOR4UdP7BqfQOErzn//YD+hTT1kCoQicd955nHfeeQkULP25+WbYtMmsNILCE0/YVO1jjy1VL92vvYg0E5GPRGSziCwUkXMi1DtfRH4VkQ0islhEHhERZ1aMIT/88APdunXj8ccfp3///nTs2LHCfSrzfK7JXcO7M97l3N3PpV52+PxO6UDvdr3ZodkOvDb1tbgeJ937hopI+pdfRGoD/8MS2zXDUijcrqpf+CpYOjNkCPz5J1xxhcXd33//MlXuvPNOHwRLX777Dl5/3VJt7bIL8NVomDgR/vc/CPkSrgHX/r9YRPFWwJ7AZyIyVVVnhNSrh6VS+RloCXyCxbx6KGGSpjE33ngjTzzxBJ06deKbb77h0EMPrXgnKvd8Dp86nLyiPC7d69KqipkSiAjndzufO7+7k/lr59Opaae4HKcG9A3lkvQ+NF6mzVuAYcAi4FjM23l3VV0QaT/nQ1NN1q61SMJr18Ivv0AUX2aOqpGXB926QX4+TJ8O9eoq7LsvLF0Ks2ZB7doJl8kvHxrvfV8LdFXVWd664Vg+l3I9HkXkRuAQVT2houM4H5qKGThwIGvXruXBBx+kQYMGMW9fVen6XFca1GrAzxenfxL2ResX0fHJjgw8aCADDx7otzhVxvnQVANV3ayqg1R1gaoWq+qnwHxgL79lS2uaNrX0CAUFcPTREDIuO2/ePObNm+eTcOnFkCEwcyb8978WboYvv4Sff4Y77girzKT5td8RKAooMx5Tgd2i2PdAINSK44iS/Px8rr32WkaPtskkgwYN4umnn660MhPt8znhnwn8ufJPLu2R3taZANs13o5DOh3C69NeJ16GhDTvGyok6RWaUESkFdbplem4RORSEZksIpNXrlyZeOHSjR13hE8+MUvBfvtZciGPCy+8kAsvvNBH4dKD+fPh/vstAfoxx2BR9QYOhA4doH//sPuk+bVvAKwPWbceixQaERG5ANgbGFJOna39Q3AgOAds3LiR448/nmeeeYaAZVskbDqdCon2+XzxtxdpWKshZ3Y9s0rHSUX6d+vPvLXzGLdoXFzaT/O+oWISHcK4muGPs4GvgRcqqutSH8SQ339XbdVKtVkz1YkTVVV17NixOnbsWH/lSgNOPFG1fn3Vf/7xVnz6qSqovvRSxH0Sce3xKfUB0B3ICVl3EzCqnH1OBpZjw9BRHcelPihh6dKl2r17d83MzNShQ4dWu71ons81OWu0zv119IpPr6j28VKJTXmbtMGDDfSijy+KS/sJ6hsSnvog2uK7AFELatakt4HPgeyK6juFJsbMmaPaubMpNfPn+y1NWjBqlL2BDz/srSgqUu3eXbVTJ9X8fF9l81GhqY85BO8QtO514KEI9Y8GVgL7VOY4TqExli9frh06dNB69erp559/nrDjPjbhMWUQ+tu/vyXsmMlC/5H9teGDDXVz/ma/RakSyazQpMSQk5jt8xVs1sNpqlrgs0g1j+23N9+OwkI47TRmTpvGzJkz/ZYqZcnNhWuvhZ13huuv91YOHw6//w733QfZkRPSz5w5M22vvapuBj4E7hWR+iLSBzgJKJNoTEQOBUZgfcIviZU0tbHfJWjZsiUnnXQSY8eO5ZhjjolJ2xU9n/lF+Twx8QkO6nAQ3Vt3j8kxU4nzu53PxvyNfPTXRzFvO537hqjwW6OKpgDPAxOBBtHu4yw0ceLjj1VBD9p2Wz3ooIP8liZlufNOVVD9+mtvxaZNqm3aqO6zj1lqyuGggw6K+7XHx2zbWHiGkcBmbGbjOd767bAw6Nt5y98Bhd66QPkimmPUZAvNzz//rHvttZfOnj07Lu1X9HwO+32YMgj9fFbiLELJRFFxkXZ8sqMe8foRMW87QX1D0lpoUiEOTQfgMiAPWBbkqHaZqo7wTbCayoknwh138OADD0ANDuBUHUaNgsDlO+wwb+WQIfDvv/Duu2XizoTy4IMPxl9IH1HVNZhfTOj6RZjTcGD5kASKlfLk5+dz3333MXjwYFq3bs3KlSvp0qVLzI9T3vNZrMU8MuER9mi1B0d3OTrmx04FMiSD/+zxH+774T4Wb1hMu0btYtZ2uvcNFeK3RhWv4iw0caSwUPXoo1UzM1VHjvRbmpRi+nTVBg1U99pLdXNgCH3xYtV69VRPP91X2YLBRwtNIkpNs9C8//77uttuuymg/fv313Xr1vkix6iZo5RB6BtT3/Dl+MnCnNVzlEHo4B8H+y1KpSGJLTQp4UPjSDIyM5k+aBDTd9kFzjzTwtw6KmT1ajNwNWgAI0d6MWfA4s0UFsJD0QW4nT59OtOnT4+bnI70wH57jPHjx1NcXMzHH3/M0KFDady4cdyOW97z+fD4h9mu8XacsdsZcTt+KrB9s+3Zf7v9eW3qa6XuU3Wp6X2DU2gcVeLq227j6kaNzFn4xBMtU7cjIkVFpvstWWI5J9sFrMw//ACvvQY33gidO0fV1tVXX83VV18dP2EdKc+CBQs49NBD+frrrwG4//77mT59OieeGP9s1pGezwn/TGDconHctO9NZGdGdnqvKfTv1p+/V/3NL0ti58+eLH2DiIwVkS0isskrM4O2HSYif4tIjoh857mVxISk96FxJCePPvqo/adNG8v1dNRR8O23FsPfUYa77oJvvrF8n717eyvz8y1fVseOViFKtl57hyMEVeW1117j2muvBWDt2rUA1KuXuMSPkZ7PweMG07xucy7qflHCZElmTt/tdK798lpe/f1VerXrFZM2k6xvuFpVXw5eISItsFmMFwOjgPuAd4DeZXevAn6PecWrOB+aBDJ3rmq7dqotWpiTiKMUH32kCqqXXBKyYfBg2/Dpp36IVS44H5qUY8WKFXrKKacooAcddJDOT6J4UVOWTlEGofd9f5/foiQV/Uf21wYPNtCNeRv9FiVqiMKHBhgLXBxm/aXAhKDl+kAusHNFbUZT3JCTo0pMmTKFKVOm2ELnzmadyc62aTs1OQ5CCLNnw/nnw957w9NPB22YPx/uvRdOPRWOO65SbZa69g6Hx0cffcRnn33Go48+yrfffktHnxLKhns+B48bTMNaDbmq51W+yJSsXNz9Yjblb+K9Ge/FpL0E9Q1ZgRQiXomUjGuwiKwSkfEicrC3bjcsNxuwNe7UXKLL1VYhSZ9tu6q4bNvx5eCDDwZg7NixJSv/+gu89Xz+OexVs/OHrlhho3GrV8Nvv1l6JsDyNR19NEyYYNesXeWmbYa99jHGr2zbiSJdsm3n5OTwxx9/0KtXL1SVuXPnxmUqdmUIfT5nrZ7Fzs/uzG19bmPw4YP9EywJUVV2/d+uNK/bnHEXVj+/U4L6hgqzbYtIL+BPLOr3WcCzwJ7A7cBKVR0QVHc88JKqDquubM6HxlElnnzyybIrd9nFnFyPOsoUmw8/hCOOSLRoScGGDZZscvFiGDMmSJkBePZZGD3a0mtXUpmBCNfeUeOYPHky/fr1Y+XKlSxYsIBGjRr5rsxA2efz4XEPUzurNtf3vt4XeZIZEeHi7hdz85ib+WvlX+zScpdqtZcsfYOq/hy0+JqInA0ciwW/bBRSvRGwMRbHdUNOjiqx5557sueee5bdsNNOZnno3NmGUt58M+Gy+c2WLXDyyTB1Krz3HvTpE7Rxxgy45Ra7NldcUaX2I157R42gqKiIBx98kH333ZecnBw++OADGjUK/Y3wj+Dn85/1//D6tNe5uPvFtGrQyl/BkpTzup1HVkYWr/z+SrXbSuK+QQEBZgBbZ46ISH1ge299tXEKjaNKTJo0iUmTJoXf2KaNWWr69IF+/eDxxxMrnI/k5kLfvhaaZ9iwEPeYvDw45xxo1MimO5VEva4U5V57R1qTm5vLIYccwh133MFpp53GtGnTOOSQ5AqYHPx83vP9PQjCzfvd7LNUycs29bfhpJ1O4rWpr5FflF+ttpKhbxCRJiJylIjUEZEsEekHHAh8BXwEdBWR00SkDnA3ME1V/47JwWPhWZyMxc1yii9R5QzJzVXt21cVVG+8scIcRanO+vWqBx2kKqL63HNhKtx0k12LUaOqdZx0z+WUiJJqs5yWLl269f/XXHONvv7661pcXOyjRJEJPJ8zVszQjHsy9PovrvdbpKTni9lfKIPQ16a8Vq12kiGXE9ASmIQNI63D8jAeEbT9cOBvbHbTWKBjee1VpjinYEeVCESj7Nq1a/kVi4osnfSzz1ryoldfhaz0c91avdr8fH//HV5/3QwxpfjiCzj2WLjySvOdqQZRX/tq4JyCk4ONGzdyww03MGzYMKZOncpuu8VkMkhcCTyft/9xO98v/J65186lRb0WPkuV3BRrMT1e6MHmgs38ddVfZGVUrY9MUN9QoVOwb8RKM0q24iw0SURxsep996mC5SvKz/dbopiyYYPlZqpdW/WTT8JUWLLEYvTssYdZrVIAnIXGdyZOnKidO3fWjIwMvfHGG3XFihV+ixQ1Pyz4QRmEPvjDg36LkjKM/GukMggd9vswv0UpF1wuJ0e6MWHCBCZMmBBdZRG480547DHzkj3tNPOcTQPy8y2UzJQp8P77cMIJIRWKiswylZMDb78NdepU+5iVuvaOlOSRRx6hT58+FBUV8f333/PYY4/RsmVLv8WKivHjx3PF81fQpmEbrut9nd/ipAwn7nQiPVr34N4f7qWgqKBKbdT0viH9bP+OhHD77bcDlYx3cOONULeuDbscfrgpN61bx0fABFBcDP37w9dfw9ChcPzxYSoNGmRBB195xaa1x4AqXXtHSlFcXEzfvn15/vnnadKkid/iVIrLbriMGStm8NKHL1EvO3EpF1IdEeGeg+/hhLdOYPi04VzY/cJKt1HT+wbnQ+OoEjO9aMA77bRT5Xd+5x248EKb7fP++yHzmlODtWvhsstMJxs8GAYMCFPpqafMf+iCC6o1qymUal37KHE+NImlsLCQN998k5YtW3LMMccQ6JclRs9MosgvymeHgTuQnZnN3wP/rrIvSE1FVen1ci9W5axi5tUzK53EM0F9g/OhSXRxPjRJzrRpql26qGZlqb74ot/SVIpvv7XUVVlZlo4p7GSTV15RBdVTT1UtKEi4jNUF50OTEPLy8vSVV17RLl26KKDHHnus3yJVi6cnPq0MQj+b9ZnfoqQsn836TBmEDv19qN+ihAXnQ1M9RORqL2dEnogM81seB3z//fd8//33VW9g991h0iSLJHzppXD33ZYSIIlRhfvus3RV9epZ/MABA8IYXt59Fy65BI480gILxnhWV7WvfZIjIs1E5CMR2SwiC0UkdM5YoF5XEfnKyxeT3A9PGP766y969uzJRRddROPGjfnoo48YNWqU32JVmfVb1nPP9/fQPa879Za4oaaqckyXY+jWqhuPTniUYi2u1L7p3jdUiN8aVTQFOBU4GXgOGBbNPs5CE19iFu+goED1wgtVQfWCC5J2BlRBgerFF5uY556rumlThIrvv6+amam6//7lVKoe6R6HBngLeAdoAOwPrAd2C1NvJ+Ai4CTrylLLQvPee+9py5Yt9cMPP0zamDKVYcCYAcogdK9994r785nujJg2QhmEfvJ3uGmTkUmGODR+Ft8FqJSwcL9TaJKDuXPn6ty5c2PTWHGx6t132+PYo4fqL7/Ept0YsW6d6nHHmXh33BFhiElV9YMPbBxqv/1sLneciOm1j4BfCg1QH0tot2PQuuHAQ+Xs0yVVFJoJEyboyy+/vHV5/fr1vsgRa2aumql17q+j5314XkKez3SnoKhAOzzRQfu80qdS+yWob3AKTUyEdQpNevPee6qtW1uo3SuuUF271ldxZs5Uvfpq1QYNVDMyVJ9/vpzKb71lysy++1rI4BTHR4WmO5Absu5mYFQ5+0Sl0ACXApOBybVq1YrDVYvMb7/9pocffrgCut1222l+kloiq8K/G/7VTk920haPtNBF6xb5LU7aEPBHGrdwnN+ilCKZFZqU8KGJFhG51PO1mbxy5Uq/xUlrvv76a77++uvYNtq3L/z1F1xzDbzwAuy2G3z2WWyPEQU5OXDVVZZn88UXLc7M5Mk2q6kMhYVw001w9tnQuzd8+aXN3oojcbn2yUMDbIgpmPVAw+o2rKovqureqrp3VoKiVasqTz31FL169WLatGkMGTKEP//8k+zsys1eSVbWb1nPMSOOYcXmFXx+zue0b9w+3Z/PhHFh9wtpXrc5j0x4JOp9avy191ujqkzBWWiShriP1U6apNq1qyqonn++6qpV8TtWEL//rrrLLnbY669XXbasnMrLllnyJjBTTl5eQmRMZx8azEKTE7LuJmJgoQkuiRpy+vPPPzUrK0tPOOEEXZWgZzhR5Bbk6kFDD9Lse7N19JzRW9cn4vmsKQz8bqAyCP196e9R1Xc+NEkgRNTCOoUmaVi0aJEuWhRn8/KWLap33mlOtk2aqD72mK2LA5s3q951l2p2tmqbNqpjxlSww9ixqttuq1q3rurw4XGRKRKJuPY+KjQBH5odgta9Tgr50KxcuVJfeumlrcuTJ09OC6ffYIqLi/X8j85XBqFvTnuz1LaE9A01hDU5a7TlIy1135f31aLiipP7JqhvcApNtYS0iMZ1gMGYg2AdIKu8fZxCk0ZMn6569NH2uG6/verQoTGzhhQXq77zjmr79tb8OedUYAwqKlJ98EFzqtlxR9WpU2MiR7Lhl0Jjh+ZtbKZTfaAPkWc5idcX7Aqo9//a0RwjHgrNihUr9LbbbtP69euriOisWbNifoxkYcj4Icog9J6x9/gtStrz2pTXlEHoi5OTI16XU2iq38EN8jqs4DKovH2cQhNfvvjiC/3iiy8Se9Avv1Tt1s0e27ZtVYcMUV2zpkpNFRerfvaZas+e1ly3bqo//FDODkVFNiV7zz1th7POiutMpvJIxLX3WaFpBowENgOLgHO89dsBm4DtvOWOYfqFBdEcI5YKzdq1a0spMmeddZbOmDEjZu0nG5/P+lwz7snQvu/2DWs18KVvSGOKi4v1wKEHatOHmuqKTeUnKE1Q3+AUmkQXp9DEF9/GyYuLVb/4QvWQQ+zxrV1b9eyzVb/+2pSOCtiyRfXNN1V79bLdO3ZUffll1cLCCDvk56u+8YbqbrvZDjvsYMs+DiGksw9NokosFZqlS5dqmzZt9Oyzz9Y///wzZu0mI1OXTdVGgxvpns/vqZvywsdZcj40sWf68umadW+W9h/Zv9x6zocmCYSIR3EKTXxZunSpLl261F8hfvtN9aqrzL8mYLW56SZzKA7RUGbPVr3xRtXmza1q586WcSHiyNWKFapPPaXaoYPtsOuuqiNGlKP5JI5EXHun0JRPcXGxvvfee1roPQ85OTnVai8VmLVqlrZ6tJW2faytLly3MGK9pOgb0pDbxtymDKKUA3YoCeobklahcckpHalPbi6MHAlvvWXTpgsKoEEDtMdeLNymJ2/O681/f9uXFVltOOUUy7Rw6KGQIQrr18O//8KSJVZmzoTRo+G336ztAw6AW2+FY4+FjLSKclAuLjlleFSVr7/+moEDB/LTTz/x+uuvc95558VBwuTin/X/sP/Q/ckpyOGH/j+wS8vYZI53RE9OQQ57v7g36/PWM+3yaTSv19wXOZI5OaVTaBxVIpBz5oQTTvBZktIULF/DHw99xtovf6bxnMl0LZxCHfIAKGrVmsz6dS35UmEhLF8OW7aUbiArC/bbz/IwHXssdO/uw1mUTyKuvVNoyjJ27FjuvvtufvzxR9q3b89dd93FxRdfnHIZsSvL4g2LOfz1w1m6aSnfnf8dPVr3KLd+svYN6cDvS3+n18u9OGGnE3j/9PfLPHsJ6hucQpNonEITXw4++GDAOvlkYPZseOUVGDbM9JTGjeH44+HU4/I4vt0Uak2eANOmmfVG1awtrVpBmzbQujW0bVtS6tTx+3TKJRHX3ik0pVFV9t57b5YtW8Ydd9zBRRddRO3ateMoYXIwY8UMjh5xNOu3rOfzfp+z/3b7V7hPsvUN6caj4x/l1q9v5ZUTX+HC7heW2pagvsEpNInGKTTxZdWqVQC0aNHCl+PPnQujRsH48TBxIixeDJmZpsQEEl2nSTDWMiTi2juFBn7++WceeughXnnlFZo1a8a8efNo06YNdZJc4Y0V3y/4npPePol62fX4vN/n7LntnlHt53ffkO4UazFHDD+Cnxf/zISLJrBHqz22bktQ3+AUmkTjFJr0orAQfvkFvvrK3GWmTbP1HTtaxoF997XMCW3a+Cll+lCTFZoFCxZw9dVX89lnn9GiRQs+/PBDDjjggARL6B9FxUU8OuFR7v7ubrZvtj1f9vuSDk06+C2WI4h/N/7LPi/tA8DEiyfSrlG7hB27MgqNiOwA/AG8r6rnikhHYD4WkiHAw6p6XyxkS0xCE0fa8eGHHwJw6qmnxrztzZvh55/NP3fOHPv744+wYYO5v+y/PzzxBJx8sik0NY14Xvuazueff865555LUVERDzzwANdccw0NG1Y7jVTKMHv1bM4feT4/Lf6J03Y5jRdPeJFmdZtVqg33fMafNg3b8Nk5n3HA0AM47s3j+PGCH2lUu1EyXvv/ApPCrG+iqoWxPljaWmj22sssNGnur+cbsRirzc+H6dNh3jwbMlq40IaPJk82iwyYO8v225f46R56KDSrXP+adjgfmuoTyUJzyimnMH/+fD744AO23357HyTzB1XltamvcdXnV1ErsxbPHvMs5+x+TpUcnp0PTeIYPXc0x444lkM7Hcqos0dx1OFHAcnhQyMiZwGnAn8CXUIsNNlOoakEIntrRsZkateGWrVs8kpmJrRsCV27WiLnVq2guNh8ROvUgSZNzJm0USNo0MBKq1bp64tRHdavt4TIjRs3LrdecbHNip492xSWxYth0SKYOhWmTDGlJkDdujap6MADreyxh/nr1qDZ0lER7bWvDjVFoSkqKuKtt96ia9eu7LnnnmzYsIHs7Gzq1q3rt4gJY2PeRq747ApG/DGCQzoewvBThtO2Udsqt5eI59NRwtDfh3LhJxdyTJdjGHr0UOpk1Yl331ChQiMijYDJwGHARZRVaP7FInuPAW5R1VWxkC1th5zatIELLoC8PPvRLCqyCS5Ll5ovxjvvRNdOdjbsuKMpQC1amGKUnQ0NG0LTpiWlSRP7W6eOKVDZ2VYC9evVi+vpJpTCQti0qTGrVsHatVZWroRly+z6rlhhZeVKU15yc0vv36KFXc/rroOePWGnnaBdO7t+zqJWMe6HIjZ89NFH3HXXXcyYMYOrrrqKZ599lkaNGvktVsLIL8rnjWlvcP8P97Nw/ULuPfhebj/gdjIzMqvVrns+E8sF3S+goLiAyz+9nPM+P4+RZ42M9yGzRCTYQfVFVX0xpM59wCuq+k+IlW8V0BOYAjTHhqRGAEfFQrC0tdBU5BS8aVOJT4aIhSNZt85+nDdtKtk+fz7MmAF//mnLhYWmGFU2Jlfz5qYYBazYOTmmbDVpYlagFi3MQlGrlpW6da3UqVOijBUVmawZGWZtqlvXFKU6dUrOo6jIZN+40c4pM9OUqowM2xYo+fklpajIziuwrbDQlJA1a0oUlnXrLAbdypWwahWoBjTCM8ucZ6tWZglr2RK22w522AG6dIFOnVJiVnTS846njZ955pkV1Kw66W6hyczM1OLiYnbaaSfuvfde+vbtS0YNMQVuyt/Ei7++yOM/Pc6SjUvovm13njr6KQ7oEBvH50Q8n46yDJsyjAseuIBdWuzCuMfHVdr3KVoqstCIyJ6YktJdVfNFZBCehSZM3W2BpUBjVd1QbdlqqkJTXQoL7Qd+zZoSRWjt2hKLUEGB1SksNMVi4UKYNcv8RQLKSK1atu/y5abgJBMiJVangAWqSRNTWFq3hjffPJjsbHjmmbE0bWoKWatWdk6O+OJ8aKpPRkaGvvrqq5x77rlkZaWtoboUq3JW8czPz/DML8+wdstaDu54MP+3//9xROcjYhoc0PnQ+MeuPXfl71V/0/H6jnx05kd027ZbzI8RhUJzPfAAsNFb1QDIBP5S1R4hdVsByzAn4fXVFs7v3AvxKqmWy2nzZkscvWyZ6sKFqjNnqk6Zojpxourkyfb/P/6wMnWq6q+/qo4bpzpmjOonn6h+/LGVUaNUv/vO9pk+XXXaNEt5NGmS/Z061dbPnm3H+fdfS1u0erXqunWqmzap5uZWnOdx8+bNunnz5oRcG0dpEnHtSfNcThkZdXXoUDvX/HzVgw5SHT7cljdvtuW337bldets+YMPbHnlSlv+5BNbXrrUlgNJjhctsuUxY2x57lxbHjvWlv/+25bHj7flP/6w5V9+seXff7fl33+35V9+seU//rDl8eNt+e+/bXnsWFueO9eWx4yx5UWLLOfUw8Om6ja7/am1bt1OGYT2uuV+7d57va5cafU/+MDqr1tny2+/bcuBR2z4cFvOz7floUNtOcCLL6oedljJ8hNPbNYjjih5Pp98UvWEE0q2P/qo6qmnliwPHqx65pkly/feq9qvX8nyXXep9u9fsjxggOoll5Qs33ST6pVXlixfd52VAFdeaXUCXHKJtRGgf387RoB+/UyGAGeeaTIGOPVUO4cAJ5xg5xjg6KNV//vfkuXDDrNrFOCggzRuz97MmZu1W8+l2vyyM7Xu/XX1sc8+ivmzRwW5nIB6wLZBZQjwPtAS6AXsBGRgQ07vAN+V115lSs34NEkB6tVLLT+beqkkbJrhrn0sSF9nrc35m1iVk8v/ff0449a/xcLJO5OZcyfn7X4Otxx1HnMn7spjv8Tv+LVq1SOzem44jipSt249mtSrxx3HPcezq5dy01c30nLlDqzLbQs0SYgMqpoDbB1zEJFNwBZVXSkihwMPAtsAGzCn4LNjdWw35OSoEm+88QYA555bZljUEWcSce3Tfcipqskpk5ENeRuYtGQSYxeM5ev5X/PLkl8o1mIa1mrIoZ0O5bRdTqPvrn2pm52YmVuub/CP4GtfUFTAI+Mf4Z7v76FJnSY8dfRTnLHbGdV2+naRgn3AKTTxxY2T+4fzoak+qarQqCrz183nh4U/8OPCH5m4ZCJ/rfwLRcmUTPZpuw+Hdz6cIzofQe92vcnOTHzMCdc3+Ee4az99xXT6j+zPr0t/pVOTTlzZ80ou7H5hlZ2GnULjA06hiS8FBQUAZLsgPQknEdfeT4VGRJoBrwBHYtM8/09V34xQ9wbgNqAu8AFwharmVXSMZFZothRuYcG6BaXK/HXzmbd2HnPXzGXtlrUANK3TlH3b70uvtr3o1bYXvdv1pnEd/6dMu77BPyJd+8LiQkb+PZJnfnmGHxb+QO3M2py404mct8d5HN3l6Eopvk6h8QGn0DgcVcdnheYtzGnwImBP4DNgP1WdEVLvKOB14FAsUNdHwERVHVDRMRKl0BRrMRvyNrBuyzrWb1nPui3rWLdlHWu3rGVN7hpW56xmVc4qlm9ezvLNy1m8YTFLNixBKemXszOy2a7xdmzfbHs6N+nM7q1258AOB7Jry13JkJox1dwRO6Yum8orv7/CW9PfYlXOKhrWakivdr3o3bY3vdr1Yvdtdme7xttFnPnmFBofcApNfBk2bBgA/fv391WOmkgirr1fCo2I1AfWAl1VdZa3bjiwJFRREZE3gQWqeru3fBgwQlW3reg4tevW1pcmvkRRcRGFxYUUFBdQWFxIsRZTVFxEkRaRX5RPXmEe+UX5FBQXUFBUQEFxAXlFeeQV5pFXlEduQS65hbnl/g1WTkLJlEya12tOq/qt2Kb+NrRt1Jbtm25P56ad6dikI52adGLbBttW2+8hkbi+wT8qc+0Ligr4au5XfD77cyYunsi05dMo0iIAGtVuxI7Nd6RV/Va0qt+KnVvszC19bgGcQuMLTqGJL26c3D/S2YdGRLoDE1S1btC6m4GDVPWEkLpTgQfVi/IoIi2AlUALVV1d7nFqiXJHFPIg1MqsRXZmNtkZ2WRnZlM7sza1MmtRO6s29bLrUTerLnWz65b+6/2/fnZ9mtRpQpM6TWhcpzFN6zTd+v/mdZvTsHbDtLOyuL7BP6pz7Tflb2La8mn8sfwPpi2fxrx181i+ySyHHZt0ZPyF44HkVmjSdtr2r7/+uklEZvotR4JogfkaJJxYBuSqBL6drw9EPNc4X/sO8Wy8HBoAoQG21gPhUl6H1g38vyFQRqERkUuBS7euGESF4SwVJc/7l8JkATFPBFgRPvUNvpyrT0Q811hf+3/5F7loa5tJm+gsbRUaYGY6z9IIRkQm15RzhZp1vjXpXD02AaEJlRpREnW0vLqB/4eri1q+mRehZl1Xd67pSU0612hJL1unw+FIdWZhye92CFrXDZgRpu4Mb1twveUVDTc5HI70xCk0DocjaVDVzcCHwL0iUl9E+gAnAcPDVH8duEhEdhWRpsCdwLCECetwOJKKdFZoQtOZpzM16VyhZp1vTTrXAFdi4/QrgLew2DIzRGQ7EdkkItsBqOqXwCPAd8BCrwyM8hg16bq6c01PatK5RkXaznJyOBwOh8NRc0hnC43D4XA4HI4aglNoHA6Hw+FwpDwpq9CIyNUiMllE8kRkWAV1bxCRZSKyXkReFZHaCRIzZohIMxH5SEQ2i8hCETknQj0RkftFZIl3vmNFZLdEy1sdoj1Xr25nEflURDaKyCoReSSRslaXypxr0D7fioiKSDqHXagyrm9wfYNXN6X7BnD9Q2VJWYUGy91yP/BqeZXE8r0MAA4DOgKdgXviLVwc+C+QD7QC+gHPReiMTgcuBA4AmgE/EX6GSDIT1bmKSC1gDPAtsC3QDngjgXLGgmjvKwAi0o/0jh8VC1zf4PqGdOgbwPUPlUNVU7pgHdewcra/iYVHDywfBizzW+5KnmN97KHeMWjdcOChMHVvA94NWt4N2OL3OcTpXC8FfvRb5kScq7etMRanpTegQJbf55DMxfUNZeq6viGFiusfKl9S2UITLbsBU4OWpwKtRKS5T/JUhR2BIvWS9XlMxc4tlLeBLiKyo4hkA+cDXyZAxlhRmXPtDSwQkS88k/JYEdk9IVLGhsqcK8CDwHPAsngLVkNwfYPrG5IZ1z9Ukpqg0JSX7yVVqEx+m6XAj8BMIBczM98QV+liS2XOtR1wFvA00Ab4DPjYMzenAlGfq4jsDfQBnkmAXDUF1ze4viGZcf1DJakJCk2l8r0kKZXJbzMQ6Am0B+pgPgHfiki9uEoYOypzrrnAOFX9QlXzgSFAc2CX+IoYM6I6VxHJAP4HXKeqNSXxXiJwfYPrG5IZ1z9Ukpqg0KRDvpfK5LfpBryjqotVtVBVhwFNgV3jL2ZMqMy5TsPGilOVaM+1EbA38I6ILAMmeesXi8gB8RczbXF9g+sbkhnXP1QWv514qlowT+46wGDMUaoOYZyggKOxMcVdsZf3WyI4VSVzwca/38IcxfpgpsfdwtQbCIzDvOIzgPOAzUATv88hDue6E5ADHA5kYubzuUAtv88hlucKCDZTI1B6Yp1121Q61wReU9c3uL4h5fuGaM/X9Q9B18JvAapxowd5Ny24DAK2w0x12wXVvRFYDmwAhgK1/Za/CufbDBjpdUCLgHO89aXO1+u8/4uNl28AfgOO9lv+eJyrt+5UYI53rmPDdW7JXCpzrkH7dKSGzmKI8pq6viHMM+T6htTqGyp7vkH71Nj+weVycjgcDofDkfLUBB8ah8PhcDgcaY5TaBwOh8PhcKQ8TqFxOBwOh8OR8jiFxuFwOBwOR8rjFBqHw+FwOBwpj1NoHA6Hw+FwpDxOoUlTRKSuiIwSkfUi8p6I9BeRcX7LFUBENolI5zi0KyIyVETWisgvsW7f4Uh1XN/g+oZ0xSk0SYqIqIh0CVk3SETeiLKJvlhE0Oaqenolj13mOF622osr0055qGoDVZ0Xq/aC2B84AminqvtUtREROVhEFsdOLIcjNri+ocq4viHNcQpN+tIBmKU1L1lZB2CBqm72UwgRyfLz+A5HObi+wUdc3xBH/A5V7Er4goWu7hKybhDwhvf/g4HFwE3ACiyc+QXetnuAfKAAC499EdAfyz4baOsp4B8sLPivwAHe+qND9p0KPAAUAVu8dc96dXcGxgBrgJnAGUHtD8PCrH+GZYf9Gdg+3PlFUfdIr/31WFbZ74GLw1yzizwZizw578Fy9HwKrATWev9vF7RPMyzk/b/e9pFY3pRcoNhrZxPQBqgNPOnV/df7f+2Q+3Eblh9ouN/PkCvpWVzf4PoGVyK8G34L4EqEGxNdp1UI3AtkA8diydiahtb1lkM7rXOB5lgiv5u8F61OuH29dWODOwrvxf4HuMBrowewCi9fitcRrQH28baPAN4Od37l1QVaYB3rqd6267AOtUynFeE8mwOnAfWAhsB7wMig7Z8B73idWzZwUND1XRzS9r3ARGAboCUwAbgv5H487HVudf1+hlxJz+L6Btc3uBK+uCGn1KYAuFdVC1T1c+xrYadodlTVN1R1taoWqupj2IsW1b4ex2Pm26FeG78BH2Dj8wE+VNVf1EzbI4A9y2kvUt1jgRmq+qG37Wmsg40K7xw/UNUcVd2IfVEeBCAirYFjgMtVda13Hb8vp7l+2PVeoaorsa+884K2FwMDVTVPVXOjldHhiAOub6gA1zekH24sL3kpwr4KgsnGOqoAq7X0OHgO0CCaxkXkJuBizFyqQCPsiydaOgC9RGRd0LosYHjQcnDnUpFskeq2wb72AFBVrYxDnojUA57AzOVNvdUNRSQTaA+sUdW1UTbXBlgYtLzQWxdgpapuiVY2h6OKuL7BcH2DoxTOQpO8LMLSwAfTidIvTZUQkQOw8dwzMDN0E2wMWrwq4VKwh677B/heVZsElQaqekV15QthKdAuSHYJXo6Cm7Cvy16q2gg4MNAUdg7NRKRJmP3CXYN/sc46wHbeuvL2cThijesbDNc3OErhFJrk5R3gThFpJyIZInI4cALwfgzaboiN6a4EskTkbuwrLMByoKOIZISsC44N8Smwo4icJyLZXukpIrvEQL5gPgN2F5GTvdkBVwHbVmL/hpgT3zoRaQYMDGxQ1aXAF8D/RKSpdw6BTm050FxEGge19RZ2T1qKSAvgbiDaqbIOR6xwfYPh+gZHKZxCk7zcizmWjcM87B8B+qnq9Bi0/RX2ss7Cvuq2EGS6xZzjAFaLyG/e/58C+npBqZ72xpyPBM7CvkSWUeL0FjNUdRVwOnb+q4FdgclAXpRNPAnUxZwSJwJfhmw/DzPV/43NCLneO+7fWCc1T0TWiUgb4H7v2NOAP4DfvHUORyJxfQOub3CURVSdJcyROnhfhouxDvw7v+VxOBzJgesbHM5C40h6ROQoEWkiIrWB27Ex7ok+i+VwOHzG9Q2OYJxC40gF9gXmYqbhE4CT3dRHh8OB6xscQbghJ4fD4XA4HCmPs9A4HA6Hw+FIeZxC43A4HA6HI+VxCo3D4XA4HI6Uxyk0DofD4XA4Uh6n0DgcDofD4Uh5nELjcDgcDocj5XEKjcPhcDgcjpTHKTQOh8PhcDhSHqfQOBwOh8PhSHmcQuNwOBwOhyPlcQqNw+FwOByOlMcpNA6Hw+FwOFIep9A4HA6Hw+FIeZxC43A4HA6HI+VxCo3D4XDUYETkcBH5S0TmiMgDEep8KyJTRGS6iDwvIplB224QkRnetg9EpEHipHcEEJFGIvK2iMwUkT9F5BgR2d27b4GyQUSuC7NvexH5znsOpovI1X6cQ3URVfVbBofD4XD4gKeY/AUcAywAfgBuUdUJIfUaqeoGERHgXeADVX1bRNoC44BdVTVXRF4FflPVZxN6Ig68az9JVZ/z7mtjVV0TtD0TWALso6qLQvZtDbRW1d88hfRX4GRV/SuBp1BtnIXG4XA4ghCRB0VkuYioiPT3W5440xOYr6pzVbUIeB04NbSSqm7w/psF1AWCv4SzgLreD2Z94N/KCCAiw0Tk66oI7zBEpBFwCPA8gKoWBSszHkcAs0OVGa/+UlX9zfv/JmAm0C6+Uscep9A4HA6Hh4j0Av4PuBRoDbyToOMe6w0J5InIAhG5sYL6gzyFK7R0KWefQ0WkSETmBK1uB/wTtLwIaBth/6+BFcAG4H0AVV0CPAosBJYBWar6YRSnHMx1wOmV3CcpEZEWIvKciPzr3cv5InJ5SJ1K3Wtvn4rud2dgJfCKiPwuIsNFpGlIM2cDb0ZxrE5AD+CXqE46iXAKTRriPfxzKq5Zap+DvRckplp5vNpNZkSko3fO+/sti6PS7AAUq+rHqrpMVXPjfUAR2Rv4GPgS2BMYBDwY+kMYhgWY0hVc5kc4RivgNWBMReJE2qCqhwNtgNrAoV67TYGTsR/UNkCmiJxbwTFC212vqmsrs08y4g3V/AB0wZSHnYBzgD+D6lT1XkP59zsL2At4VVW7A7OBrf5QIlIHOA54r4JzaAh8AFyvquujkCmpcApNkiIirUTkGU+DzxeRlSLyvojsGcXuQ4DelTzkBOwFqZS5uKqISD0RyRGRPYKUnkBZKyITROTYSra5v7d/xyrIM0dEBlV2P0f6ICLDgOFARuBZ9NbvLyLjRWSjV6aKyFExPPSNmO/DAFX9S1WHAc8At1WwX5GndAWXojDnlQGMAP4LTAzZvBhoH7TcHvOzCIun4H0CnOStOhwbslqpqgXAh8B+FcgdKl+pIScRGSsiL4vIXSKyTETWeHXqh+x3lZjza56IrBCR94O2xfueheMWoB5wvKp+r6oLVPUnVf0hqE5V7zWUf78XA8tUdZy3/B6m4AQ4HvhZVVdFalxEsjFl5i1VfT9SvWTGKTRJiIi0ByZjHcMVmMZ/HFAATBSRoyPslyEimaq6qbwHNxyqmu+9IMXVFD9ajgaWquq0oHU9MKVqP+B3YKSI7JYgeRyO64DrgSK8L2DPL+QT4Gfs+eyBfVXnAIjI7SKyqYJyewXH7YN9sQfzJdCxAstmOxFZ7JUvRCSSInEX5vPySJhtk4DOItLZO9f/ACODK4jNnmnl/T8L64sCzqKLgF7eB4oAhwVtQ0T6V/Ejoy/QDDgYs3KcDNwa1O49wMPA/4Ddsf5kiret3HsWjhjdx9MwB+knRGSpiPwtIo+KSL2gOlW911DO/VbVZcBcEenqrToMmBG07zmUM9zk3btXgD9V9dEK5EheVNWVJCvYy7gMaBRm2+fetrrYSzoHOBP4GygEugbWh+x3PabF5wBfAedhnVw7b/vBEZaPwMyoOZjp9KiQdh/AOrAcbCz+ecy7nnDtBq1/AxgSqQ7Q0Ft3TdC61sDbwDogFxgL7O1t6+jVDy5jvW09gC+w8f9NWCd+dFC7Y8Ps29Hb1gX7alkHrAVGA7uHnMsZ3n3Yglm6TvTa2N/vZ8mVSr97/YHCoOWm3r08OEL9Zt4zUl5pVsEx84FLQ9bt5h23Z4R9jvGeuz2AA7AfqyLgiJB6hwBLgW295UGU7RuOxPqPucBDQes/x4aR2nvvzDRgOvAU5isTqHeP1wdMxyxctYO2neK13bac8x8GfB20PBaYFlLneeAn7//1vff/5gjtlXvP4ngfc70+4DVgb68fWASMqM69jvZ+Y4rdz959+iLonjcGVgP1w7QbuMf7ezJMwxTDKcCJfr+PlS2+C+BKyA2xl7EIuDPC9gO8B+9ESr46vseGmHbEFIFSnRY2a6EQ+wLdAeu0/yU6hWYq9vWzAzYDYh3QJKjtOz2ZOmJfBX8DrwVtL9Wuty4bUw76RDh2LeBmb91l3jrxXtYp3su3O+awuRZoAWRSokj0BLbF64C89s8HdvWu0f1Yx7Kjt70ZNhY9xNtvW6+9Vpjy+Jx3vJ0w8/BqoKW3b3egGBjsbT/Va8spNClYCFFovHUvAXnYj8QAYKcYH7O8H7m9K9HO98DooOUW2PDRMUHrBhGi0PhdCK/QvB5S5y5gnvf/fbxrs0c5bcb1nkU4Zp53vYOVvb6erIG+KCb3Otz9dkXdkFMSsgM2FDgjwvbA+p28v3WA81R1oqrOUtWNYfa5CRsXfUpVZ6uN274epTz3qOqXqjobM/k2BnoFNqrq/ar6o9p48TfYDJGzvHH7SByCvfw/hayfKSKbsK+cRzGrR2CWyaFYR3aOqo5T1T8w8/gW4Eq1seTANMWVasNnazwZx6rqa6r6p3eN7sS+KE/3tq/BlMhNWnps+gpggapeoap/qOpM4FpMqevnHesmYKKq/p+qzlSb4fFYdJfWkQqo6iWYP8IY4CBguohcBjEbqliKKdHBtPL+LquEqD9hHxYBumJf36NEpFBECoG7ge295XO8cyg3sJ5EGZwtxuSHLCtlXSSUCJR3z8IRw/s4W1ULg9YF+usOQXVica8h5H6L+Vv+EXSfGnrrIwZFDEbSIEBilt8COMoQcZaBR+hLvFzDxBUIYVfKjp+GKhORmLL1wKrLRKSIkhcQETkVG87qAjTCOp1a2EsbycH4VOBjLeuvcxSw3JP3MaC/qq7ztu0GrFbVrTMGVDVPRH72tkVERFpiZvFDPbmyMEWwQ3n7YZaevTwlK5i6mOKJJ+s3IdvH4UgrVHU6NqTyuIg8j03rfgEbCnm3gt1D44GEMh579u8NWnc0sFBVF1dCzO6UnoI9CbMsBnMl5iB6LPCP9+P2P4IC64nIfhoUWM/7eNgTSgVn+6gScsWaP7EPmaOAPyJVKueehSMW9/FH4GDPjzHgrBv48Fzg/Y3VvYay9xvgEC3rP3mylg6KeDo2dL8VsQCJ11I6QGJ/IKUCJDqFJvmYjQ1hdCV8pxFw+pqJ+YZsjrLdiF8zFRD6pQTel5JYzI73sOGWW7Dhn97YGHKtcI15L9VJwAVhNi/wXurZIpIHfCQiuwa9oOHOQSKsD2YYsB1mYZqPjXW/HUnGIDIwZSVcGPDAlMZoju9IUcTifFwCjMJ+PNpgQ6yBIGRrqPiHriKeACZ41pHhmCXyGuCGIDmuBq5W1Z295ceBT7EfykaejEdQMvsIVd2M/aAHn88KIN/7sUdEeuMF1vOWA4H1SkUKDiJicLZEoaqbROQxYJCI5GJWmLrAsao6uKJ7FqHNWNzHIZify7Mi8qR33CHY8Nlar06l77W3rsL7Xc65lRcUMZhAgMR8qhAgMRlwQ05JhvdifQFcJRb9MZTbMStGRfEkgvkT2DdkXWWndYdjf2CVqt6pqj+r6iwqji65Hza18dvyKqnql9iQ00Bv1QyghYjsGqgjIrWxDiFg1g0oX6Em1QOB/6nqJ97X5lIsbkYw+WH2m4xZf5ao6pyQsjJIrj4h+4UuO1KXzZg17m1gFuYgPoHwSm6VUNVJ2Cye4zGftfuAO1T1+aBqLSj52gdzkH8dGzod7W07XFVHVfLwUQfW84gqOFuAasxyqoi7gDswq8J07Br08LbF/Z6FQ1WnYpavvbH7OBT7KL0iqE5V7jVEd78VGC0iv4nIDcE7S5igiCGyxyJAov/47cTjStmCDYUswX5Qj8ZmGfTEOpIteDN0iODgF7oe++IqwL4EumC+J0uwF6CtV+dgynESDmqrEBsKAnspi4GLMAXhP9hMquBZQqHtDgHeDGkz0rFOwXxtOlHaKbgPZqna6hTs1W+F+cJcA2yDN9vKu47jMPP7ntgssvXAsKBjfYYpWdthHUqG196/2KywgOPz/tjMrv28/fbyrsEDmMPxKcA8nFOwKylQMKfVl4OWj8X87cLVrQOsCrxvUbZ/L6b0Z1VHTleiutaBvrwpNvx1csj2uphyd0SYfZt6/V9LbNLGSOBcv8+pssVZaJIQVV2Iafk/Y2O+czGrTW1gXzXrRWXa+xAbbhmAjTn3w3xKwBSkqsr5KfZD/qDX7lnY0FN5nEL04+8fYybWe9XeupOxWVSfYf4B22Iv5ypPnuWYU/IAzArzsdfOBZiC8gv2on7p7R/MQMzheSYWQnw7r719sU78Q2/bCEzhXOod81csxsNZ3jUYQJD52OFIcioTWK/C4GwR9rlaSzvKOuKAmpUFteGtdwixwmvZoIjBVDtAYjLgsm3XUETkbuA6VW2ewGN2w5S0FmoJ0BwOh494Tr5/Y46qC7GYU7dpScTZ4LofYlm2RyRWSkdFiEVRzlRz/q2NfTSOwPyI6qrqcrGgiG8C36vqf0P274UF1tsH8zEcBkxW1WcSeBrVxlloagAiki0iA8TSDGwvIhdjlpSXEixKbexrzSkzDkcSoDYb5yoswNos4MeAMiMin4tIG+//jbHpzyN9EtVRPq2wGWpTgV+xofk3MavzpyISCJi3lKCZXoF7rKo/Y8NRv2KW5gzgxUSeQCxwFpoagKeZf4r5ezTEZvq8DjzqTMEOh8PhSAecQuNwOBwOhyPlcUNODofD4XA4Uh6n0DgcDofD4Uh5nELjcDgcDocj5XEKjcPhcDgcjpTH5XJyOBwOR8IQkVpYNO5AqY+FdKgN3IzlQBqAxUPJ88paLMDlKmC9lk1s63C4WU4Oh8PhiC0i0gLoBuyMpUUJlA5YbJTqUITlG5oXVOZi8VP+VtVwCXUdNQCn0KQJInIt0EZVB/gti8PhSDwishOWkLELlrvtdi2d9DBex22IpQjZH4t11Y3SCS5zMaVjPpbKZDkl1pbVwEZKLDFvYEliz8RyCtXGckg1pcSi0xKz4nTClKS2WK43sPOegSV+nIjlNPrLWXRqBk6hSRNEpA6WnbqHqq7wWx6Hw5FYROQVYIOq3iAirbHcZdvH2mLhDRkdCBzj/e2OKSFFWDboKV6ZiikXyzTKHxoRGQugqgdXQp46wPbAHpgytacn0zZeldVYctpvgc9UdW60bTtSC6fQpBEi8hIwU1WH+C2Lw+FILCLyNfC2qr7sLY8BXlDV92PQdnPgBCzZ5JFYxPE8LDfbD5gl5CdV3VjN4zwJoKrXV7Mdwaw3BwIHeH+39zb/jUVOHwWMc9ab9MEpNCmGl1vlGewF3QQ8oapPe9v6ARer6iE+irgVL+VCM8xMXA+ohZmQh2Cy302JqXkDZoLeEO3XnMPhMETkWyzXUgFQCPQATge6qOoFVWyzHnAilk3+aGwIaAmmDHwGfKuqm6svfWIQke2B4zCl7GDsfBYDb2F5j6a6vie1cQpNCiEiGcAk4GPgIaAd8DVwhap+JSI9gK9VtVkC5ekCdMW+fgJj2h0xc2/TKjRbiCk2Sylx+JsPzMY6nJXVFtzhSEO84Zo3giw0pwJ3qmqPSrazF3Al5sdSH1Ni3sL8c35Lhx99z+/neEqUtSxseOxF4HVVXeefdI6q4qZtpxY9gZaqeq+3PM8bZjoL+ApzrqvuDIKweCbcjpj5dl9snHoPzPISYA2mgPyBzUIIdvzLocQa8xL2JXk1JdM1G1F6Kmc7YDes06kdJMdSbGz+N8zMPUFVN8T8hB2O1Gcj0CSaip4fyhlY5u19sPf1bWA4loG7KE4y+oI3NPYW8JY3I6svcAHwFDBYREYA/1PVKf5J6agsTqFJLToAbURkXdC6TOyHHWxce32sDiYiLTHHv6OwIa523qb1mNPfy97facAcVY3q2CKyBEBVv42ibgbQGpv+2Y0Sp78jgNuBYhGZAnyPmcF/dNM2HQ7A+oN15VUQkUbA5cCNQCvMv+RazEoRs74kmVHVVcDzwPOedeoK4FzgEs8P6UHg+3SwTKU7TqFJLf4B5qvqDhG274JZL6qMiOyAjb0fD/TGpkMuxxSGH7wyo5qOdFOiregdZ4lXvgmSs74nX8Dp70rgBmCjiHwFfAJ87Kw3jhpMxP7Ac/K9DrgGs+KMAR7G/GJq7A+3qv4KXCwitwCXYn3Kd8BEEXkQ+LQmX59kx/nQpBAikolNxXwXeBrIxzqtuqo6SURexCwlj1Sy3W2xYatzsGEtMF+dgPPf7/GeCSBCK8wSVAh8qkqlFBFPwTmMEqe/NsAWbCbDCOBLVc2LqdAORxIRxodmNPCyqr4bVKcepsgMwIZ5PwIGq+qkxEuc/IhIXWwo6lbMQv4TcKuqjvNVMEdYnEKTYniznB4DDsF8S2YCd2JxFuYAe6nq8ijaycAUgCuxmQwZwO/Yj//bqrokLicQVhZ2xKZ/ZgOKDWl1V6VKDsCev09vTEE7EwvEtRp4FXheVefFQm6HI5kIVmi8ODSTgM6qmu/FjhmAWR3aYor+Har6h28CVxIRMlTxZYq1iGQD/YF7sCHwT7Ep8Z/6IY8jPE6hSRNE5BqgvareWkG9BsDFmCKzA+a0+wrwmqr+FXdBw8rEF1hsi0Cy1ALgeVWurX7bkg0cjp3zSd4xvsQsXF8587EjHRGRx4C5qvo/EemFKTAtgV+BG1X1B18FrAQinIFNJGiAfficokqFH23xkUXqA9cDd2EflEOB66obf8cRG5xCU0MQkWbYePm1WGyYCcD/gPf9HooR4Q9s6ncwn6hyUmyPI+2AS7zSGpsp9SDwkQuu5Ug3RKQpMBizyqzEZg++pKqX+ypYJRBhT6yvquutKgR+UaWPfzJJK8wavgbYDvPvuw740H0g+UtGxVUcqYyINBGRwcBCYBA2NLWvqvZR1RHxVmZE6CLCuSIcIRLxefsKy/cSYDPwRaxlUdXFqjoQm35+MeZD8D4wQ0TO9IaqHI6UR0T6YsPRl2BTkXfAAnJeIiI7+ilbJTmAkjxNYBNZeong57t6J2adOQLYD7Nyvw+M8ob6HD7hLDRpihdX4irgDmwWwzvAg6Fj5iLsjjm9KfCqKjNiJwPnAMO8touwXConho6Di1AbeB04zav7LHCjKnF9OD0n675YB9UVmIw5/H0Xz+M6HPHCs8o8A/TDhpcuDsRS8bYdglkkU6LjF+FMLDxEg6DVa1VJSPDQcHgzxA5U1Y+85SzM8n0/9mF2RbAjtiNxOIUmzfCsDPdjcSXqYNaPAeECRImwNzCWkuB4OcCBqvwW/fHIwKY2nooF0/s/VWZ5s5aWUvrragtwtiojI7SVBagqCQ3i5Sk25wL3Ae0x8/wpqjo+kXI4HNVBRA7HPiC2xZ7lB1W1oHpt0g9zrl8H3KvKzGqKWdnjZ2F9VDcs5hbAuap8mEg5osHLdv46FpjwLeAqVV3rr1Q1DFV1JU0KlobgS8zKocBz5dfXT0E1qBSDfhSmXgboZTDvOxj5LXS+AMjwtg0B3eztXwS6DrQt6F0hbQfavzIx10IzQK8D/Rb0DdCOUVy/ulisn2JM+RoE1PH7vrriSnkF+6G/x3tu/wT2jk27ek3Iu70etFPiz0+zQPuCXgG6u9/Xu4J7kYVZfAuwlC17+S1TTSq+C+BKDG6iTXe+y/sR3oCZP7/Avqq2ibyffh9G6fg6TL0XIC/ftucq/FkEdUcBArqp9P7FuV5H+FCYthV0L6/NU0B/Bv0F9IzYXxN9LEi2QtDVoBGvhXcdA0NvV2PJ6hTLIXWo3/fYFVfCFWzm0mjvWR0K1Itd27ok5N0tBB3o9zmnQgF6AYuwVC+X4o2GuBLf4pyCUxwR2QUL9nQvlrRyZ7Xs2zdgQfHKu8evYsNMAXKgeKiInCQiN4rIYSLUB70QamVblTrAzhnw/bGw20Flm9xSB149zJMlN2Tj16r8KsLxwBuYabYnMFSE0yKcX5aIHCsiZ4tI+/KvRmAfBPMfqu+tyvQEP6WCXRdhJuP/quo5mNOfAt+IyFNeUDKHIykQkX2w2FEHYr4yF6hqTgW7VYbMkGUJs65aiNBOhANESCtnWlX9Gct4/h3wAjDM82t0xBO/NSpXqlYwReV6zCqzCjit8m2ogF4FOg90LhRdhikaG7Evi03Q/iEozi9raclTmPU16GDILbR1BQprFNpuBo4HPRF0Nugy0KdAs73jfhnGcjM2zDnWwqZsbsQsT5uA/aI8ry0h7eeAXl6F61wPmyWiWJ6bffy+9664gjnQ52LDGt3jcwy9K8QCuwl0lxi2f4n3Xq7z/p4d/+umAjrQG0rbAvpyoF+K033KxIauFZth2tLvZyedi+8CuFKFmwbNMeuLYgGzto1Ru908pUGDyhbYMh4KwwwfFS6zDuLGjfCtwlsKnQP7PRb5ODoqjEIzpmy9upfBZXkwRKFfoN3Z0Z2LPhsy/r8WtHU1rs1hmH9NAWb9ciZkVxJeMCvJrd67MIFyhpSrfywVzA/tF9DRoDHxzfHabguaF+ajo1l8r5/2D1HSNoM+mID7doangM7FrOi+P0vpWHwXwJVK3jAbplnoWVCujOUPq/ejva5Emaml8GYBFBdAcTEUhyohU739pocoQblYNNIIx9E+XucVaCcf9JKQOgLTZ8Emr85GhVfULDXaHnQM6GLQL0DbhDlGJuj/gf4E+iFolxhcnyZY7hvF4k408vt5cKXmFO9r/3nv+XuLJHNYB+0Oeh5o75D1V4Ju8N7zj0Drgw4I81GTA9otzjJ+GOa40xN0/3pjiX7XAvv7fb/SsfgugCuVuFnmXJYPLAB6xqH95lgeJU8xebIYcoqDXvxi0Fzvq2YTaC9vv96eZWeTNzw0Hahf/rF0P9B/QQs80+9m0PODtu8JBbmlO55chd1+BF3k7afe3zmg2V75L+YAvAT03DhcIwFuwiKWzgZ29fu5cCX9C+b4/5b3bj6IN8swWQroTd47vNH7+5C3/qggS6l6/cdw0G/CKBZFoI3jLOd/g/qOQJ/2TQLvY0ds6DoHOMLv+5ZuxXcBXIniJtmX2WNeZ/YF0DyOx9rHFCYpgJUFYTqdn0AvJWT6JpaJ9gIsUF2FX45eR7cxpO1c0MB08P2xsfWg7ZuLYNYF2PTR4P02gnYFfSKk89wMenicrtMBWNyddUBcjuGKK6oK5tD+sff+3+q3PGXl0+aE91nbEZttGNqHLAf9IMz63xMga2vv+Ju9/mYD6B4Jvp/bAFM8K/tJft+/dCpullOS4yVD+wALlPcscIKqro7X8VT1F1XtCMVPQ4twz8dOwNuqzA/Zb6GqDlXV91V1S7i2Ragjwh4itMdeag2pkk1JzpYp2AvvRRXWQqi3AHb4DYv1EEwm9sXTl5IggXj/Pzny2VYdVf0Rm5r5D/CFiFwcj+M4ajbezJhPgBOxQG2P+CxSOLbBLMfBFAO7YUMsoelVVmM5pnIo6QNy4AREZGygxENQVZYCu2L96c1AV1WmxeNYkWXQFVjE5t+BD0TkjEQeP51xCk0S44XY/g44AbhWVa9R1cL4HIteIlwvwpki1MNi2YR7PuphcVqiabOOCEeJcLyXZG4+5uk/Czia0lNAi4BZqmwGUGUTsD/wC7AK5Adseuo04AdKppvnYMEE52MzoYIpwBLIxQVVXQj0Ab4GXhKRe1w+KEes8DLFv4dli79AVf/ns0iRWIANwQZTHxiOOcEuxvKzbcHe1ytUmYy9Oy8DrwCHwKfrbdczm8HCfURYKsJzXmqUmKHKalVeUOW/qiyKZdvRy6BrsbAQE4ARInKCH3KkGy71QZIiItsCY7Ckcmeo6ifxOxYXY1OTMzEl4Dcs6VqoJSTA86pc4cV7aQrkqFLKKiNCE2Ai0Ab7CquHKUgBJWkz8CQWL6YR8AeW56nCDsYLh345sIcn60uqFIlwJOa0WwfrYNcBe6iyvMKLUA28XC4vABdi53SjuhfLUQ28dBwjgDOBy1X1BZ9FKhcvjcpXUCbH0iasD+iL5WMareWkTxChB/AjJZbWXOBNVdLSAioijbAPoj2A41T1G59FSmmcQpOEiMh22EPeBhtjjdtD7uViyoFSX0GbsK+uHULW49WdDHTHvsICCsooVU4MavcxzJJTK8Khi4BPMaVtVKy+lEToDpyEKUyvqbIiFu1WfFzJAB4HrsO+Oi9X1YTmpHKkB56V7yXgIuAWVR3is0hRIcJZwItAw6DV+UBr1egspSLchcVtCbYOr1OlaazkTDY8S/xYoBPmKPyTvxKlLm7IKckQkXbA99i49BHxUmZEZC8RGQcN/obicErHM5jvzmJsmmER1jnNwhyHG1L6+TlBhAeClncgsjIDaCbknwg8CvqHyKj9vK/SKGTnBBE+F+EjEXqXalX5XZVBqjyaKGXGjqvFWHya+4GLsSEo9345qsKdmDJzX6ooMx5zKBtJeD3Wf0TLZsxKHEwsox8nHZ5P5BFYMt9PRKSzzyKlLM5Ck0SIyDaYf0gbLH/Q5DgdpxPmi1IfEJhaDLsJZAb8P3KAbqrMEdmquGzCHP3WAo0jND1LlZ3sGNyEpWMISRegQX8Dv/dFwJhiOCYHi3g8urS8NMacIrNNXp6mdIbwg7wx+aRARAYBAzGl8Do3/OSIFhE5G8sj9jrQPxWeHRHqAO8Cx2AvdSAWVT5wVGXeTRGaY8PPzbEPohzgElXeDKpTDzgdG6oeo8rf3vre2IfUDFV+89ZlYRMDtgXGq/J7tU42jojIDtgw/QosInplFEEHuGnbyVIwX5Qp2At8QJyPdR3W4ShkKlyj8E+xFwdiOYy5AOrcBNN+taB6mo9F923k/T90umWgTLT2VbAMuW/Y7KSI9YPKZC/2DZsICg8Oug0WU2aTNxW0OMz+r/t9/0Kur1Ayzf4Bv+VxJTUK5iSbh1loa/stT/Ry6xOUDpS5GXQwaK0qttcC9E7Qx0EPDtnWAHSm1x8EYmIdBvqA9/8N3t9bzAqs33lhHXK89ef4fb0qeAYOwhTBb4AqXb+aXHwXwBUF81P50evMjkzA8S43xUkUflJLa1CspnzMeQsOzoEnC0ui9GogrsQHIR1XcCkE3R2LCrrZW/4SixwaGuJcPeXJ+/8mhbsDCs064KASWfWp0kpUmWjFCvpGjK+PYFM7e1PF7MVeGy9453St38+YK8ldgLbYl/ks4hhnKj6y65Qw7+TnMWg3I1QpAr3eU2SCj7UgTL+0BfQ/lI11tQk0qdOWAP/x+o1n/JYl1Yob4/cZzwHwVWyK8n80ZLglTrwLrIeTCy2USib2+0smdD4LRtaFqzNLklUDFh9mD8pMz1Rg1AbYbTH834XAo9hwUCZwMHCqWWvK4EUd3oJZ1+8PrK8F9yPCSyJ8gCkV2SW7lZkVXQjEbDqr58fzPjAJm7UxT0S6VLYdtZ7pSmzW1RMicnysZHSkF9707Hfw4iZpHONMxYllUCqmVD42XbvKiHAjZkXOFeF7ka1OwS0pO1GhKWXj4OQDnSnbYdQl8uzNpEBVXweeAK4WkbP8liel8FujqukF87VQ4I4EH7cVvDcpgsUjnDWkAMuDsrZk2KcgH8YWwUlqySk3hrGgFK+DvHDDTstAG8Lo0TCqEB7MhR+LYEueZ70JWHDyoLioHPlGx/i69Kd0gs4i4OdqtFcfmxW2iThlRXYltQswxHvWzvJblsrLrk1BV4R5P38D7VDFNkPTJeSBjvK2HRKybQuWHyrUErMWtEdI3QLQyX5fsyifiWxgvNdvxCzDeboX3wWoyQVzbFNgGAnO3gy0hA8Gla/QFKnlT8rPwfxY2oDuAvqDmXlHLYVzNWRoKqRsWQM5YRSRwnNAp7E1ZHpxsZWwchRGlnPxHGx6eMcYXZeHg5SZQFlTzTZbYxGFFxPH7MiupF7BHFYVeNZvWaKXWU8AnQE6H/T9MMqEYkPOc/BSmVSy/fvDtLc2aPvFWPqTfNBPML+ag0DXeErLctB9vLone8pNEejPoK39vn6VeDYCw5AzqOLQd00rvgtQUwuWQmAj8BMJdgDEsmpvgqx1MCcki3bw/zcrvDHK68AahmlnJEwqR5lRz4ozqsCUo2KvbFFYey0Ubyh/361trDelKZxS82MRZpreCNndQY8BvdmTudJKItAvxEJTCIyPwTXf05PzayDT7+fPFf8LNvNmlWfBSwknYCzHWqiFJJyPnGK+Lm2qcIyrKOsTMzOK/QSbuFDmva9KX5AMBYsSrcBTfsuSCsX50PhAUH6mLVgU4NBcJ/E8dgbwIVAfChvD/6S0W0zwkHO9V1T7naDKKFU2evtnisglIvIkMBUyi8s/YlY2HJ1l76R4pTaQcz9saFj+vgDkQNZzcNE78EVh6RAVOcDjGVhk4Prw4igsVPwDWGbiiNFVRaSFiPxHRM4TkeDopm9Scm82Av8C50QhZ7mo6hQsKvJh2DCjowbj+c69iA1JnpfIPqCanE3pUAy1MZ+UcEEkMymbjiQiIuwvQn8s+vdM7MNiExab5sKK9vd+0zaolskRR7h1qYCqfo1Fcb9WRA7zW55kJ6mdo9KY/2GzaI5S1X9i1agI2wP/h4Uff0uV98JUa4wpAB5LMP+57DBV7fnw4j48DHoAfNcSzm0KS+oCmyEjF7R+GGfdILY6HQfRoKH1dfW8YxdQEpcmX6HORpuFlaew4UYY5nWa+athy78wswsMrms+twBtBc5uE3SgWsC5IjyqyuzS10k6YU6/dTBNa7OI7KWqS9Q+i84XkbuxOBczVTXU4bBKqOqrIrI/cJeIjFfVr2LRriMluQDL0Xa9qv7ltzCVYBOmvAQH0JuHWZmOYmtsKwqAB9RyskVEhJ2BXYBTgFNha4CqgV67jYCxqiyI6VmkFv+HXdthIrK7qq7zWZ6kxQXWSzAicjo2y+heVY3Zl7oI22HB8gKB8HKAW1X5b8jxBViJBa7C+qXlmA5USulQ7AvyCiw9QR+gjvVTK4Cdsb5tC2UnHZQiYJoJYQWWPeFZYEds5O1zb92yPHhiOWS1gYys0k0osKQAOgJFQVpYj1yYWAuygzva9cDRqkwMuQbvY74LgbqFwBuqekF5JxILRKQulnCzObC7pt6MFkc1EZG2wF+YEnC4WpTplECEDli8rIaUZLnvp8pIL43K6UAH4FfgWywNyS5e/YXAB6qs8tq6AovXVITleQomD2ijUaZMSHdEpCfWSb6mqhf5LU/S4veYV00qmHPoKuwHLTu2bevtlA16t9Q7bh1gd6Ctt9wLi/i7AdgC69aEGf8uAN0V9j/ZrCTB29YpHO35mKyPwgcmtBQpvBnwUfFKA4WvFQq8UhxpXN7b/79B+9ZTWLQujI/NWixGRiHov6CHeOc/sfSxUeCbBD4He2Jmsbf9fiZdSXzBhkVzgc5+y1I1+bUD6COgz4EeGKGOgL6DxX0JficLQfcGbU7ZeDLBZSPoTlHKUxt0Z9CUit9ThecmMGGhj9+yJGtxPjQJIijhXH0s3kxovpLqUouyubkyRWQX7MtoPDBXRD7AlJk2WIyXttD4B0o7pxQCj4LkwPQ3wpwNJUPm98LWRNsB3aC8nIyK6VE3AI3yIWMzkAMvFZoRKMsrUk4eqAzgUix2TTts2Kxd4zAWplygK/Yl2RoYJUJ74EtK54fJwcxDUSNCHxEeF2GQCK0rs6+aP81A4EwXZ6JmISJHY5mn71fVeX7LU0VWAbOxIaFIPjI9geMICWaFvYufYe9jeX1gXeBDEc4tTxARdsdmEE4Clohwe4XSpy73Yuf6vBe7yBGK3xpVTSnY7BnFcvvEoX3dNeRraBPo/cCfWA6mYGvEFuDuoH1bgf5NSYjwkVgwvLOBDfCBlky9zlX4W6G2Qk+FtRoUadiznhRGmH4d2P8OhaXFVq8gDxafB5tXla1bXFjSZrgZTrkKq4ojTOnOpVQ0YlVsqudpmMY0FFPcCjCfpqinl4KeRMlMjwLQVVRyOqgnwwRgNdDC7+fTlfgXLADcCuBvUmRWU9lz0PrYdOxCLB5VAehJ3ra+oJOxGDSPgK6L0A8Ueu2sj7A9uP/YDHpqGDnEa2NBmPr7+X2d4vgMnez14UP9liUZi+8C1IQCNMEcVX6uzA9n5Y+jvUDHgv4OehtoBja0ETq8ophVomvQvllYjJlOeFMcgSPhrFybvp2rNhT0kUJjhYs8RUPDlLx8yA8TDK9YYWU4BaUQi2kR3DFtAR0D67+ApzaGP1aOwpZIylO49RsJyg2DfS1Wego16KyQdgtA76nCc7Gbp1C94vcz6kr8CzbUpJhl4zC/5anaOejNYd6rHNBrKD2de3OEd1BBV3pt7Y/lXorQj2wtX4bIcLz3LheEqbsZ9DK/r1Ocnp8GwH2YCbwYaO+3TMlW3JBTYngAaAFcrnF0AFTlZ1UOVqW7Kg+rUowNN2mY6oHQ4IF9C1X5S5X5qoH6q/+AobVsJlIdzKhwdBH0WWMzCSM9PsXZ8HWGvXOhNPP2KzU8lIkFkQpMld6IhU4/RbXRMbDPQWX9igOnVBhpelXo+s3AWCzxn3fOWqSqYcfHRMgSYUcR2oXZHGpGz8JmY1QKVZ0BPA5cKCJ9Kru/I3UQkRbAkdjQCMDXItLVR5GqSs8w6+piz3HwdO56hO8ACoDjAVQZB1yCve/lkRv4jwgdsTQRDQg/S1eBORW0l6o8CdyJDdkVA7f6Kk0S4hSaOCMi52I5fT5W1d99EKEvlvAxVKnJxoajyqH+DlAU8oOfvQUe+c5cdsKh2LaDw2wTynnksoFFwGVYcra9VNkkgkDvzeF3eSHHdKBw+lop8oFbgJNKlLXIiNAKi875GzBbhLe8GRwB3qKsD84HFbUbgYex+zNaRMqdLuZIae7AfoT7YyEb+qrqdF8lqhrTIqyPJgRIETY5YZ4IX4qwGriHUmEkShGwJD8YtK474RWlAKOx2VXpyAOYQ/CJwMvA5VXJM5fW+G0iSueC/YL/hr3ICowEmvggR0PMi3YD9jWUC/SveL/DriybtiC3GAr+CpOzKagEr9PQUo5/jc7AZkDMxaKP5nv1l0PxltJ1C4ugx3vQtcCGwiK2WQA6GzTqoSXQzyg9Y2wT6CVB27NAH8XSQcwGPbmK9+UAzBKlXnFZudOwAJ0wpfplv2UJL5+2AP0G8ztbAnpUOXUbYykGKhom2uy9N4H3PQ/0F8z3ZUrQ+1UcoU9YD/oC6J5Bx70C9GnK+sYFSi5o7wRet6agT4J+DnprZfqYGDxTrTGr87t+Pz/JVHwXIJ0LcKz3Q3U9MAD4jjj60JQ9vmaB3oP51HwBs/cEdgAaRSn/QLi82Hxo1qr9nVRUfv6nKpfNoNdTdppnQJEqtOSXOWqpE0Y8iYWOXwLHbjbH5DL7FXjK0TOgvSpx3RaHaevFODwfuwNTgSOwGBNLcDlb0q5gX9O5eGETkq2Ajqd0+oLNoDuWU39b0H8iKCKFoO+B7ge6B+ivWG6lkaBtQe+KsF9omYlN7W6DhaRYT/lpFgLHToizNWhd7GMmIM9m0BEJfq7u835fdvf7GUqW4rsA6Vowv5A/sPHcWt66BCeg1OcpcdQr9jqFdmHqCWiZuDjYcNUmaK9wkMLuGtkRuMolF/RH0HOx2UOhsXS8slbhNIUdFBoqsNaTsRFwOsz8CYqDnQTzvLY9K09xDjz0ODZzq1yFDvRbr3MM7uDjYj2hJLjlAV7n9H9+P7uuxPT+tvesM0mZfBL76Am1eJSySEbYb22E9/nNCPVrYZaZcI684cqCIGUhkkUmXF/SGpttNQF0HOhxcbpux1DWoTmfMDnv4vhsNbP+mYQqUslcnA9N/DgLi4Fyh3qh89V7ChNIf0oc9QTzUzkxuIIIF2PTl/NFyBfhTFsvtbEhqnHwTyGMw3zxwvnghp6WYpmzi4rLbivDQlUOUOUNzCEmwjOZhRkwZuP5EDayvFS6K+gpsONKkHXYmHsgNHst75wFpC6ceh0W/XiGiLQsR6YLsem1GzCz7k/AcxWdSFUIPBOq+iMwCrhNRBrH41gOX7gJe2ke9VuQCBRREkgqgEKFEXqXRFh/ightwqw/EpuEEMnXJhCTRrF3uDUljnrh+oRwua8KsGBWrwH7ev9/V4SjIhyzOmQSvnPLDLMuLqjqGqxfOktEtk/UcZMZp9DEAS8B5P9hjqXh8iklilDnOSUo6p0IvbFgf4HnIBt4U+Tbrljo8vexjkEsOXgnIs82CkaAPDHf2Zewj4hiBV1G0IwFo6ijyJ/HinC4d7yQDkGx/vYzKMlgUAh9ZsKWp7FZS2djeXFaYA6GmV4Jeb7rZWCOma2w2QJhUcsbswM2ZHggcKRquUHAYsVALNfWVQk4liPOeErzpVhajYV+yxMOVfPdwpSIQkyB/xP4pIJd+2OWp1CKMWUEEVqIsL0IWZRNbRBKIFCcYLOmygmsSS72dXUX1jms9+Tu651L6Gyrayo4dlX4gZKPJzw5vlVlXRyOVR6PY4rcbQk+bnLit4koHQslwY/6+SuH3k+JT0oB6ArQFkHbfwtvun14JCXTh7yyvZZNgRBcwvnVTAnav44ChWWD7hWrOfUWFYZvN1fhuEA7xUARnLvF/HnC+s1EKJsUHvfaaahwzSTQc4KvRzIULGLxSpwvTcoXbGaTArv4LUvFsmof0AGgF4DWinKfOWHetXzMgXeIN2S0yRs+6kXpYdyqlmLMlybf+3sd5q/TAhs6/zPMPpswP8JDY3zN2oN+gA2lPQ1a16fn7Hmvv07r1A9RXQu/BUi3gn1h/ILNXsnyVxYV0EtAR4G+CNo2ZPva8J3Gd+shK0gZCZR/tPxZTMHLRQqjg/Y9XOEPjTwjKZKjcZGCrMfSNfSEjM9hQ2U6wAJYvxmeKbBz2kZhSTHkbcGCc60C7eT3cxP0/PTxrtl1fsviSrXuYxYWhmC037LE7xx1Upj37WPQEyjt3F/oKRqbK/HeBnz+coIUowLKOhQXge7vyfMcEX3wVL3jd4/ivJqAdiWB/jDVfNa6en3GzX7L4ndxQ06xpw8WfOpRVS30UxDvHr+kygmqXKpaZtw7ghm8Z6PSoR9QuO1fC3gcnPU6FAlaL9iQ+bbYbPWvsPcuy6sTGs8uYny8AtADgXagh0LuMRVbr7cKkQNcBI2bwTUf2VTve4tNqalVG2uoCfBERQ0mClUdD/wI3CAiCRuPd8Sc4zCH4Lj4XiUJt1MSj6kYc267GUu+WjeoXibWGVRm2HYOcB4Wl+p/XhtZlO0oMoDXRRgEXE7J0FU46gKnlndQEc4C/sXSkiwV4ZhKyOwLavGMfgSu8NwdaiyBGRaOGCEib2K+F21VNUJAuLgctyOwN5ZiYZyGubEi0h7oCMxW1WUi7IVNJa9PGX+TOZhfcx7mCrRlItTqXbqOElkRAfOpXY/lwQz9bVZsyD7Q/xQDGeEaLFIlS4QTMaecemWPrYAUYx3mamwqdD4wVJWPg84/C4o+hYxQJ8HpwAGa+PHvsIjI6cC7wPGq+pnf8jgqj4h8haW26Oj3h0088fzw+mFDHi+oMkeEsylJxAv2gs7Gclk1p0LfTQWeWgDXHwb8jn14xOKHuhAYpMoD4TZ6SWbnUNoHZzPQWrXCaMa+4iW5fQs4RlW/9Fsev6jR2lysEZFWmGPasAQrM0djWscrmA/G21527+A6VwGzMO/auSLSV5VfgV28fUJMJp2xkbMpwM+FUGs1pcwyxZSvzIApMc2I7Pi/GvvAy1PQLZgjdfCMCwXmi8hh8MFDlOpoAtagdYWQcznwpreyAXAQ8GOwMgNgPywZoZm2FdgZWCHCExaZ2HdGAsuwCNOOFENEOmCzel5KZ2UGQJWJqlyjyi2qW1MOvItlhVaso8jFon+vJKrfnPxi6NoAeJ3YKTNF2BfW0HLq7EBZK1Ix0CEGx483H2LX92K/4LGB0AAANQ9JREFUBfEVv8e80qlgJlgFdkrwcddQ2t9lI6apB7Z3wr5OguvkAA1tu26LBb/KtVguYSP+Ps3WhHD5xZCv5cekyVNYorA+wvY1xXDuX1CUDwUFltBy5e+gT5kcuh50JVxyPbAZRobxsynIAbKwbOG5IcfIBS2TvA00wxtrDzgoBse42AR6ut/PkXfP7sE6085+y+JKpe/dAO8dS4t7B7oT5ix8HGiFgUFB7wzxodkMuqwS/jMa5t2sTskH/TBcfxAid3vMZyd43xzQJn7fgyifu6exD8LGfsviV3EWmhjhWUQuAMaq6swEHjcL8wMJJgMbvw9wGWXNJLWwhJCosgxzcPk/kBeB4tLWFwHYEegGeffA6Fz7kAk8PqGjW4VY3Jqe2HB0cUFJvWLsQ+nwYhiyPWRkQ1YW1MqGOnvCc3Uxi0l/4EQYfilQz9IdhRpPsjaqfQG3pewU0rzA+QWjSrEqV2DTu9dQ+uuvPrBP6D4+8ZL39z++SuGoCucAP6nqPL8FqS4inIClb3kGeBv4UqTCWCvnUzqBaz1gmyocPvT3aTM2RF5ZCoD7VPmnvEre9hsxi9J67KPvQk2SoegoGAHUpgI/oXTGKTSxoyfQBXgjkQf1ftBnUjbmzK9B/28aZtdMKHnBVVmpypPAcyDhHKt+B5kPdQ6C7eqWHmYOVTTyFW5W+HcTnHkerHsXxhXDC1hIiDOA6UXQNCTIVi1g8XlY5/kG8BXM3sF8cJYQorMUASrCa97/y2g72Lh9JDIp7biId4C55eyTMFR1MZYd/JzQ4UNH8iIiu2MpLd70W5YY8Rr2stfHhn/2BU6qYJ/Q4faKnO2iYRn2PqyOsD2SM2gx5lM3JZqDqPI8FnTrRKCLKm9XSkp/Ccyu7ee3IL7ht4koXQqW2j0Pf5JPdgHmY+bGPODSkO0XUiauDDOCttfDOuFtsKneX4SYe5eAZmMOxTnwa4hJt1htKErXe+blxwlK8wAI7DAFliqs84ahpipMUFN+gttZGTARe+sKi+C3IosjUyoBZmD6ZiHoOtAzKJnmuQH0yPKvmfal7DTSYsKkgPDxmbrIu1c9/ZbFlajv2f2Ygr2N37JU/1w0I8ywTw7oVSF1LgV9FfRyr/84MmjoppDocjeVVyrafzro6+Vs3wR6v9/XM0HP332YEpfyz19VirPQxABveu1ZwKequi7Rx1fVOZgXb3vML+bFkCqvYc7AudjX0zIssi4ishewGBgPLAIZAByPTYF8DbgVaK8WKdcL930PJR9hxVgmbE7FFKeDVLlRvbfLk0/hjxXQUi0QbiPM/+5n4G9KdCzBJkEET73MzIA9sA9ECSpbv/gyMYWsExYpeAeguSqjK7hsjSj7VRfpK88vPsCsRjX3iyv1OB4Yr6or/BakuqhSjM0yCp4woFgqEDwH+l8x0+sF2BT1ScAY4BAsHMKPVN86EynfyiZgNDY8PZXw6RDAOo9rPJnTPRTCSOx6Jf1087jgt0aVDgXYH3vBzvRblnJkFGxGU0+CotACSyltudkMhM1MjQ1RTgK2wBEK7xfBexvgnwotCFj23JAvp3cUenpWm9BtpUqow29IKSyCp/4EBgF1orse2pnSjot5oN/7fZ/CXPNPgAUkOLGpK1W6V+28d+hWv2WJ3TlpW9CpnqUmF/S8oG1nR3gnj/W2Z3lW0+pYZyI5BueBbgN6vff/iqw4GynJEP4P6F5+X9s4PYMZmOPiu37L4kdxFprYcBzmCfuV34JEQo2/VHWSquYAiEhdyjrrFWPxM8K1UQwcBrwOY6ZA3zfh9M6q7SZFIcIESn1BbcY+3tbnQoNwOWECRwUKh1N6qnUBW6d3FwO5GfDsLpg16atogkupMg+LFzQX81Ieg6WsSDZGYdNGd/VbEEeFHOf9/dRXKWKIKktU6YZZOeqpMjxo85kRdgus70BpZ7uqEMm68y/mU/ME5nxXnhVoM+ZT186r1w74WoSG1ZQt6fD66M+Ao0SkvHxYaYlTaGLD8cCP6sNwUzXZgqUUCEaweDVhUdUNqnqpqnZX1fNUdVWUx7oOmGxfU0VF8PkmeO5vmHUBZL6BdTpFpUd9CoA/iqFeKyxfyQosnPwFwF2Q8yeMLbL8kbPBnHz3xmZJVYgqP6jSRZXGqhyvWuZaJAOfe3+P91UKRzQci/my/eW3ILFGlS2qZYZkl0WofroIl2F9SzS/MYXYx064Id9wispq2JpAtqJ2ZwD/pewsyIbAyyKlZmOlC59iQ+p9/BYk0bhIwdXEC6K1ALhJVR/3WZxKIyL7Yz+axdiXzjOqGrPMrSJkYwHzDsa0jieA5cHKgzcWfwqwM0zuANtcAi0EJmMzoorz4Nd7oX0B8IkqMz3Zu2Hzw4NzIWwC+qjqtFidg9+IyK9Arqru77csjvB4VsHVwPuqeonf8iQCEfbAhqDDWQKWAldj0WujsRRswH6EK0Ixq+r2lG+VycOUyx6Yb90sLFRDaJ3JWJTwtPkhFJHGmDJ5r6oO8lmchOIUmmoiIhcArwJdVXWG3/JUBRFphg1pLFNzMI5h27yHfbnWw76S/gV2Uy01hBQsyyGYY5vXuW2L+fu1yIOMDK+Nw1WZKCLZ3sbtsU4zH+rMg1V3Qf06wHdaNn9VyiEiDwK3YDPoEhaB2hE9IrIH9iyer6qv+y1PovBSH7xNYqPpFhE5/DhYH/EUFntmI4AID2FW4lClJhfYVZUFcZDTN0Tkd2CNqh7mtyyJxA05VZ8DsC+zP/0WpKqo6hpVHRcHZaYRFrMiMI5eC5vGdHA5u/2MRdHzgvHdVgTNFDJqY7Of6mOdFapagF3/94EZ0Pgj2FAM9YdiMy7+EmHvWJ6TT/yA+QD0rqiiwzcO8P7+4KsUCUaVidiMyUQp2kr5ygzY71ozDcq/pMoAzJobqc104wdg35rmR+MUmupzIOY/k44vRXWJmEI70g6ew3Jv4GNgOnSbD1mh9ZsF1V+tqv1UtSus+wWyO2NDUA2wcfJXqnUGycEEbEjwQL8FcUTkQCz8QYQM9umLKn9g07S/oExOuJhSSNkAooH1wWRROlI6ItQi/IfUbMwvL934EfMp7OG3IInEKTTVQETaYMMdP/otSzKiynosTkSut6oAGyv/vvz9dKmqnq6qu8Mht1J6hlMO8FGEXdtT1qS8baUFTzJUdQMW6dQpNMnL3sDEmvpho8ok1a1O0aEsJbwisnX3KA+TSXjrTAallZocbKZPMNmUJR94JJ38Z4KY6P1NBwt11DiFpnr09P5OLLdWzeY04FksLPcHwFFUwjytykdYsr81WNLN4cAdEap/H9J2HiFDACLUEeEGEZ4V4awkya4dDT8Be0czJd2RWESkERbYcorPoiQDp1J6RlEecASRFZoc4F4sd1JFRHpXM7xthdhH08tYn7MVVTZjfUEgdIR6xx4TxXFTkSWYK0Q3vwVJJK5zrB7dsBcjbWbUxB7ZA6Q2PLwGik/FIosuFGHHaFtQ5RlVmqvSSJXLVQP+NWXqjQQexjq2IkzRvHirJDbj6kfgAeAqrOMbUsUTSzRTsGG0Tj7L4SjL7t7fqb5KkQR4w0/bAZdgqTuaqjIDeIcSS2sR9o4uAK5QZRBl86pVls3YUHUdVa5TDatAnQy8hw0xTQD2VyXlIzqHw7MUTqGGKTRullM1EJEPsdlNUf84Jwve7IRrMKX2WVXGx/4YcjDwGexRz/qPrSEfFJinSpdYH9OOSyaQrRoIvrd1/RGYlSg4oFYh0DjSrKtkQUR6Ylau01T1Q7/lcZQgIldhFoH2aklFHSF47+QNmK/NbOCekNANOVRdqVFgJdAp2d/jRCIijwFXYulwQv2M0hJnoake3UhBM7MIfYBvgHOwHFSjRcqdeVRVHgTqwV6EDJML0EmkjL9LTFClKFSZ8agfKghmCo+LHDFmOibrnj7L4SjLbtjMvJQPERAvvHdyiCrHqXJ9iDJzFaV9XAqxoJ/h3uFgcr0yHbPEThBhnQjfidAmxqeQivyB9W01xqrrFJoqIiJ1sHHzVJyuPYDSIcnrYcHvYo1nkgk7iWATkZPJxYvxmFIQUGrysWGCZIwQXApVzcUCikUVBdmRUDoDc2uqQ3B1EGFX4BFsZlKAQizv3GvAcuydDR1mVmCxKvWw2UuvYVlsG2O59b4TqfG/b3O9v519lSKB1PQbXh0CgaTmllsrOQkXmyAe8QqGApvNGDQS02EKcrCx9HMSPbtAlZVYvJDJWEf5OXB0Cs1ymEcN+tpKITpj98ZReXal7LRrAXI9f7ltsb7pPko7Gwsl78Le2OyngNNwIG9TWxH2FWGiCLNEGCxSSnFKdwLPZI1RaGrSzY01gYckFTuyZ7GvmICVJoeQWQEx4imsM7oc/lMIN46AIdOBX/2KzKnKdGAfP44dA+ZRMrPOkQSISCb2cVNj/ZpEOAyzqPylyjeV3H0OZX+HMgiarahKkQi/YlaawIeXwtY+ZANlP86zgNbYLKaA8961WATyqyopY6qyFLOC15iPIGehqTqBhyTlFBpVRgH/wSwVvwIXqvJB7I+jqqqPqGpn1eIdVYfco8oH6RZmPIHMA5qJSBO/BXFspTX2Ixsu/kraI8IQLAjmI8DHIjxWmf1VmQI8RmnftmLgw5CQCl8Ar2N+NeuxMA6nedt+wcIa5HjtbAb+BxwK1A5qox7QrzLypTJe5u0FOAuNIwraY18My/0WpCp4CkzMlRhHXAk4I7XDnFAd/tPK+xsp83TaIkIHzNoR7FR/pQjPVPKj5UdsPDow+7A2FkSyBTZ7CW9Y+EpPgWqOWYM2eduKRTgWOB8LdPorZjG7HpsiHuqfU5NYBmzjtxCJwik0VacFsMrTgh2ORLDS+9vCVykcwQTuxcpya6UnLTG/lmCFJh+7Jgsq0U44HzYJt16VeYSxiqtSSEiaExFGALdj/jVZmAVnUCXkSgdWYrPwagROoak6LYBVfgvhqFEEnjen0CQPgXtRE/uCvylr8Sjy1leGcZgloTY2fJcDfK1avWuqygoRumGZ6lsAH3qRx2sSq6hB/YVTaKqOU2gcicYpNMlHjVVoVNkkwuFYbrXtsCHRUwJDQZVoZ4sX6PN+YCdsCOrBGMn4LxbQr6ayCmguIhk1YTTBKTRVpykw028hHDWKQLycZuXWciSSRt7fDb5K4ROq/A50FEGqE/5AlTVYVFtHbFmPTf6pB5VTNFMRN8up6tSh4kiWDkcsCQQirF1uLUciqQ0U15TQ8pFIoVhONY1A7J4a0Wc4habq1CZOkW5FZKyIjI1H234eq6YcM17H8iLR5lNDOqcUIW79QIBEvy9+vJ819dgJOGaN+ghyCk3VaQYc7T2QT/otTKrgvbx7Anv61XGlIiLypHe9MoEjfRbHUcLhQLbrB6qP6xtiR1B/EfAfikck+KTDKTRVJxPCpqh3OOKJ4t7bZCKD8NOOHY5kIPAblV1urTTBOQVXnfXAp6p6ud+CpBKqenDg60tVD/ZXmtRBVa8HEJGNwLf+SuMIYizQwT3L1cf1DbEjqL+4AHiVssk90xKn0FSdPOI0LpnIl9mPjiPdjxnnY8XdZ8NRKfKIszk/0e+Ln8pETTt2Ao4ZeDZrRJ/hFJqq45wzUwwRaYMF2WoGjAbe9BxtUwIRycBMx/kV1XUkjLh92DgcMSDwbNYIhcaNxVedLZQO+e1IYkSkJZbArhD4HrgDU25SiUDn5MIFJA/5QIaIuI9DRzIS6DNqxEeQewmrzhosuJ4jNTgdGKeqtwCIyI9YyPVHfJWqcgSetzW+SuEIZr33tzGw2k9BHI4wNMbSUeT4LUgicBaaqlOjcmSkAdmUjpS5idSbylhjw+wnMS4dhSOZaQGsrglpD8ApNNXBKTSpxSfAKSJymYgcCIwAXvdZpsriFJrkwyk0jmSmRuUcdApN1VkFtPAcNR1JjqrOxwLSHQ8MxvxobvJVqMrT0vtbYzqoFGCl97dlubUcDn9oSckzmvY4H5qq8w92/VoDS3yWxREFqjoFOMFvOapBB+/vP75K4Qhmufe3ta9SOBzhaQ1M8VuIROGsC1Vnnve3s69SOGoSnYFVqlojMzsnKcuwKbGd/BbE4QhGRDKxj6B5FdVNF5xCU3WcQuNINJ2B+X4L4SjBc7ZcgOsHHMlHG2ziQ43pM5xCU3UWYjlcXEfmSBROoUlO5uEsNI7kI/BMOguNo3xUNR+YC3T1WxZH+iMi9TGF5k+/ZXGUYR7QRUTEb0EcjiC6eH+dQuOIiilAN7+FcNQIugICTPVbEEcZpgONgO38FsThCGIPLKDeAp/lSBhOoakeU4HtRaSR34KkOiLSTESeFZEvROQhEannt0xJxp7e3yk+yuAIT0DJdB83jmSiG/CHqhb5LUiicApN9Zji/d3DTyGqihi+R8sVkdrA19jz+F9saOUDZ8IvxZ5YmP2FPsvhKMsfmD/dnj7L4XAA1rdjz+MUfyVJLE6hqR6TvL/7+ipFFRCRE7EYGptF5FcR2d5HcfbGhlOuUtVPgX5Ad5wJP5h9gcmplB28pqCqm4A5OIXGkTy0B5pQw4aonUJTDVR1OTALONBvWSqDiHQBXsGCzNXG0gB86KtQptCELrsfb0BEmmBWwB98FsURmUlAb2dVdCQJgY/syb5KkWCcQlN9fgD2T7EUCD2B71T1Zy+OxhOYL1Bjn+SZBBQCz4vIycBb2IvoIuIafTAFzyk0ycuPWFRWPy2dDkeAA7EEvL/7LUgiSaUf4WTlR8y0t7vPclSGZUBXEanjLe8MFFM6G3XC8KbAHwHkAhcDfwN93fDKVg4ECoCf/RbEEZEfvb8H+CqFw2EcAPykqoV+C5JInEJTfb71/h7lqxSVYyxmAflFRIYB32H+K754w4vIHsCrQA9gAjBQVXMr2Ke1iIwQkUkiMlREmodsbyEi74jIPBH5TkRSOV7Q0cCEiq6Jw1f+AtbgFBqHz4hIUyzMw48V1U03nEJTTVR1MeZJfrzPokSNZ/k4H7gVe+iPVNXhsT6OiGSKyJ2e0vGtiBwcpk4nbIbTGGAQ9uP9SAXt1vHqLwKuwSxLn3u5SwIe/h9hlqijgDeB0SLSIjZnljhEZDvMf+ZTv2VxRMYbuv0eONz50Th85lBsiHqsz3IkHHFW/eojIvcBtwMtVXWN3/IkC951OQy4GfO6fxY4wst6HahzPbCzql7uLbcDpqhqROVDRHoBLwDdVVW9H5B5wNGqOlNEWmLO2s29HxpE5CvMT2dvLNjUPao6LLZnHHtE5Argf8Auqvq33/I4IiMiFwEvA91UdZrf8jhqJiIyFDgZ+z1yQ06OSvMZdi2P8VsQvxCRuiIyWERGi8iLIrINcA5wsapOUNV3gBeBU0N2LQTqBi3X89aVRz7QADhURPp4+9QFdhWRQ4FMLClbU0+2TGwaeHNMoTkDuFdEjqj6GSeME7AUGzP9FsRRIZ97f1PGWutIL7zJKccBX9Q0ZQacQhMrfgGWAGf6LYgfeBaSt4AdsRlTGzFzZz7mMB2gCZAXsvt7mGIyWETOx6aPP1HBIRsBHTBF8iNgMWZifRC4D/gJeB34VkQGAJ8A9YHLVPUfYIa3rl8yDw94fkFHAB85B+nkR1WXAr/iFBqHf/QEWmJ9Y40jy28B0gFVLRaRt4HrRKS5qq72W6YE0xI4CGjlzVj6QkR6A+OBt0TkUSxI3snAPsE7qupyEdkP8+c5EhuWOlxEVmKB/65T1W8C9UVkF+BLbMbPOmxIaxMWRberqhaJyK2Yc+aDmEXmS6AF0ElENmD+N02w57+eiJydpOHBT8dkHOG3II6oGQUMFJHWnoLjcCSSk4EirM+rcTgLTewYgf349PVbEB8oxiwkGbDVYpMFjAauwDzuM4B9VXVJ6M6q+o+qXqOq/YATgZWYI+ytwNsiskNQ9Su97XdiQ1gvA9nAhiCl5Atge1V9R1VvUdVnMB+nl4BvMAvSOmBXTBm7OEbXIdacg2XXrlHRPlOcd7B3oUZaax3+4Q03nQ2MqYEf1YBzCo4Z3o/4DGCNqu7vtzyJRkR+AnbBFIUlmI9LL1XdElJvbPCyqh4ctC0Li0VT37P0BBzcJqjqS97yi8BOWACzf4ENmJVmMzaF/m9seKmJpyAFH3sPbIr6/4AnVHWNiNwCtFbVG6t9EWKIiHQE5gN3quoDPovjqAQi8itQrKo9/ZbFUXMQkf2xWavnqeobfsvjB85CEyM8H4dXgT7JHvPEm049QETGiMibIrJjNds7HmgLfAwsxXxpRoQqM1FQhCkmnbx2BVNc1gXVeRuz3jTxth3s7VMbU2yuBv4DlFFQvJkn473jrBWR+piJdkYl5UwEl2KWr9f9FsRRad4E9q7ue+VwVJJ+2Afhx34L4hfOQhNDPCfOJcArqnqV3/JEQkSewhLpDcYiHN8I9KjqmL8XnK8Q8/kowJyBl1TlC1VELgXuAoZjM5MaAIcFLDZenVeweDXLMYvL2diMpg7YjKcvgP+o6iRC8KaFf4nNgmqCOc9dFJjenQx42cf/Acar6il+y+OoHCLSFrt/D6rqnX7LkyqUZ711lI8Xm2sJMFpVz/ZbHr9wFpoY4o1bvg38R0Qa+i1PODyrx0VYaoEvVfVRLLDdidVothZwFrCfFz/mE2wK9dYZRCKSJSJ7iMgjIjJcRG7whphKoaovAucBW4CRWNya/JBqL3l/z8Hi0TTGhp/OwvxrCimb7DLQ/mIsIvGp2JDYBcmkzHichvn2/M9vQRyVx/MT+xy4SERq+S2Po0ZwOtAM8ymssTgLTYwRkX2wGTjXqerTfssTiqdkrMeC2f3rrXsb+Cbgp1KFNm/EZhQ9gQ3/XItZSrbz/FR2wCwhHTBFYxRmUVmkqv2reMwLgKe842RgoefXYsNdi4HeYRShpMe7PxOxzmmnJFS2HFEgIsdiz/yZqvqu3/I40hvPh7EpFoCzxv6oOwtNjFHVX4BxwM3J+HXmPezPAh+LyJkicj+wHxbPpapMBFZgfixNgBuwoaf13vbh2DDPDCxi8J7Ao8ApVU1HoKpDMcvMaqA38BVm1cnFvlIaichjIvKWiFwjMcqG7vkf7SMiB4hIvVi0GcIh2NT2x5wyk9J8hTl1X+m3II70RkR6YH3gczVZmQGn0MSLB7Ef7n4VVfSJO4ChmJmyOeaPcqSInC8iraJpQES2EZGHReRVzIn3Q+AUYAfgScwvJTCNek8s9stmVV2O5SXaDVN6sr32dhSR70VkhVgyyS4VyeC9vI2w4bJdgIVYPp26mLd/bewr+SxPpmohInWxqeivAY8Dv3n+ErHkdsyxeliM23UkEO/Zfx44yJtd53DEi6uxD7nX/BbEb9yQUxzwhg1+w6YP75KkQdsAU0ywmT9/Yy/F/sDBqjorpN4uWPLI5nhTAzHn2z+wIaa3MKUlkItpXtC+s7BMxHtjQ1J5wHTM1+UoTAGZgSkJ72MKyFVYoLxyZ0qJyHzMh+dOLDDfGcAALOHmEV6dJpgDccPqDEOJyO3AXsAZXgC/+4AdVPWsqrYZ0n4vzNp1s6o+Fos2Hf4hIs0wJXuUqp7jtzyO9EMsee1c4HlVvcZvefzGKTRxQkT6YmH9z1fVpJ16KyKPA5mqep23fBPmf3J6UJ12wGQsC/afwNPYs7ODt70DMA2L/aJB+4m3z42YNTDgrJuJhYg/RFU3ikhP4EVV7R607wzsy+MAbGjp85CIwdtiysWHmBJ0MLAKU5Z+BHZU1RO8unUx/5omVZhKHnytXgV+CoqJ0wv4r6ruXdU2Q9r/ClP6Oqjqpli06fAXEXkYS866k6rO8VseR3rhzVi9EgskushvefzGDTnFjw+xH+37vCl1gSSJyUYrTM4AvwLbhtQ5CUt29riqfon5qHQI2r4Bb+gohLOxhJ25WG6nT7EZVeOw6MGbxbJJvwnsLiK3i9EQ2AYzobbF/HNeE5FzAcSSSv6B/VDUAlaoaltV7YYpLtOAbiLyf2LJKt8BPgwoMyLSQEReF5HlIvK3iJwQ5bWaBpwplogzAzifakbxDTwTInI4ZmG63ykzacUT2NDqrX4L4kgvPOv6JcBwp8wYTqGJE55D561YDqObRGQw8FO4qco+8wNwjYi09BSJW711wRRTWmH5EcgSkctEZF8s7cObYRzS9saUiSzMeff/sGB4DbBn72zMgfgCYB6WWHI5NktsFjBWVS9T1Ycxf5+BntXnDWza+SFY4LnLPGXoUaAz5uD8ChbP5kugNaXTG7yAWYl6YF83r4jInlFcq2cx5eofYBHmG3RzFPuFRUT2AmaKyGmYJWsBbqp2WqGqy7Bnsb9Y9GeHI1bcBNQBHvZbkGTBDTnFGRH5BfthF2y2z9WqusFfqUrwFITBwHWYkvEmlpU6OJDdNpjlZhg25HQLlmG8PRYv5RtgYFC6ggxMkesH7IsNBZ0DTMEUmmJvnwwsquWhmKVoLeZTUxuLNVOkqrd5bXYEJmDTslcC9VRVPQVxEqCY/8m9QB/gIcxJeT1m6Rmnqnd7ba3DfF9WestPAP96MXmiuWbtMMvQgurMRPKm+L+MBTcEuFxVX6hqe47kxHteZgPvq+p5fsvjSH1EpD32TL2rqv/xW55kwSk0cUZETgU+AEYmc9RXTwnJUNXCCNu3w2bgNMecf18KN0XQU34+w2Y+BXxXVmNWmQ6Yc/D72NfFfzFn5EHY0NIZ2LDLBizq5aWYZWUeMAR7ga/1/g5U1REi0glzaj5WVad4MrwMTFbV573lfYGnA5GLRWQBFh/kZ0+h+xj41Avql1A8x9H53mLzSNffkdqIyEOY9bMH5sTZ1ws94HBEhYjsBHRU1a/Ectydg/kKLvRZtKTBKTQJQEQewxxj91PVn/yWJ56IyEdYXJtFmNWkK2ZtGYM51K4Oqrsr5lvTCDPLnwEciylOo7Chnfsxp+BPgdtVNV9EumHRiBULQHebqj4X1O4jQLaq3uAtnw/0U/3/9s48TKryWOO/AkFEBTdE5eIWFDQI6nVFVFwgRIhL3FBvcAkqIMaNixIvojGYxCUQQQ2Cyr2KohJFFokbKKhBMSpq3OKG4nUXETUgksof79fMBGdglp453T31e55+cHrOOf1N231Onaq33vIe6ecTUEfVLUAHVKbaz92/roO3ZI2Y2bVI/LyXuz9T368f1A+p0+5N5Gi9GdKpdXL3F7NcV1A8mNk4dIP3GHAA8Ht3r3HJuxSJgKYeSNqUV1DpZY9Svgs3syXAN8BS1Bm1DdDC3XepZPt2SNPSCWVsWgHd0QX+izW8TlNU8vpk9RKemW2Jyk9z0GDLPkBvd38q/b4HcC4qcz2OSmBboLlQFWae6oJkiDUfGWINqo/XDLLDzO5An8XX0KyxpzNeUlBEmGa8nYN8zhoBbbyG8/dKlRAF1wPuvhR9EDsj/UnRk7qRTjOz8WZ2mZm1TOWTDZC49QhUbupExR1QAKRW1kNRKakN0rx0WVMwk/gOZWguMLM/mdkoS67D6Uu+BwoWFqLsSy6YORxpge5Dpa9BSBh8FGpHv7mab0WNSAHZeKQHigGGDYPTUSm1KfJhCoIq4+7LUea7MbKLiGBmNSJDU08krcZd6EK/p7vXqt03a8zsRhSI3IN0NbuhLqXfoyzLsygD0g6dvIe5+5Q8vfamqCTVGV0c5iKx8sHova20dGRmD6OTwb1mNhAFMdPc/aj08xigWV3PgUqmfP8DHOnu99XlawWFg5kdBMwCRnhM4g6qgZm1RJrD99Fg3YI1bM2KyNDUE6mMMQCJYm9N6cOiJJkGno4ClZ8AK1FpZ+f07wOopXl7lEW5A7jazH6xluNWmslZjZHI/6URyuo0SWv5GDhkLfuug2Y+gTquvkb/T0CZG0vHrDOSId8vgQkRzDQs3H02sh0YYmYdsl5PUFRcjm4S+0cwUzER0NQj7v4pEnXtgsSuRUfKNI0FvgWOQZmZLihQeAN1NDVGepSlwEh3vwLNWxpayTEPNbNFwDIzez6p+St7/UZIY3MQys7sC0xCAdS3QCPTTKrpZnaXyYW4PBOA0WbWG2l9WgArzWx/JDRegbxw6oSkp/o/NBH83Lp6naCgGYwC6ZsL0JcqKEDS+WkQcH00D1ROBDT1jLtPR0PrBic9R7GxHppRNQNdmDuik/MPkbfMYSiYaYFEwTkV/qdp33/DNNzxDqAvyrTcCEyzyl2VhyAzqdnIl+ZOoD/KtrRD7eJDkRZmFnC/ma0SJLv7BORVcx7S2TyI2h/vRRNrB7n7N9V6R6pICgbHpXX2dfcla9klKEFcA1oHomC8JDR1Qd2RboL+F9k7XJTxcgqa0NBkgGkUwhPoIrx7+UGOxYCZvYC+YNsi3Uo75Ksxrdw2O6CA4zzU4XU5qv1+jQZbLkcOl28BA9z9sHL7fojmNK2PxMLNgbvdfaaZPY98a65BJaZOKDCfjAKZ6Uib0hxlYPYBmrp7hdbzZnY+mj7eDJgCnOLuK2r+7lSOmQ0CRgND3f23dfEaQXGQgttJSIy+V85DKQhWJ+kV+wH7u/sTWa+nkIkMTQakmULHIH3JZNPwxGLiaODnaJZRW+C01YKZrdG07KeBC1G25G8oANkFBSHd0zYdgQ5mtn7adzvUKbUxEvt+grqVbkz+MctQMNQZ6VDuQcLevujisCPKtgxOvz8FlcC+h5kdD5yJnIXbofr0JbV7ayrGzPZBgunpaMxB0IBJmrqBqER7axGeA4J6wDRn7nTgyghm1k5kaDIk6TimIifh42tjo1/fpDvMjYCl5X11kgfMfCR8/BoFNJ+hIKMr8At3fzJt2x+VfVam380DegIj0OgEUEnpOhSoNEYGhSOAq9AAy1ORhudHKEDaIK1rJeoqOw0YXZEBlZndBDydGzdgZl2AUe6+Vy3fntVfZxs0n+ob5EP0+Vp2CRoIZvYjYCYSiJ+W9XqCwiHd3D2LSk37prbtYA1EhiZDkp5mCMrWjMh4OdXCxeIKTAJPQgMhZyF9wBNIT9MD2AHYqdy2OyKvmv4oUHkK6Vt2BLqhstH9SHN0KhLsnomyLu2QELlLKtnlBl0uR4LrhSgLNIbkg2NmW5rZDDP72Mzmp+fLd5p0oKzjKS+kVssZqKTVK4KZoDzu/gD6vJ5qZhHQBMAqWcLk9OMxEcxUjVDYZ8816EJ/kZm94e43Zb2gWtIE+dDcDXyAnII3QqMNzgduSA65LYH9gX1S+v0BMzsW+AMwCt2VnIX0N4tQueY1lMmZhr7s55f7oi9DYxD+goKme1DQ0x24ImWUpqIRDP1Ql9Qo1FnVGhn6HQP8OF9vRGpDvwtoD/R091fydeygpLgMCYSvM7Pn3P25rBcUZM4oNPfriGLTWGZJlJwKgHThm448VI5193szXlKNSS3XfwNeR4FMayT8vRkYnv57LvKNmZSbeJ32fQ4Y7O6PpJ/nIlHvB+lhSHPTNh3vZXcfmrbtDkxEotu+KJj5FulVLkFB1quoBPUlmocyLe3TEk34nurub+bpfWiMusBOBPqVQKAa1CFm1gp4DpVK93b3DzNeUpARZjYAuB74nbtHV1M1iAxNAeDuK5JZ3UPAJDP7ibs/mPW6ashyFHi0REFEI9SyfTbKsuwMPOTukyvYtzkSDufw9PgOBTIGXOXun5nZKHRnqw3dHzKzI1HpKReovJhz/DWzH6AA6yykvfkQ+A9gkbtPzMPfvYqUDboBBTNDI5gJ1oa7f2JmR6D5Y1PNrFtd2QcEhYuZ9UQ3ZdNR92VQDSJDU0CY2cbIX2VHVKKYk/GSqo2ZjUSt3K+hjMw8YEPUifQkEgs/g7InuHu3cvv+GjgQzb1qj4KSXigj0w953XRz9/lmdhGwq7v3qeK6nkRZno6oXDUATfPeLZ9i7BTMXI3Ka1e4e5yUgiqTgpp7Ucn0uGJqFAhqR/LLegJNZd/f3b/KeElFRwQ0BYaZbY7u0tqi+unDGS+pWqTOoQXIQbg3yq5sgDp8FqXNlua2Xy2gaYzKQz9FAuC2wObu7mnw5EKkqXkf1Ze7VbVElJyI90MBzR7IWfjVXMkqHyQX45HIO2cM6uiKL1hQLczsPJTNHIV0YvEZKnGS1cXjqJNzb3dftJZdggqIklOB4e4fm1k3VH6aYWbHuvvUbFdVLaaii3ofpF+5GbivKkZy7r7SzB5Ewc/HwAXAxWY2HrVzL0Hp2OXI++aztR3TzHZDRntNgFvQQM35wKPIHDAvpGBsHOrGGglcEBeioIaMQmL6c9Fn/tIM1xLUMWa2BXJZb4Fu0iKYqSGRoSlQzGwT1P68O3ByvnUedYmZ9UMt201RiWl4VVLnqW31cjQKYTfU6vwNyqa8CZzh7i9UYx05t+LhwD/RhaIRyhpd6e6XVrBPa9RJtRSYVUFbekWvsy4SAB+H2s4vjWAmqA0p2zcOidgHu/s1GS8pqAPSef5RNMi3u7v/JdsVFTcR0BQwZtYCZTwOBIYBI0r1Qpm0J4uRgdQr6YQ+F7jG3e+p4TEvBjZDxnxzkHPxoShY6bp6uSplc2am7dqgyeGHrckDIpXCcqaB/+3uV9dkrUGwOinrNxE4Hjjb3cdkvKQ6xcweLf9z+XJ0KVLuprUTOs/MynhJRU8Y6xUw7v4lcsC9DWUuJqRsQMFjZm3S1Ovjzax5es7M7HzTRO35aZRBjnXQ7KY3AFJG5+/IW6amrERZomFI0zIclbLGpOdWZwxwobsfDuyFSlv91vA3tkei5z2BPhHMBPnE3VeiuWdT0IT4C7NdUZAvUiZ4NhrhcnQEM/khNDQFjrsvN7O+6OJ+GbC9mR3n7h9kvLRKMbPOwAMolbop8EszOwCdnE8BzkBC4VvMbIm7359a12cDV5vZZajU1gu4ohZLuR1lW75A4xcmoW6rd5C/zeq0RVmhnJ7nifRcRX9jz3T874CDIlUc1AXpe3EcMAH4rWny8rBSzNSWekYmh5m1BR5GthG9iq3xo5CJDE0RkMYM/Ar5muwOPJeEw4XKVeik2weNPHgetWIfh7o25qUv8a+BY8vtdyKwHXIJvg74L3d/vaaLcPd3kRvx52iQ5vWUTeV+qIJd5gHnmlmjJNQ7KT23CjNrbGa/QiMZ3kNOxxHMBHWGa/p7X6SpuRhlayocuBoUNmbWAd00bQH0iGAmv0RAU0S4+x3A3ijj8IiZXZS0JoXGFshrJjdV+Jn03D+QqV2OVuk50rafuvvh7t7S3dunOTffIxdwpHkna8Td/470LTeist2LaM5URXqEgSgFvAQFVXe6+5Ryr7s5qnkPQ3fM+4QteVAfpPLTmehm4SzgvpStCYoEMzsYjWZZD2V1Y3p2nglRcBGSTmTjUcbjUeAUd1+Y6aLKYWbXITHuycDGwIOodPQRKvuMQiWnfsCB1ZlxlHQrU5G2phnK+IzL8/o3Apa5+7Jyzx2JgqIWwFnh/htkRbLGH43Gh/SONt/CJ3VwjkWGo73d/Z1sV1SaFOLdfbAW3H0p8nk5DfhP4EUzOzV1ChUCQ9Bnawlqt74bzW2ahcz2NkP6ra7VCWYSdwN/cPdWqLX7stSdlDfc/YtcMGNmLc1sAupkWgTsEcFMkCXufgPSl20PPG1m+2W8pKASzKyJmV2DhvPOAvaLYKbuiAxNkWNm26Lyx4GoHDLI3d80s04oKzLA3d/LaG1NgJX5sm9PHV5fAU1zosgUbMzNR5BhZr1R1uho5FtzFJr+vSXwG+Dy3GyoIMgaM+uIAu1t0U3EqFIUCxcrZtYGuBM5lI9B2eQV2a6qtIkMTZGTov2Dkei2K/CSmQ1DF+J9UACQV8xsQzObYGbvmtkzZnZgJWtbkedZNN+ibqWuaR3ro/bqd/N0/A2BI5Ap4HTgT0hQvJ+7D4tgJigk3P0lNMZjGhqVMNnMWma7qgBW6WWeRaagJ7j72RHM1D2RoSkh0h3BSMo6h8YBZ+b7rs3MJiMx73Akor0R6JIEuHVKape+FXUf7YzaH/vn429MRoYvoVbtr9BcqdFVcQsOgqxIpebzgd+hsujJ7v5YtqtqmKRGhcvR2JZXkcdMdcvqQQ2JgKYEMbMhaH7RhkhVP8TdH8/TsRuhYGYTd/86PTceeMbd/5iH47dB/gyvu/viSrbZGrWvfwg8Vdtgxsyaog6SS5C+5z3gcHd/vjbHDYL6xMz2RSM4foBubC4uL2wP6pak5bsV+CESAA/2mJhdr0TJqQRx9ytRF9DpqL4+18xmmFmXfBwe+BoFHbm7w63JQ2nLzM4BXkAeNK+b2aEVLsD9XXefkvxsahzMmNm6ZnYGupO6FrV07+XuW0cwExQbyQ9pV+AGlLF5trxg2MxapeaBOO/XguSC/rNyPzczs+HIxHMTNMagfwQz9U9kaEqcpDM5B53gNgUeQ2Lhh2oaDKS20QuRcr8zMsPr6u7/WOOOaz7mzqgLYE93fy/pciYDW+W79pzekzOAwcBWyCfnEuDPIaoMSgEz64GsHdqi7+lFyMjy58DO9VEeLlXMbBQwCAWPW6IbsB2Qc/jZ7v55Zotr4ERA00BIF/HT0UW8DdKK3ADclmZGVfd4PYBuwCfAuNrejZjZUcCpaY5S7rmPgN3c/f9rc+xyx2sPDEDjF1oiD58RwCMRyASlRvrOX4JuZr5Cn/nR7n5OpgsrcsxsUzRzbjnQGo2lOcvdK3IfD+qRCGgaGKn1+STkNro7OtHdhlq/n87qwm5mO6FhbXu7+8LUJTAJZWhqLMpNgzEPR+3YhwArUPfStTGyIGgIpPbuP6MbmZdRi/f9EcRXn2S6ORQ4D2iCDA6HhFapMIiApoGStC97Irv/PsC6yATvduB2d381gzUNQh0CC1Ep6Hh3n12D4zRBwcuJyEtmAyT0HQvc5O4f5m3RQVAEpO/7QOBcoB0qPV/k7vPWtF8gzGw99P5dDGwETAT+GOMLCosIaAKSd8VPUebmYMCA15EXy3Tg8fryUEhDIdsAb7j7kmrstxnQEzkR90Tp9SVIhzMRmJPm4QRBgyUF+6cDl6JZao8gTd3syNh8n3RuHIAyMpsDDwAXuvuCTBcWVEgENMG/YWZbIafcXsBBQFNgKfAkMAdNip1fmxRrEtXh7ufW4hibI4O9A9BE7V1R195HwAxkNjbT3ZfX9DWCoFQxsw2QVcFgNDj2KeRjMy18l1adBwci8W9LFMhc4e5zMl1YsEYioAkqJZ30DkEZj/2RvwLIsfdlYAHwPGq1fgN4vypZEDN7FMDdu1Vh2/VQF1V7FLR0Tv9ukzZZhrx2HkOBzLN5dicOgpIlGcGdgroWt0XGfGOB8Q2tNJvKct1QIHMk0Bi4B/iNu/81u5UFVSUCmqDKJHV/V6ALZYFF63KbrADeAd5GmZJP0+Mz4BvUFbAc6WRATsPrpkcLZGqXe7RBw/e2LHf8f6JS2AJkKz4X+GuMJAiC2mFm66By7UCgO/AdMAU1DMws5e9YMuo8ATgZ2AmNO7kZGOvub2S5tqB6REAT1IqkeemIgo/cY1tUn98MCXKriqOTyafIBfit9HgbtUa+5O7f5GvtQRB8HzPbEegP/Ax9hxcjLdod1KOeri4xs9YoC3MSyj6DMr1jgbtq46kVZEcENEGdklLamwLNkR4nl5FZiUpXuazNl8DiEO4GQWGQBMSHoov+kcD6wBeoBXw6MqL8LKv1VYdUTuqMslC90VBbQy7hE1Fn51vZrTDIBxHQBEEQBGskmfT1RM0CvVDHj6Pyb65ZYK67f1TL1xkFtWsYSMdpDHSirGlgf8rWPB8FZNOABdHdVTpEQBMEQRBUmTQLag/gxyhQ2BdlYAHeRY0CC9LjJeCdqnYbVqdhIG1vKAO8AwpgdkWZmE4oowTS9c1Fo1Vm1jboCgqXCGiCIAiCGpNKU7uj4GZ3FFB0oGz4sQPvIy3c28DHSCf3Sfr3K1R2/ha4Pm1/JipNNwWaARtT1jDQCjUNbIc0exuWW84SyoKpeShr9F7+/+qgEImAJgiCIMgryW6hI+oaygUe21HWMNCsFodfDHxAWcNArnngBWBhlJAaLhHQBEEQBPVGKhM1pyzjsj5lzQL9kVh3HGUNA8tREPMp8HkY/wWVEQFNEARBEARFT6O1bxIEQRAEQVDYREATBEEQBEHREwFNEARBEARFTwQ0QRAEQRAUPRHQBEEQBEFQ9ERAEwRBEARB0RMBTRAEQRAERU8ENEEQBEEQFD0R0ARBEARBUPT8CwInSMYYb27OAAAAAElFTkSuQmCC\n",
|
|
552
|
+
"text/plain": [
|
|
553
|
+
"<Figure size 576x720 with 7 Axes>"
|
|
554
|
+
]
|
|
555
|
+
},
|
|
556
|
+
"metadata": {
|
|
557
|
+
"needs_background": "light"
|
|
558
|
+
},
|
|
559
|
+
"output_type": "display_data"
|
|
560
|
+
}
|
|
561
|
+
],
|
|
562
|
+
"source": [
|
|
563
|
+
"# if 'quick' results are promising, do the full way\n",
|
|
564
|
+
"# this is slower, but much more reliable and gives better confidence bounds\n",
|
|
565
|
+
"quick=False\n",
|
|
566
|
+
"verbose=False # if you want to see progress at every step, then choose True\n",
|
|
567
|
+
"flat_df=svei.find_flat(di_block,plot=True,quick=quick,verbose=verbose)\n",
|
|
568
|
+
"\n"
|
|
569
|
+
]
|
|
570
|
+
},
|
|
571
|
+
{
|
|
572
|
+
"cell_type": "markdown",
|
|
573
|
+
"id": "3c28d30f",
|
|
574
|
+
"metadata": {},
|
|
575
|
+
"source": [
|
|
576
|
+
"## Same caption as before"
|
|
577
|
+
]
|
|
578
|
+
},
|
|
579
|
+
{
|
|
580
|
+
"cell_type": "code",
|
|
581
|
+
"execution_count": null,
|
|
582
|
+
"id": "08566847",
|
|
583
|
+
"metadata": {},
|
|
584
|
+
"outputs": [],
|
|
585
|
+
"source": []
|
|
586
|
+
}
|
|
587
|
+
],
|
|
588
|
+
"metadata": {
|
|
589
|
+
"kernelspec": {
|
|
590
|
+
"display_name": "Python 3 (ipykernel)",
|
|
591
|
+
"language": "python",
|
|
592
|
+
"name": "python3"
|
|
593
|
+
},
|
|
594
|
+
"language_info": {
|
|
595
|
+
"codemirror_mode": {
|
|
596
|
+
"name": "ipython",
|
|
597
|
+
"version": 3
|
|
598
|
+
},
|
|
599
|
+
"file_extension": ".py",
|
|
600
|
+
"mimetype": "text/x-python",
|
|
601
|
+
"name": "python",
|
|
602
|
+
"nbconvert_exporter": "python",
|
|
603
|
+
"pygments_lexer": "ipython3",
|
|
604
|
+
"version": "3.9.7"
|
|
605
|
+
}
|
|
606
|
+
},
|
|
607
|
+
"nbformat": 4,
|
|
608
|
+
"nbformat_minor": 5
|
|
609
|
+
}
|