pmagpy 4.2.121__py3-none-any.whl → 4.2.122__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pmagpy/ipmag.py +12 -12
- pmagpy/svei.py +8 -7
- pmagpy/version.py +2 -2
- pmagpy-4.2.122.data/data/data_files/SVEI_demo.ipynb +521 -0
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.122.dist-info}/METADATA +1 -1
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.122.dist-info}/RECORD +940 -968
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.122.dist-info}/WHEEL +1 -1
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.122.dist-info}/entry_points.txt +1 -0
- pmagpy-4.2.121.data/data/data_files/2_5/McMurdo/ages.txt +0 -101
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/ages.txt +0 -12
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/measurements.txt +0 -8905
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/samples.txt +0 -82
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/sites.txt +0 -12
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_1/specimens.txt +0 -375
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/ages.txt +0 -21
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/measurements.txt +0 -16868
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/samples.txt +0 -166
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/sites.txt +0 -31
- pmagpy-4.2.121.data/data/data_files/3_0/Megiddo/Location_2/specimens.txt +0 -692
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/demag_orient.txt +0 -172
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/samples.bak +0 -246
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/sites.bak +0 -41
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/specimens.bak +0 -1065
- pmagpy-4.2.121.data/data/data_files/Pmag_GUI/3_0/thellier_GUI.log +0 -1
- pmagpy-4.2.121.data/data/data_files/SVEI_demo.ipynb +0 -519
- pmagpy-4.2.121.data/data/data_files/aarm_magic/samples.txt +0 -9
- pmagpy-4.2.121.data/data/data_files/aarm_magic/sites.txt +0 -4
- pmagpy-4.2.121.data/data/data_files/aarm_magic/specimens.txt +0 -9
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/samples.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/sites.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/sio_magic/specimens.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/convert_2_magic/utrecht_magic/locations.txt +0 -3
- pmagpy-4.2.121.data/data/data_files/testing/my_project/thellier_GUI.log +0 -74
- pmagpy-4.2.121.data/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter.log +0 -330
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_images.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_mailinglist.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/pmag_criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/rmag_hysteresis.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/rmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/2_5/McMurdo/zmab0100049tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/.ipynb_checkpoints/Parsing_data_model-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/extra_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/images.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/new_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/McMurdo/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/.ipynb_checkpoints/ages_from_samples_to_sites-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/ages_from_samples_to_sites.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/magic_contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Megiddo/test_spec.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/contribution_11087_v2.5.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/contribution_11087_v3.0.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/3_0/Osler/stored.json +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/Cont_rot.svg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/aus_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/col_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/eant_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/eur_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/grn_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/ind_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/mad_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/nam_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/neaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/nwaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/par_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/FRPTMP/sac_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/af.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/ages.tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/ant.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/aus.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/aus_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/balt.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/col_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/congo.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/continents.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/eant_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/eur.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/eur_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/finrot_saf.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/globalapwps.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/gond.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/grn.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/grn_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/ib_eur.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/ind.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/ind.bak +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/ind_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/kala.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/lau.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/mad_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/mkcont.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/mkfrp.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/nam.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/nam_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/neaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/nwaf_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/par_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/plates.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/sac_saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/saf.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/sam.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Continents/waf.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/Z35.sam.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/Z35_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/Z35_er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/Z35_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ErMagicBuilder/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Figures/atrm_meas.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Figures/chartmaker.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Figures/meas15.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Figures/samples.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/PmagPy-cli.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/PmagPy_MagIC.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/PmagPy_calculations.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/PmagPy_introduction.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/PmagPy_online.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/PmagPy_plots_analysis.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/Tel-Hazor_Tel-Megiddo_25.Aug.2016.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/ages_from_samples_to_sites.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/new_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/new_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/new_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/3_0/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/SIOfiles/na_sw.atrm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/SIOfiles/na_sw.cool +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/SIOfiles/na_sw.thel +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/SIOfiles.zip +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_AF.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_thellier.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/ThisProject/SrExample_thermal.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/Pmag_GUI/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/.ipynb_checkpoints/Editing-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/.ipynb_checkpoints/U1456A-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/.ipynb_checkpoints/discretes-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/Core_depthplot.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/JR6_data/UTESTA.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/JR6_data/UTESTA_fixed.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/KLY4S_data/UTESTA.kly4s +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/SRM_data/srmdiscrete-XXX-UTEST-A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/SRM_data/srmsection-XXX-UTEST-A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/CoreSummary_XXX_UTESTA.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA.kly4s.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA_fixed.jr6.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/UTESTA_rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/samples-XXX-UTEST-A_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/srmdiscrete-XXX-UTEST-A.csv.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A.csv.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A_er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC/srmsection-XXX-UTEST-A_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC3/CoreSummary_XXX_UTESTA.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC3/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC3/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC3/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/UTESTA_MagIC3/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/UTESTA/samples-XXX-UTEST-A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/aarm_magic/aarm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/aarm_magic/arm_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/angle/angle.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/angle/tmp.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/magic_contribution_12152.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/rmag_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/ani_depthplot/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/aniso_magic/dike_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/aniso_magic/dike_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/aniso_magic/sed_anisotropy.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/aniso_magic/sed_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/apwp/apwp_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/atrm_magic/atrm_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/atrm_magic/atrm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/atrm_magic/atrm_measurements3.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/atrm_magic/atrm_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/atrm_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/atrm_magic/orig_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/azdip_magic/azdip_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/b_vdm/b_vdm_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/basemap_magic/basemap_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/biplot_magic/biplot_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/biplot_magic/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/biplot_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/biplot_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/biplot_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/biplot_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/biplot_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/bootams/bootams_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/cart_dir/cart_dir_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/chi_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/chi_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/chi_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/combine_magic/af_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/combine_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/combine_magic/ns_a.mag +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/combine_magic/ns_t.mag +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/combine_magic/therm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/common_mean/common_mean_ex_file1.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/common_mean/common_mean_ex_file2.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_asc_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_asc_magic/_2g_asc/DR3B.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_asc_magic/_2g_asc/OK3_15af.asc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_asc_magic/_2g_asc/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/165A.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/165B.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/165C.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/60A.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/60B.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/60C.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/70A.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/70C.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/KodamaFiles/70D.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ab.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1bb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1c.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1db.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1e.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1f.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ga.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ha.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ib.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1jb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1kb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1la.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton1ma.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29ab.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29bb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29cb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29da.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29db.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29e.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29eb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29f.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29ga.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29gc.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29h.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29ib.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton29j.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2c.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2d.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2e.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2f.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2g.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2h.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton2i.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3aa.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ba.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ca.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3da.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ea.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3fb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ga.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton3ha.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4ab.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4bb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4c.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4d.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4eb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4fb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4gb.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4ha.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/MolinaFiles/ton4ia.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/MN1.CSV +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/MN_chr_dir.xls +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn001-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn004-2b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn008-2b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn010-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn014-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn017-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn022-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn026-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn031-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn033-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn034-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn038-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn041-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn042-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn046-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn049-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn056-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn061-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn065-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn067-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn071-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn075-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn078-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn081-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn084-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn087-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn091-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn093-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn096-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn1.saf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn100-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn103-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn105-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn106-1a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn107-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn109-2a.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/2g_bin_magic/mn1/mn110-1b.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01a-2.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01b-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01b-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01c-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01c-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01d-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01d-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01e-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01e-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS01f-2.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02a-3.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-1.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-2.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02b-2.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_directory/IS02c-1.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_magic_example.agm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/agm_magic/agm_magic_example.irm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/bgc_magic/15HHA1-2A +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/bgc_magic/15JC4-1A +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/bgc_magic/96MT.05.01 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/bgc_magic/96MT.05.01.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/bgc_magic/BC0-3A +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/bgc_magic/BC0-3A.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/bgc_magic/CA14-TA02.05'a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source.html +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/PaleoMag.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/PaleoMag_002.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/a-95.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/kappa.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/Craig_Jones_webpage_of_PMag_file_formats_CIT_file_format_source_files/phi.gif +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B.LSQ +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B.sam +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B71 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B72 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B73 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B74 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B75 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B76 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B77 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B78 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/MIT/7325B/7325B79 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-.sam +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-1a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-2a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-3a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-4a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-5a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-6a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-7a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-8a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/PI47-9a +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/PI47/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9001-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9001-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9002-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9002-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9003-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9003-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9004-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9004-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9005-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9005-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9006-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9006-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9007-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9007-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9008-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9008-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9009-1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/BL9009-1.rmg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/bl9-1.sam +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/bl9001.dir +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/USGS/bl9-1/command +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/cit_magic/sample_formats.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/fla_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/fla_magic/mejia04.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/fla_magic/pa_thermal.fla +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/fla_magic/pt_af.fla +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/generic_magic/generic_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/huji_magic/Massada_AF_HUJI_new_format.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/huji_magic/Massada_AF_all_old_format.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/huji_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/huji_magic/magdelkrum.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/huji_magic/magdelkrum_datafile.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_jr6_magic/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_jr6_magic/test.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_srm_magic/GCR_U1359_B_coresummary.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_srm_magic/IODP_Janus_312_U1256.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_srm_magic/IODP_LIMS_SRMdiscrete_344_1414A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_srm_magic/IODP_LIMS_SRMsection_344_1414A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_srm_magic/SRM_318_U1359_B_A.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/iodp_srm_magic/samples_318_U1359_B.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AF.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AF.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AF_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AF_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AF_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AP12.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AP12.tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/AP12.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/SML01.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/SML02.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/SML03.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/SML04.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/SML05.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/SML06.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/SML07.JR6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/TRM.jr6 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/TRM.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/TRM_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/TRM_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/TRM_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/jr6_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/k15_magic/k15_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/kly4s_magic/KLY4S_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/ldeo_magic/ldeo_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/CHEV.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/CHEV.livdb_different_delimiters +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_C+/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/NVPA.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/NVPA.livdb_fifferent_delimiter +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_IZZI+andC++/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/016-01.livdb_old_delimiters +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/017-03.livdb_old_delimiters +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/16-1.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_OT+/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/perp.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/MW_P/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/ATPI_Thellier.livdb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/livdb_magic/TH_IZZI+/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/mini_magic/Peru_rev1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/mini_magic/Peru_rev1_description.rtf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/mst_magic/curie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/IPGP/0110C.PMD +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/IPGP/0210C.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0101a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0102a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0103a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0104a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0105a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0106a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0107a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0108a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0201a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0202a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0203a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0204a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0205a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0206a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0207a.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/PMD/ss0208c.pmd +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/pmd_magic/UCSC/ssDirAll.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/s_magic/s_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/SantaRosa2006.scz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy01.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy02.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy03.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy04.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy05.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy06.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy07.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy08.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy09.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy10.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy11.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy12.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy13.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy13A.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy13B.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy14.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/cy15.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/scz_magic/CanyonCreek/santaRosa.pmm +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/sio_magic/sio_af_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/sio_magic/sio_thermal_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/sufar_asc_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/sufar_asc_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/sufar_asc_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/sufar_asc_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/sufar_asc_magic/sufar4-asc_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/tdt_magic/Krasa_MGH1.tdt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/tdt_magic/Krasa_MGH1_noAC.tdt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/utrecht_magic/Utrecht_Example.af +0 -0
- {pmagpy-4.2.121.data/data/data_files/aarm_magic → pmagpy-4.2.122.data/data/data_files/convert_2_magic/utrecht_magic}/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/utrecht_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/utrecht_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/utrecht_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_2_magic/utrecht_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_ages/magic_downloaded_rows.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_samples/Iceland_orient.txt_Northern_Iceland.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_samples/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_samples/convert_samples_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/convert_samples/orient_Northern_Iceland.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/Z35.sam.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/Z35_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/Z35_er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/Z35_er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/copy_er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/copy_ErMagicBuilder/weird_er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/core_depthplot_fixed.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/core_depthplot/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/curie/curie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dayplot_magic/dayplot_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dayplot_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_eq/di_eq_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_eq/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_eq/tmp1 +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_geo/di_geo.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_geo/di_geo_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_rot/di_rot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_rot/di_rot_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_rot/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_tilt/di_tilt.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_tilt/di_tilt_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/di_vgp/di_vgp_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dipole_pinc/dipole_pinc_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dipole_plat/dipole_plat_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dir_cart/dir_cart_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/contribution.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/dmag_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/magic_contribution_16338.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/dmag_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eigs_s/eigs_s_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eq_di/eq_di_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eq_di/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_ell/eqarea_ell_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_ell/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_magic/site_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/eqarea_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/etopo20/etopo20data.gz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/etopo20/etopo20lats.gz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/etopo20/etopo20lons.gz +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/find_EI/find_EI_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/find_EI/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/fishqq/fishqq_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/fishrot/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest/foldtest_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/magic_contribution_11087.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/foldtest_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/forc_diagram/.ipynb_checkpoints/forc_diagram-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/forc_diagram/conventional_example.forc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/forc_diagram/irforc_exmaple.irforc +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/gaussian/gauss.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/ATRM/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/ATRM/generic_ATRM.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/ATRM/generic_ATRM.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/CR/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/CR/generic_CR.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/CR/generic_CR.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/Demag/README.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/Demag/generic_demag.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/PI/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/generic_magic/PI/generic_izzi.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/geomagia/geomagia_sel.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/gobing/gobing_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/gofish/fishrot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/gokent/gokent_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/gokent/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/goprinc/goprinc_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/goprinc/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/grab_magic_key/lats +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/hysteresis_magic/hysteresis_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/hysteresis_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/igrf/igrf.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/igrf/igrf_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/incfish/incfish_example_di.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/incfish/incfish_example_inc.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/.ipynb_checkpoints/PmagPy_iodp_HOLE_template-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/.ipynb_checkpoints/U999A-checkpoint.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/Figures/U999A_1.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/Figures/U999A_anisotropy_xmastree.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/ProcessingPmagData.docx +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/Core Summary_18_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/JR6_data/spinner_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/KLY4S_data/ex-kappa_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/SRM_archive_data/srmsection_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/SRM_discrete_data/srmdiscrete_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/Section Summary_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U1999A_xray_disturbance.xlsx +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/Core Summary_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/dscr_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/jr6_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/kly4s_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/kly4s_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/lims_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/lims_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/lims_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_arch_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_MagIC/srm_dscr_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/U999A_disturbances.xlsx +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A/samples_17_5_2019.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/iodp_magic/U999A.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/irm_unmix/irm_unmix_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/irm_unmix/irm_unmix_example_fit.csv +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/irmaq_magic/U1359A_IRM_coil2.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/irmaq_magic/U1359A_IRM_coil3.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/irmaq_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/k15_magic/k15_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/k15_s/k15_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/kly4s_magic/KLY4S_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lnp_magic/zmab0001193tmp02.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lowrie/lowrie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lowrie/lowrie_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lowrie_magic/lowrie_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lowrie_magic/lowrie_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/lowrie_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/SrExample_AF.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/SrExample_AF_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/SrExample_thellier.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/SrExample_thellier_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/SrExample_thermal.txt.magic +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/SrExample_thermal_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_gui/3_0/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_select/AF_BFL_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_select/AF_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_select/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/magic_select/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/measurements_normalize/irm_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/measurements_normalize/specimens_weight.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/misc_files/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/misc_files/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/pmag_criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/mk_redo/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/Importing and using the 3.0 data model.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/Intro to MagIC Contributions.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/Intro to MagicDataFrames.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/Py2toPy3.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/Uploading contributions (with validations).ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/Validate Quoted Strings.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/data_model_conversion.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/notebooks/thellier_gui3_0_tester.ipynb +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/nrm_specimens_magic/magic_contribution_15143.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/nrm_specimens_magic/nrm_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/orientation_magic/orient_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/parse_measurements/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pca/pca_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pca/zeq_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plotXY/plotXY.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plotXY/plotXY.svg +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plotXY/plotxy_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plotXY/tmp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plot_cdf/gaussian.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plot_map_pts/Map_PTS.png +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plot_map_pts/uniform.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/plotdi_a/plotdi_a_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/Directions.tex +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/Directions.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/Intensities.tex +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/Intensities.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/SiteNfo.tex +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/SiteNfo.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pmag_results_extract/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/polemap_magic/locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/Map_PTS.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/lon_lat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/nam_180-200.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/nam_panA.frp +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/panA.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/pt_rot.input +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/pt_rot.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/pt_rot_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/pt_rot/pt_rot_panA.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/qqplot/gauss.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/quick_hyst/hysteresis_magic_example3.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/quick_hyst2/hysteresis_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/remanence_anisotropy_magic/README +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/revtest/revtest_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/revtest_magic/criteria.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/revtest_magic/revtest_magic_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/revtest_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/s_eigs/s_eigs_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/s_geo/s_geo_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/s_hext/s_geo_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/s_magic/s_magic_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/s_magic/specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/s_tilt/s_tilt_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/scalc/scalc_example.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/scalc_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/scalc_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/scalc_magic/vgp_lat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/site_edit_magic/thellier_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/site_edit_magic/zeq_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/site_edit_magic/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/squish/squish_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/stats/gaussian.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/strip_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/strip_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/strip_magic/sites_with_vgps.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/sundec/sundec_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/__init__.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/empty_dir/blank.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/location_09.Oct.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/location_14.Oct.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/location_16.Aug.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/location_16.Aug.2015_1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/methods/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/__init__.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/er_samples_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/er_sites_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_STDEV-OPT_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_STDEV-OPT_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_STDEV-OPT_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_all.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project/thellier_interpreter/thellier_interpreter_specimens_bounds.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/__init__.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/er_samples_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/er_sites_orient.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/er_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/magic_measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/my_project_with_errors/something.py +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/odp_magic/odp_magic_er_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/validation/Jack-Hills_19.Apr.2020_4.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/validation/Jack-Hills_19.Apr.2020_5.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/validation/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/validation/er_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/validation/location1_30.Dec.2015.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/testing/validation/location1_30.Dec.2015_1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Megiddo_unpublished_example/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Megiddo_unpublished_example/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/SU1_example/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/SU1_example/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/SU1_example/optimizer_test_groups.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_expeditions.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/er_test_groups.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_STDEV-OPT_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_STDEV-OPT_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_STDEV-OPT_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_all.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_interpreter/thellier_interpreter_specimens_bounds.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_redo +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/thellier_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/Tauxe_2006_example/zmab0094380tmp01.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_GUI/thellier_GUI_full_manual_1_0.pdf +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/thellier_magic/zmab0100159tmp01.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/tk03/tk03.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/tsunakawa_shaw/raw_data/mc120c-SA4.d +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/uniform/uniform.out +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/unsquish/unsquish_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/er_ages.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/er_citations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/er_locations.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/magic_methods.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/pmag_samples.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/pmag_sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/pmag_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/thellier_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/upload.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/upload_dos.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/upload_magic/zeq_specimens.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/vdm_b/vdm_b_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/vector_mean/vector_mean_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/vgp_di/vgp_di_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/vgpmap_magic/pmag_results.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/vgpmap_magic/sites.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/watsons_f/watsons_f_example_file1.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/watsons_f/watsons_f_example_file2.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/xpeem_magic/Bryson2019_PVA01-r1.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/xpeem_magic/Maurel2020_TeA01Comma-r1onL.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/xpeem_magic/Maurel2020_TeA01TwoSpace-r1onL.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/zeq/zeq_example.dat +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/zeq_magic/measurements.txt +0 -0
- {pmagpy-4.2.121.data → pmagpy-4.2.122.data}/data/data_files/zeq_magic/zmab0083201tmp03.txt +0 -0
- {pmagpy-4.2.121.dist-info → pmagpy-4.2.122.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,521 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": 9,
|
|
6
|
+
"id": "43f84271",
|
|
7
|
+
"metadata": {},
|
|
8
|
+
"outputs": [],
|
|
9
|
+
"source": [
|
|
10
|
+
"from importlib import reload\n",
|
|
11
|
+
"import pmagpy.svei as svei\n",
|
|
12
|
+
"import numpy as np\n",
|
|
13
|
+
"import pmagpy.pmag as pmag\n",
|
|
14
|
+
"import pmagpy.ipmag as ipmag\n",
|
|
15
|
+
"import pmagpy.pmagplotlib as pmagplotlib\n",
|
|
16
|
+
"import matplotlib.pyplot as plt\n",
|
|
17
|
+
"%matplotlib inline \n",
|
|
18
|
+
"import pandas as pd\n",
|
|
19
|
+
"import os"
|
|
20
|
+
]
|
|
21
|
+
},
|
|
22
|
+
{
|
|
23
|
+
"cell_type": "markdown",
|
|
24
|
+
"id": "858aea38",
|
|
25
|
+
"metadata": {},
|
|
26
|
+
"source": [
|
|
27
|
+
"## Before using this notebook:\n",
|
|
28
|
+
"- make a copy this notebook\n",
|
|
29
|
+
"- if you are using the jupyterhub.earthref.org site\n",
|
|
30
|
+
" - Open the link: PmagPy Online-Setup.ipynb\n",
|
|
31
|
+
" - scroll down and click on the cell: !pip install pmagpy --user --upgrade\n",
|
|
32
|
+
" - then scroll down and click on the next cell.\n",
|
|
33
|
+
"- under File, click on Open\n",
|
|
34
|
+
" - click on the link to PmagPy-Online \n",
|
|
35
|
+
" - click on SVEI_demo.ipynb (this notebook)\n",
|
|
36
|
+
" - click on each cell in turn"
|
|
37
|
+
]
|
|
38
|
+
},
|
|
39
|
+
{
|
|
40
|
+
"cell_type": "markdown",
|
|
41
|
+
"id": "487e297e",
|
|
42
|
+
"metadata": {},
|
|
43
|
+
"source": [
|
|
44
|
+
"## This notebook is associated with a manuscript currently in review\n",
|
|
45
|
+
"- cite as: \n",
|
|
46
|
+
" - Lisa Tauxe, David Heslop, Stuart A. Gilder. Testing paleomagnetic directional distributions against field models for the averaging of secular variation and correcting for inclination shallowing using an updated elongation/inclination approach (SVEI). ESS Open Archive . May 13, 2024. DOI: 10.22541/essoar.171561889.99296110/v1\n",
|
|
47
|
+
"\n",
|
|
48
|
+
"- URL: https://essopenarchive.org/doi/full/10.22541/essoar.171561889.99296110/v1"
|
|
49
|
+
]
|
|
50
|
+
},
|
|
51
|
+
{
|
|
52
|
+
"cell_type": "markdown",
|
|
53
|
+
"id": "bdfd813e",
|
|
54
|
+
"metadata": {},
|
|
55
|
+
"source": [
|
|
56
|
+
"## How to use the SVEI module \n",
|
|
57
|
+
"- testing PSV data sets against a GGP model\n",
|
|
58
|
+
" - GGP models are 'Giant Gaussian Process' models for a statistical description of the geomagnetic field (see Tauxe and Kent, 2004, https://doi.org/10.1029/145gm08)\n",
|
|
59
|
+
" - SVEI uses the THG24 field model, but other published models are also available. \n",
|
|
60
|
+
"- for correction of inclination shallowing of sedimentary records\n",
|
|
61
|
+
" - inclinations have frequently been corrected using the E/I method described by Tauxe and Kent (2004)\n",
|
|
62
|
+
" - Tauxe et al. (XXXXXX) updated the method which is referred to as the SVEI method\n",
|
|
63
|
+
" - this notebook illustrates how to use the PmagPy code for this\n"
|
|
64
|
+
]
|
|
65
|
+
},
|
|
66
|
+
{
|
|
67
|
+
"cell_type": "markdown",
|
|
68
|
+
"id": "0a3d2b92",
|
|
69
|
+
"metadata": {},
|
|
70
|
+
"source": [
|
|
71
|
+
"## How to use PmagPy to test if a data set represents paleosecular variation (PSV)\n",
|
|
72
|
+
"- create a synthetic dataset from a chosen GGP model and test using svei.svei_test()\n",
|
|
73
|
+
"- download the PSV10-24 data compilation from the MagIC database\n",
|
|
74
|
+
"- select a study and GGP model for testing\n",
|
|
75
|
+
"- run svei.svei_test_varkap for testing"
|
|
76
|
+
]
|
|
77
|
+
},
|
|
78
|
+
{
|
|
79
|
+
"cell_type": "markdown",
|
|
80
|
+
"id": "8b51b801",
|
|
81
|
+
"metadata": {},
|
|
82
|
+
"source": [
|
|
83
|
+
"## Example of the two Anderson-Darling tests (A2D,A2I), and the V2dec, and E tests for consistency of a dataset with the THG24 GGP model.\n",
|
|
84
|
+
"\n",
|
|
85
|
+
"a) Equal area projection of simulated directions drawn from the model for a latitude of ~30. Solid symbols are lower hemispheric projections. Grey contours are the probability densities for directions expected from the model. The latitude (Lat) listed above the stereonet was calculated from the data based on the average inclination. An infinite kappa implies no uncertainty in the directions. \n",
|
|
86
|
+
"\n",
|
|
87
|
+
"b) Empirical cumulative distribution functions (ECDFs) from data drawn from the THG24 model plotted against the predicted cumulative density functions (CDFs). Solid lines are the CDFs generated by the model for the declinations (red) and inclinations (blue) at the specified latitude and the dotted lines are the ECDFs of the data. \n",
|
|
88
|
+
"\n",
|
|
89
|
+
"c) V2decs from the data (solid vertical line) compared to CDF of 1000 datasets drawn from THG24 (red line) at the same latitude as in a). Bounds containing 95% of the data are shown as dotted vertical lines. \n",
|
|
90
|
+
"\n",
|
|
91
|
+
"d) Same as c), but for the elongations (E) of the data (solid vertical line) and the simulations (solid blue line). This example passes all four tests."
|
|
92
|
+
]
|
|
93
|
+
},
|
|
94
|
+
{
|
|
95
|
+
"cell_type": "code",
|
|
96
|
+
"execution_count": 4,
|
|
97
|
+
"id": "954aa96c",
|
|
98
|
+
"metadata": {},
|
|
99
|
+
"outputs": [
|
|
100
|
+
{
|
|
101
|
+
"data": {
|
|
102
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEUCAYAAAA2mpeWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACtzUlEQVR4nOydZ5hTRReA30OHpQpIEwQUBQTpYAdEQVTsXVRUrKBir59LrNg7NkSwK4IKNhQEVCyAiFKUjjSld1janu/HuSth3ZLdTXJvknmfJ0/KvZk5mckk98xpoqo4HA6Hw+FwOBwOh6PoFPNbAIfD4XA4HA6Hw+FIFpyC5XA4HA6Hw+FwOBxRwilYDofD4XA4HA6HwxElnILlcDgcDofD4XA4HFHCKVgOh8PhcDgcDofDESWcguVwOBwOh8PhcDgcUcIpWA6Hw+FwOBwOh8MRJZyC5XA4AoMIQ0T4NLfn8ew7Sm2OF0G922Fhrx8iwg8izBBhlAjlwmTIOv+saMricDgcDocjPjgFy+FwFJo4KEA3AD2j2aCn9Dwfj748XgdqAb94/ZcBPgD6qNIMmAP0CpOhVgxkcDgcDofDESdK+C2Aw+Fw5IYqG5Kgr62q/BP2/DRgjCq/es//BGqHybBBJEaSOBwOh8PhiDnOguVwOKKGZx0aKMJDIqwWYaUIj4vs+a0RQUS4WYS5ImwXYakID+fSXnaXwUjaP0GE70RYJ8JaEUaL0CSrPaAj0CfMFa9+Ln2VFuFpEVaIkCHCTyIcVRBZcqEJMD3seXNgVv6j63A4HA6HIxFwCpbD4Yg2FwK7gCOAvkA/4Nyw4w8B/wMeBg4BzgaWRLH9NOBpoD3QCdgAjBKhFOaC9yN73PZq5dH3o167lwGtMKXoS5G9XPjykyUnlgMHA4hwKHAcMDKf9zgcDofD4UgQnIugw5GAiMh4YIaq9s3l+CRggKqOiKtgxixV7vUezxHhCqAL8K4I5YEbgX6qDPbOmYcpPUVuH0CV4eEni3ApsBFor8r3Iuzgv257ZHtPGnAN0FuVz7zXrgaOBfoA90QiSy68CbwvwnRPrnNU2R7hZ096RKQy2Tb/VHWtP9I4HA6Hw1FwnILlcCQn9wNPisjHqpoZ575/z/Z8ObCv97gpUBoYG6P2EeEA7PN3AKpjF+vFgHoF6OMAoCQwMesFVXaL8CP2GSKSJSdU2Qr0KIAsSY+I7A+8BHTGxv3fQ4ACxf2Qy+FwOByOwuAULIcjOfkceBXoDmaBiSM7sz1X9lgkopG+Ia/2AUYBy4CrvPtdWIxTqQL0kSWn5nAs/LX8ZHFExutAZcwdczk5j7vD4XA4HAmBU7AcjsSlhIg8A1zsPR8E3K6qmaq6W0Q+B84n/gpWXswCtmNudHOj3bgIVbEkEn1UGee91pq9f+t2kL9FZJ533lHAAq+d4sDhwDtRFtth8XKHqeoMvwVxOBwOh6OoOAXL4UhcLgSGYBf9h2IWq7+BJ73jk4C7fZEsF1TZJMIzwMMibAe+BaoCbVR5MQpdrANWA1eIsASoAzyGWbGyWAS097IHbgbWqrKXG6UqW0R4ERggwmpgIRY7VgMYGAU5HXuzEHMddTgcDocj4XGuLA5H4vI3cL2q/qmqH2CKxE1hx5cDdUQkaBspdwKPYJkE/wCGA/tFo2FPUToXUzhnAC94/YQnkXgcs07NAlaRe2zW7VhB4NeBaV6bJ6jydzRkdezFDcDDInKg34I4HA6Hw1FURNW5ujsciYaXRXCxql4c9loXYAxQSVU3isjxwFdABVXd7I+kqY0I44EZquSY7TGP9ylwtiofxkSwgCEimzALVnFMGQ63OKKqFf2Qy+FwOByOwhC0nW2HwxE99gEynHLlO1eK0AvorMrkvE4U4SWgZ1ykChYFUkAdDofD4QgyTsFyOBKXDiIiuscMfRiwXFU3es+bAVP9Ec3hcSFQ1nscSTHlezEXRiB1XBFVdajfMjgcDofDES2cguVwJC61gadFZCDQHLgVeCDs+NHAl34I5jBUWVbA81cCK2MkTqARkdKYQtoUS9M+E3hXVQNdhFlE9sVkbaWqS/2Wx+FIJUTkU2C1qvbynk8CBqjqCF8Fc6Q8LsmFw5G4vI3FrPyMZRB8DXgKQETqAEdgCRocjkAjIk2xtP1PYgWiDwOeBuaISBMfRcsXVV0JvAGEcjtHRNqIiIrIUbkc/0BEJnqPrxCR70RkrYisF5Fxub0vL0Skl9dn1u1vr58GBW3L4Ugg7gceEZE8r29FZFG29ZF1G1CQzrK1s1VEZojIVUX6BI6kwClYDkcAEZEWIvKjiEwXkVEiUjHs2J1Y1r3OwChVrayqVVT1ZlXd7Z3WDxhSkB11EblORGaLyEwReTS8PxGZ5x3rFqXPd7+I/C4i00TkKxGpHeP+TvDamycid0SjzWztlxGRSSLymzd+Ie/1fUTkaxGZ691XiWKflUXkQxH5U0T+EJHDY9zfDd7Fw0wR6ee9Fq3+ngF+Beqp6tGqejSW3fE3TNEKOq8DF4rIPjkdVNVfsM93efZjIlIVOAXbIAHoBLyP1YrrAMwGRotIo0LItRWohVm7LwBaAiNFJL86cA5HovI5UAHoHsG592HrI/z2QJ7vyLudQ4GPgZdE5NxCtONIJlTV3dzN3QJ2AyYDHb3HlwH3e4+bYhedpYEGwHygeA7vvxWoUYD+OmMZCEt7z/ctSH+F+HwVwx5fD7wUq/4wK998oCFQymu/aZTnS4Dy3uOSmFXxMOBR4A7v9TuAR6LY51Cgt/e4FFA5Vv1h8XwzgHKYa/kYoFG0+sMUgUNyeL05sCWac1WE+b0Zs7JtB5YCD2c7Z0HWfOTSRh+s7lr5bK/fAGwC0vLo+x/gugLK3AvYnO21CzH3y4OBdliW0dXARuB74PBs518FzAEysJIGo4ESYXMz1nvvJm9ddfZ7rtwteW/e788Qbx2tAO4CPsU2E8PPGwy8lU9bi4BboiDTf9rx1sy73uMB2CbJNu/cR4EyYefWBT4B1nq/g38C54Udvxf4y/vd+Qd4w+95cLfIbs6C5XAEk4OxIrwAXwNneo9PBd5T1e2quhCYB7TP/mZVfUxVVxSgv2swv/Xt3vuz4oAi6q+g6J5EHABp2EVfrPprD8xT1QWqugN4z+snaqiRla2xpHdTr5+sBA5DgdOi0Z9n0TwGz+qhqjtUdX2s+gOaAD+p6lZV3QVMAE6PYn8ZmIKYnUreMb95CKun9jBwCHA2/01aMgnomEcbWS692Xe2L8O+81tyeV8poAxWRBvYy/2vfqQfwGObd18S2+V/E4vVbI/VevtcRKp5fbTF6siFsN+j49g7pvMdLBFLe6AV0J9gzJUjeXkcOB77P+yCfe+OyeG8/NZiRHjuf0MK8dYMbI0BbMHWeBPgWuA84O6wcwdiimNn7LelH7De6/9M4BbvfY2Ak7HP5kgAnILlcASTGZjbENjFXF3vcR32vrBb6r1WVA4CjhaRn0Vkgoi0i3F/iMiDIrIE21W/N4b9xewzhCMixUVkGpak4mtV/RmzIv4N4N3vG6XuGmIWhddF5FcRGSQiaTHsbwZwjIhUFZFywInYdzJa/Y0CXhWRI71xLO7FHb0MjIyC/IVGRMoDN2KWusGqOk9Vf1TVgdlOXQ7Uz60dTwEeTpiboLfODgUG5SHCA9iOffg4bMB2xXcW4HPsh1m2lwJzVPUbVX1TVf9Q1T+B67ALwxO8t9TDLg5Hqupfqvqbqj7lKdgA+2Pf8z+9MflIVX+MVB6HoyB46/By4DZVHa2qM4BLgcwcTl8O1BGR/BK5PSgim7PdTg47Pp8CZHMVkRIi0os91l1U9X5Vnaiqi1T1c2yz5vywt+0PfO+tr4Wq+qWqfhl27G/gK1VdrKpTVPX5SOVx+ItTsBwOnxCRMV5MS/bbqdiOVx8R+QXbad6R9bYcmoqoWng+/ZUAqmBubbcCH4iIxLA/VPVuVa2L7exn1UEqdH95iRKDNv/boOpuVW2Jxce1F5Fm0e4jjBJAa+BFVW2FXQhHPbYsC1X9A3gEs6Z+ibmD7crzTQXjBsz97jvsIj8Ds5LNwXZ0/aQp5rI6Np/ztrEnJX9uvAYcLiKNveeXATM8Zfw/iMgNmJveGeFWX0+Zaayq+WWpTPMuGrdgmwylvLZ2iMi+IvKyiMwRkQ2Ym9++mGIFNtd/AQtF5G0RuUREKoS1/SQwSES+EZG7wz6TwxELDsC+v/8q8Z7XwPQczt2G/e6XyafNJ7G4xPDbuLD2u6jqnRHI9qCIbPb6fQF4DNscQkTOEpHvReQf75yn2LPGwOJP7xGLuX5ARNqEHRvmfYaFIvKaiJwtlm3VkQC4NO0Oh0+o6nH5nNIVQEQOAk7yXlvKHmsW2MX88qL2JyLXACNUVYFJIpIJVItVf9l4B/gMSC9Kf3kQizZzRVXXi8h4zBKwQkRqqerfIlKL6KVgXwosDbsw/xBTsGLVH6r6Gp5Loog85MkQlf6y3Bu9RA6NsYujWao6LyrCF42cFPSc2AezKubFeMzt9TIRScd2svvn2KkpVw8A3VW1sG5BW7GLxkxgRTY3xKFADcw6twiL8RiLXcSiqptEpDXmgnU8cCfwkIi0U9XlqtpfRN7Gkgl0A9JF5GpVHVxIWR2OvIh0HYKtxYwwt+3cWBOl35gnsd/GrcDf3v8oInIY5pIewtbZeswzJavWIar6moiMxrwCjgN+EJGHVbW/qi4RkYMxd8jjgCewddYhD5diR0BwFiyHI4CI1dZBLNXsPcBL3qGRwHkiUlos3XIjouOT/TFwrNfnQdhF1upY9ZctI9opWGAvMepvMtBIRBqISCnMBz6qbmciUl1EKnuPy2J/hn96/VzinXYJFsxcZFT1HyDrzxfsD3hWrPqDvb6T9YAzgHej3Z+qzlXVUao6MiDKFdi4bsfGOC/yLeztXXgNBi7GlKuyWBzUXojITcCDwEmq+n0hZA7vMiv+MPsF2VHAc6r6marOxCxYtbK9eZfnSngn5sqYhsWBZB2fq6rPqupJ2AVm7yLI6nDkxTzMJfawrBc8t+icPAXyXYtRZo23zpZnKVceRwLLPDfByao6F3P72wtVXaqqr6jqOZi7/JVhxzK8NXojlpjmEK9dR8BxFiyHI5icLyJ9vMcj8OpZqepMEfkAu+jbBfTRPanZi8JgYLCIzMDcES/x/ihi1d8ATznIxNyQrobYfD5V3SUifbEMaMWBwd4FZTSpBQwVS39dDPhAVT8VkR8xd8vLgcVYPF20uA5421MaF2DxCMVi2N9wsZTiO7F5WSdWM6ZQ/YnIs8CdqrrFe5wrqnp9UQQvCp4l5xngYRHZjiWfqQq0UdUXAcTi0tpgWc3yYwhWq+dx4GNVXRN+UERuxZSrnlgdsJreoW2qusE753Qs4UaXCNwEc2MO0FNEfsYUp0fZ44qMF4tyAPZ512JB+BWAP7xNhMcxF6ZFmCXsKCx7psMRdVR1s4i8htW4WoV5IdyL/aZn52j2TsiSGxXC1lcW4etsLDApQjfBnJiDxYJdiLk2dmPv+Cu835YvvHMrYp4Ps7xjvbDr9J+xOMxzsd/fuYWUxxFHZG9l2+FwOByO2CMi44DTPZfKcXmdq6qd4yRWjniW5NuwneX9sBTRb6jq3d7x84F0VY0oDklERgI9gK6q+nW2Y4vIYZcbGKqqvbxzemGbLg1UdVEuffQCnlfV8rkcbwG8glmmlmOuircDH3ruf0dhiuChWJaz+cATqvq6p9QPwXbSawJrsHTZt+jeGUIdjqjhWaxexCzoW4HnsFpxq8PWRh1gIdBQ86gDmcc6e1tVe4adMz6r7TzaeV5VH8/l+MOYZbcsVhbha2Cgqop3/DlMqaqLWZHHAjer6jIROQ1bk02wrISzgJCqfpqbPI7g4BQsh8PhcDiKgIhMAp5W1Xf8lsXhSGVE5DGgkqpeme/JDkcMcTFYDofD4fAVEbnXc7PL/npZEbk3p/cEBS827UMsJs3hcPjLSqxmncPhK86C5XA4HA5fEZHdQC3dU+A66/WqwEpVzSnOwuFwOByOQOIsWA6Hw+HwGyHn2mStsAQLDofD4XAkDE7BcjiigIgMFpGVXha+nI6LiDwrIvNE5Hevvkwk7cbVj9z1l7j9JeJnE5FNIrIRU64WiMjGsNsWLPPjB0Xtx+FwOByOeOIULIcjOgzBMgHlRnesplMjLBPZixG2m+tFrIj0iPYx119C9xeYz1YA+gLXYxasu7HU81m33sBRqton97c7HA6HwxE8fFWwRORDr6CiIwkQkWIi8rKIrBERFZFOfssUL1Q1q1ZMbpyKpXVWVf0JqCwitfI4PxLyuvgt7DHXX3L2F+/PFhGqOlRVh2A1lgZ6z7Nu76rqj7Hs3+FwOByOWOBrkgsRaQ5MwGp5bMjjvCFANVU9Obdz8ulnPDBDVfsW5v3Z2uoDXAXU916aCTygqp+FnXMMcAtWeLI2cKl3EZFf29cCt2JFS2cC/VT1u6LKXBgKM+ZeYcoRQCes8OlaVd2R55uSCBGpD3yqqv+pLC8inwIDVPV77/lY4HZVnZLDuVeyxzrQply5/yRXA2D37t0UL55z7H9hj+3atYsSJXKuP+76y3YsMxMyM9m9a5dVulS1W3h/5F7NfTc5V8gs7LFI+lJKsJPq7KIyVtooUlYDZYDyWMmkrcAGVdWobNKJyNnADlX9JNvrpwIlVfXDaPRTGKpVq6b169f3q/uIWb9+PQCVK1f2pf8Fq7YA0LB6mi/9Fwa/x6yo/PLLL6tVtbrfcsSDaKzDIMx3Iq6TaBCEsY8Vua3D3P6P44KqTheRBVjF+hf8lKUALMUKv83FLICXAB+LSBtV/d07pzwwA3jDu+WLiJwLPANcC3zv3X8hIk1VdXF0P0LMOBD4W1V/8FuQACI5vJbj7oaqvoIVACUtLU23bNkSS7kckaIK334Lb7wBI0fC6tU5n1eqFFStClWrMrFECVrXrk3Z8uU5/aefWJaRwaSePaFsWU4aNoz127cz8frroUQJjhs4kEzgm9tvhxIlOOahhyhXujRf9u8PJUrQ4ZZbqLnPPnxy//1QrBitr7qKA+rUYZj3vNlFF9GiUSPefuABEKHR6adzdOvWDL7/frbvKk6NYz5na0Yfdu0qCZwDjOLw1ptodvBO5iy8jx9/eYEPX11K+fIw+L10PvnyDaZ/u5CSpeDqmy+jVOlSvPrsIIoVF4qXECrUqrAtiqPbH8jJm2EL8DSWBt0X6tevz5Qp/9kHCRydOnUCYPz48b70f+7LZmx8/6rDfem/MPg9ZkVFRP7yW4Z4EY11GIT5TsR1Eg2CMPaxIrd1GFMFS0ROwPzqm2EXk5Mxq8wfYaeNBM6nCApWXv14lpiOQEfP+gRmMVtUmL6y77ACd4vINcDhwO/eOZ8Dn3uyDYmw6ZuAIar6qvf8Ou9zXQPcGal8IlIB2AAcq6rjRaQu8CnwHXCDqu6OtK1s7Y7Hqoivx6wrmZjyeJuqZnqf8xLvXAX+UtX6hekrSVmKVWrPYj/MFOBIBH7+Ga67DiZP3vNavXpw+OEsb9SI8occQsVmzViVlsbMRYto264dW7du5agaNXjw7LO56667OOPNN9mwYQP0NUP62QceSEZGBlx9NQDnlSuHqsKllwJw4datlCxZEk47DYBLFi+mfPny0KULAL369qVq1apw1FEAXN63L7Vq1YK2bQG46vrrqV+/PqtqNufkk2HD5qYAnHgi9Oz5KtOnP8NDD5UByvDVV8fz/fdl6XHJPgBklDuRA5tVY/9W9vyGW6+jZcuWVKlaMVYj3BCYncPr87xjjnz45JPsf02O/HBjllq4+faPlBx7VY3ZDTjTuzUCDsWyQc0DSoWdcwKwAyibRztDMNerAvcDVAJ+AAYDNb1b8Vza6YUpaPUj/HzFgfM8+Zvncs5moFc+7ZTCPHzOzvb6C8CEgsgHHOWdsw/QDlgC9C3o58w+5sB4THG7DzgI2wLfBZzvHa8EhLz+agLVY/ndCuINcxudkcuxk4AvMEvWYcCkSNosV66cOnwkM1M1FFIVUQXV6tVV77lHdfp0O6aqBx98sI4dO1ZVVYcPH66A/vbbb5qRkaGff/65LliwwDfxN2xQbd7cRK9XT/Wtt+bq5s2bo9I2sEWjt3aWA8fn8HpXYEW0+inMrU2bNlEZr2TnnJd+0HNe+sFvMVIKYIoG4L8vHrdkWYdunSQfua3DmFqwVHV4+HMRuRTYCLTH3OCy/lhLYrFK86Pdj6p+LyI7gK2q+k8+TW3AdlF35nWSFzv2IxaUsBk4XVWnF0Z2j2qYsrYi2+srgOMKKF8LTMnpDDyPKXejs50T0efMgVmqeq/3eI6IXAF0Ad5V1Q0isgnYHcE4Jx0i8i4We1ZNRJYC6dj3GlV9CbNonogp/luBS/2R1BExmZlwxRUweDAUKwa33Qb/+x+k7fGdz8jIoHXr1sybN49jjz2Wo48+mnHjxtGwYUNKly5N9+7dfRNfFU466RumTx9Lo0a3MmFCJe6660Gef/5PfvwxcLkjPgGeEpEzVHUOgIgcDDwJfOynYInC+++/D8C5557rsySJgxuz1MLNt3+k4tjH2kXwAOB+oANQHYtZKgbUCzsty4+/bIz7yRdV/Qj4KIJTZwMtgcqY5WyoiHRS1RxrIBVEhGzP9yq+GaF8LYEqwHuYwjrmP51E/jmz83u258uBfQvRTtKhqufnc1wBl246kQiFTLkqVw7efx9O3pPvZcKECdxzzz28/vrrvPPOO/++Xr169X99zf1m2DD4/vvVwJMMGnQVtWpVpnPnzpzmuRwGjNuAL4FZIvK391otYBKW+CciRGQwcDKwUnNONiNYrOuJ2EZHL1WdWkTZA8GLL1rlh1S6gCkqbsyiT5DXoJtv/0jFsY91kotRwDIs694yzKVsFuYSl8U+3v2qGPcTNdQy483znk4RkXbAjcDlhWxyNZboq2a21/flv1at/GgB/IplMfwBSyAytJByZSe7xUtxtdQcycj334OXPIIPP4Tu3RkwYADjx4/nyy+/JCMjgx07dlCjRg2/Jc2R5557iQcfPA44h5dfPodjjrHXL774Yl/lyg1V3QQcKSLHY5tEAkwFxnqbE5EyBLPc55ZcKLweXQesHl2HwkkdLD7//HO/RUg43JjFhCEEdA26+faPVBz7mClYIlIVaAL0UdVx3mutc+izGbBcVQuqSBSknx3knvU4GhQDShf2zaq6Q0R+AY4HhoUdOh4YnvO7/ouIFMfGs6eqThKRt4F7ReRtVd1VWPkcjpRi1y648krzsbvzTvDc/NLS0iypBNCtWze6devmp5R5Ego9ypo1m2jR4lZ69/ZbmshR1a+Br4vw/m+9cgm58W89OuAnEaksIrVU9e883pMQ5FbOwZE7UR+zrVthwQJYuxa2bbPnW7fC9u32u7Jzp93ndNuxA+bOhU2b7L1Z7z/tNHj44ejKGUOCvAbdGvEPP8Z+2zZYs8Zuf/5piX83b96zxLZvh4wMu8/+OPx5q1bw9tsF7z+WFqx1mGXmChFZAtQBHsOsS+EcjbmG5EdFEWmZ7bX1wOII+lkEtPcW/WasPlOmiPTFEkA0BhCR04GHgS6quiwnIURkAPAZFudUAbgAi705Keyc8ljKcvBcFT3Z16qXcj1731iswZsiMgmYCFyNxaW9FMHYZHEQ5mo5zXt+P/AncBle2u9IP6fDkbK8+Sb88Qc0aAD33sv9999Pw4YNue6667juuuv8li5fdu9WSpYcApTi7rvNCJcIiEgHLKZzX7JZxlX1+ih1Uwf77c5iqffaXhd34bXo6tUrkKe5b7z11lsA9OzZ02dJEoc8x2zRIvjmG7tfs2aP0pORkfNt61ZYXMiKKsWKQfHi9ptTrRqULQtVqth9AtRgKyARrUGI/jp0a8Q/CjP227fDunW27LL2JnK637nTFKf162H2bPj8c9vn2Lo153ZFzPO/dGkoU8bus25ZzytUgOrV7fFBBxXuM8dMwfIUmHOBZ7GaUPOAmwmzyIhIGeB0IJKt4KMx17dwhqvqWfn1AzyOucnNwhSQBpjSVQ04OOy8St7zknnIURN4y7vfgMUldc+WSKItMC7seci7DcUy+JG9b1V937PG3YPFHswATlTVf/Pri0gv4HVyTzPfAtgELPTanCcibwH3iMhQVd1egM+ZMojIx8Ag4HNVzfRZHABEpAfQo3TpQhtGHYUhM3PPbvH990Pp0nz99dfUqVOHCy+80F/ZImTcOOGff45h//3hjDP8liYyROQW4FHs93s5e8ejFsRFMN+ucnjtP+1rWC26tm3bRrP/mDFo0CDAXTwWhH/H7IILYMYM+PRTmD8fxo+3K7Qsqla15DZlyux9q1gR9t13z5VZmTLQpg0ccICdX66cKUmlS0PJklCixN63kiVNsUqUXZDoUKiakNFYh26N+EdOY795M6xcuef244+2BNeu3aNYFZQSJeCYY6BrV1u21arZfYMGsN9+UL68LUnJ6VsYZaRg7u1R7tzqUp2qql19EyKBEJEQcBbQwrn8RQ/PlfI0TGEeAryuqnP9lCkLV2g4znz5pbkE1q1rF1glbA9KVZF4/CJHgaOP/ojvv29E//7NSE+PXT8islVV0/I/M6K2lgCPqOrzUWirPlZiIqcA+5eB8ar6rvd8NtApL/ektm3baiIUGt6500JkS5b0Z98s4QqoqrJz2TK46y5KfvaZXdUB1KplNe7atIGLLoJ27UwJCiAi8ouqtvVbjuxEew1CdNah32sEEnCdRIlNm3YyfDisWlWSf/6BL74wR5HsdOwIDRuaATfrVr78nv2InO5LlDCLU+XKZnWKtzdibusw1kku8mMnEHyfm+BwIuZW6JSrKKKqF4pIReBCLH36HSLyPWbVGqaqhdhHcSQkr3p1vq++mp9/+YXBgwdzzTXX0LJlS1/FipQtWzL5/vvLgTPo1WuQ3+IUhIp4xdljzEigr4i8hwXWb0iG+Cvw96IxoRg8GB59FBYsoKR3wc0pp5i5t0sX2+Z2xBLf1qBbI/FFFQYNguefh99/3zP2JUvCEUdAz55Qu7YZgatXN8XKC3NOCnxVsDzzryNCVLWd3zIkK6q6Ectm9KKIHAL0Bl4GnvP+CJ5W1Rz2WxxJw+bN5rwNcPHFbPrzTyZNmsQZieJnB3zzTTFgJs2bb2f//f2WpkC8ixWdH1iURlK5Ht2QIUMA6NWrl69yBJJNm+Chh+Czz2D6dDj4YLjpJoYsXAiNG9MrFPJbwqQhyGvQrZH4oArvvgv33WcxUYceCt26DaFBA3jssV6kpcXHRc9v/LZgORyBQkRqY1mOTsYSpXwI1AV+F5E7VfVxP+VzxJDPPrNg9cMPh/3247j99uPXX7OHfQabTz4BqMU55/gtSYFZAoRE5EgsrnWvkhCq+mQkjaRyPTp38ZgLGRlw2WVWbuGYY+CBB+Dmm6FMGYZ06gQrVvwbGO0oOkFeg26NxBZVywvz8MMwdqzlZxk40JLydukyhD/+gPLle/ktZtxwCpYj5RGRkphSdRmWGv9XLOD+XVXd7J1zDhZs6xSsZGXUKLs/6ywA/vnnH2rUqJEwsVeqMGLEO4DQo0ee1zhBpDeW4fUI7xaOYllWHXkwfvx4v0UIFqp2pffUU5af+ZFH4Lbb9jrFjVlq4eY7+mRmwm+/2f7ksGHw++/m8vfAA3DHHXvCF1Nx7J2CFQNEpCyWJbACVh+rHJZ++A9gAVaXayuwBvM/TogsVUnM31hmo3eAO1T19xzO+RorPeBIRlRhzBh7fMIJrF69mlq1avH4449z8803+ytbhMybB+vWDaRkybI0b55YCpaqNvBbBkeS0acPvPiixVR98w107uy3RA5HUjB1Krz3HqxYYUtr6VJ7/ZBDbD/j6qstoWaq4xSsQiAiJbA05y2welcNgIYU50CshktBxnWXiKzGUhMvxBSwBcBM4HdV3RBN2R05ciOWzCIjtxNUdR02z45kZOZM+7eoVQuaNKHkxo288MILdOrUyW/JImbcOIBvOemkTSmW9dkB8KqXoOWKK67wWRKfWb8err/e6tn17GlJLXJJbuDGLLVw8114VOGHH+DBBy0DIFiy3ZYtLbzx8MOtOkFuDh+pOPZOwYoAEdkPq8N1DNAeOASzTGWxjOIsoQnVqUAJyrKLTH5jPI8B24FMrE5XBnAbUApIA6pilq7qWKG9Zljsz79ti8hCYCrwPfAt8Juq7o7l501BOgMfY/PzLyKSBjynqpfFWyBXByvOjB1r9126gAiVKlXi2muv9VemAmIKVjG6dq3ktygFRkSezet4FAsNJy3vv/8+kFoXMP9h4kTo29cSWdx8s1355ZE5zo1ZauHmu3CsXAndusG0aVCpEvTrBzfcULAa2Kk49k7BygGvAHInTNnpDjT0Dm0CfgaeA37zbnNVNUNC0hH4BCviWwLYT8fp+2FtHgugqiPz6bsYpmw1B1piVrL2wJneKRtFZBzwKVYYd3kRP64DLgHuwOY3nLLAxVhsVlxR1VHAqLS0tNT5NfKTH602Ccccw2+//cann37KDTfcQPny5f2VqwB8++1C4GUaNLiKBDS2Ns/2vCTQGPstnRp/cRKPMVkurqnIli1w3XXw+uvmm/Txx3Dyyfm+LaXHLAVx810whg61wr9jx1qS3XvvhRtvtHpTBSUVx94pWB6eUnUicAGmVJXD4qTGYgrVt5jLXm41qKZjlqrdWIzVF+EHVbVfJHKoaiaWUWsJYXVhwqxoHT35TvVenwK8B7ynqssi6cNhiMg+WOyVAFVEJHxuiwMnASv8kM0RZyZNsvsOHfhlyhTuueceWrduTffu3f2VK0JWrIDly2cDT1Kt2rl+i1NgVPU/ATLeb/JrwHfxl8iRMKja9vrEiaZUvfcepEWl/rXDkZLs3m1xVIO8UornnQf/+x80beqvXIlGyitYItIOuBI4G7M+rQSGAqOwauMRFZnVdF0rIWmLWUP+AV6NppyquhSrFfOuWFqzLHfCM7HMdo+JyHjsguRDVd0ezf6TlNVYhjIFZuVwXLEaHo5kZtUqWLjQyr83bcplhx7KZZfF3WhZJH7+GeAEOnXaRuvWiZH1MD9UNUNEHgRGAy/5LU/QGTjQSoglmmtrkbniClOueveGl1+mIAGIKTtmKYqb7/xRtWSbgwZBr17w3HMQDUeOVBz7lFSwvCx/52K1GNoCW4DhwNvAN3lYqfJE03UBcbgg97IOTvduD4vIQZjlrSfwFvC0iAwCXlLVv2ItTwLTGbNefYMpqmvDju0A/nIumClAlvWqbVvOPPdcevTokXB1Uj75ZCrQhMMOK5tsCS6qA4njp+kjo7wyA6l0AcP48TBkCJx/foGVK0jRMUth3HznjaopVW+8ARdcYPlholWlJBXHPqUULBGpCFwN3ATUwKwWfYE3VXWjn7IVBVWdA/QXkfuAY4FrsWQat3pV1Qeo6kw/ZQwiqjoBQEQaAItduvwUZaqF+GS2acPfP/3Epk3ZQ/GCzcKFC3n33bOA+rRq9QV7599JDETkpuwvAbWACwlzlXbkzhdffJH/ScnEzJlwwgnQoIFtsxdiZyHlxizFcfOdO++8AzfdZO7mN9xg6dajWQIyFcc+JRQsEakA3AzcAFQGvgIeAcb5cVEtISmFxVOt03SNWgC3F781BhgjInWBfphC2VNEPgbuVdXp0eovkRGR1sA0b8yqAlVzKyirGr05cgSQGTMAKNaiBT88mXj1bBs0aEBa2ni2bdtKu3aJp1x5XJfteSawCngdeDj+4jgCjaoFiezaBW+9BVWr+i2Rw5GwfPaZediqWj3u66+PrnKVqiS1giUi5YBLMbe96sBHwEOqOsU3mUJSApiApXovLiF5UNP1oWj3o6pLgJtF5CHgeky5/E1EhgD3q+rCaPeZYEwBamIxd1OweKucflIUS3jhSFY8BYtmzfyVoxBs3ryZjRvLsnp1PSpUgP3391uiwuEKDRedZ555BoAbbrjBZ0lizK5dcOed8P33Zrnq0KHQTaXMmDkAN985MW0anHsuVK9uda7q1IlNP6k49snlrR+GiFwCrAeex4r2tlfVM/xUrjyaYSmJK2CZCm+NZWequkZV07FU809iLjfzReQTL0tXqtIA2yHPetzQu89+a5jjux3JwfbtMHs2iPDCt9/SvHlz5syZ47dUEfPQQw/RqNE+wC4OPbRQXlK+IiJTRaRK2PPzvfpzjgIyduxYxmbVc0tm+veHxx+31GZFjOdImTFzAG6+c+KOO6BECfjyy9gpV5CaY590FiwRqQM8DZyFJSr4B+iuqhl5vS+OrGSPYqtAXJIoqOpa4BYvwce1wCnADBHpo6qj4yFDkAhP/hHERCD5Fhru1cuKVID9OlapAoccAmedBVdemWdxTV+oXx/+8oa5bFlo2NDq1lx1la9iMXu25aRt1IimLVty8MEHUyeW/zJR5rjjjuO33yrz+eclaNHCb2kKRUus5lUWL2O1Bhf4Ik0CM3JkniUWk4PNm+H556FjR3MNLOKOQkqMmeNf3HzvzWuvwejRcP/90KRJbPtKxbFPsP3O3BGjN/Anlr78f1itqJqYm2Ag0HRdDlwEzAcmAafFq28RqQZcDrwJHI/V7PpSRN4O30VOBUSkdaQ3P+RT1VGqemXx4nl4Jx53HPz9NyxaBF99BT16QHo6HH20Fd4MGvfea/L+/jucdprFULz/fr5viykzvdwvhxxC586d+fDDD0lLoBo6xx57LNWq3QbAoYf6LEx0cJ7/jtz5+GPYsMF+S/L6bXQ4HHmybp0ZgGvVMo9bR/RJCgVLRGpidateBSYDzVT1AVX9EuhBlGtSFRVN1+HAZVjdrY8lJIfHpV/V1Vih4jtUdQxwKBACzgGmi0jXeMgREKZg35Up+dwm+yVgvpQuDTVrml2/ZUtLATR+vGXFe/TRPeft2AG33w777WcFONu1s22rcP78E045BSpVsqIXhx8O0718KNOnQ5cuULEiVKgALVrAuHEFl7dCBZP3wAPhgQegUSO7YALzUzj4YLNu1a9vhTgywozOS5bAqafCPvtYvarGja2gaBb33WcBSFljcvHFkck0dy67gOYTJzI0yyKYIGRkZLB48WJmzrQ8Pa4IZGrz+OOP8/jjj/stRuxYsQKuucbW+VFHRaXJpB8zx164+TZWr7YEnDt2wNtvx2evIhXHPuFdBEXkROANIA1L5PC8lxkOAFX91C/ZcsPLIvgZe+q7fCkhqaLpe+SOFar6c9jj7Vh691GYVWu0iDwD3KaqO2Iti88kZ1B9s2b2yzl8OIRC9tqll8L8+ZaHdb/94PPPzdo1ebIpS8uX2wXLkUfC119D5cpWG2r3bnv/BRfYeZMmmTvi9OlQJix8r3596NTJ6tEUhDJlYOdOe5yWZkU36tSBWbPMulW6tPkugG21ZWSYYlexorn2ZTF8uMVkvPsuNG8OK1fCTz9FJsO8eawGDqpblxo1ahRMfp+ZNGkSHTt2pEyZL4ATYu7iEUNOEpEN3uNiQDcRWRF+gqqOiL9YicWPP/7otwixZcAA2LYNPvoISpWKSpNJP2aOvXDzbU4kHTrAsmXw8MPQuXN8+k3FsU9YBUtEimPWl7uBacD5qvqnr0JFTln2LlaTBpQCfIkTU9VfRKQNMABTUjuIyDleJsKkJIhxV1GjaVMYM8Yez59viseiRVCvnr3Wt68df/llGDgQXnjBFJxhw/ZcuBx00J72/voLbrnFrEZgFqhwDjjA/AwiJSu18vTptiMN8L//7Tlevz7cdZcpTVkK1l9/wZln8m+gUYMw/fivv6z/rl0t9qxePWjbNjJZ5s2jJjD8ySctriOBOPDAA3nwwRe5++62VKsG1ar5LVGheS3b8xeyPXeZPCNg+PDhfosQO+bOhRdfhIsuglatotZsUo+Z4z+k+nyrwhVXmAXrq6/MMSVepOLYJ6SCJSJVgfeBLtif83Wqus1fqSJH03WDhORDzH1RgPc03d8kHN743SAi3wODgakicq6qfuOnXLEivA5WfnFWCVcHS3VPEYupU+15dv+x7dvh2GPt8a+/mgUrt13hm26yIhlDh9ov8pln7lG2ACLNDHT33ZYBbPt26+vWW/ckufjwQ3j6aZg3zwLZd+/eY0EDq3x49dWW6qhLFzj9dGjTxo6dfTY884wpXd26mQXvlFPMApYf8+bZfXalMQGoXbs2bdteDSSue6CqJoWbuiPGvP66+TNlbbg4HI4CM2yY1bx66KH4KlepSsL9uYnIQcBPWKHey1W1dyIpV2FcCJyAJZu4wmdZ/kVVhwFtsWyHo0XkMp9FihVTgGphj3OLx4o4BktEThCR2SIyT0TuyOF4JREZJSK/ichMEYlN8pVZsyxLH0BmpilbkydbwYus2x9/mEsemAKWF/37W5unnWaFMg49dM97C8JNN1nff/1lStSjj1oWsJ9+spTL3brBqFGm8D3wwB73QYDLL4eFC83dcc4cOOIIkwugbl1zGXz5ZXMfvPlmU77yS/SxYQOsWkW/4sXpeMEFBf88PjN58mQmT14DxD4DlCP4DBgwgAEDBvgtRvTZvt3SnXXtai7OUSRpx8yRI6k83/PmwWWXmRf9LbfEv/9UHPuEsmCJyDFYseBM4FhVneizSBEhIRHgOeBK4G+gm6brn0Ag5VfV2SJyBPAB8Jqn1N4VHtuWBGSvg1UkPJfVFzCFeSkwWURGquqssNP6ALNUtYeIVAdmi8jbUY13mzHDrDz33GPPW7UyBeqff3J3tm7d2lz2duzI3YrVqJHdrr/e3PoGDbJf64JQtWrOlqKJEy32KtxN8K8cPDj3289S0F95pZWbf+aZPUpWmTJw0kl2u+MOS3QxcaJdlOWGZ706pEYNSrZvX7DP4jOZmZl06tSJAw64Aniagw/2WyKH30ybNs1vEWLDU09ZXGUMSjok7Zg5ciRV5zsz0/66d++2EEY/qrik4tgnjIIlIqcAw4CFwEmqOt9nkXJFQlIRS4G+FavHdSKWqa8kUBfLani0bwJGgKpuEJGTsELNtwM1RaS3qu7yWbSoEIM6WO2Beaq6AEBE3sPKBIQrWApUEBHBEpysBQo/ntu3m+KUmQmrVpmr3kMPmfUma4vqoIPgwgutbtYTT5gytXatZRts2BDOOMMSSLz0EpxzjrnxValiFq8mTSyz3y23mBte/fqWyev77y1KNosuXaB9e4uYLQwHHWQRt2+/bdkLR4+2uLFwbrgBune3czduNCUyyy9uyBCL6+rQwTIgvv++/YM0apR3vwsXAnBF27bw2GOFk90nVJVPPvmE//3PEnPk91Edyc974Vk1kwVV2/zp0MHcgqNMUo6ZI1dSdb5vuw2++ML+og84wB8ZUnHsE0LBEpHzsSx3U4ETvKK5gcOzVP2EXWwDfIkpUuXYU99FgArxl67gqOouEbkGK4YcAsqLyAXJmGFQRGoB1wBZ0Sx/AC+qaqSFoOsA4UlBlgIdsp3zPDASG88KwLk5WQVF5ErM2kmpvLJljRljyR2KF7fMf82aWR2sq67a2xL1+uvw4IP2K7t0qaU6b99+j0WrTh349luLierc2VwKmzeHV16xttetg0suMWWualU4+WRLQJHF/PnmpldYevSwvvv1syxhXbta2vVrr91zTmamFSZessTSvXfpYgoj2Gd/5BFTBHfuNMVrxIi9E2HkxOLFrAUq1q2bGD+EYRQvXpzjjjvu3019v/40HY6YMnWq1ap75RW/JXE4EpLRo+2v8oorrFqLI36I5hd/4TMi0gtLuvAt0ENVN/krUe5ISLoDn+d4MBNQFAVKsAH4BzhH03V6DORoDKim6+x8T460TZEbgSeBL4DTvRTvSYGIHA98gilIWWns2wP1gNNU9asI2jgb6Kaqvb3nFwHtVfW6sHPOAo4EbgIOAL4GWqjqxtzaTUtL0y1BLBqcDNx4I9c+/TRfVKnCwrWB3LPJlUWLFrFw4RKOO+4wVEuydevemfPjgYhsVdVAVWUWkROAZ7Csg4NUdUC245WAt7C1XQJ4XFVfz6vNtm3b6pQpU2IkcfS430sA8b9wV9s4cu7Llob5/auiWNbx2WfNer1sGdSuHb12Pfwes6IiIr+oaoQpU+NDLNYgRGcdBmG+Y7JOcmHtWttvrFQJfvst/v8R4QRh7GNFbusw0EkuRORcTLn6GjgxyMqVR05pyyxSP5NMxjAHcxOrDByMuTxGFQnJs5il71cJSdSquqnqU8BVQHfgXRFJtE3/vHgWGAQ0VtWLvVtjzJXzmQjbWIq5f2axH2apCudSYIQa8zB318Y4/GHxYnoAN55yit+SFJj33nuPY489hszMHey3n79/nEEhLA6yO2aJPl9EsudXzIqDbAF0Ap4QkegUVfKZ2bNnM3t21PbUgsHYsRZPGQPlCpJ0zHwk6Gsw1eb7kUfMq3/gQP//I1Jt7CHALoIi0gPb5fgOs5hs9VmkXJGQNMRqSAEsABqWpzwNaUgtapWsRCXKliibUb1b9VVzmHPAKlYVW8Qi+Yd/qkZZjvKYm1vWvPaTkNwTrRTwqvqKiJTBlI7XReSSJEl8UR8rUJ3dnPsCkWd4nAw0EpEGwDLgPCB7arrFWGmB70SkBqZkLyis0I4ismQJ3YHuV17ptyQF5qKLLkK1LXfdlZaIGeb/g4jsAzyIrY99ybb5p6oVI2gm/nGQAeKtt97yW4TosnKlFUXPqpUXA5JuzPwn0GswleZ7+HBL1HvyyXsqsvhJKo19FoFUsLwMdsOAXzG3wCArV8UwJbAmQBOabOlGtzmVqXwQwA52sIENbGd7ueIUr9OEJpmtsbJL29leLBQK3Q28kJ6evj4K4uzALGZZ87qdLAtalFDVZ0WkAvAAsAboF832fWIK0ByYk+315th3MF+8eLW+wGjMNWKwqs4Ukau94y8B9wNDRGQ6Fot3u6qujtJncBSUxYtZBVSpXTuYP4R5UKdOHSpWrAMkTfzVa0Ar4BXM8lsY3/WYxEHWyyrQ7YgvTz1lac/CYzEdQSdqaxDcOiwsGzZY2HSrVvDBB3vKYjriS+CuK0SkIRYPsxjonld8SkBIA/bdl32L9aAHdalbYT3ry49jnM5mtqxghRd4BcBTwMDmND/uSI5sXpOaXTFF5aZQKHQbMDg9Pb3QQXGarjskJGdj7m4K9NJ03Z3P2wrDQ0B1rDDxXFV9IQZ9xJRsxYUHAk+JSCMsSQnAYZg18D/1rHJDVT8nWwyep1hlPV4O5JE33BE3tm+HFStoCPR+6imeeiZST9BgMHr0aH76qQ7QLCksWJjl6nhV/TnfM3Mnp8uI7L+n3YBpwLF4cZAi8l32/xlVfQVT9mjbtm2wA5U97r33XgDuu+8+nyWJAtu2WWbT7EXNo0xSjVkwiNoahOivw1SZ70GDrAzkwIFQtqzf0hipMvbhBErBEpHKwGeYe8hJqrrGX4kiYnMHOiw8nuMbbWc7n/AJv/GbZJI5H3M9K+6dtws4CSg/nelP/J7++2jg8VAo1GoHO14uRalBf/Ln8xVCFW7blL7pucIKo+n6GVCrqB8qzz5UVURuxn4cnxWRBar6RSz7jAFTsB/+8D+Eh3I47y3g3RxedyQyS5eiwCNVqtD8rLP8lqbAXHrppZQseSIwKFksWCuBzUVsI9I4yAGeO/A8EcmKg5xUxL59Z8mSJfmflCi89x6sXx+T2lfhJNWYBYNAr8FUmO/Roy1b4JFH7l1NxW9SYeyzExgFS0SKAW9jF+3Hq+pcn0WKiP70vxFotIAFOpzhsoUtYK56v2C1r74CqnindwOOwX6ArpWQlAEeE6Td4RzO8Rxfphzlnt4/tP/Ev9L/mhr/TxM5qrrbS5//HfCeiLTxEjckCkUuLuxIYJYsQYBrmzaFowNdki5HxowZwymnWE6dJLFg3Q3c58V1FlbRSuk4yNdfzzcRW2KQmQn332/1/GIcPJI0YxYcAr0Gk32+P/gALr7Yyld++mmwXAOTfexzIkhZBO/ECvLeoKoT/BYmEkKhUE/giZnMzHyLt7KUKwXGY+nMn/We/43FQwGUxTLnAFwEHK4oP/ADwxjGfuxX7BzOeSEUChUn4HgXQqdhRZU/FJGAGKPzR1X/ivTmh3wi0kNEXtm9O2cPz169LHg1SAwZYj/oWbdatax2sVfPN1gsXswyYEGVKvmeGkQaN27K0qVmukoSC9Y9mPvsShH5Q0R+D79F0oBXBD0rDvIP4IOsOMisWEgsDvIILw5yLC4OMnh88on9aNxwAxQL0iWKIz/cGvSP1atNuSpVyspAVq7st0SOQFiwRKQLcB/wDvBSPqcHglAo1BjzDR4/ghHNM8nMygi4HXNzfIn/pm1XYBvwsfe8JGEuarOYtXMMY5Z3pethmML5QOw+QXRQ1b9EpCf2mZ8HLvdZpELhpZ3Pqn21V8pYVX0j3vKo6ihgVFpaWqRZDANBuXJWd1gV/vzTPHxOOQWmTbOaxYFhyRIeAIZ/8w0r/ZalAKgqvXr14swzr2X79g7su6/VXU4CPoxGI6kcB3nnnXcC8PDDD/ssSRF5800oXx5OPz3mXSXNmAWIIK/BZJ7vK66w0OJJk8yCFTSSeexzw/ftIRGpCrwJzAauyiFVduAIhUKCKVAZwAW72X06Zg5fi1mvHifnmliZmAL2lYSkKfa553mvrQem/sAPE7ezfSTwv1Ao1CjGHyUqeD+oDwKXicg5fstTUESkMbbb9i3mpjoIGILVwXreP8kiJ8ui9cwzUKcOVKkCl14KW8Pyb6paRfdGjaB0adhvP/B+8wC47z7Yf387VrOm7YYVFBF7b61a0LkzpKfDjBkwbx5Mngxdu0K1alCxIhx1FPz4497vf/llOOggq9lRvTp06wa7vAS+06dDly723goVoEULGDeu4DICsHgxvYGXL8juvRJsVq9ezddff83YsZOBpLFeoaqhvG5+y5cIrFmzhjVrEiFsOQ9Wr4Yvv4TzzjMlK8YkxZg5IiZZ53v2bBg1yv7zDz3Ub2lyJlnHPi+CYMF6AaiGFRIuapBzvOgGdAT6pKen/51O+t/AfhKSEpjSldtefXGgImbtESAdaAnUxrLqtAPaPM/zi2/m5p1AiP/6LweV/sDxwIteRqC/fZanIDyNxcy1BP7x7isBL2KuSwnBd9+ZYjNmDCxZYu55Bx20R4m66y548UV48kk45hhYtQp+9ZLQDx8Ojz8O774LzZtbCZqfftrT9pAh9uO9cCHUrx+5TFkZjHbuhE2b4KKLTAkUgeefhxNPhLlzTemaMgX69IGhQ035Wr8evvlmT1sXXGBK1aRJUKKEKVyFLp64bBltgDYnnVTIBvyhevXqLF++nFdftazGyaJgZSEix2IFShWYqarj/ZUocXjllVf8FqHoPPaYZRDs2zcu3SXFmDkiJlnn+9ZboVIluCfAVyvJOvZ54auCJSLnAecCd6vqND9lCUdCkga0BRZqui7O4ZR+WGacQdle3w1sxEtqUY5yHMqh1KMe5SnPDnawghXFZzKz3HJLrHM3MBjLNpiGWRSLbWJT/Q1sGFqRipccHzr+8a/Tvw50wgv4tw7UxZiiOEhETk4Ea6RHO6Cjqm4RkUyghKpOFZHbgOeAgO4J7U3FiqZAlSgBTZrA2WfD2LGmYG3ebGVlnn4aLrvMzj/wQDj8cHv811+mnHXtCiVLQr160LbtnrYrVTK3g5IlI5dn6VK7XtpvP1P0mjXb+/hzz5li9+WX0LMnLF4MaWnmUlihglnTWrTYc/5ff8Ett+zJ2lyk5A4rVzIdqMzeKa8ShcWLzfmgQZKkahGROsBHQBv2ZB2rLSJTsELz2TOROZKNrVtt1+XUU4O7De9wBIwNG+Drr83o27Ch39I4wvHNRdBzDXwe+Bl41C85siMhqYK5i40E/pCQdAs/HgqFamD+w6+lp6fvCD+m6arAeYJsOYIjtB/9OIETqElNdrObcpSjAx24kis5j/NII60csApzTSuNZR/cCvwylKHnCVJsK1snSkgOkJDUkpDsG/sRKDyqOhu4HUtWkiiWNzBrYpYz3SqsWCJYytmEydHWtKkpV1nUrm2WKIBZs8w/u0uXnN979tmQkWEX7JdfDsOG2flZnH66xVTVqZPz+7PYssU8e9LSoG5d2LHDAm5LlTJZrrrKlK1KlUyJWrnSFCuA4483papBA7jwQrNkbdq0p+2bboLevS2x2IMPmjyFZuVKTgduHzy4CI3En1AoRCgU4i8v9cr++/srTxR5FtugOlBV66pqXaCR99qzvkqWINxyyy3ccsstfotReMaMMSXruuvilv4s4cfMUSCScb4HDLD/7quvzv9cP0nGsc8PP2OwBmAbyFd4mWeCwinAvpgrXznMhREACUnJcYwbAsiHfFhRQjn+C1xwCqeU7UpXWcACXuAFnuVZhjKUV3iFx3iMr/maAziA3vQuWYlKgl3gC5ZcoQxQZy1ry65kJQdwQGksFmghsFhCcmtMP33ReQGrZ/GkV9csEZgBZNlKJgG3i0hHzEUzYVLPZ7cuiVjGY7D4q7yoW9f8uF9+2SxhN99sWZK3bCmYDOXKWUKL6dPNavbLL9CunR275BKLw3rqKfjhBztvv/1MCQNTuKZOtVSz9erBww+btWq5Z7vo398UxdNOs/cfeigUWj9atYqXgRtvuqmQDfjD/PnzmT9/fjIqWMcDfVT135yTqroAuN475siHbdu2sW3bNr/FKDzjxlkAaJZZPQ4k/Jg5CkSyzXdGhuWE6dYtWDWvciLZxj4SfHER9LLO9QaeUNXpfsiQByvYO0FFAwlJmqbrFuCONNKO28EOZjLzKuBYCclE4HZNtyrkx3Ls0a1oVWwCExjHfyPwt7OdiUzUhSyUi7mYczmXQQwik8ysU4phMVmZi1lcrBnNBDiaPXP1kITkKU0PlFL6L159rGuwehhvYApr0HkQc9EEi7n6FBgHrMZqmSU8TZvatcvYsZbkIifKlIGTTrLbHXdYsoqJE81tMFJEcnfd+/57ePZZax9gxQr4O1ukXokSZqE69lgIhWDffa2ex5VX2vFGjex2/fVwzTVWsT7L5TFitmyBrVvpUqYMdOxYwDf7yxtvWELLrDi4JFKwciMz/1McAC+88EL+JwWZadOgZUvbpYkTCT9mjgKRbPN9992wbBm89ZbfkuRPso19JMTdguUVFH4RC2LeKSJp+bwl3ozB3FKy2MWeVOrN92GfEqtZjaJlgObA1cBPEpIrKoYqTjqcwxv8yZ//KlfFKMbBHExHOtKWtqTZdbwsZzmf8Am1qU1rWuckx+71rP+nDGVIIy27PIG96BARwRTEjUAPEenhs0j5oqqjVXWE93iBqjbFEq/USJYg+woVrKzMnXfC669bKvVJkyxmCyyJxaBBZnlauNDOKVlyjzL20UdmTVq2rPAyHHSQ/RHMmmWWrPPOM9fBLD791BJg/PqrxVu98465CDZpYnHvffrA+PGwaBH8/LMpbE2bFkKQlSvZBnxboQJr160r/AfyiV27LL4NzNKXJIwFnhWRf0PiRKQe8Ix3zJHMbNtmWXUOO8xvSRyOhGDnTnj7bTjhBOjUyW9pHDnhh4vguUB54CfgDuAaH2TIFc8y1AeLh9oJ3Knp/2Y3fKUc5TK3sCW7w1UT4MXmNG9XkpIyhjEApJFGb3pzPufTmc6czMlcz/UcjBUp+IM/WMpS2tMeYFG2NkuUoMRPAHWo8ywWI7QJOE/TNbAKFha/NAKLZdoMXOuvOJEjImVFpJmINAO2+ZmkI79Cw4Xh4Yfh9tvh/vtNaTnzzD0X6pUrw2uvwdFHWzKK4cMtdioricKGDeZCuHNn4fsfPNjcBtu0MeXqssv2zkhYuTJ8/DEcd5wpc48/bkrf0UdbDa1168zN8OCDLSbs8MMtI2KBWbmSuUDHVav4JjxNYcC58cYbOe+881i+HHbvtqQkpXMqBpGYXI+5ZC8Qkb9EZBEw33vtej8FSxT69etHv379/BajcEyYYP5OJ5wQ124TeswcBSaZ5vvZZ80L5IoEqZSZTGMfKXF1ERSR0pg71m/AUUAHLOtcoNB0fVlC8iYgnmtg1utj7g7dPUfRcljysfAYrOIHcAD/8A+rsaLkZ3Im1ajGh3yof/CH7MM+nMqpnM3ZvMALrGMdM5lJN7pRgQr7bmLTBVixZQBZwYpTATaw4TrgVU3XwF9oqOpSr3D0T1i2xUdF5FhVDeyVrPe9fAS4CouDE2C7iLyCVZnPiLdM+RUaHjIk7+dgMUv9++95XqyYuf7dccd/zz3tNLvlRq9edsuL/M5p0cIsT+FcdNGex0cdlXtdq1KlzKIVFVatogHwVbt2HHr00VFqNPaUKVOGhg0bJmP8Faq6BGgtIscDjbE1OEtVx/grmSMuZNWLOPJIf+VwOBKA2bNtc/Gww+JSj9tRSOIdg3UF0ADopqqZwI/5nO8bmq5bc3q9FKXW1Kb2P1ih4RuB6lnH9mEflrAEgOpUpyEN+YqvdsxgRimAVaziPd7jRm6kDW0YwxhWsjLrvaU2sal7eF+lKS0A29leBrhaQnKvpuv6qH/YKKOq3wGIyHNAX2CAiHQIcNr2F7HMkL3Z8508HHgYqAAUNMrHEWAyli3ja+CMpk2hRg2/xYmYhx9+GLCgZkguBSsLVf0a+NpvORKRp59+2m8RCs+UKVYdvUKFuHab0GPmKDDJMN+LF5v3RmamlTqJU8LNIpMMY19Q4qZgiUgp4Dbge1X9Kl79xoAlghym6fqwhKQ0ViwYgOIUpwxl/gJ2VKf6AUCx+czfK7fbZjazilXUpvZmYPludjcEShSjWHHgbCzGqgRAZSqjKJvZDBYXdreEpA/wN3Cypusfcfi8hUZVM0TkAeAV4DiCe+F0NnCGd3GXxQIRWQkMxylYScXwb76hJ7CxUiXiezkXHZLFgiUiNwEDvd+JPNM5qmphnEEdicDCheaPnJXJxuFw5EhmptXgzsiwGOrstSUdwSKeMVgXYm51D8axz1jwO1A/FApVw+p4/RuVsolNlKBEXWBLBhnFACpQYa/9BUEoT3k2sakcsF996o8H2MxmwVK0L8Jil3bXprauZjW72LUauBeLVyuLWQGHxPRTRo83sMKhd/ktSB5sAXJK37AMSK28oinAMRUr8ipQqmZNv0WJmGnTprH//vszYcKEpFGwgOvYk73zujxufX2RLsHo06cPffr08VuMgvPpp3bvQ3xGwo6Zo1Ak+nyPGmW3G29MPOUq0ce+MMRFwfIyB94BTAVGx6PPGPKtd99Z03U1cDBm5WApS6lL3WKlKNVyCUvYxjaO5miKU/zfN7ejHeUpz2xmFwPK7cM+XbaxLStuKwMYBtQpRan7GtJwZwUqDNV0rY7FqmUltxCsTpc9CYlISA6VkLTMpTaXb6jqduBxoJOIxK/AScF4DkgXkbJZL3iP/+cdcyQRdTMy6A2Url3bb1EipkyZMnTq1IkaNWokjYKlqg1UdU3Y49xuDf2WNREoW7YsZcuWzf/EoPHJJ5Z1p0mTuHedsGPmKBSJPt9Dh0Lt2pCenv+5QSPRx74wxMtFsBtwEHB+gONwIuVnLEPe+cAwTdeFEpIfgTN/53c60IF2tGMiE/mczzmTM7mGa1jEIipQgYM5mDnM4Q/+oBKVtClNZSpTURRgDmapohWtjixBiVJf8EXtAaEBpYDxwK9AW0zBujlMpmeAy7HU9+9isW5B4hXsc11PQOLuRGRktpc6ActE5HfveXNsfQStjICjiEybN48SQLPq1fM9Nyg0btyYoUOHAsnjIhiOiFwMvO9tyIS/Xgo4T1Xf8EeyxOHxxx/3W4SCs3GjZRC8+eb8z40BCTlmjkKTyPO9Y4clgTr99L3LmyQKiTz2hSVeLoLXAv9g6bsTmvT09F3A68ApoVAo6xLnLWDbMpYxhzl0pvPuhjQcPp3pGW/zdmYGGTSlKTWpyQQm7BzGsC+LUWzXGZyxO5NMvud7MOvV116a+Ksb0/i4jWzkV349CrhO03Un0BloDdTVdP0cwIsDuxZLZ5wGXCIhqRTPMckPVd2CuTSeKSJB8ctak+02HPgEWOjdRmLf1zV+CeiIDTfPmMFVYFWMEwxVC3KG5FKwsN/UnH63KnjHHMnIRx9ZYbc4p2d3OBKNb76B9evhlFP8lsQRKTG3YIlIfeAk4AFV3RHr/uLEc8ANmWQ+ICEZhilHtYGzpjBlYyMaPXUxFx8zgQkDxjHulrm756axi91sZjsjmFX5isrrTuf0zfuzf+XxjB+9kY3NMMtYfwlJsUY0urUBDYqNZjSZZJYB6gN49a9mZ5NlFxYnVD7stRslJE9qum6M8TgUhJewtO2XE4A4PFW91G8ZHP7wVLlyZGzenFAKVu/evZk1axYfffQDGRm+JFyLNYJZ4LNTD9gQZ1kSkiu9JBGvvPKKz5IUgHfescJ2HTv60n1Cjpmj0CTqfG/davWuqlSBY4/1W5rCkahjXxTi4SJ4GfbH+Woc+ooL6enpS/uH+j9VjGJ3NKThmQtYsBv4ALhnDnPGPc/ztS7iooyOdOxfl7pMLz6d9awvXun7SovqnFOnmVeQmJGMZCpTywD1sooHVw9V73oCJ9RdxzomMxls7HL9Rmq67paQ9MB2eetiVsk7gO5YnbFAoKqzRWQs0FtEHgqiq6iINASaYmP+h6ou8FGWHkCP0klUSTYQqHLounX2OIFcBI844gjq1auXdO6BIjIdW28KTBCRXWGHiwP7A5/7IVuiUbVqVb9FKBibNllhvFNO8S3XdMKNmaNIJOp8jxgBS5fC119DxYr5nx9EEnXsi4LE8jpXRASYByxQ1eNj1pEPNAw1bHQSJ80uQxl5hVfYyMbdmBvcJUCJkpTcejiHl2tFK6pQ5d/37WIXs5nNeMazilVg1q9jNF0nh0IhWc/6rypR6bihDGURiwD+0HRtmp88EpI6wFwsyyDYBUuJLMUtCHhxFkOBI1X1B7/lyUJEKgKvAWeydyKR4cDlqrrJL9nS0tJ0y5Yt+Z/oiIz16/mqShUOKFeOAxJwXIcNg3POgVNPhY8/9lcWEdmqqkWKURSRrHDtdOAJLINqFjuwrKrD/fR+aNu2rU6ZMsWv7hOGc1+28Nr3r4owl9F778H558Po0dC1awwlS15E5BdVbeu3HPEgWdZhgdcJ0KkTTJ5sexLF4pn72xERua3DWFuwOgANgftj3E/cWcjC5e/z/rbe9C53ERfxBm/8s4lNZfDi2nays9i3fLvtO74ruw/7UJ7y7GTn9rWsfSuDjEvZE/+mwMZQKCTAk5WpfNwkJv22iEXNsPThkdZgWoHFC9XElITpQVKuPD7CXAUvBAKjYGFJQg7FYtyy5DoSk/VpzK3RkQToihV0B+4qVSqhfpRUFRH514JVv76v4kQNVQ0BiMgiLMlFhr8SOeLGxx9D+fLQpYvfkjgcgeXHHy0PzJ13OuUq0Yj1dJ2PWWgSPrmFhKSChORkCcmhAJquW1axquswhv1ZmcqZ/ejHKZzyHrAa+8wLgJCimWtYw1/8xXKW784g4wWgD7AWU6D696f/UixRRj/g2fa0b4UFfO+j6fpTJPJ5yTHaA08Cj2KFfQOFZwkaCZwjInErch0BpwC9VXWCqu70buOBK4HTfJXMEV1WreIH4PIE01AqVapEKBRKOhfBLFR1qFOuisall17KpZcmSGjptm0wciQcdxwUL57/+TEiocbMUWQScb5vusnChe8KciXRCEjEsS8qMbvI9dwDTwW+Ug1UsoUCIyGpAEwH9gGKS0iu1XQdquk6EWgSCoXaAR+3pvXwFrR4+AM+eHM2sxdqumZKSNZgCk854GlN11+xdOsveVarbt7zA4G7BzDg+QwyGgILC2qB0nT9G7g9Wp87RgwDzgUOB77zWZYsypJztsC1WPFnR5Igq1ZZYGK9en6LEjGZmZn07duXDh06MHCgvZZsCpaIbCLnJBcAqGqCRh7Ej7p16/otQuSMG2dK1mWROmjEhoQaM0eRSbT5XrAAfvoJBgwwY28ik2hjHw1iFoMlIs0wpeRKVU3oBBcSklOBN7GUwQB/arruVRUxFApVB54HzsGsWK9ilrtpXmr38HPrACcCvTGr03zgyv703wF8icX/TAc6avredWESHS/eaTXwlKoGQhkUka+BjcBFqrrVey0NeAOoGGn8oIicgLkbFgcGqeqAHM7phLkdlgRWq2qe6bNcDFZ02fD000y48UY6XHABNd5+229xCkyLFvD77zBlCrRp468s0YjBCmurF3srWCWBVlhc5IOq6lvB72SJ/Yg1BYotOeYYmDvXirolYlGfgOBisBKPgqyT666DV16B2bOTxy08GfEjButk7z4ZMkAtxi6aAXZiCtFepKenrwLODYVCzwK3YZakO4FtoVBoDpZquDSWdriW97bZWA2rwenp6dv7h/r/zJ7Ctodg6e0T3r0yHFXdKCITsO9HIBQs4CbgC/YUGlagBebC2S2SBkSkOPACcDywFJgsIiNVdVbYOZWBgcAJqrpYRBInT3iSMPfPPzkVGLljBz38FiZCMjPNkF2sWLFkdhEcktPrIjIV6IKVxnAkA/PmwXffwQMPOOXK4ciFzZstD8xJJznlKlGJZQzWCcA0VV0Wwz7igufW1w+YA4whj8QT6enpE/vT/9Y3eOPMDDJ6YinWl2AX7RuAr4AbgZZAk/T09BfT09OzrFSb2JPFDuwCPxn5HGgqIoHw01LV6UAjTDGeAkwFbgUaqerMCJtpD8xT1QVexrP3MBfZcC4ARqjqYq/fldGQ3xE5TUX4BTi6dWu/RYmYiRMnUrJkSUaNGseGDVCuHKRQxttxELkuLCIniMhsEZknInfkck4nEZkmIjO9zZ6koGfPnvTs2dNvMfLnhRfs/uyz/ZWDBBqzBCLIazCR5rt/f1i9Gm6+2W9JokMijX20iIkFS0RKA4dhu/VJgabrq0RQy0tCchHw0gIW7B7AgMVAO03XbRF2czXmIlgPeBdTxpKRcd790YCvfloiUhJTgLsU0ZW1jtdOFkv5bx2yg4CSIjIeczd9RlXfyEGmK7EEG5RyO7xRpdy6dbSGhDIB1a5dm7vuuosSJRoCJrpPZYP84DzMpThfUt2KfPDBB/stQv6owiefwIknwkEH+S1NYoxZAhH0NZgo871kCTz5JFxyCRx5pN/SRIdEGftoEisXwbaYO1xQkhjEDAlJE+Bg4DtN1zXAvVhCCzBF6RhgdCRtabrOw5JdJDvTsZgn3xUsVd0pIjvJI8A+QnK65M3eZgmgDebyVBb4UUR+UtU52WR6Ba+4dFpaWuAKMicyMxYsYA7Qo0oVSvotTIQccMAB3H///Ywcac8TSDeMmLCCw/++BNTAEgtdE2Ez/1qRvTazrMizws5JWivy//73P79FyJ+FC+3Wt6/fkgAJMmaJRaDXYKLM97Bhthdx551+SxI9EmXso0msFKyjvfvvY9R+IJCQnIJZmnYB270U7suABljMVnHgH/8kDCaqultEvmfP98RvngPuFJFLVXVXvmfnzFIgPE3OfsDyHM5ZrapbgC0i8i0W6zUHR1wYtmgR9wM79k0cw0VGRgYlSpTgr7/s5zpJ/fE/zPY8E1gFjFfVPyNsIyZW5HoJlHEy8Hz5pd27wsLJStTWIKTmOty1C559Fjp0gBQ0+iQVsbRgzVfVVTFqPyjczB5r1VYsccNFmNK1P/CwputvPskWdH4CuotIeVXd7LMsRwMdsSQXM8gW+6aqp0TQxmSgkYg0wJTs87CdunA+AZ73aoCVwv54niqi7I4C0E+Vs4AStWv7LUrEPPTQQzz44IP067cTKJaUFqysgsNFJCZW5LZt2yaEFfm8884D4L333vNZkjyYMgVq1IBDDvFbEiBBxiyxiNoahOivw0SY76FDLbnmM8/4LUl0SYSxjzaxUrBaAtNi1HaQmINdJJfGfkQWabouAY6KdccSknKYIncU5oLYS9N1R6z7jSK/YT/GzYEffZZlNTC8KA2o6i4R6YvNRXFgsKrOFJGrveMvqeofIvIl8Du2Qz9IVWcUUXZHpOzeTZW1a6kCUK2a39JETJcuXShXrhy//GI5iZJRwcpCRI4FmnpPZ6nqNwV4e0pbkVu2bOm3CPkzebLVGghIEGFCjFliEeg1mAjzPWyYeSmcEsm2bgKRCGMfbaKuYIlIBeAAYEi02w4gN2Em7pbAq5quY+LY921AV6wQ7mmYGf35OPZfVKZ59y3wWcFS1aiUF1fVz8lWlkBVX8r2/DHgsWj05ygga9fyTmYm9StU4IiSiRKBBR07dqRjx460a2fPk1HB8iy/I7ANl6wLstpebNaZWTEd+ZDSVuQ77sgxYVtwWLAAZsyAXr38luRfAj9miUeg12DQ5/v772H0aOjTJzB7EFEj6GMfC2JhwWrm3f8eg7YDhabrJuwHxA9qYpYzsB+pxAkqMZYA64FD/RJARIphbp6nYYVNxwD3qWqGXzI5YsiqVfQDTitWjCP8lqUArFu3jnLlyvHXX7bck1HBAl7DEt80zAp+98o4DAUGAcfm14CzIgecEV5JxzPO8FcOR8xwa7BoDBxoZTjuvttvSRzRIBYK1gHefcK7XAScZzHlTrDix6/5K07BUFUVkbns+b74we3AA8BYYBtmkayGF1TrSDJWrmQWsKtxY78lKRDdu3cnLa0iq1Z9RcmSUKtW/u9JQA4HDstSrgC8FM43UgALdypbkc8880wAhg8vkrdz7PjkE3MPbNDAb0n+JfBjloAEeQ0Geb4zMmyJXHRRcv7GB3nsY0UsFKyG3v2iGLTt8NB0nSUhaYiliJ+l6brBb5kKwULAz4qvvYDrVHUgWIFE4GMRuUpVEyKw3VEAVq6kGsB++/ktSYHo168fq1aV5ptvoF49KBbL8vD+sRgLeM9OGfbOSubIhcMPP9xvEXJnxQqYOBHuvddvSfYi0GPmiDpBnu9x42Dr1uSLvcoiyGMfK2KhYDUAljk3q9ij6boW/xNEFIUFwOkiUlxVd/vQ//7Ap2HPR2MWwdqY/7hviEgPoEfp0qXzPdcRGfNnzuRT4Pzy5RPKn/a88877N7t1kroHgrnqPisi12NxHADtgKe9Y458uOWWW/wWIXfGjLHCPied5LckexHoMXNEnSDP97BhULEidOnitySxIchjHytioWDVxXYjHY78WIzFPtXgv5mG4kEpzDUQ+NdtcQd7Ytt8Q1VHAaPS0tKu8FuWZGHKzJn0A44rWzZhFKzMzEyWLVvGvHn7AqWTSsESkU3sncK5DDARi8sAKAbsxoqRV4yvdI6o8uabULMmtPbTYcHhCCbr18M770DPnuD2VJOHWChY1YC/YtCuI/nIqpNWFX8ULICHRWRr2PNSQLqI/OtyqarXx18sR7Q5q2pV1gAVmzTxW5SIWbVqFfXq1aNr1+eBPslWZPg6/lsjx1FITvF8i0aOHOmzJNlYutRSo918MxQv7rc0exHYMXPEhKDO98cfw/btcGUSR38HdexjSawUrF9i0K4j+Vjt3ftVlOhb/ptk4wcgvGS8uwBMEoqvXs0+kFARxOXKlePVV1/l448t72EyWbBUdYjfMiQTXYLqWzR3rt2fcIK/cuRAYMfMEROCON+q8O67FhqcVYojGQni2MeaWClYa2LQriP5yFKwqvvRuap28qNfhz+Mnj2bOcB11X35uhWKChUq0Lt3b15/3Z4nk4IlIvuo6tqsx3mdm3WeI3duuOEGv0XImcleSN2hvlXkyJXAjpkjJgRxvn/4Ab76Ch5+OPlqX4UTxLGPNVFVsESkOBa/sjma7TqSlqzvSTlfpXCkBMOXLuVT4Lp9EyUCC9avX8/69etZtGg/oERSKVjAKhGppaorsc2WnKzF4r0eLN8yR2SowttvwyGHQAKtO4cjXjz3HJQoAdde67ckjmgTbQtWVnje9ii360hOsr4nLqzTEXNeEmErJNSF3rBhw7jyyiuBJRQrtl+iZZjPj2OBLMtUZz8FSQa6d+8OwBdffOGzJGGsWQO//w4PPui3JDkSyDFzxIygzfeaNfDBB3D11ZZBMJkJ2tjHg8ArWCIyHmLnzhXr9uPZTwKO1Q7v3ilYjtiyYwfF1q+nfLFisE+e3miBomPHjjzyyGBuv31f6tSBkiX9lih6qOoEABEpARwCfKyqfiW7SXh69Ojhtwj/5a237P644/yVIxcCOWaOmBG0+f7pJzPynnee35LEnqCNfTyItoKV9fd/rYicBkxT1X5R7iPh8BSTllmPXewPiMjTQBvv6VnAs/5J40h6Vq/mEaBphQr0SKBKvQcddBBt2x4EJFf8VTiquktEHgM+81uWRObaIPoYDRsGrVpB+/Z+S5IjgRwzR8wI2nxPmWJxV61a+S1J7Ana2MeDaF9p7IxRu8lBceAYaktI7pCQJI6fUuzICunMzPOsFEREeojIK7t3+1F/OQlZtYqngK8CliY6PxYsWMAvv1jVi2RVsDx+Ys+GiyMZ+Okni+D30jM7HI69GT7cSsNVqOC3JI5YEG0LVpbL16uq+kiU205YVLWTiIznIppRn/2A+4A+EpIDNV1TMl5NVfuJSC2s/tV7fssjIjWAi7C07f9T1dUiciSwXFUXxlseV2g4yqxcyd/ArgBmMsuLq6++mpkz1wOTkl3BehV4XETqYWU+toQfVNWpvkiVQBznueGNGTPGZ0k8Hn0UqlSBm27yW5JcCdyYOWJKkOZ76lSYPh0eeshvSeJDkMY+XkRbwcpSFkpFq8FYu9PFy11PVTtJSDLYE29UGWgI/BHNPqLVVpzaz/qe+KpkikgbYCywEIsFeQzLanY8cBBwgX/SOaLCypUIULJmTb8lKRD9+/cnFNrK8uUkW5Hh7Lzj3T+ZwzGXRTACzj33XL9F2MO8eVY99c47Ax29H6gxc8ScIM13//5QpgxcfLHfksSHII19vIiqguX50u8Aykez3STiF6AtNu47gcX+iuM7Wd+TLXmeFXseB55R1XQR2RT2+mjgUp9kckSR+bNmMRC4pmRJDvRbmAJwxBFHsMPzC0hyC1YDvwVIdK64IkDG7meesdzTffv6LUmeBGrMHDEnKPO9ezeMHQuXXgp16vgtTXwIytjHk1jESq0Gqsag3WTgZOAFYChwuKar34qF31Tz7lfneVbsaYPNSXb+BmrEWRZHDFi0cCEvAWvKlvVblIjZsGED3377LQsXms6f5ArW/sAyVf0r/AYs8445EoW1a2HwYLjgAqhVy29pHI7AsXo1bN0Kp5/utySOWBJtF0Gwi+Vq+Z6Vgmi6rgOC65Aef4KiYG0DquTwemNgZZxlccSALuXKsQXQ1q39FiVipkyZwnHHHUexYuOATtSr57dEMWUcUIv/rrdK3jHnIpgPnTp1AmD8+PG+ysG4cXb1eOWV/soRAYEZM0dcCMp8//03NG4Mxx7rqxhxJShjH09ipWBVj0G7juQj63uyxlcp4BMgXUTO9p6riNQHHgGG+yaVI3qstOt2qZE4Bsk2bdowdOhoLrmkFbVqQQIZ3wqDYLFW2amK/y7ECUGvXr38FsGYNcvuGzf2V44ICMyYOeJCEOZ79WrYsAFuuBgSLKltkQjC2MebWChYS4HOMWjXkXzUBXYBK3yW4xbgc2AVUA74HnMNnAjc46Ncjijx5qxZ/AE8VD1x9n4qV65MnTpdATgwkQLHCoCIjPQeKvCWiIQnvCkONAN+iLtgCUhgLmDeeQeOOCIhCnoHZswccSEI8/3331CqFNx4o9+SxJcgjH28iYWCtRC4SERKq6ZmCnJHxDQEFqvqLj+FUNWNwFEicizQGotNnKqqvuUTFZEeQI/SpUvne64jf6asWsV3wEP7Jk75uQkTJvDNNxWA1hxwgN/SxIws67UA6zB33Sx2YJsdr8ZbqERk504rQ1myZEn/hNi9G/78M2FyTwdizBxxw+/5XrTIQhTr1LEMgqmE32PvB7FQsBZgf5b7A3Ni0L4jeWiIfV98RURaqOpvqvoN8I3f8oCrgxVtnsn0alknkIJ10003sW5dDeDzpFWwVPVSABFZBDyumvKJfwrN8ccfD/gc47B+vd136OCfDAUgEGPmiBt+zvfu3RaWKNWhdu24d+87qbjWYqFgzffuG+EULEcuiIgABwIf+i0L8KuIzATeBN5R1aV+C+SIItu2webN5pcR4Jo82Xn//fe55podLFxI0ipYYdwf/kREamJZV2epqnMRjIDevXv7LQJs8fTjdu38lSNCAjFmjrjh53xPnQpffw2H3w3lyvkmhm+k4lqLhYI1w7s/FPgsBu07koPawD7A734LgmULvBDoDTwkIt9hytaHnvugI5FZtYpHAClThttE/JYmYg488EBWrcp67K8sceAz4EvgGREpD0wB0oDyInK5qr7hq3QJQM+ePf0WwSxYjRtDhQp+SxIRgRgzR9zwc76/+AJEIIHCgKNKKq61qNfBUtUNwCKgZbTbdiQVLb373/wUAkBV56hquqoeBBwJTAceAv4RkQ/8lc5RZFauZAowpVgsyv7FhqVLl/LWW28zd+5aICUsWG3Y4557BrAR2Be4AktCExEicoKIzBaReSJyRx7ntROR3SJyVlGEDhJbt25l69at/gqRkQHNmvkrQwEIxJglGUFeg37O94QJ0Lp16sVeZZGKay1WVxzTcAqWI29aePdBsGD9i6r+rKrXA6cCs4EzfRbJUVRWrmQY8EGCxIUATJw4kYsu6snWrcuoXDkhErIVlQrAeu9xV+AjVd2JKV0RqZciUhwr5N4daAqcLyJNcznvEWB00cUODieeeCInnniifwJs327uuK1a+SdDAfF9zJKMoK9Bv+Y7MxMmT06Y0MSYkIprLRYuggC/AKeJyD6qujZGfTgSm8OAOUFywRORhsAFmLvggcB3mNtgpO8/AXgGSy89SFUH5HJeO+An4FxVDUIMWnLj1cBKJN+M0047jbffnsWFFx6QCtYrgMXAkSIyCugGZNWk2weIdNuzPTBPVRcAiMh72EbJrGznXYfVt0uMQKEIueaaa/wVYNMmu++cOFVafB+z5CPQa9Cv+X7jDVseRxwBIzf7IoLvpOJai5WC9Z13fyQwKkZ9OBIUESkGHAWM8FsWABHpgylVHbAYwteBt1V1WQHayNq5Ox6rBTdZREaq6qwczku63fNAs2oV1wPN/vmHK/2WJUJKly7N7t1NgJRwDwR4Eot73Az8BXzrvX4M5rIbCXWAJWHPl2Jr+l9EpA5wOnAseVzciciVYF+XevXqRdi9v5x77rn+CrBuHRQrllAWLN/HLPmI2hr0zo3qOvRjvjMz4YEHoEULOPNMGDk07iIEglRca7FyEZyE1TA5JkbtOxKbQ4Aq7LmI8ps7sHo7LVW1hao+WhDlyuPfnTtV3QFk7dxlJ2vnbmWRJHZEzsqV/Aos3OVrubUC8cUXX/Dppx8BKZHgAlV9GTgcuAw4SlW9vPrMB/4XYTM5ZTDRbM+fBm5X1d35yPOKqrZV1bbVE8TyuWHDBjZs2OCfAJs2QaWKCRVk4vuYJR9RW4MQ/XXox3z/+ivMnw/9+iXU0og6qbjWYmLBUtVtIjIZ6BSL9h0JTyfv/ru8Tooj9VQ1+59AQYnJ7nmpUqWKKJaDlSvti3bxxX5LEjHPPvsskyatBk5PFQsWqjoFyx4Y/lpBMtEuBeqGPd8PWJ7tnLbAe1YlgmrAiSKyS1U/LrDAAePUU20/x5c6Mzt2WIr2WrXi33cR8HXMkpNAr0E/5nvAAEhLgxQLP/oPqbjWYuUiCOYCdZ+I1FDVFTHsx5F4nAjMVdWFfgkgIq2Bad5OeSvJI323qk6NpMmc3prt+dN4O3f59PcK8ApAWlpaURU/RwLGYL3//vt07ryVtWuT10VQRG4CBqpqhvc4V1T1yQianAw0EpEGwDLgPCymMrydBmH9DwE+TQblCuD666/3r/MvvzRfqCpV/JOhEPg6ZslJoNdgvOd77Vr46CO4/vqEqnEfE1JxrcVSwfoUuA/LJjMkhv04EggRSQM6AwN9FmUKUBNz1ZuCKUO5KUnFI2gv0Dt3qUzmihWcBVw4YwZnnnyy3+JERIUKFVm0yIoiJ7GL4HXAUCDDe5wbisVo5Ymq7hKRvtjmXnFgsKrOFJGrveMvFV3k4HLGGWf41/mjj8JBZyZcuktfxywJCfoajPd8f/YZ7N4N558f124DSSqutVgqWNOwC8yTcQqWYw9dgNKYAu4nDYBVYY+LSqB37lKZnStWMBdYU2Qv0PjxyCPPs3ZtKypUOJLatf2WJjaEr4fwx0Vs83Pg82yv5XhRp6q9otFnUFi9ejUA1apVi2/HW7bADz/A0X2skmoC4duYJTFBXoPxnG9VeOEF23No0ybm3QWeVFxrMVOwVFVF5BPgEhEpr6opmpzSkY2zsXo33/sphKr+Ff4UWJJTHJaIRJS6KOg7dymLKqVXrbI0dDfe6Lc0EaGq3HNPP+B2Gjc+MtGuWR0+cdZZVq817jEOs2fb1WRaWnz7jQK+jZnDF+I536NHw88/wzPPWHLNVCcV11osLVgA7wLXYNnU3o5xX46A47kHng6842XaCwoLgVpky+wnIlW9Y5G4CAZ65y5lWbcOdu6EiomV3ezJJ9dzww3QpInfksQeMZ/Zi7Gi3g2xDY8FwDCsXELimB595Oabb/an40WL7L5sWX/6LwK+jZnDF+I53++9B9WqwZWJUhskxqTiWou1gjURKyB5AU7BckAPIA14x29BsiH8NyEFQHksPsSRqKxYwRzgxl27CE2ZQtu2bf2WKF9EhIULywOpoWBhZQtOw+pdTcfWY1PgDWxD5kzfJEsgevTo4U/Hv/9uW/QJqGD5NmYOX4jnfP/yC7Rtm1D7ejElFddaTBUsVc0UkXeAW0Wkpqr+E8v+goqIjA9/rqqd/JHEdy7G4pMCUf9KRJ71HirwsIhsDTtcHKttNS3ecjmiyIoVbAVWFCvG7t35ll0JBMuWLeOzz94AzqNx46iEJgUWEbkQ6Ap0U9Wvsx3rBgwXkQtUNWibMoHjn3/s77VmzZrx7XjyZNsJKB6RoT9Q+DZmDl+I13z/9hv8+SekoE6RK6m41mJtwQIYjBVy7Q08EIf+HAFERBoCJwD3hxUR9Zvm3r0ATbDi2FnsAKYCj8dbKAAR6QH0KF26tB/dJw8rVtASmNKtG3TokN/ZgWDu3LnMnXsXcBhNmiS3ggX0BB7JrlwBqOpoEXnMO8cpWPlw3nnnAXGOcVizBiZMgHPPjV+fUcSXMXP4Rrzm+4orrCpIgoT9xoVUXGsxV7BUda6IfAVcJSIDVHVXrPsMGilssQrnKiATeNVvQbJQ1c4AIvI6cIOqbvRZpH9R1VHAqLS0tCv8liWhWeGV4KtRw185CkD79p2ArZQoUYKGDf2WJua0AO7J4/hn2G+HIx/uuOOO+Hf62muWRfC66+DnbfHvv4j4MmYO34jHfG/YAFOmQHp6QpVejDmpuNbiYcECq3n0MRaD81Gc+nQEBBEpA1wOfKKqS/2WJzuqeqnfMjhixIoVvAW8OXo0I7dvJxEsgrNnA5SlUSMoWdJvaWJOVeDvPI7/DSRWcSWfOOGEE+Lf6YgR0L49tGwJP/8Y//6LiC9j5vCNeMz3E09YUs2uXWPeVUKRimstXgrWZ1g2tttE5GOXFSrluBS7kHrOb0FyQ0Q6A+cD9YBS4cdU9VhfhHIUnRUr2AlsUqVUqVL5nh4EPvzwG2AiBx98J/H7ifaNksDOPI7v8s5x5MOSJUsAqFu3bj5nRolt22DaNOjbNz79xYC4j5nDV2I93xs3Ws3t88+Hww+PSRcJSyqutbj8e3s1gh4FXgQ6AePi0a/Df0SkJHA78CMwwWdxckREegEvYdbVTsAnwEFYAeK3fBPMUXRWrOBS4NInnkiYIqhjx34KfECTJnl5ziUV2RPMhFMurpIkMBdddBEQxxiHMWNg+3bo2DE+/cWAuI+Zw1diPd9jx9qSuMo5Nf+HVFxr8dweHQKkA3fjFKxU4nxgf6BvgC2Xt2DyDRKRTcCdqrpARJ4HXIHsRCYBY7Dq1n2Sn38O0bRpYiiEReRb4IAIznHkwz33xFkh//lnS89+3HHx7TeKxH3MHL4Sy/lWhaeegsqV4YgjYtZNwpKKay1uCpaqZojI48DjInKMqro/zSRHREoB9wK/Y26iQaUhMMZ7vB2rfwXwPDAey4LpSERWrKAPUOzFF3kuQXw2fv8doAKHHOK3JLHHJQCKHsfFU9FRhZEjoU2bhKx/lUVcx8zhO7Gc7wkT4LvvLAYrBWJnC0wqrrVice5vILAUeEyM5t5FuCOJEJFWIlIMuBLbnb4zwNYrgDVABe/xMqCZ97gqkLhXD6mOKqxYQWmgdJUqfksTEXfemc6cOVdTosTulFCwHNFjwYIFLFiwID6d/fgjTJ8OV14Zn/5iRFzHzOE7sZzvN9+ESpXgmmti0nzCk4prLa4R1Kq6TUTuxWpjjQa6ADcDT8dTDkfsEJE6wA/AH1gM03jgCz9lioDvsGKn04EPgGdF5Hjs+/mf+jyOBGHjRti+nSfT0uCZZ/yWJl9UlTlz1gAladasOAmSk8MREC677DIgTjEOI0ZAqVLg1bZJVOI6Zg7fidV8Z2bCF1/A8ccntEE3pqTiWvMjRdUbmOvV8cALwFAfZHDEjuVYUekXMavQcwG3XgH0Bcp4jx/GMpcdiSlbvhTHdoWGo0CCxV+JCMce+zwjRiitWvktjSPRCIVC8evsm28s0KR8+fzPDTBxHTOH78Rqvr/7Dv7+G3r0iEnzSUEqrrW4K1iqultEbsWUq7Wqui7eMjhih6qqiEzDXOvGqeoIn0XKF1VdG/Y4E3jER3Gy5HCFhovK33+TCbT65x+uGzSI3r17+y1Rnqxfv55ff60MCC1b+iyMI+HoGK9sfmPGwK+/wn33xae/GBK3MXMEgljN95132l7DiSfGpPmkIBXXmi9FVlR1oIgcAdwuIm+p6hw/5HBEHxERLNZuI3COz+LkiohEXLw0XAFzJBBLl5IBHFClCpUrV/ZbmjzZsmULNWvWpFq1B4BbnAXLUWBmW4VqDj744Nh29L//QYMGCV3/Kou4jZkjEMRivrduhUmT4LbboFq1qDWbdKTiWvOziuXNwMnAKyJyrGc5cCQ+lwPHAFeo6mq/hcmD1UB+rovinVM89uI4os6yZZQDRpxzDpx1lt/S5MmuXbv43//6079/JwBatPBXHj8QkRrARVhinP+p6moRORJYrqoL/ZUu+FzlFd+JaYzD/Pnw00/wwAOQIIlj8iIuY+YIDLGY759/ht274aijotZkUpKKa803BUtVV4jITcBrwPW4RBcJj4g0AJ7C6pwN9lmc/OjstwCOGLNsmd3vt5+/ckRApUqV6NHjDu65Bw48ECpW9Fui+CIibYCxwELgEOAxbBPkeKzo9wX+SZcYPPTQQ7Hv5JVXoEQJuPji2PcVB+IyZo7AEIv5ztIXWreOetNJRSquNT8tWACvA6cBA0TkK1Wd5bM8jkIiIsWxhCWZQK+gWyRVdYLfMjhizNKlfATc/eSTfHHmmey///5+S5Qra9eu5ccfSwHlUzX+6nHgGVVN94p9ZzEauNQnmRKKI+JR3XTMGNuqr1s39n3FgbiMmSMwRHu+t2+HF16Ao4+GmjWj2nTSkYprLd51sPbCyy53BbAJeFtEyuTzFkdwuQ04GrheVRf7LUxBEJF98rr5LZ+jkCxbRmWg6YEHUqlSJb+lyZM77riDG29sCJCq8VdtyDmj7N9AYqSB9JkZM2YwY8aM2HXwzz8wdSo0bx67PuJMzMfMESiiPd8vvwxr1sDdd0etyaQlFdea3xasLFfBS4FRwLNYcVpHAiEinbF05u9jafgTjfzisVwMViKybBmdgc5DhkDAk1ycf/75fP314SxaBO3b+y2NL2wDcgrqaQysjLMsCUlfL+lEzGIc3n7b7q9InsSmMR8zR6CI5nyrwksv2e91165Fbi7pScW15ruCBaCqn4rIw8CdIjJRVV1trARBRGoD7wFzsMQWQa95lRPZ47FKAq2Aa4B74i+Oo8js3m2FSQBq1/ZXlgho374zS5ZA8eLQoYPf0vjCJ0C6iJztPVcRqY+VTBjum1QJxGOPPRa7xjMzYeBA84VKIgtWTMfMETiiOd8//gh//AHPPgsiUWs2aUnFtRYIBcvjXuAw4CUR+UNVJ/ktkCNvPJfOD4HywLGquimftwSSXOKxxojIAqxo8jtxFskVGi4qK1bA7t0cXqIEbW66ieeff95vifJk+PC57N5dh9aty1Ghgt/S+MItwOfAKqAc8D3mGjgRt8kREe3atYtd45Mnw4IF0L9/7PrwgZiOmSNwRHO+QyEoVw4uvDBqTSY1qbjWfI3BCkdVdwHnYT73I0Wkns8iOfJARIoBQ4DDgUtUdaa/EsWEaVjK+bijqqNU9crixZ13YqHwMgges88+tA+4z922bdu45JKDgKdSNtWvqm5U1aOwpEe3A88AJ6hqR1XdEmk7InKCiMwWkXkickcOxy8Ukd+92w8ikjQJ8adNm8a0adNi0/iIEZY98OSTY9O+T8R0zFKUIK/BaM13Rgb88AOcfTbs46K0IyIV11qQLFio6koROQn4EfhMRI5U1Y1+y+XIkRBwLnCHqn7otzDRRkTKA/2AJT6L4igMnoL1SPv2gU8pLSI0b/4W06cfypFH+i2NP4hIC1X9TVW/Ab4pZBvFgRew1O5LgckiMjJbdtqFQEdVXSci3YFXgKRwyuzXrx8QgxgHVfjoI+jcOSlqX4UTszFLUYK+BqM136++Cps3B/6vJVCk4loLlIIFoKp/iMiZwJfAKBHprqpb/ZbLsQcRuR5z23kNeNRncYqMlxY6PHZMMDelLYBzAEhEsmpg1anjrxwRULJkGRYtsq9ZqipYwK8iMhN4E3hHVZcWoo32wDxVXQAgIu8BpwL/Xtyp6g9h5/8EBL9IWoQ8/fTTsWl41iyYOxduuik27ftIzMYsdQn0GozGfO/YYXW2Dz0UOnYsukypQiqutcApWACqOlZELsJiX4aLyGmqut1vuRwgIpdh7jsfA1cnaFKL7PTN9jwTiwX5WVXX+SCPo6gsXcpS4JAhQxh49NFcGGBH+bfe+oFNm/ajfv16iaAPxorG2GZGb+AhEfkOU7Y+LIAXQx32tjgvJe+d8cuBL3I6ICJX4mW0rVcvMbzVW8aqgNrHH1sU/6mnxqZ9H4nZmKUuUVuDEP11GI35HjgQVq6EN9+0pESOyEjFtRZIBQtAVd8TkTRgEPCuiJynqjv8lqswiMj48Oeq2skfSYqGiJwPvAp8BZznxc0lPNHKWikiJ2DKZ3FgkKoOyHb8Qiy+BGAzcI2q/haNvh3ZWLyY0sBlHTvSqFEjv6XJk1tvvQQ4mCOP/NRvUXxDVecA6VgmwQ6YsvUQ8LyIfKqq50TQTE65vHLcAPJKS1wO5Bj1pqqvYK5LtG3bNiE2kSZPngzEIJh83Dho0QJq1YpuuwEgZmOWukRtDUL012FR53vdOrj/fjj+eLs5IicV11pgFSwAVX1NRMph9bE+EpGzVHWb33KlIiLSG/uh+w44Ixktil5R4X3Jlvwlm/94bu8NtO95yrFwIdWBp+66K/CFpZo0+YhVq3bSOXuxgBRFVX8GfhaRt4GXgDMjfOtSoG7Y8/2A5dlPEpFDsY277qq6pojiBoZbb70ViHKMw+7d8NNPcOml0WszQMRkzFKbQK/Bos73Qw+ZkvXYYy41e0FJxbUWaAULQFWfE5Ht2B/t5yJySqKlA09Ui1UWItIPeAoYjSlXSRUTJyKtgNeBrAIvgu26Zd1H4ggQaN/zlGPhQpvABg38liRPtm2DyZObAXDiiT4LEwBEpCFwAWbBOhDb0Okd4dsnA41EpAGwDMtKe0G29usBI4CLPKtZ0hCTUgTffgtbtgR+k6KwBL18QwIS6DVYlPletsxqXvXqZQZdR8FIxbUWeAULzEwsIpuBN4AJItJDVZf5LVey46Vifxi4DftBvCAZLVfAYOzP4AZgBbm4NORDTOI/SpUqVQhRUpytW+GffxhevDgXN27M5MmTOeSQQ/yWKkfS099m27b6tG59ZDJ6YEWMiPTBlKoOwAxsw+PtgvzOq+ouEemLbQQVBwar6kwRudo7/hJWb7EqMFBsC3qXqraN6ofxiWbNmkW/0S+/hJIl4ayzot92AIjJmKUwQV+DRZnvwYMtwcUNN0RRoBQiFddaQihYAKr6joisB94HJonIyar6q89iJS2ea+abwBmY9fC6ZIm5yoFGwNmqOq8IbcQk/iMtLS0h4j8CxaJFABxYuzZ9zj2XGjVq+CtPLqgqAwfeCnTlxBNTN32gxx3Au8BVqjq9sI2o6udYweLw114Ke9ybyC1iCcUPP5iB/IgjjohOg6rw2WfQqhWULRudNgNG1MfMEeg1WNj5XrPG3AMPPdRujoKTimstYRQssIUrIkcBnwLficglqjrcb7mSDc+EPxxoA9wIPJMk2QJz43ugCVAUBSvQvucpxcKFALRs3JiWjz3mszB5IVSvPoctWzY590Col+S/MTHnrrvuAqIY4/DrrzBzJrz4YnTaCyBRHzNHoCnsfL/+uhUXfvVVF3tVWFJxrSWUggWgqr+JSHvgI+BDEXkKuF1Vd/osWlLgZcJ7G/tunKaqI30WKR5cDgzy4j9mAHt9l1T12wjaCLTveUrhKVgLq1alvioSwH/EP/74g/ffH8+iRRewzz61kjXEJU9EpDUwTVUzgVZ5zZOqTo2bYAnKyy+/HN0Gn3wSSpeGcyJJ4JiYRH3MHIGmsPM9ahS0bJm0oYhxIRXXWsIpWACq+reIHAM8jllY2ovIhar6l8+iJSwiUhLzjb4bmA6cpapz/ZUqbjQCWgLdcjgWUZKLoPuepxTz57MaaPjeezzRrh03BbBA6ldffUUo1A84i+7dU7aeyhSgJrDSe5yVWCY7kSaaSWkOPvjg6DW2YAF88AH07An77BO9dgNGVMfMEXgKM99//w0//AC33BIDgVKIVFxrCalgAXg1sa4XkYmYy9V0EbkeGOpcTQqGiDTBEoi0xYLL+yZbpsB8eBkYiyX0KGySi0D7nqcUf/5JKeClq6+mY0B976677nqee+4M5s+vzgUX5H9+ktIAK+id9dhRBCZMmABAx44di9bQ5s1mtSpRAjy3nmQlamPmSAgKOt+7dsGFF5pb4GWXxVKy5CcV11rCKlhZqOr7IjIJGIIpB6eJyLWquhzAs3R977mhpDwicgiwUlVXiUgJ4HrgQWALZrVKxZi2/YATVXW+34I4osCff1IRuOqGG6BxY7+lyZGpU4X58+uy777Qtavf0vhDNo8DBZbktDnmudY68iE9PR2IQozDPfdY/NUnn8CBBxZdsAATtTFzJAQFne9777U6208/DQGvVx94UnGtJbyCBaCqC73MbP2Ah4A/ReQeYBowAbgGy4SX0ohINcwV5w0RGQy8CLTCkoZcoar/+Cmfj3yNJfRwClais3UrumgRXxYrxpHVq1PRb3lyYPbs2fTs+QDwKOefX4sSSfErXGQWArUwd8F/EZGq3jHnIpgPgwcPjk5D330HnTvDySdHp70AE7UxcyQEBZnvP/6wMMSjjnKp2aNBKq61pPlr9yxUT4rIKOB54BlgG/aH/YafsgUFVV0tIm9gNZauAP4GzgE+THG3yi+BJ7wMf9P5b5KLEb5I5Sg4c+cyFzgxM5OBH3zANddc47dE/2HSpKnMmfMV8AQ9e/otTWDIKuqdnfJARpxlSUgaNmxY9EZmzoSpU+H++4veVgIQlTFzJAwFme9QyLxk33svhgKlEKm41pJGwcpCVed6mfD6YEpWWeBdEblDVf/wVzr/EJHywE3syWw3DjhdVTf6J1VgGOjd5xRw4EuAvYj0AHqULl063l0nNrNnUx8Yd+SRNDnjDL+lyZEyZc5H9XQaNy5DmzZ+S+MvIvKs91CBh0UkPPazONAe80Rw5MOYMWMAOO644wrXwM6dcO21UKkSXH11FCULLkUeM0dCEel8z5xpOV5uvRXq1ImHZMlPKq61pFOwADxrzPMi8h5mqbkDmCEibwIDVPVPXwWMI55idRVwK1ADq2/1gKpO81OuIKGqxfyWITuqOgoYlZaWdoXfsiQUM2ZQCuh01FEQsALDqsrMmbN44olDgDL07etqqgDNvXvBatHtCDu2A5iKZYt15MMDDzwAFOECpn9/+PZbeP55qFYteoIFmCKPmSOhiHS+X34ZypSB226Lh1SpQSqutaRUsLJQ1dXYruirmHXiauBiERmOKVq/+CpgDPFiF/piSSz2YY/F6kdfBXM4Ysm0abwNNK1UiVZ+y5KNL7/8khNPPBH4nCpVutOrl98S+Y+qdgYQkdeBG5xFvfC8+eabhX/zypXwxBNw9tnQp0/0hAo4RRozR8IRyXz/+ScMHgxHHw1Vq8ZBqBQhFddaUitYWXiK1k0i8jBwA6Z4nCUiP2HuYcNUNeH9/MWKK7UDrsUK3ZYGRgIPq+pPfsoWZEQkz0JJqvpkvGRxFI3MqVO5HLhu3rzAKVhHHXUUzZo9xowZXbj2WkhL81ui4KCql/otQ6JTt27dwr1x3To47TTYvRvuuy+qMgWdQo+ZIyHJb77HjoUsA4uzXkWXVFxrKaFgZaGqq4B7ROQx4BJMEXkDeEpE3gXeBn5OtIQPIlIbU6h6YlkBNwOvAQNVdaafsiUI12V7XhLLaJaVJMUpWInA6tXIsmUsKFuWYgG8UFywoAIzZ95CqVLQt6/f0gQPLxPs+UA9oFT4MVU91hehEogvv/wSgBNOOCHyN61dCx06wOLF8P77gS1rECsKNWaOhCW/+b75ZqhVC954A7p0iadkyU8qrrWUUrCyUNUNwLMi8hxwLBaj1BuzbC0QkWHAKOAnVd3tn6S5IyL1gZOAM4DOWAzDFCy5x5uqusk/6RILVf1PkVMRqYHVVXs1/hI5CsWvvyJA7ZYtAxeZ/PTTz/Daa3VRPYNrroGaNf2WKFiISC+slMZHQCfgE+AgrADxW74JlkAMGDAAKOAFTK9eMG8evPkmBDQpTCwp1Jg5Epa85nvlSpg+3WpfpVCYUNxIxbWWkgpWFp6laiwwVkQqYsrKhcAtwO3AGhH5EvgG+BaY75d1S0QqA0cCHYHuQDPv0FzgfuAdVZ3th2zJiKquEJG7gQ+wiz5HwNn+ww+cCPSuUIHz/RYmG48/PpBly46iSpUzuPdev6UJJLcAfVV1kIhsAu5U1QUi8jxmkXfkw3sFzSc9ejR8+qllDEzRegEFHjNHQpPXfD/wAGRmpuQ+Q1xIxbWW0gpWOF5w9RBgiKfMdMMsRN0xpQvgHxH5AUsb/Jt3vyQSpUtEnvb66RfBuZWw7FotgRZYXNWhmJVqJ/A9cDPwqarOieTzOQpFMSzzoiMB2DhhAnWBb3btCpSCtWULlCnzJ7CN9HTYZx+/JQokDYEx3uPtWP0rsJqG47FMsI48qBmpWVTVKqjecgs0aQKPp26SxojHzJEU5DbfQ4bAwIFw6qnQrFmOpziKSCquNadg5YCqrgfeB973Ekc0AY4GjsHqsoTvcWSIyEJgAfAXFrOz2rttxC4WdnjvFxHphMUXlAOqhd32wy4yGnjPs1gD/Ar0x6xoP6vqtuh+4tRGRLLvWQkWg9UH+C7+EjkKzO7dVJ8yhSFgDvQB4qabYP58oVmzcgSw7nFQWANU8B4vwyz0vwNVsVqGjnwYNWoUAD169Mj9pA0b4IYbYOhQOPZYS8mewtlWIhozR9KQ03wPHw6XXgrt25unrCudERtSca05BSsfPOvULO/2MoCIVMAsTC2AA9ijGB0BVMmnyXE5vLYV+BtT0kZ49zMwK9myREu6kYB8mO25Aqsw19Cb4y+OKzRcYH7/ncxNmyjWoEGg4q9GjoRXXnmFYsVmMXTo45Qq5X5yc+E7oCswHXPLfVZEjge6AF/7KVii8MQTTwB5XMB8841lC9y0yVKxP/MMFI97DfVAke+YOZKK7POtCqEQVK9uJeDc323sSMW15v7tC4GXQOIH77YXIlIC23Wtjrm5lPZufYBM4DnMqrUNz9KlqlvjI7kjJ1yh4STgq694Crh3yRL+2bSJChUq5PuWWPPHH3DxxQDlqFJlFK1bP+2zRIGmL1DGe/wwsAuLOf0AeMAvoRKJDz/Mvk/koQoffghXXAF165o/VLt2cZUtqOQ6Zo6kJHy+586Frl1h0SLzknXKVWxJxbXmFKwoo6q7gBXeLZyvfBDH4UgNPv2UNsC13btTvnz5fE+PNatWwYknbmfDhtKcfPLJvPpqV79FCjSqujbscSbwiI/iJCTVqlXb+4XNm+HVV+GVV6x66r77wuefw/77+yNgAPnPmDmSmqz5nj/fqhNs2QJXXQXXZS/U4og6qbjWnILlSFlEpDvwItDCS90ffqwS5qJ5pao65TjIrFkDP/xAp5Il6fTWW7470a9cCccfryxadALVqzfh/fcHUq6cryIFEhGJON1HuALmyJkRI0bArl2cUb26+T1NmGAHKlUyRevccyEAlt0gMWLECADOcKnjUoIRI0awfj28/PIZrFvH/9s78zCpqqMPvz8QXFAh4obiGjWR4G5ADSpGEURxi8Z93yKiGGMkamJIXHBB3JfEfYmin34RDC6Ju35GxQiCiigCIspmcAMEBqa+P+o20zTdMz09PdPdM/U+z3363nPPrVt9uk/3qXvqVDFmDGy/fam1ahm0xL4WBlYWktDAXc2sZz2uMeBwM2t586CVywDgmkzjCjxXmqSrgIHE7GN589hjLK6uZuZuu7HxmmuWVJVPP3W3k48+Wspaa+3JoEEbhXGVmy/x9Y61oaROy14slAc3XnIJfPQRh1ZVeUGvXh7QYt99oU2b0ipXptx4441Ayxr0tWSGDLmR996DhQsP5brrwrhqSlpiXwsDqwmQdC9wQm11zExJvbXN7ICM63cGRgObmdnUtPKDcSNhRzzS1mfAv4GbzWx0UudQ4FfADvgahw+Ay81sZA5djwIeAkZl6tEM2RY4r5bzLwAXN5EuQaHccw+vA3u99hrP/vOf7LtvadzxnnkGjjkG5s6F7bZbiWefHcx6EeS/NvYqtQIVz+LFvr7q3nsZ8f77sPHGcNVV8LOf+XqroFZGjBhRahWCJuLpp2HMmBG0b+/Bh3r1KrVGLYuW2NfCwGoaBrJ8HpdPgIvwUPAFIelyPBnyTcCfceNqIzyS4TVAz6Tqnrih8HtgLp7T6++SeprZqxkyN0+ubSmhydfBA4/kwvCAJUG58u678OabbNmuHdddcgm77LJLk6swbx5cfDHcdJPHE9hvPxg0aAxrr70tMfGSGzN7udgyJfUBbsAb/k4zuzLjvJLzffHorSea2TvF1qPRqKqCG2/0iICTJ/u2eDEA7U87Da69NtwA60H79u1LrUKzoxz64NKlMHMmvP02fP453HmnuwNuskl7Xn01nj2UgpbY1yrKwJL0EjAB75QnAUvxCFO3A8Nw4+Fb4GIzeyC5ZhvgOjwi1ffASGBgyi1MUmt8QfUpyW3uI2NUlPwg/BY4A9gAmARcZWYP5qN3cq9lbmiJO+E3ZjazXg1Qc3133EAbaGY3pp2aArySuLal7j0w4/I/SdofOJg0Q0pSG+BhfMZmL5bPxdVcmY7PYn2c4/y2eE6eoFwZMoR3gR+fcALnXnBBk966uhqGD4eLLnLXwNatYfBgOPLIyWy55Y7ccsst9O/fv0l1qlTqWo+Vzxqs5Lf8FqAX3rdHSxppZh+kVdsP2DLZuuNrMLsXqndRqK720Onz58PChfD9975NmwYTJ8KUKR7qbMoU/6JVVUGXLr716+er9Xv35pFRo+CppzjiiCNK+nYqiUce8Wec0WbFodR9cPZsGDIE7rrLu1SKlVf2rtK37yO8/np83qWgJfa1ijKwEo7BjanuwIHA9UAf4BlgZ9wV705JzwNfJ+Wj8QTBawF3AHcDv0jk/QY4LdnG4eHUjwHSn6hcBhyWnJsI7ArcIekrMxuVTcnEGKQ+67jqwdHAPODWbCfzyJu1BvBVRtnlwFQzu09SS3HdGQVcKumpzOTNklbDZwazfr6NTeTByoMxY1j4yCPsCpy+aBHXN9FtFy1yw2rYMBg3zsu23x7uvht22AG++24dHnroIXr06NFEGjUL6lqPlc9UYDdgkplNBpA0HDgId4tOcRBwf/Ib+YakDpI6mdmMgrT+y1/8MfnixW74VFXVb3/hQvj6a5/6zMU668Cmm8KOO8Ihh7j734EHrhDM5bbbbgNa1gCmoUSbFZ0m74NPPAEPPwxjx8JHH3nZHnvAkUd6wMztt4eOHd3I6tkzPu9S0RL7WiUaWO+b2WAAScNw17sqM7shKfsz7jqXSvq7OnBckrsKSacDL0rawswmAecCV5vZo8n5gUDv1M0ktcPX6eyb5lI3RVI33ODKNQCfVuD76yNpXkZZZp6mrYDJSUj4lJ79gavT6nQxsxV0kHQW0Bl4IK1sX+AIYPsCda5ULscN548l3QR8mJRvja9tE3BFKRSLPFi5WbhwIeedey6bP/005wDD+/Vj03POadR7msH48W5Y3XWXPykFaN/+Oq68sj+nnroyI0Y8zvDhbzF48GCOOuqoRtWnGZL5UKcNvm70TNy9OR82xF2lU0xnxSfj2epsiCd6X0byP3E6wMYbb5z7jqNHe+jztm09kESbNivut2uXvbxNG1hlFejQwbd27WDVVWu29daDn/zEy/PgqaeeyqteUEO0WdEpWh+E/PrhBx/4M47ttoOTToI994Ru3bLn0I7Pu3S0xLavRANrXGrHPDLEbGB8WlmVpK+AdYEtgHEp4yrhdXzdTRdJc4BOeGCI1PXVkt7E1zMBdMGDQzyTuPalaANMzaWkmR1f2NvjFZIflDS6An+v47q/4dHuUnVXSJ4r6Rf4GqsjzezTpGxt4F7gaDPLnNVq1pjZbEm74S4KV+AGFfiT9GeB/maWmc8sKDHz5s1jlbff5p1p02i7wQYc+OCD0AjRAxctgtdfh2efhREjPJVQiu22g759X2PIkPPYe+8DWGmlLZk1axYvvvgiJ5xwAl26dCm6Ps2ZHOuxnpM0GTgVD7xTF9ni82dODeVTBzP7K/BXgJ133jn39NKdd+ahVtOwWoSrrDfRZkWnaH0Q8uuHF17obtr5EJ936WiJbV+JBlZVxrHlKGtFTYjfbNTlRpciZaj0Y8VZqcz7FoMFyczaMiR1yKjzEbC7pDZmVgU167yy1E3J+AU+a3V8RgTBrriR+ZxqXE5aJdcsAX5iZhMb9I7KmMTQ7CvpB7hBLuDjlmZsVgxmrH3bbQz7z3/8EeXw4UUxrsxgxgyfkHjjDd/eegsWLKip07EjHHaYRwrs0QOqq3elS5cH2ChZMd2/f/9Yc1V8xgJ75Fl3OjUPxsBn6r8ooE5F8uCDviT42GOPLbEmlUO0WdFp8j5Yn7SH8XmXjpbY9pVoYNWHD4CTJa2RNou1G25ATEhyHc0AdsEj7aUCWnSjZrr6A2ARsImZvdCk2ufmYeAc4Gx8PVqtSPolHrzjhCx5ukYD22SUXYa7V56FB85o9iQG1ehS6xHUwvTpcPbZvPnEE3QF2t1zD+y+e96Xm8FXX3mcgGnTYNIkdy+ZMMFfv1khGxp07Qp77DGXrl0/5dhjt2aNNVZh1KhRDBv2IWeffXaL+rNoaiStjrtwf1ZH1RSjgS0lbYYHpzkSX6+azkhgQLI2pDsebKiw9Vdlxp3JbFp8J/Mn2qzolHUfjM+7dLTEtm/uBtbfgD8B90u6BDca/gL8b9os0Q3AhZI+wl0N++MzOjMAzOw7SUOBoYnx9Qq+rmsXoDqZwl4BSfcn1xfqKpgTM3tD0tXANZI2AR7DZ9fWo8a9cGmix5H4zNX5eITB9ZPzi81srpnNB97L0P1rYCUzW648CJqc6mp45x247z5f/PT99xwl0aZTJyYedxxmHiZ9zpzlt9mza/ZnzYLPPnPDav783Lfq0MHjCOyyiwdm697dl8E8/PCzHH300fz85x/yox/9iC+++IKbb76ZAQMGNFkzNHckfcfyXgUCVgPm40GH6sTMlkgagLv3tgbuNrP3Jf0qOX878BQeHnoSNdFomwX/+te/Sq1CxRFtVlzKvQ/G5106WmLbN2sDy8wWSOqNRxp8C1gIjMDzUqW4FlgfSDnTP4AbZlun1fkDMAs3Um7DQ8GPZfmgEpnUsjK64ZjZIElv4bNMx+NG3yzgNWAPM0s99f0V/jlfn2wpXqYmV1ZQBMoh/0c5s3RpTRTqbK8Lv13M/Gn/5dsp/+XbSbP5bsqX/jpffEg35rE37db5ISuvuSELl65Op04egG3hwvx1WGMNjyzVseMnLF78OPvtdwQ9emzC6qtP5YUXHuWYY46mc+fOfPLJJ9x33+Mcd9xx7L777jzxxBNssMEGAPTu3ZuDDjqIiPBYVDKt1WpgDvBmfdx1zewpfACXXnZ72r7hv5nNjjZt2pRahYoj2qz4lHMfjM+7dLTEtq8oAytbyHMz65qlbP20/fHA3rXIXAL8Otly1TE8oe9NtdRRxvEKuqadWz1H+Yk5yt8my8JQM3sceDzXferSo5ZrsuoR5Kax839YtVG91KheUp19yzxXDUurqlm8yKha7Nty+4tZfn+56NHG4sWiqsqoqlLN+SV4+RK8vEosXNyK7xe1YuFi+esi8f3CVl6+uBULq1rzfdVKLKxqTVV1XT83bfHJ4065q8xJtjRWXdUjWa+7rr+mttTxuut6YsmNN4b27d1nf9SoDzn66Mu59NKd2GuvTXjuuUn87neD+NnPdqNz585MnDiRQYMG0bNnT7p160bnzp2X3a/WqHJBQZjZfaXWodK59957ATjxxBNLqkclEW3WsojPu3S0xLavKAMrCMqYRsn/sWBBB6ST8dRtwlNzfUESWAnPC/01btuBZyhYRM1k5Xn4hNo1yfHZ+GTnkOT4TDyn9KXJ8anAJvikLcCJwI+AC5Pjo4Ed8clcgF/iyxrPTY4PxZ9npB5Q9ku20xHVGL1pSz/W4VBWZgFTOYG16MPW7MVKfMdrXMzmq+7NPpv3o/W6rbnj9dPZZbeTOP7481m6dA633nosRx45gH79DqKq6ksGDjyK88//NX379mXGjBkcf/zxHHvsBfTq1Ytp06ZxyimncNFFF7HttnsxefJkDj/8DP74xz+y//77M3PmTNq2bQvAXnvtxfz585fNSvXu3Xu546BpSBIOr0tGFNSMBxVBFlriAKahRJu1LOLzLh0tse1Vd07aIAjqQtJhQB8zOzU5Pg7obmYD0ur8A7jSzF5Ljp8HBiUzlOmyluX+AHbC3QkzaU2yzq6AspWAJXnUqxSZ9blPQ2Tmuk8lyMwmr6EyVzWzFdJBFIKkHYB7qAm4k4oAK9yJIJ9Ew41Cks7j01qqrI0nSq4kQuemozH13sTM1mkk2WVFHf2wUr4boWdxKRc9s/dDM4stttgauAGH4+uuUsfHATdl1BkF9Eg7fh7YqQ65b+co/2sDylaQma1epcis530KllnLfcpeZlN9jwrdgDFJ/9gT+DE+bbpsK9Z9GmMrZjuEzs1L50rWu5K2Smnj0LNl6RkugkFQHJo6/8eTDSjLV16lyKzPfRoiM195LV1mIWwJHG4ZOQCDIAiCoBIpintHEAQ1+T8ktcXzf4zMqDMSOF7OLjQg/4eZrTDgzbcsX3mVIrM+92mIzHzltXSZBfIay0duDYIgCIKKJWawgqAIWOPl/8iaZ62BhMyWJ7PcdTwFuFPS5nhevqr0k2b2ShHvVWwao20bm9C56ahUvSuJSmnj0LO4lLWeEeQiCIIgKCmSegIP48nSMzErYZCLIAiCIKgvYWAFQRAEJUXSRNzNdgieMH25PyYz+28p9AqCIAiCQggDKwiCICgpkuYD25rZJ6XWJQiCIAgaSgS5CIIgCErNv/Ccb2WHpLslzZb0XlrZWpL+Jenj5PUHaeculDRJ0kRJvctI58GSPpc0Ntn6lpnOG0l6UdIESe9LGpiUl21b16JzWbd1JZLtO51xXpJuTNp2nKQdm1rHRI+69Owp6Zu078YlTa1jokfW725GnZK3aZ56lkWbZhIzWEEQNEsk/Rg4CNgQdzn7AhhpZhNKqliwAkkwmIuB+4DxrBjk4n9LoReApD2AecD9ZtY1KbsamGtmV0r6HfADMxskqQu+lqwbsAHwHLCVmWVLJt3UOg8G5pnZ0Iy65aJzJ6CTmb0jaQ3gP8DBwImUaVvXovMvKeO2rkSyfaczzvcFzsYDSXUHbjCz7k2rZV569gTON7MDmli1TD2yfnfN7IO0OiVv0zz17EkZtGkmMYMVBEGzQ9IgYDgg4C18fY+Ah5NBWlBe3IobwhfhA9DH0rb/KaFeqQiGczOKD8KNQZLXg9PKh5vZIjObgkcM7dYUeqaTQ+dclIvOM8zsnWT/O2AC/p0o27auRedclFznSiWP7/RBuFFjZvYG0CEZnDcp9ex7JSPP727J27SAPlY2hIEVBGWEpN6SbpM0UtKIZL9PA+StnXF8bDLlf7okNUCuJHWXdKikQ5L9guVlkb+6pB0ldShQxCnAT83sSjN7MNmuxAczpxSoU5+0/faS7krcJh6SlC36XT4y20u6UtKHkv6bbBOSsg6FyMxxn4a2Z6N+5mbWqpatHCMIrpfKYZe8rpuUbwh8llZvOuU1GBiQfGfvVo2rXdnpLGlTYAfgTSqkrTN0hgpp62ZEJbXtrpLelfS0pJ+UWpks390UZdWmtegJZdamEAZWEJQNkq4HBgIvA1cD1yT750i6oUCx/0yT/3vgOHyKvRcwrEA99wU+BgbjrgP7A38CPk7OFSLz1rT9HsAHwLXAeKWtX6gH1bgLTiadknOFcEXa/rXADKAfPjv2lwJlPgp8BfQ0s45m1hHYKykreOam2O3ZGJ95MyWbwVkufvi3AT8Etse/u9cm5WWls6TVgceBc83s29qqZikrid5ZdK6Itm5mVErbvgNsYmbbATcBT5RSmTr6W9m0aR16llWbpohEw0FQPvQ1s60yCyU9AnyEG1/1Jf0H8lBgdzObL+kh/EepEG4A9jGzqRl6boYnU966AJm7pO1fivtYvyNPPPtoIrc+nAs8L+ljap7AbQxsAQwoQL9Mdjaz7ZP96ySdUKCcTc3sqvQCM5sJXCXp5AboV+z2bIzPPF3OebWdN7OCHgY0IrMkdTKzGYnLzOykfDqwUVq9zvjav5JjZrNS+5LuAP6RHJaNzpLa4IOov6Wtuyvrts6mcyW0dTOkIto23Tgws6ck3SppbTP7sql1ydHf0imLNq1Lz3Jq03TCwAqC8mGhpG5m9lZG+U+BhQXKXFXSDvhsdWszmw9gZlWSCl1YvRL+w5vJ50CbAmWms2aaz/VkSfV2ETOzZyRthbsEbogbmtOB0Q1YUL5uYggIWFOSrCZKUKHeAJ9KugC4LzUoS9wNT2R514yG0OD2pPE/87Mzjtvgs43f4wPqcjOwRgInAFcmryPSyh+SNAyfQd0SXwNYclJGSnJ4CJCKclYWOifupncBEzIM6rJt61w6l3tbN1NG4m6Zw/GADN+kfQZlg6T1gVlmZpK64f8dTZ7nr5b+lk7J2zQfPculTTMJAysIyocTgdvkkXJSg9mNgG+Tc4Uwg5rB6dy0J8EdgSUFyrwbGJ386KaMgI2AI/EfwkL4saRxuPGyqaQfmNlXklpR4ADezKqBNwrUJxt3AGsk+/cBawNzkh/3sQXKPAL4HfBS2jquWfgf2y8LV7Xo7dkYn/kyzGyzzLKkPe7B271kSHoY6AmsLWk68Ed8sP+opFOAacDhAGb2vqRHcZfMJcBZpYgQl0PnnpK2x118pgJnlJPOwM9wF+bxksYmZRdR3m2dS+ejyrytK44c3+k2AGZ2Oz6T3hcPHLIAOKlM9TwMOFPSEvwB0pFpD+qaklzf3Y3TdC2HNs1Hz3Jp0+WIMO1BUGYkA/Zlsy6Jy1ix79EaWNnMFhR4fRfgQJafHRppaaFT6ylvk4yiL5JZtrWBPXK4L5QcSfeb2fENlLEF/pR7I3zQ9RHwsJl90wCZme05w8wWN6Q9i/2Z53nPHYBHzWzLxrpHEARBEBSbMLCCoIyQtDHwrZl9nUTM2RmfGn+/ATJbgc/oSGoLdAWmmllZh5KVtK6Zza67ZtMgaWSW4p8DLwCY2YEFyDwHOAB4BX9SOBYPcHEI0N/MXipQ3WaBpJ2AF81szVLrEgRBEAT5EgZWEJQJ8vxMZwCLgKHA+cD/4QEL7ipkob+kg/EId9XAr/Cp9fnAVsCZZvZkATJXBy4AfoEvel0MfALcbmb31ldeInOtzCI82uEO+O9UyY1BSWOA94E7cdcf4TmbjgQws5cLkDke2N7MlkpaDXjKzHomhvYIM9uhQF3Xx11TqoFL8DVOv8BziAysrx+9pJ3xqJafAxfiLoM/xSMLnm5mYwrRM03+oZlF+Bqss4DJZrZ/Q+QHQRAEQVMSBlYQlAmS3sdnrFbD/fY3N7M5ktoBb1qWrPB5yBwD7AesCryL54aamLiQPW5mOxcgcwTwd+A5fJ1QOzyp7++Bz83sogJkVgOfZhR3xt3QzMw2r6/MYpPMBA7EZ5p+a2ZjJU1uiG6JgbWzmS2S58p5zsx2Ss69V8hnnlz7DDAK/2yOBv6GG4MH4dEAD6qnvLdwg60DnkLg12b2mKS9gcvMbNdC9EyTnxk634A5+Ozgb8pxsXoQBEEQ5CIMrCAoEySNM7Ntk/VRM4D1k0ANBQ+2JY1JzYJkypD0jpntWIDMd83zTaSOR5vZTxMD5AMz+3EBMs8H9sENl/FJ2ZRswQ9KjaTOwHV4MIoDzWzjBsgaiCc+fgPYA7jKzO6RtA5uAO9RoNz0z31auo6SxlpNiPliyFt2LgiCIAiCiCIYBOXEO/L8VO2A54H7kpmIn+NRpwpCUqvEUDs5raw10LZAkfMl9TCz1yT1A+bCsjVe2RIT1omZDU0i1F0n6TN8tqQsn/6Y2XTgcEn74xEeGyLrBknP4XmkhpnZh0n5HNzgKpT0sPH3Z5wrJEz7QnlC4faASTrYzJ6QtCcQUdCCIAiCII2YwQqCMkHSSngIYgMew3M4HY2HJr7FkhxW9ZT5U2C8mS3MKN8U6GFmDxYgc1t8HdJWeH6Xk83so2TW5Sgzu7G+MjPk9wMuxpPwrt8QWS0VSX8GrjazeRnlWwBXmtlh9ZS3He4aWA38GjgTz0n0OXCamb1eoJ77AbcB22VGTZTUHndrPd3M/lmI/CAIgiAoBWFgBUHQICT1KyRYRh0yD8SDG7xXZ+WgXkg6yczuKQd5kkbhgT1uyXH+TOCACHLhSLoXWNvMDmhO98py738AX5rZiU197yBoTKIPtxxa1V0lCIJSI+npMpZ5eZHkpHNZGFeNxp/KSN62eLCUXLwAbFfL+WaFpHUk3SppqqRFkmZJel5Sr6TKQODYUuqYC0kvSbq5Ce83TtJVOc6dLul7SRdKGi3pW0lzJD0pqaDAMUGQD9GH633PFyRZlm1UU+rRGMQarCAoEyTlCjghYPtykZlDVrFpDJktBknjcp0C1iu1vDTWwd0Oc2FAxwbIrzQex6OIngJMAtYF9iRpg4Ykn26GjAO2ySxMXEsvw11aewK3AqPx7+qfgeckdSmH1A9BsyT6cP3YAV8ScHdG+YIS6FJUwsAKgvJhNPAy2Y2LDmUkM5PG8DMO3+WGsR7QG09anI6AQtZLFVteiun4LNbHOc5vi6/zavZI6gDsDvQys+eT4k/xPpyqcy9pLj+SXsJzmy0ATsIDjlwG3A4MA47BA7FcbGYPpMl5CXjPzAbkkp1Fvz74QKgr3j9HA+ea2YTk2j2BPSWdlVyymZlNTQLf/BbP8bcBPui8KrX+U57/7VbgMDxH3w15Ntk4YECW8kuA7/G1ht9nvIfjgG+AnwFFdWsOgujD9evDkn6Ij0NeNrOZ+VxTSYSBFQTlwwTgDDNbYbCZRNYrF5lB+fMPYHUzG5t5IvljLrW8FKOASyU9lWUwvBo+41DxriJ5Mi/ZDpT0WmZgmlo4Bh+IdQcOBK4H+gDP4Hn1TgDulPS8mX3RAP3aJbLH4Xn1fg88KakL7va0FfAhnswcPI8Z+GDxMDxp9ERgV+AOSV+Z2Sg8qXovPBH253gE0T2A/61Dn3HARpLWNLNvASRthSfVPirz+5SwBr40IvNBQRAUg+jD9evDO+EGZYMS1ZcrYWAFQfkwmNzrIs8uI5lBmWNmp9Ry7uhSy0vjcvyP+2NJN+F/7uBh6wfgM2RXNEB+xWBmSySdCNwBnC5PEv5/wP+Y2Zu1XPq+mQ0GkDQM+B1QZWY3JGV/BgYBu+HRSQvV7/H0Y0kn4U/WuyUpGxYDC9KfRMuTpJ8H7GtmrybFUyR1A86S9DLuSnWymT2bJnd6Hiql3Fa7UjOLOgx4JVPXNG4AxgL/ziVU0rN4cutYAxrUi+jD9e7DO+FpQ2Zr+QwvT5vZ4QW9yTIiDKwgKBPMbLkfzvTofGb2RLnIzMKsIslpbJlBmWFmsyXthodqv4IaV1YDngX6m1mL+S6Y2ePJ4u7d8afEfYDfSLrYzHIZmuPSrjdJs4HxaWVVkr7C14IUTOLOcyn+lH0d/MFNK6C2RNtdgFWAZySlu/22AaYCP8Tz8S0zeMxsnqTx1IGZfSHpS3wd1uuSeuNurFmDoiQD1x54eoracrf9mBpDPwjqRfTh/PswbmA9jhuU6TSLdWphYAVB+XI5xV8nUHSZZtar7lqllxmUJ2b2KdBX0g+ALXAj62Mza5FuXIlb0b+S7c+S7gQGSxqa45KqTBE5ytJnsqtZcV1mmzpUexJ3/zkjeV2CJ0CvLWF56p798Hx+6VQBP6jjnnUxHugqzyF4HXCzma2QlF3SdcCRwF5mNjnjXBfgr7j74L3AXDNbkpzbMpG7Pr6u63AzmylpI+BmfGDaFjgA2Afoj4+rJpnZIQ18b0GFEn04b3bAIwZPaoCMsiUMrCAoXyI6X9BiSAyq0XVWbHl8gP9Xr1JEmXOAThll2+FPpFdAUkfcbfMsM3sxKduR5ccQi3F3n3Q+ABYBm5jZC1nk/hcfpO0CTE7K2uFuf5/k8T7GJXqfhUdpG5zlHjfgxlVPM/sw49xKePSyU83sPUmP4smtkbQyHmjgJDObJulU3CXqUuAp4BwzezGJWrgK7tK6U+Im1iEP3YOWQ/ThFa/bDFiLZrr+CsLACoJyJqLzBUELIRkA/Q8+4B8HfIcvcL8AeN7Mvs1Yp9AQXgCulyf0nog/0d6IHIMzPCjEl8BpSXCcDYFr8CfgKaYC3SRtii/0n2tm3yVP7YcmkcheAVbHB2PVZvZXSXcBV0maA3yBRwHMHOTlYhweAGA7fN3Ucq5Fkm4BjgMOBr6StH5yap6ZzQMOBd5OW281kZoAGAfjA9KRSbu3BYYDhwBvpQapZvaNpGo8GtpVku41s3zco4JmRvThevXhnZLXmWn9MsWXqVnkSiYMrCAIgiAoPfOAN/BoXlsAK+NuPA/hUbyKyd14CPxU7plbgb8Da2erbGbVko4AbgTew8M0/wZfP5FiKHAf/sR7VWAzfMD2B3xN5fn4Wrtv8UATVyfXnY9HN/s7Hqr6puQ4H97FDZu3cPe+TPonr89nlP8Jn+3aNpGRYifg2mR/G+C3Zva39AslXZbcbxnJIHQb3CgbLumSWgJtBM2X6MP59+GUgTUhU1V8ZuvrOq4ve2QWD7SDoByRNM7Mti13mUEQBJWIpF8Dm5rZQEl742tm1jOzOZIG4LMPJyWBB7Yxs/GSzga2MrOzJbXC16CslUqFIelG4M1MwywIgpZFrvDNQRCUnojOFwRB0Hg8AOyWhNM+EZhuZqncP/cA7YEJksbiSWDBZ8o2l/Q+8A7uRvh7SRMTOW1wV8IgCFowMYMVBEEQBEEQBEFQJGIGKwiCIAiCIAiCoEiEgRUEQRAEQRAEQVAkwsAKgiAIgiAIgiAoEmFgBUEQBEEQBEEQFIkwsIIgKF+ke5H+scJ+U963uHJfQrJk2yUp+wnS60jvIT2JtFqGHqn6hxVdnyAIgiAIik4YWEEQ1I/lB/1VSLORXkQ6C6lNI955IHBs0aW60XNzk9zLuQfoBPwHaRXgUeAszLoCH+HhotP16NRIegRBEARB0AiEgRUEQSE8hw/8NwX2BZ4E/gS8ilRXBvfCMPsGs68bRXbT3msBZjMxqwIOBp7DbExy7kNgnQw9ZjaSHkEQBEEQNAJhYAVBUAiLEiPhc8zGYjYM6AnsCFwAgCSkC5A+QfoeaTzS8rNCXuc3SB8jLUKajjQk6x0z3fZ85ulWpCuQvkxm0oYitUqr0wfpVaSvkOYiPYu09XIyYU/grLRZuU2z3GtlpOuRZiEtRHoDqUeGfnXrsyJbA+PTjrcBPqilfhAEQRAEZU4YWEEQFAez94BngF8kJZcBpwBnAV2AIcBfkPZPu+oK4A/JuZ8AhwOf1eOuxwBLgN2AAcC5wBFp59sB1wPdcAPwG+BJpLbJ+YHAv6lx2+uU4/5XJ3JPBnbAjaJnkDLd9+rSJ5MvgB8BIG0L7AOMrKV+EARBEARlzkqlViAIgmbFB8A+iZvgecC+mL2anJuC1A03uEYhrQ78GjgXs7uTOpNwgyf/+5ldkux/hHQasDfwMABmjy9XWzoJ+BY3uF7D7BukxaTc9mrqpV/TDjgTOBWzUUnZr4CfJ+/l93nrsyIPAI8gjU/0+iVmi/J/+0EQBEEQlBthYAVBUEwEGD5jtQo+y2Np59sAU5P9LsDKwPMNuN+4jOMvgHVrtNEPgUuB7vjaplbJtnE97vFDXO//W1ZithTp3/h7yF+fTMwWAP3qoUsQBEEQBGVOGFhBEBSTLsBkatyP+wHTMupUJa+i4VRlHBvLuz4/CXwOnJG8LsFn2dqSPyk9Lcu5zLK69AmCIAiCoJkTf/xBEBQHqSvQB3gMN2IWAZtgNilj+zS5IlVn70bSpyMeROIKzJ7DbAKwBis+WFoMtK5F0qSkTk1QC6k1sCsRkCIIgiAIggxiBisIgkJYGWl9/CHNOriRdBHwH2AoZvORhgJDkQS8AqwO7AJUY/ZXzL5DugEYgrQoqdMR2Amz24qg41fAl8BpSJ8BGwLX4LNY6UwFuiFtCswD5i531t/LbcCVSF8CU/C1Y+sBtxZBzyAIgiAImhFhYAVBUAj7ADOApcDXwHt4Hqy/YLY4qfMHYBZwPnAbHsRhLB6RL8WFuCH0B6BzUv/+omhoVo10BHBjot8k4DfA4xk1hwL34bNRqwKbZZE2KHm9B+gAjAH6YDajKLoGQRAEQdBskFm2ZQVBEARB0ZFeAt7DbEA9rzPgcMweawy1giAIgiAoHrEGKwiCoGk5HWke0k/rrCndjjSvCXQKgiAIgqBIxAxWEARBUyFtiLshAnxWZ84raV1gzeRoBmbzG1G7IAiCIAiKQBhYQRAEQRAEQRAERSJcBIMgCIIgCIIgCIpEGFhBEARBEARBEARFIgysIAiCIAiCIAiCIhEGVhAEQRAEQRAEQZEIAysIgiAIgiAIgqBIhIEVBEEQBEEQBEFQJMLACoIgCIIgCIIgKBL/D9mH/Zb2jc13AAAAAElFTkSuQmCC\n",
|
|
103
|
+
"text/plain": [
|
|
104
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
105
|
+
]
|
|
106
|
+
},
|
|
107
|
+
"metadata": {
|
|
108
|
+
"needs_background": "light"
|
|
109
|
+
},
|
|
110
|
+
"output_type": "display_data"
|
|
111
|
+
}
|
|
112
|
+
],
|
|
113
|
+
"source": [
|
|
114
|
+
"# generate synthetic data set with given GGP model\n",
|
|
115
|
+
"lat,N,model_name=30,100,'THG24'\n",
|
|
116
|
+
"# get the model definition\n",
|
|
117
|
+
"GGPmodel=svei.GGPmodels(model=model_name) \n",
|
|
118
|
+
"# see the model definition:\n",
|
|
119
|
+
"# draw N declinations and inclinations from the model\n",
|
|
120
|
+
"di_block=svei.GGPrand(GGPmodel,lat,N)\n",
|
|
121
|
+
"result=svei.svei_test(di_block,plot=True,model_name=model_name)\n"
|
|
122
|
+
]
|
|
123
|
+
},
|
|
124
|
+
{
|
|
125
|
+
"cell_type": "markdown",
|
|
126
|
+
"id": "cd1f944d",
|
|
127
|
+
"metadata": {},
|
|
128
|
+
"source": [
|
|
129
|
+
"## download and unpack MagIC contribution for PSV10-24\n",
|
|
130
|
+
"- The Private contribution for PSV10-24 compilation is magic_id is:'20079' and the share_key is: '716ade67-ef46-43bf-8f70-99c7082871f4' \n",
|
|
131
|
+
" - NB: This will change to a public contribution on publication of this paper\n",
|
|
132
|
+
"- download the contribution with ipmag.download_magic_from_id()\n",
|
|
133
|
+
" - the directory PSV10-24 will be created if it does not already exist.\n",
|
|
134
|
+
" - the downloaded file will be put into the PSV10-24 directory\n",
|
|
135
|
+
"- use ipmag.download_magic() to unpack it\n",
|
|
136
|
+
"- run the svei.py module functions to see if the data represent PSV\n",
|
|
137
|
+
" - read in the site level data for a particular study\n",
|
|
138
|
+
" - Quidelleur et al., 2009 (passes)\n",
|
|
139
|
+
" - Calvo-Rathert et al., 2009 (fails)\n",
|
|
140
|
+
" - create the di_block array\n",
|
|
141
|
+
" - run svei.svei_test_varkap()"
|
|
142
|
+
]
|
|
143
|
+
},
|
|
144
|
+
{
|
|
145
|
+
"cell_type": "code",
|
|
146
|
+
"execution_count": 5,
|
|
147
|
+
"id": "ebafd385",
|
|
148
|
+
"metadata": {},
|
|
149
|
+
"outputs": [
|
|
150
|
+
{
|
|
151
|
+
"name": "stdout",
|
|
152
|
+
"output_type": "stream",
|
|
153
|
+
"text": [
|
|
154
|
+
"Download successful. File saved to: PSV10-24/magic_contribution_20079.txt\n",
|
|
155
|
+
"1 records written to file /Users/ltauxe/PmagPy/PSV10-24/contribution.txt\n",
|
|
156
|
+
"80 records written to file /Users/ltauxe/PmagPy/PSV10-24/locations.txt\n",
|
|
157
|
+
"2441 records written to file /Users/ltauxe/PmagPy/PSV10-24/sites.txt\n"
|
|
158
|
+
]
|
|
159
|
+
},
|
|
160
|
+
{
|
|
161
|
+
"data": {
|
|
162
|
+
"text/plain": [
|
|
163
|
+
"True"
|
|
164
|
+
]
|
|
165
|
+
},
|
|
166
|
+
"execution_count": 5,
|
|
167
|
+
"metadata": {},
|
|
168
|
+
"output_type": "execute_result"
|
|
169
|
+
}
|
|
170
|
+
],
|
|
171
|
+
"source": [
|
|
172
|
+
"reload(ipmag)\n",
|
|
173
|
+
"magic_id='20079'\n",
|
|
174
|
+
"share_key='716ade67-ef46-43bf-8f70-99c7082871f4'\n",
|
|
175
|
+
"dir_path='PSV10-24/'\n",
|
|
176
|
+
"magic_contribution='magic_contribution_'+magic_id+'.txt'\n",
|
|
177
|
+
"ipmag.download_magic_from_id(magic_id,directory=dir_path,share_key=share_key)\n",
|
|
178
|
+
"ipmag.download_magic(magic_contribution,input_dir_path=dir_path,dir_path=dir_path,print_progress=False) \n"
|
|
179
|
+
]
|
|
180
|
+
},
|
|
181
|
+
{
|
|
182
|
+
"cell_type": "markdown",
|
|
183
|
+
"id": "c59bea2c",
|
|
184
|
+
"metadata": {},
|
|
185
|
+
"source": [
|
|
186
|
+
"### Same as first figure but for a dataset from PSV10-24 Quidelleur et al., (2009), using model THG24. \n",
|
|
187
|
+
"This data set was deemed compatible with the model."
|
|
188
|
+
]
|
|
189
|
+
},
|
|
190
|
+
{
|
|
191
|
+
"cell_type": "code",
|
|
192
|
+
"execution_count": 6,
|
|
193
|
+
"id": "2bb978e0",
|
|
194
|
+
"metadata": {},
|
|
195
|
+
"outputs": [
|
|
196
|
+
{
|
|
197
|
+
"data": {
|
|
198
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEUCAYAAAA2mpeWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACoTElEQVR4nOydd5gTVReH30MvUhRUQEFEQUQpKqJYKaKgotgLFrCgYvezYF1iA3tXQFRUEFFABFSwgYpKE5EmIr1XpXf2fH+ciYRl+2Yymex9nydPkpnJvb/cvbOZM/cUUVUcDofD4XA4HA6Hw1FwigQtwOFwOBwOh8PhcDhSBWdgORwOh8PhcDgcDkeccAaWw+FwOBwOh8PhcMQJZ2A5HA6Hw+FwOBwOR5xwBpbD4XA4HA6Hw+FwxAlnYDkcDofD4XA4HA5HnHAGlsPhcDgcDofD4XDECWdgORyOpEGEPiIMz+p9IvuOU5ujRVDvcWLM9qNE+EWEaSIME6FMjIbo8RfHU4vD4XA4HI7E4Awsh8ORbxJgAN0JXBXPBj2j5/VE9OXxHlAV+M3rvxTwCXCrKkcDs4AOMRqq+qDB4XA4HA5HgigWtACHw+HIClXWpUBfm1VZHvO+HfCtKr9772cC1WI0rBPxSYnD4XA4HA7fcStYDocjbnirQ2+K8LQIq0VYKcLzIrv/14ggIvxPhL9F2CbCYhG6ZdFeRpfB3LTfWoSfRPhXhH9EGCnCkdH2gNOBW2Nc8Wpm0VdJEV4WYYUIW0UYK8IpedGSBUcCU2Pe1wdm5Dy6DofD4XA4woAzsBwOR7xpD+wETgJuA+4CLovZ/zTwKNANOAq4BFgUx/bLAi8DTYBmwDpgmAglMBe8X9nttlc1m76f9dq9DjgGM4pGiOzhwpeTlsxYChwBIEID4AxgaA6fcTgcDofDERKci6DDEUJEZDQwTVVvy2L/eKC7qg5OqDBjhiqPea9niXAj0BLoL8I+wN3AXaq86x0zGzN6Ctw+gCqDYg8WoSOwHmiiyhgRtrO32x4ZPlMWuAW4QZUvvG03Ay2AW4FHcqMlCz4EBogw1dN1qSrbcvndUx4RqUiGm3+q+k8wahwOh8PhyDvOwHI4UpMngBdFZIiqpie47ykZ3i8FDvBe1wNKAt/51D4iHIZ9/xOA/bGL9SJAjTz0cRhQHPg5ukGVXSL8in2HXGnJDFU2A23zoCXlEZFDgB5Ac2zc/9sFKFA0CF0Oh8PhcOQHZ2A5HKnJl8DbQBuwFZgEsiPDe2X3ikQ80jdk1z7AMGAJcJP3vBOLcSqRhz6iOjWTfbHbctLiyB3vARUxd8ylZD7uDofD4XCEAmdgORzhpZiIvAJc473vDTygqumquktEvgSuIPEGVnbMALZhbnR/x7txESphSSRuVWWUt+1Y9vxft52cV0Rme8edAsz12ikKNAU+irNsh8XLnaiq04IW4nA4HA5HQXEGlsMRXtoDfbCL/gbYitUy4EVv/3jg4UCUZYEqG0R4BegmwjbgR6AScJwqb8Whi3+B1cCNIiwCDgKew1axoswHmnjZAzcC/6iyhxulKptEeAvoLsJqYB4WO3Yg8GYcdDr2ZB7mOupwOBwOR+hxriwOR3hZBtyhqjNV9RPMkLgnZv9S4CARSbYbKQ8Cz2CZBP8EBgEHx6Nhz1C6DDM4pwFveP3EJpF4HludmgGsIuvYrAewgsDvAZO9NlursiweWh17cCfQTUQOD1qIw+FwOBwFRVSdq7vDETa8LIILVfWamG0tgW+BCqq6XkRaAV8D5VR1YzBKCzcijAamqZJptsdsPqfAJaoM9EVYkiEiG7AVrKKYMRy74oiqlg9Cl8PhcDgc+SHZ7mw7HI74sR+w1RlXgdNJhA5Ac1UmZHegCD2AqxKiKrnIkwHqcDgcDkcy4wwshyO8nCAioruXoU8Elqrqeu/90cCkYKQ5PNoDpb3XuSmm/BjmwggUHldEVX0/aA0Oh8PhcMQLZ2A5HOGlGvCyiLwJ1AfuA56M2X8qMCIIYQ5DlSV5PH4lsNInOUmNiJTEDNJ6WJr26UB/VU3qIswicgCm9RhVXRy0HoejMCEiw4HVqtrBez8e6K6qgwMV5ij0uCQXDkd46YfFrIzDMgi+A7wEICIHASdhCRocjqRGROphaftfxApEnwi8DMwSkSMDlJYjqroS+ACIZHWMiBwnIioip2Sx/xMR+dl7faOI/CQi/4jIWhEZldXnskNEOnh9Rh/LvH4OzWtbDkeIeAJ4RkSyvb4VkfkZzo/oo3teOsvQzmYRmSYiNxXoGzhSAmdgORxJiIg0FJFfRWSqiAwTkfIx+x7Esu41B4apakVV3VdV/6equ7zD7gL65OWOuojcLiJ/ich0EXk2tj8Rme3tOytO3+8JEZkiIpNF5GsRqeZzf6299maLSJd4tJmh/VIiMl5E/vDGL+Jt309EvhGRv73nfePYZ0URGSgiM0XkTxFp6nN/d3oXD9NF5C5vW7z6ewX4Haihqqeq6qlYdsc/MEMr2XkPaC8i+2W2U1V/w77f9Rn3iUgl4DzsBglAM2AAVivuBOAvYKSI1M6Hrs1AVWy1+0qgETBURHKqA+dwhJUvgXJAm1wc+zh2fsQ+nsz2E9m30wAYAvQQkcvy0Y4jlVBV93AP90iyBzABON17fR3whPe6HnbRWRI4FJgDFM3k8/cBB+ahv+ZYBsKS3vsD8tJfPr5f+ZjXdwA9/OoPW+WbA9QCSnjt14vz30uAfbzXxbFVxROBZ4Eu3vYuwDNx7PN94AbvdQmgol/9YfF804AymGv5t0DtePWHGQJHZbK9PrApnn+rAvx9/4etsm0DFgPdMhwzN/r3yKKNW7G6a/tk2H4nsAEom03fy4Hb86i5A7Axw7b2mPvlEcDxWJbR1cB6YAzQNMPxNwGzgK1YSYORQLGYv8133mc3eOdV86D/Vu6Rug/v/08f7zxaATwEDMduJsYe9y7QN4e25gP3xkHTXu1450x/73V37CbJFu/YZ4FSMcdWBz4H/vH+D84ELo/Z/xiwwPu/sxz4IOi/g3vk7uFWsByO5OQIrAgvwDfARd7r84GPVXWbqs4DZgNNMn5YVZ9T1RV56O8WzG99m/f5aBxQrvrLK7o7EQdAWeyiz6/+mgCzVXWuqm4HPvb6iRtqRLM1Fvce6vUTTeDwPtAuHv15K5qn4a16qOp2VV3rV3/AkcBYVd2sqjuBH4AL4tjfVsxAzEgFb1/QPI3VU+sGHAVcwt5JS8YDp2fTRtSlN+Od7euwOb8pi8+VAEphRbSBPdz/aub2C3hs8Z6LY3f5P8RiNZtgtd6+FJHKXh+NsTpyEez/0RnsGdP5EZaIpQlwDNCV5PhbOVKX54FW2O9hS2zenZbJcTmdi7nCc//rk4+PbsXOMYBN2Dl+JNAZuBx4OObYNzHDsTn2v+UuYK3X/0XAvd7nagPnYt/NEQKcgeVwJCfTMLchsIu56t7rg9jzwm6xt62g1AFOFZFxIvKDiBzvc3+IyFMisgi7q/6Yj/359h1iEZGiIjIZS1LxjaqOw1YRlwF4zwfEqbta2IrCeyLyu4j0FpGyPvY3DThNRCqJSBngbGxOxqu/YcDbInKyN45FvbijnsDQOOjPNyKyD3A3tlL3rqrOVtVfVfXNDIcuBWpm1Y5nAA8ixk3QO88aAL2zkfAkdsc+dhzWYXfFd+ThexyMrWwvBmap6veq+qGq/qmqM4HbsQvD1t5HamAXh0NVdYGq/qGqL3kGNsAh2Dyf6Y3JZ6r6a271OBx5wTsPrwfuV9WRqjoN6AikZ3L4UuAgEckpkdtTIrIxw+PcmP1zyEM2VxEpJiId2L26i6o+oao/q+p8Vf0Su1lzRczHDgHGeOfXPFUdoaojYvYtA75W1YWqOlFVX8+tHkewOAPL4QgIEfnWi2nJ+Dgfu+N1q4j8ht1p3h79WCZN5apaeA79FQP2xdza7gM+ERHxsT9U9WFVrY7d2Y/WQcp3f9lJ8aHNvRtU3aWqjbD4uCYicnS8+4ihGHAs8JaqHoNdCMc9tiyKqv4JPIOtpo7A3MF2ZvuhvHEn5n73E3aRvxVbJZuF3dENknqYy+p3ORy3hd0p+bPiHaCpiNT13l8HTPOM8b0QkTsxN70LY1d9PWOmrqrmlKWyrHfRuAm7yVDCa2u7iBwgIj1FZJaIrMPc/A7ADCuwv/UCYJ6I9BORa0WkXEzbLwK9ReR7EXk45js5HH5wGDZ//zPiPa+BqZkcuwX7v18qhzZfxOISYx+jYtpvqaoP5kLbUyKy0ev3DeA57OYQInKxiIwRkeXeMS+x+xwDiz99RCzm+kkROS5m36fed5gnIu+IyCVi2VYdIcClaXc4AkJVz8jhkDMBRKQOcI63bTG7V7PALuaXFrQ/EbkFGKyqCowXkXSgsl/9ZeAj4AsgrSD9ZYMfbWaJqq4VkdHYSsAKEamqqstEpCrxS8G+GFgcc2E+EDOw/OoPVX0HzyVRRJ72NMSlv6h7o5fIoS52cTRDVWfHRXzByMxAz4z9sFXF7BiNub1eJyJp2J3srpl2asbVk0AbVc2vW9Bm7KIxHViRwQ3xfeBAbHVuPhbj8R12EYuqbhCRYzEXrFbAg8DTInK8qi5V1a4i0g9LJnAWkCYiN6vqu/nU6nBkR27PQ7BzcWuM23ZWrInT/5gXsf+Nm4Fl3u8oInIi5pIewc6ztZhnSrTWIar6joiMxLwCzgB+EZFuqtpVVReJyBGYO+QZwAvYeXZCNi7FjiTBrWA5HEmIWG0dxFLNPgL08HYNBS4XkZJi6ZZrEx+f7CFAC6/POthF1mq/+suQEe08LLAXn/qbANQWkUNFpATmAx9XtzMR2V9EKnqvS2M/hjO9fq71DrsWC2YuMKq6HIj++IL9AM/wqz/YY07WAC4E+se7P1X9W1WHqerQJDGuwMZ1GzbG2ZFjYW/vwutd4BrMuCqNxUHtgYjcAzwFnKOqY/KhObbLaPxhxguyU4DXVPULVZ2OrWBVzfDhnZ4r4YOYK2NZLA4kuv9vVX1VVc/BLjBvKIBWhyM7ZmMusSdGN3hu0Zl5CuR4LsaZNd55tjRqXHmcDCzx3AQnqOrfmNvfHqjqYlXtpaqXYu7ynWL2bfXO0buxxDRHee06khy3guVwJCdXiMit3uvBePWsVHW6iHyCXfTtBG7V3anZC8K7wLsiMg1zR7zW+6Hwq7/unnGQjrkh3Qz+fD9V3Skit2EZ0IoC73oXlPGkKvC+WPrrIsAnqjpcRH7F3C2vBxZi8XTx4nagn2c0zsXiEYr42N8gsZTiO7C/y79iNWPy1Z+IvAo8qKqbvNdZoqp3FER4QfBWcl4BuonINiz5TCXgOFV9C0AsLu04LKtZTvTBavU8DwxR1TWxO0XkPsy4ugqrA1bF27VFVdd5x1yAJdxomQs3wayYBVwlIuMww+lZdrsi48WiHIZ933+wIPxywJ/eTYTnMRem+dhK2ClY9kyHI+6o6kYReQercbUK80J4DPufnpFT2TMhS1aUizm/osSeZ98B43PpJpgZs7BYsPaYa+NZ7Bl/hfe/5Svv2PKY58MMb18H7Dp9HBaHeRn2//fvfOpxJBDZ09h2OBwOh8N/RGQUcIHnUjkqu2NVtXmCZGWKt5J8P3Zn+WAsRfQHqvqwt/8KIE1VcxWHJCJDgbbAmar6TYZ988nkLjfwvqp28I7pgN10OVRV52fRRwfgdVXdJ4v9DYFe2MrUUsxV8QFgoOf+dwpmCDbAspzNAV5Q1fc8o74Pdie9CrAGS5d9r+6ZIdThiBveitVb2Ar6ZuA1rFbc6phz4yBgHlBLs6kDmc151k9Vr4o5ZnS07WzaeV1Vn89ifzdsZbc0VhbhG+BNVRVv/2uYUVUdW0X+Dvifqi4RkXbYOXkklpVwBhBR1eFZ6XEkD87AcjgcDoejAIjIeOBlVf0oaC0OR2FGRJ4DKqhqpxwPdjh8xMVgORwOhyNQROQxz80u4/bSIvJYZp9JFrzYtIFYTJrD4QiWlVjNOocjUNwKlsPhcDgCRUR2AVV1d4Hr6PZKwEpVzSzOwuFwOByOpMStYDkcDocjaITMa5MdgyVYcDgcDocjNDgDy+GIAyLyrois9LLwZbZfRORVEZktIlO8+jK5aTehfuSuv/D2F8bvJiIbRGQ9ZlzNFZH1MY9NWObHTwraj8PhcDgcicQZWA5HfOiDZQLKijZYTafaWCayt3LZbpYXsSLSNt77XH+h7i9pvlseuA24A1vBehhLPR993ACcoqq3Zv1xh8PhcDiSj0ANLBEZ6BVUdKQAIlJERHqKyBoRURFpFrSmRKGq0VoxWXE+ltZZVXUsUFFEqmZzfG7I7uI3v/tcf6nZX6K/W65Q1fdVtQ9WY+lN73300V9Vf/Wzf4fD4XA4/CDQJBciUh/4AavlsS6b4/oAlVX13KyOyaGf0cA0Vb0tP5/P0NatwE1ATW/TdOBJVf0i5piuQFqGj65Q1YwF7bLq4yGs0OQb8dCcH/Iz5l5hysFAM6zw6T+quj3bD6UQIlITGK6qe1WWF5HhQHdVHeO9/w54QFUnZnJsJ3avDhxXpsxeydUA2LVrF0WLZh77n999O3fupFixzOuPu/5s3/bt20lPT6dUqVKoKlu3bqVEkSIUFUHT09mWnk5xrPrlDmAX/Pc+HavkWtxrV2Lex+4v6m2Lvi+B3Q1LB7YBJb33u7w+Snj7JOZ97P5i3mOn114pb/9WypDOLqCud8QaLAlXXa+11cAqrAwL3us13v7fVFXjcpNORC4Btqvq5xm2nw8UV9WB8egnP1SuXFlr1qxZ4HbWrl0LQMWKFQvcVjIxd9UmAGrtXzZgJclPvOfAb7/9tlpV949LY0lObs/DVDnPEnlepcqYBUVW52HmVxoJQlWnishcrGL9G0FqyQOLscJvf2PXKNcCQ0TkOFWdEnPcX5ihEWVXbhoXkROBG4EpOR2bhBwOLFPVX4IWkoRIJtsyvbuhqr2wAqCULVtWN23a5KcuRx7545dfWPzRR5zz998wahSowq5MTu8yZWC//aBSJXsuX962lS69+1GmDJQqBSVLQrFi9ihefM/njK+LFoUiRewhsvt1xvdZvS5ShPFTS3Pdw1WY/ndJAIoUURoeuYPGDbZT65BdHFI9nQMOgPLllHLlhX32gRIlhaLFi1C0mFC0mFC+WrktcRzWrkBm3gybgJexNOiBULNmTSZO3Os+SJ5p1qwZAKNHjy5wW8nEZT1tkXHATU0DVpL8xHsOiMiCuDQUAnJ7HqbKeZbI8ypVxiwosjoPfTWwRKQ15ld/NHYxOQG4S1X/jDlsKHAFBTCwsuvHW4k5HTjdW30CWzGbn5++Mt5hBR4WkVuApuxpFO1U1eV5aVtEKgD9gOuBfNV+EZFywDqghaqOFpHqwHDgJ+BOVc2VoZdJu6OxKuJrsdWVdOAD4H5VTffG+VrvWAUWqGrN/PSVoizGKrVHORhYGpAWR37YvBm6d6fha6/R0LvjR5Ei0KABNGkC9etDrVpw6KFQsyaUTa47+l999RWLFi2iYsVOXH01bN9uUu+4A666SqhcuQS29hUItbCbUhmZ7e0LPZ9/nvGnw1HYcHPAf9wY5x03Zv7g9wpWWezu4xSgNPAIMExE6sW4jo0HHhGR0qqa3zuiWfYD3AnUAWYCD3nHr8qsERHpALxHLg0wESkKXALsA2RctaklIkswj5xxwEOqOjeHJnsBA1X1+8yKa+ZSX0NstWSKiByPuew9o6qv57GdzGgPvAKcBDQCPgJ+wwps3gksAK4DjieXK3aFiKHAbSLyMXACsE5VlwWsyZFbfvsNLr8cZs9mHFClcWMOufVWOPdcqFw5aHW5ol+/fowaNY4VKzqxaxd07gwvvGALaEnAv1gCmPkZttcBNiRcjQ9UqFAhaAmOgHFzwH/cGOcdN2b+4KuBpaqDYt+LSEdgPdAEGONtXoqFG1QD5sS7H1UdIyLbgc25WFFah91F3ZHdQV7s2K9YKMNG4AJVnRpzyDigA2bUHYAZfL+IyFGquiaLNm/EXOyuLqC+hsAiLGj8daCDqo7MRzuZMUNVo4bfLE9zS6C/qq4TkQ3Arryu3KUCItIfcwmtLCKLsRi84gCq2gP4EjgbuyO/GegYjFJHnhkxAi66yFawjj6atosXc1HjxrzVoUPQyvLEU099SMOG/7BrFzz4IDz1lHkOJgmfAy+JyIWqOgtARI4AXgSGBCksXgwYMACAyy67LGAljqBwc8B/3BjnHTdm/uC3i+BhwBPYHfv9sZilIkCNmMOiq1alfe4nR1T1M+CzXBz6F7aCUxG4CHhfRJqp6jSvna8y6BuLJX24FrtgyKj/COBp4NTskkLkUl8jYF/gY8xg/Taf7WRGxriwpZgBWehR1Sty2K+ASzcdEq688krmz5/PLy+/DO3acdG2bfxz4IGMmjiRT8eOpVKlSkFLzDWvvPIKjz76KC1aLGPdukqccw48+WRSGVcA9wMjgBkiEl3ZrYp5ONyX20ZE5F3gXGBlFslmBFuFPxu70dFBVScVUHuueOstq8zgLmIKL4VhDgR9DhaGMY43bsz8wW8XwWHAEizr3hIsidUM9nT03897ztRtL479xA3PCJrtvZ3oueLdjcVOZXb8RhGZjrnAZEZToDIwTXZf9RQFThORm4Gyqrotl/IaAr8D92Jui1cB7+fyszmRccVLcbXUHCnIGWecwT8LF8KFF8K2bbQ+5RQ2XnABlCzJ6aefHrS8PNGgQQPatLmBTz4pRpky0KOHhY4lE6q6AThZRFphN4kEmAR8p3lLddsHW7n/IIv9sfXoTsDq0Z2QP9V548svv0xEN44kJl9zYNcuS2wTHvoQ4DnozrO848bMH3wzsESkEpbb91ZVHeVtOzaTPo8GlqrqCh/7iWY+9osiWObkrDSWwvIaj8rikCFAxvQ472GZCp/G9OeIFxN2NHCVqo4XkX7AYyLST1V35qYNh6Mw07t3b3744Qc+/PBDuOIKWLIETj6ZG7/7DkoElgAiX6xZs4YhQ4Zw9tlns3lzcwDuuQcOPjhgYdmgqt8A3xTg8z965RKy4r96dMBYEakoIlUTEQ+ZVbkFR+EhT3Ng6FB4/nlo1gwef9w3TfEm6HPQnWd5J+gx27EDNmywxEs7duz5yO+2zI7Jz/YdO+CYY+Cjj/L+vfxcwfoXK6Jyo4gsAg4CnsNWl2I5FXMNyYnyItIow7a1wMJc9DMfaOKd9Bux+kzpInIbcJuq1gUQkQuAbkBLVV2SmQgR6Q58gcU5lQOuxGJvzok55nlsVW0h5kL3KJaI4/2YY/7rW1XXet8ltp9Nns5pOQ1MDHUwV8vJ3vsnsDiw6/DSfuf2ezochZFVq1Yxb948GD0aPv7YUqn37Rs64wrgt99+44YbbuDDD0czfHhVSpWyjIHJioicgMV0HkCGlXFVjZfyg7D/3VEWe9v2uLiLrUVXo0aePM2zpG/fvgBcddVVcWnPET4ynQM7d8Jff8GsWZZMZ8oU+P13WLwYqlWDa68NSK1v5OochPydh+48yzvxHrP0dNi2zR5bt8LatTB5MixYAOvW2fu1a2HNGtu+cmVcus2UokWtykn0UaLEnu8z216mzJ7bjzgif337ZmB5BsxlwKvANMyl7n/AfwkpvJWdC4CzctHkqZjrWyyDVPXinPoBnseMmxmYAXIoZnRVBmKHroL3vjhZUwXo6z2vw+KS2mRIJHEwllmvMub6OBY4UVVjc+Vn7DtHcpH9ryGWcWsegKrOFpG+WJbG92PcDHPzPQsNIjIE6A18qarpAcsBQETaAm1LlsxyYdThAw8++CAPdulid40BunSxlOshpGXLlsyePZu3364GWBLE/ZO0JKmI3As8i/3/XsqeNeLy4iKYY1eZbNur/dhadI0bN45L/7179wbchV9h5r85cPbZ8OOPVkevf39Y5UVIFC0KRx4Jxx9vy823326171KLfNWEzO156M6zvJPTmKnCxo02TaOP1at3P6Lvv/nGVoIyKwsZpVgxqFhx96N5c6hXz17nxQjKzbHFigXrDi95c2+Pc+dWl+p8VT0zMBEhQkQiwMVAQ+fyFz88V8p2mMHcB3hPVf8OUlMUV2g4AH7+GU45BfbdF+bNgxCnsFW10lzz58P339uPWbwQkc2qGpdiX573wR7lJArQVk1geBYB9j2B0ara33v/F9AsO/ekxo0bazwKDe/YYSGsxYun1n0tV2g49+z4+2/o2ZPiL71kt/lLlYLTToPLLrN6enXqWEHyXCIiv6lqYx8l54t4n4OQ+/MwVc6zRJ5XW7bsYMECGDeuOAsXwvLlez82b878syVKWKWS/feHSpVsSjdpAiVL2uuSJWGffaxM5OGHW3nIJEuwVGCyOg+DvjWyA7g9YA1h4mzMrdAZV3FEVduLSHmszldHoIuIjMFWtT4tQH02R8i46qqrOG7mTO4GuOmmUBtXvXv3ZvPm6syffxYHHQRJnpujPFbKwG8Cq0cX9gs+RwGYNQuuu47iP/9s788+21bHo1eihQtfz0F3nuXM5s3w3nswYwb8+itMmVJ8j1WnffeFqlWhShU48UR7PvBAM6Kij6hRVa5c6hlM8SJQA8tb/nXkElU9PmgNqYqqrseyGb0lIkcBNwA9gde8H4KXVfXPIDU6/Gfd6tVs+eMPe3PjjcGKKSAvvPACNpXP4rzzki9zYAb6A62BNwvSSDLXo+vTpw8AHUJWP81RAFShZ0+45RYoU4Y+l1wCxxxDhwcfDFqZbwR9DrrzLHP+/BPS0izML7oiVaGCrSo1b96H6tXhxhs7cOyxhdHm94egV7AcjqRCRKphWY7OxRKlDASqA1NE5EFVfT5IfQ5/GXbFFTBypPnS1aoVtJwC8fvvv3PyyRZ22aZNwGJyZhEQEZGTsbjWPUpCqOpe9QMzI5nr0bkLv0LExo3w2WfQrZtd2TZqBIMG0ee662DkyJQ2sII+B915thtVy9f02GMwZoyF+F1wARx0kD2fdpqtPjVr1oe5c6Fp0w5BS04pnIHlKPSISHHMqLoOaIUlU3kW6K+qG71jLsWCbZ2BlcoM8nLjXHJJsDriwKZNpfj991KUKAEtWgStJkduwDK8nuQ9YlEyKdAeNkaPHh20BEciGDECOnSAFSsspqpHD7jmGihd2s2BBFDYx/inn+yxcqXlUJkyxZLhPvigOWUceujenynsY+YXzsDyAREpjWUJLIfVxyqDpR/+E5iL1bXaDKzB/I+DyzTiAEsPK8BHQBdVnZLJMd9gpQccKcqs33/n+uHDeQY46YILgpZTINavX8/tt7+M6gWceGJ9ysYlFYV/qGomP/sORwhQhalTLc6qVy9LpVavnhlWbdo4fytHQvj1Vwvr+/FHe1+unCWk7NkTLr4Y9tsvWH2FEWdg5QMRKYalOW8IHI6lfa8FHIIZVnm5nNkpIqux1MTzMANsLjAdmKKq6+Io3ZE5d2PJLLZmdYCq/ov9nR0pyo6xYymmSvGjjrKo3hCzdOlS+vdPA2pz6qn1g5bjAN5++20Abgx5bJ8jA++9B9dfb68POACeeAJuu83yTmfAzQH/KWxj/Pnn8NJL8MMPVr/pwQctu3/Vqrlvo7CNWaJwBlYuEJGDsTpcpwFNgKOwlakoSzCj6CdgJVb4eDWwHtgGpGN1urYC9wMlMCOsEmaQ7Y8V2jsai/35r20RmQdMAsYAPwJ/qGo2VQYc+aA5MAT7+/yHiJQFXlPV6xItyNXBSiwzZsyg/KRJjAJo1y5gNQWnbt26HH/8NiZMgFNPDVpNzojIq9ntj2Oh4cAYMGAA4C5iUoatW+Ghh+zqtkoVi7lq1MhyU2eBmwP+U1jGePNm6NvXkt0eeij873/w6KP5S3xbWMYs0TgDKxO8AsjNMGOnDbY6BVbEdxzwGvCH9/g7u5WPmDZbAKjq0ByOK4IZW/WBRtgqWRPgIu+Q9SIyChiOFcZdmoev5sica4Eu2N83ltLANVhsVkJR1WHAsLJly7r/eAngyiuvpMbcuQwFOOOMoOUUmK1b4fffS1CkCDQNR3mijMtsxYG62G/UpMTLiT/ffvtt0BIc8WLYMHj8cZg4Ec45B155BQ47LMePuTngP4VhjDdtslrUf/5p6dN/+AGqV89/e4VhzILAGVgenlF1NnAlZlSVweKkvsMMqh8xl7181aBS1btyeVw6llFrETF1YWJW0U739J3vbZ8IfAx8rKpL8qOtsCIi+2GxVwLsKyKxf9uiwDnAiiC0ORLLy5EIJdq1s7vPIbFIsuODD8awc+c3HHnkA5QvXyZoOTmiqnuVQPb+J7+DeQY4HMnByy/D3XdbQeC0NHu4QkCOBKEKnTrBzJkWX3XddVDMXcknJYX+zyIixwOdgEuACpiL3/vAMKzaeFIUmVXVxVitmP4iIux2J7wIy2z3nIiMxi5IBqrqtqC0hojVWIYyBWZksl+xGh6OFKdZtDhl48YpEZQ+YsRY4AmOPfahoKXkG1XdKiJPASOBHkHrKShvvmklvjp37hywEkeeGTfOElj8+qstG5xwgmUTKFEiT824OeA/qTzGgwebUfX11/DAA2ZoxYNUHrMgSe7Skz4hIqVFpIOITADGA1cAnwNnAQepamdV/SpZjKuMqDFVVbupamMs4cbjQA2gL7BYRLqJyCGBCk1+mmPZHQW4GGgR8zgFqKGqTwUnz5EItm/fzk+ffMJqsLL1KcC++94L7OCEE0JvLO4P7BO0iHgwbNgwhg0bFrQMR15IT4e77rJV7X79zA3wpZesuFAejStwcyARpOIYb9kCV1wBF11kySrvvReeiuOVSSqOWTJQqFawRKQ8cDNwD3AgtmpxG/Chqq4PUltBUNVZQFcReRwzDjpjyTTu86qqd1fV6UFqTEZU9QcAETkUWOjS5RdOlixZwuUff8zTwLUnnBC0nLgwcSJAUY47LmgluUNE7sm4CagKtCfGVTrMfPXVV0FLcOSFdessv/W331rimz598pdBIAY3B/wn1cZ41y4rCDxxIrRtC/37E/eyG6k2ZslCoTCwRKQc8D/gTqAi8DXwDDAqmS6qJSJ1gA+x7IL3a5oOzsvnvfitb4FvRaQ6cBdmUF4lIkOAx1R1alxFhxQRORaY7I1ZJaCSZOFHr6opEWTvyJyahxxCZxFOAHP9CTnbt8O0aY8Dh9GwYfug5eSW2zO8TwdWAe8B3RIvx1Go2bkTrr3WjKuXX4Y77nBxVo5A6NHDjKunn7YU7I7wkNIGloiUATpicTT7A58BT6vqxECFZc0QLHOWAH0lIodrWv6yBKrqIuB/IvI0cAdmXP4hIn2AJ1R1Xnwkh5aJQBUs5m4iFm+V2S+oYgkvHCmKLFnCw1u3QuXKcPDBQcspMLNmQXr6YMqXP4myZcNhYBWGQsOvvPIKAHfeeWfAShxZsnEj3HMPDB0KK1ZAt24Qx7+XmwP+k0pjvHgx3P4UtGwJ99/vXz+pNGbJRMrGYInItcBa4HWsaG8TVb0wiY0rgGrsvsjfhRmFBUJV16hqGpZq/kXM5WaOiHzuZekqrByK3SGPvq7lPWd81Mr0046U4aprr+V5gKOPTom71NOmAUymefPXg5aSIyIySUT2jXl/hVd/LuX47rvv+O6774KW4ciK9HQrEPz22+aD9fHH0KVLXLtwc8B/UmGM162DufNgzhw47zwrJlzUx9u8qTBmyUjKrWCJyEHAy1jSgu3AcqBNbmpVJQHPAg9jxtU07xEXVPUf4F4RKY3FaJ0HTBORW1V1ZLz6CQuquiCz18lCjoWGO3SA99+318WKwb77wlFHWcxAp04QzYqXLNSsCQu8YS5dGmrVsnLzN90UqCyAjStWWIXp+hlLMYWTad5/jfr1Q3H/rBFW8ypKT6zW4NxA1PjI0KHZlkB0BMmmTXDhhZae7a67LJGFD7g54D9hH+P58+GSS2BRbdh/f/jwyfjHXGUk7GOWrITiFzg3iHEDMBNLX/4oViuqCuYmmPRomj6N1bq6ADhd03RXPNsXkcrA9VicVyvMkBshIv1i7yIXBkTk2Nw+gtCnqsNUtVPR7G5bnXEGLFtm/5G//toiYNPS4NRT7YIh2XjsMdM7ZYoFjd98M3gV5INkyHHH8QjYClYK8PXXnwHXU6dOUiZBzYnwLyE6wsXOndCxo8VbvfEGvPBC0IochZgrrrCYqzp1oF49KFcuaEWO/JISBpaIVMHqVr0NTACOVtUnVXUE0NbbHgo0TSdpmn6naboj7m2rrsYKFXdR1W+BBkAEuBSYKiJnxrvPJGYiNlcm5vCYEJTAHClZEqpUgYMOgkaNLHZg9GiYNAmefXb3cdu3W9GMgw+2W2HHHw8jMyxazpxpvggVKsA++1ha4qlePpSpU80JvHx5+2/fsCGMGpV3veXKmd7DD4cnn4TatWHIENvXpQsccYStbtWsaQ7nW2MWnRctgvPPh/32gzJloG5dc+GJ8vjjcMghu8fkmmtyJalfv36MGTvW3qSIgTV37kLgRxo1KswewMnH888/z/PPPx+0DEcs69ZBixbw6af2P6dzZyji32WRmwP+E8YxVrWf4FtvhbFjLa9K1aqJ6z+MYxYGQu8iKCJnAx8AZbFEDq97meEAUNXhQWlLRlR1XMzrbVh692HYqtZIEXkFuF9VtwelMUGkZlD90UdD69YwaBBEIratY0dz5v7oIzOyvvzSVrsmTDBjaelSOOUUOPlk+OYbqFgRxo+3/LAAV15px40fb+6IU6dCqZiL95o1oVkzS2OcF0qVgh3efYSyZeHdd81YnDHDVrdKloQnnrD9nTubwTVqlBl6f/21u51Bg+D55y1/bf36sHKl/Urlgq9HjGDZ7Nl8HR27kLNtG/z7750UKXIndeoErSbXnCMi67zXRYCzRGRF7AGqecuomoz8+uuvQUtwxLJqleW/njkTuneH++7zvUs3B/wnbGO8cCGcfTZM9wrp3HOPGVq/vJM4DWEbs7AQWgNLRIpiqy8PA5OBK1R1ZqCiQoqq/iYixwHdMSP1BBG51MtEmJIkY9xV3KhXz9xdwAyr/v3NjbBGDdt22222v2dPePNNc4spW9bu4kaLZ8ZenS9YYJUN69a194cfvmd/hx2Wt9ttO3dC375mqN1yi2179NHd+2vWhIceMqMpamAtWGBVFhs2tPeHxtjHCxZY/2eeabFnNWpA48a5kvLA5Zezsm9f+0z58rn/DknKnDkWq3/YYWafhoSMlxJvZHifEpk8Bw0aFLQER5Tt26FNGzOuBgyASy9NSLduDvhP2Mb4ppvsfuELL5ihFf2ZTSRhG7OwEEoDS0QqAQOAltiP8+2qGsqAg2TBG787RWQM8C4wSUQuU9XvA5bmC7F1sHKKswpdHSzV3dnwJk2y9/Xq7XnMtm3mGgPw+++2ghU1rjJyzz1www2WVKNlSzN0Yn8Fcpt96OGHoWtX67tECbtjHE1yMXCg+UXMnm2pknft2r2CBpYq+eabYcQI03DBBfxXRfeSS+CVV8zoOussW8E777xcWRj1tm6lHqTE6hVEF/buo2jRiti9p+RGVVPCTd0RIrZtg8svh99+g9deS5hx5XBkZNgw+0l77DH7mXWkFqH7cROROsBYLBnE9ap6gzOu4oeqfgo0xupDjRSR6wKW5BcTgcoxr7OKx8p1DJaItBaRv0Rktojsld9XRCqIyDAR+UNEpouIP8lXZsywLH1gyxki5g44efLux59/mksemAGWHV27Wpvt2sEvv0CDBrs/mxfuucf6XrDAjKhnn7V4h7Fj7YLnrLPsF+f33y1Ga0dMGOL118O8eebuOGsWnHSS6QKoXt0si549bRXqf/8z4ysXiT6+HzGCOWDxXymAGViLKF16WdBSHBno3r073bt3D1qGo2NHi/186CFbzU8gbg74T1jG+KOPLKy4Zk0LkQ6SsIxZ2AjVCpaInIYVC04HWqjqzwFLSklU9S8ROQn4BHjHM2ofio1tSwEy1sEqEJ7L6htYdsbFwAQRGaqqM2IOuxWYoaptRWR/4C8R6RfXeLdp0+yW2COP2PtjjjEDavlyaN48888ce6y57G3fnvUqVu3a9rjjDnPr690brsuj7V2p0t7uhQA//2yxV7Fuggsy8eA8+GBLQd+pEzzzjK1aRY2sUqXgnHPs0aWLJbr4+WdzG8yG8/r0oRPw4mGH5e27JCmzZgF8zM03B63EkZHJkycHLcHx66/mMv2//8FTTyW8ezcH/CcMYzxuHFx1lTmOfPyx5W0KkjCMWRgJjYElIucBnwLzgHNUdU7AklIaVV0nIudghZofAKqIyA2qujNgaXHBhzpYTYDZqjoXQEQ+xsoExBpYCpQTEQH2Af4B8j+e27aZ4ZSebgHb330HTz9tqzf33mvH1KkD7dtb3awXXjBj6p9/LNtgrVpW+6VzZ+jRw1xlHn7YampNmABHHmkrO/fea254NWvCihUwZgyccMJuHS1bQpMm0K1b/r5HnTqwZAn062fZC0eOtIugWO6802Im6tSB9evNiIy6PfbpY3FdJ5xgGRAHDLBYrNq1s+1WVfmuQQMqTZpkQUspgBlYhCnBRaHh49isl47EM2kSnHuu3UQKaMnAzQH/CcMYDxxo9z0HDoQDDghaTTjGLIyEwsASkSuwLHeTgNZe0dxAkYiUBi4CtgBD4l2zKhlQ1Z0icguwFEsoso+IXJmKGQZFpCpwCxANVvoTeEtVl+ayiYOA2KQgi4ETMhzzOjAUG89ywGWZrQqKSCegE0CJrFaUwBJVVK1qJd4rVrQ4orQ0i2uK/dx779nd2vvvh8WLLdV5kya7V7QOOgh+/NFiopo3N5fC+vWhVy9r+99/4dprzZirVMkuUmJTus6ZY256+aVtW+v7rrtgyxZbdXr8cTP8oqSnW2HiRYss3XvLlrvr1VSsaCta995rboX16sHgwXsmwsgEEeGE1avtTYoYWLNnK9CG6dOvoUWLK4OW43AkB/362Yr79u3w3HNWwdXhCICFC835on375DCuHP6R9AaWiHTAki78CLRV1Q3BKgKJSBFgDHAEtioxHLgiy+NFRse+V9VmPsqLK6qqwOMisgF4ERgiIhd4Kd5TAhFpBXyOGUjRNPaXAP8TkXaq+nVumslkW8bgprOwjJctgMOAb0TkJ1Vdv8eHVHsBvQDKli2beYBUnz65T4tevLi50kXd6TLjqKMsfXtmfPRR9u3Pn5+zhpyO6dZt7xWwaIZBsGD0rGjXzh55ZPWSJfyycCEni1DpkEPy/PlkY/NmWLFiByLrKVWqcIalikhr4BUs62BvVe2eYX8FoC9QA/v9e15V30uEtie8jJiPxrrCOvznwQctDfsJJ9jKeA43XvykMMyBoM/BZB7j1avNmWTHjt0JcpOBZB6zMJPUBpaIXIYZV98AF6jq5oAlRakBHAmU9t5fQjYGViqgqi+JyCagJ9DfS+OeEu6CwKtAb+BOz6AEwKsJ9gr2t86JxUDsMs7B2EpVLB2B7l4fs0VkHlAXGF8A7Y588ttXX3E+8NOBB3JKdiuFIWHePIASHH74L9x4Y9BqEk/SxEFmwV+xtdscieH++23F6uyzzXV4n30ClZPqcyAZzsFkHuOnnrJSjm+8EaidvxfJPGZhJmkNLBFpi93l+InkMq7AMuztwAysdGBudgfHrlhJRBpLRB4AxmuajvJTZLxR1V4iUgozOt4TkWtTJPFFTaxAdcbVojeA3F6qTgBqi8ihwBLgciCjj9ZCrLTATyJyILYCmu3ccfjHSRUrMgGomyIZBM3A2p1AMkyIyH7AU9j5cQAZMtyqam6KlCU+DjIP9O3bNxHdOKL072/G1TnnwGef2Up+wBSCORD4OZisY7xuneWGuuCCPb3fk4FkHbOwk5QGlpfB7lPgd8wtMJmMKzRNN0tEWmCFeTcBd+XmcxKRJsAooASwXSLSXtN0iF86/UBVXxWRcsCTwBpy+d2TnIlAfWBWhu31sTmYI1682m3ASMw14l1VnS4iN3v7ewBPAH1EZCrmUviAqq6O03dw5IFNmzbx9VdfcRGkTIr2uXMB/mTq1M6MH/8MTZo0CVpSXngHOAZzjV3K3u61ucGXOMga0QLdjvCwYYOtXh16qJWUSALjqpAQt3MQUus87NHDqpM8nPzlCR1xIukMLBGphcXDLATaZIxPSRY0TX/DlsHzQmugFHZ3thhwGTAkvsoSwtPA/lhh4r9V9Y2gBeWVDMWF3wReEpHaWI01gBOxpBd71bPKClX9Evgyw7YeMa+XAtnnDXckhPfff59b332XLUCpFElwYQbWDkqW3EWRIqErcdgSaKWq43I8Mmt8iYNs3Lhxfoy9vXjssccAePzxx+PRnCM7brzREvoMHZpUmQQKwRyI2zkI+TsPk3GM09MtZPrkky3Jb7KRjGOWCiSVgSUiFYEvMAPkHFVdE6yiuDMR2AqUwVa+xgQrJ3+oqorI/7B/jq+KyFxV/SpoXXlkIvaPP/YH4elMjusL9M9kuyPEXHDBBez/zjsUT6EU7eYi2IBnn/2Rxo2DVpNnVgIbC9hGUsdBLlq0KOeDHAVn4kSLt7r3XstQmkQUgjkQ+DmYjGPcrRvMnGnTMhlJxjFLBZLGwBKRIkA/7KK9lar+HbCkAhGJREpgS+PHYEkx9ulK1+2zmf3Fn/x5yCIWDVnJyjeDVZl/VHWXlz7/J+BjETlOVWcHrSsPJFGIqSPRVK1alUt27LA3yRRtXADmetF8YYzBAh7GspVeq6r5NbSSOg7yvfcSkqywcKNqxdBLl7aC40lGIZgDgZ+DyTbG69dbRZHzz7dykslIso1ZqpA0BhbwIHA20FlVfwhaTH6JRCL1sbiki4AK3uatwAagxOEcXuFwDgc4HjgrEon0BD5JS0sLXR0tVd0oIu2wOKWBItJUVUORHzpOxYV9w0vy0rZkyZKZ7u/QwVK+Dh+eUFnZ0qcPdOy4+32VKnDqqVaiKtlsmClTprBq7lxaQsFqeCUJqtEVrE/o3PlVRowYTsWKFQNWlScewZLNrBSRBVgSof9Q1QY5NeDiIB1Mnw6//mpXtJUqBa2m0OHOwb158kkrJfngg1Zi0lF4SAoDS0RaAo8DHwE9cjg8IUhEGgINgR80LeeL8Ugksj9WJ+oqzP3vUyyWbCywIi0tTb3jygINMD/k9th3fjQSiXROS0sb7cNX8RVVXSAiV2Guna8D1wcsKV+ISDEsA1INLAnJf6jqB4nWo6rDgGFly5YNVcLtMmWs7rCquUTcdBOcdx5Mnmw1i5OF1196iWGbNrGsVCmoXDloOQVm1SrYtAnKlClK2bIlKVWqVNCS8srAeDSSzHGQDz74IADdMtZ7c8SHb76Byy+HUqUsVVsSUhjmQNDnYDKN8Z9/wosvQosWVoYtWUmmMUslAjewRKQS8CHwF3BTJqmyE45EpA32g58OqETkOE3b22VRIlIKOKcFLQ49lVPvFWQ/oBvwXFpa2r+ZtZ2WlrYJ+BX4NRKJPA5cADwLjIpEIk8Bj6WlpYUq9bmqfikiTwEPi8hIVf0kaE15QUTqAsMwt0EBdmHnxg5gG5BwAyuvRFe0WrWCZ5+1orPt2lm9jTJl7BhV+2ffo4dVk99/f7j66t31fR9/HN55B5Yvh333hTPPhA/y+M1FbOUKoGpVSEuDq66C2bPNVeLhh2HSJNi+HRo0sCzKTZvu/nzPnnbzeeFCKFcOjj0WvvgCihWDqVPhrrtgwgT7LrVqwcsvQ/PmeR+vR666ilv69IGDD06J24pR98C6dS/iu+8uClZMPlDVSNAa/GbNmlQLKU4iVC33daVKMGZM8i2Ze7g54D/JMsa7dsEDD9hzz55Bq8meZBmzVCNwAwurNVQZOLsAvvfx5iYsEQXYRXY74LnYAyQiRYDRR3BEg5M4qfRGNq4rR7nj0tLSpua2E8+QGhSJRL4CXsPiEGpEIpGOIXQZ7IplVXzLywi0LGA9eeFl4DegEbDce64AvIW5LoWCn34yo+bbb2HRIrj0UqhTx1wTAB56CN56y4ys006zVY/fvST0gwbB889b6Zj69WHlShg7dnfbUfe/efOgZs3cayrtleLescMyJ199Nbzyitk0r79u9T///tsWkSZOhFtvhfffh1NOgbVr4fvvd7d15ZXQsCGMH7/b4MrvQk2NXbuoAWZgpQBhroEVi4i0AOphCWimq+roYBXFj169egUtIXUZPNju4nzwARyZm7rwweDmgP8kyxi/9x4MG2Y3MA8/PGg12ZMsY5ZqBGpgicjlWKryh1V1cpBaMjAFW8IuDWwHZmZyzCE1qNHoEi4puYIVfMiHZbekbcm1cRVLWlra5kgkcgMwD/NPXgvckT/pweD5Xl+DpV/tLSLnJsNqZC45HjhdVTeJSDpQTFUnicj9mOGbY/xHMlC+vBlQxYrZNcYll8B335mBtXEjvPSSrfhcd50df/jhu1ePFiww4+zMM61kTI0a7JGJrkIFKxeVl3IyixfbCtXBB5uhd/TRe+5/7TUz7EaMsFWuhQuhbFlzKSxXDg45xAyqKAsWWGKwunV3688vo7/9lqLAqSkQfwW7V7B+//087r23Ds8//3ywgvKIiBwEfAYcx+6sY9VEZCJWaD5jJjKHw1i9GiIR2GcfaN8+aDUOB2C/xQ0a2CqWo3ASWLEUzzXwdWAc5iKXTDyJ1V6YCDyiaTos4wEXcmH6pVxaYh3r6Evf9K1szTFOSyJyqESkq0TkZonIHpeqaWlpmpaW9iTwEnB7JBK5PE7fJWGo6l/AA1iykoyZg5IZAaLFrFdhxRLBUs4m+b2n3dSrZ8ZVlGrVbCUKYMYM2LYNWrbM/LOXXAJbt5pnzfXXw6ef2vFRLrjAYqoOOijzz0fZtMmuc8qWtdwR27fbzeUSJUzLTTeZsVWhghlRK1eaYQXm3njIIaahfXtbydqwYXfb99wDN9xg/uxPPWV68sujAwbQFVIiwQXsXsGqXr0m1apVC1ZM/ngVc809XFWrq2p1oLa37dVAlcWJe++9l3vvvTdoGanHNddYcos+fSDJ67+5OeA/yTDGY8eaK3zHjuHwQE+GMUtFgvxv1B2oCNyoqjsD1LEXmqbbNU3v0jQ9XtP05cyOaUCDtLKUTR/CkD+2sOU7rIhwlkhE9sUz2IAXgLezOPR+zOh8LRKJ7JvvLxEcb2D1LF706pqFgWlYQhMw7Q+IyOlABAhN6vmMq0siVuAQLEQhO6pXh7/+Ml/x8uXhf/+zgoibNuVNQ5kyltBi6lRbNfvtNzj+eNt37bUWP/XSS/DLL3bcwQebEQZmcE2aBJ98Yito3brZatVSb+2ia1czFNu1s883aADvvps3fVE+OPFEeka/eAowf74933//q9xzzz2BasknrYBbVXVedIOqzsVW8vNa0D0p2bJlC1u2hCLJanj49lv46isrLHxR8sceujngP8kwxkOH2nNYFlSTYcxSkUBcBL2sczcAL6hqvtzqgiQSidQDOgjywsK0hffl8mP1sbSlRbH4rkskItOB1zRNt0YPSktL2xmJRG4GJgH3YnFZocGrj3ULVg/jA+C8gCXlhqeAst7rR4DhwChgNXBpUKLiSb16ULKkuQzWrp35MaVKwTnn2KNLF0tW8fPP5jaYW0Sydt0bMwZefdXaB1ixApZliNQrVsxWqFq0MK+fAw6wVPSdOtn+2rXtcccdcMst0Lv3bpfHvHDo2rX2IkUMLKsTqRxySAhul+aNUCX8yY433ngjaAmpxfbtcNtt5tsckuxnbg74T9BjPGWK3URs1swSSYWBoMcsVUn4CpZXUPgtLIh5h4iUzeEjycidWG2rZ7I7KBKJHB2JRF6KRCK/PcZjA27n9vKXcAn1qIcgZbDU9J962Qj/Iy0tbTIwCOgciURK+/QdfEFEBKgGrAfaevWckhpVHamqg73Xc1W1HpZ45cBUCbIvVw7uvNPisd57z1Kpjx9vfuJg3jW9e9vK07x5dkzx4ruNsc8+s9WkJUvyr6FOHejb11ahJkywjMolYhLiDx9uCTB+/93irT76yFwEjzwStmyxBBijR9tqzbhxZrDVq5c/LQOnT2cipESSC9Wom+XrtGlTk3Xr1gUtKT98B7wqIv9ZvCJSA3jF2+dw7MkLL9iy+3PPWdpThyMJ6N3bngcMCFaHI3iCWMG6DNgHS1XeBVgDhCYiOxKJlMC+w6dpaWmr4b+MgjcBTYH+Xek6CvtOnbEkGWOKUGTyalZfXoMaZY7iKJaxjEEMKrWa1ecCayUiN2qafhjTVQ/gYuAc4lQjJkEcBAwG5mPzqzOWAj3pEZHSwGHe2zlBJunIqdBwfujWza5DnnjCElAceKCFLwBUrGgFge+91zL+1atnsVPRbMfr1tm1zI4dWTafI+++aytRxx1n8WFdu1omwygVK8KQIZYufvNmOOww+7E69VS7Wf3vv+ZmuHy5ZWM+91zLfJhnVOmwZAk3Ao1TYAVr9WqLnytb9jDOOKMl5cuXD1pSfrgDqxs4V0SWYjfgDsISDoUq4U9W3HXXXQC8/PLLgepIGT780P45XBmecF83B/wnyDHeudNc3M8917wvwoKbl/6QUANLREpi7lh/AKcAJ2BZ58JEEyyF92cx2+7B4nXKFKXoRZvZPK0MZZpgwdmPp6WlrQGQiLQSpMxRHEUb2nA919OHPqxgRUmgl0Skr6b9d1E/GssmeBYhMrBUdbFXOHoscBfwrIi0UNXvs/9kcHjz8hnMSC6BJb3YJiK9sCrzW7P7vB/kVGi4T5/s34MZMF277n5fpIi5/nXpsvex7drZIys6dLBHduR0TMOGtvIUy9VX7359yikwalTmny1Rwla04sK6dUwDSpYunRJ3vs09EA477GzeeefsYMXkE1VdBBwrIq2Autg5OENVvw1WmSMp2bbNltrPOiscWQQchYIffjDX98tDl6LM4QeJXsG6ESvmepaqpmOrWGGjiff8S8y2M/DqZrWgRckylGnyG7+9P4xhD2vaHrW9blf042lMK7aEJWs70rHyZVzGW7zFDnbs4a6Zlpa2KxKJjMNSiIcKVf0JQEReA24DuovICUmctv0tLC3/Deyek02xotHlgHxE+TiSliVLqAkWf5UCF2fRLIzVqm0D4rfiGQSq+g3wTdA6/MDdHY4jAwfasu2ppwatJE+4OeA/QY2xqnmJlC9v9R3DhJuX/pAwA0tESmAZ8sao6teJ6tcHagNr0tLSVsZsGwycUoEKZU7kxKK/8/uuYQy7FDjzkMghva7l2gqCNOhCl3WDGMTf/F3kX/4tO5zhM67kynpNaMLP/KyYy2RstO4MIFy/IDGo6lYRiaa8P4PkvXC6BLjQu7iLMldEVmKxcM7ASiGWz5jBMODc/fajatBi4oAZWKsZObIK77zTk+uvvz5oSblCRO4B3vT+T2Sb+lBVX0yQLEcY6NXLsum0TfoQX0ch4bXXLInUSy9B6VBFzjv8IpFJLtoD1TEXwTBTGauV9B+apr2Aa87gjB+LUITRjC4KlD6Ig6peyZVpwF3LWNZ8JzsvaE/7Ui1pWQQoPYtZ1eYzf9dxHAd26/myDH2tAspEIpFShJcPsMKhDwUtJBs2AZmlb1gCuNylKcaU336jEzCnTJmgpcSFqItgs2YPcswxxwQrJm/czu7snbdn87gtEHVx5tZbb+XWW28NWkb4+fNP+PFHq06el8rnSYCbA/4T1Bi/8w6ceKIlkwobbl76Q0IMLC9zYBcs9fjIRPTpI0XIJHWwpung+tTfuZKV29exbpcgXMRFbGELr/Eab/O2vMiL/MZvnMqpHMIhAEtmMnPXfuxHOcptBX7M0Owu77mov1/JP1R1G5bwo5mINA1aTxa8BqR5SS6A/xJePOrtc6QQzStVYiHQuG7doKXEBVvBqsz11z/BscceG7ScXKOqh6rqmpjXWT1qBa01HpQuXZrS7tZ2wXnuOSu4l1NQaBLi5oD/BDHGs2dbevbLLw+n17mbl/6QKBfBs4A6wBVJHIeTW9ZhBZIzo3oFKowE0g/m4PP3Yz8+5VPWshaAdNL5iq84iqOoT/30BSy46UAObAY8WZOaH0xlasZS2vsBO4HNvnyTxNELeAzLBpYUcXciMjTDpmbAEhGZ4r2vj50fYSwj4MiG4qtWUR1SIkU7RFewNlOtWgkCKm1YYETkGmCAd0MmdnsJ4HJV/SAYZfHj+XylvHTswfz5lu2mY0c45JCg1eQZNwf8J4gxHuilITv33IR3HRfcvPSHRLkIdgaWY7FKYWceUDUSieyTcYei6StZWR9oWo5y6QCrWb3HMTvZuWsTmzbWoc44TdOfj+GYqQAXcVFvTdPtGZo8HJiflpYWaqNUVTcBfYCLRKRKwHKirMnwGISliZ7nPYZi83VNUAId/jB68mTeBquknALYClYXLrggRHmB9+Y9LDtrRsp5+xyFHVULdNm2Dby00g5H0OzaBT17QvPmVlrE4Yji++1OEamJ1XJ6UnUvAyKM/I6lED4O+CF2xwpWFC9DmUMA+Yd/ADiYg1mhKyAdpShSilJFy1N+n2IUG+997CjveW4mfR0PjMtkexjpgaVtv54kiMNT1Y5Ba3AEw8czZvAZcGMKGFg7dsDSpQDnkpZ2eNByCoJgta8yUgPzGgg9nTp1AqBXr14BKwkpPXrAiy9Cq1ZWtTyEuDngP4ke4+HDbWG1e/eEdOcLbl76QyJWsK7DfjjfTkBfieBnLDaqTcYdf/P3lspUlgM4gOUs1yUs4QzOsHgrQcpSlou5mKIUpSc9ry0SKdJsLWvv/pd/13Sla8XYtiKRSD3s4iKLykDhQlX/Ar4DbhBJTi9lEaklIueKyDkiEmjch4i0FZFeu3btyvlgR554Zd99mQpWaTnkLF1qN/YPOuhM7r47fPV4RWSq55arwA8iMiXmMR34CUiJWliVKlWiUqVKQcsIJ7NnWwG/GjWsGnly/oTkiJsD/pPoMX7tNShXzuz+sOLmpT/4uoLlXUi3B773CkmGnrS0tH8jkchI4KpIJPJIWlrazui+WcxKa0KTQWdy5s6+9N08iEFczdXlO0pHdsnuC+XhDGc5yysczdEjKlKx5Od8rsBYiUh1TfuvqG0HzJCLLWgcdj4A3sdqTP2Sw7EJQ0TKA+8AF7E7gYmIyCDgelXdkGhNORUaduSfkitXcgCkhItgtAZW1aqr2L69AiVKlAhWUN6JFlE/GvgCiK0buB2Yj7nvhp5u3brlfJBjb3butHTsW7fCV19ZgouQ4uaA/yRyjLdsgTFjoHNn2G+/hHUbd9y89Ae/V7BOAGoB/XzuJ9H0BA7CjMf/WJi2cPA61nU/nMOLtaHN2n/4p8xbvMVgBvM7v++aytTJb/HW5klMohrV5FzOLbmEJfzBH4Klf78GIBKJ7At0Aj5LS0tbnugv5yOfYWnP2+d0YIJ5BWgANAdKe4+W3raXg5PliDs7d9Jz5UqGA+y/f9BqCkzUwJo+vRGdO3cOVkw+UNWIqkaAjsCj0ffeo5uq9k8R13JHfvngA5g5057r1QtajcPxH336WEjgmWcGrcSRjPhtYF0BbCU1klvEMhxLOf9EJBIpF7vjAA54aAtbBpzACTUu5dJi5SjHFKYwnOGzhjCk5UY2/nASJ+3qSEd2sGP7AAaQvjvr+1sSkdJAV6A88EQiv5TfeCtBQ4FLRSSZ0p2dB9ygqj+o6g7vMRozctsFqswRX1atojvwacmSoauhkxnRGlinnfY4V155ZbBiCoCqvq/63+p9StKxY0c6dnShn3mmb1+oXRsuvTRoJQXGzQH/SeQYf/qpTc2wG1huXvqDbxe5nnvg+cDXqrrer36CIC0tLT0SidwOjAFeiUQi10cz/aWlpWnRSNFfm9L0smY0ox71WMUqrUzleYJ8jiXHKJpO+lezmHX3etbPjGm6SGtaR4tr9khLS5siEakA3Ii5rr2taYl3V4szn2IFlZti8RXJQGkyzxb4DxDmIs+OjCxfzl/ArsNDnRDiP6IrWOeccz0tWgSrpSCIyAYyT3IBgKqWT6AcX6hevXrQEsLHggUwahQ8/nho465icXPAfxI1xqowbRqcdx4USVQ+bp9w89If/FxFOAo4hCTIGOcHaWlpv0QikaeAR4DpwAvRfemkb/yZn7f8wR+lj+IorU/9FYJUweILegMfR9IivwBIRJYDVQAqU3lHE5o8BPwJ3CcREcyIq+01fSXQOEFf0S++AXYA55I8BtbPwBMicrWqbgYQkbJAhDzEiolIa8zdsCjQW1X3yiskIs0wt8PiwGpVPb2g4h15YMUKSgBUrRq0krhgBtY2SpdeyY4dVSge3lW529nTwCoOHIPFRabEb8jjjz8etITw8fDDZlhdfXXQSuKCmwP+k6gx7t4dVq2CU09NSHe+4ualP/hpYEVLrn3pYx9BkwbUBZ6PRCLFgGe9lawPgXYb2dh6HOOmj2PcWZqmK7Jo4zRgaDWqVe1ABylCka3AeWlpaZu6RrruCxyBXWwANJKIlNE0DW3hYVVdLyI/YPPjgaD1eNwDfMXuQsMKNAQ2YUWyc0REigJvAK2AxcAEERmqqjNijqkIvAm0VtWFIhLqwkVhRJctoytwRpEipMDvouciOIkbbzyJatW+4Oyzzw5aUr5Q1T6ZbReRSVg85GsJFeQInkWLoF8/uOUWqFkzaDUOx39s2gSRiGUODLFntsNn/FzYbA1MVtUlPvYRKGlpaelA+1Ws+hXovopV4x6OPFxZ03S7pmlbTdPimqaNsjGu6ErXOV3p+nInOpUoQYl1QPO0tLQ53u51wDJgp/eYjyWJCDtfAvVEpEbQQgBUdSq2Sng/MBGLr7sPqK2q03PZTBNgtqrO9YLyP8ZcZGO5Ehisqgu9flfGQ78j92xdvJjHgZ+3pMJpFF3BOpQXX3ybRo0aBazGF0YBbXN7sIi0FpG/RGS2iHTJ4phmIjJZRKZ7N3sSwlVXXcVVV12VqO7Czzff2HMKjVlhmANBn4OJGOOPPrLkFvfemxKhvIViXgaBLytYIlISOBG7W5/SdKXruYI0PJmTaU7z4xWdH4lEugG90tLSVmX1OW/F61zMxfA4rNbLVWlpaf8ZY5qm6RKRk4CHsRisJzVNs4xTCBHR2l6nEnCGSREpDiwCWqpqQWq1HeS1E2UxlkUzljpAcREZDZQDXlHVDzLR1AlLsBHGtNtJTek1a9gFpJ97bo7HJjsbNsDatVCqVBXuuuuGVAhRyYzLgdW5OTDZV5GPOOKIRHUVflThueds5eqEjP9Gw0uqz4FkOAcTMcaDB8Ohh4a79lUsqT4vg8IvF8HGQEmSJ8bGT05WtMwYxvAXf3EBF6ypRrUngbRIJDIGi+GZia1GlQSqY+NzBnAAsABLz97PWxHbA03TJUD48i9nz1RgPUlgYKnqDhHZQTYB9rkks8vbjG0Ww4zpllhijV9FZKyqzsqgqRfQC6Bs2bKpYFAnDytWUAQoUq1a0EoKTDSDYJUqs1i+vBxVQxxXJiJT2fN8EeBAYD/gllw2898qstdmdBV5Rswxga0iP/roo4nqKvx8/72lZn/jDShaNGg1caMQzIHAz0G/x3jbNvjpJ+jQISXyrgCFYl4Ggl8GVjS8YYxP7ScTX2AXACVXsWprL3rd3JWuC7BCwS2AB9nbFXMp8B3wCTA8tlhxYUBVd4nIGEiaMJjXgAdFpKOq5vdvsRgznqMcjP2dMx6zWlU3AZtE5Ecs1msWjoSwYuFCXgHab93KUUGLKSDRDILr1nXm/PPXM378+GAFFYyBGd6nA6uA0ao6M5PjM8OXVeQaNZLCk7lw0aULVKsGLnV02IjbOQjJeR5+843FYJ1zTtBKHMmOnytYc1Q1Sxe5VEHT9HuJSGugGfCTpmnU/e1+gEgkUhrLprgPsB1Ylp3rYCFiLNBGRPZR1Y0BazkVOB1LcjENS27xH6p6Xi7amADUFpFDgSWYa1PG8NfPgde9GmAlsB+elwqo3ZEHli1dyvPAiVu2hN7Aiq5gNW36OHffHdq8N4AVHI5DM76sIjdu3Dguq8iXX345AB9//HE8mktdfvkFJk6EF16A0qWDVhNXCsEciNs5CPk7D/0e448/hooVoWVLX5oPhEIwLwPBLwOrETDZp7aTDk3TH4EfM9uXlpa2BXMRdOzJH9g/4/rArwFrWQ0MKkgDqrpTRG4DRmJp2t9V1ekicrO3v4eq/ikiI4Ap2B363qo6rYDaHXmg0dq1bAfU+0EJMwsW2HPjxidxxhnBaokXItICqOe9naGq3+fh40m9ipyiSUjizxNPQOXKcNNNQSuJO4VgDgR+Dvo5xrNmWYKL22+HVAqPLgTzMhDibmCJSDngMKBPvNt2pBSTveeGBGxgqWpc/FBU9UsylCVQ1R4Z3j8HPBeP/hx5ZNs2ywpRtChSqVLQagqMuQguZ9u2v9mypTGlQ3y331v5HYzdcIlekFXzYrMuisZ05EBSryJ36ZJpQjVHLJ9+CiNGWGHhsmWDVhN3CsEcCPwc9HOMBw+2/Cv33ONbF4FQCOZlIPiRpv1o73mKD207UodFwFqgQVACRKSIiNwnIj+LyHgReVpESgWlx+EzK1YwGbi3VCmWrwx/hnxbwfqKZ545jSVLQl8N4x0s8U0tVa2hqjWAWtj/iN65acCLn4yuIv8JfBJdRY5ZSf4TiK4ij8etIicPmzdbzav99oM77ghajSMfpPo5+MUXcOyxcMghQStxhAE/XAQP855d4L4jS1RVReRvds+XIHgAeBJLOLIFKzhcGS+o1pFiLF/ObKDHli3ctGEDVapUCVpRgbAVrLb07v0lhx56aNByCkpT4MRoZjEAL4Xz3eRhhTuZV5EvuugiAAYNKpA3cuoycCCsWWMZBCtUCFqNLxSGORD0OejXGO/YARMmwK23xrXZpKAwzMsg8MPAquU9z/ehbUdqMQ84NsD+OwC3q+qbYAUSgSEicpNqStQbc8SyfDkXAxe3bg21awetpkDs2gWLFwNUpn37NqmQyXohFvCekVLsmZUstDRt2jRoCcnNiBEWe9WsWdBKfMPNAf/xa4xnzjQv82ODvGLxCTcv/cEPA+tQYImqbvWhbUdqMRe4QESKququAPo/BBge834klnijGuY/Hhgi0hZoW7JkySBlpBYrvBreBx4YrI44sGwZ7NwJFSt+yqJFjagdcoMR+B/wqojcgcVxABwPvOztCz333ntv0BKSl1WrYMAAuOKK1CkulAluDviPX2M8fbo916/vS/OB4ualP/gRg1UduxvpcOTEQqA4VlA0CEpgroGAuS1iqfQDt2pUdZiqdiqaAksTScPy5XwB3Dl1Krt2BWHPxw+Lv9rC2rWX0b9//6Dl5AsR2SAi60VkPfARln32Z2Cr9/gZW+EOtBi5IwG8/Takp1v9K4cjCZnrpdkJvze2I1H4sYJVGVjgQ7uO1CNaD6wSe6dyTRTdRCS2iFAJIE1E1kU3qKqLuE4Fli9nKtDvzz95uYgf95YSh8VflaR165nccMM+QcvJL7ezd42clOW886yc3tChQwNWkmRs2wZvvAGnnQZHH53z8SHGzQH/8WuMx4yBunWhXLm4NpsUuHnpD34ZWL/50K4j9VjtPVcOqP8f2TvJxi9AbMn4QnMBmPIsX04XoMu774beDclWsIpw1FF1qFYtaDX5Q1X7BK0hkbRMpcqk8WTIEFi6FN59N2glvuPmgP/4McY7d8JPP8HVV8e96aTAzUt/8MvAWuNDu47UI2pg7R9E56raLIh+HQERjcEKefZAiK5gfcc///wDXBKwmvwhIvup6j/R19kdGz0uzNx5551BS0hOeve2vNetWgWtxHfcHPAfP8b4r79g40ZI1VwQbl76Q1z9ZESkKBa/sjGe7TpSlug8KROoCkfhYPlyegKPDRgQtJICYytYb/H1148GLaUgrBKRA7zXqzGX4YyP6HZHKjJzJnz7LVx/PYTcbdeRukyebM/HHBOoDEfIiPcKVjQ5wLY4t+tITaLzJPCkEo5CwPLlTAL++uOPoJUUGDOw+vL226EumNwCiK5MNQ9SSCJo06YNAF999VXASpKE7dvhvPNgn32gY8eg1SQENwf8x48x/vprKF8ejjgibk0mFW5e+kPSG1giMhr8c+fyu/1E9hPCsdruPTsDy+EvGzfCpk30LFXKnOlDjGrUwCrFiSfWyOnwpEVVfwAQkWLAUcAQVQ0q2Y3vtG3bNmgJycPWrdCyJfz9NwwdCgcfHLSihODmgP/Ee4x37TID65xzoHjxuDadNLh56Q/xNrCi06+ziLQDJqvqXXHuI3R4hkmj6GsX+wMi8jJwnPf2YuDV4NQ4Up4VK9gMrKtcmQPS0wlz+vu1a2HjxuWUKPEea9Zcyr77ZszTEi5UdaeIPAd8EbQWP+ncuXPQEpKHfv3gl1/gtdegEF3cuTngP/Ee4x9/hOXL4fzz49psUuHmpT/E2+l5h0/tOlKTaCq39EBVJCEi0lZEeoW9XlPSsHw53wLVFi9mctShPqRYgos5bN/+EPPmzQ1aTrwYy+4bLo5UZt06eOwxOO44uPXWoNU4HNkyapQlnT377KCVOMJGvFewoi5fb6vqM3FuO7SoarNEuSKGBVW9S0SqYvWvPg5aj4gcCFyNpW1/VFVXi8jJwFJVnZdoPao6DBhWtmzZGxPdd0qyfDn1gbcaNKBWrVpBqykQ5h54MmeeuZlmzfxIBBsIbwPPi0gNrMzHptidqjopEFVx5IwzzgDg22+/DVhJwHTqZEsCH38c+nIJecXNAf+J9xiPGQONGqVm/asobl76Q7x/naOxVyXi1aDfBkmiDJ5E9BPCsYrOk0CToojIccB3wDwsFuQ5LHtZK6AOcGVw6hxxYflyDgVubtoU9t03aDUFwlawoFat0qkUE/CR9/xiJvsUCK9Pp8dll10WtITgWbvW6l516gSnnhq0moTj5oD/xHOM//7bVrBuuiluTSYlbl76Q1wNLM+XfjuwTzzbdaQs0XmyKduj/Od54BVVTRORDTHbRwKFI71VqrNiBUsBLVOGg4LWUkBsBetrZs8eh+ojSGqsAhwatAC/ufFGtxjNwIGWPfD664NWEghuDvhPPMc4mlTv5pvj1mRS4ualP/gRK7UaqORDu47Uo7L3vDrbo/znOOD9TLYvAw5MsBaHHyxfzovASe9n9mcOF9Eiw2PGPJcqxhXAIcASVV0Q+wCWePscqUCvXlCzpsVfORxJzqBBsP/+0LBh0EocYcQvA6tyjkc5HMljYG0BMvMbqwuEutCQw2P5cp4AGh0W7ox7EF3BeoavvloTtJR4MgrYL5PtFbx9oadZs2Y0a9YsaBnBMX8+TJgAl15a6GKvohT6OZAA4jXGmzfD779Du3apP13dvPQHPyKkVwP7+9CuI/WIzpOgrxQ/B9JE5BLvvYpITeAZYFBgqhxxYf78+bwwbhy3Ap+99FLQcgpMNAbrsMNSJwALyyiqmWyvRPAuxHGhQ4cOQUsIls8+s+drrglWR4AU+jmQAOI1xv37w4YNhaOKgJuX/uCHgbUYaO5Du47UozqwE1gRsI57gS+BVUAZYAzmGvgz8EiAuhxxYMmSJfRdtYpLgbrVqgUtp0Bs2wbLloHIM/z4Yw3at78iaEkFQkSGei8V6CsisQlvigJHA78kXJgPFOqLmI0boVs3aN4cjjoqaDWBUajnQIKI1xiPHg2VK1uB4VTHzUt/8MPAmgdcLSIlVTXQ7HCOpKcWsFBVdwYpQlXXA6eISAvgWMx1dpKqBpazVETaAm1LliwZlISU4eSTTuLf4sUtuP7AcIfULVpkz8WK9eO77xqH3sBi9+q1AP9i7rpRtmM3O95OtCg/2LHDykQWT6HUj7nmuedg1Sp46qmglQRKoZ4DCSIeY6wK330HrVpBkUJQ1dXNS3/ww8Cai/1YHgLM8qF9R+pQC5svgSIiDVX1D1X9Hvg+aD3g6mDFlbVrzbgqVw7KlAlaTYGw+Cs48cQpvPNOZh514UJVOwKIyHzgeVVNCXfAzGjVqhUAo0ePDlZIovnnH3j6afO1ato0aDWBUmjnQAKJxxhPnGieAl55qJTHzUt/8MPAmuM918YZWI4sEEt/djgwMGgtwO8iMh34EPhIVRcHLcgRPz557z3GAK9WqRK0lAIz17sdUasWqZRBEOCJ2DciUgU4F5ihqinhInjDDTcELSEY3ngDdu6Eu+8OWkngFNo5kEDiMcYffQSlSsHFF8dBUAhw89If/DCwpnnPDYAvfGjfkRpUw7KGTQlaCJYtsD1wA/C0iPyEGVsDPfdBR4iZ8ccffA2QAgbWnDkAa5gx41HGj+9AkyZNgpYUL74ARgCviMg+wESgLLCPiFyvqh8Eqi4OXHXVVUFLSDwLFsDLL8Pxx8PppwetJnAK5RxIMPEY40mToFEjKF++4HrCgJuX/hB371JVXQfMBxrFu21HStHIe/4jSBEAqjpLVdNUtQ5wMjAVeBpYLiKfBKvOUVC6tm7NTAh9/BVEDax/mDnzUxZFA7JSg+PY7Z57IbAeOAC4EUtCkytEpLWI/CUis0WkSzbHHS8iu0QkYfeoN2/ezObNmxPVXfBs3AhXXAFbtlj9q8IQzJIDhWEOBH0OFnSMVWHKlMJV+6owzMsg8GMFC2AyzsByZE/031cyrGD9h6qOA8aJSD+gB3BRwJIcBWX5cnuuWjVYHXHADKzafPPNKk44IWg1caUcsNZ7fSbwmaruEJHvgTdy04CIFPWObYVls50gIkNVdUYmxz0DjIyT9lxx9tlnA4UozuHOO+HXX+GVV2w5wJHycyAZzsGCjvGiRRa2W5gMrFSfl0Hhl4H1G9BORPZT1X986sMRbk4EZiWTC56I1AKuxNwFDwd+wtwGc/v51sArWHrp3qraPYvjjgfGApepajLEoKU0d/btSz3gppAbWKpRAwtSoF5yRhYCJ4vIMOAsIFqTbj8gt7dWmwCzVXUugIh8DJwPzMhw3O1YfbvjCyo6L9xyyy2J7C5Y1q6FwYOhfXu4446g1SQNhWAOBH4OFnSM//B8agqTgVUI5mUg+GVg/eQ9nwwM86kPR0gRkSLAKcDgoLUAiMitmFF1AhZD+B7QT1WX5KGNwO/cOTJn8uLFlITQx2CtXg3r10OZMmPp0uUdnnjicaqG3GiM4UUs7nEjsAD40dt+GuaymxsOAmL9Jhdj5/R/iMhBwAVAC7K5uBORTkAngBo1auSy++y57LLL4tJOKIhEYN06+N//glaSVBSCORC3c9A7Ns/nYUHHOGpg1a9foGZCRSGYl4Hgl1P0eKyGyWk+te8IN0cB+7L7IipoumD1dhqpakNVfTYvxpXHf3fuVHU7EL1zl5HonbuVBVLsyDU/NGjAsxB6F8Ho6tWBBy7myy+/+K92SSqgqj2BpsB1wCmqmu7tmgM8mstmMkurmDGX/cvAA6q6Kwc9vVS1sao23n///XPZffasW7eOdevWxaWtpObzzy2xxc03wzHHBK0mqSgEcyBu5yDk7zws6Bj/8YdlaS1XLt9NhI5CMC8DwZcVLFXdIiITgGZ+tO8IPc2855+yOyiB1FDVghYV8uXueYkSJQooy8GyZfacIgZW48YX88knqZc/WFUnYtkDY7flJRPtYqB6zPuDgaUZjmkMfOyluK8MnC0iO1V1SJ4F55Hzz7f7LSkf59C9O9StCy+9FLSSpKMQzIHAz8GCjPH69TBqFDRvHg8l4aEQzMtA8MtFEMwF6nEROVBVV/jYjyN8nA38rarzghIgIscCk7075cdkV1NIVSflpsnMPprh/ct4d+5y6K8X0AugbNmy4a8mGyALFizgjlmzeAg4IeQugqkWfyUi9wBvqupW73WWqOqLuWhyAlBbRA4FlgCXYzGVse0cGtN/H2B4IowrgDsKQyzS7Nkwdiw8+yyULBm0mqSjEMyBwM/Bgozx++/DmjVw333xUhMOCsG8DAQ/DazhwONAG6CPj/04QoSIlAWaA28GLGUiUAVz1ZuIGUNZGUlFc9Fe4HfuHHuzfvVq5u/YwbYiRSBOrl5BETWwVqz4gJtv/oUePXoEK6jg3A68D2z1XmeFYjFa2aKqO0XkNuzmXlHgXVWdLiI3e/sDHbALL7wwyO79Z+dOeOwxEIErr8z5+EJIqs+BZDgHCzLG33wDNWtC6pQXzB2pPi+Dwk8DazJ2gXkuzsBy7KYlUBIzwIPkUGBVzOuCEvidO8fe1N9/fyu0VqVK6OvwRA2s9PR5TJgwIVgxcSD2fIh9XcA2vwS+zLAt04s6Ve0Qjz5zy+rVqwGoXLlyIrtNHAMHQv/+8MADcNBBQatJSlJ+DhD8OZjfMV67FkaOhM6d460o+SkM8zIIfDOwVFVF5HPgWhHZR1U3+tWXI1RcgtW7GROkCFVdEPsWWJRZHJaI5Cp1UTLcuXNkQjT+KuTugbDbwHr88TRq1EgLVowjz1x8scXNpWScg6Zb5sD994enngpaTdKS0nMgScjvGA8fDtu3Q2FMqOfmpT/4uYIF0B+4Bcum1s/nvhxJjuceeAHwkZdpL1mYB1QlQ2Y/Eank7cuNi2Dgd+4ce/N+v34MBIZUqZK7P2KSsmmT1UsuUSL1FgfEfGavwYp618JueMwFPsXKJaREHOL/Ujll+dJlMHMmDB0KRcN8pvlLSs+BJCG/Y/zVV3DAAYXPPRDcvPQLvw2sn7ECklfiDCwHtAXKAh8FLSQDwt4JKQD2weJDHCFly+rV/AMUrVYtaCkFYvZsez70UHj44S6UK1eOhx9+OFhR8WMQ0A6rdzUVOx/rAR9gN2QuCkxZHGnbtm3QEvxjxQpLyZ7K3zEOpPQcSBLyM8Y7d8IXX0C7dqH3JM8Xbl76g68Glqqmi8hHwH0iUkVVl/vZX7IiIqNj36tqs2CUBM41WHxSUtS/EpFXvZcKdBORzTG7i2K1rSYnWpcjftxcuzY3Q+hdBP/8056PPBLmz59PxYoVA9UTL0SkPXAmcJaqfpNh31nAIBG5UlWT7aZMnlm+3H7+qoR8Lu7F5s2wYQO0bx+0kqQnZedAEpGfMf7rL6uLfcYZfqlKbty89Ae/V7AA3sUKud4APJmA/hxJiIjUAloDT8QUEQ2aaK12AY7EimNH2Q5MAp5PtCgAEWkLtC3pUh0XjBSpgRVrYD399MfBiokvVwHPZDSuAFR1pIg85x0TegPr8ssvB1IwzmHhQrvtf9VVQStJelJ2DiQR+RnjadPsuX797I9LVdy89AffDSxV/VtEvgZuEpHuqrrT7z6TjUK8YhXLTUA68HbQQqKoanMAEXkPuFNV1wcs6T9UdRgwrGzZsjcGrSXMXPPllxwKREJuYM2YYc/16gWrwwcaAo9ks/8L7H9H6OnSpUvQEuLP2LGwciUcVA0OPDBoNUlPSs6BJCM/Yzxzpj0ffnicxYQENy/9IRErWGA1j4ZgMTifJahPR5IgIqWA64HPVXVx0Hoyoqodg9bg8IciW7dacouQuz7ErmAdf/zx3H333VyZGrWGKgHLstm/DNgvQVp8pXXr1kFLiC/LlkGrVnDJE1DjkKDVhIKUmwNJSH7G+PvvLYSwbFkfBIUANy/9IVEG1hdYNrb7RWRIqmSFcuSajtiF1GtBC8kKEWkOXAHUAErE7lPVFoGIchSYPqVK2YsQr2Dt3AmzZtnrI45QSpcuzaZNm4IVFT+KAzuy2b/TOyb0LFq0CIDq1avncGRIeOIJS2951FFQPCX+RL6TcnMgCcnPGM+bB82a+SQoBLh56Q8JMbC8GkHPAm8BzYBRiejXETwiUhx4APgV+CFgOZkiIh2AHtjqajPgc6AOVoC4b2DCHAUjPd2ym0GoV7DmzoUdO5SyZW/gp58u5vPPP2ffffcNWlY8yZhgJpYyCVXiI1dffTWQInEOkyfD22/DNdfAPvsErSY0pNQcSFLyOsbr18OiRVC3ro+ikhw3L/0hUStYAH2ANOBhnIFVmLgCOAS4LYlXLu/F9PUWkQ3Ag6o6V0ReB1yB7JCydckSTtm5k7vKlOGq6EpWCDH3wE3s2vU1s2c3ok2bNkFLiic/Aofl4pjQ88gj2YWahYwuXaBYMXj6aRi2IOfjHUCKzYEkJa9j/Mcf9tywoQ9iQoKbl/6QMANLVbeKyPPA8yJymqqmxI+mI2tEpATwGDAFcxNNVmoB33qvt2H1rwBeB0ZjWTAdIWPnkiVUAcqGfLXHDKx9uPnmRdx+e9Bq4kthSgB0RqrkgJ45E0aOhCefhGrVAGdg5ZaUmQNJTF7H+OuvrTZ206Y+CQoBbl76Q6JLqr0JLAaeE6O+dxHuSCFE5BgRKQJ0wu5OP5jEq1cAa4By3uslwNHe60pA6UAUOQrMPv/8w3DggiOPDFpKgYhNcOEIL3PnzmXu3LlByygYqtChA5QuDR1dbqC8khJzIMnJ6xiPHQu1a8N+KZFKJ3+4eekPCTWwVHULtqLRBBiJFXHtnEgNDn8RkYOAX4CJwBPYCtBXQWrKBT9hxU4BPgFe9VK39wf2qs/jCAle4C4hD9w1A2scgwdfw+LFSZeE05FLrrvuOq677rqgZeQfVbj5Zhg3zlwDq1ULWlHoCP0cCAF5GePNm2HUKCjsSfTcvPSHRMZgRfkAc71qBbwBvB+ABod/LMWKSr+FrQq9luSrVwC3AdEgnW5Y5rKTMWMrkOLYrtBwwZk+aRJXAK+np3Na0GLyiWrUwFrOjBk/kp6eLDW6HXklEokELaFg3Hwz9Opl+axvuSVoNaEk9HMgBORljMePh127CncGQXDz0i8SbmCp6i4RuQ8zrv5R1X8TrcHhH6qqIjIZc60bpaqDA5aUI6r6T8zrdOCZAOVEdbhCwwWk2IoVHAbsE+IVrLlzYeNGqFLlfBYuPD9oOY4CcPrppwctIf+MH2/G1eWXQ79+UCTR0QWpQajnQEjIyxh/9ZXFXzVv7qOgEODmpT8EsYKFqr4pIicBD4hIX1WdFYQOR/wREcFi7dYDlwYsJ0tEJNce17EGmCM8HLFhg1U1P+WUoKXkm0mT7Pm444LV4Sg4f/31FwBHHHFEwErywf33Q/ny0LOnM64KQKjnQEjIyxgPGGDJLcqX91tVcuPmpT8EYmB5/A84F+glIi28lQNH+LkeOA24UVVXBy0mG1YDObkuindMUf/lOOJOCsRg/fabPW/b9jx3372El156KVhBPiIiBwJXY4lxHlXV1SJyMrBUVecFq67g3HTTTUDIas2oQu/e8MMPcO217kq0gIRyDoSM3I7xwoWwYIHzdgU3L/0iMANLVVeIyD3AO8AdwMtBaXHEBxE5FHgJq3P2bsBycqKQOwWkOKoMmT+fB4GRqtQIWk8+ia5glS69JKWzPInIccB3wDzgKOA57CZIK6zo95XBqYsPTz/9dNAS8k4kYo8jj4RnAvecDj2hnAMhI7djPGSIPV90kX9awoKbl/4Q5AoWwHtAO6C7iHytqjMC1uPIJyJSFEtYkg50SPYVSVX9IWgNDh9Zs4Z9d+ygQbFilDnwwKDV5AvV3QbW66+/RI2wWom543ngFVVN84p9RxkJpEQ+8JNOOiloCXlj0SLLFtimDQwbZsEqjgIRujkQQnI7xp9/DvXqweGH+ywoBLh56Q+BOlN72eVuBDYA/USkVA4fcSQv9wOnAneo6sKgxeQFEdkvu0fQ+hz5YPFiTgcGHHEElStXDlpNvli0CNasgUqVQu3lmFuOI/OMssuAcFrIGZg2bRrTpk0LWkbumDkTTjzRUqx17eqMqzgRqjkQUnIzxhs3wpgxcPbZCRKV5Lh56Q9Br2BFXQU7AsOAV7HitI4QISLNsXTmA7A0/GEjp3gsd3URNlIg/iq6enX00Ss5/fSL6dq1Ky1atAhWlH9sAfbNZHtdYGWCtfjCbbfdBoQkzuHVV2HpUvjiC2jSJGg1KUOo5kBIyc0Yf/IJbN8OZ56Z5SGFCjcv/SFwAwtAVYeLSDfgQRH5WVVdbayQICLVgI+BWVhii2SveZUZGeOxigPHALcAjyRejqPALFrE7cDUP/5gdNBa8knUwKpTZy0zZqRTNLVXET4H0kTkEu+9ikhNrGTCoMBUxZHnnnsuaAm5Y+ZM+OADS8nubvHHldDMgRCTmzHu1w8OOwxatkyAoBDg5qU/JIWB5fEYcCLQQ0T+VNXxQQtyZI/n0jkQ2AdooaobcvhIUpJFPNa3IjIXK5r8UYIluULDBWXRIo4G9gmxg33UwDrjjDr06jUmWDH+cy/wJbAKKAOMwVwDfyZFbnIcf/zxQUvImTVr4OqroXhxcBddcScUcyDk5DTGqjB5Mlx4oas4EMXNS39ImumlqjuByzGf+6Eiktoh3SFHRIoAfYCmwLWqOj1YRb4wGUs5n3BUdZiqdkrxVQv/mD+fm4Bu118ftJJ8oWq1XaFw1MBS1fWqegqW9OgB4BWgtaqerqqbctuOiLQWkb9EZLaIdMlkf3sRmeI9fhGRhnH7EjkwefJkJk+enKju8kf79jBxoiW3OPjgoNWkHKGYAwUk6HMwpzFeuBD++QcaNYpnr+GmMMzLIEimFSxUdaWInAP8CnwhIier6vqgdTkyJQJcBnRR1YFBi4k3IrIPcBewKGApjvwwZ449H3ZYsDryyV9/wapVUKUKPPZYe/bbbz9ee+21oGX5hog0VNU/VPV74Pt8tlEUeANL7b4YmCAiQzNkp50HnK6q/4pIG6AXcEIB5eeKu+66C0jiOIcJE2DkSCsq7IoD+ULSz4ECkgznYE5jHN18WiC3TpOTVJ+XQZFUBhaAqv4pIhcBI4BhItJGVTcHrcuxGxG5A3PbeQd4NmA5BcZLCx0bOyaYm9ImoH0gohwFY84cDgZuGjqUR085JWg1eeYHz2n19NOhSpUqVKxYMVA9CeB3EZkOfAh8pKqL89FGE2C2qs4FEJGPgfOB/y7uVPWXmOPHAglbpnn55ZcT1VX+6NULypWDR1LCIzMpSfo5UHACPwdzGuMvvoADDoCjjopnr+GmEMzLQEg6AwtAVb8Tkaux2JdBItJOVbcFrcsBInId5r4zBLg5pEktMnJbhvfpWCzIOFX9NwA9joKwdi3p//zDxcWK0SCk9T1+/NGeTzsNOnd+IVgxiaEudjPjBuBpEfkJM7YG5sGL4SD2XHFeTPZ3xq8Hvspsh4h0wstoWyNOBcgaJbNP0rp1MGAAnH++GVkOX0jqORAf4nYOQv7Ow+zGeONGM7CuucbFX8VSCOZlICSlgQWgqh+LSFmgN9BfRC5X1e1B68oPIjI69r2qNgtGScEQkSuAt4Gvgcu9uLnQE6+slSLSGjM+iwK9VbV7hv3tsfgSgI3ALar6Rzz6dsQwZw5FgJfr1oV27YJWk2dU91zBKgyo6iwgDcskeAJmbD0NvC4iw1X10lw0I5k1nemBVlrieiDT5U1V7YW5LtG4ceO43ESaMGECkIQB5XPmQKdOsGEDeK5CDn9I2jkQP+J2DkL+zsPsxvjnn2HzZktw4dhNIZiXgZC0BhaAqr4jImWw+lificjFqrolaF2FERG5AftH9xNwYSquKHpFhQ8gQ/KXDP7jWX02cN9zh8ecOSggIY2/mjcPliyxAsPjx79P27YRfvnlF6pUqRK0tISgquOAcSLSD+gBXJTLjy4GYgufHQwszXiQiDTAbty1UdU1BZSba+677z4gyeIc1q+HNm3g77/hqacKR0aVAEnKORBfAj8HsxvjMWOsZvaJJ8azx/BTCOZlICS1gQWgqq+JyDbsh/ZLETkvbOnAw7piFUVE7gJeAkZixlVKxcSJyDHAe0D96Cbsrlv0OTep/AL3PXd4zJnDt8AlI0bw9fjxNAlZodRY98CDD65G06ZN2X///YMVlSBEpBZwJbaCdTh2Q+eGXH58AlBbRA4FlmBZaa/M0H4NYDBwtbdqljBef/31RHaXO3r0MOPqiy9czasEkJRzIL4Efg5mN8Y//2zZA50X7J4UgnkZCElvYIEtE4vIRuAD4AcRaauqS4LWlep4qdi7Afdj/xCvTMWVK+Bd7MfgTmAFWbg05IAv8R8lSpTIh5RCzpw5NAZOqV2bqlWrBq0mz0TdA087DVq1akWrVq2CFZQARORWzKg6AZiG3fDol5f/86q6U0Ruw24EFQXeVdXpInKzt78HVm+xEvCmiADsVNXGcf0yWXD00UcnopvcM3IkPPootG7tjKsEkXRzIM4kwzmY1Rjv2AFjx5o3rGNPUn1eBkUoDCwAVf1IRNYCA4DxInKuqv4esKyUxXPN/BC4EFs9vD1VYq4yoTZwiarOLkAbvsR/lC1bNhWSiCSWOXPYF+gXiVChevUcD08mVOHrr+11376nM2dOg5ROzx5DF6A/cJOqTs1vI6r6JVawOHZbj5jXN5D7FbG48ssvtoB9UjIkXlm2DC66yGpd9e0btJpCQ1LNAZ8I+hzMaox//x22bIEQJpX1ncIwL4MgNAYW2IkrIqcAw4GfRORaVR0UtK5Uw1vCHwQcB9wNvJIi2QKzYgxwJFAQAytw33OH8cnUqdwOjN13XyoELSaP/PEHLF0K1arBGWecRM2ahwQtKVHUSPH/MTz00ENAksQ53HcfbNoEPXtasJ8jISTVHEhRshrjmTPtuWHCSouHBzcv/SFUBhaAqv4hIk2Az4CBIvIS8ICq7ghYWkrgZcLrh82Ndqo6NGBJieB6oLcX/zEN2GMuqeqPuWgjcN9zB7B5MzXWrOFCESrUqxe0mjzzxRf2fPbZ0L17t2DF+IyIHAtMVtV04BjPXShTVHVSwoT5RM+ePYOWAOnp0Ls39OsHDz4IZ5wRtKJCRVLMgRQnqzGe7d0+PeCABIoJCW5e+kPoDCwAVV0mIqcBz2MrLE1EpL2qLghYWmgRkeKYb/TDwFTgYlX9O1hVCaM20Ag4K5N9uUpykQy+5w5g5kxOBE6sWxcOPDBoNXnms8/suU2bnagWJTujIwWYCFQBVnqvo4llMpLbRDNJzRFHHBGsgBkzoHlzWLnSnh9/PFg9hZDA50AhIKsxHj0aGjeGCmFza0gAbl76Q2hLranqdlW9A1spaAhMFZEOkuJXJH4gIkcCvwCPAH2ApoXIuALoCXyHZRE8ANg/5pHr+12q+qWq1lHVw1T1KW9bj6j/uareoKr7qmoj7+GMq3gzfbo9H3VUsDryyIYNG7j55of47bdxlCsHf//9KuXLl2fDhlAlTM0rh2IFvaOva3nPGR+1AlEXZ3744Qd+iGYwSTQbNkCLFmZcPfkkDB8OxUJ5fzXUBDoHCgmZjfHGjZbgonnzgEQlOW5e+kPo/8Oq6gARGY8ZBu8B7USks6ouBfBWusZ4biiFHhE5ClipqqtEpBhwB/AUsAlbtSqMMW0HA2er6pyghTgKyPTpdAXe/PJLVgatJQ/MmDGDvn17AwdywQUncOGFbRkxYhjlUjifcAaPAwUWZRaH5bnWhp60tDQggDiHn36Ca6+FFStg4EBLbuEIhMDmQCEiszH+4QfLInhWZj4qDjcvfSL0BhaAqs7zMrPdBTwNzBSRR4DJwA/ALVgmvEKNiFTGXHE+EJF3gbeAY7CkITeq6vIg9QXIN1hCD2dghZ3p02kMdAhZbMkJJ5xAzZormT4dLr8cateuzahRo4KWlUjmAVVhT7tYRCp5+0LvIvjuu+8mtsPx4+Gee6z4zwEH2FXmaaclVoNjDxI+BwohmY3x6NFWYNglycscNy/9ISUMLABvhepFERkGvA68AmzBfrA/CFJbsqCqq0XkA6zG0o3AMuBSYGCqZ/DKgRHAC16Gv6nsneRicCCqHHln+nTOBc7tFq4EEVOnmnfjfvsV2rwD0aLeGdkH2JpgLb5Qq1aCPB1VoVcvuP12m1BXXAEvv+yi+5OAhM2BQkxmYzxqlN1bKF06AEEhwM1Lf0gZAyuKqv7tZcK7FTOySgP9RaSLqv4ZrLrgEJF9gHvYndluFHCBqq4PTlXS8Kb3/FAm+wIJsBeRtkDbkiVLJrrr8LJ2LcybB6VKQe3aQavJE+3anQOcyMUXP0rx4kGrSRwi8qr3UoFuIrI5ZndRoAnmiRB6vv32WwDO8NOC3rULunWzAsJnnQUffWRGliMpSMgcKORkHOOlS2HyZLj33gBFJTluXvpDyhlYAN5qzOsi8jG2UtMFmCYiHwLdVXVmoAITiGdY3QTcBxyI1bd6UlUnB6krmVDVpEv2oqrDgGFly5a9MWgtoWGSZfK+uHRpFp1yCuPGjQtYUO7Ytg2WLKkEVODaa4NWk3Dqe8+C1aLbHrNvOzAJyxYbep588knAx4uYr76Czp1h/nw47jjL+V809J6VKYXvc8Cx1xh/+KHdd7jqqiBVJTduXvpDShpYUVR1NXZX9G1sdeJm4BoRGYQZWr8FKtBHvNiF27AkFvuxe8Xq10CFORx+MXEiAOcdcwxrzz8/YDE5M3fuXC699FJatOjGtm0f0KgRNG0atKrEoqrNAUTkPeDOVF5R//DDD/1rfPx46NQJypSBAQPgwgudcZWE+DoHHMDeY9y/P5xyChx9dECCQoCbl/6Q0gZWFM/QukdEugF3YobHxSIyFnMP+1RVQ+/n76WoPx7ojKWvLwkMBbqp6tggtSUzInJPdvtV9cVEaXEUgN/sfsk17dvDddcFLCZnihUrxoEHVuGTT0oBcMcdUFiLTKhqx6A1+E316tX9afjTT+HSS+31qFHQrJk//TgKjG9zwPEfsWO8ahX8+SfcdVdwesKAm5f+UCgMrCiqugp4RESeA67FDJEPgJdEpD/QDxgXtoQPIlINM6iuwrICbgTeAd5U1elBagsJt2d4XxzLaBZNkuIMrDAwYQIA244+mmSOXJsxYwbdu3fnkUce4dprh3PZZXDIIc6FxcsEewVQAygRu09VWwQiKo6MGDECgNatW8enwZ074d134aaboGJFW8E97LD4tO3whbjPAcdexI7xsGGwfbtlZnVkjZuX/pB0sSeJQFXXqeqrmM//GcD3wA3Ar8BsEekuIieLSNL6WIhITRG5VUS+AxYDLwC7sOQe1VT1Vmdc5Q5VPTTD42CgGvAj8L+A5Tlyw5IlluCiXDkqt2zJfffdF7SiLFmyZAmjRo1i5850PNd3HnyQQpXcIiMi0gH4CigHNMMKEO8LHAvMCExYHOnevTvdu3cveEOrVsGNN8KBB5pxdfTRMGeOM65CQNzmgCNLYsd45EioWhUaNQpWU7Lj5qU/FKoVrIx4K1XfAd+JSHngQqA9cC/wALBGREZgBtiPwJygVrdEpCJwMnA60AaIehT/DTwBfKSqfwWhLRVR1RUi8jDwCfBZ0HocOfDTTwBo06Y8ePrpHH/88QELyppWrVqxaNEi+ve39OwHHwwdOgStKnDuBW5T1d4isgF4UFXnisjr2Ip86Pn444/z/2FVc4G9557/5jpnnGGxVh06uPzTIaFAc8CRK6JjvGsXfPMNnHde4XW9zi1uXvpDoTawYvGCq/sAfTxj5izgHMyYae8dtlxEfsHSBv/hPS/KjdElIi97/dyVi2MrYNm1GgENsbiqBlimrR3AGGxlZbiqzsrN93PkiyJY5kVHsuNddMrpp/PQQ5ll208O0tPT2bFjB1u2lOTuu21bWhq4bPzUAr71Xm/D6l+B1TQcjWWCDTVVqlTJ3wf//deMqUmTzJBq3RqeeAIaN46vQIfv5HsOOHJNdIx/+slOnTZtAhYUAty89AdnYGWCqq4FBgADvMQRRwKnAqdhdVkujDl8q4jMA+YCC7CYndXeYz12sbDd+7yISDMsvqAMUDnmcTB2kXGo9z7KGuB3oCu2ijZOVbfE9xsXbkTkwoybsBisW4GfEq/IkWe+/x6A7SeeyPaNGylbtiyShLctf/vtN0488UROPfUtVqzoxMknhyIfRyJYg7kHAizBVuinAJWwWoahZ9iwYQC0bds254N37YIhQ6yO1bBhsGMHPP64pWGvVMlfoQ7fyNMccOSL6Bj369eWYsXg9NMDFhQC3Lz0B2dg5YC3OjXDe/QEEJFy2ApTQ+AwdhtGJ2FxA9kxKpNtm4FlmJE22Huehq2SLQlb0o0QMjDDe8ViQL4noBgsV2g4D8yZAzNnQoUK/LBtG2eWK8ePP/7IqaeeGrSyvTjooIPo0OFJ3n33NIoVgx49oEihjITdi5+AM4GpmFvuqyLSCmgJfBOksHjxwgsvALm4iFm2DE4+2WIKDzgALrvMYq5OOy0BKh1+kus54Mg30TGeNKktHTqAW5zJGTcv/cEZWPlAVTcAv3iPPRCRYthd1/0xN5eS3uNWIB14DVvV2oK30qWqmxOj3JEZrtBwyPniC3s+6ywOO+IInnnmGerUqROspgxs3LiRG2+8kYsv7szQoQ8C8PDDrjZLDLcBpbzX3YCdWMzpJ8CTQYmKJwMHZryPE8OGDTBwoBUL/uUXWL0aevaEjh0Ld/aTFCPbOeCICwMHDmTmTDj1VGjSJGg14cDNS39wBlacUdWdwArvEcvXAchxOFKfzz+353POoVatWtx///3B6smE5cuXM3bsOH777TJWr4ZWreDRR4NWlTyo6j8xr9OBZwKU4wuVK1fee2N6Onz4ITzwAKxYAdWrQ4MGcMMNlsDCkVJkOgcccaVy5coMGGB1tt2CTO5w89IfnIHlKLSISBvgLaChqq7LsK8C5qLZSVWdcZysLFlixVVLlIDzzuPff/+lSJEiVKhQIWhle1C9+uEcccRcRo60a+iPPrILgMKMiOyX22NjDbCwMnjwYFDlwlWr4I8/YPhwm7+qULcuvPGGGVVJGDvoiA+DBw8G4EJnPPvGe+8NpkcPuPbaC517YC5x89IfnIGVCV5q4KNVtVkePqPAJarq1lrDw23AcxmNK7BaaSLyDHAnbvUxeenfn3GqlD7tNBpUrMhDt9zCoEGDWLlyZdDK/mPx4n+57LKp/PLLqey/v/D11+BuGALmIp1TfKl4x4TeHH21e3f46y8uXL/eNhx3HNSpY0bVFVfAfrm2Nx0h5dVXXwXchayfRCKvsnMn3HuvG+Pc4ualPzgDKwGISB/g2uyOUVXxjqusqudm+HxjYAJwqKrOj9neDjMSjsUybS3CiiW/rqoTvGMuBG4GjsFiHGYAT6nq0Cy0XgF8BHyRUUcK0gC4J5v93wMPJ0iLI6/s2gVvvcWNwOEbNzIYuPzyy2mSBI73P/zwA1OmTKFt25s566wpzJp1MaVK3cU33zxM3bpBq0samgctwHfS02HRIvjmGz7/+2+LtbrvPujWzS1hFkI+j7ozO3xh40ZYt+5zzjwTjjwyaDXhwc1Lf3AGVmK4kz3ruMwBHsJSwecLEXkKK4b8GvA4ZlxVxzIZPgc08w49HTMUHgH+wWp6fSYizVT1pwxt1vI+W1hSk++PJR7JCsUSljiSkNFPP02NuXN5r1o1SvfqBcDpp5/O6UmQl3fIkCH06vUuXbvexj//NKRatcF8/HFtGjYMWlnyoKo/xLtNEWkNvIKtePVW1e4Z9ou3/2wse2sHVZ0UNwGqsHy5uQD262ep1jdaneQKTZtC375Qq1bcunOEi2RzXfaDoM7BDRusisHatRXo2rWgrRUuCsO8DIJQGVgiMhr4EzspOwK7sAxTPYAXMeNhPfCwqn7ofaY+8BKWkWoLMBS4M+oWJiJFsYDq671u3ieDO4r3D+E+4CagGjAbeEZV++ZGt9fXf25onjvhOlVdnqcB2P35EzAD7U5VfTVm1zzgR8+1Ldr3nRk+HhGRc4B2xBhSIlIc6I+t2DRnz1pcqcpibBXr7yz2N8Bq8jiSjV27aNu1KzcALz3wANSvH7Si/5g/HxYufJHNmx9m82ahVauKfPTRqc4tMBtyisfKTQyW97/8DaAVdm5PEJGhqjoj5rA2QG3vcQIWg3lCfnUDtko1ahT06QMjRlgGQIBixSyV2eWXQ716DFi0CCZM4DJnYBVaBgywe6qXXXZZwEr8IahzcONGOOYYq9hx/vkDWLgQmjZNzTH2g1Sfl0GRdOmpc0F7YAN2QnYHXgaGALOAxpiB1FtEqolIGWAEsBErEHwBtsLzbkx7/wNuxIynpphx1T5Dn09iBtitQD0sjXBPz1DJFBEZ7RmEfnAl9p3ezGxnLupmlQP+zbDtKWC+qr5fcHmh4QvgCRHZq5CpN3ce945JOCLSVkR67dq1K4juk59evfgmPZ3O1apBp05BqwGsbNHtt1u+gsGDhTJlKvP66zBypIu5ygWrsdpzWT1yQxNgtqrOVdXtwMfA+RmOOR/4QI2xQEURqZpv1R99ZCtSZ5xhBYHPOQdefRVGj4Z//rEC2J06wSmn8FbPnrz11lv57soRft56661UnwMJPwe/+srCGefMsQXjtWtTfozjTiGYl4EQqhUsj+mq2hVARF7EXO92qOor3rbHMde5aNHffYCrvdpViEgnYJSIHK6qs4G7gGdV9RNv/53AWdHORKQsFqdzZoxL3TwRaYIZXFldgC/M5/drLSIbM2zLaAjXAeZ6KeGjOjsDz8YcU09V99IgIrcCBwMfxmw7E7gMaJRPzWHlKeBi4G8ReQ2Y6W0/EottE+DpIIS5OljZMGsW3HcfJwK8/DKUKpXDB/xj50747jt47z349FNbzIC11K0b4ZVXOnDmmc4nMJdkjMcqjsWN3oK5N+eGgzBX6SiL2fvOeGbHHIQVev8P73eiE0CNGjWy7nH0aDjwQOjeHdq1y3Yufvnllznpd6Q4hWAOxO0chNydhzNmWOLNoUMtLXurVik/xnGnEMzLQAijgTUl+kItM8RKYGrMth0i8i9wAHA4MCVqXHn8gsXd1BORVUBVLDFE9PPpIjIOi2cCW7EqBYzwXPuiFAfmZyVSVa/J39fjR7x/KDEcDXyWw+f6YdnuosfutTopIhdhMVaXq+oCb1tloA9wpapmXNVKaVR1pYichLkoPI0ZVGCxVyOBzqqasZ6ZI0hWroSzz2bNpk38euqpnNSyJX7kXtu6dSuvv/465557LnXr1mXx4sW88847XHnllRx4YG0GDFhAr159mDfvatasqQXMpUiRD7nwwo5cfvk/XHttT3bsOANwBlZuyCIe61sRmQvcgCXeyYnM8ptnXM3PzTGoai+gF0Djxo2z9gh49VVzBSyW809pmTJlcjzGkdr8v717j7Oqqvs4/vkOghdQMQUhNTWVzEwlFLVQ6fFGXkgzu6rhPQNDysuj3TDN0Mi0i5aZopX6mNSTlx5LMU0rlVQCBBFFVBQFwwsXZ5hhfs8fv3WYw+HM7cw5c/bM/N6v13nNOevss/aPPWcze+211m/1gO9A2c5BaNt5ePbZMH580ynYA45x2cUxq4yu2MCqL3htzZTV0JTit5jWhtHl5BoqR7N+r1ThfsthVepZW0tS/4JtngUOkNTbzOqhaZ5XkW1zdRyH91qdVJBBcHe8kXm/mtZfqUmfaQA+ZGbzOvQvyrDU0DxC0hZ4g1zA/J7W2OwSFi70W5TPP88TO+/M0Q8/zMNz5jBixIiy7+qxxx7jvPPOo1+/Tenbd1duueUVJk6cyO23D2fevF1Ys+YlYCIwgiFD3s9++y3g5psnMmHCwYwYMYLjjltBY2NL+VNCG80ADmzjtotoujEG3lP/agnbtF07ek9/8xufsnvCCSeUvLvQtfWA70Cnn4N9+qz7ugcc47KLY1YZXbGB1R5zgFMkbZrXi/VRvAExN611tBjYD8+0l0toMZym7uo5QB2wvZk90KnRN+9W4KvA2XhyjxZJ+gw+N+1LRdbpmg4UZgi4FB9eORZPnNHtpQbV9GrHEYpoaIDrr4fzz/dUUR/4APvffTePLVvGB8uUi/fdd2HRIpg/30cgzpt3ECNHNvKd7xhnnQX+X0Ijc+Z4du399x/BYYc1ctRRPv4fDmbKlKYGVU1NDTU1XXGKa3ZI6ocP4X65lU1zpgO7SNoRT07zOXy+ar47gXGSbsOHLr1tZusNTaqE66+/HoiLmJ6sB3wHqn4O9oBjXHZxzCqjuzewfgtcDNws6dt4o+EXwO/zeomuBi6U9Cw+1PAreI/OYgAzWy5pMjA5Nb7+hs/r2g9oTF3Y65F0c/p8qUMFm2Vmj0q6AviBpO2BO/Deta1pGl64JsXxObzn6lw8w2BubfPVZrbMzFYCswtifwvYwMzWKQ+hU734Itx2G1x3HSxY4GXHHgs33MCm/fvT2mpXq1fDf/7jSd0KH6+95ssTLVrkP3OJ39YlQPTvD3vvLfbZB/bdF0aOhM03LxzlUmzUS2grSctZd1SBgE2AlayfdKgoM2uQNA4f3tsLuMHMnpb05fT+z4E/4emhn6MpG22nuO+++zprVyGjuvt3IAvnYHc/xpUQx6wyunUDy8xWSToczzT4OFAL/BFflyrnh8Ag4Pr0+td4wyz/1vi3gNfxRsq1eCr4GaybVKJQCzOjO87MLpD0ON7LdBLe6HsdeAQ40Mxyd32/jP+er0qPnIdoWisrlEHV1+Dpgsyg/u1V1L6wmLp5C6l9ZiF1s56ldvosal9eQi0bsZKdWT74SFYcewLLP7APy68R8+cvZunSWgYM2JHly71ja8UK1j5ftgzeeaftcfTuDdtsAzvtBEOGwOzZX2WvvXbnnHPOYMcdfRJ1qKhxBa8b8eyBj7VnuK6Z/Qm/gMsv+3nec8P/z+x0vXv3rsZuQ4b0hO9Atc/BnnCMyy2OWWV0qQaWmY0sUrZ7kbJBec9nAQe3UGcDMCE9mtvG8AV9f9LCNip4vV6see/1a6Z8TDPl/6LILXIzmwpMbW4/rcXRwmeKxhGaV+n1P6zRsDWNNDY0Yg1raGzw5431/twaren1Glu73ZoGo361UV/XSEO9P29Y3ehl9fjzetZ/Xp/eb6CpLPe8ARoa5GVroL5e1DeI2tU11K6uoa5e1NaKutVQW6dUVkNtfS9qGzagbs0G1DZsQG1jH+qsD8YmwE7p0YzFFCxK0HpW3169YMstYcAAT5Oe/xg4ELbbDrbd1n8OHAj5I/oOOOAp+vbtG2vCdpKesDzElClTABgzZkxV4wjVE9+Byotj3H5xzCqjSzWwQsiwtet/AKTx5Z/E5/DlrF3/A3hUUn9Jg1saf75qVX+kk4Eb8Y6xS/D5wLmRqd8A3sLbduArFNTR1Fn5tfS5H6TXZ+Odnd9Pr8/C15S+JL0+Ddge77QFGAN8ALgwvf4C8BG8MxfgM/i0xnPS60/h9zNyNyiPTo/cyNVR6TOn4J0UhyO+QF8dT5+ad3lzzXFsuuEX2Xabk+i1ST1znzmc9773VIYNOw1pCffccxhDh57JyJEnsnLlQqZNm8Do0RM48MAjqKtbzKRJJ3HWWeczevShvP32S5x++qlcdNFFfPzjH2fBggWceeaZnHDCdxgxYgTz5s1j3LhxXHrppQwatC+zZ89mwoQJTJo0iYcfXrsGd+hEacHhgRRkQS24UdElxUVMiO9A5cUxbr84ZpWh1tekDSG0RtKngVFmdlp6fSKwr5mNy9vmbmCSmT2SXk8DLkg9lPl1rV37AxiGDycs1Is0z66Esg2AhjZs11XqbM9+OlJnc/vpCnUWq6+jdW5sZmXJ5CFpKH4XIZdwJ5cBVvgggl7l2E+JsS0FXuxAFVvhCyl3BRFr+VUyzu3NbECF6s6UVs7DrH0XshRPlmKB7hlP8fPQzOIRj3h08AEcj8+7yr0+EfhJwTb3ACPyXk8DhrVS77+aKb+uA2Xr1Vlsu65SZzv3U3KdLewn83V21veo1AfwVDo/DgJ2xbtN1z7KtZ9qPMp5nCLWrhdrV4mzKz+ydoyzFE+WYulp8cQQwRDKo7PX/7irA2Vtra+r1Nme/XSkzrbW19PrLMUuwPFWsAZgCCGE0BXFQi0hlMfa9T8k9cHX/7izYJs7gZPk9qMD63+Y2XoXvG0ta2t9XaXO9uynI3W2tb6eXmeJHmHdzK0hhBBClxU9WCGUgVVu/Y+i66x1UNTZ8+rMeoynAtdLej++Ll99/ptm9rcy7quzVeLYV0rEWn5dJc6uLGvHOEvxZCkW6EHxRJKLEEIIVSVpJHArvlh6IbMqJrkIIYQQ2isaWCGEEKpK0jx8mO338QXT1/nDZGb/qUZcIYQQQimigRVCCKGqJK0E9jCz56sdSwghhNBRkeQihBBCtd2Hr/nW5Ui6QdISSbPzyt4j6T5J89PPLfLeu1DSc5LmSTq8ynFOlPSKpBnpcUS140z73k7SXyXNlfS0pPGpPFPHtYU4M3lcu5ti3+kqxlL0u1DFeDaS9Likf6d4Lq5mPCmmXpKeSmuCVjuWhZJmpfPzX61/ooR9RA9WCKE7krQr8ElgG3zI2avAnWY2t6qBhfWkZDDfAG4CZrF+kovfVyOutpB0ILACuNnMdk9lVwDLzGySpP8GtjCzCyTths81Gw68F7gfGGJmxRab7ow4JwIrzGxywbZVizPtfzAw2MyelLQp8ARwDDCGDB3XFuL8DBk8rt1Nse90FWMp+l0wszlVikdAXzNbIak3nql1vJk9Wo14UkxfA/YGNjOzo6oVR4plIbC3mVVs0ePowQohdDuSLgBuAwQ8js/vEXBrujAL2XIN3hC+CL8AvSPv8bsqxtWqlOFwWUHxJ/HGIunnMXnlt5lZnZm9gGcUHV7FOJtTtTgBzGyxmT2Zni8H5uLfj0wd1xbibE5Vj2t3087vdEWV8F2odDxmZivSy97pUbUeFUnbAkcC11crhs4WDawQMkTS4ZKulXSnpD+m56M6UN9WBa9PkPRjSWekO1yl1itJ+0r6lKRj0/OS6ytSfz9JH5HUv8QqTgX2MbNJZvab9JiEX8ycWmJMo/Keby7pV5JmSrpFUrHsd22pc3NJkyQ9I+k/6TE3lfUvpc5m9tPR41nR37mZ1bTw6IoZBLfOrXGXfg5M5dsAL+dtt4gqXoQl49L3+Ia8IXeZiVPSDsBQ4DEyfFwL4oSMH9dQOUW+C9WKo5ekGcAS4D4zq2Y8VwHnA41VjCGfAX+R9ISkMyqxg2hghZARkq4CxgMPAVcAP0jPvyrp6hKr/Ute/d8ETsSHLhwKXFlinIcB84GJ+LpeRwIXA/PTe6XUeU3e8xHAHOCHwKz8+Qvt0IgPwSk0mNL/g78s7/kPgcXA0Xjv2C9KrPN24E1gpJltaWZbAh9PZSX33JT7eFbid95DFWuQVnOc/rXATsBe+Pf5h6k8E3FK6gdMBc4xs3da2rRIWafFWyTOTB/XUDnt+M5WnJmtMbO9gG2B4ZKqMoxS0lHAEjN7ohr7b8bHzOwjwCeAsWm4aVnFQsMhZMcRZjaksFDS/wDP4o2v9sr/g/4p4AAzWynpFuDJ0sLkauAQM1tYEOeO+GLKHyyhzv3ynl+Cj11/Ur7w7O2p3vY4B5gmaT5Nd4zfB+wMjCshvkJ7pz9cAD+S9KUS69nBzC7PLzCz14DLJZ3SgfjKfTwr8TvPr+drLb1vZiXdDKii1yUNNrPFaW7GklS+CNgub7tt8bmBVWFmr+eeS/olkJt8XvU407yRqcBv8+bgZe64Foszy8c1VE4z39mqM7O3JD0IjMIXcu9sHwNGp5t7GwGbSfqNmZ1QhVgAMLNX088lkv6Aj24p64L20cAKITtqJQ03s8cLyvcBakusc2NJQ/He6l5mthLAzOollTqxegP8QqHQK/g4747aLG8s+wJJ7R4iZmb3ShqC/6e5Dd7QXARM78CE8oGpISD8D4SsKUtQqaMBXpR0PnBT7qIsDTccw7pDiTqiw8eTyv/Ozy543RvvbXwXv4juag2sO4EvAZPSzz/mld8i6Uq8h3UXfI5gVeQaK+nlsTRdfFU1zjT09FfA3ILGdaaOa3NxZvW4hspp4TtbrXgGAPWpcbUxcAhweSsfqwgzuxC4MMU1Eji3mo0rSX2BGjNbnp4fBny33PuJBlYI2TEGuFaegSh3Mbsd8E56rxSLabo4XZZ393dLoKHEOm8Apku6jaZGwHbA5/A/MKXYVdJMvPGyg6QtzOxNSTWUeAFvZo1AOTMm/RLYND2/CdgKWCppEDCjxDo/C/w38GDePK7X8Quxz5QeatmPZyV+52uZ2Y6FZel43Igf98ySdCswEthK0iLgO3gD4HZJpwIvAccDmNnTkm7Hh2w2AGM7MTNfsThHStoLH6a2EDiz2nEmH8OHM89Kc0jAE6Bk7bg2F+fnM3pcu5Vi32kz6/D/RyUq+l0ws/aOFiiXwcBN6YZaDXC7mVU9PXpGbA38IU0h3gC4xczuLfdOIk17CBmTLtjX9rqkIWPl3kcvYEMzW1Xi53cDRrNu79CdpaaklbR9QdGrqZdtK+DALA23yCfpZjM7qYN17Izf5d4Ov+h6FrjVzN7uQJ2Fx3Oxma3uyPEs9++8jfscil8Y7FKpfYQQQgjlFg2sEDJE0vuAd1K3/g74mhFzzezpDtRZA96jI6kPsDuw0Mwykd62OZIGmtmS1rfsHJLuLFL8X8ADAGY2uoQ6vwochY/9PgLvCXsTb3B9xcweLDHcbkHSMOCvZrZZtWMJIYQQ2ioaWCFkhHx9pjOBOmAycC7wdzxhwa9KGdct6Rg8w10j8GV8+MpKYAhwlpndVUKd/fB0q8fhk7RXA88DPzezKe2tL9X5nsIiPNvhUPz/qao3BiU9BTyNr+NhpHW18GFymNlDJdQ5C9jLzNZI2gT4k5mNTA3tP5rZ0BJjHYQPAWsEvo3PcToOX5tlfN78kLbWtzee1fIVfCz9DfjcwPnAGWb2VClx5tX/qcIifIjLWGCBmR3ZkfpDCCGEzhQNrBAyQtLTeI/VJvi4/feb2dI0CfMxK2Gl+tQo+ASwMfBvfG2oeWkI2VQz27uEOv8I/AG4H58n1Bdf1PebwCtmdlEJdTYCLxYUb4sPQzMze3976yy31BM4Hu9pOs/MZkha0JHYUgNrbzOrk6+Vc7+ZDUvvzS7ld54+ey9wD/67+QLwW7wx+Ek8G+An21nf43iDrT++hMAEM7tD0sHApWa2fylx5tVfmDrfgKV47+DX29sgDCGEEKopGlghZISkmWa2R5oftRgYlBI1lHyxLempXC9IYR2SnkzrQLS3zn+b2Z55r6eb2T6pATLHzHYtoc5z8SxH55nZrFT2QrHkB9UmX5H+R3gyitFm9r4O1DUeX/j4UeBA4HIzuzFlgJpqZiWtzVHwe38pP0ZJM/JSzJejvrXvhRBCCCGyCIaQJU/K16fqC0zDMwDdi8/zKTmRgKSa1FA7Ja+sF9CnxCpXShphZo9IOhpYBmvneBVbSLNVZjY5Zaj7kaSX8d6STN79MbNFwPGSjsQzPHakrqsl3Y+vI3WlmT2TypfiDa5S5aeNv7ngvVLStNfKFxTeHDBJx5jZ/0o6CIgsaCGEEEKe6MEKISMkbYCnHTbgDnwNpy/g6Yh/llvDqp117gPMMrPagvIdgBFm9psS6twDn4c0BF/f5RQzezb1unzezH7c3joL6j8a+Aa+CO+gjtTVU0n6LnCFma0oKN8ZmGRmn25nfXviQwMbgQnAWfg6RK8Ap5vZP0qM8xPAtcCehVkTJW2OD2s9w8z+Ukr9IYQQQjVEAyuE0CGSji4lWUYrdY7GkxtUY9X5bk3SyWZ2Yxbqk3QPntjjZ828fxZwVCS5cJKmAFuZ2VHdaV9F9n038IaZjensfYdQSXEO9xw1rW8SQqg2Sf+X4Tq/V6Z68l0ajauKuThD9e2BJ0tpzgPAni28361IGiDpGkkLJdVJel3SNEmHpk3GAydUM8bmSHpQ0k87cX8zJV3ezHtnSHpX0oWSpkt6R9JSSXdJKilxTAhtEedwu/f5gCQr8rinM+OohJiDFUJGSGou4YSAvbJSZzN1lVsl6uwxJM1s7i18Ffuq1pdnAD7ssDkGbNmB+ruaqXgW0VOB54CBwEGkY9CRxae7oZnAhwsL09DSS/EhrSOBa4Dp+Hf1u8D9knbLwtIPoVuKc7h9huJTAm4oKF9VhVjKKhpYIWTHdOAhijcu+meozkKVGGccY5c7ZmvgcHzR4nwCSpkvVe76chbhvVjzm3l/D3yeV7cnqT9wAHComU1LxS/i53BumynkDfmR9CC+ttkq4GQ84cilwM+BK4Ev4olYvmFmv86r50FgtpmNa67uIvGNwi+EdsfPz+nAOWY2N332IOAgSWPTR3Y0s4Up8c15+Bp/78UvOi/Pzf+Ur/92DfBpfI2+q9t4yGYC44qUfxt4F59r+G7Bv+FE4G3gY0BZhzWHEOdw+85hSTvh1yEPmdlrbflMVxINrBCyYy5wppmtd7GZMutlpc6QfXcD/cxsRuEb6Q9ztevLuQe4RNKfilwMb4L3OHT5oSJttCI9Rkt6pDAxTQu+iF+I7QuMBq4CRgH34uvqfQm4XtI0M3u1A/H1TXXPxNfV+yZwl6Td8GFPQ4Bn8MXMwdcxA79Y/DS+aPQ8YH/gl5LeNLN78EXVD8UXwn4FzyB6IPD7VuKZCWwnaTMzewdA0hB8Ue3PF36fkk3xqRGFNwpCKIc4h9t3Dg/DG5QdWqg+q6KBFUJ2TKT5eZFnZ6jOkHFmdmoL732h2vXl+R7+h3u+pJ/gf9zB09aPw3vILutA/V2GmTVIGgP8EjhDvkj434HfmdljLXz0aTObCCDpSuC/gXozuzqVfRe4APgonp201Pim5r+WdDJ+Z314WrJhNbAq/060fJH0rwGHmdnDqfgFScOBsZIewodSnWJmf86rd1EbQsoNW92dpl7UK4G/Fcaa52pgBvDP5iqV9Gd8ceuYAxraJc7hdp/Dw/BlQ5Zo3RVe/s/Mji/pH5kh0cAKISPMbJ3/OPOz85nZ/2alziJeL1M9la4zZIyZLZH0UTxV+2U0DWU14M/AV8ysx3wXzGxqmtx9AH6XeBTwdUnfMLPmGpoz8z5vkpYAs/LK6iW9ic8FKVkaznMJfpd9AH7jpgZoaaHt3YCNgHsl5Q/77Q0sBHbC1+Nb2+AxsxWSZtEKM3tV0hv4PKx/SDocH8ZaNClKunAdgS9P0dLabbvS1NAPoV3iHG77OYw3sKbiDcp83WKeWjSwQsiu71H+eQJlr9PMDm19q+rXGbLJzF4EjpC0BbAz3siab2Y9chhXGlZ0X3p8V9L1wERJk5v5SH1hFc2U5fdkN7L+vMzerYR2Fz7858z0swFfAL2lBctz+zwaX88vXz2wRSv7bM0sYHf5GoI/An5qZustyi7pR8DngI+b2YKC93YDrsOHD04BlplZQ3pvl1TvIHxe1/Fm9pqk7YCf4hemfYCjgEOAr+DXVc+Z2bEd/LeFLirO4TYbimcMfq4DdWRWNLBCyK7Izhd6jNSgmt7qhj3PHPxv9UZlrHMpMLigbE/8jvR6JG2JD9sca2Z/TWUfYd1riNX4cJ98c4A6YHsze6BIvf/BL9L2Axaksr74sL/n2/DvmJniHotnaZtYZB9X442rkWb2TMF7G+DZy04zs9mSbscXt0bShniigZPN7CVJp+FDoi4B/gR81cz+mrIWboQPaR2Whon1b0PsoeeIc3j9z+0IvIduOv8KooEVQpZFdr4Qeoh0AfQ7/IJ/JrAcn+B+PjDNzN4pmKfQEQ8AV8kX9J6H39HejmYuzvCkEG8Ap6fkONsAP8DvgOcsBIZL2gGf6L/MzJanu/aTUyayvwH98IuxRjO7TtKvgMslLQVexbMAFl7kNWcmngBgT3ze1DpDiyT9DDgROAZ4U9Kg9NYKM1sBfAr4V958q3k0JcA4Br8gvTMd9z7AbcCxwOO5i1Qze1tSI54N7XJJU8ysLcOjQjcT53C7zuFh6edreedlzhu5XuSuLBpYIYQQQvWtAB7Fs3ntDGyID+O5Bc/iVU434Cnwc2vPXAP8Adiq2MZm1ijps8CPgdl4muav4/MnciYDN+F3vDcGdsQv2L6Fz6k8F59r9w6eaOKK9Llz8exmf8BTVf8kvW6Lf+MNm8fx4X2FvpJ+Tisovxjv7doj1ZEzDPhhev5h4Dwz+23+ByVdmva3VroI/TDeKLtN0rdbSLQRuq84h9t+DucaWHMLQ8V7tt5q5fOZJ7O4oR1CFkmaaWZ7ZL3OEELoiiRNAHYws/GSDsbnzGxtZksljcN7H05OiQc+bGazJJ0NDDGzsyXV4HNQ3pNbCkPSj4HHChtmIYSepbn0zSGE6ovsfCGEUDm/Bj6a0mmPARaZWW7tnxuBzYG5kmbgi8CC95S9X9LTwJP4MMJvSpqX6umNDyUMIfRg0YMVQgghhBBCCGUSPVghhBBCCCGEUCbRwAohhBBCCCGEMokGVgghhBBCCCGUSTSwQgghhBBCCKFMooEVQsguaQrS3es978z9lrfeB5EsPfZLZR9C+gfSbKS7kDYpiCO3/afLHk8IIYQQyi4aWCGE9ln3or8eaQnSX5HGIvWu4J7HAyeUvVZv9Py0U/blbgQGA08gbQTcDozFbHfgWTxddH4cgysURwghhBAqIBpYIYRS3I9f+O8AHAbcBVwMPIzU2grupTF7G7O3KlJ35+5rFWavYVYPHAPcj9lT6b1ngAEFcbxWoThCCCGEUAHRwAohlKIuNRJewWwGZlcCI4GPAOcDIAnpfKTnkd5FmoW0bq+Qb/N1pPlIdUiLkL5fdI+Fw/a85+kapMuQ3kg9aZORavK2GYX0MNKbSMuQ/oz0wXXqhIOAsXm9cjsU2deGSFchvY5Ui/Qo0oiC+FqPZ30fBGblvf4wMKeF7UMIIYSQcdHACiGUh9ls4F7guFRyKXAqMBbYDfg+8AukI/M+dRnwrfTeh4DjgZfbsdcvAg3AR4FxwDnAZ/Pe7wtcBQzHG4BvA3ch9Unvjwf+SdOwvcHN7P+KVO8pwFC8UXQvUuHwvdbiKfQq8AEApD2AQ4A7W9g+hBBCCBm3QbUDCCF0K3OAQ9Iwwa8Bh2H2cHrvBaTheIPrHqR+wATgHMxuSNs8hzd42r4/s2+n588inQ4cDNwKgNnUdbaWTgbewRtcj2D2NtJqcsP2mrbL/0xf4CzgNMzuSWVfBv4r/Vu+2eZ41vdr4H+QZqW4PoNZXdv/+SGEEELImmhghRDKSYDhPVYb4b08lvd+b2Bher4bsCEwrQP7m1nw+lVgYFM02gm4BNgXn9tUkx7va8c+dsLj/vvaErM1SP/E/w1tj6eQ2Srg6HbEEkIIIYSMiwZWCKGcdgMW0DT8+GjgpYJt6tNP0XH1Ba+NdYc+3wW8ApyZfjbgvWx9aLtcnFbkvcKy1uIJIYQQQjcXf/hDCOUh7Q6MAu7AGzF1wPaYPVfweDF9IrfNwRWKZ0s8icRlmN2P2VxgU9a/sbQa6NVCTc+lbZqSWki9gP2JhBQhhBBCKBA9WCGEUmyINAi/STMAbyRdBDwBTMZsJdJkYDKSgL8B/YD9gEbMrsNsOdLVwPeR6tI2WwLDMLu2DDG+CbwBnI70MrAN8AO8FyvfQmA40g7ACmDZOu/6v+VaYBLSG8AL+NyxrYFryhBnCCGEELqRaGCFEEpxCLAYWAO8BczG18H6BWar0zbfAl4HzgWuxZM4zMAz8uVciDeEvgVsm7a/uSwRmjUifRb4cYrvOeDrwNSCLScDN+G9URsDOxap7YL080agP/AUMAqzxWWJNYQQQgjdhsyKTSsIIYRQdtKDwGzMxrXzcwYcj9kdlQgrhBBCCOUTc7BCCKFznYG0AmmfVreUfo60ohNiCiGEEEKZRA9WCCF0FmkbfBgiwMutrnklDQQ2S68WY7aygtGFEEIIoQyigRVCCCGEEEIIZRJDBEMIIYQQQgihTKKBFUIIIYQQQghlEg2sEEIIIYQQQiiTaGCFEEIIIYQQQplEAyuEEEIIIYQQyiQaWCGEEEIIIYRQJtHACiGEEEIIIYQy+X83mllLkk5TCAAAAABJRU5ErkJggg==\n",
|
|
199
|
+
"text/plain": [
|
|
200
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
201
|
+
]
|
|
202
|
+
},
|
|
203
|
+
"metadata": {
|
|
204
|
+
"needs_background": "light"
|
|
205
|
+
},
|
|
206
|
+
"output_type": "display_data"
|
|
207
|
+
}
|
|
208
|
+
],
|
|
209
|
+
"source": [
|
|
210
|
+
"dir_path='PSV10-24'\n",
|
|
211
|
+
"example_data_doi='10.1016/j.pepi.2008.09.012'# data of Quidelleur et al, 2009)\n",
|
|
212
|
+
"# read in MagIC formatted PSV10-24 data compilation\n",
|
|
213
|
+
"df=pd.read_csv(dir_path+'/sites.txt',sep='\\t',header=1)\n",
|
|
214
|
+
"# pick out desired example\n",
|
|
215
|
+
"df=df[df['citations'].str.contains(example_data_doi)]\n",
|
|
216
|
+
"# use svei.svei_test to see if consistent with data model\n",
|
|
217
|
+
"# first pick out the directional data and put in array\n",
|
|
218
|
+
"di_block=df[['dir_dec','dir_inc']].values\n",
|
|
219
|
+
"# do the test and make the plot\n",
|
|
220
|
+
"resdict=svei.svei_test_varkap(di_block,plot=True)\n"
|
|
221
|
+
]
|
|
222
|
+
},
|
|
223
|
+
{
|
|
224
|
+
"cell_type": "code",
|
|
225
|
+
"execution_count": 7,
|
|
226
|
+
"id": "11a57a4d",
|
|
227
|
+
"metadata": {},
|
|
228
|
+
"outputs": [
|
|
229
|
+
{
|
|
230
|
+
"data": {
|
|
231
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEUCAYAAAA2mpeWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACrgElEQVR4nOydd5gT1deA30OvShHpSBEULIgi2EGxK4oVsWIvoPCJ/uyG2EDFjqCoiIgiWAGxNxQsFEVBFESQjghK77vn++NM2BC2ZHeTzCR73+fJM5l278nNnWTOnCaqisPhcDgcDofD4XA4ik8pvwVwOBwOh8PhcDgcjkzBKVgOh8PhcDgcDofDkSCcguVwOBwOh8PhcDgcCcIpWA6Hw+FwOBwOh8ORIJyC5XA4HA6Hw+FwOBwJwilYDofD4XA4HA6Hw5EgnILlcDgcDofD4XA4HAnCKVgOhyMwiDBMhPfzWk9l3wlq8ysR1HsdFrV9PxG+FWGmCONEqBQlQ+T4cxMpi8PhcDgcjtTgFCyHw1FkUqAA9QIuTmSDntIzMBV9ebwM1AWmef1XAEYDPVTZH5gDdI+SoW4SZHA4HA6Hw5EiyvgtgMPhcOSFKmsyoK+NqiyPWu8CfKbKT97670C9KBnWiCRJEofD4XA4HEnHWbAcDkfC8KxDg0R4SISVIqwQYYBIzm+NCCJCHxH+EGGLCItF6JdHe7Eug/G0f7II34jwnwj/ivCxCC0j7QEdgB5RrniN8+irvAhPivC3CJtF+F6EowojSx60BGZErR8AzCp4dB0Oh8PhcKQDTsFyOByJ5iJgO3AE0BPoDXSN2v8QcA/QD9gPOA9YlMD2KwNPAu2AjsAaYJwI5TAXvO/Icdurm0/fj3jtXgG0wZSij0R2cuErSJbcWArsAyDCgcDxwNgCznE4HA6Hw5EmOBdBhyMNEZGvgJmq2jOP/ZOB/qr6TkoFM2apcq/3fo4IVwOdgJEiVAH+D+itylDvmLmY0lPs9gFUeTv6YBEuB9YC7VSZKMJWdnXbI+acysD1wFWqjPe2XQccB/QA7o5Hljx4FRglwgxPrvNV2RLnZ894RKQaMQ//VPVff6RxOBwOh6PwOAXL4chM7gceF5H3VDU7xX3/ErO+FNjTe98KKA98nqT2EaEZ9vnbA7Wwm/VSQKNC9NEMKAtMimxQJUuE77DPEJcsuaHKRqBzIWTJeERkL+A54Fhs3HfsAhQo7YdcDofD4XAUBadgORyZyQfAC8ApYBaYFLItZl3JsUgkIn1Dfu0DjAOWANd6y+1YjFO5QvQRkVNz2Re9rSBZHPHxMlANc8dcSu7j7nA4HA5HWuAULIcjfSkjIk8Bl3rrLwK3qWq2qmaJyAdAN1KvYOXHLGAL5kb3R6IbF6EmlkSihypfetsOZuffuq0UbBGZ6x13FDDPa6c0cDjweoLFdli83GGqOtNvQRwOh8PhKC5OwXI40peLgGHYTf+BmMVqGfC4t38ycJcvkuWBKutEeAroJ8IW4GugJnCIKoMT0MV/wErgahEWAfWBRzErVoS/gHZe9sD1wL+q7ORGqcoGEQYD/UVYCczHYsdqA4MSIKdjZ+ZjrqMOh8PhcKQ9zpXF4UhflgE3qervqjoaUyRujtq/FKgvIkF7kHIH8DCWSfA34G2gQSIa9hSlrpjCORN41usnOonEAMw6NQv4h7xjs27DCgK/DEz32jxZlWWJkNWxE72AfiKyt9+COBwOh8NRXETVubo7HOmGl0VwoapeGrWtE/AZsLuqrhWRE4BPgKqqut4fSUs2InwFzFQl12yP+ZynwHmqvJUUwQKGiKzDLFilMWU42uKIqu7mh1wOh8PhcBSFoD3ZdjgciaMGsNkpV75zjQjdgWNVmZLfgSI8B1ycEqmCRaEUUIfD4XA4goxTsByO9KW9iIjmmKEPA5aq6lpvfX/gR39Ec3hcBFT03sdTTPlezIURKDmuiKr6it8yOBwOh8ORKJyC5XCkL/WAJ0VkEHAAcCvwQNT+o4GP/BDMYaiypJDHrwBWJEmcQCMi5TGFtBWWpv1XYKSqBroIs4jsicnaRlUX+y2Pw1GSEJH3gZWq2t1bnwz0V9V3fBXMUeJxSS4cjvTlNSxm5Qcsg+BLwBMAIlIfOAJL0OBwBBoRaYWl7X8cKxB9GPAkMEdEWvooWoGo6gpgOBDO6xgROUREVESOymP/aBGZ5L2/WkS+EZF/RWS1iHyZ13n5ISLdvT4jr2VeP00K25bDkUbcDzwsIvne34rIXzHXR+TVvzCdxbSzUURmisi1xfoEjozAKVgORwARkdYi8p2IzBCRcSKyW9S+O7Cse8cC41S1mqpWV9U+qprlHdYbGFaYJ+oicqOIzBaRX0Xkkej+RGSut++kBH2++0XkFxGZLiKfiEi9JPd3stfeXBG5PRFtxrRfQUQmi8jP3viFve01RORTEfnDW1ZPYJ/VROQtEfldRH4TkcOT3F8v7+bhVxHp7W1LVH9PAT8BjVT1aFU9Gsvu+DOmaAWdl4GLRKRGbjtVdRr2+a6M3SciNYEzsAckAB2BUVituPbAbOBjEWleBLk2AnUxa/eFwEHAWBEpqA6cw5GufABUBU6J49j7sOsj+vVAvmfk386BwHvAcyLStQjtODIJVXUv93KvgL2AKUAH7/0VwP3e+1bYTWd5oAnwJ1A6l/NvBWoXor9jsQyE5b31PQvTXxE+325R728CnktWf5iV70+gKVDOa79Vgr8vAap478tiVsXDgEeA273ttwMPJ7DPV4CrvPflgGrJ6g+L55sJVMJcyz8DmieqP0wR2C+X7QcAGxL5XRXj++2DWdm2AIuBfjHHzIt8H3m00QOru1YlZnsvYB1QOZ++lwM3FlLm7sD6mG0XYe6X+wCHYllGVwJrgYnA4THHXwvMATZjJQ0+BspEfTefe+eu866rY/3+rtwrc1/e788w7zr6G7gTeB97mBh93FBgRAFt/QXckgCZdmnHu2ZGeu/7Yw9JNnnHPgJUiDq2ITAG+Nf7HfwduCBq/73AAu93Zzkw3O/vwb3iezkLlsMRTPbBivACfAqc470/E3hDVbeo6nxgLtAu9mRVfVRV/y5Ef9djfutbvPMjcUBx9VdYNCcRB0Bl7KYvWf21A+aq6jxV3Qq84fWTMNSIZGss673U6yeSwOEVoEsi+vMsmsfgWT1Udauqrk5Wf0BL4HtV3aiq24EJwFkJ7G8zpiDGsru3z28ewuqp9QP2A85j16Qlk4EO+bQRcemNfbJ9BTbnN+RxXjmgAlZEG9jJ/a9xvB/AY5O3LIs95X8Vi9Vsh9V6+0BE9vD6aIvVkQtjv0fHs3NM5+tYIpZ2QBugL8H4rhyZywDgBOz/sBM2747J5biCrsW48Nz/hhXh1M3YNQawAbvGWwI3ABcAd0UdOwhTHI/Fflt6A6u9/s8BbvHOaw6cjn02RxrgFCyHI5jMxNyGwG7mGnrv67Pzjd1ib1txaQEcLSI/iMgEETk0yf0hIg+KyCLsqfq9SewvaZ8hGhEpLSLTsSQVn6rqD5gVcRmAt9wzQd01xSwKL4vITyLyoohUTmJ/M4FjRKSmiFQCTsXmZKL6Gwe8ICJHeuNY2os7eh4YmwD5i4yIVAH+D7PUDVXVuar6naoOijl0KdA4r3Y8BfhtotwEvevsQODFfER4AHtiHz0Oa7Cn4tsK8TkaYJbtxcAcVf1CVV9V1d9U9XfgRuzG8GTvlEbYzeFYVV2gqj+r6hOegg2wFzbPf/fG5F1V/S5eeRyOwuBdh1cC/1PVj1V1JnA5kJ3L4UuB+iJSUCK3B0Vkfczr9Kj9f1KIbK4iUkZEupNj3UVV71fVSar6l6p+gD2s6RZ12l7ARO/6mq+qH6nqR1H7lgGfqOpCVZ2qqgPjlcfhL07Bcjh8QkQ+82JaYl9nYk+8eojINOxJ89bIabk0FVe18AL6KwNUx9zabgVGi4gksT9U9S5VbYg92Y/UQSpyf/mJkoQ2d21QNUtVD8Li49qJyP6J7iOKMsDBwGBVbYPdCCc8tiyCqv4GPIxZUz/C3MG253tS4eiFud99g93kb8asZHOwJ7p+0gpzWf28gOM2kZOSPy9eAg4XkX299SuAmZ4yvgsi0gtz0zs72urrKTP7qmpBWSorezeNG7CHDOW8traKyJ4i8ryIzBGRNZib356YYgX2XS8A5ovIayJymYhUjWr7ceBFEflCRO6K+kwORzJohs3fHUq85zUwI5djN2G/+xUKaPNxLC4x+vVlVPudVPWOOGR7UETWe/0+CzyKPRxCRM4VkYkistw75glyrjGw+NO7xWKuHxCRQ6L2vel9hvki8pKInCeWbdWRBrg07Q6HT6jq8QUcciKAiLQATvO2LSbHmgV2M7+0uP2JyPXAO6qqwGQRyQb2SFZ/MbwOjAdCxekvH5LRZp6o6moR+QqzBPwtInVVdZmI1CVxKdgXA4ujbszfwhSsZPWHqr6E55IoIg95MiSkv4h7o5fIYV/s5miWqs5NiPDFIzcFPTdqYFbF/PgKc3u9QkRC2JPsvrl2asrVA8ApqlpUt6CN2E1jNvB3jBviK0BtzDr3Fxbj8Tl2E4uqrhORgzEXrBOAO4CHRORQVV2qqn1F5DUsmcBJQEhErlPVoUWU1eHIj3ivQ7BrcXOU23ZerErQb8zj2G/jRmCZ9z+KiByGuaSHsetsNeaZEql1iKq+JCIfY14BxwPfikg/Ve2rqotEZB/MHfJ44DHsOmufj0uxIyA4C5bDEUDEausglmr2buA5b9dY4AIRKS+Wbrk5ifHJfg84zuuzBXaTtTJZ/cVkRDsDC+wlSf1NAZqLSBMRKYf5wCfU7UxEaolINe99RezP8Hevn8u8wy7DgpmLjaouByJ/vmB/wLOS1R/sNCcbAWcDIxPdn6r+oarjVHVsQJQrsHHdgo1xfhRY2Nu78RoKXIopVxWxOKidEJGbgQeB01R1YhFkju4yEn8Ye0N2FPCMqo5X1V8xC1bdmJO3e66Ed2CujJWxOJDI/j9U9WlVPQ27wbyqGLI6HPkxF3OJPSyywXOLzs1ToMBrMcGs8q6zpRHlyuNIYInnJjhFVf/A3P52QlUXq+oQVT0fc5e/JmrfZu8a/T8sMc1+XruOgOMsWA5HMOkmIj289+/g1bNS1V9FZDR207cd6KE5qdmLw1BgqIjMxNwRL/P+KJLVX39POcjG3JCug+R8PlXdLiI9sQxopYGh3g1lIqkLvCKW/roUMFpV3xeR7zB3yyuBhVg8XaK4EXjNUxrnYfEIpZLY39tiKcW3Yd/Lf2I1Y4rUn4g8Ddyhqhu893miqjcVR/Di4FlyngL6icgWLPlMTeAQVR0MIBaXdgiW1awghmG1egYA76nqquidInIrplxdjNUBq+Pt2qSqa7xjzsISbnSKw00wL+YAF4vID5ji9Ag5rsh4sSjNsM/7LxaEXxX4zXuIMABzYfoLs4QdhWXPdDgSjqquF5GXsBpX/2BeCPdiv+mxHM3OCVnyomrU9RUh+jr7HJgcp5tgbszBYsEuwlwbT2Ln+Cu835YPvWN3wzwfZnn7umP36T9gcZhdsd/fP4oojyOFyM7KtsPhcDgcyUdEvgTO8lwqv8zvWFU9NkVi5YpnSf4f9mS5AZYieriq3uXt7waEVDWuOCQRGQt0Bk5U1U9j9v1FLk+5gVdUtbt3THfsoUsTVf0rjz66AwNVtUoe+1sDQzDL1FLMVfE24C3P/e8oTBE8EMty9ifwmKq+7Cn1w7An6XWAVVi67Ft05wyhDkfC8CxWgzEL+kbgGaxW3Mqoa6M+MB9oqvnUgcznOntNVS+OOuarSNv5tDNQVQfksb8fZtmtiJVF+BQYpKri7X8GU6oaYlbkz4E+qrpERLpg12RLLCvhLCCsqu/nJY8jODgFy+FwOByOYiAik4EnVfV1v2VxOEoyIvIosLuqXlPgwQ5HEnExWA6Hw+HwFRG513Ozi91eUUTuze2coODFpr2FxaQ5HA5/WYHVrHM4fMVZsBwOh8PhKyKSBdTVnALXke01gRWqmluchcPhcDgcgcRZsBwOh8PhN0LutcnaYAkWHA6Hw+FIG5yC5XAkABEZKiIrvCx8ue0XEXlaROaKyC9efZl42k2pH7nrL337S8fPJiLrRGQtplzNE5G1Ua8NWObH0cXtx+FwOByOVOIULIcjMQzDMgHlxSlYTafmWCaywXG2m+dNrIh0TvQ+119a9xeYz1YIegI3YRasu7DU85HXVcBRqtoj79MdDofD4QgevipYIvKWV1DRkQGISCkReV5EVomIikhHv2VKFaoaqRWTF2diaZ1VVb8HqolI3XyOj4f8bn6Lus/1l5n9pfqzxYWqvqKqw7AaS4O89chrpKp+l8z+HQ6Hw+FIBr4muRCRA4AJWC2PNfkcNwzYQ1VPz+uYAvr5Cpipqj2Lcn5MWz2Aa4HG3qZfgQdUdXzMcXWB/sCpWHHGecD1qjqhOO2miqKMuVeY8h2gI/Z5/1XVrfmelEGISGPgfVXdpbK8iLwP9FfVid7658Btqjo1l2OvIcc6cEilSrskVwMgKyuL0qVzj/0v6r7t27dTpkzu9cddf3ns277dKl1mZ4NqzhKrlJxbb1u8Zfmo9VJYoROATd55kfXNWDXNskAWVmmydMx+iWpvs3d+Gcz3bpN3bCnvXN1xbmm2Ugpogv1MrcFKIu3tHbEaWIYZXssA/wHLgRbAdFXVhDykE5HzgK2qOiZm+5lAWVV9KxH9FIU99thDGzduXOTzV69eDUC1atWY988GAJrWqpwAyRzpTvTcKArTpk1bqaq1EidRcInnOizueCaSIF7rQRqfTCKv6zD3O40UoaozRGQeVrH+WT9lKQSLscJvf2D3K5cB74nIIar6C4CIVAMmAROB04B/gKZY+tAit5sG7A0sU9Vv/RYkgEgu23J9uqGqQ7ACoFSuXFk3bNiQTLkchUUVvv4a3ngDxoyBZctyP04EataEPfeEatWgShU2V6jA6rJlqVmjBmV32w0qVYKyZXNeZcrE975MGShVaueXSK7rG7dsoXL79jxw88387+qroVQpFGHI6Grc+nBNtq43Halm9SwOO3gbB7TcTqMG2TSor9SoAZUrm5iVKguVKkGZskKp0kLVulU3JXBU+wK5eTNsAJ7E0qD7QuPGjZk6dZfnIHHTsWNHAL766iu6Pm8GuVHXHp4I0RxpTvTcKAoisiBx0gSbeK7D4o5nIgnitR6k8ckk8roOk6pgicjJmF/9/tjN5BSgt6r+FnXYWKAbxVCw8uvHs8R0ADp4ViIwi9lfRekr9gkrcJeIXA8cDkQUof9hisalUcfNT0C7BSIikcfQx6nqVyLSEHgf+AbopapZ8bYV0+5XWBXx1Zh1JRsYDvxPVbO9cb7MO1aBBarauCh9ZSiLsUrtERpgpgJHOvHRR3DnnfDTTznbataEo46CNm1gn32gRQuoX9+2x1jLvv7kE0466SQmTpzIkUcemRKRK2Rns2DBAqpUqQI1apCVBTfcAEOG2P6TT4abboITTihNmTK+ZUNvCszOZftcb1/aMmZM7E+7w2G4uZFY3Hjmjxuf1JJsC1Zl7OnjL0BF4G5gnIi0inIdmwzcLSIVVbWoT0Tz7Afohfmz/A7c6R3/T26NiEh34GXiVMBEpDRwHlAFiLbadAE+EpFRWGzBUuBF4FmNwyczr3bjlK81Zi35RUQOxVz2HlbVgUX9nFFcBDwFHAEcBLwOTMMKbPYCFgBXAIdinkyOHMYCPUXkDaA9sEZV8zB9OALHxo2mlbzyiq3Xrg2XXw7nnw8HHWTWojho2bIlgwYNYu+9906erDGUKlWKRo0a7Vi/7TZTripUgKFDoVu3lImSH/9hfoh/xWxvAaxLuTQJZPfdd/dbBEdAcXMjsbjxzB83PqklqQqWqr4dvS4ilwNrgXaY+xyY8lEWqAf8meh+VHWiiGwFNqrq8gKaWoM9Rd2W30Fe7Nh3QAVgPXCWqs6IOqQpcAPwBBaHdRDwjLdvIHkQR7vxyNcaWIQpdgOB7qr6ccwxcX3OXJilqvd67+eIyNVAJ2Ckqq4RkXVAVhzjnHGIyEgs9mwPEVkMhPDCXFT1OeADLB5vLrARuNwfSR2FZsUKOP10mDLFtJK+faFXL3tfSBo2bMj111+feBnzYdmyZYwZM4bOnTvz44/1eewxM6y9/z506pRSUfJjDPCEiJytqnMARGQf4HHgPT8FKy6jRo0CoGvXrj5L4ggabm4kFjee+ePGJ7Uk20WwGXA/9sS+FhZbVApoFHVYxGpVMcn9FIiqvgu8G8ehszGlqRpwDvCKiHRU1UgNpFLAVFW9w1v/SUSaAz3IR8EqqN045TsIqA68gSmsn8UeUIjPGUusq+JSYM8itJNxqGq+dgDPcunSTacba9fCSSfB9OnQuLFpJfvtV+Tm1q1bx3///Ue9evXyTLaRaH777Teuv/56GjduSY8e9QHo3z9QyhWYW/VHwCwRiVh262IeDrfG24iIDAVOB1bkkWxGMCv8qdiDju6q+mMxZc+XwYOtIoO7qXHEkolzw89rMBPHM5G48Uktyf6HHwcswbLjLcGSas0CykUdU8Nb5uq2l8B+Eobn3jjXW53queL9H3Clt22Z1380v2FudMVpNx5aAz8Bt2DuhRcDrxTi/PyItXgprpaaI5O54QZTrpo3h2++MdfAYvDWW29xxRVXMH/+fIqTma4wHH300SxbtowXX6zGokUWKtYr31+i1KOq64AjReQE7CGRAD8Cn8fjVh3FMOwh1vA89kfXo2uP1aNrXzSp4+ODDz5IZvOONKbAubF1a05Cm/RhGD5dg+5ayx83PqklaQqWiNQEWgI9VPVLb9vBufS5P7BUVf9OYj9bsazGyaIUORmSwTII7hNzTAssRqk47eaLF7u1P3Cxqk4WkdeAe0XkNVXdXsi+HY6SzVtvwWuvQcWKZrkqpnIFcNRRR/HSSy9Rq1bqMiuXLVuW3XevwzOek3K/frvk3ggMqvop8Gkxzv/aK5eQFzvq0QHfi0g1EambzHjIvMosOBz5zo3//oOzzoKjj4b770+dUMXEz2vQXWv5k+njk50N27fnvNavh3nz4NtvzdN/2zZ7ZrFtW97vc9vWpg28/nrh5Unm3+x/wErgahFZBNQHHsWsS9EcjbmGFMRuInJQzLbVwMI4+vkLaOdd9Oux+kzZItIT6Kmq+wKIyFlAP6CTqi7JTQgR6Q+Mx+KcqgIXYrE3p0Ud9gTwrYjcBYwC2gA3kZNkg1z6jqfdgmiBuVpO99bvx5J7XIGX9jvez+lwlGg2bIAbb7T3AwZYZsAE0Lx5c5o3b56QtuJl6tSpPPnkd6xYcTUHH1yBE09MafdxIyLtsZjOPYmxjKvqTQnqpj72Gxthsbdtp5u76Fp00QlCisKIESMAuPjii4vVjiPzyHNuzJ1rCXRmzoRrrsnlzLQmrmsQCn8dumstf5I5Pps3mxLz99+wcCH8/DMsXw5ZWTkKT/T7ZKznR6VKUK6cVTqJLPN6X6HCztv3iTWXxEnSFCxPgekKPA3MxFzf+gA7ElKISAXgLOCkOJo8GnN9i+ZtVT23oH6AAZib3CxMAWmCKV17sLOlaXdvvSx5UwcY4S3XYHFJp0QnklDVKSLSBXgIuAdTAu8BBkW1E9t3ge3Gkf2vNZZxa74nx1wRGYFlaXxFVSP1TeP5nCUGEXkPy/L4gapm+ywOACLSGehcvnzcBkxHIhk40P4d2raFBCalWLVqFf/99x9NmzalVIrcfj799FNee+1O4Gquuy7uhIcpRURuAR7Bfr+XsnONuMK4CBbYVS7bdmk/uhZd27Zti9X/iy++CLibPseu7DQ3Nm+2RDoffghPPgmbNsHw4XDhhf4KmXiKVBMynuvQXWv5E+/4bN1qBtTVq20Z+/7vv63847Jl9n7FCgtXjqZUKahVK6d0Y+nSOSUcc1svW9acRfI7Jna9oGMqVTIZDj8c6tVLzpjmhxTOvT3BnVtdqjNVNaDPVIOFiISBc4HWzuUvcXiulF0wxXYY8LKq/uGnTBFcoWEf2LIFGjWyf41PPoETTkhY0/fffz/33nsv27ZtS1mSi3nzttGs2RrKlavJihVCojL1ishGVa2coLYWEVNOohhtNQbezyPA/nngK1Ud6a3PBjrm557Utm1bLU6h4W3bLHS1bNmygSw+6vCPbb/9BtOmUfbPP+GFF2DJEnsCcvLJ8NBDVgIiH0Rkmqq2TY208ZPoaxDiuw6jrzW/CeK1PmvWNr78EjZvLsuGDeZCN3cu/PPPzorUxo35t7PbblC3rr3q1DHv+T33zFnWqwetWpnCVBLI6zr02xN/G3CjzzKkE6diboVOuUogqnqRiOyG1fm6HLhdRCZiVq03i1GfzZGOjB5tylXr1nD88QltukuXLjRu3DhlyhXAhx+WBfbg9NNJmHKVBHbDShkkm5TXowvCzZ4jYGRnw+jRlL34YvNzAvu96dvXHujstZev4iWZpF2D7lrLISvL3PQmTIAZM2DlShg/vizZUT465cpZctx69cwLvnp1qFbNlnm9r1atSBVKSiS+Klie+dcRJ6p6qN8yZCqquhbLZjRYRPYDrgKeB57x/gieVNXf/JTRkSKGeD9LPXsm3J/ugAMO4IADDkhomwXx0kvvAv9y+umFSUaackYCJ7OzG3WhCWI9umHDhgHQvXv3ZHflSAe++AL+9z+YNo1hderAlVfS/a67MuZxv5/XYEm/1rKzzct0wAD49FNYs8a216tnrnIHHjiM00+HW2/tTqVKwU12lCm44XU4ohCReliWo9OxRClvAQ2BX0TkDlUd4Kd8jiSzcCFMnGg3O0moFbJ48WLWr1/Pvvvum/C2c2PjRvj551eA+Zx6aqAVrEVAWESOxOJPdyoJoaqPx9NIEOvRlfSbPkcU771nySuys+Hhhxk2fjxMnEj3DFGuwN9rsKReaxs3wquvmlfpwoWmOLVvb1VGOnSA+lb+kI4dh/HNN3D//d19lbek4BQsR4lHRMpiStUVwAlYMpVHgJGqut475nws2NYpWJnMG2/YsnNnqFo14c0/8MADvPfeeyxfvjzhbefGpEmQnf0OrVtvSkSW+WRyFZbh9QjvFY0CcSlYQeSrr77yWwSHX2RnwzPPwFdfwaxZMGcOHHAAvPsuNGvGV//7n98SZhQl7Vpbtsym15AhsGoV7LcfvPwynHmmufPFUtLGx2+cgpUERKQiliWwKlbHqhKWfvg3YB5Wl2sjsArzP/Yv04gDLD2sAK8Dt6vqL7kc8ylWesCRyYwZY8skVbq/5pprOO20wlReKB5ffw1Qik6dEpKLImmoahO/ZXA4EsrWrXDtteBZVTjrLHM7vu46S5nmcBSB7dth3DirIrLEK7JzwAHw9ttwzDHBzBJbUnEKVhEQkTJYmvPWwN5Y2vemwF6YYlWYu5ntIrISS008H1PA5gG/Ar+o6poEiu7Inf/DkllszusAVf0P+54dmcq//8L339vNTy6ZA99++23KlStH586dARg9ejRVqlTh1FNPBWDkyJHUqFGDk06yqhMjRoygTp06HO8lyhg+fDgNGjTYcX4qMAXrMipUOAc4I2X9OnJ44YUXALj66qt9lsSREiZMgEcfhfHjbf3KK2Hw4FyVKjc3Eksmj+emTfDZZ9CjByxaZCnIn3gCDjkEjjoqPsUqk8cniDgFKw5EpAFWh+sYoB2wH2aZirAEU4q+AVZghY9XAmuBLUA2VqdrM/A/oBymhNXEFLJaWKG9/bHYnx1ti8h84EdgIvA18LOqZiXnk5ZYjgXew76fHYhIZeAZVb0i1QK5Olg+8Mkn5tLTsWOu7oGPPvoo1apV26Eg9evXj0aNGu1QsB544AFatWq1Q8Hq27cvhx122A4F6+677+b444/nuOOOS8nH2bIFfvgB4Fu2bt2LICtYIvJ0fvsTWGg45YwaNQpwNzUZz7Jl0KcPjBxpuaqvuAKOPBIuvzzPu183NxJLJo7n/Plw0UWWvGL7dqhRA5591gyidesWrq1MHJ8g4xSsXPAKIHfElJ1TMOsUWBHfH4BngJ+91x/5WT6i2jwOQFXHFnBcKUzZOgA4CLOStQPO8Q5ZKyJfAu9jhXGXFuKjOXLnMuB27PuNpiJwKRablVJUdRwwrnLlyu6XMFV8+qktTzllx6YpU6bQrVs3Xn31VT744IOdigN//vnnO61//fXXO6Vf/+GHH3Za//HHHylXrlwSP8DO/PyzKVktWkzmkUeqpazfIhKbWrEssC/2H/Vj6sVJHJ999pnfIjiSyYcfwr33QqRGU9eu8OKLUKVKgae6uZFYMmk858wxb9JJk8zbtE8fOPZYcwMsanhwJo1POuAULA9PqToVuBBTqiphcVKfYwrV15jLXpFqUKlq7ziPy8Yyai0iqi5MlBWtgyffmd72qcAbwBuquqQospVURKQGFnslQHURif5uSwOnAX/7IZvDB775xpYdO+7YVKVKFQ477DCqVatGjRo1djo8dr1mzZr5ru+xxx6JkzUO7H5vAE2aHIbIUSntu7Co6rGx27zf5JcwzwCHI3i8+ipceinUrAnhsGUXaN3ab6kcac5PP5kiVb68ZQK85BI4+GC/pXIUlhKvYInIocA1wHnA7piL3yvAOKzaeCCKzKrqYqxWzEgREXLcCc/BMts9KiJfYTckb6nqFr9kTSNWYhnKFJiVy37Fang4Mp2//4Y//oDKleGgg3ZsbtmyJSNGjPBPrmIwdWo25pF8NxBsBSs3VHWziDwIfAw857c8RWXQICvtdcMNN/gsiSNhfPAB9O9vD2UaN7Y74mrVCt2MmxuJJRPG87ffLAQ4K8tCgvfeO3FtZ8L4pBOlCj4k8xCRiiLSXUSmAJOBbsAY4CSgvqreoKofBkW5ikWNGaraT1XbYgk37gMaASOAxSLST0Qyuhx8AjgWy+4owLnAcVGvo4BGqvqgf+I5UsakSbY87LCMqb44bVopYBO33XaH36IUh1pAwb5WAWbcuHGMGzfObzEcieCffywg5rTTTLn6v/+z9OtFUK7AzY1Ek67jqWp/QTfdZH9B27ebx3oilStI3/FJVzLjTiJORGQ34DrgZqA2ZrXoCbyqqmv9lK04qOocoK+I3IcpBzdgj65v9aqq91fVX/2UMYio6gQAEWkCLHTp8ksw331nyyN2LsE0ZswYbrzxRr788kuaNWvmg2BFY8sW+PVXKFWqPO3b+y1NwYjIzbGbgLrARUS5SqcjH374od8iOIrLunVw8cUw1guhvvBCK0AU4yZcWNzcSCzpOp433QQDB9r71q3hqacsP0qiSdfxSVdKhIIlIlWBPkAvoBrwCfAw8GUm3VR78VufAZ+JSEOgN6ZQXiwi7wH3quoM/yQMDiJyMDDdG7OaQE3JI9OTqqZ1kL0jDn70vuJDD91pc+3atenUqRNV4ghYDxJz5kBW1nJq1BjCokVd2WefffwWqSBujFnPBv4BXgb6pV4ch8Nj3jwrPD5rluXIPvtsyzbgCg45EsCwYaZc9ehhuVL23NNviRyJIqMVLBGpBFyOxdHUAt4FHlLVqb4KlgJUdRHQR0QeAm7ClMufRWQYcL+qzvdTvgAwFaiDxdxNxeKtcvvHVCzhhSNTUc1RsGIiiQ877DAOO+wwH4QqHrNmASzk339D/Pln28ArWJlcaPipp54CoFevXj5L4ig0330H558PGzZY3FVUhtFE4OZGYkm38fz2W7jtNmjTxqxWpZN8p5Fu45PuZGwMlohcBqwGBmJFe9up6tklQbmKRlVXqWoISzX/OOZy86eIjPGydJVUmmBPyCPvm3rL2FfTXM92pI6+fWH//fNeLy5//QWrV0OtWlCvXuLa9ZHffgNox623bttRlyuIiMiPIlI9ar2bV38uY/j888/5/PPP/RbDURi2b4drrjGXYRGr8Jpg5Qrc3Eg06TSekyZBhw5Wf3rw4OQrV5Be45MJZJwFS0TqA09iSQu2AsuBU+KpVZXJqOq/wC0iUhGL0ToDmCkiPVT1Y3+lSz2quiC390GhwELD3bvDK6/Y+zJloHp12G8/OPdcuzEoWzZVosZH48awIGaYd9/dFJuCuOUWuDHWgyyBRFuvYtx+nn32We677z7+/PPPtHITNAUL9t+/TEr+uIvBQVjNqwjPY7UG5/kiTRIYG4nbcaQPL74IL7wA114L992XNL8tNzcSS7qM54QJcPzxUKoUvPYaKYuTTZfxyRQyxoIlxlXA71j68nuwWlF1MDfBEo+I7AFcCbwKnABkAR+JyGvRT5FLAiJycLwvP+RT1XGqek3p/O6Ojz8eli0zC8wnn1icQCgERx9tLi1B4957Td7Ia86c+M6rUsXqzCSLGV5YYi71a5o3b85ZZ51FnopuQDEF6wcmTLiHNWvW+C1OYXCBLQ5/2bwZHnvMHlgNHuyCYhwJ5d9/4bzzoFEjC+/r0MFviRzJIiMULBGpg9WtegGYAuyvqg+o6kdAZ297iUdVV2KFim9X1c+AA4EwcD4wQ0RO9FO+FDMVmytTC3hN8UvAAilfHurUgfr1rXbTzTfDV1+ZReaRR3KO27rVHL0bNLA6T4ceCh/HGC1//x3OOMOsSlWqwOGH5ygeM2ZAp06w225WQr51a/jyy8LLW7WqyRt57bmnFfu48kpo0gQqVoTmzU327Oyc8xLtEhhLxNzTqtUuu0488USee+45ygbNIpgP27fD7NkAPzFs2ENs316k2uiOBDFgwAAGDBjgtxiOeHngAZg715SsJCeycHMjsQR9PDdsgLPOMseN0aPtrzuVBH18Mo20dxEUkVOB4UBlLJHDQC8zHACq+r5fsgURVf0h6v0WLL37OMyq9bGIPAX8T1W3+iVjisjMoPr994eTT4a334Zw2LZdfjn8+Se8/ropWR98YNauKVNMWVq6FI46yvLCfvqp1XSZPNmUH7CUxK1b27YyZUzhqhAVvte4MXTsaOmQCkt2tv3LjB5tMVCTJ5uLY82apnilgt9/t2XLlqnpL8nMn286dcOG17FgwbV+ixMPp4lIxMxWCjhJRP6OPkBV30m9WInhu0gJAEfw+fxzePBB6NIFUhC76OZGYgnyeH70kf21LVpkf82HHJJ6GYI8PplI2ipYIlIas77cBUwHuqnq774Klaao6jQROQTojymp7UXkfC8TYUYSxLirhNGqlQVlgylWI0eaG2GjRratZ0/b//zzMGgQPPusWbbefBPKlbNjWrTIaW/BAouD2ndfW4+tftisGdStW7Bcd91l1qgId95pr/vuy9nWuLFZ4EaOTI2ClZUVMfdALpn2br/9dkaOHMmC2PixABMxyLVsCXmVHggYL8WsPxuzntaZPN9++22/RXDEw/jx9jCqenUYMSIlXbq5kViCOp6DBlka9qZNTYc/9lh/5Ajq+GQqaalgiUhNYBTQCftzvlFVN/krVXrjjV8vEZkIDAV+FJGuqvqFz6Ilheg6WAXFWaVdHSzVHNeWH3+09Vj3ty1b4Ljj7P1PP5kFK6JcxXLzzXDVVZZUo1MnOOecHGUL7B8jHm6+eWelKVKk87nnLKh8wQLYtAm2bYO99oqvzeLy1182FvXqmXtkDO3bt08XJWUHlqIdSpUayYMPzuOuu+7yV6B8UNWMcFN3pDH//APXX29W/xYt4OWX7YGTw5EAli6FXr3MuWTSJPO0d5QM0u7PTURaAN8DRwNXqupVTrlKHKr6JtAWqw/1sYhc4bNIyWIqsEfU+7ziseKOwRKRk0VktojMFZHbc9m/u4iME5GfReRXEUlO8pVZs+xRGZgLnoi5A06fnvP67TcYOtSOKajWdt++1maXLla448ADc84tDDVrmvUr8qpRA0aNgt69LSvixx+bbDfcYD5uqSDa3JMLZ511Fv36pVed28hH2rhxAiNHjvRXGAf9+/enf//+fovhiEUV3njDHj6NGQOnnw7ff2+p2VOEmxuJJYjjeeWVNtVGjPBfuQri+GQyaWXBEpFjsGLB2cBxqjrJZ5EyElWdLSJHAKOBlzyl9s7o2LYMILYOVrHwXFafxbIzLgamiMhYVZ0VdVgPYJaqdhaRWsBsEXktofFuM2eas/fdd9t6mzb26758ed5+CQcfbL/+W7fmbcVq3txeN91kT3tffBGuSIDuPXGi5ajt2TNn259/Fr/deCkg/mr58uXUrl078FasFStWsPvuu1O+fHl+/XUTsJJ7732KTp3SK/thJjJ9+nS/RXDkRo8eliWwXTt7YLTffikXwc2NxBK08fz3X/jsIxgwINcktSknaOOT6aSNgiUiZwBvAvOB01Q1hXdhJQ9VXSMip2GFmm8D6ojIVaqaESnJklAHqx0wV1XnAYjIG1iZgGgFS4GqYnfrVYB/gaKP55YtpjhlZ5uby+efw0MPWfTsLbfYMS1awEUXmYXoscdMmfr3X8s22LQpnH22WYyeew7OP9/ipKpXN4tXy5YWl3TLLZZXtnFj+PvvHKUoQqdOdpNSFEtPixaWHOPDD82q9cYbViSkeoqqBkTMPdEuj1HUq1ePww47jG+//TY18hSBTz/9lBNPPJFPPvmEE044gdmzvwBOZ9u2ycChfotX4nnjjTf8FsERzbp19ls4eLA9LHrmmdRUec0FNzcSS5DGU9W83qtWtb/YIBCk8SkJpIWCJSLdsCx3PwIne0VzHUlGVbeLyPXAUiyhSBURuTATMwyKSF3geiASrPQbMFhVl8bZRH0gOinIYiC2fOBAYCw2nlWBrrlZBUXkGuAagHJ5WZTAElXUrWs3B9WqmZN3KGTFMaPPe/lly4z1v//B4sXmmteuXY5Fq359+PpruPVW2yYCBxwAQ4ZY2//9B5ddZspczZrmShOd6vXPP6FhwziHKYZrrzW3wAsvtH+kc86BPn2K5oJYFAqwYL311ls0jbhbBpRWrVrx8MMP06xZM9atg/XrD6BMmRc5+ODGfovmcASLrCxzdf7iCzj1VHj0Ud+UK0fmsnatZfpfu9b0+IoV/ZbI4QeiBcVf+IyIdMeSLnwNdFbVdf5KVHhE5KvodVXt6I8kRUdE/g94HPgQOMtL8Z4RiMgJwBhMQYqksW8HNAK6qOoncbRxHnCSql7lrV8CtFPVG6OOORc4ErgZaAZ8CrRW1bV5tVu5cmXdEMSiwZlC7dqwYgUsXLiTkti3b18+/vjjtEtr++uvpme3aJGTHDFZiMhGVQ1UNgARORl4Css6+KKq9o/ZvzswAru2ywADVPXl/Nps27atTp06tcgy3X///QDcc889dH3e5tOoaw8vcnuOYnDFFTkPnO68029pdpobRUFEpqlq20TKVFyScQ1CfNdhccczEWzebE4kq1p/R+3aMP3xw5NdTi1ugjA+mUhe12GgLVgi0hVTrj7Fbuo3+ixSiUVVnxCRDcDzwEgvjXtGuAsCTwMvAr006omDVxPsKSCeAkmLgWgzTgPMUhXN5UB/r4+5IjIf2BeYXAzZHUVlwwZTrsqWtSyCUTRs2JDWQXCaj4PFixezcOFC2rVrx8KF9pMeychfkghMHGQMs5Ot6Tri49xzLVPgVVfBHXf4LQ2QeXPD72swCOP57ruWE+qIs63sZFCUKwjG+JQkAqtgiUhn7CnHNxRCuZKwCDAJs0AsAw7WkP6T/1nJJR0tVrmhqkNEpAKmdLwsIpdlSOKLxliB6lhz7rPA1XG2MQVoLiJNgCXABcCFMccsxEoLfCMitYF9gHlFFdpRTP76y5Z77bWLm9CVV17JlakqdFxMXn/9dW677TbWr1/PggX2k56qLPeJQkRqAA9i18eexGS4VdV48m+lPg4yDkakqKaSIx/efdeUqy5d4MknA3PXm4Fzw9dr0O/xzM62MOhWrUy5Chp+j09JI5AKlpfB7k3gJ8wtsDCWq0eBiP9FA+BjIN86R474UdWnRaQq8ACwCujtr0QJYSpwADAnZvsB2BwsEC9erSc230oDQ1X1VxG5ztv/HHA/MExEZgAC3KaqKxP0GRyFZf58WzYpdhJJXzn//PNp3bo1FStWJFIPOd0ULKyeYRtgCGb5LYrvelLiIBuVRHNgJrFgAVx6KRx6KLz+uguISS4JuwYh/a7Dt96yRL6vvgrjnGd/iSdwCpaINMXiYRYCp+QXn5IHe8es102IYAFBwlIZeMhbvVND6sdl/BBQCytM/IeqPuuDDMUiprjwIOAJEWmO1VgDOAxLerFLPau8UNUPgA9itj0X9X4pcGJRZXYkmIgFKxcF68orr2T58uWMHz8+tTIVgcaNG9O4cWPAQskgLV0EOwEnqOoPBR6ZN7mZJWIVtZOA6cBxeHGQIvJN7P+Mqg7BlD3atm1brEDle++9F4D77ruvOM04isI//1h2VICRIwOnXGXg3EjYNQiFvw79HM8pU+Dyyy3x7gUXwLiXUi5CgWTgfAs0gVKwRKQaMB5zDzlNVVcVoZkHgDMiTQLpVSW0YBYCNbz3l0S9TxmqqiLSB/txfFpE5qnqh6mWo5hMxX74o/8QHsrluBGAq9aaieRjwTrggANoEEQfj1yYM2cOK1as4KijjkpnC9YKYH0x2whkHOSiRYsKPsiReLZsgbPOgsmTzT2wWTO/JdqFDJwbvl6Dfo7nVVfBHntYBZQygbqzziED51ugCcw0EJFSwGvYTfsJqvpHUdrRkE6VsLQAugITNKQTEyimr0hYarOzQlVdwlJfQ7ok1bKoapaXPv8b4A0ROURV56ZajmKQ3n5hjuKTj4LVu3fv1MpSDAYOHMirr77Kf//9l84WrLuA+7y4zqIqWoGMg3z55QITpDmSwYMPwqRJ8MADVu8vgGTg3PD1GvRrPCdNgl9+gWefhTp1fBEhLjJwvgWawChYwB3AqcANqjqhOA1pSOdiAdO+EQ6H6wLHY/Ffe2G+xluB5cCvwATgp1AoVJgkESuBbHICwNVrzxdUdb2IdMHilN4SkcNVdZNf8hSGBBUXThpekpfO5cuXz3V/9+6wciW8/35KxcqXYcPMRSJCnTpw9NHw8MMBDXPKkBisXr16cf7557NtGyxZYvH7aWJ8i+ZuLNnMChFZAGyL3qmqBxbUgIuDdOzgs8/g/vvNgnXXXX5LU2IoidegKtx0k/3fXXaZ39I4gkQgFCwR6QTcB7wOPFfA4YElHA4LcBpW58ir4spG4C9gLVAOOAS4wtu3IBwOPwcMDoVCawpqX0OaJWE5HXjF23S5hjQrcZ+g8KjqAhG5GHPtHAikR+q1GESkDDm1r3aq7quqw1Mtj6qOA8ZVrlw53iyGgaBSJas7rGo1fK+9Fs44w2oJB66eZz4K1oknnkidOnUYPjzlX32hadasGc2aNWPBAstiVa/eznWm04S3EtFIEOMg7/BSgvfrl2ne6gFl3Tro1g2qVDGTQoDJxLnh5zXox3h+/DH8+CO89BJUDlRVwF3JxPkWZHxXsESkJvAqMBu4NpdU2WlBOBzeFwvGPBozgYeAccAvoVAoK+bYutgPzCVYjNjN4XC4DzAiFArl+/k1pB9iaYwDg6p+ICIPAneJyMeqOtpvmQqDiOyLfVdNsCdqWdi1sQ3YAgT+Ljti0TrhBHjkEdi40TISP/usKT1gSs/jj8Nzz1kyhFq14JJLIPJbe9999iexfDlUrw4nngiF1S9Eclwk6taFUAguvjinqv1dd9mf0datcOCB8OijcHhUzdXnn4fHHjP5qlaFgw+G8ePNp33GDOjd24KJVaFpU8u4fOyxuUlSAP/9B2vW2D/iHnvssrtDhw5Uq1atCA2nnh9//JFNmzaRlXUkkJbxV6hq2G8ZksWqVUUJJXYUmb597cdw/Hj7EQowbm4kllSP5/btcNFF9l/UrVtKuy4Sbr6lFt8VLKzW0B7AqcXwvfeVcDgcKYi8GbgWeDkUCm3L6/hQKLQMs0K9Eg6H22KFbocDJ4bD4atDodDmFIidaPpixQUHexmBlvksT2F4EpgGHIS5XB4E7A4MxlyX0oJvvrH7ic8+g0WLLHlWixY5NTXvvBMGDzYl65hjLMHWT14S+rffhgEDLNHWAQdY/d3vv89pO+L+N38+eAnr4iKStGvbNnuwfMkl8NRTpogNHAinngp//GE6ztSp0KMHvPIKHHUUrF4NX3yR09aFF0Lr1hazHlG4KlQo4mBFZxDMpSbOXWnkVvTggw8yZ84cbrttBpCW8Vc7EJHjgFaY+/OvqvqVvxIVnyFDhvgtQsnhu+/sqUuXLvbjEnDc3EgsqR7P4cPh33/hmWcCl6AyV9x8Sy2+KlgicgGWjOIuVZ3upyxFJRwOXws8t5rV817ipfrrWPcksD5E6PV4zg+FQlPD4fDRWJB3GKgTDofPCIVCaRHLFMHzvb4US7/6ooicnkbWyEOBDqq6QUSygTKq+qOI/A94Bigw/iMI7LabKVBlykDLlnDeefD556ZgrV8PTzxh9x5XeA6qe++dYz1asMCUsxNPhLJl7Sa9bductnff3dLPli0bvzyLF5uFqkEDU/T233/n/c88Y4rdRx+ZlWvhQjMonXGGWa/22ssUqggLFsAtt8C+++bIX2Qi2ZTSWRvx6N+/Pxs2bCCSUT4dLVgiUh94F3OhjmQdqyciU7FC87GZyByOnfn7bzjnHHsC9PTTfkvjKAGMHGnP6Lp29VsSRxApVfAhycFzDRwI/AA84pccxSEcDp8JDN7O9k8GMrDpOtaVByoCIyQcf6n4UCiUFQqF7gO6Y9l1XvHiudIKVZ0N3IYlK4nNHBRkBIuVA/gHK5YIlnK2OLfxKaVVq53Tw9arZ5YogFmzLGtxp065n3veebB5s/1ZXHklvPmmHR/hrLMspqp+/dzPj7Bhg4U+VK4MDRuaK+A771hM0IoVFpPVooUpbFWr2rZI5rsTTjDloEkTc7t45RWzekW4+WZLhXvccZYg7PffCz9GO1i82JZ5ZIPYZ5996NOnTzE6SB3NmzfnoIMOSucU7WBW/Cxgb1VtqKoNgebetrS+W77lllu45ZZb/BYjs1myxBSrFSvg3XftxycNcHMjsaRyPKdNM2+R888PYHxxHrj5llp8U7CA/kA14GpV3e6jHEUiHA43xNz8pg1hyB3b2ekjCEWwDoZCoVcwBeU84LpEyOkDz2L1LB736pqlAzOBiK1kMnCbiHTALIppk3o+1rokYkkPwGKW8qNhQ5g922KgdtsN+vSBQw4xhakwVKpkCS1mzDCr2bRpcOihtu+yyyx+6okn4Ntv7bgGDUwJA1O4fvwRRo82w1K/fmatWurZLvr2NUWxSxc7/8ADYejQwsm3gwIUrHPPPZd27doVsfHU8vXXX/P999+nc4p2MPfiHqo6P7JBVecBN3n70pZNmzaxaVNaOSSkFytW2BMgETOJH5gWDgeAmxuJJpXj+cwzplj17JmS7hKCm2+pxRcXQS/r3FXAY6o6ww8ZEsATWLa5C1awYh4WuxOpgDBLQ5pnDFYsEpaawChgD0H+FyL0KfBIOBx+z4vXShu8+ljXY/UwhpNT9DnIPAhE8v/cDbwPfImlxT/fL6ESSatWUL68uQw2b577MRUqwGmn2ev22y1ZxaRJ5jYYLyJ5u+5NnGieO6edZut//w3LYmZ3mTJmoTruOAiHYc89LRX9NdfY/ubN7XXTTXD99fDiizkuj4WiAAXrwQd9rfJQKG699VaqV6/OggUfAWlrwcqLwpSxCCTPBjyTXVqzcaOZ36dMgVdfhTPP9FuiQuHmRmJJ1XiqWvbA885Lr5IYbr6llpQrWF5B4cFYEPM2EamsqoV8Tu4vXmKKc4B7Q6HQnyFCSFgaADdiiS6ejzm+DFAd2BAKhTbu0qDVxaoNoOhHU5hyzKEc+iVwO9AriR8l4YiIAPWwtPSdRaSzl3I8sKjqx1Hv5wGtRKQG8F8axZHlS9Wq0KuXxWOVL29JLlatMgvT9ddbEovt26F9e3PxGzXKLGIRZezdd+3czz8v2E0wL1q0gBEjrI8NG+B//9s5nfj771uK92OOgRo14MsvzUWwZUvYtMnir847zzyB/v7bFLb27Ys4IPkoWJ07d2b//fdPm1S2r776KiC0aWPraWrB+hx4WkS6qeoiABFpBDzl7XM4duW+++Drry1zzsUX+y2No4Qwc6Zl2y3Mw0dHycMPC1ZXoArwHaZArAIG+CBHcegJrMP+/AGrUYVlowMgHA6XwqqYXw0cgVdbKRwO/wGMBp4MhUKR4nrRaddlPOObHcqhI4ErwuHwXaFQKJ2yK9YH3sFqf5UBbsBSoAceEakINPNW//RTuSqo0HBR6NfP0q/ff7/pF7Vrw6WX2r5q1awg8C23WMa/Vq0sdipSImrNGnMh3Ba3XXZXhg41S9Qhh1h8WN++lskwQrVq8N57ds+0cSM0a2YWqqOPNjfC//4zN8Ply6FmTTj9dMt8WCQiClYu2mLDhg3Zc89AVULIlxYtWrBypY3Z7rvbKw25CRgDzBORpdgDuPrAL96+tKV3794APPnkk77KkXF89JH9aJ14opm00xA3NxJLqsbz5Zdt2bFjUrtJOG6+pZaUKlgiUh5zx/oZOApoj2WdSxvC4XB5zHo1KhQKrc3jmDqYEnU0MAfLRLcA2M3bdgdwfTgcvjQUCo0HlmFWH7Abi8+AeVidrNOBN5L2gRKMqi72Ckd/D/QGHhGR41T1i/zP9A9vXj6Mpdgvh8XQbRGRIViV+ZSnzS+o0PCwYfmvgykwffvmrJcqZa5/t9++67FdutgrL7p3t1d+FHRM69bwww87b7vkkpz3Rx1lVqvcKFcOXo8rL2ccqOZrwRo0aFCCOkoN48aNY82aukDbdLVe4VmtDhaRE4B9sWtwlqp+5q9kjkCyerUFioJZrxyOFPL++3DyybnWqHc4dpBqC9bVWDHXk1Q1G7NipRvtMQvc2Nx2hsPh6sBXQEPgCuCVUCiUHXPMflhx5THhcLgLdkPxKlALuE1DuiQcDi8H/gOOJ40ULABV/QZARJ7BrH39RaR9gN3tBmOFn68iZ04ejhWBrop9j45MYfVq8zmsWtUyekTRvn17zjzzTO68805/ZCsC1113HS1bngK8mPbxV6r6KfCp33IkEve0OMFs3QonnWQF9MaOzanbkIa4uZFYUjGeixfb1Lv88qR3lXDcfEstKVOwRKQc8D9goqp+kqp+k8DB3vKHPPY/CzQFOoVCoW9yOyAUCv0aDoc7ABOA4X3pu28oFOoSc0xWOByeEtVf2qGqm0XkAWAIpigG9cbpPOBs7+YuwjwRWQG8jVOwMot8rFf77bcf9erV22V7kPnyyy95/fVKfP55esVficjNwCDvd+Lm/I5V1cdTJJYj6FxzjVUbD4Wgc2e/pXGUMN7wHneffba/cjiCTyotWBdhVp1rUthnMmgGrA2FQn/H7giHwwcC3YD7I8pVOBw+EctMdyBWY2k48HAoFFoXDocvxFKE3+q9YpmDWczSmeFAX+BOgqtgbQCW5LJ9CeBymmYa+ShYQ4uc990/WrRowVrPWTnNLFg3YqUuNnvv80KBtFWwevToAbgMXgnh++/NV3i//SxLTprj5kZiScV4vvGGxQe3aJG0LpKGm2+pJSV1sLzMgbcDPwIfF3B40KkG/JvHvouBbXjJLsLhcDfs89YDRmA1le4D3gmHw6VCodDvmKvhxXkUFl4F7O4lzEhLVHULlsSko4gc7rc8efAMEPKSXAA7El7c4+1zZBL5JLhIR0aMGMHPP/8MpJeCpapNVHVV1Pu8Xk39lrU4VKxYkYoVKxZ8oCN/tm+3CuTVqlmO7EqV/Jao2Li5kViSPZ4zZljm3SuvtJIk6Yabb6klVRask4AWQLcAx+HEi2IB2LnRHpgaCoX+DYfDFYFBwETgxFAotAkgHA7fCDwNnIslwvgEOGsykw+RsFQDJkTV0IooVuk+ZkOAe7FsYIGIuxOR2Bi6jsASEfnFWz8Auz4q48gs8rBgbd68mX333Zc77riDa6+91gfBCo+qcskll1C37r1A67RyEYxGRC4FRnkPZKK3lwMuUNXh/khWfAYUOdWlYyeGD4d58+DNNzPm4YibG4kl2eM5apQtL7ssqd0kDTffUkuqLCM3YIV430lRf8lkFbBHHhanPQHv7o0jMGvXQxHlymMQsALwyq3a8dOZPgVzoVsrYanl7asF/BsKhdJawfLqnA0DzhGROgUcnipWxbzextJEz/deY7H5usovAR1JIh8LVocOHWiQTpUjgT///JOtWy1NdTpZsGJ4GcgtwXxVb5+jJPPEE3DddXDggXDOOX5L4yihvPee1WlMszBdh08k3YIlIo0xZeIBVd2a7P5SwB+YVaMBsChm30bshgByLB//ishX0Qf17dt3ddT+qgDb2FFgqALwAHBtFln7l6LUHwmU3U+ew9K2X4ml6vcVVU3DHECOhLB8uS1j/iUrVKjAK6+84oNARUdEqFu3KatWWWHoOkF5fFF4hNwt9Y2ANSmWJaFcc42FHQ8ZMsRnSdKUBQvg3nst8OXtt9PTNysP3NxILMkcz19/tdcDDyS86ZTh5ltqSYUF6wrsj/OFFPSVCqZ5y9yST8wCDvZipqZ727pEH1C/fv1KQHMsHg2g7Xa28x//RR+2rnS49LLtbD9qKlPbS1jSPl+Nqs4GPgeuEgnmP6SINBWR00XkNBHxNe5DRDqLyJCsrCw/xchMIgpWGmsjETZu3MiAAS8Av9OwodU6SydEZIbnlqvABBH5Jer1K/ANVhcwbalZsyY1a9b0W4z05dFHrcL5mDGw995+S5NQ3NxILMkcz3HjbJmO6dkjuPmWWpJqwfJupC8CvvAKSWYCP2L1qboAb8XsG4clujg1FAq9Hw6HXwX+17dv3/uA8VgWxSeAlcCL4XC4AtBtC1smbWf7oViR2/nApiY0qVOe8vzJnwBDyQz3yuFY1rDDgW99lmUHIrIb8BJWQDo7Z7O8DVypqutSLVNBhYYdxSAPBWv+/PkceeSRDBw4kLPTJAfvv//+y733XgMMoVGjtKwHFPkN3R/7jVwftW8r8Bfmvpu29OvXz28R0pfp02HIEDjzzPRM21YAbm4klmSO5/jx0KZNersHuvmWWpL9vLM9VhPqtST3UygkLJdIWG6SsJQt7LmhUGgbMAo4OxwO14jZ/R4wDxgQDoerANdjNxB3A1MwJSkLU8BWYFnq6lam8j0a0vIaUtGQNgXkYA5mE5uYy1zIO6lGuvEulvb8Ir8FieEpLI3+sUBF79XJ2/akf2I5Ek52NvztVVioXXunXRUqVOD0009PqxisunXr8vDDi4AL0jL+SlXDqhoGLgfuiax7r36qOjJDXMsdReHKK6FmTXg8bbP0OzKAefNg4kQX/ucoHMlWsLphNU4CY32RsHyLWVKeApZJuEjuas9iN+F9ojf2pW/VEYwon032PktZ+idQJhQKdcVcArtiN+37AtPC4XBPrDbU0FAo9GV0O73p/VYrWjGNaWxnuwLpkdKsADxL0FjgfBFJZQ22gjgDuEpVJ6jqNu/1FVazrYuvkjkSy6pVkJUFNWpA+fI77apbty5DhgyhXbt2PglXeEqXLs26dQ2AqmmpYEVQ1VdUdbPfciSDyy+/nMvT2a/IL/74A378Ef7v/6BhQ7+lSQpubiSWZI3n+PG2PP30hDedUtx8Sy1JU7A898AzgU9UdW2y+ikC0bWYagLHFLaBUCg0ExgJ3BwOh5tH7fp8LnPrj2EMdaiz52Y2/+WlZd8cCoVGY25xHYAPsPpK47AMizsIh8OlqlHtMUHWrGVta6C8hvSNwsoYYN4E9mDn78FvKpJ7tsB/saQjjkwhg+KvAFasWMEnnwwC/krbFO0AIrJORNbm9fJbvuLQsGFDGmaogpBUJk2y5Wmn5X9cGuPmRmJJ1niOGwctW1oSy3TGzbfUkkwrwn7AXgQgY1wMWUDpqPUFRWznFuAU4I1wOHyUl4q9EcDP/MwqVnEWZ2VXoMJTwNPhcHgrFmMFduN+M/B0KBSKzWJwK3AccO0PoR9+IfP4FCvGfDoWwB4EJgH3i8glqroRQEQqA2EKESsmIidjltHSwIuq2j+XYzpibodlgZWq2qG4wjsKwbJltsxFwZo4cSJdunRhzJgxHHnkkSkWrGjMmzePyZN7AB+w116N/RanONzIzlkEywJtsLjIoP2HFIr77rvPbxHSk48/Njfeli39liRpuLmRWJIxnlu3mq5/xRXpn8DSzbfUkkwFK2JM/SCJfRSFrsCr2Gd/SEP6V1EaCYVCS8Ph8KVY7aTXw+Hw+ViNq7sAFrNYn+XZk+7l3m2YwlQHC+D+Gfg0pjYWAOFw+AKgHxbjlSlZF3dCVdeKyARsftzmtzweNwMfklNoWIHWwAasSHaBiEhpzHX0BKy22RQRGauqs6KOqYbNkZNVdaGI7JnQT+EomHwsWLVq1aJr167UjonNCjKHHHIIjRr9zcKFu6W1BUtVh+W2XUR+xFyrn0mpQA5/ycqCTz+FU09Nv9SYjoziww9h40Y49li/JXGkG8lUsE4GpqvqkiT2UWg0pG+ToKxUoVBoXDgc7gU8DYzrS98L+tL3J+Bo4KWsUNYM79Cf82vHK1rcE7NsfANcke7FhQvgA+BxEWmkqgv9FkZVZ4hIcywD5L5YUpERwGuquosinAftgLmqOg9ARN7AXGRnRR1zIfBO5DOr6ooEfQRHvOSiYGVlZfHEE0/QtGlTnn32WZ8Ey52pU6dSv3596tatyy+//MKoUaPo3bs3tWrV4qeffmL06LdYsqQPUCFTw1S+pBCJZoJoRb744osBGDFiRDK7ySymTbN4yRNO8FuSpJKJc8PPazAZ4/nqq1C5cmZMxUycb0EmKY+GRKQ8cBj255jRhEKhZ4CrMCvV9L703agh7a0hnVHAqQCEw+GGmML3NPA+lmFwY9IEDgaReXG0r1IAIlJWRJYDTVX1BVXto6o3q+qLhVCuAOqzc+Hpxd62aFoA1UXkKxGZJiKX5iHTNSIyVUSmbt++vVCfx1EAuShYS5Ys4a233mLYsGH+yJQPDz30EMOHDwfgt99+45FHHmHVKgsXnDlzJgMGPEJW1mr23BMqVvRT0qRxAVbWokCirMinAK2AbiLSKuaYapgV+QxV3Q84L6HS5sI+++zDPvvsk+xuMofly63Y0O67w8kn+y1NUsm0ueH3NZjo8czKgm+/hVNOgapVE9asb2TafAs6ybJgtQXKE5wYm6QSCoVeCofDM7HshB+Ew+GvgYHA+NyUJc9idTCmmHX3Nt8GDAiFQtmxx2cgM4C1mILlawp/Vd0mItvYOf6jKOTmnR3bZhngEMzlqSLwnYh8r6pzYmQaAgwBqFy5ciZbMlNPLgpWo0aN+P77730SKH86dOjA6tWrAejatStdu3bdse+SSy6hWbNLOPJI0jqDIFjBYXa+XgSoDdTAyl3EQyCtyPfcc0+yu8gcsrOhUyeYPx/eeQdq1fJboqSSgXPD12sw0eP55ZcWtnvuuQlt1jcycL4FmmQpWBHLxMQktR84QqHQD+Fw+EDgOiymZzSQFQ6HfwJ+B9ZgSmdDTAGtCWzBXNEeCIVCf/khtx+oapaITCQAFiyPZ4A7RORyVS2qyWgx9t1GaAAszeWYlaq6AdggIl9jsV5zcKSGiIJVt66/csRJr1698t2/0HOwTef4K4/You3ZwD/AV6r6e5xt5GZFbh9zTAugrIh8BVQFnlLV4bENicg1WJkGGmXA4KYNr78Os2bB889nvPUqQ0nYNQj+X4cTJkDp0hmdyNKRRJJpwfpTVf9JUvspR8JyMmZtKQPcpCF9JfaYUCi0BXgqHA4PBDpiboOHY6ngqwBbgWVYLagJwLhQKPRvSj5A8PgeOEVEqqjqep9lORpLn79ERGZiyS12oKpnxNHGFKC5iDQBlmCuTRfGHDMGGOjVACuH/fE8UUzZHYUhFwvWpEmTuPrqq3nttddo06aNT4IVjQVeDtR0t2B5xYaLS1KsyG3bti2WFfmCCy4A4I03MqnaRhLYvBnuuAP23ttStpUAMnBuJOwahMJfh4kez4kToU0bqFIlIc35TgbOt0CTLAXrIGB6ktr2i/fJSe8+TMLynoZ0TW4HeqnXP/degUHC0hC4HfgLGKAh9dP97Gfsx/gA4Dsf5QCL8ShW4hNV3S4iPYGPsXkyVFV/FZHrvP3PqepvIvIR8Av2hP5FVZ1ZTNkdhSEXBatSpUrst99+VAngv2inTp2oX7/+jjisWDJFwYogIsdhsRsAs1T1i0KcHkgr8kEHHZSspjOLO+6AxYstbVuZINWhTx4ZODd8vQYTOZ5bt8IPP8C11yasSd/JwPkWaBL+KyYiVYFmwLBEt+0XEpbS7Fw7C6Ap8JMP4hQJCUtNYB4533lnilBkOYFM95at8VnBUtWElDZX1Q+IKUugqs/FrD8KPJqI/hyFZMsW+O8/u3mrUWPH5jZt2vDmm2/6KFjedOrUierVq+e5P1NcBD3L7zvYA5fIDVk9LzbrnEhMRwEE0op8++23J7P5zGDlShg8GM4+u0S5Bmbg3PD1GkzkeI4eDZs2wXHHJaxJ38nA+RZokvGYaH9vmTFFcjWkWRKWBVjhZLAEDdP9k6hInM/OSqLflVQXAasB32qji0gpoA/QBUsX+xlwn6pu9ksmRxL5+29b1q6dNrV17rzzznz3Z5AF6yXsd7VpJPhdRBoBrwAvYu7W+eKsyGnMN9/YA5A+ffyWxFEMMukafOcdC9U99VS/JXGkK8lQsJp5y0wL3G8GhDCf4b4+u9cVhWns7B+9zi9BAFRVReQPcuaLH9wGPIC5cm7CkpPsgRdU68gwli2zZUyR4TfffJM77riDCRMmUL9+bGb9YJMpFiwsVvWw6Lp4XjHu/6MQFu4gWpHPOeccAN5+OyHlFzOT77+3bAIlzIUpE+eGn9dgosZz7Vr46COzXpWO9V1KYzJxvgWZZChYTb3lX0lo2zc0pFnAvX7LUVQ0pJMlLHdjSsUa4CSfRQKYj6Wr94vuwI2qOgh2FEh8T0SuVU07BdpRELnEXwHUqlWL9u3bUzGAhaT23ntvunTpwoABA3bZt3q13QhUrryTx2O6shB7eBVLBXbOSpZ2HH744X6LEGxUYcQIq+RaqZLf0qQUNzcSS6LG84knzD3wllsS0lxgcPMttSRDwWoCLHFuVsFDQ/og8KDfckQxDzhLREqrapYP/e+FJS+J8DFm5auH+Y/7hoh0BjqXL1/eTzEyizwUrI4dO9KxY8fUyxMHF1xwAa1bt851X7T1SnLL3ZVe9AGeFpGbsDgOgEOBJ719acstmXaXlmh++QWWLoX77vNbkpTj5kZiScR4btkCzz5r1quA/i0UGTffUksyFKyG2NNIh6MgFmKxT7XZNdNQKiiHuQYCO9wWt2L1ynxFVccB4ypXrny137JkDGlWAwvggQceyHNfusdficg6dk7hXAGYhMVlAJQCsrDyGLulVjpHyrj7bqhYEU45xW9JHA6mToV//oFrXKCAo5gkQ8HaA1iQhHYdmUekTlpN/FGwAPqJyMao9XJASER2pOBX1ZtSL5Yj4eRhwXryySd5/PHHmTdvHmXSKD10BsRf3ciuNXIyjjPOsDJ6Y8eO9VmSAPLEE/D++/DII1Cvnt/SpBw3NxJLIsZz7FgoVy4zk1m6+ZZakqVgTUtCu47MY6W33MOn/r9m1yQb3wLRt6wZfwNYYshDwWratCnHH388pQMWzbx9+3aqVKlCOBzmtttu22V/uluwVHWY3zKkgk6dOvktQjBZtgxuvhmaNYPevf2Wxhfc3EgsiRjP336DFi1g990TIFDAcPMttSRLwVqVhHYdmUdEwarlR+eq2tGPfh0+kYeCdcYZZ+x4shckVJXevXtz6KGH5ro/3RUsEamhqv9G3ud3bOS4dKRXr15+ixBMBg2y5ejRULasv7L4hJsbiSUR4/nbb9CmTQKECSBuvqWWhCpYIlIai19Zn8h2HRlLZJ6UrNRRDn/IQ8EKKmXLlqV///557s8AF8F/RKSuqq7AHrbkZi0Wb3uwzIuO4vHzz/Dww3DmmXCwn4lkHY4cNm6EefPgwtjSyA5HEUi0BSuSHGBLgtt1ZCaReeJ7UglHhqOao2DVrr3TrltuuYWPP/6YGTNm+CBY3kQqBUgeKQLT3YKFFQ+OWKaO9VOQZHKKl7zhww8/9FmSgLBkCZx9NlSpAi+95Lc0vuLmRmIp7nhOmADZ2ZCp2czdfEstgVewROQrSJ47V7LbT2U/aThWW72lU7AcCUVV+fnnn6latSrNmjWDtWuZtnkz1StVommVKgBMnTqVmjVrcvDBBwcyucWCBQto2rQpL7/8MpdddtlO+7ZssRCW0qXTNzeAqk4AEJEywH7Ae6rqV7KbpNG5c2e/RQgO2dnQrRusWAFjxkDNmn5L5CtubiSW4o7n5MlW8uKYYxIkUMBw8y21JPquIuJIfYOIdAGmq2rvBPeRdniKyUGR9y72B0TkSeAQb/Vc4Gn/pHFkGj/88AMXXXQRbdu2ZdSoUbBsGacDZ5Qpw/PeMSeddBIXXnghzzzzDBcG0Cdkt9124+677+bAAw/cZd/ixbasXx8CqBsWClXdLiKPAuP9liUZ3HDDDX6LEAxUoUcP+OYbePRRKzRUwnFzI7EUdzxnzzaPgEytd+3mW2pJ9F/zNm9ZKsHtOjKTiO9Tdr5HlUBcoeHicdhhh/HZZ5+xfr0X5rd8Oa8Dtfbee8cxo0ePpm6Aa2LVqFGD+/IovpoB8VexfI89cHElPjKVZ5+F556zAkN90rp2tCNDmTsXov4iHI5ikWgFK+Ly9YKqPpzgttMWVe2YKlfEdEFVe4tIXaz+1Rt+yyMitYFLsLTt96jqShE5EliqqvNTLY8rNFx8mjRpkrOyfLkF+TTLycof9JS12dnZZGVlUaZMmV3isDIg/iqWF4ABItIIK/OxIXqnqv7oi1QJ4Pjjjwfgs88+81kSH1m+HMJh6NjRlKw84gpLGm5uJJbijGdWFsycCddem2ipgoObb6kl0QpWJPaqXKIaTLZCkiqFJxX9pOFYReaJr0lRROQQ4HNgPhYL8iiW1ewEoAUQPP8xR76MGTOG559/njfeeIPddtst7TIIAnz33XccddRRfPzxx5x44ok77fvrL1s2bpxysZLF697y8Vz2pXUWwa5du/otgv/ccw+sXm2FhZ1ytQM3NxJLccbzt99g0yY46KDEyRM03HxLLQlVsDxf+q1AlUS268hYIvNkQ75HJZ8BwFOqGhKRdVHbPwYu90kmRzHYuHEj//zzD6VKed7KaahgNWzYkPvvv5/mzZvvsi8DFawmBR+Snlx9dQk3Qq9aBe++C2edldl3r0WgxM+NBFOc8fzuO1sedliChAkgbr6llmSER68ESnZqIEe87OEtV+Z7VPI5BLgyl+3LgNq5bHcEnG7dutGtW7ecDWmoYDVq1Ii77747130ZqGDtBXyrqtujN3oZBo/AxWalL/36wb//wh13+C2Jw5EnH34IDRtCixZ+S+LIFJKRjGIlOTfODkd+BEXB2gRUz2X7vsCKFMviSAZpqGBt27aNDRs2kJ29aw6Y+V5UYJPMsft8CdTIZfvu3r60pWPHjnTs2NFvMfxhyRIYPBguuADatPFbmsBRoudGEijOeH73HRx7bGZ7sLr5llqSZcGqlYR2HZlHZJ6s8lUKGAOEROQ8b11FpDHwMPC2b1I5iszzzz/P2LFjGT/ey/wdUbACnDUwlnfeeYcLLriAX3/9lVatWu3Yvm2bpWkXsSeuGYJgsVax1MR/F+Ji0b17d79F8IetW+HSSy2w5a67/JYmkJTYuZEkijqeixbZX8TBBydWnqDh5ltqSYaCtRgsYZfDUQANge3A3z7LcQvwAfAPUAmYiLkGTgJy99FyBJqsrCy2bt2as2HZMlvWTh+PzwMPPJCHH36YOjFWt0WLrF5rgwZQLmHphPxBRMZ6bxUYISLRCW9KA/sD36ZcsARSYm9qXnsNvvjClKv99vNbmkBSYudGkijqeE6ebMvDD0+cLEHEzbfUkgwFaz5wiYiUV1Vfs8M5Ak9TYGFs3EWqUdW1wFEichxwMOY6+6Oq+pbL1NXBKh433HBDTlHF7dvhn3/M5LPnnv4KVghatmxJy5Ytd9keib/KEPfAiPVagP8wd90IW7GHHS+kWqhEsm2blYcsW7asz5KkEFV45BFo3hzuv99vaQJLiZwbSaSo4/nNN1C6NBxwQDKkCg5uvqWWZChY87A/y72AOUlo35E5NMXmi6+ISGtV/VlVvwC+8FsecHWwEsqKFXbDV7s2lEnGT15y2LhxI1u2bKFatWo71cHKpAQXqno5gIj8BQxQ1bR2B8yNE044AYCvvvrKX0FSye+/22vw4MwOaikmJXJuJJGijue4cXDCCVCxYhKEChBuvqWWZNxt/Oktm+MULEceiN0x7g285bcswE8i8ivwKvC6qi72WyBH8ejbty+zZ89m5MiROe6BaZTgAmDw4MHccsstrFmzxmp5eUQSXGSCghXFTmYOEakDnA7MUtW0dhG86qqr/BYhtWRnw803Q9my0Lmz39IEmhI3N5JMUcbz779h3jy4/vokCBQw3HxLLclQsGZ6ywOB8Ulo35EZ1MOyhv3ityBYtsCLgKuAh0TkG0zZestzH3SkGWXLlqVcJEApDRNcABx77LE88cQTVIx5rJphLoIRxgMfAU+JSBVgKlAZqCIiV6rqcF+lKwYXX3yx3yKkli+/hI8+gv79oX59v6UJNCVubiSZooznt97jmyOOSLAwAcTNt9SS8DTtqroG+As4KNFtOzKKg7zlz34KAaCqc1Q1pKotgCOBGcBDwHIRGe2vdI6icNddd/HKK6/YSppasA4++GB69+69i798JrkIRnEIOe65ZwNrgT2Bq7EkNHEhIieLyGwRmSsit+dz3KEikiUi5xZH6HjYuHEjGzduTHY3wWDLFrj6aqheHW66yW9pAk8mzg0/r8GijOcHH0CpUpmfQRAyc74FmWTUwQKYjlOwHPnT2lsGwYK1A1X9QVVvAs4EZgPn+CySo7hEFKw0s2CtWbOGFSt2LcOWoS6CVYHV3vsTgXdVdRumdDWLpwERKQ08C5wCtAK6iUirPI57GPi4+GIXzKmnnsqpp56aiq785447bII+/XTmB7QkgEybG35fg0UZz4kT4ZhjoEKFREoSTDJtvgWdZEV8TwO6iEgNVf03SX040pvDgDlBcsETkabAhZi74N7AN5jbYLznnww8haWXflFV++dx3KHA90BXVQ1CDFrGce2111KqVCkGDx6clkWGAcLhMC+88ALr1q3bsW3LFli61DJeZVANLICFwJEiMg44CYjUpKsBxPvItR0wV1XnAYjIG9iDklkxx92I1bc7tLhCx8P1JSG4A+CHH+Cpp6B7d3CuSHGRgXPD12uwsOOpCgsWQEnROTJwvgWaZClY33jLI4FxSerDkaaISCngKOAdv2UBEJEemFLVHoshfBl4TVWXFKKNyJO7E7BacFNEZKyqzsrluJQ9PS+p7L777pQq5Rno09SCde6557L//vvvtG3RIrspaNAgrRIixsPjWNzjemAB8LW3/RjMZTce6gOLotYXY9f0DkSkPnAWcBz53NyJyDXANQCNGjWKs/vc6dq1a7HOTwtUoXdvqFIFHnrIb2nShgycGwm7Br1jC3UdFnY8//nH6mBnmDdAnmTgfAs0yfqLnozVMDkGp2A5dmU/oDo5N1F+czswErhWVeO9mYslkE/PSxqPPvooy5cv57HHHsvZmKZJLo444giOiIm8zlD3QFT1eRGZhhUf/1RVs71dfwL3xNlMbvnANWb9SeA2Vc2SfNKHq+oQYAhA27ZtY9soFGvWrAFM6c9Yhg6F77+HgQPT7jrzkwycGwm7BqHw12FhxzMSz7rXXnEdnvZk4HwLNElRsFR1k4hMATomo31H2tPRW36T30EppJGqFusmiiQ9Pd+RCc8RF8uWLWPChAmxG22ZZi6CS5cupXTp0tSuXXvHtj/+sOXee/skVBJR1alY9sDobYXJRLsYU9AiNACWxhzTFnjDu7HbAzhVRLar6nuFFjhOzjzzTCCDa89s324ZA1u2hOuu81uatCID54av12BhxzNDEwblSQbOt0CTTCeTj4H7RKS2qv6dxH4c6cepwB+qOt8vAUTkYGC696S8TQFPs3+Mp8ncTo1Zf5JCPj2vXLlycRW/EsXjjz++8wbVtFWwrrrqKv755x+mTJmyY9scr7JgixY+CZVARORmYJCqbvbe54mqPp7ffo8pQHMRaQIsAS7AYiqj29mR3F5EhgHvJ1O5Argp07PpvfYazJ0Lo0dbcKAjbjJwbvh6DRZ2PBd7FS8zLJ41TzJwvgWaZCpY7wP3YdlkhiWxH0caISKVgWOBQT6LMhWoA6zw3it5K0nx3DUE8ul5iWfNGssMUaWKvdKIm2++mU2bNu20LWLBat7cB4ESz43AK8Bm731eKBajlS+qul1EemIP90oDQ1X1VxG5ztv/XPFFLjxnn322H92mBlV45hlo1QrOTXrG+4wj0+aG39dgYcfz11+hRg2oVi058gSNTJtvQSeZCtZ07AbzdJyC5cihE1AeU8D9pAnwT9T74hLIp+cljT59+lC5cmXuu+8+25CmCS4Ajj/++F22ZZKCFX09RL8vZpsfAB/EbMv1pk5Vuyeiz4JYuXIlAHvssUcqukst330H06bBoEFQQDyNY1cycW74eQ0WdjwnTbICwyVl6mbifAsySVOwVFVFZAxwmYhUUdX1yerLkVach9W7meinEKq6IHoVWJRbHJaIxJVCzO8ndw5j1apVbN26NWdDmroHAsyePZsaNWpQq1YtALZty0ly0SyuylCOIHCuZ9nJyLiHp56CSpXgkkv8liQtyei54QOFGc/162H27JJVUcDNt9SS7ES/I4HrsWxqryW5L0fA8dwDzwJeV9WtBR2fQuYDdTF3wR2ISE1vX1yBBUF8el7SGDZs2M4b0jSDIMCRRx7JBRdcwMCBAwELyN6+HRo1yqwarmI+s5diRb2bYg885gFvYuUS0joOsU+fPn6LkByGDrW4q8suSzv326CQsXPDJwoznpH4q6ZNkyRMAHHzLbUkW8GahBWQvBCnYDmgM1AZeN1vQWIQdk1IAVAFiw9xpCtpbMF64YUXaBgVfZ1J7oExvA10wepdzcCux1bAcOyBzDm+SZYAOnfu7LcIieerr+Cqq2DPPeHJJ/2WJm3JyLnhI4UZz8jvaUnJIAhuvqWapCpYqpotIq8Dt4pIHVVdnsz+goqIfBW9rqod/ZHEdy7F4pMCUf9KRJ723irQT0Q2Ru0ujdW2mp5quRxF58ILL+SQQw7JeVKXxhass846a6f1TFSwROQi4ETgJFX9NGbfScDbInKhqgbtoUzcLPfmYJ00VPJzZft2uP56qF8ffvqp5GQISAIZNzd8pjDjOW2axV4dcECypQoObr6llmRbsACGYoVcrwIeSEF/jgAiIk2Bk4H7o4qI+k3kp1WAllhx7AhbgR+BAakWCkBEOgOdy5cv70f3acumTZtyj8FKMwVr69atzJw5k6ZNm1LNu4GNpGjPJAULuBh4OFa5AlDVj0XkUe+YtFWwLrjgAiCD4h6eew5+/x3eeQdcsHyxyLi54TOFGc/Jk610W9WqSRYqQLj5llqSrmCp6h8i8glwrYj0V9Xtye4zaJRgi1U01wLZwAt+CxJBVY8FEJGXgV6qutZnkXagquOAcZUrV77ab1nSiXfffXfnDWnqIrhw4UIOOeQQhg8fziVeAoGIBSsTamBF0Rq4O5/947HfjrTl9ttv91uExPHvv3DbbXD00dCli9/SpD0ZNTcCQLzjuW0bfPklXHFFkgUKGG6+pZZUWLDAah69h8XgvJv/oY5MQ0QqAFcCY1R1sd/yxKKql/stgyNJLFliywYN/JWjkNSuXZv33nuPNm3a7NiWiS6CQE1gWT77lwE1UiRLUjj55JP9FiFxPPwwbNoEzz5bcnJbJ5GMmhsBIN7xnD0bNm+2FO0lCTffUkupFPUzHsvG9j8vY5SjZHE5diP1jN+C5IWIHCsiQ0TkIxH5Ivrlt2yO+OnQoQMvvfSSrajmpIpKMwWratWqnHnmmTRqZFUCtmyBBQugVClokpCKUYGhLLAtn/3bvWPSlkWLFrFo0SK/xSg+H31kCS0uuqhkBa4kkYyZGwEh3vH8809b7rNPkgUKGG6+pZaUWLC8GkGPAIOBjsCXqejX4T8iUha4DfgOmOCzOLkiIt2B5zDrakdgDNACK0A8wjfBHIVCVSlTpgylSnnPjdasgQ0bLIX0brv5K1wh+eeff5g/fz4HHHAAFStW5I8/TF9s2hTKlfNbuoQTm2AmmkoplSQJRFw80zruYeNGS8feqBH06+e3NBlDRsyNABHveM6aZcu9906yQAHDzbfUkioXQYBhQAi4C6dglSS6AXsBPQNcz+YWTL4XRWQdcIeqzhORgYArkJ0miAiff/55zoaI9ap+/bRzZ/rkk0+4+OKLmT17Ni1atGDGDNu+//7+ypUEvgYKKpsciKyjReXuu/MLMUsTnn8eVqyAt95KO2twkMmIuREg4h3Pn36yYu0lLQGmm2+pJWUKlqpuFpEBwAAROUZV0/pP01EwIlIOuBf4BXMTDSpNgc+891uw+lcAA4GvsCyYjnQjTd0DAY499ljGjx9PA0/2iIKVaZ5ZJSEB0PHHH++3CMVDFQYOhGOOseQWjoSR9nMjYMQ7nosWlaz6VxHcfEstqYrBijAIWAw8KsYB3k24I4MQkTYiUgq4Bns6fUeArVcAq4BIstYlQMROUBOo6ItEjkKzatUq2rVrl5NJMI0VrHr16nHqqadSqZJ5yGWqglUSmDdvHvPmzfNbjKLz/fcwbx5ceqnfkmQcaT83Aka847loUVr+LRQbN99SS0oVLFXdhFk02gEfY0Vcb0ilDI7kIiL1gW+BqcD9mAXoQz9lioNvsGKnAKOBp73U7SOBXerzOFLL0qVLGTly5I71nj178uqrr+5Yv+666xg5ciSqSs2aNalQoYLtSNMMgr///jtdu3ZlwoSckEWnYKUvV1xxBVekaz7oNWssqUWNGnD22X5Lk3Gk9dwIIPGM5/Ll9teQYeUu4sLNt9SSyhisCMMx16sTgGeBV3yQwZE8lmJFpQdjVqFnAm69AugJeHfl9MMylx2JKVu+FMd2hYZz+OSTT3jkkUfo0KED9erVY9KkSdSokZO5+5tvvqFBgwZ069aNDz+M0uXT1IJVpkwZatSowVNPPUWHDh1Yu9YyCJYvn3Ep2ksE4XDYbxGKxvr10LGjPe7/4AOoXt1viTKOtJ0bASWe8XzrLVuWxOcFbr6llpQrWKqaJSK3YsrVv6r6X6plcCQPVVURmY651n2pqu/4LFKBqOq/Ue+zgYd9FCcihys07HHYYYfRs2dPdvMyAf7000877f/1119zPzFNFay9996bwYMH71ifOdOWLVtCGT8eiTmKRYcOHfwWofBkZ0PXrjB9ut2RnnCC3xJlJGk5NwJMPOP59df2l1DSUrSDm2+pxpe/a1UdJCJHALeJyAhVneOHHI7E49U5GwSsBc73WZw8EZG4i5dGK2CO1LPvvvuy7777Fv7ENFWw5syZw7Zt29hvv/0A5x6Y7syePRuAfdLljm7LFrjgArNa3XMPnHOO3xJlLGk3NwJOPOM5YwYcemjaJZZNCG6+pRY/n4f2AU4HhojIcZ7lwJH+XAkcA1ytqiv9FiYfVgIFuS6Kd0zp5IvjyIvVq1ezbt06GjRoQKHqlKepgnX33Xczc+ZMZnnFWkqKgiUitYFLsMQ496jqShE5EliqqvP9la7oXHvttUCa1J7JzoZLLoH33oNHH4U+ffyWKKNJq7mRBhQ0nps2wZw5cN55KRQqQLj5llp8U7BU9W8RuRl4CbgJeNIvWRyJQUSaAE9gdc6G+ixOQRzrtwCO+Bg4cCD33HMPW7dupWzZsvGdtGEDrF5tgUs1ayZVvkRz5513snr16h3rJUHBEpFDgM+B+cB+wKPYQ5ATsKLfF/onXfF46KGH/BYhfp58Et58E667Dm65xW9pMp60mhtpQEHj+eef9gyhKA4RmYCbb6nFb4/+l4EuQH8R+URVZ/ksj6OIiEhpLGFJNtA96BZJVZ1Q8FGOIHD66adTp04dyhQmAGnRIls2aJB2viAHHXTQjveqJUPBAgYAT6lqyCv2HeFj4HKfZEoIRxxxhN8ixMe//8Jjj8FRR8GgQX5LUyJIm7mRJhQ0nr/8YssM/y3NEzffUouvCpaXEOFqYCbwmogcrqqb/ZTJUWT+BxyNKVcL/RamMBQUj+VisPzloIMO2knpiIv5nkdZGlaT/P7776lZsybNmzdn/nz47z+oVQvq1fNbsqRyCOZeHMsyoHaKZUkoM70sJfvvv38BR/pM797w99+W1CLNHkqkK2kzN9KEgsZz+nQoV65kJrgAN99Sjd8WrIir4OXAOOBprDitI40QkWOxdOajsDT86UZB8VguBstH/v77bzZu3EiTJk3iPymiYBXmnIDQtWtXjj32WIYNG8b339u29u0z/p53E5BbHvB9gRUpliWh9OzZEwhw3MO2bXDrrTBiBPTqBYcf7rdEJYbAz400o6DxnDgRWrc2Jask4uZbavFdwQJQ1fdFpB9wh4hMUlVXGytNEJF6wBvAHCyxRdBrXuVGbDxWWaANcD1wd+rFcUTTt29f3nnnHf7+++/4T0pjBeuNN97YkZI+omAddpiPAqWGMUBIRCLh5yoijbGSCW/7JlUCePTRR/0WIX8efRSeegquugoe8KXsX4kl8HMjzchvPFesgMmT4bbbUihQwHDzLbUEQsHyuBc4DHhORH5T1cl+C+TIHxGpALwFVAGOU9V1BZwSSPKIx/pMROZhRZNfT7FIrtBwFJdffjmdOnUq3ElprGAdHmVB+OEHW5YABesW4APgH6ASMBFzDZxEmj/kOPTQQ/0WIW+mTIG777ZU7EOGZLyZNGgEem6kIfmN59ixkJUFnTunUKCA4eZbainltwARVHU7cAHmcz9WRBr5LJIjH0SkFDAMOBy4TFXzqPaa1kzHUs6nHFUdp6rXlC7tvBPbtWvHueeeW7iT0lTB2rZtGx999BFLlixh82b46Se75830/0VVXauqR2FJj24DngJOVtUOqroh3nZE5GQRmS0ic0Xk9lz2XyQiv3ivb0WkdcI+RB5Mnz6d6dOnJ7ubwpOVBT16QJUqMHSoU658ILBzoxj4eQ3mN54jR0KzZpn/W5ofmTjfgkyQLFio6goROQ34DhgvIkeq6lq/5XLkShjoCtyuqm/5LUyiEZEqQG9gkc+ilHj++usvsrOzadq0afwnpamCtXLlSk455RQGDx7MQQddx7ZtsN9+4HkMZiwi0lpVf1bVL4AvithGaeBZLLX7YmCKiIyNyU47H+igqv+JyCnAEKB9McXPl969ewMBjHvo08csWAMGZP4ECyiBnRtFxO9rMK/x3LoVJk2y5wkl+Zllps23oBMoBQtAVX8TkXOAj4BxInKKqm70Wy5HDiJyE+a28xLwiM/iFBsvLXR07JhgbkobgIt8EcqxgxtvvJElS5bw448/xnfCmjWWeq9SJdhzz+QKl2Bq1KjBd999x1577cWoUbatBLgHAvwkIr8CrwKvq+riIrTRDpirqvMAROQN4Exgx82dqn4bdfz3QNKrUD/55JPJ7qLwvPuuxV117GiJLRy+EMi5UTx8vQbzGs/p02HLlhLzW5onGTjfAk3gFCwAVf1cRC7BYl/eFpEuqrrFb7kcICJXYO477wHXpWlSi1h6xqxnY7EgP6jqfz7I44ji9ttvZ+PGQjxj+esvWzZunHZuT+XLl+cw7y6gBCW4AMsWeBEW8/iQiHyDKVtvFcKLoT47W5wXk/+T8SuBD3PbISLX4GW0bdSoeN7qhS4xkGzGjYOzz7YC3O+/D4WpL+dIKIGbG8UnYdcgFP46zGs8J02y5ZFHFthERpOB8y3QBPaXVVXfEJHKwIvASBG5QFW3+i1XURCRr6LXVbWjP5IUDxHpBrwAfAJc4MXNpT2JylopIidjymdp4EVV7R+z/yIsvgRgPXC9qv6ciL4zmSML+6+YxjWwli9fzpQpUzjqqKP59ttqgKVoz3RUdQ4QwjIJtseUrYeAgSLyvqqeH0czuWnTuT4A8kpLXAkclYc8QzDXJdq2bVush0hTpkwBAhJgnp0NN90E++4LH38MlSv7LVGJJlBzIzEk7BqEwl+HeY3nDz9YzfkMryVYIBk43wJNYBUsAFV9SUQqYfWx3hWRc1V1k99ylURE5Crsh+4b4OxMtCh6BYf3JCb5S4z/eF7nBjL+IxOYNWsWFSpUiD8GK03jr8CKDJ911lm8886PLFrUhlq1LAarJKGqPwA/iMhrwHPAOXGeuhhoGLXeAFgae5CIHIg9uDtFVVcVU9wCufXWW4GAxD3062cW3uefh2Ja5hzFJ1BzIzH4eg3mNZ7ffuvKu0FGzrdAE2gFC0BVnxGRLdgf7Qcicka6pQNPV4tVBBHpDTwBfIwpVxkVEycibYCXgQMim7CnbpFlPGGxgYz/SFfGjBnDXnvtxUEHHcRFF11Ew4YNGTt2bHwnz51ry8IkxUgyCxYsYMqUKZx88slUqVKF+fPnM23aNE499VQqVarEn3/+yU8//cQxxxzD1KlT+eqrfQA4/ngoFZhcr8lHRJoCF2IWrL2xBzpXxXn6FKC5iDQBlmBZaS+Mab8R8A5wiWc1SzoDBw5MRTcFM3s2PPSQ3WlefbXf0jgI0NxIHL5eg7mN56RJsGiRGW5LOhk43wJN4BUsMDOxiKwHhgMTRKSzqi7xW65Mx0vF3g/4H/aDeGEmWq6AodifQS/gb/JwaSiApMR/lCuhJee7d+/OpZdeylNPPcWTTz5JhQoV4j959mxb7rNPcoQrAl9//TWXXnopc+fOpUqVKnzxxRdcddVVLFy4kEqVKvHJJ59www03sHz5cg455BD69rXzTjzRV7FThoj0wJSq9sBM7IHHa4X5nVfV7SLSE3sQVBoYqqq/ish13v7nsHqLNYFBYvF521W1bUI/TAz7779/MpuPjy1b4NxzLfHL6NFpF5uYqQRibiQQv6/B3MZz4kRbXnZZInpIbzJtvgWdtFCwAFT1dRFZDYwCJovI6ar6k89iZSyea+arwNmY9fDGTIm5yoXmwHmqOrcYbSQl/qNy5cqZkEQkboYPH07r1q2ZNGkS1atXB6BDhw6FaySAClbnzp2ZMWMGDRqY0fKss86iffv21KlTB4Dzzz+fo48+mpo1a7J1K3z5pZ13wgl+SZxybgdGAteq6oyiNqKqH2AFi6O3PRf1/irit4glhG+/NcP1EUcckcpuc9i6FY47DmbOtGqrDZzhPCj4PjeSgJ/XYG7j+csv5g1bq1YyekwvMnG+BZm0UbDALlwROQp4H/hGRC5T1bf9livT8Ez4bwOHAP8HPJUh2QLzYiLQEiiOghXI+I90Ijs7m8suu4xQKETfiAmnsGzYAIsXQ9mygUly8eijj1KqVCn69OmzY1uNGjWoUaPGjvWaNWtSs2ZNACZMsI/RqhXUr59ycf2iUab+xtx5552AT3EP69fDrbdaEEq/ftC5c+plcOSJr3MjA8ltPCdOLNnFhaNx8y21pJWCBaCqP4tIO+Bd4C0ReQK4TVW3+SxaRuBlwnsNmxtdVDXOwJe05krgRS/+Yyaw01xS1a/jaCOQ8R/phIgwb948ditO0dM53rDuvXdg0k9/9913lCpEINWnn9oy090DReRgYLqqZgNtJB+3NVWNswha8Hj++ef96fiLL+DKKy2pxYUXwi23+COHI098mxsZSux4LlkCCxfCzTf7JFDAcPMttQTjDqSQqOoyETkGGIBZWNqJyEWqusBn0dIWESmL+UbfBcwAzlXVP/yVKmU0Bw4CTsplX1xJLvz2Pc8ERIQmxc38F0D3wHfeeadQx48bZ8tMV7CAqUAdYIX3PpJYJpZ4E80Ekn1SPRe3bIHnnoPevaF6dXj9dejWLbUyOOIi5XMjw4kdTy8reYkodREPbr6llrRUsAC8mlg3icgkzOVqhojcBLySqa4myUJEWmIJRNpiweU9My1TYAE8D3yOJfQoapKLQMZ/pBMbN25kxIgRHHPMMey7775Fa2SWl7SxqOf7zKxZFjNQrZqFzWQ4TbCC3pH3GcmECROAIsQSFoX//rNqqr/9ZrFWb75ZYipVpyMpnRslgNjx/OUXy+dS0kpd5IWbb6klbRWsCKo6SkQmA8Mw5aCLiNygqksBPEvXRM8NpcQjIvsBK1T1HxEpA9wEPAhswKxWJTGmrQFwqqr+6bcgJZlVq1Zx7bXX8sILLxRdwfrlF1seeGDiBCsmV1xxBSeddBJdu3Yt8NhRo2x59tlQvnySBfOZGI8DBRbl9nDMc61NW0KhEJCCuIfFiy0ryrx5MHQodO/usgUGnJTNjRJC7Hj++ivstRdUreqjUAHCzbfUkvYKFoCqzvcys/UGHgJ+F5G7genABOB6LBNeiUZE9sBccYaLyFBgMNAGSxpytaou91M+H/kUS+jhFCwfqVevHosXLy5eDNbPP9uydevECFVMVJVvv/02LoVRNUfBuuCCJAsWPOYDdTF3wR2ISE1vX9q6CA4dOjQ1HV1zjQWcfPIJuCfUaUHK5kYJIXo8N2+Gzz+Hk0/2UaCA4eZbaskIBQvAs1A9LiLjgIHAU8Am7A97uJ+yBQVVXSkiw7EaS1cDy4DzgbdKuFvlR8BjXoa/Geya5KJwQTSOIlG6dGnqFydt3po1FtBfrhy0aJEwuYqDiPD777/HdezPP1sIWa1acOyxSRYseESKesdSBdicYlkSStNUFLzu1w8+/NAKCTvlKm1IydwoQUSP59SpsGqVlX9zGG6+pZaMUbAiqOofXia8HpiSVREYKSK3q+pv/krnHyJSBbiZnMx2XwJnqepa/6QKDIO85Z257PMlwF5EOgOdy2e6n1gUK1as4M033+S0006jcVFSrM+cacv99gtMBsHC8NprtjzvvLQUv0iIyNPeWwX6iUh07GdpoB3miZC2fPbZZwAcf/zxyeng88/hzjuhY0eXKTDNSPrcKGFEj+dff9m2NA3HTQpuvqWW+HMHpxFqDARqYzfNHYGZIjJMRErU5SYiVUSkD1bjKYxluWujqp2ccmWoaql8Xr64JqnqOFW9pnTptPWMKjTz5s2jZ8+e/PZbEZ+D/OTVHQ9Q/NWiRYs499xz+f777/M9bsMGeOkle3/ZZSkQLDgc4L0Eq0V3QNRrb+BHoLtfwiWCBx54gAceeCDxDWdnw223wWmnQe3aln6ybNnE9+NIGkmbGyWU6PFc4EV4NkrrCM7E4uZbasno56SquhJ7KvoCpmhdB1wqIm8D/VV1mq8CJhEvdqEnlsSiBjkWq+98FczhyIO2bduyYsUKqhY1IvmHH2zZrl3ihCom69atY9asWaxfvz7f40aMsARw7dsHSvyko6rHAojIy0CvTHzo8+qrrya+0e+/h4susoQWRx8NgwdDlSqJ78eRVJIyN0ow0eP511/mbl2pkn/yBA0331JLRitYETxF62YR6Qf0whSPc0Xke8w97E1VTWs/fwCx4kqHAjdghW7LA2OBfqqa/yP0EoyI5FuGUFUfT5UsJZkyZcpQq1atojcQsRIFqOhJq1atmBVJHZ8HqvC05yjXq1cKhAogqnq53zIki4YNGyamIVUrHvzcc/Dee7DHHvb+mmtctsA0JWFzwwHsPJ4zZjj3wFjcfEstJULBiqCq/wB3i8ijwGWYIjIceEJERgKvAT+kW8IHEamHKVQXY1kB1wMvAYNU9Vc/ZUsTboxZL4tlNIskSXEKVgqYO3cuY8eO5eKLL2bPPfcs3MmrVsHcuVChQqBcBOPhs8+s/lW9eiU7INvLBNsNaASUi96nqmlbFeyjjz4C4OSipjNThWnT4MEHTbGqWdPSTD75pL13pC3FnhuOnYiM5/HHn8z06dCzp7/yBA0331JLiVKwIqjqGuBpEXkGOA64FisA2xOYJyJvAuOA71U1yz9J80ZEGgOnAWcDx2IxDFOx5B6vquo6/6RLL1R1lyKnIlIbq6v2QuolKpn8/PPP9OnTh+OPP77wClbEPfDggwMVh/LJJ58waNAghgwZkutnUoW77rL3PXsGSvSUIiLdsVIa72Ixs2OAFlgB4hG+CZYA+vfvDxTxpuavv+CGGyxDIFgyi3vusQcJjrSnWHPDsQuR8WzY8GS2bIE2bXwWKGC4+ZZaSqSCFcGzVH0OfC4iu2HKykXALcBtwCoR+Qj4Avga+NMv65aIVAOOBDoApwD7e7v+AO4HXlfV2X7Ilomo6t8ichcwGrvpcySZM888k9WrV1O5cuXCn/zll7Y85pjEClVM1q1bx/z588krWcno0TBlCtSpAzfdlGLhgsUtQE9VfVFE1gF3qOo8ERmIWeTTljfeeKPwJ61aBY8/blaqjRutgPAzz8A++yRcPod/FGluOPIkMp6TJ9t6QKp1BAY331JLiVawovGCq4cBwzxl5iTMQnQKpnQBLBeRb7G0wT97y0XxKF0i8qTXT+84jt0dy6J1ENAai6s6ELNSbQMmAn2A91V1Tjyfz1EkSmGZKB0pICsriypVquSpjOTLF1/Y8rjkepJt27aNsp6ZaevWrYhIvutnnHEG55xzTq5tbdkCd9xh7++7D4qiV2YQTYHPvPdbsPpXYDUNvwJu90GmhFCnTp34D/71V/jf/6xY8Pbt0LUrPPww7LVX8gR0+Eah5oajQCLjuXhxZN1HYQKIm2+pxSlYuaCqq4FRwCgvcURL4GjgGKwuy9lRh28WkfnAPGABFrOz0nutxW4Wtnrni4h0xOILKgF7RL0aYDcZTbz1CKuAn4C+mBXtB1XdlNhPXLIRkbNjN2ExWD2Ab1IvUcmkevXq3Hzzzdxzzz0Uqv7Xv/9aivZy5eDII5Mm38MPP8z48eP5+uuvATjiiCOoU6cO77//PmBZEPfee2/eecfqUh9wwAEcfPDBjBw5Mtf2HnoI5s+HVq3g8oxN8RA3q4BI+sglmIX+F6AmVsswbRk3bhwAnTt3zvugjRth2DC4915b79MHLr4Y9t8/73McaU9cc8MRN5Hx/OyzztSpAw0a+CxQwHDzLbU4BasAPOvULO/1PICIVMUsTK2BZuQoRkcA1Qto8stctm0ElmFK2jveciZmJVuSbkk30pC3YtYV+AdzDe2TenFKZqHhvn37UqdOncIpVwAff2zBTEcemdScvDVq1NhJth49euzkznjTTTdRvXrO5X/zzTfn+cRw8mTLWSACgwaVnMLC+fANcCIwA3PLfVpETgA6AZ/6KVhxeeyxx4A8bmpUbf6efjpkZVnQyOjRsPfeKZbS4Qf5zg1HoXnsscdYuxZ++qkz113nkmvG4uZbahF3755YRKQM9tS1FubmUt579QCygWcwq9YmPEuXqm70R1pH0KlcubJu2LDBbzGCzfnnw5tvwhNPQO/efktTIOvWQdu2MGeOGSoGDPBboqIhIhtVNSGOjSJSA6igqktFpBRwKxZzOgd4wPMq8IW2bdvq1KlTi3z+ypUrAdhjjz3o+ryVIRx1zWGWGbBHD9O269eHRx6Bbt3cXWEJInpuFAURmaaqbRMpU1CJ5zpcuXIld90Fw4btwdKl/ibZ3HGtX3u4f0LEUNz55sidvK5D99w0wajqduBv7xXNJz6I43CkBYceeigdOnRgQGG1jc2bczKsdemScLkSzfbtlmF7zhzYbz944AG/JQoGqvpv1Pts4GEfxUkou9zMrFkDRxxhddt23x1efNHcAUuQtdphuBvdxLLHHnvw00/mzOAqGOyKm2+pxSlYjhKLiJwCDAZae6n7o/ftjrloXqOqTjlOMh07dmS//fYr/Iljx8L69ZaevXHjhMsVzfHHH0+TJk144YWiZe5XNQPbBx/Yn/9775XsbNue1SouohWwdCMSk3d21aoweRZs2gS//QaPPQaXXmoFgx0lkh1z4+zYMGBHUXjllXeYPh169HDjmRtuvqUWp2DlgpcaeH9V7ViIcxQ4T1Vj43kcwaUn8GiscgVWK01EHgZ64ayPSefRRx8t2olDh9qye/eEyZIXRx55ZOHrc3lkZVmdq+ees1wc773nwmwwF+mCfNTFO6YIqSUDwMyZPH3nnbBiBWf/9x9c/Ag0aWIKVt26fkvn8Jmnn34acDe8ieK++55m2zbo2tWNZ264+ZZanIKVAkRkGHBZfseoqnjH7aGqp8ec3xaYAjRR1b+itnfBlISDsUxbi4DvgIGqOsU75mzgOqANUAFL1vGgqo7NQ9ZuwOvA+Fg5MpADgZvz2f8FcFeKZHEUlj//tHTW5crBRRcVfHwxCYfDRTpv/XrLEvjWW+YF9uabcNRRCRYuPTnWbwGSwvbt5vs5fjxMncoYMJPlAw9AtfZQpqxTrhwAjBkzxm8RMoY//4SlS8fQsSMcdpjf0gQTN99SSym/BSgh9MLSfkdeG4HeMdsKhYg8iGW/mwF0AVoBVwG/AdHmgA6YonAapmR9ALwrIkfn0mZT79ySkpq8FpZ4JC8US1jiSCKqSq1atXj44UKG3Tz8sPndXXQR1Ijb2yylzJgBhx5qylXVqpYwziVwMlR1QryveNsUkZNFZLaIzBWRXWpnifG0t/8XETk4YR9oxQq4+2446CAIh03Ruvxydv/2W3ZfuBDuusuUK4fDY/fdd2f33Xf3W4yE4tc1eN99UKrU7owYkVnjmUgycb4FmbRSsETkKxEZLCKPici/IvKPiPQSkfIi8qyIrBaRhSJySdQ5B4jIZyKyyTtnmBdfE9lfWkQGiMh/3utJYtxRvB+E/4nIn147M0Tk4njlVtU1qro88sJu3GO3FWYc2gN3Ajer6v+p6teqOt9b9ifqybCq9lLV/qo6WVXnqmoYmIYpZdFtlgVGYhabeYWRJ41ZjFmx8uJArCaPI4moKl27di1cDNbcuVY3SARuT34N2m3btlG9evUdLhYFsXYt3HqrhYb9/rsltJg8GTp0SLKgaYqI1MjvFWcbpYFnseLwrYBuItIq5rBTgObe6xosBrPoqMLEiWairF/fcu+XLw/PPAM//ghDhzJq4UJGefVnHI5oRo0axahRo/wWI2H4cg0CU6fCa69Bx46jmDgxc8Yz0WTafAs6aaVgeVwErAPaA/2BJ4H3sHS+bYFXgBdFpJ6IVAI+AtZjBYLPwmpVDY1qrw9wNXAtcDimXMX6Gz0AXImlWm8F9AOeF5HT8hLSUwa/KvrHzJcLsc80KLedcdTNqgr8F7PtQeAvVX2l+OKlDeOB+0Vkl0Km3ty5zzsm5YhIZxEZkpWV5Uf3KaVUqVIMHDiQ00+P0yNV1fKbb9tmSQJatEiugMD27du55JJLaNmyZb7HrVkD999v+TYGDLDYq+uvhx9+gH33TbqY6cxKrPZcXq94aAfMVdV5qroVeAM4M+aYM4HhanwPVBORovvrPfEEHH20mSgvvxymTLH06z177ki3PnjwYAYPLvY9pCMDycC5kfJrcOxYOOUUqFcP1qzJuPFMKBk43wJNOsZg/aqqfQFE5HHgdmCbqj7lbbsPuI2cor9VgEtUdZ23/xrgSxHZW1XnYq56j6jqaG9/L+CkSGciUhmL0zlRVSOuc/NFpB2mcOV1A76wiJ/vZBFZH7MtVhFuAczzUsJH5LwBeCTqmFaquosMItIDaAC8GrXtRKArcFARZU5XHgTOBf4QkWeA373tLbHYNgEe8kMwVR0HjKtcufLVfvQfaIYNs3/VKlXgodR8PRUrVszXejV9uuXbGD7clCywOKsnnrCaV44CiY3HKou5NF8P3B1nG/WxONQIi7EHcQUdUx8r9L4D73/iGoBGjRrl3eOsWbD//vDddzYfc+GDDz6IT3pHiSMD50bCrkGI7zqcPRuqVTML1v77Z9x4JpQMnG+BJh0VrF8ib9QyQ6zA4pAi27aJyH/AnsDewC8R5crjWyzuppWI/IPFP30XdX62iPwANPQ2tcKSQ3zkZQqMUBb4Ky8hVfXSon08vsb7QYlif+DdAs57Dct2Fzl2F+ukiJyDxVhdoKoLvG17AMOAC1U11qqV0ajqChE5AnNReAhTqMBcOD/m/9u78zC5inKP499fFgiLEHYiIJssRhZjICIgRAHJBQKooKgEExBREoQgwkUWUSJrQEAFwcjmAhdBr4l4UQiyqUiUhCQsIRjCmrDIGgZmybz3j7c6c6bTPTPd0zPdPfN+nqef6a5z+j01p7tnTnVVvQXHm1n+emahwpYuXco222zDFVdcwYQJEzre+f77vUsI4Cc/8a8tq8DMR4DNmOEZAR95pG3b6NFw9tn+M9aM7Zoi86zukrQIn1v66y6EKXS283vzu7IPZnYNcA34AqdFjzhtms+1GlT8X+nqq69edFvo3/rge6Nin0Ho2ufwpJPglFNyf2v73PmsqD74fqtp9djAas57bEXKBtCW4reQzobR5eQaKmNZuVcq/7iV0JB61laQNDRvnyeBT0gabGbN4PO8gDcL7JuL8Tm81+qovAyCO+CNzLvUdjU4ID2nBfiwmS3o1m9Uw1JD8wBJ6+ANcgEL+1tjs5qGDBnCsccey/adjaGbPh2+9CVobPRG1rhxHe9fQTNnPsDYsWMYP/6PLFmyF3/7m+c0yFl3Xc+1MWECjBjRa9XqD+YAe3Vx3+dp+2IMvKf+xTL2KU0HjSuAX/7ylwAceWSXp+2GfqIPvjd6/TM4OJM3pg+ez4qK89O76rGBVYrHgKMlvS/Ti7U73oB4PK11tATYDc+0h7yVMYq27urHgEZgczO7u1drX9xNwDeBE4BLO9tZ0ufxuWlfKbBO1yxgx7yyKfjwyonA092ubR1IDapZ1a5HfzR06FAuvbSDt/FLL8FZZ0Fugd9x4zyJQIW7h1pbYelSWLwYnn7a82jMnw9z58LChRthdhxXXbXpiv032cQzAo4dC/vs47kNQuVIWhMfwv1cJ7vmzAK2kbQlnpzmCHy+atZ0YJKkm/GhS2+a2UpDkypp2rRpQFzUhJX1wfdGVT+DffB8VlScn97V1xtYvwK+B9wo6Wy80XA18NtML9HlwOmSnsSHGh6P9+gsATCztyVNBaamxtd9+Lyu3YDW1IW9Ekk3pueXO1SwKDN7UNJFwMWSNsfTtT8LbETb8MLlqR5H4D1XpwD3Sdo4bW8ys9fM7B1gfl7d3wAGmVm78hB6zfLlPq/lxht9cH1Dg693NWVKdjxIlzQ1weuvezste1u6tO3+M8/47b33CscYOHAbtt/+EnbfHfbYw29bbx1DACtF0tu0H1UgfLzPO6ycdKggM2uRNAkf3jsQuNbMHpX09bT9p/gyFQcAT+HLZXQyJrX77rzzzp4+RKhTfe29Ue3PYF87n5UW56d39ekGlpk1SNofzzT4EPAe8Ht8XaqcS4CNgWnp8S/whlk2XdhZwEt4I+Uq4C186Eo2qUS+DmZGd5+ZnSbpIbyX6Si80fcS8ACwl5nlvvX9Ov46X5ZuOfcCo3uyjv2NpDF4g30gMC2lzM9uV9p+AP6PZbyZPdzrFa0lra38c+ZM9jjwQH47+WT21ao0zH6Chr/PpeHtFt5lNRrYkYaP70vDl4/l3Q03p+FGb281NPgivm++2fGtWKOpkPXWgy239NtWW3l69R13hO22M1ZbLVpTPWhS3uNWPHvgP0oZrmtmf8Qv4LJlP83cN/xvZq8ZPDjWvgqF9cX3RjU/g33xfFZSnJ/eVVcNLDMbXaBshwJlG2fuzwP26SBmCzA53YrtY8CP0q3YPsp7vFJdM9sKppsys/FFyv9JgYmhZnYbcFux43RWjw6eU7AeobjM+h/74WPMZ0mabmaPZXbLrv/xMbyxnp9hqSBrNb8tb6W1pZXW5UZrS2vb45ZWWltp99hajeUtRkuz0dzYSktzut9ktLTQdj9X3kxbebP/bFkOzU2pvIW2fZpaU8xWmhuNpiajsREaG0VTMzQ2iaZm0dg0gMZm0dSUKWseQGPLIJqWD6Bx+SDeYxdaeYODL1qV1vZL0LX5O5lUNKUZNMizTG24IWy0UeHbZpt5avW11iocY+rUSzjjjDP4z3/+w5pFssWF8vXl5SGuv/56AMaPH1/VeoTaE++Nyorz2bE4P72rrhpYIdSwFet/AKTx5Yfgc/hyVqz/ATwoaaikYR2NP29oGIo0AbgOb2N/H58PnBuZegbwBt62A1+hoJG2zsqT8Q61i9PjE/DOzvPT428A6wPnpsdfBTbHO20BxgPbAaenx18CPop35gJ8Hp/WeFJ6/Fn8+4zcF5Rj0y03cnVMes7ReCfF/ngH7DigCbE/Q1YZz9ChRzBkjUZefvlQhg07jk03PYzBg9/gkUcOZ/jwSWy33SHAq/z5z1/kk5+czG67HUBr6xKuvvooxo8/lf32249ly57ltNOO4cwzv8OnPvVJFi1axHHHHcfEid9lzz33ZMGCBUyaNIkpU6aw004fY/78+UyePJkLLriAkSNHMnv2bE499VQuueQSdt11VyZPnhxZmHpYWlR4Q/KyoOZ9UVFX4qImFBPvjcqK89mxOD+9S52vSRtC6Iykw4AxZvbV9Hgc8DEzm5TZ5w/ABWb2QHo8Ezgt9VBmY61Y+wMYiQ8nzDeQNM+ujLJBQEsX9quXmKUcpzsxix2nHmIWitfdmKuZWUUWq5c0Av8WIZdwJ5cBVvgggiJdmz0vLefxTDdCrI8vpFwP6qWu9VJP6Nm6bm5mG/RQ7JpSgc9huerpvZavXuteb/Uu/Dk0s7jFLW7dvAGH4/Ouco/HAT/K2+d2YM/M45nAyE7i/rNI+TXdKFspZqH96iVmiccpO2YHx6n5mL31Pir3BsxOn4+9ge3xbtMVt0odpxq3Sp6nqGt91bPe6hq3vvX61Wvd67Xe+bcYIhhCZfT2+h8zulHW1Xj1ErOU43QnZlfj9feY5dgGONzy1gAMIYQQ6lFFhneEENrW/5C0Cr7+x/S8faYDR8ntRjfW/zCzlS54u1rW1Xj1ErOU43QnZlfj9feYZXqA9plbQwghhLoVPVghVID13PofBddZ66aI2f9i1nodjwGmSdoKX5evObvRzO6r4LF6W0+c+55SL3Wtl3pCfdU1rKyeX796rXu91rudSHIRQgihqiSNBm7CF0vPZ1bFJBchhBBCqaKBFUIIoaokLcCH2Z6PL5je7h+Tmf2nGvUKIYQQyhENrBBCCFUl6R1gJzP7d7XrEkIIIXRXJLkIIYRQbXfia77VHUnXSnpZ0vxM2bqS7pS0MP1cJ7PtdElPSVogaf8q1/McSS9ImpNuB9RAPTeT9BdJj0t6VNKJqbwWz2mxutbceQ2lKfba1gtJAyXNTutv1g1JQyXdKumJdO4/Xu06lSt6sEIIfZKk7YFDgE3wIWcvAtPN7PGqViysJCWDOQO4AZjHykkufluNenWFpL2AZcCNZrZDKrsIeM3MLpD038A6ZnaapOH4XLNRwPuBu4BtzazQYtO9Uc9zgGVmNjVv32rWcxgwzMwelvQ+4F/AocB4au+cFqvr56mx8xpKU+y1NbPHqly1LpF0MrALsJaZHVTt+nSVpBuA+81sWsrIvLqZvVHlapUlerBCCH2OpNOAmwEBD+HzewTclC7OQm25Em8Ifwe/AL01c/tNFevVqZTh8LW84kPwxiLp56GZ8pvNrNHMnsYzio6qYj2LqWY9l5jZw+n+28Dj+HujFs9psboWU7W6htKU8drWDEmbAgcC06pdl1JIWgvYC/g5gJk11WvjCiJNewg1JQ0ZOZT2vS6/N7M7yoy3vpm9mnl8JP4PfT7wMyuzC1uSUpxsPR8qN16B+GsC2wKLyvwDewzwYTNr1xMi6VLgUeCCMuo0Jvc6SFobuBTYFT+Xk83spTJirg2cjr/mG6Til4HfAxdU6p9LBc5nj77mZtbXvuzbKLfGnZktkbRhKt8EeDCz3/NU/6JtkqSjgH8C3zKz16mRekraAhgB/IMaP6d5dd2DGj6voTR5r209uAw4FXhfletRqq2AV4DrJO2M9xqeaGbvVLda5elr/9RCqFuSLgNOBO4FLgIuTve/KenyMsP+ORP/TGAc/kdrP7yBUE49Pw0sBM7B1/U6EPgesDBtKyfmlZn7ewKPAZcA87LzF0rQig/ByTcsbSvHeZn7lwBLgLF479jVZca8BXgdGG1m65nZesAnU1nZPTeVPp898Zr3UypQVs1x+lcBWwMfwd/Pl6TyqtczfSlwG3CSmb3V0a4Fyqpd15o9r6E0JbwPa4Kkg4CXzexf1a5LGQYBHwWuMrMRwDtA3Y44iR6sEGrHAWa2bX6hpP8BnsQbX6XK/kP/LPAJM3tH0q+Bh8urJpcD+5rZ4rx6bokvpvyhMmLulrl/Lj7W/WH5wrO3pLilOAmYKWkh8Fwq+wDwQWBSGfXLt4uZfSTd/6Gkr5QZZwszuzBbYGZLgQslHd2N+lX6fPbEa56Nc3JH282srC8DquglScNST8swvFcSvMdis8x+m+I9gVWR7XWV9DMgNyG+qvWUNBi/qP1VZv5dTZ7TQnWt1fMaSlPkfVjr9gAOTl+kDQHWkvRLMzuyyvXqiueB580s11N4K9HACiFUwHuSRpnZQ3nluwLvlRlzNUkj8N7qgbmudjNrllTuxOpB+B/CfC8Ag8uMmbVWZuz7IkklLzJrZndI2pa2IW3C6zyrGxPKN0wNAeH/tJQZHlfuaIBnJJ0K3JC7KJO0ET6h/7mOnliCbp9Pev41PyHv8WC8t/Fd/EK63hpY04Gv4ENRv4IP+cyV/zoNVX0/sA0+R7Aqcg2W9PAz+HBXqGI901DUnwOP5zWsa+6cFqtrLZ7XUJoO3oc1zcxOx4ed5xZwP6VOGleY2VJJz0nazswWAPvgoy/qUjSwQqgd44GrUsai3MXsZsBbaVs5ltB2cfpa5hvg9YCWMmNeC8ySdDNtjYDNgCNIk1PLsL2kuXjjZQtJ65jZ65IGUOYFvJm10n6+Q3f9jLYx7TcA6wOvSNoYmFNmzC/g39DdkxpW4AvtTsczkZWr0uezJ17zFcxsy/yydD6uw897zZJ0EzAaWF/S88B38UbALZKOAZ4FDgcws0cl3YJfNLQAE3srg1yReo6W9BF8mNpi4Lhq1xP/Bn4cPpx1Tir7DjV4Tjuo6xdr8LyG0hR8bc2s1N7/UJoTgF+lDIKLgAlVrk/ZIk17CDUmXbCv6HVJQ8YqfYyBwKpm1lDm84cDB9O+d2h6uSlsJW2eV/Ri6mVbH9irVodnSLrRzI7qZowP4t9yb4ZfdD0J3GRmb3YjZv75XGJmTd05n5V+zbt4zBHALWa2TU8dI4QQQqi0aGCFUEMkfQB4y8zeSJmLdsGHKDzajZgDwHt00rdCOwCLzayrKZurQtKGZvZy53v2DknTCxR/CrgbwMwOLiPmN4GDgPvw5BFz8AQXnwGON7N7yqxunyBpJPAXM1ur2nUJIYQQuioaWCHUCPn6TMcBjcBU4BTgr3jCgp+XMw5c0qF4hrtW4Ov48JV38JTd3zCzGWXEXBNPAfs5fJJ2E/Bv4Kdmdn2p8VLMdfOL8GyHI/C/U1VvDEqajad4n4YP/RG+ZtMRAGZ2bxkx5wEfMbPlklYH/mhmo1ND+/cpk1I5dd0YHwLWCpyND7v4HL6Wy4mZ+SFdjbcLntXyBXx8/7X43MCFwNfMbHY59czE/2x+ET4HayKeWv7A7sQPIYQQelM0sEKoEZIexXusVsfH7W9lZq9IWgP4h5ntUEbM2cB/AasBjwC7mtmCNITsNjPbpYyYvwd+B9yFzxNaA1/U90zgBTP7ThkxW4Fn8oo3xYehmZltVWrMSks9gSfiPU3fNrM5khZ1p26pgbWLmTVKWge4y8xGpm3zy3nN03PvAG7HX5svAb/CG4OH4NkADykx3kN4g20ovoTAZDO7VdI+wBQz+3g59czEz0+db/h6KHfjawiV1CAMIYQQqikaWCHUCElzzWynND9qCbBxStRQ9sW2pNm5XpD8GJIeNrOPlhHzETPbOfN4lpntmhogj5nZ9mXEPAXYF2+4zEtlTxdKflBtkjYFfognozjYzD7QjVgn4osiP4ivYH+hmV0naQO8AbxXmXGzr/uz2TpKmpNJMV+JeCu2hRBCCCGyCIZQSx6Wr0+1BjATuCH1RHyKbqQqlTQgNdSOzpQNBFYpM+Q7kvY0swckjQVegxVzvAotpNkpM5uaMtT9UNJzeG9JTX77Y2bPA4dLOhDP8NidWJdLugtfR+pSM3silb+CN7jKlU0bf2PetnLStL8nX1B4bcAkHWpm/ytpbyCyoIUQQggZ0YMVQo2QNAhPPWz4Anuj8OFdzwI/ya1hVWLMXYF5ZvZeXvkWwJ5m9ssyYu6Ez0PaFl/f5WgzezL1unzRzK4oNWZe/LHAGfgivBt3J1Z/Jen7wEVmtiyv/IPABWZ2WInxdsaHBrYCk4Fv4GsRvQAca2Z/K7Oe/wVcBeycnzVR0tr4sNavmdmfy4kfQgghVEM0sEII3SJpbDnJMjqJeTCe3GB+pzuHkkiaYGbX1UI8SbfjiT1+UmT7N4CDIsmFk3Q9sL6ZHdSXjlXg2H8AXjWz8b197BB6UnyG+48Bne8SQqg2Sf9XwzF/UKE4WVOicdVjvldD8XbCk6UUczewcwfb+xRJG0i6UtJiSY2SXpI0U9J+aZcTgSOrWcdiJN0j6ce9eLy5ki4ssu1rkt6VdLqkWZLekvSKpBmSykocE0JXxGe45GPeLckK3G7vzXr0hJiDFUKNkFQs4YSAj9RKzCKxKq0nYvYbkuYW2wRsVO14GRvgww6LMWC9bsSvN7fhWUSPAZ4CNgT2Jp2D7iw+3QfNBXbML0xDS6fgQ1pHA1cCs/D36veBuyQNr4WlH0KfFJ/h0ozApwRcm1feUIW6VFQ0sEKoHbOAeyncuBhaQzHz9cQ44xi73D0bAfvjixZnCShnvlSl4+U8j/diLSyyfSd8nlefJ2ko8AlgPzObmYqfwT/DuX2uJzPkR9I9+NpmDcAEPOHIFOCnwKXAl/FELGeY2S8yce4B5pvZpGKxC9RvDH4htAP++ZwFnGRmj6fn7g3sLWliesqWZrY4Jb75Nr7G3/vxi84Lc/M/5eu/XQkchq/Rd3kXT9lcYFKB8rOBd/G5hu/m/Q7jgDeBPYCKDmsOIT7DpX2GJW2NX4fca2ZLu/KcehINrBBqx+PAcWa20sVmyqxXKzFD7fsDsKaZzcnfkP4xVztezu3AuZL+WOBieHW8x6Huh4p00bJ0O1jSA/mJaTrwZfxC7GPAwcBlwBjgDnxdva8A0yTNNLMXu1G/NVLsufi6emcCMyQNx4c9bQs8gS9mDr6OGfjF4mH4otELgI8DP5P0upndji+qvh++EPYLeAbRvYDfdlKfucBmktYys7cAJG2LL6r9xfz3U/I+fGpE/hcFIVRCfIZL+wyPxBuU3VqovlZFAyuE2nEOxedFnlBDMUONM7NjOtj2pWrHy/gB/o97oaQf4f/cwdPWT8J7yM7rRvy6YWYtksYDPwO+Jl8k/K/Ab8zsHx089VEzOwdA0qXAfwPNZnZ5Kvs+cBqwO56dtNz63ZZ9LGkC/s36qLRkQxPQkP0mWr5I+snAp83s/lT8tKRRwERJ9+JDqY42sz9l4j7fhSrlhq3uQFsv6qXAffl1zbgcmAP8vVhQSX/CF7eOOaChJPEZLvkzPBJfNuRltV/h5f/M7PCyfskaEg2sEGqEmbX7w5nNzmdm/1srMQt4qUJxejpmqDFm9rKk3fFU7efRNpTVgD8Bx5tZv3kvmNltaXL3J/BviccA35J0hpkVa2jOzTzfJL0MzMuUNUt6HZ8LUrY0nOdc/Fv2DfAvbgYAHS20PRwYAtwhKTvsdzCwGNgaX49vRYPHzJZJmkcnzOxFSa/i87D+Jml/fBhrwaQo6cJ1T3x5io7WbtuetoZ+CCWJz3DXP8N4A+s2vEGZ1SfmqUUDK4Ta9QMqP0+g4jHNbL/O96p+zFCbzOwZ4ABJ6wAfxBtZC82sXw7jSsOK7ky370uaBpwjaWqRpzTnhyhSlu3JbmXleZmDO6naDHz4z3HpZwu+AHpHC5bnjjkWX88vqxlYp5NjdmYesIN8DcEfAj82s5UWZZf0Q+AI4JNmtihv23DgGnz44PXAa2bWkrZtk+JujM/rOtzMlkraDPgxfmG6CnAQsC9wPH5d9ZSZfaabv1uoU/EZ7rIReMbgp7oRo2ZFAyuE2hXZ+UK/kRpUszrdsf95DP9fPaSCMV8BhuWV7Yx/I70SSevhwzYnmtlfUtlHaX8N0YQP98l6DGgENjezuwvE/Q9+kbYbsCiVrYEP+/t3F36PuaneE/EsbecUOMbleONqtJk9kbdtEJ697KtmNl/SLfji1khaFU80MMHMnpX0VXxI1LnAH4FvmtlfUtbCIfiQ1pFpmNjQLtQ99B/xGV75eVsC69JH519BNLBCqGWRnS+EfiJdAP0Gv+CfC7yNT3A/FZhpZm/lzVPojruBy+QLei/Av9HejCIXZ3hSiFeBY1NynE2Ai/FvwHMWA6MkbYFP9H/NzN5O39pPTZnI7gPWxC/GWs3sGkk/By6U9ArwIp4FMP8ir5i5eAKAnfF5U+2GFkn6CTAOOBR4XdLGadMyM1sGfBb4Z2a+1QLaEmAcil+QTk/nfRXgZuAzwEO5i1Qze1NSK54N7UJJ15tZV4ZHhT4mPsMlfYZHpp9LM5/LnFdzvcj1LBpYIYQQQvUtAx7Es3l9EFgVH8bzazyLVyVdi6fAz609cyXwO2D9QjubWaukLwBXAPPxNM3fwudP5EwFbsC/8V4N2BK/YDsLn1N5Cj7X7i080cRF6Xmn4NnNfoenqv5RetwVj+ANm4fw4X35jk8/Z+aVfw/v7dopxcgZCVyS7u8IfNvMfpV9oqQp6XgrpIvQHfFG2c2Szu4g0Ubou+Iz3PXPcK6B9Xh+VfGerTc6eX7Nk1l8oR1CLZI018x2qvWYIYRQjyRNBrYwsxMl7YPPmdnIzF6RNAnvfZiQEg/saGbzJJ0AbGtmJ0gagM9BWTe3FIakK4B/5DfMQgj9S7H0zSGE6ovsfCGE0HN+Aeye0mmPB543s9zaP9cBawOPS5qDLwIL3lO2laRHgYfxYYRnSlqQ4gzGhxKGEPqx6MEKIYQQQgghhAqJHqwQQgghhBBCqJBoYIUQQgghhBBChUQDK4QQQgghhBAqJBpYIYQQQgghhFAh0cAKIdQu6XqkP6x0vzePW9m49yBZuu2Wyj6M9Dek+UgzkFbPq0du/8MqXp8QQgghVFw0sEIIpWl/0d+M9DLSX5AmIg3uwSOfCBxZ8aje6PlxrxzLXQcMA/6FNAS4BZiI2Q7Ak3i66Gw9hvVQPUIIIYTQA6KBFUIox134hf8WwKeBGcD3gPuROlvBvTxmb2L2Ro/E7t1jNWC2FLNm4FDgLsxmp21PABvk1WNpD9UjhBBCCD0gGlghhHI0pkbCC5jNwexSYDTwUeBUACQhnYr0b6R3keYhte8V8n2+hbQQqRHpeaTzCx4xf9ie9zxdiXQe0qupJ20q0oDMPmOQ7kd6Hek1pD8hfahdTNgbmJjplduiwLFWRboM6SWk95AeRNozr36d12dlHwLmZR7vCDzWwf4hhBBCqHHRwAohVIbZfOAO4HOpZApwDDARGA6cD1yNdGDmWecBZ6VtHwYOB54r4ahfBlqA3YFJwEnAFzLb1wAuA0bhDcA3gRlIq6TtJwJ/p23Y3rAix78oxT0aGIE3iu5Ayh++11l98r0IbAeAtBOwLzC9g/1DCCGEUOMGVbsCIYQ+5TFg3zRM8GTg05jdn7Y9jTQKb3DdjrQmMBk4CbNr0z5P4Q2erh/P7Ox0/0mkY4F9gJsAMLut3d7SBOAtvMH1AGZvIjWRG7bXtl/2OWsA3wC+itntqezrwKfS73Jml+uzsl8A/4M0L9Xr85g1dv3XDyGEEEKtiQZWCKGSBBjeYzUE7+WxzPbBwOJ0fziwKjCzG8ebm/f4RWDDttpoa+Bc4GP43KYB6faBEo6xNV7vv64oMVuO9Hf8d+h6ffKZNQBjS6hLCCGEEGpcNLBCCJU0HFhE2/DjscCzefs0p5+i+5rzHhvthz7PAF4Ajks/W/BetlXoulw9rcC2/LLO6hNCCCGEPi7+8YcQKkPaARgD3Io3YhqBzTF7Ku/2THpGbp99eqg+6+FJJM7D7C7MHgfex8pfLDUBAzuI9FTapy2phTQQ+DiRkCKEEEIIeaIHK4RQjlWRNsa/pNkAbyR9B/gXMBWzd5CmAlORBNwHrAnsBrRidg1mbyNdDpyP1Jj2WQ8YidlVFajj68CrwLFIzwGbABfjvVhZi4FRSFsAy4DX2m313+Uq4AKkV4Gn8bljGwFXVqCeIYQQQuhDooEVQijHvsASYDnwBjAfXwfrasya0j5nAS8BpwBX4Ukc5uAZ+XJOxxtCZwGbpv1vrEgNzVqRvgBcker3FPAt4La8PacCN+C9UasBWxaIdlr6eR0wFJgNjMFsSUXqGkIIIYQ+Q2aFphWEEEKoOOkeYD5mk0p8ngGHY3ZrT1QrhBBCCJUTc7BCCKF3fQ1pGdKune4p/RRpWS/UKYQQQggVEj1YIYTQW6RN8GGIAM91uuaVtCGwVnq0BLN3erB2IYQQQqiAaGCFEEIIIYQQQoXEEMEQQgghhBBCqJBoYIUQQgghhBBChUQDK4QQQgghhBAqJBpYIYQQQgghhFAh0cAKIYQQQgghhAqJBlYIIYQQQgghVEg0sEIIIYQQQgihQv4fn+8vTfpFHLgAAAAASUVORK5CYII=\n",
|
|
232
|
+
"text/plain": [
|
|
233
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
234
|
+
]
|
|
235
|
+
},
|
|
236
|
+
"metadata": {
|
|
237
|
+
"needs_background": "light"
|
|
238
|
+
},
|
|
239
|
+
"output_type": "display_data"
|
|
240
|
+
},
|
|
241
|
+
{
|
|
242
|
+
"data": {
|
|
243
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEUCAYAAAA2mpeWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACtaklEQVR4nOydd5gT1deA30Ov0hWkCCgqKDaqooI/e8Gu2MWKBZUPsZcQbKjYESyooChgB+yKoqKCNBVEKdJEOgLSy+75/jgTyIYt2bRJsvd9nnmSzNy59+Tunc2cOU1UFYfD4XA4HA6Hw+FwxE8pvwVwOBwOh8PhcDgcjmzBKVgOh8PhcDgcDofDkSCcguVwOBwOh8PhcDgcCcIpWA6Hw+FwOBwOh8ORIJyC5XA4HA6Hw+FwOBwJwilYDofD4XA4HA6Hw5EgnILlcDgcDofD4XA4HAnCKVgOhyNtEGGwCB8V9DmVYyeoz7EiqLe1D9t/gAg/ijBdhNEiVAqTIdT+3ETK4nA4HA6HIzU4BcvhcMRMChSgW4BLEtmhp/T0T8VYHq8B9YDJ3vgVgLeBG1U5EJgFdA2ToV4SZHA4HA6Hw5EiyvgtgMPhcBSEKmuzYKyNqiwN+3wm8JUqU73PfwJ7hsmwViRJkjgcDofD4Ug6zoLlcDgShmcdGiDCwyKsFGG5CP1Edv6vEUFEuFWE2SJsEWGRCI8U0F+ky2A0/Z8kwvcirBbhXxE+F6F5qD+gI3BjmCte4wLGKi/C0yIsE2GzCONFOLI4shRAc2Ba2OeWwIyiZ9fhcDgcDkcm4BQsh8ORaC4GtgNHAN2BHkCXsOMPA/cBjwAHAOcBfyew/8rA00BboBOwFhgtQjnMBe8ndrrt1Stk7Me8fq8EDsWUos9E8rjwFSVLfiwG9gMQ4SDgOGBUEec4HA6Hw+HIEJyLoMORgYjIWGC6qnYv4PjPQF9VfT+lghkzVLnfez9LhGuAY4FhIlQB/g/oocqrXps5mNITd/8AqrwX3liEK4D/gLaqjBNhK7u67RFxTmXgeuBqVT729l0H/A+4Ebg3GlkK4A1ghAjTPLnOV2VLlN896xGR6kQ8/FPVf/2RxuFwOByO4uMULIcjO3kAeFJEPlTV3BSP/VvE58XA7t77FkB5YEyS+keEvbHv3w6og92slwIaFWOMvYGywA+hHarkiPAT9h2ikiU/VNkIdC6GLFmPiOwFvAAcg837jkOAAqX9kMvhcDgcjlhwCpbDkZ18ArwMnAxmgUkh2yI+KzstEolI31BY/wCjgX+Abt7rdizGqVwxxgjJqfkcC99XlCyO6HgNqI65Yy4m/3l3OBwOhyMjcAqWw5G5lBGRZ4DLvM+DgDtUNVdVc0TkE+BCUq9gFcYMYAvmRjc70Z2LUAtLInGjKt94+w4j7/+6rRRtEZnjtTsSmOv1Uxo4HHgrwWI7LF6uvapO91sQh8PhcDjixSlYDkfmcjEwGLvpPwizWC0BnvSO/wzc44tkBaDKOhGeAR4RYQvwHVALaKXKwAQMsRpYCVwjwt9AfeBxzIoVYj7Q1sseuB74V5U8bpSqbBBhINBXhJXAPCx2bA9gQALkdORlHuY66nA4HA5HxuNcWRyOzGUJcLOq/qmqb2OKRM+w44uB+iKSbg9S7gIexTIJ/gG8BzRIRMeeotQFUzinA89744QnkeiHWadmACsoODbrDqwg8GvAL16fJ6myJBGyOvJwC/CIiOzjtyAOh8PhcMSLqDpXd4cj0/CyCC5U1cvC9h0LfAVUU9X/ROR44Augqqqu90fSko0IY4HpquSb7bGQ8xQ4T5V3kyJYmiEi6zALVmlMGQ63OKKqu/khl8PhcDgcsZBuT7YdDkfiqAlsdsqV71wrQlfgGFUmFtZQhBeAS1IiVXpRLAXU4XA4HI50xilYDkfm0k5ERHeaodsDi1X1P+/zgcAUf0RzeFwMVPTeR1NM+X7MhREoOa6IqjrEbxkcDofD4UgUTsFyODKXPYGnRWQA0BK4DXgw7PhRwGd+COYwVPmnmO2XA8uTJE5aIyLlMYW0BZam/XdgmKqmdRFmEdkdk/VQVV3ktzwOR0lCRD4CVqpqV+/zz0BfVX3fV8EcJR6X5MLhyFzexGJWJmAZBF8BngIQkfrAEViCBocjrRGRFlja/iexAtHtgaeBWSLS3EfRikRVlwOvA8GC2ohIKxFRETmygONvi8gP3vtrROR7EflXRNaIyDcFnVcYItLVGzO0LfHGaVLcvhyODOIB4FERKfT+VkTmR1wfoa1vcQaL6GejiEwXkW5xfQNHVuAULIcjDRGRg0XkJxGZJiKjRWS3sGN3YVn3jgFGq2p1Va2hqreqao7XrAcwuDhP1EXkJhGZKSK/i8hj4eOJyBzv2IkJ+n4PiMhvIvKLiHwhInsmebyTvP7miMidiegzov8KIvKziPzqzV/Q219TRL4Ukdnea40EjlldRN4VkT9F5A8ROTzJ493i3Tz8LiI9vH2JGu8ZYCrQSFWPUtWjsOyOv2KKVrrzGnCxiNTM76CqTsa+31WRx0SkFnA69oAEoBMwAqsV1w6YCXwuIs1ikGsjUA+zdl8EHAKMEpGi6sA5HJnKJ0BV4OQo2vbBro/w7cFCzyi8n4OAD4EXRKRLDP04sglVdZvb3JZmGzAR6Oi9vxJ4wHvfArvpLA80Af4CSudz/m3AHsUY7xgsA2F57/PuxRkvhu+3W9j7m4EXkjUeZuX7C2gKlPP6b5Hgv5cAVbz3ZTGrYnvgMeBOb/+dwKMJHHMIcLX3vhxQPVnjYfF804FKmGv5V0CzRI2HKQIH5LO/JbAhkX+rOP6+t2JWti3AIuCRiDZzQ3+PAvq4Eau7ViVi/y3AOqByIWMvBW4qpsxdgfUR+y7G3C/3A9pgWUZXAv8B44DDI9p3A2YBm7GSBp8DZcL+NmO8c9d519Uxfv+t3Ja9m/f/Z7B3HS0D7gY+wh4mhrd7FRhaRF/zgV4JkGmXfrxrZpj3vi/2kGST1/YxoEJY24bASOBf7//gn8AFYcfvBxZ4/3eWAq/7/XdwW3Sbs2A5HOnJflgRXoAvgXO892cAw1V1i6rOA+YAbSNPVtXHVXVZMca7HvNb3+KdH4oDimq84qI7E3EAVMZu+pI1XltgjqrOVdWtwHBvnIShRihbY1lvU2+cUAKHIcCZiRjPs2gejWf1UNWtqromWeMBzYHxqrpRVbcD3wJnJXC8zZiCGEk175jfPIzVU3sEOAA4j12TlvwMdCykj5BLb+ST7SuxNb+hgPPKARWwItpAHve/xtF+AY9N3mtZ7Cn/G1isZlus1tsnIlLbG6M1VkcuiP0/Oo68MZ1vYYlY2gKHAr1Jj7+VI3vpBxyP/R4ei627o/NpV9S1GBWe+9/gGE7djF1jABuwa7w5cANwAXBPWNsBmOJ4DPa/pQewxhv/HKCXd14z4DTsuzkyAKdgORzpyXTMbQjsZq6h974+eW/sFnn74mVf4CgRmSAi34pImySPh4g8JCJ/Y0/V70/ieEn7DuGISGkR+QVLUvGlqk7ArIhLALzX3RM0XFPMovCaiEwVkUEiUjmJ400HjhaRWiJSCTgFW5OJGm808LKIdPDmsbQXd/QiMCoB8seMiFQB/g+z1L2qqnNU9SdVHRDRdDHQuKB+PAX4PcLcBL3r7CBgUCEiPIg9sQ+fh7XYU/FtxfgeDTDL9iJglqp+rapvqOofqvoncBN2Y3iSd0oj7OZwlKouUNVfVfUpT8EG2Atb5396c/KBqv4UrTwOR3HwrsOrgNtV9XNVnQ5cAeTm03wxUF9Eikrk9pCIrI/YTgs7/hfFyOYqImVEpCs7rbuo6gOq+oOqzlfVT7CHNReGnbYXMM67vuap6meq+lnYsSXAF6q6UFUnqWr/aOVx+ItTsBwOnxCRr7yYlsjtDOyJ140iMhl70rw1dFo+XUVVLbyI8coANTC3ttuAt0VEkjgeqnqPqjbEnuyH6iDFPF5hoiShz107VM1R1UOw+Li2InJgoscIowxwGDBQVQ/FboQTHlsWQlX/AB7FrKmfYe5g2ws9qXjcgrnffY/d5G/GrGSzsCe6ftICc1kdU0S7TexMyV8QrwCHi8j+3ucrgemeMr4LInIL5qZ3drjV11Nm9lfVorJUVvZuGjdgDxnKeX1tFZHdReRFEZklImsxN7/dMcUK7G+9AJgnIm+KyOUiUjWs7yeBQSLytYjcE/adHI5ksDe2fnco8Z7XwLR82m7C/u9XKKLPJ7G4xPDtm7D+j1XVu6KQ7SERWe+N+zzwOPZwCBE5V0TGichSr81T7LzGwOJP7xWLuX5QRFqFHXvH+w7zROQVETlPLNuqIwNwadodDp9Q1eOKaHICgIjsC5zq7VvETmsW2M384njHE5HrgfdVVYGfRSQXqJ2s8SJ4C/gYCMQzXiEko88CUdU1IjIWswQsE5F6qrpEROqRuBTsi4BFYTfm72IKVrLGQ1VfwXNJFJGHPRkSMl7IvdFL5LA/dnM0Q1XnJET4+MhPQc+PmphVsTDGYm6vV4pIAHuS3TvfQU25ehA4WVVjdQvaiN005gLLItwQhwB7YNa5+ViMxxjsJhZVXScih2EuWMcDdwEPi0gbVV2sqr1F5E0smcCJQEBErlPVV2OU1eEojGivQ7BrcXOY23ZBrErQ/5gnsf+NG4El3u8oItIec0kPYtfZGswzJVTrEFV9RUQ+x7wCjgN+FJFHVLW3qv4tIvth7pDHAU9g11m7QlyKHWmCs2A5HGmIWG0dxFLN3gu84B0aBVwgIuXF0i03IzE+2R8C//PG3Be7yVqZrPEiMqKdjgX2kqTxJgLNRKSJiJTDfOAT6nYmInVEpLr3viL2Y/inN87lXrPLsWDmuFHVpUDoxxfsB3hGssaDPGuyEXA2MCzR46nqbFUdraqj0kS5ApvXLdgcF0aRhb29G69Xgcsw5aoiFgeVBxHpCTwEnKqq42KQOXzIUPxh5A3ZkcBzqvqxqv6OWbDqRZy83XMlvAtzZayMxYGEjs9W1WdV9VTsBvPqOGR1OApjDuYS2z60w3OLzs9ToMhrMcGs8q6zxSHlyqMD8I/nJjhRVWdjbn95UNVFqvqSqp6PuctfG3Zss3eN/h+WmOYAr19HmuMsWA5HenKhiNzovX8fr56Vqv4uIm9jN33bgRt1Z2r2eHgVeFVEpmPuiJd7PxTJGq+vpxzkYm5I10Fyvp+qbheR7lgGtNLAq94NZSKpBwwRS39dCnhbVT8SkZ8wd8urgIVYPF2iuAl401Ma52LxCKWSON57YinFt2F/l9ViNWNiGk9EngXuUtUN3vsCUdWb4xE8HjxLzjPAIyKyBUs+UwtopaoDAcTi0lphWc2KYjBWq6cf8KGqrgo/KCK3YcrVJVgdsLreoU2qutZrcxaWcOPYKNwEC2IWcImITMAUp8fY6YqMF4uyN/Z9/8WC8KsCf3gPEfphLkzzMUvYkVj2TIcj4ajqehF5BatxtQLzQrgf+58eyVHkTchSEFXDrq8Q4dfZGODnKN0E82MWFgt2MebaeCJ546/w/rd86rXdDfN8mOEd64rdp0/A4jC7YP9/Z8cojyOFSF5l2+FwOByO5CMi3wBneS6V3xTWVlWPSZFY+eJZkm/Hniw3wFJEv66q93jHLwQCqhpVHJKIjAI6Ayeo6pcRx+aTz1NuYIiqdvXadMUeujRR1fkFjNEV6K+qVQo4fjDwEmaZWoy5Kt4BvOu5/x2JKYIHYVnO/gKeUNXXPKV+MPYkvS6wCkuX3UvzZgh1OBKGZ7EaiFnQNwLPYbXiVoZdG/WBeUBTLaQOZCHX2ZuqeklYm7Ghvgvpp7+q9ivg+COYZbciVhbhS2CAqop3/DlMqWqIWZHHALeq6j8iciZ2TTbHshLOAIKq+lFB8jjSB6dgORwOh8MRByLyM/C0qr7ltywOR0lGRB4HqqnqtUU2djiSiIvBcjgcDoeviMj9nptd5P6KInJ/fuekC15s2rtYTJrD4fCX5VjNOofDV5wFy+FwOBy+IiI5QD3dWeA6tL8WsFxV84uzcDgcDocjLXEWLIfD4XD4jZB/bbJDsQQLDofD4XBkDE7BcjgSgIi8KiLLvSx8+R0XEXlWROaIyG9efZlo+k2pH7kbL3PHy8TvJiLrROQ/TLmaKyL/hW0bsMyPb8c7jsPhcDgcqcQpWA5HYhiMZQIqiJOxmk7NsExkA6Pst8CbWBHpnOhjbryMHi9tvlsx6A7cjFmw7sFSz4e2q4EjVfXGgk93OBwOhyP98FXBEpF3vYKKDkdGo6qhWjEFcQaW1llVdTxQXUTqFdI+Ggq7+Y31mBsvO8dL9XeLClUdoqqDsRpLA7zPoW2Yqv6UzPEdDofD4UgGvia5EJGWwLdYLY+1hbQbDNRW1dMKalPEOGOB6araPZbzI/q6EegGNPZ2/Q48qKofR7SrB/QFTsGKM84FrlfVb+PpN1WIyNFAL6x45p7AFd6NUGS7G4DbsEKrvwM9VPX74rbJBkSkMfCRqu5SWV5EPgL6quo47/MY4A5VnZRP22vZaR1oVanSLsnVAMjJyaF06fxj/2M9tn37dsqUyb/+uBsvimOqkJu7Y9uem2vV3CP+z27xXsuHfS6FFToB2IRVlwx93oxV0ywL5GCVJktHHJew/jZ755fBfO82eW1Leeeq91nYWVm2LGXIoTo5bMAMrWWBNcAS73MZYDWwFNgX+EVVNSEP6UTkPGCrqo6M2H8GUFZV303EOLFQu3Ztbdy4cbHOWbNmDQDVq1fPs3/uig0ANK1TOQGSObKFgtZLUUyePHmlqtZJvETpR1HXYaxzWBDuWt1Jouc22yjoOsz/TiNFqOo0EZmLVax/3k9ZisEirPDbbOx+5XLgQxFppaq/AYhIdeAHYBxwKrACaIqlD4253xRTBZgOvO5tuyAiXYBngBuw73oD8KmItFDVhdG2KSFIPvvyfbqhqi9hBUCpXLmybtiwIZlyOeJlwQJ44w344AOYOnUXZWoHVauyuU4d1lSpQq3q1Sm7225QtSpUqQKVKkH58raVK5d3C+0rUwZKly72tnHrVioffjgP9uzJ7VddBaVK2SYCpUqxLacUfZ6rQb+Xd2PrFtOXGtTL4ZgOWznogO00bazssQfsXkepVFkoV6EU5cpB9QZVNyVwFnsD+XkzbACextKg+0Ljxo2ZNGmX5yCF0qlTJwDGjh2bZ3+XF80gN6Lb4YkQzZElFLReikJEFiRemvSkqOsw1jksCHet7iTRc5ttFHQdJlXBEpGTML/6A7GbyYmY9eKPsGajgAuJQ8EqbBzP+tUR6OhZicAsZvNjGSvyCStwj4hcDxwOhBSh24ElqnpZWLt5Cei3SESkKrAW+J+qjhWRhsBHwPfALaqaE00/qvoJ8InX5+ACmvUEBqvqy97nm7y/xfXAXcVoUxJYhFVqD9EAWOyTLI5E8PvvEAjA++/vVKrKloV27aBVK2jRAvbfH+rXh7p1oXJlvvviC0488UTGjRtHhw4dUiJmhdxcFixYQJUqVaBmzTzHVq+GM8+E776zz2efDXfeCa1bl0akYkrk82gKzMxn/xzvWEYxcmTkv3OHo2DceokfN4fJw81tbCQ7Bqsy9vSxLdAJu/EfLSLlwtr8DLSV+H7NCxvnFuAn4DXMRa0e8Hd+nYhIVxFRz9WrSESktIhcgFl7fgw7dCYwQURGeJnlfhGR7iKSnxUj6n6jlO9gzFrym4i08c5/WVW7h5Sr4n7PAmQsh7kPfhFx6AvgiGjblCBGAZd52QTbA2tVdYnfQjliYNs2uP9+OOQQeO89U6ouuAA++QTWrIHvv4enn4Zrr4Wjj4a994bK5mbSvHlzBgwYwD777JMycUuVKkWjRo2oGaFcrV8PJ55oytWee9rre+9BmzZm3EoxqzE/xEj2BdalWJa4qVatGtWqVfNbDEeG4NZL/Lg5TB5ubmMjqRYsVX0v/LOIXAH8hylC47zdizFn/z2BvxI9jqqOE5GtwEZVXVpEV2uxp6jbCmvkxY79BFQA1gNnqeq0sCZNMVe4p7A4rEOA57xj/ePoNxr5DsYUyGO8sbqq6ucRbaL6nkVQGwsDWRaxfxlwXDHaZAUiMgxT7muLyCIggBcio6ovYNbAU7An8huBK/yR1BEX//0H550HX3jPDLp1M2Vrzz2jOr1hw4Zcf/31SRRwV5YsWcLIkSPp3Lkz9evXB8zgduWVMHEiNGkCY8dCo0YpFSuSkcBTInK2qs4CEJH9gCeBD/0ULBZGjBgBQJcuXXyWxJEJuPUSP24Ok4eb29hItovg3sADQDugDmYxKwWE/5SH/PhjtmBFOU6RqOoHwAdRNJ2JKU3VgXOAISLSSVVDNZBKAZNUNeQCN1VEmgE3UoiCVVS/Ucp3CFADGI4prF9FNijG94yGyICT/AqGRtMmo1HVC4s4rtjf35GpbNxoJp/x46FOHXj7bfB806Nl3bp1rF69mj333LPAZBuJ5o8//uD666+nefPmOxSs116Dd96xELBPP/VduQJzq/4MmCEiIctuPczD4bZoOxGRV4HTgOUFJJsRLCb0FOxBR1dVnRKn7LswcKBVYXA3JI5oyKb14tc1mE1zmG64uY2NZP/Cjwb+wbLj/QNsB2YA4S6CIb+VFUkeJ2Go6lbMEgEwyXPF+z/gKm/fEm/8cP7A3BXj6TcaDgamYhkAf8QSiAwpxvnRshJLaFY3Yv/u7LRYRdPG4Uh/cnPhkktMudprL/j6a2ha/NCgd999lyuvvJJ58+ZR3Mx0sXLUUUexZMmSHRmgVq6E2zyV5fnnYb/9UiJGoajqOqCDiByPPSQSYAowRouX6nYw9hAr38Q85K1H1w6rR9cuNqkL5pNPPkl0l44sptD1ouqLz24cDMaHa9Bdc8nDzW1sJE3BEpFaQHPgRlX9xtt3WD5jHggsVtWYbrijHGcr5qqWLEqxM0MyWAbByNuWfYHiZvyJ7LdQRKQ0Np+XqOrPIvImcL+IvKmq24s5dqGo6lYRmQwcD7wTduh44L1o2zgcGcELL1iWwOrVLdYqBuUK4Mgjj+SVV16hTp3UZVYuW7YsdevufMbx0EPw779w7LGmM6YTqvol8GUc539XRGzpjnp0wHgRqS4i9RIdD1lQaQWHIz92WS+q9jDnttvMSv7gg77IFQt+XYPumkse6TS3OTmwdWvh26ZNsHQprFplXv3r1pkDyrZttm3dmve1qH2HHgpvvVV8WZNpwVqNWTCuEZG/gfrA45h1KZyjMNeQothNRA6J2LcGWBjFOPOxRBqNsdimf1U1V0S6A91VdX8AETkLeAQ4VlX/yU8IEekLfIzFOVUFLsJib04Na/YU8KOI3AOMAA4FbgbuDusncuxo+i2KfTFXy1+8zw8AfwJX4qX9Lsb3rAKEIvFLAY28+f83LL36k8AbIvIzplReh8XSvRDWVTRtHI70Zd48uP12ez9okGUHjJFmzZrRrFl+uRySx6RJk/jpp5+45pprWL26Ai94V94TT6TXg3ERaQcci1m48yRgUtWbEzRMffImOVrk7ctzcxdei65RDP6TQ4cOBeCSdNNgHWnJjvVy8cUwfLil8ly4EGrXhssuK+LsjCOqaxCKdx26ay55xDO3mzbBjBnw118wYYJlrt28Oe8WrhyFFJvI96HPubnFl18EKlTYWfmkbFnbQu8j94XahvbF6uWRNAXLU2C6AM9i9ZTmALcSZrkQkQrAWcCJUXR5FOb6Fs57qnpuUeMA/TA3uRmYAtIEU7pqk9fSVM37XJaCqQsM9V7XYinUTw5PJKGqE0XkTOBh4D5MCbwPGBDWT+TYRfYrIl2xbIgFpZk/GMu4Nc+TY46IDAXuFZEhqhqqbxrN92wNfBP2OehtQ4CuXv8jPAvivVi8xHTgFFXdYamLpo3fiMiHwCDgE1WN4fJNPCLSGehcvnzUBkxHsrj9dtiwAbp0gXPOiaurVatWsXr1apo2bUqpUslO4mp8+eWX3H333VxzzTU895z9oJ11Fhx8cEqGjwoR6QU8hv3/XkzeGM1ExmtGVY8uvBZd69atiz3+oEGDAHez54iOQYMGQU4Ol/z0EwwYABUrwpNP2v+cKBPoZBAx1YQs6jp011zyiJzbrVvN1Xz5ctuWLYN//rFt0SLb1q61TLVLl+6sYlKqFDRoYKUdK1SwLfS+atW85R9Dyk7k+3DFJ7+ykSEFaY89LFR6t92szGSKfm7zIMVzb0/w4FaX6gxVPcE3ITIIEQkC5wIHJ9rlryTjuVKeiSm2g4HXVHW2nzKFcIWGfWbqVDjsMPuP/ddfcd/sPPDAA9x///1s27YtZUkutm3bxtq1a6lSpRaNGgkrVsC4cRBvGS4R2aiqlRMho+d98KiqFpYEKNq+GgMfFRBg/yIwVlWHeZ9nAp0Kc09q3bq1FrfQ8LZtlqC1bNm8z7Bc8VJHfmz78Ue46CLKLlgA3bubS2AUabFFZLKqtk6BiMUi0dcgFH0dFnTNxYq7Vo1t22DNmm1MnAhDhpRlyhT7KcxPdahWzRSohg2hRg2oUsUUnNatoXlzq1hSpUrqv0OyKeg6TM0vfMFsA27yWYZM4hTMrdApVwlEVS8Wkd2Ai7H06XeKyDjMqvWOqm4qtANH9hII2OsNNyTkSfKZZ55J48aNU6Zcgd1w1K5dm+HDYcUKOOggOCL9qtDthlfYPMmMArqLyHAssD4p9egSdZPnyHJU4YUXKHvDDfbI/bvv4Kij/JYq2STlGnTXXHzk5MDHH9sSHD3aLE8bN8L27RBydqpcGU46CS66yH4Od9/drES77w716+8o9+jw8FXB8sy/jihR1TZ+y5CtqOp/WDajgSJyAHA18CLwnPdD8LSq/uGnjI4UM2eO/dJUrGgxEQmgZcuWtGzZMiF9RcsHH3zAv//+ywcfWDLSq69Or9grj2HASeR1oy426VKPbvDgwQB07do1Gd07soHcXLjnHujbl8GNG8P119M1C5Qrv65Bd80VjiosWGBufGvXWojf7Nnm3rd8Ofz2m70HS5R7ySWW06lSJZg2bTC77w733deVFOZnynj8tmA5HGmFiOyJZTk6DUuU8i7QEPhNRO5S1X5+yudIIS95z3+6dCFRvyqLFi1i/fr17L///gnpLxqGDBnC7NnzmDnzKkqXtq+ThvwNBEWkAxZ/mqcIuqo+GU0n6VKPzt3sOQpE1R7edO9uBcsvuYTBCxfCJ5/QNZRMJ4Px6xp019xOtm2DmTNNafrtN/j1V5gyxRSpcCpVMsPp7ruby3iXLnDGGRbbFE6nToNZuhTq1Omasu+QDTgFy1HiEZGymFJ1JZZCfioWcD9MVdd7bc7Hgm2dglUS2LLFqvECXHddwrp98MEH+fDDD1m6dGnC+iyK999/nwEDNnHTTebesfvuKRu6OFyNZXg9wtvCUSwbacYwduxYv0VwpBvz5sHdd8O338ISzyPuoYfgrrsYm4Ym5UyjJF9zP/5ozwNXrzY38MmTLREFWDKI5s3hlFOgTRvYZx+Lldp9d2jcODpvhpI8t/HgFKwkICIVsSyBVbE6VpWw9MN/AHOxulwbgVWY/7F/mUYcYOlhBXgLuFNVf8unzZdY6QFHSeCjjyxN0sEHQ9u2Cev22muv5dRTi1N5IX5KlSrFZ5+Zc/zZZ6d06KhR1SZ+y+BwJJzVqy3t+pdfWh09gEMOgbvugo4dLSDS4SgmqpZ/6eWX4eefYdo0Sx7RqJEpTzfeCK1a2c/XfvuZkuVIPU7BigERKYOlOT8YqxXVBGgK7IUpVsUJ9dsuIiux1MTzMAVsLvA78Juqrk2g6I78+T8smcXmghqo6mrs7+woCbz/vr1efPGOR3zvvfce5cqVo3PnzgC8/fbbVKlShVNOOQWAYcOGUbNmTU480apODB06lLp163LccccB8Prrr9OgQYMd56eKiy66nM8/PweR00nx0CWWl19+GYBrrrnGZ0kcvvH553DhhaZkNWoEV10FPXvmW0fPrZf4KQlzuHChLathw+Cbbyw8+KijoEcPW1ph9eQTSkmY22TgFKwoEJEGWB2uo4G2wAGYZSrEP5hS9D2wHCt8vBL4D9gC5GJ1ujYDtwPlMCWsFqaQ1cEK7R2Ixf7s6FtE5gFTgHHAd8CvqpqTnG9aYjkG+BD7++xARCoDz6nqlakWyNXB8pGtW82CBVYwyuPxxx+nevXqOxSkRx55hEaNGu1QsB588EFatGixQ8Hq3bs37du336Fg3XvvvRx33HH873//S+GXgbFjf2T79r1o1+70pP0Ax4uIPFvY8QQWGk4JI0aMANwNSYnlzTfh0kvND+uLL+C44wr1xXLrJX6ydQ7XrIH77oOxY2H6dNtXrpwpVHffDbVqJV+GbJ3bZOMUrHzwCiB3wpSdkzHrFFgR3wnAc8Cv3ja7MMtHWJ//A1DVUUW0K4UpWy2BQzArWVsgVOH0PxH5BvgIK4y7uBhfzZE/lwN3Yn/fcCoCl2GxWSlFVUcDoytXruz+o6War7+G//6Dli2ZuHo1F+6zD2+88QaffPJJnuLAY8aMyfP5u+++y5N+fcKECXk+T5kyhXLlyqXmO4Rx1lk/M2BAdY49NuVDF4fI1Iplgf2x36gpqRcnPr766iu/RXD4xfjxcO210LQpTJpkqdiKwK2X+MnGOfzqK+ja1TL/HXEEPPIInHiiuf6lsnBuNs5tKnAKloenVJ0CXIQpVZWwOKkxmEL1HeayF1MNKlXtEWW7XCyj1t+E1YUJs6J19OQ7w9s/CRgODFfVf2KRraQiIjWx2CsBaohI+N+2NHAqsMwP2Rw+EoqVOPtsqlSpQvv27alevTo1a9bM0yzyc62IR4mRn2vXrp14WYugX79+fPlle+BIjjkm5cNHjaruIp33P/kVzDPA4UhvcnPh2Wfh//4PSpe2JDlRKFcORzhbtsDTT8Onn1o+lLJl4YUXoFs3vyVzFJcSr2CJSBvgWuA8oBrm4jcEGI1VG0+LIrOqugirFTNMRISd7oTnYJntHheRsdgNybuqusUvWTOIlViGMgVm5HNcsRoejpLEF1/Ya+fONG/enKFDh/orT4zk5uZy++23o3ov5codmY7FhQtFVTeLyEPA58ALfstTHAYMsHJeN9xwg8+SOFLCokVw5ZWWzOKgg2DoUChGvTu3XuInG+Zw8WK45hr45BML1evXz5LY+l3ANxvm1g9KpILlZfnrgtViaA1sAN4D3gS+jtVKlSq8rIPTvO0REdkXs7xdAgwFnhaRQcALqrrAP0nTnmMw69XXmKL6b9ixrcAC54JZwpg3D+bPhxo1LNtXBlOqVClGjNjE+efn0r691TzJQOoAVfwWoriMHj0acDckJYLVq+Hwwy31upd2vbiVvN16iZ9Mn8Ovv7ZU6lu2QCAAvXv7LdFOMn1u/aJEKVgishtwHdAT2AOzWnQH3lDV//yULR5UdRbQW0T6AP8DbsCSadzmVVXvq6q/+yljOqKq3wKISBNgoUuX7+Drr+21UycoXZqRI0dy00038c0337D33nv7KlosjBtnSVLS2T0QQER6Ru4C6gEXE+YqnSl8+umnfovgSAVTp8Jll5lyNXIkxFiCwa2X+MnUOfzxR3j+ecvm37gxvPUWtGvnt1R5ydS59ZsSoWCJSFXgVuAWoDrwBfAo8E023VR78VtfAV+JSEOgB6ZQXiIiHwL3q+o0/yRMH0TkMOAXb85qAbWkgKeOqppxQfaOGAkpWF5GiD322INjjz2WKlUyzojC0qVLGT78JaALxxyzn9/iFMVNEZ9zgRXAa8AjqRfH4SiAzZutkuu118KMGVC7tgXMHH+835I5Moyvv7afmmrVLIv/44/be0d2kNUKlohUAq7A4mjqAB8AD6vqJF8FSwGq+jdwq4g8DNyMKZe/ishg4AFVneenfGnAJKAuFnM3CYu3yk/DUizhhSPbUd2pYHmp1Nu3b0/79u19FCp2pk1byPLlAcqUaU27dumtYGVboeFnnnkGgFtuucVnSRwJZe5c8+OaOdM+X3cd9OkDderE1a1bL/GTSXP477+WHXD0aEti8eOP+ZZHSxsyaW7TiRQmekwtInI5sAbojxXtbauqZ5cE5SocVV2lqgEs1fyTmMvNXyIy0svSVVJpgj0hD71v6r1Gbk3zPduROnr3hgMPLPhzopg9G5YuhT32gP33T3z/KSY3ty2wjTZtTqRCml7pIjJFRGqEfb7Qqz+X0YwZM4YxY8b4LYYjUeTkWI7sgw6yhBaPPWZK1sCBcStX4NZLIsiUOdy2DU46yZSrW26xFOzprFxB5sxtupF1FiwRqQ88DZyLJSpYCpwcTa2qbEZV/wV6eQk+bgBOB6aLyI2q+rm/0qWe8OQf6ZgIpMhCw127wpAh9r5MGUvKcMABcO655rpStmyqRI2Oxo1hQcQ0V6tmVRSLolcvuCnSgywJTJhgr4cfviNI/fnnn6dPnz789ddfGecmOGkSQBnatPFbkkI5BKt5FeJFrNbgXF+kSRCjRhVa7tCRSUydCtdfb/8f2rWDV16x/7UJxK2X+MmEOdy0CU4/HSZOtFirCy/0W6LoyIS5TUeyxoIlxtXAn1j68vuwWlF1MTfBEo+I1AauAt4AjgdygM9E5M3wp8glARE5LNrND/lUdbSqXlu6dCHeiccdZ8HV8+dbavHOnS390FFHwYYNKZM1au6/3+QNbbNmRXdelSqpKVcfUrDatt2xq1mzZpx11lkUqOimMV98MQG4jwMOWOu3KMWheOnXHI5ksmABnHMOTJ8OTz4J48YlXLlylAxycuxZ4VdfwYABmaNcOWInKxQsEamL1a16GZgIHKiqD6rqZ0Bnb3+JR1VXYoWK71TVr4CDgCBwPjBNRE7wU74UMwlbK5OK2Cb6JWCRlC8PdetC/fqWUrxnTxg7FqZMMReWEFu3wh13QIMGVlCjTRv4PMJo+eef9mitWjVTaA4/HKZ5+VCmTbNI3N12g6pVrYz8N98UX96qVU3e0Lb77varc9VV0KQJVKwIzZqZ7Lm5O89LlktgJD//bK9hKZxOOOEEXnjhBcqmm0UwCn77bSrwMC1bpnXViaykX79+9OvXz28xHPHw2mv2f2flSnj/fSsgXCY5Tj9uvcRPus/hVVeZYnXNNWYQzSTSfW7TlYx3ERSRU4DXgcpYIof+XmY4AFT1I79kS0dUdULY+y1YevfRmFXrcxF5BrhdVbf6JWOKyKqg+h0ceKA5eL/3HgSDtu+KK+Cvv8wnoUEDq2LYubP5KRx8sFU3PPJI6NDBCmVWr27KRk6OnX/RRdbu55/tBmPaNPIE9TRubGnNBw8uvry5uaYgvv22xTL8/LO5ONaqZb9IqWLzZvjlF3MNbN06deMmiSVLYM2a66hSpVu4QS5dOVVEQma2UsCJIrIsvIGqvp96sWLnp59+8lsERzzccIPFVx16qP0vbZLcnwu3XuInnedw0CDz6L/0UnjpJb+lKT7pPLfpTMYqWCJSGrO+3AP8Alyoqn/6KlSGoqqTRaQV0BdTUtuJyPleJsKsJB3jrhJGixbmhwCmWA0bZm6EjRrZvu7d7fiLL9ojteefN8vWO+9AuXLWZt99d/a3YIH5NoQSP+yzT97x9t4b6tUrWq577slbPfHuu23r02fnvsaNzQI3bFhqFaxffrHo4wMOMEudx5133smwYcNYEBk/luZMnmyvrVsLhXmZpgmvRHx+PuJzxmXyfO+99/wWwRELCxbAzTfDqFH20Onzz1NSodutl/hJ1zmcM8d+clu3NqNoJpKuc5vuZKSCJSK1gBHAsdiP802quslfqTIbb/5uEZFxwKvAFBHpoqpf+yxaUgivg1VUnFXG1cFS3ZGkgSlT7HNkmqItW3akImfqVLuZCClXkfTsCVdfbY/gjj3WYhLCs+xFm12oZ8+8SlPNmvb6wgv2iG/BAosC3rYN9toruj4TRT7xVwDt2rWjoPpo6czEiQDD2L59LvYMKj1R1axwU3dkCXfeacrVrbfaw6AUKFeO7GXUKLj4YnPUeP11MuFhlyOBZJyCJSL7Ah8DjYCrVPVVn0XKKlT1HRH5DXgfcxnslqVznPA6WCJyEvCM136QqvaNOF4NGIqt3TJAP1VN/DOtGTOgqZddPjfXlK2JE3fNLFixor0WVWu7d2/7lfj0U3uiGwyaUnTllcWTq1atXa1fI0ZAjx7Qrx8ccYRZj55/Hj74oHh9x8svv9hrq1Z5dp911lmcddZZqZUlAVgGwW+ZP38c6axgZSt9+9qlf+edd/osiSNqvvoKhg835SrF8SZuvcRPus3h1q0Wa1Wrlv3MNW/ut0Sxk25zmylklIIlIkdjxYJzgf+p6g8+i5SVqOpMETkCeBt4xVNq7w6PbcsCIutgxYXnsvo8lp1xETBRREap6oywZjcCM1S1s4jUAWaKyJsJjXebPh0++wzuvdc+H3qoKVBLl8Ixx+R/zmGHwdCh9otQkBWrWTPbbr7ZfjUGDSq+gpUf48ZZUonu3Xfu++uv+PstLr/9Zq8HH5xn99KlS9ljjz3S3oq1fPlyqlWrRvny5dm0aRMTJqwEnuHbbzMv+2E28EtIYXdkBitW2EOkJk0s22mKceslftJtDh97zMKbR43KkzcpI0m3uc0UMkbBEpHTgXeAecCpqurDXVjJQVXXisipWKHmO4C6InK1qmZFSrIk1MFqC8xR1bkAIjIcKxMQrmApUFXsbr0K8C8Q+3xu2WKKU26u3SCMGQMPP2xWmF69rM2++9qNQ9eu8MQTpkz9+69lG2zaFM4+2wK6X3gBzj/f4qRq1DCLV/PmsN9+1td551l81LJlO5WiEMcea651jzxS/O+w776WHOPTT826NXw4fPutyZAqtm+H33+39y1b5jm055570r59e3788cfUyVNMvvzyS0444QS++OILjj/+eN5//2tWrTqNypV/pkmT9C6Cla0MHz7cbxEc0fLee1beYuVK+z8UFoOZKtx6iZ90msOXX4b77rNcUqed5rc08ZNOc5tJZISCJSIXYlnupgAneUVzHUlGVbeLyPXAYiyhSBURuSgbMwyKSD3geiAUrPQHMFBVF0fZRX0gPCnIIiDyuVV/YBQ2n1WBLvlZBUXkWuBagHIFWZTAXFrq1TPH7urVLYNgIADduuW1RL32Gjz0ENx+OyxaZLFPbdvutGjVrw/ffQe33Wb7REzReOkl63v1arj8clPmatWyX4xwF5q//oKGDaOcpgi6dTP3vIsuMkvbOeeYi86rKfRKnTXLlNXGjS1NfRjvvvsuTUPulmlKixYtePTRR9l7770BEGkJDKJFi8akueHN4fCXhQvhggvs/+fw4fYAyuGIEVVLw/7KK+bxPngw7n9wSUZV03oDumIugWOBqn7LE+N3GBu++S1PjN/h/zALzCdAeb/lSfB3Ox7YCMzEUv6/jhWs3gicEGUf52FxV6HPlwLPRbQ5F3gKi/XaB7PG7lZYv5UqVVJHkhk2TBVUTz99x65AIKDt27f3UajYefpp+zrXXpvccYANmgbXb/gGnORdx3Owen+Rx6thNRN/BX4Hriiqz1atWhV7bvr06aN9+vTZZf/5L/yo57/wY7H7cySB115TrVtXtXx51dmzfRWloPVSFMAkTYPrLnxLxjWoUVyHsc5hQcRyrb7wgv3v7dpVddu2hIniO4me22yjoOswrS1YItIFy2j3JXCWqm70WaQSi6o+JSIbgBeBYV4a96xwFwSeBQYBt3gXCwBeTbBngGjCUxcB4WacBpilKpwrgL7eGHNEZB6wP/BzHLI74iWf+KuGDRtycEQ8VrqyaNEiFi5cSNu2bSlTpgzTp9v+VNRmTifSJg4SmDlzZiK7cySab7+1+oB168LIkbsm30kx2bJe/LwG/Z7DzZuhb1/7v/vqq9llufJ7bjOVtFWwRKQzlnHte4qhXElQBPgBi4lZAhymAV1R+FnJRVU7+Tl+olDVl0SkAqZ0vCYil2t2JL5ojBWojkyn9zxwTZR9TASaiUgT4B/gAuCiiDYLsdIC34vIHsB+wNxYhXYkiJCCddBBO3ZdddVVXJXKOlxx8NZbb3HHHXewfv16ypQpw7Rptj8inCytEZGawEPY9bE7VnB4B6oaTWBM6uMgC2Do0KGJ7tKRKDZtgssug9q1LSlQrVp+S5RN68W3a9DPOdy8GU45xcpNvv12dilXkFXrM6WkpYLlZbB7B5gKdC6m5epx4HDvfQPgc8A5VicIVX1WRKoCDwKrgB7+SpQQJgEtgVkR+1tia7BI1OLVumPrrTTwqqr+LiLXecdfAB4ABovINMxN8A5VXZmg7+CIlZCClUkaSRjnn38+Bx98MBUrViQ3d2e+jgMO8FeuYvIKcCjwEmb5LaJ2QL4kJQ6yUahAtyM7GDnSYq9GjUoL5SrLSNg1CJlzHT78MHzzDTz4oOWDcjggDRUsEWkKjMSe9p+sqv8Vs4tIW3+9hAiWJkhQKgMPex/v1oBu8EGMh4E6WGHi2ar6vA8yxEVEceEBwFMi0gwY7+1rjyW9iLrwg6p+gsWohe97Iez9YuCEWGV2JIENG+Dvv61GmJckAsyCtXTpUj7++GMfhYuOxo0b07hxYwDmzYP162GPPaBOHX/lKibHAser6oQ4+iiojl04JwK/AP8D9ga+FJHvI39nVPUlTNmjdevWxVb27vdSfffp06e4pzqSyYwZVky4Rg04/ni/pdlBFq2XhF2DULzr0K85VLUqJ8cea0l4s5EsWp8pJa0ULBGpjhURLoWlYl8VQzcPAqeHugRiyB2d1iwEanrvLw17nzJUVUXkVuyf47MiMldVP021HHGSX3Hhh/NpNxQYlhKJHKlnlme03GcfKLPz32HLli1p0KCBT0IVj1mzZrF8+XKOPPLIHfFXGWiMWw6sj7OPtImD/Pvvv4tu5EgtubkWd7VqlaVjr1DBb4l2kEXrxbdr0K85/O03e7B1332+DJ8Ssmh9ppS0UbBEpBTwJnbTfryqzo6lHw3oJAnKvkAX4FsN6LgEiukrEpQ9yKtQ1ZCg1NeA/pNqWVQ1x0uf/z0wXERaqeqcVMsRB3EXF3ZkAaHg3f32y7O7R48eqZclRvr3788bb7zB6tWrMznBxT1AHy+uM1ZFK23iIF977bVEd+mIl2HD4OefLYf2kUf6LU0esmi9+HYN+jWHn3g+K8cd58vwKSGL1mdKSRsFC7gLOAW4QVW/jacjDegcLGDaN4LBYD3gOCz+ay/M13grsBRLTfotMDUQCBQnScRKLGV9KABcvf58QVXXi8iZWJzSuyJyuKpu8kue4qCJKS6cNLwkL53Lly+f7/GuXa0u5kcfpVSsQhk82B4Qh6hbF446Ch59FJqkqzpbgIKVSdxyyy2cf/75ADsSXGSggnUvlmxmuYgsALaFH1TVg/I7KaKNi4N05M+779o/p0MPhUsu8VuarKUkXoOffw6HHBJ7KUhH9pIWCpaIHAv0Ad4CXiiiedoSDAYFOBXoCXhVXNkIzAf+A8oBrYArvWMLgsHgC8DAQCCwtqj+NaA5EpTTgCHeris0oDmJ+wbFR1UXiMglmGtnfyAzUq9FICJlsAxIjbC/0w5U9fVUy6Oqo4HRlStXjjaLYVpQqZLVHVaFP/+0OsKnn261hEuX9lu6fChAwTrhhBOoW7cur7+e8j99sdl77713FBkOJbjIQAXr3UR0ki5xkHfddRcAjzySbR7qGciqVXDdddC0qRVnL6x4u09k03rx6xr0Yw7/+gu++w68EKWsJZvWZyrxXcESkVrAG1hhum75pMrOCILB4P5YMOZRmAk8gBXT+y0QCOREtK2H/YO5FIsR6xkMBm8FhgYCgUK/vwb0UyyNcdqgqp+IyEPAPSLyuaq+7bdMxUFE9sf+Vk2wJ2o52LWxDdiCFR5Oa0IWreOPh8ceg40b4cwz4fnnTekBU3qefBJeeMGSaNWpA5deCqH/mX36mPfM0qUWA37CCVBc/ULELFcA9epBIGAPjOfMgf/+syDgKVNg61bLiv7443D44TvPf/FFeOIJk69qVTjsMPj4YwuPmjYNevSAiRPtuzRtCk8/Dccck58kURJSsPbfP8/ujh07Ur169Tg6Th1Tpkxh06ZNHH54B2Z7jtWZZpBT1aDfMiSSVatiCR92JBxVuOYaWLMGvv4aaqY8ZDkq3HqJHz/m8MUXoVQpW2LZjFufseG7goXVGqoNnBKH772vBIPBUEHkzUA34LVAILCtoPaBQGAJZoUaEgwGW2OFbl8HTggGg9cEAoHNKRA70fTGigsO9DICLfFZnuLwNDAZOARzuTwEqzY/EHNdygi+/96Umq++ssR4558P++4L3sMn7r4bBg40Jevoo2HFCpjqJaF/7z3o18/CFFq2hOXLYfz4nX2H3P/mzQMvYV1UVKxor9u2wbp1ptA984wpYv37W+2Q2bOtJM2kSXDjjTBkiIVIhO6JQlx0kdUC/vnnnQpXXHHqqjuTXERoJPdkUDqohx56iFmzZvHpp9PYtMkU5wzRDXdBRP4HtMDcn39X1bH+ShQbL730kt8iOMD+mXzwgT1FOqhIL1PfcOslflI9h5s3w6BBcPLJUL9+SodOOW59xoavCpaIXIAlo7hHVX/xU5ZYCQaD3YAX1rBm7iu8Un8d654G1gcIvBXN+YFAYFIwGDwKC/IOAnWDweDpgUAgI2KZQni+15dh6VcHichpGWSNbAN0VNUNIpILlFHVKSJyO/AckL6/zGHstpspUGXKQPPmVo9jzBhTsNavh6eeMovPlZ6D6j777LQeLVhgytkJJ1jG8kaNoHXrnX1Xq2Y6SNmy0cuzaJFZqBo0MEUv0m3tuedMsfvsM7NyLVwIlSubS2HVqrDXXqZQhViwAHr12mls2ieyIENxWbzYJqZ27bR9sh0Nffv2ZcOGDTt0xWbN/JUnFkSkPvAB5kIdyjq2p4hMwgrNR2YiczgK5+WXoXt3e5p0221+S+PIMl56CVavhssv91sSR7pSqugmycFzDewPTAAe80uOeAgGg2cAA7ez/Yv+9G+6jnXlgYrAUAlGX8s7EAjkBAKBPkBXLLvOEC+eK6NQ1ZnAHViyksjMQemMYLFyACuwYolgKWfjvY1PGS1a5Mk0zp57miUKrPzLli1WqyM/zjvPnsg1aQJXXQXvvGPtQ5x1lsVUFfWkbsMGqFLFFKWGDc0V8P33Lexh+XKLydp3X1PYqla1fQsX2rnHH29KVZMmcPHF9vB53bqdfffsCVdfDf/7Hzz0kMkTF4UkuNhvv/249dZb4xwgNTRr1oxDDjlkh3vgvvv6K0+MPIu55u6jqg1VtSHQzNv3rK+SxUCvXr3o1auX32KUTP77D046Ca69Ftq3hw8/TNMA0J249RI/qZzD3Fx7YNmuHZx7bkqG9BW3PmPDNwUL6AtUB65R1e0+yhETwWCwIebmN/klXrprO3m+ghCDdTAQCAzBFJTzgOsSIacPPI/Vs3jSq2uWCUwHQraSn4E7RKQjZlHMmNTzkdYlEfshAPOGK4yGDU3fePFFs4Tdeiu0amUKU3GoVMkSWkybZsahyZOhTRs7dvnlFj/11FPw44/WrkEDU8LAFK4pU+Dtt82C9sgjZq1a7Nkuevc2RfHMM+38gw6CV18tnnx5KETBOvfcc2nbtm0cnaeO7777jvHjx2e0BQtzL75RVeeFdqjqXOBm71hGsWnTJjZtyignhOzgn3/sKdKXX8KDD1qKtxo1/JaqSNx6iZ9UzuHUqTB/vrm0lwTc+owNX1wEvaxzVwNPqOo0P2RIAE9h2eYuWM7yuVjsjhfezwwNaIExWJFIUGoBI4DagtweIPAl8FgwGPzQi9fKGLz6WNdj9TBeZ2fR53TmIaCy9/5e4CPgGywt/vl+CZVIWrSA8uXNZbCgG/AKFeDUU227805LVvHDD+Y2GC0iBbvujRsHzz5r/QMsWwZLIlZ3mTJmofrf/yAYhN13t1T0115rx5s1s+3mm+H6680HPuTyWGwKUbAeesjXKg/F4rbbbqNGjRqUK/cZkLEWrIIoThmLtOH555/3W4SSx/z5cMQRZvb+4APzNc4Q3HqJn1TO4ccf22s2174Kx63P2Ei5guUVFB6IBTFvE5HKqlrM5+T+4iWmOAe4PxAI/BUggASlAXATlujixYj2ZYAawIZAILBxlw6tLtYeAIp+NpGJR7ehzTfAncAtSfwqCUdEBNgTS0vfWUQ6eynH0xZV/Tzs/VyghYjUBFZnUBxZoVStCrfcYvFY5ctbWMKqVWZhuv56S2Kxfbu5PFSpAiNGmEUspIx98IGdO2ZM7AG9++4LQ4faGBs2wO23582Y/NFHlvb26KMtJOqbb+xeqXlz2LTJ4q/OO8+SbCxbZgpbu3ZxTEoBClbnzp058MADMyYl7RtvvIGI0Lmzfc5QC9YY4FkRuVBV/wYQkUbAM94xh6Ng5s2zzDirVsG335proMORBP77z7wwjj/e4pYdjoLww4LVBagC/IQpEKuAfj7IEQ/dgXXYjz9gNaqwbHQABIPBUlgV82uAI/BqKwWDwdnA28DTgUAgVFwvPO26fMzHe7ehzTDgymAweE8gEMik7Ir1gfex2l9lgBuwFOhpj4hUBPb2Pv7lp3JVVKHhWHjkEfOWeeABS0Cxxx5w2WV2rHp1Kwjcq5dl/GvRwmKnQgWC1641fWRb1HbZXXn1VbNEtWpl8WG9e1smwxDVq1u4RJ8+lmZ+773NQnXUUeZGGAooXroUatWC006zzIcxM3euvUaY3Bo2bMjuu6dVJYRC2Xfffdm+vcCvkyncDIwE5orIYuwBXH3gN+9YRtGjRw8Ann76aV/lKBHk5FidqxUrrChRBipXbr3ET6rmcMgQy3BbkvKmuPUZGylVsESkPOaO9StwJNAOyzqXMQSDwfKY9WpEIBD4r4A2dTEl6ihgFpaJbgGwm7fvLuD6YDB4WSAQ+BhYgll9wG4svgLmYnWyTgOGJ+0LJRhVXeQVjh4P9AAeE5H/qerXhZ/pH966fBRLsV8Oi6HbIiIvYVXmU542v6hCw4MHF/4ZTIHp3Xvn51KlzPXvzjt3bXvmmbYVRNeuthVGUW0OPhgmTMi779JLd74/8kizWuVHuXLwVlR5OaMkN9fSEoJl1ghjwIABCRwo+YwePZqcnHps29aa+vUtwUim4VmtDhOR44H9sWtwhqp+5a9kjrSnVy/44gu4776MVK4cmcOGDbbMjjii5LgHOmIn1Rasa7Birieqai5mxco02mEWuFH5HQwGgzWAsUBD4EpgSCAQyI1ocwBWXHlkMBg8E7uheAOoA9yhAf0nGAwuBVYDx5FBChaAqn4PICLPYda+viLSLo3d7QZihZ+vZueaPBwrAl0V+zs6sollyyxNYu3a5hPp0a5dO8444wzuvvtuH4UrHtdddx0tW54MDMr4+CtV/RL40m854sU96U0RP/5ogZ2XXmqm7wzFrZf4ScUcfvKJeXM88IDFG5cU3PqMjZQpWCJSDrgdGKeqX6Rq3CRwmPc6oYDjzwNNgWMDgcD3+TUIBAK/B4PBjsC3wOu96b1/IBA4M6JNTjAYnBg2XsahqptF5EHgJUxRTNcbp/OAs72buxBzRWQ58B5Owco+5s+314iqyQcccAB77rnnLs3TmW+++Ybhwyvx+eeZleBCRHoCA7z/Ez0La6uqT6ZILEemsHixVXmtXduqpzscSUTVllmtWhYn7HAURSotWBdjVp1rUzhmMtgb+C8QCCyLPBAMBg8CLgQeCClXwWDwBCwz3UFYjaXXgUcDgcC6YDB4EZYi/DZvi2QWZjHLZF4HegN3k74K1gbgn3z2/wO43KTZSAEK1qtx5X33h3333XdHLFuGJbi4CSt1sdl7XxAKZNQd9I1e/maXfSuJDB5sGQe+/96UrAzGrZf4SfYczp8P48dbrHIZP7IX+Ihbn7GRkjpYXubAO4EpwOdFNE93qgP/FnDsEmAbXrKLYDB4IfZ99wSGYjWV+gDvB4PBUoFA4E/M1fCSAgoLrwKqeQkzMhJV3YIlMekkIof7LU8BPAcEvCQXwI6EF/d5xxzZRgEKViYydOhQJk/+FcgsC5aqNlHVVWHvC9qa+i1rcalYsSIVK1YsuqEjdoYNs8DNgw7yW5K4ceslfpI9h194flehbK0lCbc+YyNVeviJwL7AhWkchxMtigVg50c7YFIgEPg3GAxWBAYA44ATAoHAJoBgMHgT8CxwLpYI4wvgrJ/5uZUEpTrwbVgNrZBilelz9hJwP5YNLC3i7kQkMoauE/CPiPzmfW6JXR8ZmDLAUST5KFibN29m//3356677qJbt26+iFVcVJVLL72U6tXvBw7ONAvWDkTkMmCE90AmfH854AJVfd0fyWKjX1zpLR1F8scfMH16nGlE0we3XuIn2XP46aeWD2n//ZM6TFri1mdspMoycgNWiPf9FI2XTFYBtQuwOO0OLPLeH4FZux4OKVceA4DlgFdu1dr/wi8TMRe6/yQodbxjdYB/A4FARitYXp2zwcA5IlK3iOapYlXE9h6WJnqet43C1usqvwR0JJF58+w1lIfeo2PHjjRo0MAHgWJnxoy/WLv2ZkqVgqYZZ+vZwWtAtXz2V/WOORzGr79aEEylSnDhhX5L4ygB/PsvfPaZ1a4uScktHPGRdAuWiDTGlIkHVXVrssdLAbMxq0YD4O+IYxuxGwLYafn4V0TGhjfq3bv3mrDjVQG2saPAUAXgQaBbDjkHlqLU7ATK7icvYGnbr8JS9fuKql7htwwOH8nHglWhQgWGDBniizixYnW9m6JqumJ44eYMQ8jfUt8IWJtiWeLm2mst1Pill17yWZIsY9MmOOkki72aMMEK6mUBbr3ETzLn8J13LOnsFSX0rsGtz9hIhQXrSuyH8+UUjJUKJnuv+SWfmAEc5sVM/eLtOzO8Qf369SsBzbB4NIDW29nOalaHN1tXOlh6yXa2HzmJSe0kKGcnSni/UNWZwBjgapH0fAYkIk1F5DQROVVEfLUFiEhnEXkpJyfHTzGyk0JqYGUaGzdupH//l4E/Myr+KoSITPPcchX4VkR+C9t+B77H6gJmFLVq1aJWrVp+i5F9jBpllcafeAIOOcRvaRKGWy/xk6w5XL3aal/tv39WLbli4dZnbCTVguXdSF8MfO0VkswGpmD1qc4E3o04NhpLdHFKIBD4KBgMvgHc3rt37z7Ax1gWxaeAlcCgYDBYAbhwC1t+2M72NliR23nApiY0qVue8vzFXwCvkh3ula9jWcMOB370WZYdiMhuwCtYAencnbvlPeAqVV2XapmKKjTsiIOlS2HrVqhTJ09V3nnz5tGhQwf69+/P2WdnxjONf//9lwEDrgVeolmzjAwOCP0PPRD7H7k+7NhWYD7mvptRPPLII36LkH0sXAg33WSpMq+6ym9pEopbL/GTrDn85htYsQIGDiy57oFufcZGsi1Y7bCaUG8meZxiIUG5VIJyswSlbHHPDQQC24ARwNnBYLBmxOEPgblAv2AwWAW4HruBuBeYiClJOZgCthzLUlevMpXv04CW14CKBrQpIIdxGJvYxBzmQMFJNTKND7C05xf7LUgEz2Bp9I8BKnrbsd6+p/0Ty5EUCsggWKFCBU477bSMisGqV68eF174N3BBRlqwVDWoqkHgCuC+0Gdve0RVh2WJa7kjHrZtg+OOs2CYp58Gl9HMkSLGjrVwv5KYPdARH8lWsC7EapykjfVFgvIjZkl5BlgiwZieSTyP3YTfGr6zN72rDmVo+Vxy91vM4r+AMoFAoAvmEtgFu2nfH5gcDAa7Y7WhXg0EAt+E99ODHu+2oAWTmcx2tiuQGSnNisCzBI0CzheRdKokcTpwtap+q6rbvG0sVrPtTF8lcySeAhSsevXq8dJLL9G2bduUixQrpUuXZsmSBkDVjM0gCKCqQ1R1s99yJIorrriCK0pqwEaiyc2FK6+E2bOt9tUpp/gtUcJx6yV+kjWH33xj1QAyOL41btz6jI2kKViee+AZwBeq+l+yxomB8FpMtYBi1+QOBALTgWFAz2AwGH5bM2YOc+qPZCR1qbv7ZjbP99Kybw4EAm9jbnEdgU+w+kqjsQyLOwgGg6WqU/0JQdb+x38HA+U1oMOLK2Ma8w5Qm7x/B7+pSP7ZAv/Fko44soksqoG1fPlypk4dAMzPSAtWCBFZJyL/FbT5LV9xadiwIQ0bNvRbjOzg7rth6FC48Ua4ON2cHxKDWy/xk4w53LbNqgEcc0xCu8043PqMjWRaEQ4A9iINMsZFkAOUDvu8IMZ+egEnA8ODweCRXir2RgC/8iurWMVZnJVbgQrPAM8Gg8GtWIwV2I17T+DZQCAQmcXgNuB/QLcJgQm/kX18iRVjPg0LYE8HfgAeEJFLVXUjgIhUBoIUI1ZMRE7CLKOlgUGq2jefNp0wt8OywEpV7Riv8I5iEkrRHqFgjRs3jjPPPJORI0fSoUOH1MsVA9Onz2Xt2hspU+YTGjVq7Lc48XATebMIlgUOxeIi0+03pEj69OnjtwjZwaZN8OKLljnwueeyNgjGrZf4ScYcrvIeux57bMK7zijc+oyNZCpYp3mvnyRxjFjoAryBffeHNaDzY+kkEAgsDgaDl2G1k94KBoPnYzWu7gFYxCJ9nudPvJ/7t2EKU10sgPtX4MuI2lgABIPBC4BHsBivbMm6mAdV/U9EvsXWxx1+y+PRE/iUnYWGFTgY2IAVyS4SESmNuY4ej9U2mygio1R1Rlib6tgaOUlVF4rI7gn9Fo7oCFmwImpg1alThy5durDHHnukXqYYqVq1FbCMvffejdKli2yetqjq4Pz2i8gUzLX6uZQK5EgPHnkE1qyBXr2yVrlypC/LltlzuNat/ZbEkYkkU8E6CfhFVf9J4hjFRgP6HgnKShUIBEYHg8FbgGeB0b3pfUFvek8FjgJeyQnkTPOa/lpYP17R4u6YZeN74MpMLy5cBJ8AT4pII1Vd6LcwqjpNRJphGSD3x5KKDAXeVNVdFOECaAvMUdW5ACIyHHORnRHW5iLg/dB3VtXlCfoKjuIQ4SKYk5PDU089RdOmTXn++ed9Eys/Jk2aRP369alXrx6//fYbI0aMoEePHtSpU4epU6fyyCPvArey335Z68n6DcVINJMuVuRLLrkEgKFDhya665LD7Nnw1FNw/PFZb0LIpvXi1zWY6DnctMl0+x7dnG6fTeszlSQlBktEygPtsR/HrCYQCDwHXI1ZqX7pTe+NGtAeGtBpRZwKQDAYbIgpfM8CH2EZBjcmTeD0ILQujvJVCkBEyorIUqCpqr6sqreqak9VHVQM5QqgPnkLTy/y9oWzL1BDRMaKyGQRuawAma4VkUkiMmn79u3F+j6OIsinBtY///zDu+++y+DBg/2TqwAefvhhXn/9dQD++OMPHnvsMVZ5fivTp09n5MjHgDUZHX9VBBdgZS2KJMyKfDLQArhQRFpEtKmOWZFPV9UDgPMSKq3Hfvvtx3777ZeMrksGqnDppbBxIzzwgN/SJJ1sWS9+XoOJnsP/vMjPM85IWJcZS7asz1STLAtWa6A86RNjk1QCgcArwWBwOpad8JNgMPgd0B/4OD9lybNYHYYpZl293XcA/QKBQG5k+yxkGvAfpmD5msJfVbeJyDbyxn/EQn7PuCL7LAO0wlyeKgI/ich4VZ0VIdNLwEsAlStXzmZLZupZssQil3ff3XLvAo0aNWL8+PE+C5Y/HTt2ZM2aNQB06dKFLl267Dh26aWXMmbMpQwZQsYrWCIyjbzXiwB7ADWxchfRkDZW5Pvuuy8Z3ZYcvvoKJkyAfv2gXTu/pUk6WbRefLsGEz2Hm7zHqxleiz4hZNH6TCnJUrBClolxSeo/7QgEAhOCweBBwHVYTM/bQE4wGJwK/AmsxZTOhpgCWgvYgrmiPRgIBOb7IbcfqGqOiIwjDSxYHs8Bd4nIFaoaq8loEfa3DdEAWJxPm5WqugHYICLfYbFes3CkhgzLIHjLLbcUenyWt3IyOUW7R2TR9lxgBTBWVf+Mso/8rMiRd+f7AmVFZCxQFXhGVV+P7EhErsXKNNCoUaMoh3ckhEGD4JproGxZOOssv6VxFI+EXYPg73W4YgVUq7bjOZzDUWySacH6S1VXJKn/lCNBOQmztpQBbtaADolsEwgEtgDPBIPB/kAnzG3wcCwVfBVgK7AEqwX1LTA6EAj8m5IvkH6MB04WkSqqut5nWY7C0uf/IyLTseQWO1DV06PoYyLQTESaAP9grk0XRbQZCfT3aoCVw354nopTdkdxyEfB+uGHH7jmmmt48803OfTQQ30RK1Zmz7bXTLdgecWG4yUpVuTWrVsX24p8wQUXADB8eDZV2EgBGzfCzTdDlSqWH7uEmA+yaL0k7BqE4l2HiZzDlSttKTZtGndXWUEWrc+UkiwF6xDglyT17RcfsTO9+2AJyoca0LX5NfRSr4/xtrRBgtIQuBOYD/TTgPrpfvYr9s+4JfCTj3KAxXjElfhEVbeLSHfgc2ydvKqqv4vIdd7xF1T1DxH5DPgNe0I/SFWnxym7ozjko2BVqlSJAw44gCpVqvgiUmEce+yx1K9ff0ccVjj//ms3ApUrQ716PgiXBETkf1jsBsAMVf26GKenjRX5kEMOSWR3JYdXXjHfrK+/LjHKFWTVevHtGkzkHC5ZYq8VsjZ3UPHIovWZUhKuYIlIVWBvYHCi+/YLCUpp8tbOAmgKTPVBnJiQoNQC5rLzb96ZGIosJ5BfvNeD8VnBUtWElChX1U+IKEugqi9EfH4ceDwR4zliIFQDKyxF+6GHHso777zjk0CFc+yxx1KjRo18j4WsV82aZX6WK8/y+z72wCV0Q7anF5t1TiimowjSxop85513JrrL7Gf8eLjtNmjbFjp18lualJJF68W3azCRczjVu7Nz7oFGFq3PlJIMC9aB3mvWFMnVgOZIUBZghZPBEjT84p9EMXE+eZVEvyup/g2sAQ7ySwARKQXcCpyJpYv9Cuijqpv9ksmRZDIsBuvuu+8u8Fi4gpUFvIL9X20aCn4XkUbAEGAQ5m5dKM6KnMGsWQOXXQa1asEHH2T+E4MSSrZcgxMmQOnS5h3gcMRKMhSsvb3XbAvc3xsIYD7DvX12r4uFyeT1j17nlyAAqqoiMpud68UP7gAexFw5N2HJSWrjBdU6spB8FKx33nmHu+66i2+//Zb69SMz66cvoQQXmR5/5XE40D68Lp5XjPv/KIaFO12syOeccw4A772XkJKL2c20adCxI6xdC6NGwZ57+i1Rysmm9eLXNZjIOfz4Y9jt1Li7yRqyaX2mkmQoWKGwwPlJ6Ns3NKA5wP1+yxErGtCfJSj3YkrFWuBEn0UCmIelq/eLrsBNqjoAdhRI/FBEuqlmnALtKIqcHFjo3b+HxXfUqVOHdu3aUbFiRZ8EK5h99tmHM888k379+u1yLMssWAuxh1eRVCBvVrKM4PDDD/dbhMwhELDXr782RasE4tZL/CRqDleutFKJR9RMSHdZgVufsZEMBasJ8I9zs0o/NKAPAQ/5LUcYc4GzRKS0qub4MP5eWPKSEJ9jVr49Mf9x3xCRzkDn8uXL+ylGdhGqgbXHHhCmTHXq1IlOaRrzccEFF3DwwQfneyzLLFi3As+KyM1YHAdAG+Bp71hG0atXL79FSH+2bbOU7B9+CNddV2KVK3DrJREkag5//tlenXvgTtz6jI1kKFgNsaeRDkdRLMRin/Zg10xDqaAc5hoI7HBb3IrVK/MVVR0NjK5cufI1fsuSNWRY/BXAgw8+mO9+1cy3YInIOvKmcK4A/IDFZQCUAnKw8hi7pVY6R1LZvBlat4bff7dc2K6QqSNNGDwYSpWySgEORzwkQ8GqDSxIQr+O7CNUJ60W/ihYAI+IyMawz+WAgIjsSMGvqjenXixHwilAwXr66ad58sknmTt3LmXKJKtyRWJZtgzWrYMaNSwvQIZyE7vWyMkKTj/dSueNGjXKZ0nSlB49TLl66im44QYoV85viXzFrZf4SdQcTp4MZ5xhda4dhlufsZEsBWtyEvp1ZB8rvdfaPo3/Hbsm2fgRCC8Zn5U3gCWSUIr2CAWradOmHHfccZQuHVmJwV+2b99OlSpVCAaD3HHHHXmOZUOKdlUd7LcMyeLYY4/1W4T0Zf58eOkluOACU7Qcbr0kgETM4fr1MHcuXHEFTEuATNmCW5+xkSwFa1US+nVkHyEFq44fg6tqJz/GdfhEyIIVVgML7Olc6AldOqGq9OjRgzZt2uxyLBvir0Skpqr+G3pfWNtQu0zhlltu8VuE9OXxx80H63FXDjCEWy/xk4g5/P13ez3wQJi2LO7usga3PmMjoQqWiJTG4lfWJ7JfR9YSWieunJ8j+WRYDFbZsmXp27dvvscyPf7KY4WI1FPV5djDlvysxeLtTy/zoiM2VqyA4cPhqKOgQQO/pXE48jDNM1u1bAnDnILliJNEW7BCyQG2JLhfR3YSWie+J5VwlAAKULB69erF559/zrRp6eUUEqoUIPn4AGaDBQsrHhyyTB3jpyCJ5uSTTwbg008/9VmSNOP//s+CB594wm9J0gq3XuInEXP4559QocIuTg4lHrc+YyPtFSwRGQvJc+dKdv+pHCcD52qr9+oULEdCUVV+/fVXqlatyt577w05OUxesIAaQNNGFmI3adIkatWqxWGHHZaWyS0WLFhA06ZNee2117j88svzHAtZsDJZwVLVbwFEpAxwAPChqvqV7CahdO7c2W8R0o9+/eDNN+Gii+AwP8sfph9uvcRPvHOYmwuffgotWpgHq2Mnbn3GRqLvKkJ5V24QkTOBX1S1R4LHyDg8xeSQ0HsX+wMi8jTQyvt4LvCsf9I4so0JEyZw8cUX07p1a0aMGAGLF3NaTg6nV6zIi14NrBNPPJGLLrqI5557josuushniXdlt91249577+Wggw7Ksz83F+bMsfcZ7iIIgKpuF5HHgY/9liVR3HDDDX6LkF58/TXcdhs0bw5PPum3NGmHWy/xE+8c/v47zJgBL7+cIIGyCLc+YyPRCtY279Xp/45oCPk+5RbaqgTiCg3HR/v27fnqq69Yv94L85s/n7eAOmEaydtvv029evX8ETAKatasSZ8+fXbZv2iRlRGqWxeqVvVBsOQwHnvg4kp8ZCODBkH58jBhQlYtWkf2MGOGvRZQ193hKDaJVrBCLl8vq+qjCe47Y1HVTqlyRcwUVLWHiNTD6l8N91seEdkDuBRL236fqq4UkQ7AYlWdl2p5XKHh+GkS7kg/b54F+bRosWNXuqeezc3NJScnhzJlyuSJwwrFX2WD9SqMl4F+ItIIK/OxIfygqk7xRaoYOe644wD46quvfJYkDfjgAxg2DLp2dcpVAbj1Ej/xzuGAAdCoEUQ4DDhw6zNWEq1ghWKvElY1MNkKSaoUnlSMk4FzFVonviZFEZFWwBhgHhYL8jiW1ex4YF8g/fzHHIUycuRIXnzxRYYPH85uu+1WYIr2dOann37iyCOP5PPPP+eEE07YsT9LElxE8pb3mp//WMZlEezSpYvfIqQH06fDueeaa+Azz/gtTdri1kv8xDOHmzbBTz9Bz55maHXkxa3P2EioguX50m8FqiSyX0fWElonGwptlXz6Ac+oakBE1oXt/xy4wieZHHGwceNGVqxYQalQtHKGpWgHaNiwIQ888ADNIkxVf/5pr/vt54NQySNzNN8ouOYaZ3hGFR56yF7HjIHddvNborTFrZf4iWcOp0yBbdvgiCMSKFAW4dZnbCQjddZKoFYS+nVkH7W915WFtko+rYCr8tm/BNgjxbI4EsCFF17IhRdeuHNHBipYjRo14t57791l/8yZ9pplCtZewI+quj18p5dh8AhcbFbm8corVvOqVy9I41hHhyNUYNjFXzkSSTKSUaxk542zw1EY6aJgbQJq5LN/f2B5imVxJIMMVLC2bdvGhg0byM3NmwMmSxWsb4Ca+eyv5h3LKDp16kSnTp38FsM/Vq+GQMBMAo+6cOyiKPHrJQHEM4d//AGVKkHDhomVKVtw6zM2kmXBqpOEfh3ZR2idrPJVChgJBETkPO+zikhj4FHgPd+kcsTMiy++yKhRo/j4449h+3b4+2874NXAygTef/99LrjgAn7//XdaeMk5Nm2ChQuhTBlo2tRnAROLYLFWkdTCfxfiYtO1a1e/RfCXK66AFSvgrbdcUaEoKPHrJQHEM4dz5tizN7dU88etz9hIhoK1CCxhl8NRBA2B7cAyn+XoBXwCrAAqAeMw18AfgF19tBxpT05ODlu3eklNFy82JatePahQwV/BisFBBx3Eo48+St26dXfsmz3bQlqaNoWyZQs5OUMQkVHeWwWGikh4wpvSwIHAjykXLE5K9A3JZ5/BRx/BLbdAx45+S5MRlOj1kiBincPcXBg7Fi64IKHiZBVufcZGMhSsecClIlJeVX3NDudIe5oCCyPjLlKNqv4HHCki/wMOw1xnp6iqbzlJXR2s+Ljhhht2Fkec52XZzyD3QIDmzZvTvHnzPPuy0D0wZL0WYDXmrhtiK/awI+NKf27bZiUhy2aDFlwcZsywrIF77QV33um3NBlDiV0vCSTWOfzuO1i/Ho5xZoECceszNpKhYM3Ffiz3AmYloX9H9tAUWy++IiIHq+qvqvo18LXf8oCrg5VQMjD+CiwT4pYtW6hevfqOOlghBWv//X0ULIGo6hUAIjIf6KeqGecOmB/HH388AGPHjvVXkFRz111QujR8/z3UcZEC0VJi10sCiXUOP/rIUrOfeWbiZcoW3PqMjWQoWH95r81wCpajAMTuGPcB3vVbFmCqiPwOvAG8paqL/BbIER+9e/dm5syZDBs2LCNrYAEMHDiQXr16sXbtWqvlRdamaAd4IPyDiNQFTgNmqGrGuQheffXVfouQehYtglGjLLnFnnv6LU1GUSLXS4KJdQ4nTIDDDrMkF478ceszNpKhYE33Xg8CPk5C/47sYE8sa9hvfguCZQu8GLgaeFhEvseUrXc990FHhlG2bFnKlfPqWGeoBeuYY47hqaeeomLFijv2ZaGLYIiPgc+AZ0SkCjAJqAxUEZGrVPV1X6UrJpdcconfIqSe0aPttXNnf+XIQErkekkwsczhtm0weTJ065YEgbIItz5jI+E5U1R1LTAfOCTRfTuyikO811/9FAJAVWepakBV9wU6ANOAh4GlIvK2v9I5YuGee+5hyJAh9iFDFazDDjuMHj167PB7V81qBasVO91zzwb+A3YHrsGS0ESFiJwkIjNFZI6IFBgEJCJtRCRHRM6NR+iC2LhxIxs3bkxG1+nJunXw8MPQtq2ZAxzFIpvWi1/XYCxzOH26ZWZt1y4REmQv2bQ+U0myklL+glOwHIUTKumXDhasHajqBFW9GTgDmAmc47NIjnjJUAVr7dq1LF++swzb0qV2H1ujBtTOvkqDVYE13vsTgA9UdRumdO0dTQciUhp4HjgZaAFcKCItCmj3KPB5/GLnzymnnMIpp5ySrO7TjwceMBfBPn3Aixd0RE+2rBc/r8FY5nDCBHt1ClbhZMv6TDXJcBEEmAycKSI1VfXfJI3hyGzaA7PSyQVPRJoCF2HugvsA32Nug9GefxLwDJZeepCq9i2gXRtgPNBFVdMhBi3r6NatG6VKlWLgc89lZA0sgGAwyMsvv8y6deuAvNarLLyHXQh0EJHRwIlAqCZdTSDaR6dtgTmqOhdARIZjD0pmRLS7Catv1yZeoQvi+uuvT1bX6cfcudC/P1x8MZx4ot/SZCRZtF58uwZjmcMJEywXS4Y9e0s5WbQ+U0qyFKzvvdcOwOgkjeHIUESkFHAk8L7fsgCIyI2YUtUOiyF8DXhTVf8pRh+hJ3fHY7XgJorIKFWdkU+7pD49d0C1atUoVaqUPVXPybGg+wxLeX/uuedy4IEH7vicxe6BAE9icY/rgQXAd97+ozGX3WioD/wd9nkRdk3vQETqA2cB/6OQmzsRuRa4FqBRDIp5ly5din1ORvLvv3DSSVaU7ZFH/JYmY8mi9ZKwa9BrG/V1GMscjh9v1qssfGCVULJofaaUZClYP2M1TI7GKViOXTkAqMHOmyi/uRMYBnRT1Whv5iJJm6fnJZnHH3+cpUuX8sQTT9iOUFrZDHxEecQRR3DEEUfs+JzNCpaqvigik7Hi41+qaq536C/gvii7ye82SSM+Pw3coao5Ushdlaq+BLwE0Lp168g+imTt2rWAKfpZzaOPWvXrL76Ahg39liZjyaL1krBrEIp3HRZ3DteutaysF18cVfMSTRatz5SSFAVLVTeJyESgUzL6d2Q8nbzX7wtrlEIaqWqxb6IiSMrT8x2Z8BxRsWTJEr799tudO0JFhjMsRTvA4sWLKV26NHvssQeQ1SnaAVDVSVj2wPB9xclEuwhT0EI0ABZHtGkNDPdu7GoDp4jIdlX9sNgCF8IZZ5wBZHndmL/+gn794LLLwKuT44iNLFovvl2DxZ3D6V6+64MOimfUkkEWrc+UkiwLFpgLVB8R2UNVlyVxHEfmcQowW1Xn+SWAiBwG/OI9KT+0iKfZU6LpMr9TIz4/TTGfnleuXDlexa9E8eSTT+bdMderY920aeqFiZOrr76aFStWMHHiRCD7LFgi0hMYoKqbvfcFoqpPFnbcYyLQTESaAP8AF2AxleH97NC0RWQw8FGilSuAm2++OdFdpherV1u8VaVK8OCDfkuT8WTRevHtGizuHH71FZQqBR06xDty9pNF6zOlJFPB+gjog2WTGZzEcRwZhIhUBo4BBvgsyiSgLrDce68UrCSVjqK/tHl67ggjgy1YPXv2ZNOmTQBs2WLJEEuVgn328VeuBHITMATY7L0vCMVitApFVbeLSHfs4V5p4FVV/V1ErvOOvxC/yNFx9tlnp2qo1KMK55xjFqzBg51rYALIlvXi5zVY3Dn84Qdo2RJq1UqSQFlEtqzPVJNMBesX7AbzNJyC5djJsUB5TAH3kybAirD38ZI2T89LMrfeeiuVK1emT58+tiNkwcpABeu4447b8X72bMjNhb33zrhcHQUSfj2Ev4+zz0+ATyL25XtTp6pdEzFmfqxcuRKA2lmYT5/XX4dvvoHrr4fLL/dbmqwgm9aLX9dgceYwNxd+/hkuuCBRo2c32bQ+U0nSFCxVVREZCVwuIlVUdX2yxnJkFOdh9W7G+SmEqi4I/wj8nV8clohElUIsnZ6el2RWrVrF1q1bd+4IWbAy0EVw5syZ1KxZkzp16jDNS70SllTQkcace67VTs2qmIXcXDj7bBg50gqx9e/vt0RZQ1aulxRTnDmcMsWSXITlEHIUglufsZFMCxZYZrbrsWxqbyZ5LEea47kHngW8papbi2qfQuYB9TB3wR2ISC3vWDQugmnz9LwkM3jw4J0fNm606rxly0L9+r7JFCsdOnTgggsuoH///jsCsrNRwRLzmb0MK+rdFHvgMRd4ByuXkHFxiLfeeqvfIiSeDz4w5eqII2DoUPNXdSSErFwvKaY4c/j11/Ya5iTgKAS3PmMj2QrWD1gByYtwCpYDOgOVgbf8FiQCYdeEFABVsPgQRyYyf7697rUXlI5KR04rXn75ZRp68S0hBatlSx8FSh7vAWdi9a6mYddjC+B17IHMOb5JFiOdO3f2W4TEsngx3HSTBQB+911GXk/pTNatFx8ozhz+8AM0a2blER1F49ZnbCRVwVLVXBF5C7hNROqq6tJkjpeuiMjY8M+q2skfSXznMiw+KS3qX4nIs95bBR4RkY1hh0tjta1+SbVcjti56KKLaNWqlT1xy+D4K4Czzjprx/tsdREUkYuBE4ATVfXLiGMnAu+JyEWqmm4PZQpl6VL7qatbt67PkiSAf/+1YJWVK+Hzz51ylQSyar34RLRzqAo//QSnnJIKqbIDtz5jI9kWLIBXsUKuVwMun2sJRUSaAicBD4QVEfWbkD1AgOZYcewQW4EpQL9UCwUgIp2BzuWzJaNBiti0adPOGKwMziC4detWpk+fTtOmTSlTpjrz5pmn4777+i1ZwrkEeDRSuQJQ1c9F5HGvTUYpWBd40fMZH7OwdSvsvz+sWAFDhmStCdVvsma9+Ei0czh7ti1nF38VPW59xkbSFSxVnS0iXwDdRKSvqm5P9pjpRgm2WIXTDcgFXvZbkBCqegyAiLwG3KKq//ks0g5UdTQwunLlytf4LUsm8cEHH+z8kMEJLhYuXEirVq14/fXX2W+/SwG7zy1b1mfBEs/BwL2FHP8Y+9+RUdx5551+i5AYXnjB7kYffdQKCjuSQtasFx+Jdg5D8VfHHJNEYbIMtz5jIxUWLLCaRx9iMTgfFN7UkW2ISAXgKmCkqi7yW55IVPUKv2VwJIEMdhHcY489+PDDDzn00EP50rPtZKnxoBawpJDjS4CaKZIlYZx00kl+ixA/CxdaEeHDDoNevfyWJqvJivXiM9HO4Qcf2E9CFtUTTDpufcZGqtIAfYxlY7vdyxjlKFlcgd1IPee3IAUhIseIyEsi8pmIfB2++S2bI3o6duzIK6+8Yh8y2IJVtWpVzjjjDBo1apTVGQSBssC2Qo5v99pkFH///Td///2332LEzurVlmJt61Z47TWXMTDJZPx6SQOimcMlS+Crr+Dii8HdiUaPW5+xkRILllcj6DFgINAJ+CYV4zr8R0TKAncAPwHf+ixOvohIV+AFzLraCRgJ7IsVIB7qm2COYqGqlClThlKlSlkkcwZbsFasWMG8efNo2bIl06dXBLJWwYJdE8yEUymlkiSISy81t86MjVm4/XYLVvnmGzjoIL+lyXoyfr2kAdHM4S+/WDm3E09MjUzZglufsZEqF0GAwUAAuAenYJUkLgT2ArqncT2bXph8g0RkHXCXqs4Vkf6AK5CdIYgIY8aMsQ8rV8L69VC1KtTMOA8zvvjiCy655BJmzpzJtGmW2SJLXQS/A/aOok1Gce+9hYWVpTnjx8OgQXDLLdCpk9/SlAgyer2kCdHM4RLPGTkDyyL6ilufsZEyBUtVN4tIP6CfiBytqhn3o+koHiJSDrgf+A1zE01XmgJfee+3YPWvAPoDY7EsmI5MYvZse91774z0BTnmmGP4+OOPKVOmAcuWmZ7YqJHfUiWebE0AdFwmVzC9/37YfXeLv3KkhIxeL2lCNHO4cKH9HNSrlwKBsgi3PmMj1Y7VA4BFwONitPRuwh1ZhIgcKiKlgGuxp9N3pbH1CmAVUNV7/w8QcsaqBVT0RSJHsVm1ahVt27a1TIIhBWu//fwVKkb23HNPTjnlFP74wzzkDjvMhcFkEnPnzmVuyEU1k/j5Z/jyS+jZE6pUKbq9IyFk7HpJI6KZw1mzrO58hQopEipLcOszNlL6k62qmzCLRlvgc6yI6w2plMGRXESkPvAjMAl4ALMAfeqnTFHwPVbsFOBt4FkvdfswYJf6PI7UsnjxYoYNG7bjc/fu3XnjjTd2fL7uuusYNmwYqkqtWrWoUKGC/ZJCRhaO+vPPP+nSpQvffvstkyfbvlat/JXJUTyuvPJKrrzySr/FKB4LF8L550P16nD55X5LU6LIyPWSZkQzh3/8YeUuHMXDrc/YSGUMVojXMder44HngSE+yOBIHouxotIDMavQc2luvQLoDoSeaT2CZS7rgClbvvjJuELDO/niiy947LHH6NixI3vuuSc//PADNcPiqr7//nsaNGjAhRdeyKeferr8a6/ZawYqWGXKlKFmzZo888wz5OR0BJyClWkEg0G/RSgeS5dCmzawZg2MGgV16/otUYki49ZLGlLUHG7aBL/+CqeemiKBsgi3PmMj5QqWquaIyG2YcvWvqq5OtQyO5KGqKiK/YK5136jq+z6LVCSq+m/Y+1zgUR/FCcnhCg17tG/fnu7du7PbbrsBMHXq1DzHf//9911PClmwmjVLtngJZ5999mHgwIEANGhg+5yClVl07NjRbxGKx623wvLl8MknLsWaD2TceklDiprDf/6x5LIZ+MzNd9z6jA0/LFio6gAROQK4Q0SGquosP+RwJB6vztkA4D/gfJ/FKRARiTq1XLgC5kg9+++/P/sXx68jN3dnDFYGKlizZs1i27Zt1K59AP/8Y6EwGfg1SjQzZ84EYL90jwH89FO480747Tc4/XQ4+WS/JSqRZMx6SWOKmsPx4+1176Jyljp2wa3P2PBFwfK4FTgNeElE/udZDhyZz1XA0cA1qrrSb2EKYSVQlOuieG1KJ18cR0GsWbOGdevW0aBBA6KqU754MWzcCLVrZ2SK9nvvvZfp06fTr98MAA49tGQkuBCRPYBLscQ496nqShHpACxW1Xn+Slc8unXrBqR53ZgFC6zi6urV0LcvXFPijeW+kRHrJc0pag4nTLCHVYcfnkKhsgS3PmPDNwVLVZeJSE/gFeBm4Gm/ZHEkBhFpAjyF1Tl71WdxiuIYvwVwREf//v2577772Lp1K2XLli36hJD1KkN9Qe6++27WrFnD99/b55LgHigirYAxwDzgAOBx7CHI8VjR74v8k674PPzww36LUDQPPmjK1ZdfgkvD7CsZsV7SnKLmcOpUqyVYEh5WJRq3PmPDTwsWwGvAmUBfEflCVWf4LI8jRkSkNJawJBfomu4WSVX91m8ZHNFx2mmnUbduXcqUifLfVQZnEAQ45JBDAHj6aftcEhQsoB/wjKoGvGLfIT4HrvBJppg54ogj/BahcD77zIoJX3ONU67SgLRfLxlAYXO4fr25CN5+ewoFyiLc+owNXxUsLyHCNcB04E0ROVxVN/spkyNmbgeOwpSrhX4LUxyKisdyMVj+csghh+xQOqIiwxWs8ePHU7NmLSZOtMCrEqJgtcLciyNZAuyRYlniZvr06QAceOCBRbT0gc2b4bLLoGlTeNT3fD4O0ny9ZAiFzeHs2ZCTU2L+lyYctz5jw28LVshV8ApgNPAsVpzWkUGIyDFYOvMRWBr+TKOoeCwXg+Ujy5YtY+PGjTRp0iS6EzJcwerSpQtt2hzD4sWDqVEjY2slF5dNQI189u8PLE+xLHHTvXt3IA1jFrZutXTsK1bAW29Bjfym3JFq0na9ZBCFzeGcOfbqkgXFhlufseG7ggWgqh+JyCPAXSLyg6q62lgZgojsCQwHZmGJLdK95lV+RMZjlQUOBa4H7k29OI5wevfuzfvvv8+yZcuiOyGDU7QDDB8+nG+/3Y333oMOHUpMzMBIICAi53mfVUQaYyUT3vNNqhh5/PHH/RYhfx59FKZPt6QWzjUwbUjb9ZJBFDaHEydCuXKwzz4pFCiLcOszNtJCwfK4H2gPvCAif6jqz34L5CgcEakAvAtUAf6nquuKOCUtKSAe6ysRmYsVTX4rxSK5QsNhXHHFFRx77LHRNd62DebOtfcZ+mt6+OGHM8R7xHTkkf7KkkJ6AZ8AK4BKwDjMNfAHMvAhR5s2bfwWYVcmT7bEFmedBXfc4bc0jjDScr1kGIXN4W+/QYsWUKlSCgXKItz6jI20eTaqqtuBCzCf+1Ei0shnkRyFICKlgMHA4cDlqppPtdeM5xcs5XzKUdXRqnpt6dLOO7Ft27ace+650TWeNQu2b7f4kgz8Nd22bRufffYZ33zzD1ByFCxV/U9Vj8SSHt0BPAOcpKodVXVDtP2IyEkiMlNE5ojInfkcv1hEfvO2H0Xk4IR9iTB++eUXfvnll2R0HTsDBthj/Jde8lsSRwRpuV5ixK9rsKA5VIVJk6zchSM2sml9ppJ0smChqstF5FTgJ+BjEemgqv/5LZcjX4JAF+BOVX3Xb2ESjYhUAXoAf/ssSoln/vz55Obm0rRp06Ibe8G4ZGgw7sqVKzn55JOBgZQvfx2tW/stUWoQkYNV9VdV/Rr4OsY+SgPPY6ndFwETRWRURHbaeUBHVV0tIicDLwHt4hR/F3r06AGkUczCPffAq6/C5ZdbfThHWpF26yVG/LwGC5rDuXNh1Spo3z7eEUou2bI+U01aKVgAqvqHiJwDfAaMFpGTVXWj33I5diIiN2NuO68Aj/ksTtx4aaHDY8cEc1PaAFzsi1COHdx00038888/TJkypejGGa5g1axZk8cf/4nbbtuLNm2gBHmIThWR34E3gLdUdVEMfbQF5qjqXAARGQ6cAey4uVPVH8PajwcaxC5ywTwdyrGfDnz6KTz8MJxzDgwc6Lc0jnxIq/USH75dgwXN4fjx9tou4Y9RSg5ZtD5TStopWACqOkZELsViX94TkTNVdYvfcjlARK7E3Hc+BK7L0KQWkXSP+JyLxYJMUNXVPsjjCOPOO+9k48Yon7GEFKyWLZMnUBIpX748K1fao9aS4h7osT/2MONq4GER+R5Ttt4thhdDffJanBdR+JPxq4BP8zsgItfiZbRt1Kj43urFKiuQTNatg27doHlzePPNEqWxZxJps17iJ2HXIBTvOixoDsePh8qV4YADCj3dUQhZtD5TSloqWACqOlxEKgODgGEicoGqbvVbrlgQkbHhn1W1kz+SxIeIXAi8DHwBXODFzWU8icpaKSInYcpnaWCQqvaNOH4xFl8CsB64XlV/TcTY2UyHDh2ib5zhFqylS5fy4YcTgaM48sjqfouTMlR1FhDAMgm2w5Sth4H+IvKRqp4fRTeSX9f5NrTSElcB+aqxqvoS5rpE69ati/0QaeLEiYDPweGbN8Pxx8Pff8NPPznlKo1Ji/WSGBJ2DULxrsOC5nDCBKtMEG2deseuZNH6TClpveRU9RURqYTVx/pARM5V1U1+y1USEZGrsX903wNnZ6NF0Ss4vDsRyV8i/McLOjdt4j+yjRkzZlChQoWiY7A2boS//rJf0gytgfXll+OZOfMsypSZwtFHl8yobFWdAEwQkTeBF4Bzojx1EdAw7HMDYHFkIxE5CHtwd7KqropT3Hy57bbbAB9jFv77D045xe4un3vOBaCkOb6vl8Th2zWY3xz+9x9MmQJ37pJqw1Ecsmh9ppS0VrAAVPU5EdmC/dB+IiKnZ1o68Ey1WIUQkR7AU8DnmHKVVTFxInIo8BoQ8isT7Klb6DWaVH5pE/+RDYwcOZK99tqLQw45hIsvvpiGDRsyatSowk/64w9LGbXffpYtLY1YsGABEydO5KSTTqJKlSrMmzePyZMnc8opp1CpUiX++usvpk6dysaNRwOT6NBhP6pW9Vvq1CMiTYGLMAvWPtgDnaujPH0i0ExEmgD/YFlpL4rovxHwPnCpZzVLCv37909W14WjalH9F19sytUbb8All/gjiyNqfFsvice3azC/OZwyBXJy4KijEjVKySSL1mdKSXsFC8xMLCLrgdeBb0Wks6r+47dc2Y6Xiv0R4HbsH+JF2Wi5Al7FfgxuAZZRgEtDESQl/qNcmikKqaJr165cdtllPPPMMzz99NNUqFCh6JOmTbPXNHS2/+6777jsssuYM2cOVapU4euvv+bqq69m4cKFVKpUiS+++IIbbriB889fCrTi1FP9lji1iMiNmFLVDpiOPfB4szj/51V1u4h0xx4ElQZeVdXfReQ67/gLWL3FWsAAEQHYrqoJz9V4oB8uqsuWQefOVlVVBF5/3SlXGYIv6yUJ+HkN5jeHocziLoQoPrJlfaaajFCwAFT1LRFZA4wAfhaR01R1qs9iZS2ea+YbwNmY9fCmbIm5yodmwHmqOieOPpIS/1G5cuVsSCISNa+//joHH3wwP/zwAzVq1ACgY8eO0Z08ebK9HnZYkqSLnc6dOzNt2jQaNDCj5VlnnUW7du2oW7cuAOeffz4dOhzF8cfXAuDkk30T1S/uBIYB3VR1WqydqOonWMHi8H0vhL2/mugtYjHz449mrD7iiCOSPZTx77/QsSPMnAnXXw9XX52W14Ejf1K+XpKIX9dgfnP4669Qty7ssUeiRytZZNP6TCUZo2CBXbgiciTwEfC9iFyuqu/5LVe24Znw3wNaAf8HPJMl2QILYhzQHIhHwUqb+I9MJTc3l8svv5xAIEDv3r2L38GkSfbaqlVC5YqXxx9/nFKlSnHrrbfu2FezZk1q1qy543OtWrVYuLAWy5dD/fppaYRLNo2y6X/M3XffDaQoZmHZMjj3XJgzB777zvlDZSApXS9ZSn5zOH16xuY7Sivc+oyNjFKwAFT1VxFpC3wAvCsiTwF3qOo2n0XLCrxMeG9ia+NMVS0i8CUruAoY5MV/TAfyrCVV/S6KPtIm/iNTERHmzp3LbrvtVvyTt2/f6Q+SZgrWTz/9RKlSpYps96nnMHrSSebhle2IyGHAL6qaCxwqhXxpVY2iCFr68OKLL6ZmoMmT4YQTzIJ1zz1OucpQUrZespjIOdy61SxYt9zik0BZhFufsZFxChaAqi4RkaOBfpiFpa2IXKyqC3wWLWMRkbKYb/Q9wDTgXFWd7a9UKaMZcAhwYj7HokpykU7xH5mKiNCkSZPYTp4xw9JSN20KnmthuvD+++9H1e7dd+31tNOSKEx6MQmoCyz33ocSy0QSbaKZtGG//fZL/iDz5+/0JR0/3lVSzWBSsl6ynMg5nDIFtm2D1u4XNm7c+oyNjFSwALyaWDeLyA+Yy9U0EbkZGJJNriapQESaYwlEWmPB5d2zLVNgEbwIjMESesSa5CJt4j8ylY0bNzJ06FCOPvpo9t9//+KdHIq/ytBf05kzYepU2G03s2CVEJpgBb1D77OGb7/9FihG/GBxUIWBA+HGG62C6vjxzg8qw0nqeikhRM6hFzbE4Yf7JVH24NZnbGSsghVCVUeIyM/AYEw5OFNEblDVxQCepWuc54ZS4hGRA4DlqrpCRMoANwMPARswq1VJjGlrAJyiqn/5LUhJZtWqVXTr1o2XX365+ApWmsZfAVx55ZWceOKJdOnSpcA2w4bZ69lnQzQJE7OBCI8DBf7O7+GY51qbUQQCASAJMQu5uXDddfDyy1ZE+IknnHKVBSRtvZQgIufw++9h772hYcNCTnJEhVufsZHxChaAqs7zMrP1AB4G/hSRe4FfgG+B67FMeCUaEamNueK8LiKvAgOBQ7GkIdeo6lI/5fORL7GEHk7B8pE999yTRYsWxRaD9fPP9ppmCpaq8uOPPxaqMKruVLAuvDBFgqUf84B6mLvgDkSklncso1wEX3311cR2uGkT3H+/Wa42bDBN/J13IIrYPkf6k/D1UgIJn8PcXDPsduxYMuJZk41bn7GRFQoWgGehelJERgP9gWeATdgP9ut+ypYuqOpKEXkdq7F0DbAEOB94t4S7VX4GPOFl+JvGrkkuoguiccRF6dKlqV+/fvFPXL/e/OtKl067OBQR4c8//yy0zdSpMGsW7L47/O9/KRIs/QgV9Y6kCrA5xbLETdOmTRPX2datcMYZ8OWXcMEFtkguusgpV1lEQtdLCSV8DidPhqVLrSycI37c+oyNrFGwQqjqbC8T3o2YklURGCYid6rqH/5K5x8iUgXoyc7Mdt8AZ6nqf/5JlTYM8F7vzueYLwH2ItIZ6Fy+fPlUD+0by5cv55133uHUU0+lcePG0Z/400+QkwNt2kCVKkmTL1mEHg6edx6Uybr/yIUjIs96bxV4RETCYz9LA20xT4SM4quvvgLguOOOi6+jTZvsLnHMGOjbF+64IwHSOdKNhK2XEkz4HC5caPuc92xicOszNrLy59yzxvQXkeGYpeZOYLqIvAH0VdXCHylnEZ5i1Q24DdgDq2/1oKr+4qdc6YSqpt2jYFUdDYyuXLnyNX7Lkirmzp1L9+7dadq0afEUrO+8LPpHH50UueLh77//5v/+7//o1asX7du33+X42rUweLC979YttbKlCS29V8Fq0W0NO7YVmIJli80oHnzwQSDOG5Lly+Gcc2DcOHjsMbjttgRJ50g3ErJeSjjhc/jzz1C2rCWVdcSPW5+xkZUKVghVXYk9FX0Zs05cB1wmIu9hitZkXwVMIl7sQncsiUVNdlqsfvJVMIejAFq3bs3y5cupWrVq8U78/nt7TUMFa926dcyYMYP169fne3zwYAupOeYYaNky3yZZjaoeAyAirwG3ZItF/Y033oivg1WroH17+Ptvp1yVAOJeL448czhmjGUPLO5PiSN/3PqMjaxWsEJ4ilZPEXkEuAVTPM4VkfGYe9g7qppxfv6RiBVXagPcgBW6LQ+MAh5R1fF+ypbOiEjPwo6r6pOpkqUkU6ZMGerUqVO8k7ZssWhmgCOPTLxQcdKiRQtmzJiR77HcXOjf397fdFMKhUpDVPUKv2VIJA3jSV22YIEVD543D954Ay65JHGCOdKSuNaLA9g5hzk5MH06dO/us0BZhFufsVEiFKwQqroCuFdEHgcuxxSR14GnRGQY8CYwIdMSPojInphCdQmWFXA98AowQFV/91O2DCHy9rYsltEslCTFKVgpYM6cOYwaNYpLLrmE3XffPbqTfvzRlKyWLaFmzeQKmGBGjYI5c2CvvVwwNoCXCfZCoBFQLvyYqmZU+o/PPvsMgJOKW9Rs9WpLvz5nDgwfDoWk9ndkDzGvF8cOQnO4//4nsWULuNq4icOtz9hIu9iTVKCqa1X1Wczn/zjga6wA7E/AHBHpKyIdRCRtUwOLSGMRuVFExgCLgCeAHCy5x56qeqNTrqJDVZtEbA2APYHvgFt9Fq/E8Ouvv3LrrbeydGkxqgV89JG9nnxycoSKky+++IIzzzyT5cvzZB8nJwfuvdfe9+xZ8pJbRCIiXYFPgapAJ6wAcQ3gMCB/E2Aa07dvX/r27Vu8kxYvtrzSCxbAZ5855aoEEdN6ceQhNIczZ9pnp2AlDrc+Y6NE/6x7lqoxwBgR2Q04G7gY6AXcAawSkc8wBew74C+/rFsiUh3oAHQETgZC+XFmAw8Ab6nqTD9ky0ZUdZmI3AO8DXzgtzwlgTPOOIM1a9ZQuXLl6E8KKVinnZYcoeJk3bp1zJs3j9Kl8z6rGToUfv8dGjcuscktIukFdFfVQSKyDrhLVeeKSH/MIp9RDB8+PPrG27fD++/DlVdaQN6775qLoKPEUKz14siX0ByGwoWKW6veUTBufcZGiVawwvGCqwcDgz1l5kTgVEyZudhrtlREfsTSBv/qvf4djdIlIk974/SIom01LLvWIcDBWFzVQVimrW3AOMyy8pGqzorm+zliohSWedGRAnJycqhSpcouykiBzJplW40aFtGcArZt20bZsmUB2Lp1KyJS6OfTTz+dc845J08fmzdbzViAPn2gBGXiL4ymwFfe+y1Y/SuwmoZjsUywGUPdunWja7htG1x6KYwYAc2bQ79+cMopyRXOkXZEvV4cBRKawz//hHr1rK6gIzG49RkbTsHKB1VdA4wARniJI5oDRwFHY3VZzg5rvllE5gFzgQVYzM5Kb/sPu1nY6p0vItIJiy+oBNQO2xpgNxlNvM8hVgFTgd6YFW2Cqm5K7Dcu2YjI2ZG7sBisG4HvUy9RyaRGjRr07NmT++67j6jqf4W7B6bAx+7RRx/l448/5jsvLfwRRxxB3bp1+ciTo3Xr1uyzzz68/77VpW7ZsiWHHXYYw4YNy9PP/ffDwoUWNnbRRTiMVZh7IMA/mIX+N6AWVsswoxg9ejQAnQsLrvvnHysgPHmyZQl8+GHnK1pCiWq9OAolNIdTpnRm3319FibLcOszNtx/8yLwrFMzvO1FABGpilmYDgb2ZqdidAQWN1AY3+SzbyOwBFPS3vdep2NWsn8yLelGBvJuxGfFYkC+xqcYrJJYaLh3797UrVs3OuUKIKS4nH568oQKo2bNmnlku/HGG/O4M958883UqLHz8u/Zs+cuT/7Gj4cnnoBSpeDllyFaY10J4HvgBGAa5pb7rIgcDxwLfOmnYLHwxBNPAIXckMyZA23bWlKLZ5+1lGciKZTQkU4UuV4cRfLEE0+wZg38+mtnnnnGb2myC7c+Y0PcvXtiEZEy2FPXOpibS3lvuxHIBZ7DrFqb8CxdqrrRH2kd6U7lypV1w4YNfouRfsyYAQccANWqwZIlUDH9jRzr1kGbNjBzJtx+Ozz6qN8SxYeIbFTVYgTMFdpXTaCCqi4WkVJYYfQOwCysMPqaRIwTC61bt9ZJkyYV65yVK1cCULt2mDPC1q106fsJLF/OiOe9wLv33oOzIw3ojpJGvuslCkRksqq2ToZM6UZR1+HKlSu5/34YNKg2y5aZ53g8dHnRSoaO6JYa9/N0Jtb1WVIo6Dp0FqwEo6rbgWXeFs4XPojjcGQEbdq0oWPHjvTr1y+6E4YMsdfzz88I5Sonx9wBZ840vTAY9Fui9EJV/w17nwtktPqZ50ZkyhR45RX4+GM44jooVxauuw6uvRYOPdQ/IR1pg7txjZ9atWrzzTdmGI5XuXLkxa3P2HAKlqPEIiInAwOBg1V1bcSxapiL5rWq6pTjJNOpUycOOOCA6Bpv3bozVVTXrkmTKZLjjjuOJk2a8PLLLxfrPFWzWH30kZXqGjkSKlRIkpAZhGe1iopwBSwTeP/992HdOs7+5x/Lx69qyStC9dq6ueoPjp2E4jbPdtbMmBk48H3+/BOee87NYaJx6zM2nIKVD15q4ANVtVMxzlHgPFWNjOdxpC/dgccjlSuwWmki8ihwC876mHQef/zx6BsPG2ZugQcckLLsgQAdOnSIvgCyh6rlL3jySctf8N57sPfeSRIw81iJxTsWhnhtMiNaTRWmT+fZ22+HuXM5WxUOOwzeessK83huRw5HOM8++yzgbmDj4YknbA5POsnNYaJx6zM2nIKVAkRkMHB5YW1UVbx2tVU1T1EfEWkNTASaqOr8sP1nYkrCYVimrb+xYsn9VXWi1+Zs4DrgUKAClqzjIVUdVYCsFwJvAR9HypGFHAT0LOT418A9KZLFEQ3bt0Oo4OFtt6U0MUCwmH59W7bAjTead1jZsqYXduqUHNkylGP8FiChbN9uGS2/+oqRAEccAXfcAZ07uwQWjkIZOXKk3yJkPPXrj6RSJdhnH78lyT7c+oyNUn4LUEK4BUv7Hdo2Aj0i9hULEXkIy343DTgTaAFcDfwBhJsDOmKKwqmYkvUJ8IGIHJVPn029c0tKavI6WOKRglAsYYkjiagqderU4dFosj4MGmSFTpo0gQsvTL5wMbJwIXTsaMpV+fLwwQcQUQ6rxKOq30a7RduniJwkIjNFZI6I7FI7S4xnveO/ichhCftCgwfDV19BIEC1mTOpNm6cZbh0ypWjCKpVq0a1atX8FiMh+HENrl4N48ZV49RTs2MO041sWp+pJKMULBEZKyIDReQJEflXRFaIyC0iUl5EnheRNSKyUEQuDTunpYh8JSKbvHMGe/E1oeOlRaSfiKz2tqeJcEfx/iHcLiJ/ef1ME5FLopVbVdeq6tLQht24R+4rzjy0A+4Geqrq/6nqd6o6z3vtS9iTYVW9RVX7qurPqjpHVYPAZEwpC++zLDAMs9jMLY48GcwizIpVEAdhNXkcSURV6dKlS9ExWGvX7qzQ+9hjUK5c8oXz2LZtGzVq1NjhKlEQOTnw/PPmvThhAjRqBD/8AKeemiJBMxQRqVnYFmUfpYHnseLwLYALRaRFRLOTgWbedi0WgxkfOTnw2mvQowd06ACBACOmTmXE22/H3bWjZDBixAhGjBjhtxhx49c1OGgQqI6gcuXMn8N0JFvWZ6rJKAXL42JgHdAO6As8DXyIpfNtDQwBBonIniJSCfgMWI8VCD4Lq1X1alh/twLXAN2AwzHl6uKIMR8ErsJSrbcAHgFeFJECb5s8ZXBs7F+zUC7CvtOA/A5GUTerKrA6Yt9DwHxVHRK/eBnDx8ADIrJLGjpv7fTx2qQcEeksIi/l5OT4MXxKKVWqFP379+e004rwSO3RA1assJvYFJuDtm/fzqWXXkrz5s3zPZ6bC6NGwSGHWEmj9evhrLOshmyrVikVNVNZidWeK2iLhrbAHFWdq6pbgeHAGRFtzgBeV2M8UF1Eiu1BsIP+/aF2bbjySvNNeuMNEGHgwIEMHBi/7uYoGWTRekn5NThqFAQCUKPGQMaMyYo5TDuyaH2mlEyMwfpdVXsDiMiTwJ3ANlV9xtvXB7iDnUV/qwCXquo67/i1wDciso+qzsFc9R5T1be947cAJ4YGE5HKWJzOCaoacp2bJyJtMYWroBvwhTF+v5NEZH3EvkhFeF9grpcSPiTnDcBjYW1aqOouMojIjUAD4I2wfScAXYBDYpQ5U3kIOBeYLSLPAX96+5tjsW0CPOyHYKo6GhhduXLla/wYP+14+WVzwapQwd6n2O2qYsWK+Vqv1q41sQYMgFmzbF/DhvD00668UTGJjMf6//bOPNyu8frjn28iYhYzRUQN1TTGmKopUVSamtpKS1uaUJRECUqNpVTRUFENVTWV8lOqNZVKFNUWaYkkaIiIIWKeE27uzV2/P9Z7cnfOPecOZ7jn3Jv1eZ79nL3f/e6113n3fs/Za7/rXasP7tJ8JHBaB2Wsi89DzfEK/iKuvTrr4oneF5H+Jw4H6N+/f/EzPvWUD1NefPFiKQPuvvvuDqocBD3qfqlYH4SO9cMZM2C99eDaa+9myy1LVzwoTg+6P7uU7mhgTc2tmEeGeAOfh5Qra5T0LrAmsDEwNWdcJf6Fz7sZKOlNfP7TvzPHN0t6FFg/FQ3Eg0PckyIF5ugDzC6mpJkdXNrX4yHSD0qGQcBt7Rx3Ax7tLle31eikpG/gc6wOMLMXU9nqwDXAt80sf1SrR2Nmb0jaCXdROBc3qMBdOO8FjjKz/HxmQYV57bXX2GSTTbjkkksYNWpU6wq33QZHHunrl14KRUaRuoq33/aURn/6E9x7L3zyiZevtx6ccIKnOOrbt6YqdjuKzLOaKGkWPrf0Dx0QU8jqzh/N70gdzOwK4ArwBKdFz3jRRW705xn8yy23XHu6BsEietD9UrE+CB3rh8ce67+77nQSVIMedH92Kd3RwGrM27YiZb1oCfFbiPbc6HLkDJW9aT0qlX/eSjA/jawtQlK/vDrPAl+U1MfMGsHneQHvF6ibk/ENfNTq4LwIgoNwI3OiWh4SeqVjmoDPmdmMsr5RHZMMzeGSVsENcgHPLWnGZi1ZZpllOOyww9hss80W32EG48fD8ce7D94pp8Chh3a5fq+9Bldf/TA/+ckw+ve/m1mzdibrhLvrru4WuM8+Hoo9qChTgJ07WPcVWl6MgY/Uv1pCnY5TJMn19ddfD8B3v9vhqbrBEkwPul+6vA/26eOfPagN645o29Lo6Y8DTwOHSFoxM4q1E25APJNyHc0FdsQj7SG3MranZbj6aaAB2MDM7u9S7YtzI/BD4GjgovYqS/omPjftewXydE0GNs8rOwd3rxwNvFC2tt2AZFBNrrUeSyL9+vXjoovybuMnn/TXkhMn+vZZZ8Hpp1dNh+ZmmDMHZs705dlnYepUmDIF3ngDYC3gCJ5/fj369oUhQ9wFcL/94FOfqppaSzSSVsBduF9up2qOycAmkjbEg9McgM9XzXI7MEbSTbjr0vtm1so1qVyuvPJKIB5Igo7Rg+6XmvXBHtSGdUe0bWn0dAPrBuAs4DpJZ+BGw2+AP2VGicYDJ0t6Fnc1PAof0ZkLYGYfShoHjEvG10P4vK4dgeY0hN0KSdel40t1FSyKmT0i6QLgF5I2wMO1v4Q/BebcCxcmPQ7AR65OAB6StHbav8DM3jGzecD0PN3fA5Yys8XKg6CqzJvnvnfXXgs5n+/VVoPLLoMRI0oS+fHH8M47Hsb3rbc8P/Grr7b+fPFFz1tViJVWgq233oRddrmQoUM9t/Eyy5T2FYPCSPqQxb0KBCwHzKN10KGCmFmTpDG4e29v4Coze0rSD9L+y/E0FcOBmXi6jAI+qeVz3333VUNs0EPpKfdLLftgT2nDeiTatjR6tIFlZvMl7YlHGnwM+AT4C56XKseFwNrAlWn797hhlp3ocTrwOm6kXAZ8gLuuZINK5NPGzOjyMbOTJD2GjzIdjBt9rwMPAzubWe6t7w/w63xxWnI8CAytpo5LGpKG4QZ7b+DKFDI/u19p/3D8j2WkmT3e5YrWmqYmt3aefx6ee47/TJrETtffwC29+/Klhb35mGWZ1/czzBsxknnfOZx5fVdl3p1ufxVb5s/3gBM5Y+rdd329mNFUiLXWgo028mBwG28Mm28OW24JAwYAGIp8RtVkTN52Mx498NHOuOua2d34A1y27PLMuuG/mVWlT85vKQg6QE+6X2rVB3tSG9Yb0bal0a0MLDMbWqBsUIGytTPr04Dd2pDZBIxNS7E6BvwqLcXqKG+7la6ZfSsUKR9ZpPw/FJgYama3ArcWO097erRxTEE9guJk8n/sgfuYT5Z0u5k9namWzf+xA26s50dYKog1G7awGWtaSHNTsy+NC7GF/tm80Fq2M+sLG5tpajSaFjTTuMAWrTc1+vqiskajqcloWmA0NpK2Wz4bm6Cp0W2jpiZobIQFjaJhgWj4xFqWBliwwLx8gWhY0IuGpl40LOjFgkZoaOxFw8KlaKAvDWxCA4No4Fs0ci37LszEZWkArk9LGSy9NKyyCqy6qi/rrOMufbnP3Hr//rDiisXljBt3Iaeeeipvv/02K6xQsPsGZdDT0kNcc801AIwcObKmegTdg7hfyifasHpE25ZGtzKwgqCOWZT/AyD5l++Lz+HLsSj/B/CIpH6S1mnL/3z+/H5Io4Cr8YGxs/H5wDnP1FOB93DbDjxDQQMtg5XHpeN+kbaPxgc7f562jwRWT3LBA7ZtgA/aAowEPgOcnLa/DWyDD+YCfBOf1nhs2v46/j4j94Jy77TkPFeHpWMOwQcp9sQHYA+iV68GYC+WXfZQVl31AJZddh5z5+7HeusdwYAB+9Onz3tMnjyCrbYaw6BB+wJv8ec/H8gee4xlhx2G09Q0lwkTDubww09k+PA9mDfvJcaMOZRTTjmFXXfdlVmzZnHEEUdwzDE/YciQIcyYMYMxY8ZwzjnnsOKKOzB9+nTGjh3Leeedx+DBg3niiSc48cQTufDCC9luu+0YO3ZsRFOqMimp8JrkRUHNe1FR98QDSdAZ4n4pn2jD6hFtWxpqPydtEATtIWl/YJiZfT9tHwTsYGZjMnXuBM4zs4fT9iTgpDRCmZW1KPcHMBh3J8ynN2meXQllSwFNHajXXWR25jzlyCx2nu4gs5C8cmUua2YVSVYvaWv8LUIu4E4uAqxwJ4LelThPibq9CbxYhojV8UTK3YHuomvo6WxgZmtUUX7dUIF+2Fnq6R4LXQpTL7oU7odmFksssZS5ACPweVe57YOAX+XVuQsYktmeBAxuR+5/ipRfUUZZK5mF6nUXmZ08T8ky2zhP3cvsqvuo1AV4IvWPXYDN8GHTRUulzlOLpZLtFLqGnrEsedcudKl/XQot4SIYBJWhq/N/3FFGWUfldReZnTlPOTI7Km9Jl1kKmwAjLC8HYBAEQRB0Ryri3hEEQUv+D0lL4/k/bs+rcztwsJwdKSP/h5m1euDtaFlH5XUXmZ05TzkyOypvSZdZIg+zeOTWIAiCIOi2xAhWEFQAq17+j4J51sokZC55Mutdx0OBKyV9Gs/L15jdaWYPVfBcXU012r5adBddQ8+g2tTTtQtdClNPurQiglwEQRAENUXSUOBGPFl6PmY1DHIRBEEQBJ0lDKwgCIKgpkiagbvZ/hxPmL7YH5OZvV0LvYIgCIKgFMLACoIgCGqKpHnAFmb2fK11CYIgCIJyiSAXQRAEQa25D8/51u2QdJWkNyRNz5StKuk+Sc+lz1Uy+06WNFPSDEl71ljPMyXNkTQlLcPrQM/1Jf1d0jOSnpJ0TCqvqzZtQ8+6a9OgNcWuX16doZLez1zLM6qs02xJ09K5/lNgvyRdku6hqZK2qZIen8l85ymSPpB0bF6dqrVNZ39T844dlvrXTEk/rpROpRAjWEEQ9EgkbQbsC6yLu5y9CtxuZs/UVLGgFSkYzKnAtcA0Wge5+FMt9OoIknYGPgKuM7NBqewC4B0zOy/9ya9iZidJGojPNdse+BQwEdjUzAolm+4KPc8EPjKzcXl1a6nnOsA6Zva4pBWB/wL7ASOpozZtQ89vUmdtGrSm2PUzs6czdYYCJ5jZXl2k02xgWzMrmDw3GetH48GydgDGm9kOVdapNzAH2MHMXsyUD6VKbdOZ39QCuj4L7IGnxZkMHJi9pl1JjGAFQdDjkHQScBMg4DH8h1bAjbV+qxUUZAJuCJ+CP4Tekln+WEO92iVFOHwnr3hf3Fgkfe6XKb/JzBrM7AU8ouj2NdSzGLXUc66ZPZ7WPwSewe+NumrTNvQsRs3aNGhNCdevHtgXNzrMzB4B+iVDsZrsBjyfNa6qTSd/U7NsD8w0s1lmtgB/Bti3Wnq2RxhYQVBHSNpT0mWSbpf0l7Q+rAx5q+dtfze5GBwuSWXIlaQdJH1d0tfSesnyCshfQdI2kvqVKOJQYDszO8/Mrk/LefgP8KEl6jQss76ypN8lN40/SCoU/a4jMleWdJ6k/0l6Oy3PpLJ+pcgscp5y27Oq19zMerWxdMcIgmvlctylzzVT+brAy5l6r1D7h7ox6T6+KuN2Uxd6ShoAbA08Sh23aZ6eUMdtGrSmwPXL8nlJT0r6q6TPVVkVA/4m6b+SDi+wvxb30AH4S69CdGXbFOv/Weqqj4WBFQR1gqSLgWOAB4ELgF+k9R9KGl+i2L9l5J8GHIS7QuwBXFSinl8GngPOxF0VvgqcBTyX9pUic0JmfQjwNHAhME2ZOQydoBl3w8lnnbSvFM7NrF8IzAX2xkfHflOizJuBd4GhZraama0G7JrKSh65qXR7VuOaL6EUMkhr6ad/GbARsBV+P1+Yymuup6QVgFuBY83sg7aqFijrMl0L6Fm3bRq0pp377HFgAzPbEvgV8Ocqq/MFM9sG+AowOrnKLaZugWOqdg9JWhrYh8L/RV3dNh2hrvpYJBoOgvphuJltml8o6f9wv+JWk3A7QPYH5+vAF81snqQ/4D+QpTAe2N3MZufpuSGeTPmzJcjcMbN+Nu4L/7g88ezNSW5nOBaYJOk5Wt5o9Qc2BsaUoF8+25rZVmn9l5K+V6KcAWZ2frbAzF4Dzpd0SBn6Vbo9q3HNs3KOa2u/mZX0MqCGvC5pHTObm1x43kjlrwDrZ+qth88NrAlm9npuXdJvgTvTZk31lNQHf+i9ITP/ru7atJCe9dqmQWuK3GeLyBpcZna3pAmSVi82R6pczOzV9PmGpNtwj4tskvWuvoe+AjyevaczunZp21C8/2epqz4WI1hBUD98IqmQT/52wCclylxW0taSBgO9zWwegJk1AqVOrl4K/yHLZw7Qp0SZWVbK+MbPAjrtImZm9wCb4qMs9+IjeWcCn0n7SmFNScdJOh5YKc89rtTf0hclnZh1MZS0lnwO2cttHNcZym5Pqn/Nj85bjsNHcH9KZQziruZ2IGd0fw/4S6b8AEl9k3G6CT5HsCZo8fkbXwNyUbtqpmfqV78DnskzrOuqTYvpWY9tGrSmjfssW2ft3O98+m/uBVQlJ5+k5eXBNpC0PPBlWu6dHLcDByd37R2B93Nuc1XiQIq4B3Zl2ySK9f8sk4FNJG2YRt8OSMfVhBjBCoL6YSRwWfqRzT3Mrg98kPaVwlxaXAHfybwBWg1oKlHmVcBkSTfRYgSsj/+Y/a5EmZtJmoqPuA2QtIqZvSupFyU+wJtZM/BIifoU4rfAimn9WmB14E1JawNTSpT5LeDHwAMZI+t1/E/hm6WrWvH2rMY1X4SZbZhfltrjarzd6xZJNwJDgdUlvQL8BDgPuFnSocBLwAgAM3tK0s24y2YTMLqrosgV0XOopK1wN5rZwBG11hP4Au7KPE3SlFR2CvXXpsX0PLAO2zRoTbHr1x/AzC4H9geOlNQEfAwcYFa10NtrAbclm2Up4A9mdo88wmpOn7txF+2ZwHxgVJV0QdJy+FSCIzJlWV2q1jad+U2V9CngSjMbbmZNksbgL1V7A1eZ2VOV0KkUIkx7ENQZ6YF9Xfzh+JXkMlbpc/QG+prZ/BKPH4j7Zi/SEw+BXlI4VEkb5BW9amaN8iAdOxdy36gHJF1nZgeXKWNj/E33+viD17PAjWb2fhky89tzrpktKKc9K33NO3jOrYGbzWyTap0jCIIgCCpNGFhBUEdI6g98YGbvySMbbYu7MJT8FiaNWmBmzWnYfBAw28w6GrK5Jkha08wK+VnXBEmFXA2+BNwPYGb7lCDzh8BeuJ/9cHwk7F3c4DrKzB4oUd0eQXJt/buZrVRrXYIgCIKgo4SBFQR1gjw/0xFAAzAOOAH4Jx6w4HelTPSXtB8e4a4Z+AHuAjEPn590pJndUYLMFYATgW/gk0gXAM8Dl5vZNZ2Vl2Suml+ERzvcGv+dqrkxKOkJ4CngStz9R7h/+gEAZvZgCTKnAVuZ2cLkknG3mQ1NhvZfzGzrEnVdG3eraAbOwOc1fQPP9XJMZ/32JW2Lz4maA5yMuwxuh0cWPNzMnihFz4z8r+cX4REfRwOzzOyr5cgPgiAIgq4kDKwgqBMkPYWPWC2H++5/2szeTBNeH7WU0byTMp/AIwEtCzyJ54aakVzIbjWzbUuQ+RfgNmAiPk9oeTyh32nAHDM7pQSZzUB+IsP1cDc0M7NPd1ZmpUkjgcfgI00/MrMpkmaVo1sysLY1swZ5vpyJZjY47ZteyjVPx94D3IVfm28DN+DG4L54NMBOJV+U9BhusPXDUwiMNbNbJO0GnGNmny9Fz4z8/ND5BryJjw4eX+WJ3EEQBEFQUcLACoI6QdJUM9sizY+aC6ydAjWU/LAt6YncKEi+DEmPp5wbnZX5ZMp9kduebGbbJQPkaTPbrASZJwC744bLtFT2QqHgB7VG0nrAL/FgFPuYWf8yZB2DJz5+BNgZON/Mrpa0Bm4A5+dB6ajc7HV/KaujpCnWEmK+EvIW7QuCIAiCIKIIBkE98bg8P9XywCTg2jQS8SU88lRJSOqVDLVDMmW9gaVLFDlP0hAze1jS3sA7sGiOV6FEf+1iZuNShLpfSnoZHy2py7c/ZvYKMELSV/EIj+XIGi9pIp5H6iIz+18qfxM3uEolGzb+urx9pYRp/0SeUHhlwCTtZ2Z/lrQLpYf7D4IgCIIeSYxgBUGdIGkpPPSoAbfgSQa/jYck/XUuh1UnZW4HTDOzT/LKBwBDzOz6EmRugc9D2hTP03GImT2bRl0ONLNLOiszT/7ewKl4Et61y5G1pCLpp8AFZvZRXvnGwHlmtn8n5W2JuwY2A2OBI/FcJHOAw8zsXyXq+RXgMmDL/KiJklbG3VoPN7O/lSI/CIIgCGpBGFhBEJSFpL1LCZbRjsx98OAG+YkWgzKRNMrMrq4HeZLuwgN7/LrI/iOBvSLIhSPpGmB1M9urJ52rwLnvBN4ys5Fdfe4gqCbRh5ccerVfJQiCWiPpr3Us82cVkpPlnDCuqsZZdSRvCzxYSjHuB7ZsY3+PQtIakiZImi2pQdLrkiZJ2iNVOQb4bi11LIakByRd2oXnmyrp/CL7Dpf0saSTJU2W9IGkNyXdIamkwDFB0BGiD3f6nPdLsgLLXV2pRzWIOVhBUCdIKhZwQsBW9SKziKxKUw2ZSwySphbbBaxVa3kZ1sDdDothwGplyO9u3IpHET0UmAmsCexCaoNykk/3QKYCm+cXJtfSc3CX1qHABGAyfq/+FJgoaWA9pH4IeiTRhzvH1viUgKvyyufXQJeKEgZWENQPk4EHKWxc9KsjmflUw884fJfLYy1gTzxpcRYBpcyXqrS8HK/go1jPFdm/BT7Pq8cjqR/wRWAPM5uUil/E+3CuzjVkXH4kPYDnNpsPjMIDjpwDXA5cBHwHD8Ryqpn9PiPnAWC6mY0pJruAfsPwB6FBeP+cDBxrZs+kY3cBdpE0Oh2yoZnNToFvfoTn+PsU/tB5fm7+pzz/2wRgfzxH3/gONtlUYEyB8jOAj/G5hh/nfYeDgPeBLwAVdWsOgujDnevDkjbCn0MeNLPXOnJMdyIMrCCoH54BjjCzVg+bKbJevcgM6p87gRXMbEr+jvTHXGt5Oe4CzpZ0d4GH4eXwEYdu7yrSQT5Kyz6SHs4PTNMG38EfxHYA9gEuBoYB9+B59b4HXClpkpm9WoZ+yyfZU/G8eqcBd0gaiLs9bQr8D09mDp7HDPxhcX88afQM4PPAbyW9a2Z34UnV98ATYc/BI4juDPypHX2mAutLWsnMPgCQtCmeVPvA/PspsSI+NSL/RUEQVILow53rw4Nxg7KsRPX1ShhYQVA/nEnxeZFH15HMoM4xs0Pb2PftWsvL8DP8j/s5Sb/C/9zBw9aPwUfIzi1DfrfBzJokjQR+CxwuTxL+T+CPZvZoG4c+ZWZnAki6CPgx0Ghm41PZT4GTgJ3w6KSl6ndrdlvSKPzN+vYpZcMCYH72TbQ8SfpxwJfN7B+p+AVJ2wOjJT2Iu1IdYmb3ZuS+0gGVcm6rg2gZRb0IeChf1wzjgSnAv4sJlXQvntw65oAGnSL6cKf78GA8bcgbWjzDy1/NbERJX7KOCAMrCOoEM1vshzMbnc/M/lwvMgvweoXkVFtmUGeY2RuSdsJDtZ9LiyurAfcCR5nZEnMvmNmtaXL3F/G3xMOA4yWdambFDM2pmeNN0hvAtExZo6R38bkgJZPcec7G37Kvgb+46QW0lWh7ILAMcI+krNtvH2A2sBGej2+RwWNmH0maRjuY2auS3sLnYf1L0p64G2vBoCjpwXUInp6irdxtm9Fi6AdBp4g+3PE+jBtYt+IGZZYeMU8tDKwgqF9+RuXnCVRcppnt0X6t2ssM6hMzexEYLmkVYGPcyHrOzJZIN67kVnRfWn4q6UrgTEnjihzSmC+iSFl2JLuZ1vMy+7Sj2h24+88R6bMJT4DeVsLy3Dn3xvP5ZWkEVmnnnO0xDRgkzyH4S+BSM2uVlF3SL4EDgF3NbFbevoHAFbj74DXAO2bWlPZtkuSujc/rGmFmr0laH7gUfzBdGtgL2B04Cn+ummlmXyvzuwXdlOjDHWZrPGLwzDJk1C1hYAVB/RLR+YIlhmRQTW634pLH0/h/9TIVlPkmsE5e2Zb4G+lWSFoNd9scbWZ/T2XbsPgzxALc3SfL00ADsIGZ3V9A7tv4Q9qOwKxUtjzu9vd8B77H1KT3aDxK25kFzjEeN66Gmtn/8vYthUcv+76ZTZd0M57cGkl98UADo8zsJUnfx12izgbuBn5oZn9PUQuXwV1aByc3sX4d0D1Ycog+3Pq4DYFV6aHzryAMrCCoZyI6XxAsIaQHoD/iD/xTgQ/xCe4nApPM7IO8eQrlcD9wsTyh9wz8jfb6FHk4w4NCvAUcloLjrAv8An8DnmM2sL2kAfhE/3fM7MP01n5cikT2ELAC/jDWbGZXSPodcL6kN4FX8SiA+Q95xZiKBwDYEp83tZhrkaRfAwcB+wHvSlo77frIzD4Cvg78JzPfagYtATD2wx9Ib0/tvjRwE/A14LHcQ6qZvS+pGY+Gdr6ka8ysI+5RQQ8j+nCn+vDg9Plapl/meCs3itydCQMrCIIgCGrPR8AjeDSvjYG+uBvPH/AoXpXkKjwEfi73zATgNmD1QpXNrFnSt4BLgOl4mObj8fkTOcYB1+JvvJcFNsQf2E7H51SegM+1+wAPNHFBOu4EPLrZbXio6l+l7Y7wJG7YPIa79+VzVPqclFd+Fj7atUWSkWMwcGFa3xz4kZndkD1Q0jnpfItID6Gb40bZTZLOaCPQRtBziT7c8T6cM7CeyVcVH9l6r53j6x6ZxQvtIKhHJE01sy3qXWYQBEF3RNJYYICZHSNpN3zOzFpm9qakMfjow6gUeGBzM5sm6WhgUzM7WlIvfA7KqrlUGJIuAR7NN8yCIFiyKBa+OQiC2hPR+YIgCKrH74GdUjjtkcArZpbL/XM1sDLwjKQpeBJY8JGyT0t6CngcdyM8TdKMJKcP7koYBMESTIxgBUEQBEEQBEEQVIgYwQqCIAiCIAiCIKgQYWAFQRAEQRAEQRBUiDCwgiAIgiAIgiAIKkQYWEEQBEEQBEEQBBUiDKwgCOoX6RqkO1utd+V5Kyv3ASRLy46p7HNI/0KajnQH0nJ5euTq719xfYIgCIIgqDhhYAVB0DkWf+hvRHoD6e9Io5H6VPHMxwDfrbhUN3ou7ZJzOVcD6wD/RVoGuBkYjdkg4Fk8XHRWj3WqpEcQBEEQBFUgDKwgCEphIv7gPwD4MnAHcBbwD6T2MriXhtn7mL1XFdlde675mL2GWSOwHzARsyfSvv8Ba+Tp8VqV9AiCIAiCoAqEgRUEQSk0JCNhDmZTMLsIGApsA5wIgCSkE5GeR/oYaRrS4qNCXud4pOeQGpBeQfp5wTPmu+35yNMEpHOR3kojaeOQemXqDEP6B9K7SO8g3Yv02cVkwi7A6Myo3IAC5+qLdDHS60ifID2CNCRPv/b1ac1ngWmZ7c2Bp9uoHwRBEARBnRMGVhAElcFsOnAP8I1Ucg5wKDAaGAj8HPgN0lczR50LnJ72fQ4YAbzcibN+B2gCdgLGAMcC38rsXx64GNgeNwDfB+5AWjrtPwb4Ny1ue+sUOf8FSe4hwNa4UXQPUr77Xnv65PMq8BkApC2A3YHb26gfBEEQBEGds1StFQiCoEfxNLB7chM8DvgyZv9I+15A2h43uO5CWgEYCxyL2VWpzkzc4On4+czOSOvPIh0G7AbcCIDZrYvVlkYBH+AG18OYvY+0gJzbXku97DHLA0cC38fsrlT2A+BL6buc1mF9WvN74P+QpiW9volZQ8e/fhAEQRAE9UYYWEEQVBIBho9YLYOP8lhmfx9gdlofCPQFJpVxvql5268Ca7Zoo42As4Ed8LlNvdLSvxPn2AjX+5+LSswWIv0b/w4d1ycfs/nA3p3QJQiCIAiCOicMrCAIKslAYBYt7sd7Ay/l1WlMn6J8GvO2jcVdn+8A5gBHpM8mfJRtaTpOTk8rsC+/rD19giAIgiDo4cQffxAElUEaBAwDbsGNmAZgA8xm5i0vpiNydXarkj6r4UEkzsVsImbPACvS+sXSAqB3G5JmpjotQS2k3sDniYAUQRAEQRDkESNYQRCUQl+ktfGXNGvgRtIpwH+BcZjNQxoHjEMS8BCwArAj0IzZFZh9iDQe+DlSQ6qzGjAYs8sqoOO7wFvAYUgvA+sCv8BHsbLMBrZHGgB8BLyz2F7/LpcB5yG9BbyAzx1bC5hQAT2DIAiCIOhBhIEVBEEp7A7MBRYC7wHT8TxYv8FsQapzOvA6cAJwGR7EYQoekS/HybghdDqwXqp/XUU0NGtG+hZwSdJvJnA8cGtezXHAtfho1LLAhgWknZQ+rwb6AU8AwzCbWxFdgyAIgiDoMcis0LSCIAiCoOJIDwDTMRvTyeMMGIHZLdVQKwiCIAiCyhFzsIIgCLqWw5E+Qtqu3ZrS5UgfdYFOQRAEQRBUiBjBCoIg6CqkdXE3RICX2815Ja0JrJS25mI2r4raBUEQBEFQAcLACoIgCIIgCIIgqBDhIhgEQRAEQRAEQVAhwsAKgiAIgiAIgiCoEGFgBUEQBEEQBEEQVIgwsIIgCIIgCIIgCCpEGFhBEARBEARBEAQVIgysIAiCIAiCIAiCChEGVhAEQRAEQRAEQYX4f03xuoFNSsajAAAAAElFTkSuQmCC\n",
|
|
244
|
+
"text/plain": [
|
|
245
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
246
|
+
]
|
|
247
|
+
},
|
|
248
|
+
"metadata": {
|
|
249
|
+
"needs_background": "light"
|
|
250
|
+
},
|
|
251
|
+
"output_type": "display_data"
|
|
252
|
+
},
|
|
253
|
+
{
|
|
254
|
+
"data": {
|
|
255
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEUCAYAAAA2mpeWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACthElEQVR4nOydebxM5f/A3x/XvhcJRSiUpRLlqxCV0qJdCyqtWhHtqjHti7RJKYk29IuKFi2K9ixFlkoiS0qW7Lv7+f3xOcO47jL33pk5c+Y+79drXmfOOc88z+c+9zkz53M+m6gqDofD4XA4HA6Hw+EoPMX8FsDhcDgcDofD4XA40gWnYDkcDofD4XA4HA5HnHAKlsPhcDgcDofD4XDECadgORwOh8PhcDgcDkeccAqWw+FwOBwOh8PhcMQJp2A5HA6Hw+FwOBwOR5xwCpbD4XA4HA6Hw+FwxAmnYDkcjpRBhOEivJ/TfjLHjlOfk0RQ7/W/qOONRfhWhNkijBehbJQMkfbnx1MWh8PhcDgcycEpWA6Ho8AkQQHqBXSLZ4ee0jMoGWN5vALUAKZ745cG3gJuUKUJMA/oHiVDjQTI4HA4HA6HI0kU91sAh8PhyAlV1qbBWJtU+Sdq/2zgM1V+8vZ/BWpGybBWJEGSOBwOh8PhSDjOguVwOOKGZx0aLMJDIqwU4V8RBojs/q4RQUToK8LvImwVYakID+fQX1aXwVj67yjCVyL8J8JqET4W4bBIf8DxwA1Rrnh1chirlAhPibBchC0ifC9C6/zIkgOHAbOi9psCc/OeXYfD4XA4HEHAKVgOhyPedAV2AMcCNwK9gQujzj8E3AM8DDQGOgNL4th/OeAp4BigHbAWGC9CScwF7zt2u+3VyGXsx7x+rwCaYUrRBJE9XPjykiU7lgENAUQ4HDgJGJfHZxwOh8PhcAQE5yLocAQQEZkEzFbVG3M4PwV4RFXHJlUwY64q93rv54lwNXAiMFKE8sDNQG9Vhnlt5mNKT6H7B1BlTHRjES4H1gHHqPK1CNvY222PLJ8pB1wHXKXKB96xa4ETgBuAu2ORJQdeA0aLMMuT6wJVtsb4t6c9IlKZLA//VHW1P9I4HA6Hw5F/nILlcKQn9wMDReRdVc1M8tg/Z9lfBlTz3jcCSgETE9Q/IhyM/f0tgf2wm/ViQO18jHEwUAL4JnJAlZ0ifIf9DTHJkh2qbAI65UOWtEdEDgJeANpj877rFKBAhh9yORwOh8NREJyC5XCkJx8CLwGngllgksj2LPvKbotEPNI35NY/wHjgL6CHt92BxTiVzMcYETk1m3PRx/KSxREbrwCVMXfMZWQ/7w6Hw+FwBAKnYDkcwaW4iDwNXOrtDwVuV9VMVd0pIh8CF5N8BSs35gJbMTe63+PduQhVsCQSN6jyhXfsKPb8rttG3haR+V671sACr58MoBXwZpzFdli83P9UdbbfgjgcDofDUVicguVwBJeuwHDspv9wzGL1NzDQOz8F6OeLZDmgynoRngYeFmEr8CVQBWiuyvNxGOI/YCVwtQhLgAOAxzErVoQ/gWO87IEbgNWq7OFGqcpGEZ4HHhFhJbAQix3bHxgcBzkde7IQcx11OBwOhyPwOFcWhyO4/A30VNVfVfUtTJHoE3V+GXCAiKTag5Q7gUexTIK/AGOAA+PRsacoXYgpnLOB57xxopNIDMCsU3OBFeQcm3U7VhD4FWCG12dHVf6Oh6yOPegFPCwih/gtiMPhcDgchUVUnau7wxE0vCyCi1X10qhjJwKfAZVUdZ2IdAA+ASqo6gZ/JC3aiDAJmK1Kttkec/mcAp1VeTshgqUYIrIes2BlYMpwtMURVa3oh1wOh8PhcBSEVHuy7XA44se+wBanXPnONSJ0B9qrMjW3hiK8AHRLilSpRb4UUIfD4XA4UhmnYDkcwaWliIjuNkP/D1imquu8/SbAj/6I5vDoCpTx3sdSTPlezIURKDquiKo6wm8ZHA6Hw+GIF07BcjiCS03gKREZDDQFbgUeiDrfBpjgh2AOQ5W/8tn+X+DfBImT0ohIKUwhbYSlaZ8DjFTVlC7CLCLVMFmbqepSv+VxOIoKIvI+sFJVu3v7U4BHVHWsr4I5HLgkFw5HkHkDi1n5Acsg+DLwJICIHAAciyVocDhSGhFphKXtH4gViP4f8BQwT0QO81G0PFHVf4FXgXBObUSkuYioiLTO4fxbIvKN9/5qEflKRFaLyBoR+SKnz+WGiHT3xoy8/vbGqZvfvhyOgHA/8KiI5HpvKyJ/Zrk2Iq9H8jNYln42ichsEelRqL/AkTY4BcvhSEFE5AgR+U5EZonIeBGpGHXuTizrXntgvKpWVtV9VLWvqu70mvUGhufnibqI3CQiv4nIHBF5LHo8EZnvnTslDn/b/SLys4jMEJFPRKRmosaK6rej1+d8EbkjXv1G9V9aRKaIyExv/sLe8X1F5FMR+d3b7hPHMSuLyNsi8quI/CIirRI1noj08m4e5ohIb+9YPMd6GvgJqK2qbVS1DZbdcSamaKU6rwBdRWTf7E6q6nTs77sy6zkRqQKciT0gAWgHjMZqxbUEfgM+FpH6BZBrE1ADs3Z3AY4ExolIXnXgHI4g8iFQATg1hrb3YddG9OuBXD+Rez+HA+8CL4jIhQXox5FuqKp7uZd7pdgLmAoc772/Arjfe98Iu+ksBdQF/gAysvn8rcD++RivPZaBsJS3Xy0/4+Xzb6sY9b4n8EKixvL6zfD6qgeU9MZoFOf/lwDlvfclMKvi/4DHgDu843cAj8ZxzBHAVd77kkDlRIyHxfLNBspibuWfAfXjORamCDTO5nhTYGM8/1eF+P/2xaxsW4GlwMNZ2iyI/D9y6OMGrO5a+SzHewHrgXK5jP0PcFM+Ze4ObMhyrCvmftkQOBrLMroSWAd8DbTK0r4HMA/YgpU0+BgoHvW/meh9dr13XbX3+3/lXun58r5/hnvX0HLgLuB97EFidLthwOt59PUncEscZNqrH+96Gem9fwR7QLLZa/sYUDqqbS3gPWC19x34K3BR1Pl7gUXed84/wKt+/x/cK/aXs2A5HKlJQ6wIL8CnwHne+7OAUaq6VVUXAvOBY7J+WFUfV9Xl+RjvOsx3fav3+UgcUEzj5QfdnYQDoBx2w5eQsTyOAear6gJV3QaM8saKG2pEsjWW8F7qjRNJ4DACODse43kWzbZ4Vg9V3aaqaxI03mHA96q6SVV3AJOBc+I81hZMQcxKJe+c3zyE1VN7GGgMdGbvpCVTgONz6SPi0pv16fYV2LrfmMPnSgKlsSLawB7uf3Vi/QM8NnvbEtiT/tewWM1jsFpvH4pIVW+MFlgduTD2fXQSe8Z0voklYjkGaAb0JzX+V470ZADQAfstPBFbc22zaZfXdRgTnvvf8AJ8dAt2fQFsxK7vw4DrgYuAflFtB2OKY3vse6U3sMYb/zzgFu9z9YEzsL/NERCcguVwpCazMbchsJu5Wt77A9jzxm6pd6ywNADaiMgPIjJZRI5O5Hgi8qCILMGeqN+byLES2O8eiEiGiMzAklR8qqo/YFbEvwG8bbU4DVcPsyi8IiI/ichQESmXoPFmA21FpIqIlAVOw9ZjPMcaD7wkIsd585jhxR0NAcYVUv5CISLlgZsxa90wVZ2vqt+p6uAsTZcBdXLqx1OAxxDlJuhdZ4cDQ3MR4QHsqX30PKzFnoxvz8ffcSBm2V4KzFPVz1X1NVX9RVV/BW7Cbg47eh+pjd0gjlPVRao6U1Wf9JRsgIOwdf6rNyfvqOp3scrjcMSKdw1eCdymqh+r6mzgciAzm+bLgANEJK8kbg+KyIYsrzOizv9BPjK5ikhxEenObssuqnq/qn6jqn+q6ofYg5qLoz52EPC1d20tVNUJqjoh6tzfwCequlhVp6nqoFjlcfiPU7AcDp8Qkc+8uJasr7Owp143iMh07EnztsjHsukqpmrheYxXHNgHc2u7FXhLRKSg4+UxFqraT1VrYU/1IzWQCvy35SVOgvrds0PVnap6JBYfd4yINIn3GFEUB44CnlfVZtiNcNxjywBU9RfgUcySOgFzBduR64fyTy/M/e4r7CZ/C2Ypm4c91fWTRpjb6sQ82m1md0r+nHgZaCUih3r7VwCzPWV8L0SkF+amd2605ddTZg5V1byyVJbzbhw3Yg8ZSnp9bRORaiIyRETmichazM2vGqZYgf2/FwELReQNEblMRCpE9T0QGCoin4tIv6i/yeGINwdja3eXAu95DMzKpu1m7Du/dB59DsRiEqNfX0T1f6Kq3hmDbA+KyAZv3OeAx7EHQ4jI+SLytYj847V5kt3XF1js6d1i8dYPiEjzqHP/5/0NC0XkZRHpLJZp1REQXJp2h8MnVPWkPJqcDCAiDYDTvWNL2W3NAruZX1bY8UTkOmCsqiowRUQygaoFHS+Gvy3Cm8AHQKigY8VAovrNFlVdIyKTMEvAchGpoap/i0gN4peCfSmwNOrG/G1MwUrIeKr6Mp47oog85I0ft7Ei7o1eIodDsRukuao6v9DCF57sFPTs2BezKubGJMz19QoRCWFPs/tnO6gpVw8Ap6pqQV2DNmE3jpnA8ixuiCOA/THr3J9YnMdE7EYWVV0vIkdhblgdgDuBh0TkaFVdpqr9ReQNLKHAKUBIRK5V1WEFlNXhyIlYr0Gw63BLlMt2TqyK0/fLQOy7cRPwt/cbioj8D3NHD2PX2BrMKyVS5xBVfVlEPsa8Ak4CvhWRh1W1v6ouEZGGmDvkScAT2DXWMhd3YkcK4SxYDkcKIlZbB7F0s3cDL3inxgEXiUgpsXTL9YmPX/a7wAnemA2wm6yViRgvSza0M7HAXhIxlsdUoL6I1BWRkpgffFzdzkRkPxGp7L0vg/0g/uqNc5nX7DIsoLnQqOo/QOQHGOxHeG6ixotaj7WBc4GRiRhLVX9X1fGqOi5FlCuwed2KzXFu5FnY27v5GgZciilXZbA4qD0QkT7Ag8Dpqvp1AWSOHjISf5j1pqw18KyqfqCqczALVo0sH97huRLeibkylsNiQSLnf1fVZ1T1dOwm86pCyOpw5MR8zB32f5EDnkt0dl4CeV6HcWaVd40tiyhXHscBf3luglNV9XfM7W8PVHWpqr6oqhdg7vLXRJ3b4l2fN2NJaRp7/ToCgLNgORypycUicoP3fixePStVnSMib2E3fTuAG3R3avbCMAwYJiKzMXfEy7wfi0SM94inGGRiLkjXQuL+NlXdISI3YhnQMoBh3g1lPKkBjBBLf10MeEtV3xeR7zB3yyuBxVg8Xby4CXjDUxoXYDEJxRI03hixdOLbsf/Lf2I1Ywo8log8A9ypqhu99zmiqj0LKnhh8Sw5TwMPi8hWLPlMFaC5qj4PIBab1hzLbJYXw7F6PQOAd1V1VfRJEbkVU666YXXAqnunNqvqWq/NOVjCjRNjcBPMiXlANxH5AVOcHmO3KzJePMrB2N+7GgvErwD84j1EGIC5Mf2JWcJaY9kzHY64oqobRORlrMbVCswD4V7s+zwrbdgzGUtOVIi6tiJEX2MTgSkxuglmxzwsFqwr5tp4CnvGX+F9r3zkta2IeT3M9c51x+7Rf8BiMC/Evn9/L6A8jiQjeyrcDofD4XAkHhH5AjjHc6n8Ire2qto+SWJli2dJvg17unwglib6VVXt552/GAipakxxSCIyDugEnKyqn2Y59yfZPOkGRqhqd69Nd+yhS11V/TOHMboDg1S1fA7njwBexCxTyzBXxduBtz33v9aYIng4lunsD+AJVX3FU+qHY0/TqwOrsJTZt+ieWUIdjrjgWayexyzom4BnsTpxK6OuiwOAhUA9zaUGZC7X2Buq2i2qzaRI37n0M0hVB+Rw/mHMqlsGK4nwKTBYVcU7/yymVNXCLMgTgb6q+peInI1dj4dhWQnnAmFVfT8neRyphVOwHA6Hw+EoBCIyBXhKVd/0WxaHo6giIo8DlVT1mjwbOxwJxsVgORwOh8NXRORez80u6/EyInJvdp9JFbz4tLexuDSHw+Ef/2L16hwO33EWLIfD4XD4iojsBGro7gLXkeNVgH9VNbtYC4fD4XA4UhJnwXI4HA6H3wjZ1yZrhiVYcDgcDocjMDgFy+GIAyIyTET+9bLwZXdeROQZEZkvIj979WVi6TepvuRuvGCOFdTxRGS9iKzDlKsFIrIu6rURy/z4VmHHcTgcDocjmTgFy+GID8OxbEA5cSpW16k+lons+Rj7zfEmVkQ6xfucGy+u59L5b8t1vHxwI9ATs2D1w1LPR15XAa1V9YacP+5wOBwOR+rhq4IlIm97BRUdjkCjqpFaMTlxFpbWWVX1e6CyiNTIpX0s5HbzW9BzbrzkjJfOf1vMqOoIVR2O1Vga7O1HXiNV9btEju9wOBwORyLwNcmFiDQFJmO1PNbm0m44UFVVz8ipTR7jTAJmq+qNBfl8lr5uAHoAdbxDc4AHVPWDLO1qAI8Ap2HFGRcA16nq5ML0myxEpD8QynJ4uapWz9LueuBWrNDqHKC3qn6VFCFTDBGpA7yvqntVlxeR94FHVPVrb38icLuqTsum7TXstg40L1t2r+RqAOzcuZOMjOxj/wt6bseOHRQvnn39cTde/s7t2LGD4sWKQWYmqO7eqrJZleJYcROALVhFyeLATqyaZGQ/+rxgT8W2Rp1Xb78YUDJqvwRWhTPT+3xJr6/t3jbSdu99QTkQ2Bf4D1iJlWIBS9L1H9AQmK6qGpeHdCLSGdimqu9lOX4WUEJV347HOAWhatWqWqdOnXx/bs2aNQBUrlx517EFKzYCUG+/cnGQzBFUslsbBWH69OkrVXW/wkuU2sRyDcZrTiOky7Ua73lx7Elu12D2dxpJQlVnicgCrGL9c37Kkg+WYsXffsfuaS4D3hWR5qr6M4CIVAa+Ab4GTgdWAPWwu5MC9+sDvwHtovZ3Rp8UkQuBp4Hrsb/1euAjEWmkqouTJWRAkGyOZft0Q1VfxAqAUq5cOd24cWMi5XLEk7VrYfx4eOcdmDwZVq3a4/RK7MugAZBRujRUqwaVKkH58nu/ypaFkiVzfpUoYa+MjOxfxYpBRgZfzZ5N2549+eDppzmpVasc227YnMEdj1dhyMgK7Nhhy/XQ+js4ofV2WjTbyUG1lRo1oOp+QqnSQqWa5TfHceb6A9l5M2wEnsLSoPtCnTp1mDZtr+cgedKuXTsAJk2atOvYhUPMIDe6R6t4iOYIKNmtjYIgIosKL03qE8s1GK85jZAu12q858WxJ7ldgwlVsESkI+ZX3wS7mZyKWTh+iWo2DriYQihYuY3jWb+OB473rERgFrM/CzJW1iesQD8RuQ5oBUQUoduAv1X10qh2C+PQb56ISAVgLXCCqk4SkVrA+8BXQC9V3ZlrB3uyQ1X/yeV8H2C4qr7k7d/k/S+uA+7MxzhFgaVYtfYIBwLLfJLFEW8WLoSBA+GVVyBaIa5RA445Bg47DBo0YMS0adwyeDBrly6lYs2aINnp3fGldbt2bLzySkpEFLJsWLwYTukEv/5qetlll0HfvtCkSXFEkvIcrh72QCcr871zgeO997J+pTschlsb8cfNafa4efGPRP9ylsOePv4MlAHuBsZ7Fo5tXpspwN0iUkZVC/pENMdxgF7YA+Nfgbu89iuy60REugOvEKMCJiIZQGegPPBt1KmzgQkiMhqLLVgGDAWe0xh8MnPqN0b5jsCsJT+LyNHAWOBRVR1UgL+znoj8BWwDfgDuUtUFXh8lgebAgCyf+QQ4Nq+/sQgyDrhRREYBLYG1qvq3zzI5CsvmzfDII/Doo7B1qx1r2xY6d4bTToO6dfdQos449lgObNuWsvvvnxTlCkBEyMnNFGD+fDjxRFOyGjeGN9+Eww9PimjR/IclgPkzy/EGwPqkSxMHKlWq5LcIjhTFrY344+Y0e9y8+EdCFSxVHRO9LyKXA+uAYzCXMjDlowRQE/gj3uOo6tcisg3YlIc1Bszy8xu7wxKyxYsd+w4oDWwAzlHVWVFN6mHuck9icVhHAs965waRAzH0G4t8RwBLMMVuENBdVT/O0iaWfn4AumOKaTVMaf1WRBqr6iqgKhbisTzL55YDJ+XSb1oiIiMxd8qqIrIUi18rAaCqLwAfYvF484FNwOX+SOqIG3/8AeecA7O8S7RLF7jjDmjaNMePNGzYkIYNGyZJQOOHH37g008/5eabb6ZcuT3jCZYvh/btYelSaNUKPvwQfHLVfw94UkTOVdV5ACLSEBgIvOuLRIVk9OjRAFx44YU+S+JINdzaiD9uTrPHzYt/JNpF8GDgfuyJ/X5YbFExoHZUs4jVqkyCx8kTVX0HeCeGpr9hSlNl4DxghIi0U9VIDaRiwDRVjbjJ/SQi9YEbyEXByqvfGOU7EtgHGIUprJ9lbRBLP6r6UfS+iHyPJeq4DLvp2dU0y0dzKhia1qjqxXmcV+z/70gHfvwRTjoJ/vsP6teHl1+GNm3y/NiSJUv477//ODyJJqJvvvmGe+65h969e+9xPDPTdMKlS+HYY+Hjjy30yyduAyYAc0UkYtmtgXk43BpLByIyDDgD+DeHRDOCxYyehj3k6K6qP8ZB9mx5/nmrxOBubBxZSde14ec1mK5zWljcvPhHol0ExwN/Ydnx/gJ2AHPZndAKLFUV5OC2F8dx4obn3jjf253mueLdDFzpHfvbGz+aXzB3xcL0GwtHAD8Bt2Duhd2AEfn4fE6ybRCROZgbD1i8/k6gepam1djbquVwpA+zZ0OHDqZcnXaa+dTF6IYxcOBAXn75ZdatW5dgIXfTp08fbrrppr2yJ77yCnz+Oey3H4wZ46tyhaquB44TkQ7YQyIBfgQmxuJW7TEce4D1ag7no2vRtcRq0bUsuNS58+GHHyaqa0fAiXltbN0KpUolVpj4MhyfrkF3vWWPmxf/SJiCJSJVsNy+N6jqF96xo7IZswmwTFULdFMe4zjbMHe2RFEMiP4W/AbLYxxNAyC/GX+y9psrXuxWE6Cbqk4RkTeAe0XkDVXdkc+xs/ZdGjgU+AJMGRSR6UAH4P+imnYAxuzdg8ORBqxeDWeeadszzjDNpGTsz3GuvPJKTjzxxAQKmD0lsiS3WL4cbvXsQk8/DdWzPibxCVX9FPi0gJ/90iuVkBO7atEB34tIZRGpkahYyNzi3hxFm1zXxvLlMHUqfP21PQUZOxaOOy55whUCP69Bd71lTyrNy44dsGwZ/PMPbNtm+zt37t5Gv0/mue3bc35t2wZPPgmnn57/vzeRFqxIAZWrRWQJcADwOGZdiqYN5hqSFxVF5Mgsx9YAi2MY50/gGO/C3wCsVtVMEbkRuFFVDwUQkXOAh4ETVfWv7IQQkUeAD7A4pwpAFyz2Jnr6n8TilfoBo4FmQE92J9kgm7Fj6TcvGmCuljO8/fuxGKor8NJ+5+PvHIBZBhdjVql7sGQi0dawgcBrIjIFUyqvxWLpXsiHzA5HMFCFSy6xjIFHHQVvvZUv5QqgSZMmNGmyl+dMQhk9ejTLli3j5ptv3nXs9tvNAHfKKXDRRUkVJ0dEpCVwIvZ9s0d9LVXtGYchDsC+XyMs9Y7tdXMXXYuudu18eZrv4vXXXwegW7duBfq8I33JcW188IFdkBs22H716r4FRSaIhF2D7nrLnnjNi6opHFu37n4tXGheENOn2+9JRCmJKC3Rysu2bbBypbmmJ4royiPFi2e/ze5YJMFuiRJQpgxUrLh7v2RJ2GefgsmTMAXLU2AuBJ4BZmOub32Jsm54VpFzgFNi6LIN5voWzRhVPT+vcbBMdyMwt70yQF1M6arKnpamSt5+9rmMjerA6952LZa58NToRBKqOlVEzgYewhSTxd52cFQ/WcfOs98Ysv8dgWXcWujJMV9EXseyNI5Q1a35+DsPBEZ6cq4Avgf+p6q7rHCqOtqzIN6NxUvMBk6LbhMERORdLMvjh6qawMs/dkSkE9CpVLDcQ9Kb11+3LBD77GNPlcvkP2x03rx5bNmyJakxWO+//z4//fTTLgVr4UJ47TX7cXnuuaQlM8wVEbkFeAz7/l7GnnGc8YrpLFAtuhYtWhRo/KFDhwLuhs+xN7vWxvnnw7Rp5nb8+efwf/9nd3UTJ0KTJua/mwoXaPxI2DXorrfsiXVeNm6EKVNg+HD4919TmNasse26daZQ5eSs3bixlXQsXdqWb/Hie24jr2rVoFYtqFnT2hZEGcrpXLFiqXepSOzu7QkY3OpSnaWqJ/smRIAQkTBwPnBEYV3+HLvxXCnPxhTb4cArqvq7nzJFcIWGU4SVK+HQQ61w8CuvQPfuBeqmc+fOzJkzh7lzs4ZoJhZVRbxfnxtvNMXqkkvg1ZwiJWJARDaparm8W8bU1xKylJMoYD91gPdzCLAfAkxS1ZHe/m9Au7zck1q0aKEFKTS8fbslaY12z0yX4qWOwrF9+3aYOZMSF19sdRLAHtz873/wwANmIY8BEZmuqi0SKGq+8esazO56Kwzpcq1u2rSdRYtg1aoSbNwImzaZgXTWLEuEu2iRvVautPaVK1vepsqVbUnus49ZdEqXtnDA6Ff16tCyJey/v59/ob/kdg0mpYJkLmwHbvJZhiBxGuZW6JSrOKKqXUWkItAVS59+h4h8jVm1/q8Q9dkc6cIjj5hydcIJVoW3gPTr1y+pCS4iRJSrf/+1hIcAt92WdDFyoyJWyiCRJLUWXbxu9Bxpxrp1lLj5Zhg2DMqVg2eesQCPgw6yx/HpTcKuwaJ+vanCX3+ZorRwIUyeDH/+Cd9+W4IV2aSQy8gwRapOHWjRwpZf3boWWuxnwqN0wlcFyzMBO2JEVY/2W4Z0RVXXYRmNnheRxsBVwBDgWe/H4ClV/cVPGR0+sWyZmXwAHn+8UH4IRx55ZHxkygcPPvggdevWpUuXLjz3HGzZAp06mQdSCjES6MiebtT5ItVq0Q0fPhyA7gW0djrSDFVzLe7bl+GLF8Pxx9P9jTfggAP8lixu+HkNFsXrbccOeOMN+OwzmDTJSm5E06QJ1K49nDPOgIsu6k758qbTly1rVqeKFX0Ru8jgtwXL4UgpRKQmlunoDCxRyttALeBnEblTVQf4KZ/DBx591LSSc8+N2XUnJ3766SeKFy9O01yKEcebUaNG0apVKy66qAsjvBQ1UfkuUoUlQFhEjsPiT/cogq6qA7P91J5tUqoWXVG84XPkwH//wV13wQsvQMWKDD/iCAC6p5FyBf5eg0Xhetu2zRJMTpoE771n78FC9dq1g7ZtTV+vVAkaNrT37doNZ8ECOPnk7j5KXjRxCpajyCMiJTCl6goszfxPWMD9SFXd4LW5AAu4dQpWUWL9enPlAbj33kJ3d8MNN1CuXDk+/bRAmcgLxKxZswD48kvzta9VC44/PmnDx8pVWIbXY71XNMqexc0DwaRJk/wWwZEKTJoEPXrAvHlw9dXw7LNMcsmL4k66Xm/r1sHQoTBjhhlAIyHZRxwBvXpZ2N6FF+bsWJGu8xIEnIKVAESkGFAZS7deCigPHA38jhVC3oaZx1er6vYcunEkj7+x7EZvAneo6s/ZtPkUKz3gKEq8/rpFBLdpY79ohWTQoEG74qGSjZetl65dLeNSKqGqdf2WweGIK6qWsCIUMl+s996zGnoORwxs2mSuf3fdBXPmwL77wgUXmHt327ZQpYrfEjrywilYBcBToOoCTYFDgHreqzaW1rwKWeq45NLXGqyO1zJgQdRrNvCLqm6Ls/iOvbkZS2axJacGqvof9j93FBVUd8de3XADI0aMoHbt2rRv3x6AV155hXr16nG8Zw4aOnQohx56KK1btwZgyJAhHH744bRqZVmoBg8eTIsWLTjmmGOS9ids2rSJ008/nTvvDPHWW+0Ayx7oSDwvvfQSAFdffbXPkjiSzt9/24U2cSKcd56l64wq+OrWRvxJpzn94w/zSP/5Z6ha1R6Ode1asL7SaV6ChlOwYkBE9gNaY7W4jgEOx6xTEVZjtad+Af7FFKaVWE2qrUAG8AhmtboHs2qVwxSxqsB+WN2pk7FCvRG2i8hc4EfgK+BLYIH6mVs/PWkPvAvsoWCJSDngWVW9ItkCuTpYKcC0afbosFo1OOcc+tWrR8eOHXcpWLfffjvnn3/+LgWrb9++XHHFFbsUrN69e9OzZ89dCtaNN97I3XffnVQFq3jx4vz4449MnPgfa9dCs2bQqFHSho8ZEXkmt/NxKjScVEaPHg24G5six8iRdjesahkCb7hhL5OxWxvxJx3mdOdOy/J6221WnDdSTqNChbw/mxPpMC9BxSlY2eDF5LQGTgdOBSK3JFuA6cCrwAwsGHueqq6Joc+jACL1H3JpVwazhjUFjsSKB5/F7mw7y0TkU+B94BMv+52jcFwG3IEpxNGUAS7FYrOSiqqOB8aXK1fOfSv6xahRDAduW7+eWf/9x4wZMyhZsuSu03PmzKF06dK79ufPn7/H/qJFiygb9dT6n3/+2WM/GZQsWZJFixbRs2dlAC7ONQTdV7Jm/SgBHIr9Rv2YfHEKz2effea3CI5kogp9+sBTT8Hhh8Ozz5ovVza4tRF/gjynmZnw6afQrx9Mn27p08ePt0QVhSXI8xJ0nILl4SlVJwNdMMWqEhYrNRl4DbMgTVPVrQXpX1V7x9huMzDHe43yZCsGHIZZ0NoBZ2JKwQ4RmYSlOB4bi6Ln2I2I7IvFXgmwj4hE1xfLwNbBcj9kc/hMZiaMHk094LyOHSlbtiwVsjxG3G+//XLdr1atWq77iWb58uU89thjdOt2KR99VBmwGiepiKq2z3pMREoDL2PfvQ5H6rJzp9XKe+op6NAB/u//LJWbw5EHquZF+u67ULIk9O9v+ZR8CtV1xJEir2CJyBHA1cCFmLveamAMMB74LJJFzk9UNZPdStcLIlIc+B+WSvw87CZksIh84L3/WFV3+iVvgFiJZShTYG425xWr4+Eoanz9Nfz1F20POoi2Y8YE8tdu+fLlDBkyhOrV27Jy5RHUqQOHHuq3VLGjqltE5EHgY+AFv+XJL4MHW0mv66+/3mdJHAll4kTLPrB6taXn/PBDKJ77rZVbG/EnSHO6Y4d5oH/0keniv/wC118PAwZAmTLxHStI85JupFguqeQgIqVEpIuIfI25+l0JfI654tVQ1StV9d1UUK6yQ1V3qOrXqnoH0ACriD4Ec2v8APhdRG4Tkap+yhkA2gMnYhas84ETol6tgdqq+qB/4jl8Y+xY2+aW/zbFOfzww9mwYQMbN54FwGmnBfJP2Q/Lwho4xo8fz/jx4/0Ww5Eo5syxu+KTTrIYqwEDTNnKQ7kCtzYSQVDm9O+/4eCDoVUruP9+S2LxzDP2irdyBcGZl3SkSFmwvKQF1wC3YMkk5gN9geGqutpP2QqKl/BiCjBFRG4FzgauBx4F+ovIi8ATqrrEPylTE1WdDCAidYHFLnmIYxcffgjA/atX8+S++7Jq1Srf0qsXFu9P4bTT/JUjN0SkT9ZDQA2gK/Bh8iUqPB999JHfIjgSwQ8/WD2rWbPsicW115p7YD5cAt3aiD9BmNP5863ix5o1EA5b/pNEp1sPwrykK0VCwfIUq15AHyxz32TMavWJ536XFngp3d8C3hKRJpgieSNwvYi8Ctynqov9lDFV8JKOzPD+/1WAKjndQKtqIIPsHQXk99/ttc8+ND/zTC6vWDGQytV3333Hyy+PZOrUEKVKVaH9XlFOKcVNWfYzgRXAK8DDyRfH4ciGd96B88+HffYxJeuBByzLqMORBz/9BMceazFXkyZZgWBHepPWCpaIlAS6A/2xp6EfAg+p6jc+ipUUVHU20F1E+mOK1lVANy8d8qOquspP+VKAaUB1LK3+NCzeKru7aMUSXjiKChGTT8eOnNapE6d16uSvPAXk999/Z+TI14C7aNdujzI8KUc6Fhp++umnAejVq5fPkjgKzdatMG6cpeFs2BC+/96KBxcQtzbiTyrP6U8/WY3pKlVMuTrkkOSNncrzku6kbQyWiFyCpd0egtWoaq2qpxcF5SoaVf1TVW8EGgKjMWXrXxEZIiJFWXGoiz0hj7yv522zvur5Ip1jN/37Q5MmOe/HmyD41MXApZdeSteu/wHVOfFEv6XJHhH5UUT2idq/2PM4CDwTJ05k4sSJfovhKAyZmfDYY1CjhiWyABg9ulDKFbi1kQhSdU4XLjS3wB07LPV6MpUrSN15KQqknQVLRKoDT2Dp1ncAi4HjVXVHrh9Mc1R1EXCZZ9W7CItFO0pErlPVaf5Kl3y8+djrfaqQZ6Hh7t1hxAh7X7y4uaw0bmzuK9dcAyVKJEvU2KhTBxZlmeZKlcwZPS9uuQVuyupBliC2boUvv7T3J5/M1VdfzeTJk5k3b15yxo8zkT8lh3I8qcCRWM2rCEOAH4AFvkgTR8aNG+e3CI7CMGOGJbmZNw+OOgqGDrXMBDVqFLprtzbiTyrO6Zo1loJ982YzeibyuWBOpOK8FBXSRsESC5K4FHgaKxB7H5Z6exTQDRjum3ApgpfM4QJgMFZb5kksOcaTQD9V3eKnfMkkUvg5FvyIwYqp0PBJJ8Frr1kNlhUr4PPPIRSyYxMnQrkUMwTcey9cd93u/WIxGtDLl7dXMpgyBbZssV/CatU4+eSTOfjgg5Mzdpx59tlX+e23nylbdgBHxbzafSd4wW6O9OP11y1DYLly8MorcNllgUzB6fCP1avh5JNh9mx4801/lCuHv6SFi6CIVAPewZSomUBTVQ1hCR8uAt7wT7rUQVUXAp2Ae1V1FHAoVl+mDzBdRJr7KV+SmQZM9ba5vab6JWCelCoF1avDAQfAkUdCnz7m4P3jj+bWEmHbNrj9djjwQLthOPpo+PjjPfv69VdzEq9UyZSZVq0sSxbY9sQTzS2mQgU44gj44ov8y1uhgskbeVWrZsrhlVdC3bqWo7Z+fZM9Myr3TKJdAqOZNMm27doB0LlzZ+64447kjB1nPvtsNvAFxx6begbNosCAAQMYMGCA32I48kvv3nDJJfY99/335i0QZ+XKrY34k2pzetVV8PPPlhflwgv9kyPV5qUoEXgLloicArwGVMLii56MZAb00m6P9lG8lENVP4x6vxbLMPgeMAz4XkTuBh5Pp+yKOZB2QfWAKSIdO8KYMZYHFuDyy+GPP+wx2oEHWoxRp04wdardRCxbBq1bw3HHwaefQuXKZsnZ6dWq7tLF2k2ZYu6Is2ZB6dK7x6xTxxSS4cPzL29mpimIb70F++1nY1xzjUUDX3ll4eaiIGRRsDIzMykWq6UtxTjoIFOyU9g9MMLpIrLWe18MOEVElkc3UNWxyRercHz33Xd+i+DIL999B08/Dd262fdZRmLClN3aiD+pNKfTp8O778Ktt8Lpp/srSyrNS1EjsAqWl6DhHuBeYA5wgpc5z5FPVPVjL637EOAR4DgRuUxV//NZtISRinFXcaNRI/jsM3v/xx8wciT8+SfUrm3HbrzRzg8ZAoMHw3PPmWXr//4PSpa0Ng0a7O5v0SKLgzr0UNvPGqV78MGxxSX062fWqAh33WWv++7bfaxOHbPAjRyZfAVr61b49lt772klHTt2ZNOmTXz99dfJlSUOBCD+KsLLWfafy7IfyEyeY8aM8VsER35YtsxqWlWubFVfE6RcgVsbiSBV5nTnTnMYqVLFft78JlXmpSgSSAXLyzo1CjgZeBW4TlU3+StVsFHV/0TkQuBLYCDwo4icraozfRYtIUTXwcorHitwdbBUd7u0/Pij7TdqtGebrVvhhBPs/U8/mQUrolxlpU8f83cYMcJcBc87b7eyBRbvFQt9+uypNO27r21feMECyBctsmjg7dvhoINi6zOeTJ1q8VeNG5s1DejatSvbt29PviyF5L//YObMuyhWrBrHHNPbb3FyRFWDaR50pBdr11pholWrYOxYSxrkcOSTLVugc2f7SRw0KF+1px1pSOAULBE5GKtnVQfLhDfUcwV0FBJvHgeJyFTgbeAbEblQVT/wWbREEPc6WCLSEUuykoGty0eynK8EvA7Uxq69Aar6SkH/gByZOxfqednlMzNN2Zo6de9AnDJlbJvX5dO/P3TtCh99ZLFb4bApRVdckT+5qlTZ2/o1erTFPAwYYFUYK1Y0i9o77+Sv73gQcaVo3XrXocsuuyz5csSBH34AmMl++9Xe9W92JJdHHrHLP6gxfEWKJ56AJUvg66/NVTrBuLURf/ye0w0b4JRTzAni7rvhhht8EWMv/J6XokygFCwROQ54z9s9SVW/8lOedEVVfxCRlsB4YJyI9FbVZ/2WK85krYNVKDyX1eeADsBSYKqIjFPVuVHNbgDmqmonEdkP+E1E3lDVbYUdfxezZ8OECfYND9CsmSlQ//wD7dtn/5mjjrKsWdu25WzFql/fXj17WibAoUPzr2Blx9dfQ8uW5rYY4Y8/Ct9vQZgyxbYtW+46tGTJEg444ICUjsNSVZYtW8b+++9P8eLF2bBhA5999h8wjosvDpxnXdowY8YMv0VwxMKQIfDAA+ZLmwTlCtzaSAR+zqmqeZd+951ZrlJFuQK31vwkMAqWiJwOjAEWAaer6nyfRUprVHWZiLTFMjA+IyI1sFTuaWEtTEAdrGOA+aq6AEBERgFnYaUCdg0FVPBKCpQHVmO12grG1q2mOGVmWpr2iRPhoYegeXOLmQKLpera1TJhPfGEKVOrV1syh3r14NxzLR3xCy9YIc1+/cw9ZupUOOwwaNjQ+urc2eKjli/frRRFOPFEOOYYePjh/P8NDRpYMPlHH5l1a9QomDzZHxcdM/vs8bfVrl2biy++mDfffDP58sTIgAEDuO2221i4cCF16tThjTfe4IknrgWWcfTRha/Z4ygYo0aN8lsER26o2gOjQYPg1FPtuydJuLURf/yc02efhTfegDvuSC3lCtxa85NAKFgicgF2oz8D6Kiqq/yVqGigqhtF5DzgeeBOoLxnzUq7DIOeAnkdEAlW+gV4XlWXxdjFAcCSqP2lQMssbQYB44BlQAXgwuzmUkSuwdxfKZmTRQksUUWNGhaMXbmyZRAMhaBHjz0tUa+8Ag8+CLfdBkuXWuzTMcfstmgdcIBlRLj1VjsmAk2bwosvWt///Wd1YP75x9z8zjjDXPoi/PEH1KoV4zRloUcPK+jZpYvd8Jx3HvTtC8OGFay/gvL33+YiVLHiHvFlr732Gq2jXAZTkQsvvJCMjAyqVKkCQNu2x1Ox4lDWravE0Uf7LJzDkap07mzZVrt0gVdfTWhSC0d6M3So/fw++KDfkjhSCUl1g4SIXIalEP8GOENV1/ksUr4RkUnR+6razh9JCoZncRmA1ct6GbgmnZQsEemAuZ4uATwzBsdgsVJnq+onMfTRGThFVa/y9i8BjlHVm6LanA8ch83jwcCnwBG5rely5crpxo0bC/R3OfLBu+/COeeYNe6zzzjnnHMQEcaODVx2cJYuNX23cmUzViaqPqqIbFLVlKpmnYg4yBYtWui0adPyLcv9998PwD333LPr2IVDLM5vdI9W+e7PEUcmTDCr1SWX2MOc4sl91pzd2igIIjJdVVvEQ6Z44dc1GK85jRDrtTp+vJWQfPhhs2ClGvGeF8ee5HYNprQFy7tpHQZ8AZzpMgX6g6qqiNwCbMRS428RkZvSxV0QeAYYCvSK/ptE5Gnsh+KwGPpYCkSbcQ7ELFXRXA484o0xX0QWYsWepxRCdkc8iLgHHnMMAK1bt0YSpZnEmalTp7Ju3TpOPPFEYHco2dFHJ065SkVSJg7S47fffot3l454sGqV+XFVqWKu0UlWriB914af16Afc7punXmZHnSQJclNRdJ1rQWBlFWwROQ04E3gW+CsWJUrCYsAX2EWiIXAMRrStbl/KrEEzWKVHZ6SFQLKYAWd12Nug+lAHWBQNgrjc8DVMfYxFagvInWBv4CLgC5Z2iwGTgS+EpH9gYbAgoIK7Ygj06fb1lOw+vbt66Mw+WPgwIFMnz6defPmARY+BwTKPVBE9gUexK6PaljB4V2oasUYukl+HGQuvP7664no1lEYduwwF+fFi624edmyvoiRxmvDt2vQjzl99VUrMfn++znnh/KbNF5rKU9KKlgi0gpLaDETcwvMj4/UU5gbFkADLBNe6pfaDACeknUb9qV4h4isVNUn/JYrDkwDmgLzshxvCvwUSwequkNEbgQ+xlwjhqnqHBG51jv/AnA/MFxEZmEp4W9X1ZVx+hscBUXV4sDAsi4GjEcffZT169fv2g+igoW5HjcDXsQsvwWxjickDrJ2pEC3I9ioQq9e8P33ljnwnHP8ligdKTLXYGam1aNu2RJOO81vaRypSMopWCJSD4uH+QtLaJFf61PDLPt14iFXqiBhqQCEgE1AWEO6M5nje0rWDUBV4HER+UNV302mDPEgS3HhwcCTIlIf+N479j8s6UXMXtWq+iFWoy362AtR75dhxbEdqcTff1sWxsqVwfshP+qoozj66KMZMmSIv7LFQPTNR2YmREIVAqZgnQh0UNUf8myZMznVsYvmFCxZ0gl4cZAi8lXWOEhVfRFT9mjRokWBXKHvvfdeAO67776CfNwRT3buhNtvh8GDLWHPVVf5Kk4arw3frsFkz+nEifD771bhJJVdsdN4raU8KaVgiUhl4H1MrtML+HT/UewmVqL20wLP/fEv7KkPwKX4oECqaqaIXIoFqb4hIm1VdXqy5Sgk2RUXfiibdq8DI5MikcMfItarI4/c9Ut5zjnnUKdOHb8kyheff/45xYoVo127dixcCGvXQvXqlhwyQPwLbChkHykVB7lkyZK8GzmSQzhsZSquvdYKmftc1y6N14Zv12Cy5/S552C//eD885M6bL5J47WW8qSMgiUixbCb2UOAk1W1QJF5GtIvJCzNgIuBjzWkX8RRTL9pzm7lCuAgCYtoKPnJJlR1s4iciWXde1dEjlLVFXl9LoUodHFhR5owc6Ztjzhi16EgZVwKhUKUKFGCdu3aBdnTsR9wn4hcpqoFVbRSKg7ylVdyTYzmSBarV8OTT0KHDvD8835LA6T12vDtGkzmnC5ebNkDb78dSpVK2rAFIo3XWsqTMgoW5op1OnCjqk4qTEca0plY/JZvhMPhatiXSDPM0lMe2Ar8DcwGJgG/hUKh/ChHf2TZ3+mHchVBVZeLyDnAd5gl61TV5LosFpQ4FRdOGCLSCehUKodv7+7dYeVKC65NFYYPh8sv371fvTq0aQOPPgp1U1mdjbZgBZDXX3+dzEwLYchGVwwKd2PW+H9FZBGwPfqkqh6eVwcuDtKRLQ89BBs2gJeu2pE4iso1+Nxztu3Rw185HKlNSihYInICdtGNxOJhAkk4HBZMSeyN+RcLplQtxrLulcaUrkreR34Jh8PPAcNCodDmvPrXkP4nYemOpRXfjj0d8hVV/cmLyRoK3IvFhwUOESnO7tpXe+QDUtVXky2Pqo4HxpcrVy7WLIYpQdmyVndYFX791X6AzjzTdJiUreOZjYK17777cv311/PAAw/4IlJ+OOigg3a9D7CC9XY8OkmlOMg777Qkqw8//HAyhnNkx08/wcCBcPXVlo0gRUjnteHXNZisOV2zBl5+GU45xdKzpzrpvNZSHX8dkdmVnvd1LIPbNUGtrRQOhw8DJmNZCxtgCuPRQPlQKNQgFAo1D4VCjYF9MDfIGzClaxDwazgc7hTLOBrSERrSShrSqhrSzxLxtxSAYcBw4B4Rae2zLPlGRA4FfgG+BN7AlMXhwEvY/yfl6d7dsg8//bTF3uyzj1mTNkUVN1C1MIT69c2t4cAD4c6oRPv33Wc/GKVKmfXp0kvzL4eIfbZGDWjfHkIhmD0b5s+37HYnnwxVq0LFitC6NXz33Z6fHzIEGjSA0qXNv/2UUyyzMsCsWVYHuGJFqFDBlIgvCusAvHGjRSqXKAGNGu06fO2119KqVTCKwY4dO5ZvvvkGCK4xTlXDub38lq8grFq1ilWrVvktRtFl/Hj7kqlYEfr391uaPXBrI/4ka05HjLBSarfckvCh4oJba/6RChas54D9sKQWhQ1y9oVwONwVuxnfDPQAXgmFQtuza+u5BP6BWeoGh8Ph9lgx23HhcPgZoG8oFEpIXZZE4WUWvAlLh/+qiByhquvz+lwK8RQwHTgS+MfbVgKex1yXAsFXX5li89lnsGQJXHCBKSsRJequuywEYeBAaNvWEuf95CWhHzMGBgyAkSOhaVP491/LZhwh4v63cCHkJ/dDmTK23b4d1q+HSy4xJVAEBg2y9La//25K17RpVv9zxAi7L1qzBj7/fHdfXbqYUjVlitUGnTXLFLFCMWuWaZ6NGu1RyOShh7LLd5Ka9O3blzZt2tCo0XEsXmxzXr++31IVDM+boRGWgGZOYd3F/eTFF1/0W4Siy9NPQ+/eVkz4ww+hZk2/JdoDtzbiT7Lm9MMPoWFDOOGEpAxXaNxa8w9fFSwRuQhzc7tbVWOqN5RqhMPhm4Bn/uO/BS/zcs0NbBgALAkR+iiWz4dCoS/C4XALLNthb6BmOBy+OIBK1gYvs+BXwABM0QwKRwPHq+pGEckEiqvqj17Nr2eBPOM/UoGKFU2BKl4cDjsMOne2VLJ33mkhCE8+CU89BVdcYe0POQQiRppFi0w5O/lkM+bUrg0tWuzuu1Il+1EpUSJ2eZYuhccfN0tZgwbQpMme55991hS7CROgWzcLHC5XzlwKK1Qwa1q0q9uiRfbU8NBDd8tfaCImn6iBIkZ0SeXcu1F8+eWXlChRYpd7YJMmKeyOmQMicgDwDpbIJ5J1rKaITAPO8dyKHI68GTrUlKtjj4VPPrEvFYcjDowbZ0uqd2+/JXEEAd9cBEWkCuZ+9QMBTaUeDoc7A89sZevHgxhUbwMbSmNZ/sblp59QKLQtFArdDPQFzsdu6gOHqn4DPA5cIyLt/ZYnHwhWVwxgBVYsESzlbDxu45NCo0amXEWoWdMsUQBz58LWreZilx2dO8OWLZaM4sor4f/+z9pHOOcci6nKK/X3xo1Qvrzd09SqBdu2wdixZhz691+LyWrQwBS2ChXs2OLF9tkOHUypqlsXunY1S1ZU/Vz69LHyNSecAA8+aPIUmlmzbHv4bh16zZo1ZGRkMGhQILxDqVWrFtWrVw9y/BVYXOlO4BBVraWqtYD63rFnfJWsgNxyyy3cEhQ/onRh6VK4+WZTrj76KGWVK7c24k8y5vTRR6FePfv9CQpurfmHnzFYjwCVgatVNVDWGoBwOFwXiz369lmefXIneyTPK5BlMBQKDQQeA64Nh8MXFF5KX+iPpVx9XkRSPIHpLmYDkdvSKcDtInI8EAbm+yZVPslqXRKxwrNgXnC5UasW/PabxUBVrAh9+0Lz5qYw5YeyZc0oNGuWWc2mT99d8PayyywO68kn4dtvrd2BB5oSBqZw/fgjvPWWWdAeftisVcs820X//qYonn22ff7ww2HYsPzJtxdz59q2ceNdh0qWLEm/fv1oEW3CS2GGDRvG1KlTAxt/5dEBuEFVF0YOqOoCoKd3LnBs3ryZzZvzzF3kiBfffGNm9h074KWX7IssRXFrI/4kek7nzLHfnRtusN+5oODWmn/44iIoIt2Aq4ABqjrLDxniwCAsTuDiDWz4C1gHRL7RZ+SnIwnL/liij/JlKNP7dm5vDwwKh8Mfh0KhtXGUOeF49bFuxLIIDQKCkAXvQSDyqPNurNj1F8BKIKiK7h40amTJKyZOzDk+p3RpOP10e91xhyWr+OYbcxuMFZGcXfe+/hqeecb6B1i+HP7+e882xYubheqEE6w2aLVqlor+mmvsfP369urZE667zryBIi6PBSKiYEUluChXrhz3Byil87XXXkvfvn2ZOdM02YBasHIi028BCspzkVzOjsSzYYMFnVaoYF9yUddzKuLWRvxJ9JxGSqJcfHFCh4k7bq35R9IVLK+g8AuYcrJRREqr6pZky1EYwuFwa+A04LZQKLQ4RAgJS3XgFmA1WVLNh8PhYpjr4OZQKLQtmy5/xax5bGbzt3/z9wk1qDEJi8kKVAYtscCVcpjL3VUi8qyq/uyzWLmiqh9HvV8ANPKyW/4X1KyWWalQAXr1snisUqUsycWqVWZhuu46S2KxY4dlMi5fHkaPNotYRBl75x377MSJebsJ5kSDBvD66zbGxo1w22175JXg/fctxXvbtrDvvpYhcP16iyfbvNnirzp3tiQby5ebwlaozMsrV5qPYvnyZsLzaNmyJRdddBE333xzITpPHn/++SclS5blySdtv2lTf+UpIBOBZ0TkYlVdAiAitbEEQBN9lcyR2qhajatly+CDD/awRjsc8eKzz2xp1ajhtySOoOCHBesi7AZ8GlYzaS3wpA9yFIabMEVq16MBDelmLDU7AOFwOAO4ELPUtcJqYGWGw+HZwCjguVAotM5rXjmq72JDGFKqP/3fB64Lh8MP5ZSRMEVpCvwfpjQeDPQCrvRVohgRkTKYzAB/+Klc5VVouCA8/LClb7//fgtV2H//3anYK1c2//JbbrGMf40aWexUpEDw2rXmQri9ECtx2DCzRDVvbvFh/ftbJsMIlSvDu+9auvhNm+Dgg81C1aaNuRH+95+5Gf7zjyUHO+MMy3xYYH75xbaHHWamN486deqw7777FqLj5FKzZk3mzbOYuVq1LL4tgPQE3gMWiMgy7AHcAcDP3rnA0duLhH/qqad8lSPt6d3bTOPt28Opp/otTUy4tRF/Ejmn//wDP/wAF/leeTT/uLXmH0lVsLyYnAcxF7qWWFrvH5IpQ2EJh8PlgbOAF0Oh0KYc2hwAvAUci9X3egFYgtXAOh54CLjRyxb4JaZkRm6LMrE5KQ2cgRUs/piAoKo/i8jJmIvd40BPERmoqnN8Fi1HvHX5KJb5sCRegWgReRGrMp90C2tehYaHD899H0yBiS7/UqyYuf7dccfebc8+21450b27vXIjrzZHHGE/UtFccsnu961b51zXqmRJePPN3MfPN9m4BwKMHj06zgMljq1bt/Liiy+yc2c7oGmqe0bliGe1OkpEOgCHYtfgXNWUqfXnSEWee86Uq0susS/BgGT+dASLxx4zb4pevfyWxBEkkm3BugaoA5yiqpnApCSPHw9aA6XIIVNgOBzeDytYWw24DHjNq30V3eYY4FXgk3A43AFoiBW4rQDcpCFdGw6HPwW2YQHegVGwAFT1UwAReRC4AlOqz/ZTpjx4HqssfxUQKX3bCngY+58UJsrHkapkUbBWrFhB06ZNeeyxx7i0IFWWfWDt2rX07NmTM84YBDQNvHeU993xqd9yxAP3xDjBLFpkfsv772/m8WJ+5uzKH25txJ9EzemqVVazsW3bYHqfurXmH0lTsESkJHA78DXB/gE9yttOyeH8i5hry/GhUChb61woFJrixXF9A4zqT//DQqHQSVnabA6HwzOixgscqrpSRAYC/UWkaQonNOkMnBtRDD0WiMi/wBicgpWeZFGwihcvzllnncVBBx3ko1D5o2rVqqxYsYLrr7eKzkGyYIlIH2Cwqm7x3ueIqg5MkliOIKBqSS127LDgzeJ+RDs4igIjRphrvNNTHPklmd9Kl2CKx1UBTxxwMPBPVPzULsLh8P8wS81dEeUqHA6fCtwBNAL+wVK7PxMKhVaGw+FLMHfAmzArT1bmAW0S8UckkWeBW7E56OqzLDmxEfgrm+N/AS6/abqSRcHaZ599GDJkiI8C5Z9ixYpRtWpV5s2z/YA9Yb0JGAFs8d7nhAKBU7BuuOEGwGXxSgiPPgpTplhl9YCUU4jGrY34k6g5feklOO44aNYsrt0mDbfW/CMpNnURycCsVz8SMHe3bNgHS9+dHd2w7HmDAMLh8OVYuvKamCXkP+xGYUQ4HJZQKDQFi1W6JPvuWOWNF1hUdTXmgneRiBycV3ufeBYIeUkugF0JL+4hoEWfHXmwdq1lHStTxqobB5QVK1YwYMBA5s79HQiWBUtV66rqqqj3Ob3q+S1rQShTpgxlypTJu6Ejf8yfD/feC506WVX0AOLWRvxJxJxu3WoF7c8/P67dJhW31vwjWRasjkB94KKAW6/AnqbmpJi2Ar4NhULrw+FwJezmfCJweigU2hoOhwW4FyvG+yrwCaZwPtIy3LL+FKbsD3ynIY1ULRZvvKDzJJZy/nqgr7+iGCKSNYauHfCXiERSyjfFro9yONKPSAbBQw+FjAwAZs6cyQknnMAbb7xBx44dfRQudpYuXcqtt/YF6nHggfVTubZqrojIpcBoVd2a5XhJ7HfjVX8kKzgDCpXi0pEtixZZqtMdO8x6lbW6ekBwayP+JGJO16+3baHKgfiMW2v+kayo0Osw97ixSRovkawGquZwrhqWLRAsW2A5IBwKhbYCeMkuHsFc0s7w2i0F+IM/5gFfAaslLJGb+qreeIFGVZdh//vLRSRVaqCvyvIag6WJXui9xmEyr/JLQEcCibgHHnbYrkOVK1emS5cuHHjggT4JlX8OP/xwXn99DXBa0NwDs/IKuzOpRlPBO+co6uzcCR07wnvvwc03F7wgn8MRI+vXW3jfkUf6LYkjiCTcgiUidbGivPerapDqOeXE70C1cDi8bygUyqr8bAbKe+8reNuVIjIpulH//v3XRbUrD7CdXVNTEbgTuDuTzMaCzI+v+L4xGLgAqw3m+w2Tql7utwwOH/ndXOpo0GDXoYMOOohnnw2WR2hGRgaLFpleEiT3wGzIyVpfGytjETiuueYaAF588UWfJUkT+vQxf60XX4Srs61eERjc2og/iZjT9eutcHuQPezcWvOPZFiwrsB+OF9KwljJ4Edve0w25+YCzT1XwBnesbOiG9StW7cCUAP4yTvUfCtbWc/66GZbS4ZLrlD0iG/45iQJS/u4Se8fX2Lzk7K/jCJST0TOEJHTRcTXuA8R6SQiL+7cuTPvxo78E8kKEaVgBZE//viDt956GFgWSAuWiMzy3HIVmCwiP0e95mBW/UDWwqpSpQpVqlTxW4z0YMoUq3fVo0fglStwayMRJGJO168PbnKLCG6t+UdCLVgiIljmuM9UdWkix0oi32KWqrOACVnOjfeOtwmFQl+Gw+HxwH39+/e/C7tJOBh4GlgGvBYOhysA529i02RFj8P+H78C1etTv2oGGfzBHwK8jmVgDCyqqiLyKvCIiNRT1QV+yxRBRCoCLwPnYYWevcMyBrhSVdfn+OEEkVehYUchiViw6tffdeiDDz7gwgsv5Ouvv+bIgPiEzJ07l5kz7wI60KhRTb/FKQhve9smwAfAhqhz24A/MffdwPHwww/7LUJ6sHUrXHWVVRt/4AG/pYkLbm3En3jP6Zo1FurXrkNcu006bq35R6ItWP8D6gJvJnicmJGwiISlq4TlGglLRn4/HwqFNgHvABeHw+GsCRBGYrFmT4bD4VLApVjNr8cwi9XbWJbB00Kh0BrgfmCffdjnVg1pCQ2paEgPA0ocxVGsYx2LWASQbzlTlJHetouvUuzN08DhQHugjPc60Tv2lH9iORJCZqZlIoM9FKzatWvTo0cPqlWr5pNg+adjx9MpVWoz0CyQLoKqGlbVMHA5cE9k33s9rKojVXWb33I6fOSRR2DWLLj2WqiaU/izwxFfVq2y2tVnn+23JI6gkmgFqwtW4+SdBI+TH6ZiFqEhwGIJixSgj2exgOw9arf0p3+lt+2B7FFLWPIb9gT2DOAwzJJ3ItAY+DkcDt8K9MJqYk2N7udarn3zEA5hKlPJJFNJYbe6/KCqizGXn1RTsM7E6rNNVtXt3msScA1W18yRTvz1F2zeDNWqQaXdeRWaNm3KE088Qc2awbEELVpUjK1bS3PAARnRf0rgUNURqrrFbzniyeWXX87ll7tQz0KxY4dVeD37bHj6ab+liRtubcSfeM/pmjVQsSJUqJBn05TGrTX/SJiC5bkHngV8rKp7FeX1A89i1TzqUE3MSpEvQqHQ98D7wF3hcLhW1KkvZzO7+od8yIEceNAWtiwErgRWhEKhNzH3wvbstmq9BdwS3Xc4HC5eneqPKPrvUpYeBZTRkI7Pr4wpzFvAYSJSP8+WyaMM2WcLXA2UTrIsjkSTjXtgUHnvvenAfTRsmBJfsQVGRNaLyLqcXn7LVxBq1apFrVq18m7oyJmnn7Y73Usv9VuSuOLWRvyJ55xmZsLGjQS27EU0bq35RyJjsJoCtYBwAsfIL5lYMHW01eqfAvbVC/gZeCMcDp8UCoW2YckrmMIUVrCCszm7eGlKvwS8FA6HN2E38oIVKr4JGBwKhTKz9BsGWgrSZUFowU+kHx9gFsAzsPpYqcA3wP0icomqbgIQkXLY/+LbWDsRkY6Yu2EGMFRVH8mmTTvM7bAEsFJVjy+s8I58koOC9cILL9CzZ0+WLFnC/vvv74Ng+eerr6YBIQ4++BosAWlguYk9swiWAJphcZEP+iJRIbnvvvv8FiHY/P039O9vObLTzE/LrY34E885XboUVC3sL+i4teYfiVSwInWePkzgGPlCQ6oSlssx98AMoL+GdHlB+gqFQgvC4fDVWHzZy+FwuDvmetgDYCEL9Wmebnsv95bDithWA9ZjsVifhEKhvdxhwuHwlcBdwMuhUGhk1vPpgKouFJG5pJaC1Qf4iN2FhhU4AqtXdkosHYhIBvAc0AGrbTZVRMap6tyoNpWxdPUdVXWxiAQn2CedyEHBOvLII+nbty/ly5fP5kOpSfnyPYCrOProZJU0TAyqOjy74yLyI+ZaHaz8+Y7CM3AgbNgAw4dDgTz5HY6C8emntt1nH3/lcASbRCpYpwA/qurfCRwj32hIRwAj4tFXKBQaGQ6H6wEPAGX70/+y/vT/DjgaGLwztDNycz0lt368tO63YUWIPwZuiId8KcwHwM0iUk5VN/otjKrO8lwWuwGHYlbG14E3VHVzjN0cA8yPZEcUkVGYi+zcqDZdgLFeLBqq+m+c/gRHfsiSon3t2rU888wztGrVKuUyLo0fP54TTzyRsmXL8vXXX/PRRx9x7733UqpUKSZNmsRnn30KhGncOG1vQL8gH4lmUsmK3K1bNwBef/31RHSf3mzbBi+9BG3awBFH+C1N3EnnteHXNRjPOZ01yxJclC1b6K58J53XWqqTkMeeIlIaaIn9OKY1oVDoQeBmLBnC9P70/1NDeqOGdG7unzTC4XAdLL37I8Bo4OxQKLQ1QeKmCpMw5b6lz3IgIiVE5B+gnqq+pKp9VbWPqg7Nh3IFlkZ/SdT+UvZOrd8A2EdEJonIdBHJNrBARK4RkWkiMm3Hjh35+nscMZDFgjVv3jzGjBnDhAlZqy74z0033cR7770HwNSpU3nsscfYts2S6n377fcsX/4YkBnIDIIxchHmUp0nUVbkU4FGwMUi0ihLm8qYFflMVW0MdI6rtFE0bNiQhg0bJqr79EUVbr4Z1q6Fnj39liYhpOva8PMajOec/vwzlMuaIzqgpOtaCwKiqnm3ym+nIm2wwrJnq+p7cR8gBQmHw+2BV4CDgE+wL5mPs1OWwuFwMaAFcBVwGbADuBN4NhQKxf8fkmJ4X7CrgftUtb+/0oCILAFOiXbnK0Afnb0+rvL2LwGOUdWbotoMwv7vJ2LxeN8Bp6vqvJz6LVeunG7c6LuRL33YuRPKlIHt2839KMV/RR966CEOOeQQLrjggr3O/fEHHHII1KxpiRGTjYhsUtW4TKCIzGLPGCwB9gf2Ba5T1TwL1YtIK6C/qp7i7d8JoKoPR7W5HqipqnfHKluLFi102rRpsTbPlQuHfAfA6B6t4tJfWjJoENx0E1x3HQwe7Lc0KY2ITFfVFn7LESEI12BerFtnCWYb3fQd9Q9x16ojd3K7BhPlItjG236doP5TjlAo9EU4HG6EBWv3At4DdoTD4SnAPGAdlpHuIMyFcF+sYPErwAOhUChdCjHniaquEZGZ7F4nfvMscKeIXK6qBTUZLcWSukQ4ECsonbXNSs8tcqOIfInFeuWoYDnizKJFplwdcEDKK1cAd911V47n5syxbePGSRImsbydZT8TWAFMUtVfY+wjOytyVit5A6CEiEwCKgBPq+qrWTsSkWuwMg3Url07xuEdhebbb6FvXzj+eFO0HEEj8NfgRx9ZbeuqVZI2pCNNSZSC1QKYp6rZpb4OJBKWMzFlSICrNKRjs7bxihA/Gg6HB2LJDtoBrbz35YCt2E33e5ib3Div4HBR5HvMfUA0EWbU/NEGOB5LcjEbS26xC1U9M4Y+pgL1RaQu8Bfm2pS13td7wCARKQ6UxH54UiXRR9EgmwQXQ4cOJRwOM2vWLCpXruyPXDmgqkgOAf5zPXtrOrgHesWGC0t2E5X1u6U4VqpjlxVZRL7PakVW1ReBF8GenhdEmIsuugiAUaNGFeTjRZM+fcwkO3asBcGkKWm8Nny7BuM1p6NHWz3rdElwkcZrLeVJlIJ1BJAce24S8OpnvcvuL4+3JSylNKTbs2sfCoW2Y9kTUyaDIoCE5RAsXmy2hvR5n8WZAVyLWfT+9FUSi/EYU5gOVHWHiNyIJSnJAIap6hwRudY7/4Kq/iIiE7D0/plYAPDsQsruyA/ZKFi1a9emQ4cOlCpVyiehcqZEiRL069ePcHhv/SPNLFgAiMgJWOwGwFxV/TwfH08pK/KRRx4Z7y7Tm0WLYMoUCIdh3339liahpPHa8O0ajMecbttmGQS7dbMYhnQgjddayhN3BUtEKgL1gJfj3bePVGbPJzMCVGdPU3hKI2GpA/yGl9hEwtJOQ3qhjyLN9LZH4rOCpapxKXOuqnsp1ar6Qpb9x4HH4zGeowBEFCwvgyDAySefzMknn+yTQDmjqvTr14+2bdtmez6dLFie5XcsVj8xckNW04vNOi+SnTMPUsqKfMcddySi2/Tl6actHftll/ktScJJ47Xh2zUYjzn9/XcLzW3dGsZtKHR3KUEar7WUJxE2+CbedmaurQKEhnQVFg8QYZWGNDDKlcfV7Pn/PtsnOSJEgtoP90sAESkmIreKyDciMkVEHvIyYDrSlUiK9iw1sFIRESEcDnPiiSfudS4zE375xd6ng4KFPZBbh2XzrK2qtbEHdWuAobF04MVPRqzIvwBvRazIUZbkX4CIFXkKzoqcGnz3HTz7rBUUdjFvgSXo1+C339o2DSsDOHwgES6Ch3jb3xPQt5/UAsKY9aq/v6IUiKlZ9mNKfZwoVHWjiCzDbqL84nashtlELOFIH6AqXmCtIw3JxkWwf//+DB8+nD///NMfmXJAVdm+fTslSpTYKw7rzz9h82aoUSNtYgVaAf+L1IgD8Ipx34xl24yJVLIin3feeQCMGVMo7+P0Z/16s1pVqgTDhvktTVJI57Xh1zUYjzmdMMH0+8aNgW/iJJjPpPNaS3USoWDVxSwTixLQt29oSLcCgbW1akjflbA8hVmyVmAJOPxmAf4qWN2Bm1R1MOwqkPiuiPRIgcQbjnizfbtpJiJQb/eyO/zwwznnnHP8kysHli9fTo0aNRg8eDDXXXfdHufSMP5qMRbwnpXSBMgVO5pWrVx655gYMsQefIwZY0pWEcCtjfhT2DnduRMmTYIzz7SfiHTBrTX/SISCVQ9YqqrpXiw3cGhIb8aSXKQKC7BMQn5xEPB+1P7HmIWyJuY/7hsi0gnolIqJFwLLwoX2K1qnDpTe7Ql67rnncu655/onVw6ULVuWBx54gJYt967HnU7xVx59gWdEpCe7re1HA0955wLHLbfc4rcIqc+UKXDPPXDCCZCC12CicGsj/hR2TqdPh9WrIQXDcQuFW2v+kQgFqxYBfeLoSDqLgQNEJENVd/owfknMNRAAVVUR2Qb4rtWo6nhgfLly5a72W5a0IUDxVwAVK1akX79+2Z5LBwuWiKxnzxTOpTHHnExvvxiwE3gDqJhc6RwJRxW6dIGKFcGlkHb4zKxZtj3mGH/lcKQPiVCwqgJ/JKBfR/qxArMY7YN/MWEPi8imqP2SQEhE1kYOqGrP5IvliDvZxF8BXHHFFcycOZPp06f7IFTO7Ny5ky1btlC6dGkyMjL2OJcmFqyb2LtGTtpw5plWPm/cuHE+S5KiDB0Kf/xhyS32289vaZKKWxvxp7BzOnWq6fp168ZTKv9xa80/EqVg/ZCAfh3pR0Sp2g9/FKwvgYOzHPsWiE5jlbY3gEWObFK0A7Rr1476KWjV+umnnzj66KMZN24cnTp12nU8XTIIqupwv2VIJNllf3R4zJkD118P//sfXHut39IkHbc24k9h5/S776Bly/Srb+3Wmn/EVcESS3VVFVgVz34daUu0gvVLsgdX1XbJHtPhIzm4CF566aU+CJM3BxxwAI899hiNs/gBLloEmzZB9erBrscqIvuq6urI+9zaRtoFiV69evktQmqyaRNcdBGULQvjxkHxRDznTW3c2og/hZnTNWvMRdBLuJdWuLXmH/H+ZisOlADWx7lfR3oSKeVX1lcpHEWDHFwEU5UaNWpw66237nU8HeKvPFaISA1V/Rd72JKdtVi84xnZnHMEja1boU8fmD0bnnyyyLkGOlKTb76xkMA2bfyWxJFOxFvBiiQHcBkEHbEQWSe+J5VwpDlbtsCSJZCRYVkEozjxxBMpUaIEEyZM8Ee2HNi6dSsbN26kUqVKe8RgReKv0kDBOgGIWKba+ylIIjj11FMB+Oijj3yWJIW4805Ly37BBVCEn6y7tRF/CjOnb75piWWzSdgaeNxa849EKVjb4tWhiEyCxLlzJbr/ZI4TwLmKrBOnYDniyvbt25kxYwbVq1enVq1a6Pz5/KDKgbVqcWCJEmRmZjJlyhRq1apF586dKZaCjvcTJkzg7LPP5scff6RZs2a7jkcsWEGOvwJQ1ckAIlIcaAy8q6rL/JUqfkTHzTmwhxzDh0OHDpY1MJ2KDeUTtzbiT0HndNs2K8F23nnmtZpuuLXmH/FWsEp42xtF5Fxghqr2jvMYgcNTTI6MvHexPyAiTwGRCniXA2/5J40j3Rg/fjw333wz3bp148EHH0R/+41WQLhECe4Ftm3bRqtWrXj44Ye5447UrB/epEkTnnrqKWrVqrXH8TRyEQRAVXeIyOPAB37LEk+uv/56v0VILT75BP77zyxXRVi5Arc2EkFB53TxYvNcTbf6VxHcWvOPeCtY271t0f72dMRKZJ1k5tqqCOIKDReOc889lwYNGlCyZEkAZP58PgIOOfZYAEqUKMFHH31EgywZBVOJgw8+eK8A5egMgumiYHl8DzQHFvktiCMBrFgBl19uJoKTTvJbGodjF5HQ3Hr1/JXDkX7EW8GKuHwNUdUBce47sKhqu2S5IgYFVe0tIkcB04GX/JZHRPYHLsHStt+jqitF5DhgmaouTLY8rtBw4WnSpMmu9zJ/Ph1hVxXJjIwMOnbs6I9gMbJhwwY2bNhAtWrVdrkw/vmnJWGrUQP22cdf+eLMS8AAEamNfSdsjD6pqj/6IlUhOMlTJD777DOfJfGZnTuhbVtYvRpefRXcQyO3NhJAQef088/NoBp0l+uccGvNP+KtYEWSFpSMV4eJVkiSpfAkY5wAzlVknfiaFEVEmgMTgYVYLMjjWFazDkADoIt/0jkKwhNPPMHkyZN3F1cMWAZBgBEjRnDjjTeyfPlyqlWrBqSfe2AUb3rbgdmcC2QWwQsvvNBvEVKD226DX3+Fm26CSy7xW5qUwK2N+FOQOd2+3cICzz4bqlSJu0gpgVtr/pEIF8EdQIU49+tIT8p72425tko8A4CnVTUkItElBj7G4sMcASMjI4MSJUrsPpBDDaxU5vjjj2fw4MFUrFhx17E0VrDq+i1AvLn6amd8Zvx4S8d++um2dQBubSSCgszpvHmwciWcc04CBEoR3Frzj7gqWKqqIrISSNNnAY44U9Xbrsy1VeJpDlyZzfG/gf2TLIsjDvTu3ZvevXvbzoYN8PffULIkZEkYkco0adJkDzdHSGsF6yDgW1XdEX3QyzB4LC42K3isXg3du0OzZjB6tJVIcDhSiO+/t+3RR/srhyM9SURu4pXsvnF2OHIjVRSszUB2ES2HAv8mWRZHvJk/37aHHBKom7zVq1ezZMmSPY6lsYL1BbBvNscreecCR7t27WjXrp3fYvjH44+bkjV0KJQr57c0KUWRXxsJoCBzOmeO5V1J4VxHhcatNf+It4sg2M2yK8/uiIXIOlmda6vE8x4QEpHO3r6KSB3gUWCMb1I5Ckzfvn1ZsWIFr776aiDdAwEef/xxnnjiCbZts9xBO3fuziCYhgHZgsVaZaUK/rsQF4ju3bv7LYJ/TJhgCtbZZ5sFy7EHRXptJIiCzOmCBVC3LqRgGcS44daafyRCwVoKtElAv470oxaWpW9Hni0Tyy3Ah8AKoCzwNeYa+A1wt49yOQpIhQoVdikmQUxwAXD++edz6KGH7tpfuNBqtR5wAFSu7J9c8UREvCwkKPC6iEQnvMkAmgDfJl2wOFBkb2xWr4YePSzv9Wuv+S1NSlJk10YCKYyClc64teYfiVCwFgBdRKSkqm7Ls7WjKFMPy9znK6q6DmgtIicAR2Gusz+qqm95TV0drMLRv3//3TsRBStgfiDNmzenefPmu/bT1D1wlbcV4D/MXTfCNuxhh+9lHArC9u1WFnKPZCvpTmYmXHaZVW/99FMoXz7vzxRBiuTaSDD5ndNFi2DWLDjvvERK5T9urflHIhSshdgNam1gfgL6d6QP9YBJfgshIkeo6kxV/Rz43G95wNXBiisBdRFctmwZ27Zto06dOkB6KliqejmAiPwJDFDVQLoDZkeHDh0AmDRpkr+CJJPHHoP337fkFq6gcI4UybWRYPI7px98YNuuXRMkUIrg1pp/JELB+sPb1scpWI4cEJEywIGYxdNvfhKROcBrwJuqutRvgRyF4+KLL2a//fbjmWeeCawF64477uCrr75i4UIz8qajghXF/dE7IlIdOAOYq6qBdBG86qqr/BYhuaxeDeEwnHEGDBvmtzQpTZFbG0kgv3M6Y4YVaz/44MTIkyq4teYfiVCwZnvbw4GPEtC/Iz1ogrkFzfJbECxbYFfgKuAhEfkKU7be9twHHQGjZs2a7LvvvnbTt3KlZTGrUcNvsfLFddddx3lR/itprmB9AEwAnhaR8sA0oBxQXkSuVNVXfZWuAHTr1s1vEZLLoEEWJHjrrSDitzQpTZFbG0kgv3M6cyYccUT6L1W31vwj7rlTVPU/rGbJEfHu25FWRNbHDD+FAFDVeaoaUtUGwHGY0vcQ8I+IvOWvdI6C8MQTT9CvX789E1wE7Je0VatWnHXWWYBlEPz1VzuehhkEwWrRRdxzzwXWAdWAq7EkNDEhIh1F5DcRmS8id+TS7mgR2Ski5xdG6NzYtGkTmzZtSlT3qcV338H991vWwLZt/ZYm5UnnteHXNZifOV21yhSso46Kx8ipTTqvtVQnUckpZwJHJqhvR3pwJLCBFEhyEY2q/qCqPYGzgN+ANA+BTXMC6h4IsGDBgl3ugX/8AVu3Wp3kihV9FiwxVADWeO9PBt5R1e2Y0hWTE4+IZADPAacCjYCLRWQvddRr9yjwceHFzpnTTjuN0047LZFDpAY7d0K3blCmDAwZ4rc0gSBd14af12B+5nTyZPs+7dw577ZBJ13XWhBIhIsgmHtHJxGprKprEjSGI9i0xDL1ZfotSAQRqQd0wdwFDwG+wtwGY/18R+BpLL30UFV9JId2RwPfAxeq6tuFlduxN61bt6ZDhw6Edu60AwFLcAFw9dVXs23bNr766qt0dw8EWAwcJyLjgVOAyK3PvkCsj1+PAear6gIAERmFPSiZm6XdTVh9u6MLK3RuXHfddYnsPnX44APLd/3mm1Ctmt/SBII0Xhu+XYP5mdO//rJtusdfQVqvtZQnUQrWV1h8zXGYb73DsQsRqYClQ3/Ib1kAROQGTKlqicUQvgK8oap/5aOPyJO7DlgtuKkiMk5V52bTLuFPz4s6jRo14oADDoCJE+1AAC1YoVCInZ6COHOmHTv8cB8FSiwDsbjHDZiL+Zfe8bbEHqd5ALAkan8pdk3vQkQOAM4BTiCXmzsRuQa4BqB27doxDr8nF154YYE+FzgGDICDDkr/fNdxJI3Xhm/XYH7m9M8/oXRp2HffmD8SWNJ4raU8iVKwfgC2YwWHnYLlyEorzD31K78F8bgDGAn0UNWCJt1IqafnRZUePXpwyCGH8OKLL9qB55+3bQAtWG2jYlkiCtYRaRrZqqpDRGQ6Vnz80yjL9h/APTF2k12QnWbZfwq4XVV3Si4xear6IvAiQIsWLbL2ERNr164FoFKlSgX5eDD48Uf46isIhaBkSb+lCQxpvDZ8uwbzM6czZ0KTJpCRkWfTwJPGay3lSYiCpaqbRWQq0D4R/TsCTztgJ/Cdz3JEqK2qBbqJiiIhT+5KupuWfLFhwwZ++OEH21ENdAzWjBkz2Hfffaldu3baK1gAqjoNcy+PPpafB3RLMQUtwoHAsixtWgCjvBu7qsBpIrJDVd/Nt8B5EElQktb1Z26+2YoJX3SR35IEijReG75dg7HO6fbtlpPlsssKM1pwSOO1lvIkyoIF5gLVX0Sqqeq/CRzHETxOA75R1fV+CSAiRwEzvCflzfJ4kvZjLF1m99Es+0+Rzyd35cqVK6ziV6R44403du8sXw7r11uxkypV/BOqgJx++umceuqpDBw4lIULzUAQQD0xR0SkDzBYVbd473NEVQfG0OVUoL6I1AX+Ai7CYiqj+6kbNf5w4P1EKFcAPXv2TES3qcMPP8CXX8KTT8Khh/otTaBI47Xh2zUY65xOnw6bNsGJJxZ2xGCQxmst5UmkgvUBEMayyYxI4DiOACEitbAU7bf5LMo0oDrwr/deyVlJisWRIKWenjuAefNsG1CtZMSIEVStWpVZntNq48ZQooS/MsWZm7Dfhi3e+5xQLEYrV1R1h4jciD3cywCGqeocEbnWO/9C4UWOnXPPPTeZwyWXTZvguuugcmW44gq/pQkc6bo2/LwGY53TSLmLdPYGiCZd11oQSKSC9RPwN3AGTsFy7OZ0b/u+r1JAXWBF1PvCklJPz4sqnTp1okOHDvbULroGVgA56aSTABg82PbT7YYg+nqIfl/IPj8EPsxyLNubOlXtHo8xc2LlypUAVK1aNZHDJJ81ayyhxYwZ8P77aVs3IJGk7drAv2sw1jn9/XcoXhzq1InXyKlNOq+1VCdhCpaqZorIOOASESmnqhsTNZYjUJwPzAd+9VMIVV0UvQssyS4OS0RiSiGWak/Piyqqyi73ywBbsLZt28b3339Pw4YNmTlzfyD9FKx05/zzrX5q2sU+9OsHn38OL74Irr5OgUjbteEjsc7p779D3bqmZBUF3Frzj0QvsZFAD+BM772jCCMiNbEED/fHIalEPFkI1MDcBXchIlW8czHlGkqlp+dFlfffjzKMBtiC9e+//3L88cfz4osv8vPPVwPpm6JdTCO+FCvqXQ974LEA+D+sXEIqfVfETN++ff0WIf5s2gSvvQZnnAFXX+23NIElLdeGz8Q6p7//HsifhALj1pp/JFrB+grLrNYVp2A5zG1OgDf9FiQLwt4JKQDKY/EhjiDy22+2DeCvaZUqVfjss8+oX78hN99sx9LYgjUGOBurdzULux4bAa9iWTcDWWCpU6dOfosQXzZssGyB69fDrbf6LU2gSbu1kQLEMqeRxLLHH58EgVIEt9b8I6EKlucmOBLoIyLVVfWfRI6XqojIpOh9VW3njyT+EfWUerqq/ua3PAAi8oz3VoGHRWRT1OkMrLbVjGTL5SgYW7dupW3bttx00010u+ii3RasAGY4K1OmDCeeeCK//w4bN8IBBwQyEWKeiEhX4GTgFFX9NMu5U4AxItJFVVPtoUye/POP/dxVr17dZ0nigCr07AkffAD33ANRNdoc+Set1kaKEMucfvutfZ+2aJEsqfzHrTX/SIYX6stYxrgrgQeTMJ4jNfkflj3wWr8FiaKptxXgMGBb1LltwI/AgGQLBSAinYBOpUqV8mP4QLJz50722WcfSpUqBQsWWMGT2rWhXDm/Rcs3//77L7NmzWLx4mOAChx5pN8SJYxuwKNZlSsAVf1YRB732gROwbrIqw2VFrEPo0fDK6/A3XfDfff5LU3gSau1kSLEMqeRsNzjjkuCQCmCW2v+kXAFS1XnichnQA8ReVRVdyR6zFSjKFqssuF6YD3wRl4Nk4WqtgcQkVeAXqq6zmeRdqGq44Hx5cqVc4EOMVK2bFkmTJhgO++9Z9vDDvNPoELw5Zdf0rlzZy677GegaTo/cT0CuDuX8x9gcbyB44477vBbhPiwbBn06AFNm0L//n5LkxakzdpIIWKZ07lzoVQpOPDAJAiUIri15h/JyqMyGBiLpWx/N0ljOlIEEakGXAC8qKob/JYnK6p6ud8yOOLML7/YNqAKVvv27Zk8eTL33HMwAM2b+yxQ4qiClfPIib+BfZMkS1zp2LGj3yIUnuXL4eSTYds2GDkSMmLK9+PIg7RYGylGLHO6cCEcdFDa1RPMFbfW/KNYksYZDywCbpddOZQdRYieQAngOb8FyQkRaS8iL4rIBBH5PPrlt2yO2FiyZAnNmjXjww8/DLyCVaVKFVq3bsvMmWWBtFawSgDbczm/w2sTOJYsWcKSJUv8FqNwXHeduduOHGmVrh1xIS3WRooRy5zOnFn0lrFba/6RFAuWVyPoMewG+3hgUjLGdfiPiFQCbgTGqqqvta9yQkS6Ay8A7wDtgPeABlgB4td9E8yRL0SEWrVqUa5cucArWHPnzuW77xazdu0p1Kgh1Kzpt0QJJWuCmWjKJlWSOHLJJZcAAY59+P57eOcduP9+OPtsv6VJKwK/NlKQvOZ0wwaYPx8uuyyJQqUAbq35RzJLrb0C3Av0wylYRYnrgErAw34Lkgu3ADeq6lARWQ/cqaoLRGQQkHIujY7sOfDAAxk3bpxlPPvV0+UDqmANHz6cp556FticztYrgC+Bg2NoEzjuvju30LIU5/vvoWNHqFoVrrnGb2nSjkCvjRQlrzn98Ufbpms9wZxwa80/kqZgqepmEXkCeExE2qpqIH80HbHjWa9uASao6nS/5cmFesBn3vutWP0rgEHYwwAXJRok/vrLavVUrWqvANKrVy+WLevMG2+ktXtgWicAOumkk/wWoWBs3GhFhCtWhC+/hGrV/JYo7Qjs2khh8prTMWMswUWbNkkSKEVwa80/khWDFWEQ8BemZImINBeRkkmWwZFgRKSlF2t3OxbE3s9nkfJiFVDBe/8X0MR7XwUo44tEjnwzdepUGjduzJR33rEDAbVeARxwwAH89dfRQHorWOnMggULWLBggd9i5I+dO6FrV5g9Gx59FOrU8VuitCSQayPFyWtOZ8yw79J99kmeTKmAW2v+kVQFS1U3Y26CLYHPgWmkVl0kRyERkabAd8AUoA/wpqr+6K9UefIVVuwU4C3gGS91+0hgr/o8juQye/Zsxo8fD8D27dvp3r07H3zwAQCbN2+me/fuTJgwgdKlS3PYYYdR/m8vKV0ACwwDTJw4kXPOOZcpU8zI7xSsYHLFFVdwxRVX+C1G/nj1VStxEA7DxRf7LU3aEsi1keLkNae//BLoZ24Fxq01/0hmDFaEEZglqx3wBDDcBxkciWMOcBWW0KQUMNBfcWLiRqC09/5hLHPZcZiy9YAfArlCw7sZOXIk48ePp1OnTmRmZjJp0iRatmwJwI4dO5g0aRKtW7emY8eOvP3225b5DAL7a1qrVi0yM8uzadOn1KzZNt0TXKQt4XDYbxHyx7p1cMcd9mDillv8liatCdzaCAC5zemqVbBiRWB/EgqFW2v+kXQFS1V3ikgf4HlgUyoVd3UUHlXNFJGFmMIyKsVjrwBQ1dVR7zOBR30UJyKHKzTscf7553OoZ40qVaoUf/75565zFSpU2GMfgDlzbNuoUXIEjDMNGjTgzDNfZdw4OPZYv6VxFJTjjz/ebxHyxyuvwL//wksvQdnAJm8MBIFbGwEgtzmNJJUN6E9CoXBrzT/8sGChqi+ISGusLtbrqjrPDzkc8ceLqRsMLARS1i4tIjEXL41WwBzJp1mzZjRr1iy2xqrw88/2/ogjEidUApk0aRLjx+8DHMFxx/ktjaOg/PbbbwA0bNjQZ0liYMYM6N0bDjkE2rXzWZj0J1BrIyDkNqdz59q2KFqw3FrzD18ULI++wBnAiyJygmc5cASfO4FDgdO9mLtUZSWgebQRr01G4sVx5MRff/3F1q1bqVevXt6NlyyBtWthv/1g//0TL1wCuOaaa/jnn+bAyCJlwRKR/YFLsLTt96jqShE5Dlimqgv9lS7/9OjRAwhA/ZlPPrHEFhUrwuTJtnUklMCsjQCR25z+8osZZWvXTrJQKYBba/7hm4KlqstF5GZgGNATeMovWRzxQURaAHcDb6jqh37Lkwft/RbAERt33XUXkydP3tsVMDsi1qvDDweRhMqVKIYNG0ubNiUpXRqOPNJvaZKDiDQHJmKW78bA49hDkA5Y0e8u/klXMB566CG/RcibhQutiPBBB8HYsbiAv+QQiLURMHKb019+sdDCYsnOm50CuLXmH35asMASXJwNPCIin6jqXH/FcRQUESkDvAosx5JGpDSqOtlvGRyxcf3113PeeefF1jhawQooa9ZYlYCjj4aSRaeIxQDgaVUNecW+I3wMXO6TTIXi2FQ2P6qaQnXPPXbX+dZbRdN/yidSem0ElNzm9NdfKbLu1m6t+YevCpaqqohcA8wG3hCRY1PcrcyRM48DhwEnq+oan2XJF3nFY7kYLH+JZAyMiYArWDt37mTYsHeAZhx77MF+i5NMmgNXZnP8byCQvp6zZ88GoEmTJnm09IEBA+C226B6dRg3Dpo29VuiIkVKr42AktOcbttmnuOHHOKHVP7j1pp/+G3BirgKdgfeB54BinzWtKAhIhcBNwBPqGoQ60blFY/lYrB8ZP78+QAcEssvZMAVrHXr1vHOO52BJzn22N5+i5NMNgPZlQA9FPg3ybLEhRtvNEN+ysU+TJxoylWdOjB/PmS4r7dkk7JrI8DkNKeLF0NmJsQSwpuOuLXmH74rWACq+oGIPATcJSLfqOpwv2VyxIaIHAYMBb7GElwEkazxWCWAZsB1WEyZw0d69OjB1q1b+frrr3NvuGUL/PabuTwFNB9viRIVKFlyFtu2VaNVK7+lSSrvASER6eztq4jUwUomjPFNqkLw+OOP+y3C3mzeDFddZbFWn33mlCufSMm1EXBymtOFXnqcgw5KojAphFtr/pESCpZHCGgFPC8iv6jqD34L5Mgdz7XuXWAjcKGqbvdXooKRQzzWZyKyACua/GaSRXKFhqMIh8Ps3Lkz74Zz59qjysMOg9Kl826fgkybVpxt25rQtKklQixC3AJ8CKwAymIPbPYHviGgDzmOPvpov0XYmz594M8/4fPP4eAi5YKaUqTk2gg4Oc3pPK8IUFHNUu7Wmn+kTE4VVd0BXAgsA8Z5Ty8dKYpX72oMUAc4T1WX+StRQpgBtPVjYFUdr6rXZLgnzLRu3Tq2YokBdw8EeO+9f4CRtGq1wm9RkoqqrlPV1ljSo9uBp4GOqnq8qm6MtR8R6Sgiv4nIfBG5I5vzXUXkZ+/1rYgkrFjajBkzmDFjRqK6zz8ffAAvvGBKVnuXRNVPUm5txBG/rsGc5vS336B8eQs3LIqk81pLdVLJgoWqrhCR04HvgfdF5DhVXeu3XI49EREBhgDtgG6qmofvVvAQkfJAb2CJz6IUeWbOnEmFChXyroMV+REJcMD+hAkzgC7Ur/8tUHRMWCJyhKrOVNXPgc8L2EcG8ByW2n0pMFVExmXJTrsQOF5V/xORU4EXgXxkUYmd3r17AykU+3D77XaX2b+/35IUeVJubcQJP6/BnOb055/NqSGgVTsKTbqutSCQUgoWgKr+KiLnYul53xeRjvl5gulILJ5y9RjQHeivqm/4K1Hh8dJCRye5EMxNaSPQ1RehHLu44IILaNasGaNGjcq94dSptm3RIvFCJYD162HevLYUK/YL3boVuYqYP4nIHOA14E1VXVqAPo4B5qvqAgARGQWcBey6uVPVb6Pafw8cWHCRc+epp55KVNf5QxUefhjmzIGnnoIKFfyWqMiTMmsj/vh2DWY3p+vWwTffQN++8RghmKTxWkt5Uk7BAlDVz0WkCzAKeEdEOqnqVr/lcgAWD3EL9pTqPp9liRdZ63ZlYrEgP6jqfz7I44jipZdeonz58rk32rEDfvrJ3gdUwfryS8jMLMv//ndoUXRnORR7mHEV8JCIfIUpW2+r6roY+ziAPS3OS8n9yfiVwEfZnfDKh1wDULt2wZTdI1OhSnRmJtx8MzzzDJxxBlxxhd8SOUiRtZEYfLsGs5vTuXPtp6GIJQzagzReaylPSipYAKr6f56b1jDgLRG5IKhKlohMit5X1Xb+SFI4ROQWTKkaAfRU1dxSmwcGVR0Rj35EpCMWO5IBDFXVR7Kc74rFlwBsAK5T1ZnxGDudads2hjC4uXMtQ1rdulClSuKFSgCffw4wg/32+5kdO7pQvHjKfj3HHVWdhyU6ColIS0zZeggYJCLvq+oFMXSTnRNQtt9RItIeu7lrnYM8L2KuS7Ro0aJA33NTPYuqb0HmqtC1K4waZXFXjz9uGTYdvuP72kgcvl2D2c1pJCy3ceO8Pp2+pPFaS3lS+hdcVV8RkbLAIOA9ETlXVTf5LVdRw3MLvBfoD7wFXKWqmb4KlQC8rIjVyJL8JYv/eE6fTan4j3Tim2++oWbNmtStWzfnRhH3wAD/iHzyCcB7jB/fH9PFiyZeBtkfROQN4AXgvBg/uhSoFbV/IJY0aQ9E5HCstMSpqrqqkOLmyK233gr4GPvw4IOmXN1xh7kIOlIG39dG4vDtGsxuTv/5x7YFNEKnBWm81lKelFawAFT1ORHZArwEfOS5C8bqMpISBNViBbuUq8eBvsBw4Gov42PaICLNgFeASHYEwZ66RbaxpPJLqfiPILNjxw7effddmjZtSsOGDTnllFPo0aMHTzzxRM4fmjbNtimqYP3666/Mnj2bc845h4yMDObOncvcuXM577zzEBE++mg2s2f/RoUKfZgy5RKKavZIEakHdMEsWIcAX2Fug7EwFagvInWBv4CLvL6i+68NjAUu8axmCWPQoEGJ7D53fvsN7rkHTjkF7r/fPzkc2eLr2kgsvl2D2c3pP/+YQ0PJkvEaJXik8VpLeVJewQJQ1ZdFZAPwOvCliJxRwCBoRz4QkVLYU6ZumBWxVzparjA31L+AXsBycnBpyIOE+J6XLIK/DNu2baNz5848+uij3Hbbbbz//vvUrFkz9w+luAXr3Xff5c4772Tz5s1kZGTw9ttvEwqF2LlzJyLCwIEjgcc47bTtHHpo0UtCICI3YEpVS2A29sDjDVX9K9Y+VHWHiNyIJUjKAIap6hwRudY7/wJmia8CDLZnR+xQ1YQE7TVp0iQR3cZGKGS14F59FYqQq2lQ8HVtJBA/r8Hs5nT6dFfuLV3XWhAIzDevqo4Wkf+At4EpniVrut9ypSsiUgV4B2gD3AM8mC4xV9lQH+isqvML0UdCfM/LlSuXrnO+F+vWrePNN9+kffv2zJo1i/333x+Adu3a5f7BTZtg5kyLLznqqMQLWgCuvPJKzjjjjF0K87XXXsu5556Ld4PB5s09gYs580wfhfSXO4CRQA9VnVXQTlT1Q6xgcfSxF6LeX0XsFrFC8e23ZrA+9thjkzGcsXYt3HADjB4Nd90F1aolb2xHzPiyNpKEX9dg1jndutUcG+68M94jBYt0XmupTmAULABV/UREjgU+wCxZV6jqaL/lSjdEpClmwq8FXKyqeeTHDjxfA4cBhVGwUir+I4j8888/XHfddbz++ut07ZqPGKQpUyxVVLNmKZmCunv37rRp04Yrr7xy17Fq1apRzbv5Xb0avv9+f4oX359TT/VLSt+pnW4PcO666y4gibEPmZlw3nkwcSJcfbXVvXKkJElfG0WArHP6++92STRq5KNQKYBba/4RKAULQFVne1mmxgCjROQ44BZV3eazaGmBiFwGPA+sAU7IEjeUrlwJDPXiP2YD26NPquqXMfSRUvEfQaRevXosW7aMihUr5u+DX3t1rltnaxD0nd9//50GDRrkeP6jj2DnTjjhBNhnnyQK5jMichQww3M7bia5VAJV1R+TJlicGDJkSPIG27YNLrzQlKunnoJevZI3tiPfJHVtFBGyzunixbbNqz59uuPWmn8ETsECUNV/RKQd8ChwM3CMiHSJJBhw5B8vJf5TmLIxCbNc/eOnTEmkPnAkcEo252JKcpFq8R9BpHjx4tSoUSP/H4woWG3axFegOPHNN9/ken7MGNsWQffAaUB14F/vfSSxTFZiTTSTUjRs2DA5A6nC+efD+PFw663Qs2dyxnUUmKStjSJE1jld5fmHBLRqR9xwa80/AqlgAajqdqCPiHyDJSmYKSI3Ay+nm6tJovHcLl8F6gEPA/emW6bAPBgCTMT+9oImuUip+I8g8tdffzFmzBjOOeccatWqlfcHwEw/no85xx2XOOESxOrV8P77Fj7WubPf0iSdulhB78j7tGLy5MkAHH/88YkbZM0aS2gxfry5BT72WOLGcsSNpKyNIkbWOf3tN8jIgLzyI6U7bq35R2AVrAiqOkZEpmJZp14CzhaRayNZBr3ir5+kafa7fCMirYFZqrpWRMpgxT1vBRYD7WJ0h0s3DgROU9U//BakKDNv3jx69erF4YcfHruC9fPPsH69+YGk4C/p8uXLufzyy7nllls44YQT9jo/ejRs327ZtFNQ/ISiqouid4El2T0c81xrA0coFAISFPuQmQl33727vtVJJ8ELL+T+GUfKkNC1UUTJOqfffgtHHAHlyvkoVArg1pp/BF7BAlDVxSLSAbgBcxv8VUTuBX7FEmJcgSlgRRovPuhLYKCIfI6lXq8LvAzcrKrr/ZTPRz4FmgNOwfKRNm3asHLlSirkJ1HF559HPpwYoQrJ5s2bWbFiBdu2ZR8i+uqrtr300iQKlZosBGpg7oK78LKZLiSALoLDhg1LXOcDB5pydfrppmi1bAm5xLA5UouEro0iSvScqsJPP8FFF/koUIrg1pp/pIWCBeBZqJ4VkfeBZ4EngK1Ydrc3/JQtVVDVhSLyNtAHKxz8C9BeVSf5Kpj/TACe8DL8zWLvJBdjfZGqiFG8eHGq5Ndh/pNPbHvyyfEXKA7UqVOHqZEaXVmYNw++/94SH559dnLlSkEiRb2zUh7YkmRZ4kK9RETXb9kC994Ljz9uNd/Gj3eKVQBJyNoo4kTP6Zw55j3bvLl/8qQKbq35R9ooWBE8JaITcB3wDOb+9a6I3KGqP/srnX+IyH5YPauzvUMjge4u+yIAg73tXdmc8yXA3lvDnUqVKpXsoX3jl19+4YMPPuDyyy+PTdHavBm+9DxaTzopscIlgMiDxc6doWxZf2XxCxF5xnurwMMisinqdAZwDDAj2XLFg88++wyAkwq7NlUtkctrr8E778DKldC9O9x3n1OuAkrc1oZjF9Fz+sUXdiyvEopFAbfW/KOY3wIkAjUGYxnbbgVaATNE5E2vxlORQUSqiciDmPvb9VhCkHqq2sUpV4aqFsvl5YtrkqqOV9VrMjIC5xlVYKZPn86tt97K6tWrY/vAV1/ZE/1mzVK2oOrnn39Ohw4dWBzJGeyxYQNEsudec40PgqUOTb2XYLXomka9DgF+BLr7JVxheOCBB3jggQcK18n27bZA2raFN9+E9u0tr/8rr0CscYqOlCMua8OxB9Fz+tNPUL06HHKIz0KlAG6t+UfaWbCiUdW1wAAReRm4HYvRulhExmGxWt+la8ZBETkIcwW8GigNvI1lB/zVV8Ecjhy4+OKLOeussygbqzkn4h54SnbZ9VOD7du3s3HjRooX3/OrdsQIc2E59lgLnymqqGp7ABF5Beilqut8FiluvPbaa4XrYPNmOPdcmDABrrjC4q4qVYqPcA5fKfTacOxF9JzOmQOHHeajMCmEW2v+kdYKVgRV/Q+4Q0QeA24EegFnAj+JyGDgTVXdlFsfQUBEigEnY5aqM4CdwGvAo6r6m5+ypTIi0ie386o6MFmyFGUyMjJiT3ChCuPG2fsUVrBOOeUUTski386dVgsWoE+uK6/ooKqX+y1DvIk5E2Z2qMJ115lyNXAg3Hxz/ARz+E6h1oYjW6LndMECezbhcGvNT4qEghVBVVcD94nIQKAbZtF6CbNy/R+WDOPLoKV0F5FDgS7Y31QXy8T1EDBEVZf4KVtAuCnLfgkso9lmbC6dgpUEvvvuO7744gtuueUWSpYsmXvj2bPh99+timTr1skRME68+y7Mnw916rjkFtGISHvgYqA2sMcCUNW9c9ynOBMmTACgY8eOsX9oyxZTqh5/3PJMh0JOuUpDCrQ2HLkSmdM2bTqycqV9vzrcWvOTIqVgRVDVDcALIjIEOA7ogf2wXwUs9ZSt94GvUzFOSUQEi1E4AzgPOArIBL7AEjWMTUW5UxVV3avIqYjsz+7aao4kMHnyZPr160efWMw6b79t23POgeKp+zX29NNPM2HCBD766CMAduyAfv3s3C23WCFMB4hId+AF4B2gHfAe0AB7YPS6b4IVgkceeQTIx43N9u2WrOWbb6BUKbjgAlOwHGlHvteGI08ic1qpks1p/fp+SpM6uLXmH6l7Z5IEvPirr4GvRaQc0Anoilm2bgbWicgnmOLyFTDHL+uWiNQC2gDHA6dh2REBpniyjlbVv/2QLR1R1eUi0g94C7vpcySY22+/nT59+lCiRIm8G48ZY9vzzkusUIUkIyOD6EyQw4bBb7/BwQfD1Vf7KFjqcQtwo6oOFZH1wJ2qukBEBgEbfJatQIwaNSp/H3joIVOuwmG4/XZTshxpSb7XhiNPInP60ENQpkwgE8smBLfW/KNIK1jRqOpGYBQwSkTKAycCp2PKzPles/9E5HssbfAMYCawQFW379VhFkTkKW+c3nm0KwbUBA4HjgSOwFIV1/GarAc+A0LAR06pSijFgP39FqIooKps27aNEiVKIHmlnp41y6KYK1WCE5LnOaaq7NixY5cCuHXrVooVK5br/rXXXsuNN94IwMaN0L+/9fXQQ5CXF2QRox72vQZWv7C8934QMAm4wweZCkX16tVja/jrr5ZS8qmnoGtXq3PlSGtiXhuOmInM6aRJ5jVeubKv4qQMbq35h1OwssFzIXwPeM9zx6sDtPVeRwMd2D13mSKyGFgILMJidlZ6r/XYzcJWzO1FROR0oBRQFqga9aqF3WTUwbL+RVgITAeeAr4EflbVnXH/o4swIpI1HFawGKwbMMulI8GsXr2amjVr0r9/f+68887cG7/8sm0vvjipWspll13G9u3bGTlyJGBFhM8880yGePnWa9asSZcuXXj22WcBqFKlCtdeey0DBgwA4K674O+/oUULOP/87McowqwCIhlO/gKaAD9jpTbK+CVUYRg/fjwAnTp1yrnR0KG7TZlXXw2DB+fc1pE2xLQ2HPli/PjxbNgAs2d3ct+vUbi15h9OwcoDz41wofcaASAipYBGmJXpYEwxqocpXvuRJUA7C+9n2d+J3VwsA+Z65xcAszFlam28/hZHjrydZV+BFcDnQN/ki1P0Cg2XLVuW/v3706RJk9wbbtliBVch6T52RxxxBL/88suu/TvvvJP6UY7+d999N40bN961379/f5o1awZYPeRnnrGYqyFDoFhaViAsFF9hGVBnYW65z4hIB8yT4FM/BSsoTzzxBJDDjc20aZbI4q23oG5dmDzZ1bUqQuS6NhwF4oknnmDVKlDtRNu2fkuTOri15h+SpmWgfMOzeJXDFK3ymLJVCqtJlQk8DmwDNmFWrrVBy1roSB7lypXTjRs3+i1G6jByJHTpAkcdBdOn+y1NTKxdC82bwx9/wN13w/33+y1RfBCRTapaLk597QuUVtVlnpv0rVgConnAA6q6Jh7jFIQWLVrotGnT8v25lStXAlC1atVdxy58ciIsWcLoJy+H8uWtiHC/frDvvnGT15H6ZLc2CoKITFfVFvGQKZWJ5RpcuXIl99wDr7xSlTVroHTpXJvnyYVDvgNgdI9WhevIZ+K11hzZk9s16CxYccazeG1g78Dsb30Qx+FIebZt28b+++9PKBSid+/eOTdUtaf+AD16JEW2wrJzp3ky/vEHNG1qCpZjb7wSGpH3mVgh+ECz1w3N2LEwbZ7Zx7t1g+eeg4oVfZHN4S/uZjf+VK1ale+/t+LthVWu0gm31vzDOao4iiwicqqI/CkilbI5V8k7d7IfshUlVJVLLrlkD/e6bPnoI/jpJ6hRAy69NDnCRVG5cmXuu+++mNurwq23mthVqlj9qyLi8RkTIrJvrC+/ZS0IY8eOZezYsbBhAzz4oGW8LFUajjnG3FydclVk2bU2HHFjxIixzJgxlvbt/ZYktXBrzT+cBSsbvNTATVS1XT4+o0BnVc0az+NIXW4EHs8uzk1V14rIo0Av4JOkS1aEKFWqFM8880zujVR3+9b17Zv0R5SZmZn06NGDo48+Oqb2qpbU4sknrUzX229DvXoJFjJ4rMTsObkhXpvgVAxbuRLmz+eZnj1h5UrO3brVjrdvD0c1gxIufWRRJ/J9d+65WfMrOQrK44/bnLZv7+Y0GrfW/MMpWElARIYDl+XWRlXFa1dVVc/I8vkWwFSgrqr+GXX8bExJOArLtLUE+A4YpKpTvTbnAtcCzbDshHOBB1V1XA6yXgy8CXyQVY405HAsNi4nPgf6JUkWR268+SZ8/z1Uq+aLe2CxYsV49NHYvNZ27IA+feDZZy2pxZtvQrt2iZUvoKTfs+aePe0fD7xXvDicfDK0aQMHHQRnnw2vzvBVPEdq8N577/ktQtrRsOF7LFliBmLHbtxa8w+nYCWHXuxZx+UP4C5gdEE7FJEHgduBZ4H7MOWqFnAslkijndf0eExRuBtYjRVSfkdE2qnqV1n6rOd9tqikJt8PSzySE4qliXYkkIULF9K4cWNefvllLr744r0brFtnvnYAjz5qyQGSTCQZUF41ulasgIsugs8/hxIlYPRoOOecZEgYPFR1crz7FJGOwNOYxWuoqj6S5bx450/DEg11V9UfCz3wtm2m+A8fbtr09ddTqXVrc2d1OLJQqdJeXulpgx/X4MKF8O67lbj2WldfMCvpvNZSnUDFYInIJBF5XkSeEJHVIrJCRHqJSCkReU5E1ojIYhG5JOozTUXkMxHZ7H1meHTMjYhkiMgAEfnPez1FFncUMW4TkT+8fmaJSLdY5VbVtar6T+SF3bhnPZafeWiJKWh9VPVmVf1SVRd620eIejKsqr1U9RFVnaKq81U1jNXVOjtLnyWAkZjFZkF+5AkwSzErVk4cjtXkcSSQ8uXLc8MNN9CgQYO9T6rajevff8P//udL7BXAjBkzKFGiBO+/n7XKwm7GjIHGjU252n9/mDjRKVexEo8YLBHJAJ4DTsXKaFwsIo2yNDsVqO+9rgGeL5TgmzfDq69C27amXLVtC598Ap07M/rLLxk9usDP0BxpzOjRo9NybfhxDarCnXeC6mgOPTT95rSwpOtaCwKBUrA8umIFfFsCj2AFeN/F0vm2wGpVDRWRmiJSFpiAZfQ7BjgHs/AMi+qvL3A10ANohSlXXbOM+QBwJVZ4thHwMDDEKxqcLZ4yOKngf2audMH+pmyrUmreufcrAP9lOfYg8Keqjii8eIHhA+B+EdmrkKm3du7z2iQdEekkIi/u3Jn+NaX3228/Hn/8cZo3b773yRdegFGjoFw5u4H1qYBU1apVuf322/eoexXh55/h9NOtePCKFWbAmD7dPMMcMbMSqz2X0ysWjgHmq+oCVd0GjALOytLmLOBVNb4HKotIwc1MV10Fl10Gv/0Gzz9v9axKlADg+eef5/nnC6e/OdKTNF4bSb0GVSEUMk+BWrWeZ8yYtJzTQpHGay3lCaKL4BxV7Q8g8v/tnXmYHFXVh99fQggQkH0TsmkAiexrQIQgW0Q2ZVfZZU0QBCQqyBeQ3YgEFBDCroIRRNkESdhRIBggAcISIUBIIEDYkpBkhjnfH+d2ptLTPUtP93TP5LzPU09X3bp16vStqu576p57ji7BXe/qzGxUKjsHd53bFlgRz0V1iJl9lvYfAzwkaYCZTQFOBi42szFp/0nAbrmTSeqFz9PZNeNS94akrXCDq1gH/K0Sv98QSfkh3vN7lesCr5tZfUbPE4CLM3UGmlkTHSQNBdYGbs6U7QocCGxSos6dlfOA/YDXJF0OvJzK18fntgk4vxqKmdldwF29evXq2Gy6tcTf/gbDhvn6VVfBeutVTZXevXtz3nnnLdxuaPCRqlGj4J57/I9+ueXgggvg+OMjkXAJ5M/H6oHPGz0ed29uDWvhrtI5puEv4lqqsxYwI1sp/U8cA9CnT5/iZ5w82ePw33yzT7jLcO+997ZS7WBxowvfGx36DNbV+e/woYfCqFH3hntgAbrwvVbzdEYDa2JuxTwyxExgUqasTtJHwGrAAGBizrhK/BufdzNQ0vvAmnhgiNzxDZKewuczgY9YLQXclyIF5ugBTC2mpJmV6sv0KOlHJcMGwB0tHPcnPNpdrm6TLp6kffE5VgeZ2ZupbBXgBuD7ZpY/qtWlMbOZkrbFXRTOxw0qcBfO+4ETzOy9aum3uPDYY4+x44478sADD7BjLsbujTfC0Ue7JTNihOcNqiL19fU0NIjnn+/OmDE+qDZtmu/r2dO9GM88E1ZdtapqdlqKzMcaK+l14Ed44J2WKDRBLn80vzV1MLOrgavBk5wWPeOE4lNHlllmmaL7gsWbLnxvdOgzuOSScN997uDgTidBPl34Xqt5OqOBVZe3bUXKutEY4rcQLbnR5cgZKnvSdFQq/7zlYG4aWVuIpBXy6rwKfFNSDzOrA5/nBXxSoG5Oxr74qNWheREEN8CNzLGZCfzd0jH1wNfN7JV2faMaJhmau0taETfIBby2uBmb1WTttddm+PDh9OvXDz75xANaXHON7zz9dDjrrKroVV8PL78Mjz8OV199Lc8+exwwHX9cPDDcUUfBcceFYVVBngO2b2XdaTS+GAMfqZ9eQp2y8Mc//hGAH1b55UBQe3The6PDn8FczKMu3KbtItqlenRGA6stvAQcKWm5zCjWtrgBMTnlOpoBDMIj7eUi3GxF43D1S8B8oK+ZPdih2hfnFuDHwInAJS1VlnQAPjftsAJ5usYDG+aVnYu7Vw4F3mi3tp2AZFCNr7YeiyP9+/fnvDPPhOuug/PPh+nTfR7LqFHub1dh6upg6lSYMgVee82NqgkT4PnnYd68XK3NgP+jT58V2WMP+MEPYJttoIWggkE7kLQs7sL9dgtVc4wH1pHUHw9OcxA+XzXLncAwSbfirkufmNkMKsDo0aOB6NgETenC90bVnsEu3KbtItqlenR1A+tPwNnATZLOwo2GPwB/y4wSjQJ+LulV3NXwBPwV9QwAM/tM0khgZDK+HsXndQ0CGtIwdhMk3ZSOL3vYMzN7UtLFwK8l9QVuw0fXVqfRvfCLpMdB+MjVacCjktZI+xeY2SwzmwO8kKf7x8ASZrZIeRCUlXnz4IknaBgzBm6/nW4ffujlgwbBtdfCwPzgU20X/+GHMGuWLzNnulvfO+/4klt/6y0oFkukf3/YckvYaact2XnnLSNZcIWQ9BmLehUIWAaYQ9OgQwUxs3pJw3D33u7AdWb2oqTj0v6rgHvx8NBT8BDRR5TtS+TxwAMPVEp00MnpqvdGNZ/Brtqm7SXapXp0aQPLzOZK2g2PNPg0MA/4B56XKsdvgDWA0Wn7ZtwwWz9T55fAe7iRciXwKe66kg0qkU8zM6Pbj5kNl/Q0Psp0KG70vQc8DmxvZrm3vsfh1/nStOR4hMZcWUEZqFoOnlrGzN3+Zs70ZCWvvuoR1559Fp55BhYs4C/4K87n19+YPj87hzk77sHsud2YMwHmzIHZs/0zu16o7OOPFzWoPv+8dSpK0KcPDBgA66zjyyabwGabwYorep05c+bQo0cPIGZRV4hhedsNePTAp9rirmtm9+IduGzZVZl1w38zK06PFE0wCPLpyvdGtZ7Brtym7SHapXp0KgPLzAYXKNugQNkamfVJwE7NyKwHfpKWYnUMT+h7eTN1lLfdRNfMvoKZUs3s8CLlz1BgYqiZ3Q7cXuw8LenRzDEF9QiKk8n/sQvuYz5e0p1m9lKmWjb/x9a4sZ4fYakpZtgXDVj9F1j9FzTU+bJwvb6hcTu3/kXDwn1f1DVQN7+B+gUN1C0wX68z6hYY9XUN1C3A1xc0UFeX1uuNugU+D6muzpeF6/WifsEX1H3+hX/Oa5S/YIExb0E35s8X8+cZ8+cb86wn8+nJfFZmPoOZx5C03ZP53Zbmcy0NX/Rg48nAYeW7Jj16wMorw0or+ecqq8BaazVd+vaFpZZqXtawYcMYN24cb71VanDQoDm6YnqIG264AYDDDz+8qnoEtUfcG+Un2rQw0S7Vo1MZWEFQwyzM/wGQ/Mv3xufw5ViY/wN4UtIKktZszv987txlUbefAiPxgbET8TRmuejxx+GeoWen7aOAfvigK/jg5kA8mwH4WNHmePo3gP2B7Wgc1N0H2BX3lAXYI6mdixa/G3AwcDjuhToEt4p+iE9V3AMP+nYgnqrtu3ik7e/hqdcOSN9hL2AmNOyLZ0H4Nt27TwcOY/nlh7PSSjvTo8dbTJ9+FOuscwa9ew+moWEKzzxzPN/85gjWW+8bzJnzMnfffSIHHHAuG220NbNmTeLaa0/hrLMuZvvtN+XVV59l+PDTueSSS9hwww15+umnOeOMMzjhhMtYf/31eeKJJxg2bARXXnklAwYM4JFHHuHcc89l9OjR9O3bl7Fjx3LRRRdx4403sv/++zNo0KBilykoEymp8GrkRUHNe1HRKYiOTVCMuDfKT7RpYaJdqodazkkbBEFLSNoPGGJmP0rbhwBbm9mwTJ27gQvN7PG0PQ4YnkYos7IW5v/AraG5eafrTppj14ryQmVLAPWtqFcJmW05T3tkFjtPZ5BZSF4lZLb3mi9tZmXJ+CVpU+B6GgPu5CLACnci6F7s2EqT0nm82Q4Rq+CJlGudzqIndB5dK61nXzPr8jFMy/AMlkIt3WOhS2FqQZfiz6CZxRJLLO1c8KGg0ZntQ4DL8+rcA2yX2R4HbN6C3GcKlF1dpG6T8iJlVZPZxvOULLOZ89S8zELyKiGzEte81AV4Nj0fOwBfA9bLLuU6TzWWcrZT6Nm5dO0sesZS29cudKl9XQot4SIYBOWhI/N/3NWG8mJ1qyWzLedpj8zWylucZVbimpfKOsD+lpcDMAiCIAg6I2Vx7wiCoDH/h6Ql8fwfd+bVuRM4VM4gSsz/YWYFO7uFyovVrZbMtpynPTJbK29xllmJa94OHmfRyK1BEARB0GmJEawgKANWufwfBfOstZOQWdsyO4OO5ZZ5FDBa0lfwvHx12Z1m9mgZz9XRVKLtK0Fn0RM6j66dRc+gKbV07UKXwtSSLk2IIBdBEARBVZE0GLgFD4mZj1kVg1wEQRAEQVsJAysIgiCoKpJewd1sL8ATpi/yx2RmH1ZDryAIgiAohTCwgiAIgqoiaQ6wkZn9r9q6BEEQBEF7iSAXQRAEQbV5AM/51umQdJ2kmZJeyJStJOkBSa+lzxUz+34uaYqkVyTtVmU9R0h6R9Jzadm9BvTsLekhSZMlvSjppFReU23ajJ4116ZBU4pdv7w6gyV9krmWZ1VYp6mSJqVzPVNgvyRdlu6hiZI2q5Ae62W+83OSPpV0cl6dirVNW39T844dkp6vKZJ+Vi6dSiFGsIIg6JJI+hqwN7AW7nI2HbjTzCZXVbGgCSkYzBnAjcAkmga5+Fs19GoNkrYHZgM3mdkGqexiYJaZXZj+5Fc0s+GSBuJzzbYCvgyMBdY1s0IJnztCzxHAbDMbmVe3mnquCaxpZhMkLQf8F9gHOJwaatNm9DyAGmvToCnFrp+ZvZSpMxg4zcz26CCdpgJbmFnB5LnJWD8RD5a1NTDKzLausE7dgXeArc3szUz5YCrUNm35TS2g66vALnhanPHAwdlr2pHECFYQBF0OScOBWwEBT+M/tAJuqfZbraAgV+CG8C/wTuhtmeWvVdSrRVKEw1l5xXvjxiLpc59M+a1mNt/M3sAjim5VRT2LUU09Z5jZhLT+GTAZvzdqqk2b0bMYVWvToCklXL9aYG/c6DAzexJYIRmKlWQn4H9Z46rStPE3NctWwBQze93MFuB9gL0rpWdLhIEVBDWEpN0kXSnpTkn/SOtD2iFvlbztHyYXg2MkqR1yJWlrSd+T9N20XrK8AvKXlbSZpBVKFHEUsKWZXWhmf0zLhfgP8FEl6jQks768pGuTm8afJRWKftcamctLulDSy5I+TMvkVLZCKTILnKO9bZmTU7Frbmbdmlk6YwTB1XM57tLnaql8LeDtTL1pVL9TNyzdx9dl3G5qQk9J/YBNgaeo4TbN0xNquE2DphS4flm2kfS8pH9K+nqFVTHgX5L+K+mYAvurcQ8dhL/0KkRHtk2x5z9LTT1jYWAFQY0g6VLgJOAR4GLg12n9x5JGlSj2Xxn5ZwKH4K4QuwCXlKjnrsBrwAjcVeE7wNnAa2lfKTKvyKxvB7wE/AaYpMwchjbQgLvh5LNm2lcK52fWfwPMAPbER8f+UKLMMcBHwGAzW9nMVgZ2TGUljdxUoC0rcs0XUwoZpNX0078S+CqwCX4//yaVV11PScsCtwMnm9mnzVUtUNZhuhbQs2bbNGhKC/fZBKCvmW0MXA78vcLqfMPMNgO+DQxNrnKLqFvgmIrdQ5KWBPai8H9RR7dNa6ipZywSDQdB7bC7ma2bXyjpL7hfcZNJuK0g+4PzPeCbZjZH0p/xH8hSGAXsbGZT8/TsjydTXr8EmYMy67/CfeEnyBPPjkly28LJwDhJr9H4RqsPMAAYVoJ++WxhZpuk9d9KOqxEOf3M7KJsgZm9C1wk6cgSZZa7LaEy1zwr55Tm9ptZSS8Dqsh7ktY0sxnJhWdmKp8G9M7UWxufG1gVzOy93Lqka4C702ZV9ZTUA+/0/ikz/67m2rSQnrXapkFTitxnC8kaXGZ2r6QrJK1SbI5UezGz6elzpqQ7cI+LbJL1jr6Hvg1MyN7TGV07tG0o/vxnqalnLEawgqB2mCepkE/+lsC8EmUuLWlTSZsD3c1sDoCZ1QGlTq5eAv8hy+cdoEeJMrN8KeMb/zrQZhcxM7sPWBcfZbkfH8kbAayX9pXCapJOkXQq8KU897hSf0vflHR61sVQ0uryOWRvN3Nca2l3WyYqfc1PzFtOwUdwz6E8BnFHcyeQM7oPA/6RKT9IUs9knK6DzxGsClp0/sZ3gVzUrqrpmZ6ra4HJeYZ1TbVpMT1rsU2DpjRzn2XrrJH7nU//zd2AiuTkk9RLHmwDSb2AXWm8d3LcCRya3LUHAZ/k3OYqxMEUcQ/syLZJFHv+s4wH1pHUP42+HZSOqwoxghUEtcPhwJXpRzbXme0NfJr2lcIMGl0BZ2XeAK0M1Jco8zpgvKRbaTQCeuM/ZteWKPNrkibiI279JK1oZh9J6kaJHXgzawCeLFGfQlwDLJfWbwRWAd6XtAbwXIkyDwR+BjycMbLew/8UDihRZtnbkspc84WYWf/8stQe1+PtXrNIugUYDKwiaRrwf8CFwBhJRwFvAfsDmNmLksbgbpv1wNCOiiJXRM/BkjbB3WimAsdWW0/gG7gr8yRJz6WyX1B7bVpMz4NrsE2DphS7fn0AzOwqYD/geEn1wOfAQWYVC729OnBHslmWAP5sZvfJI6zm9LkXd9GeAswFjqiQLkhaBp9KcGymLKtLxdqmLb+pkr4MjDaz3c2sXtIw/KVqd+A6M3uxHDqVQoRpD4IaI3XY18I7yNOSy1i5z9Ed6Glmc0s8fiDum71QTzwEeknhUCX1zSuabmZ18iAd2xdy36gFJN1kZoe2U8YA/E13b7zj9Spwi5l9UqK8/LacYWYL2tuW5b7mrTznpsAYM1unUucIgiAIgnITBlYQ1BCS+gCfmtnH8shGW+AuDCW/hUkjF5hZQxo23wCYamatDdlcFSStZmaF/KyrgqRCrgbfAh4EMLO9SpD5Y2AP3M9+d3wk7CPc4DrBzB4uUd0uQXJtfcjMvlRtXYIgCIKgtYSBFQQ1gjw/07HAfGAkcBrwBB604NpSJvpL2gePcNcAHIe7QMzB5ycdb2Z3lSBzWeB0YF98EukC4H/AVWZ2Q1vlJZkr5Rfh0Q43xX+nqm4MSnoWeBEYjbv/CPdPPwjAzB4pQeYkYBMz+yK5ZNxrZoOTof0PM9u0BJlr4C4VDcBZ+JymffE8LyeV4rMvaQt8TtQ7wM9xl8Et8ciCx5jZs22VmSf/e/lFeMTHocDrZvad9sgPgiAIgo4kDKwgqBEkvYiPWC2D++5/xczeTxNen7KU0byNMp/FIwEtDTyP54Z6JbmR3W5mW5Qg8x/AHcBYfJ5QLzyh35nAO2b2ixJkNgD5iQzXxt3QzMy+0laZ5SaNBJ6EjzT91Myek/R6e3RLBtYWZjZfni9nrJltnva9UOI1vw+4B78u3wf+hBuCe+ORANuceFHS07jRtgKeQuAnZnabpJ2Ac81sm7bKzJOfHzrfgPfx0cFTKzyROwiCIAjKShhYQVAjSJpoZhul+VEzgDVSoIb2dLafzY2C5MuQNCHl3GirzOdT7ovc9ngz2zIZIC+Z2ddKkHkasDNuuExKZW8UCn5QbSStDfwWD0axl5n1aYesk/DEx08C2wMXmdn1klbFDeD8PCitkZm95m9l9ZP0nDWGly+XzIX7giAIgiCIKIJBUEtMkOen6gWMA25MoxHfwiNPlYSkbslQOzJT1h1YskSRcyRtZ2aPS9oTmAUL53gVSvTXImY2MkWo+62kt/HRkpp8+2Nm04D9JX0Hj/DYHlmjJI3F80hdYmYvp/L3cYOrFLIh42/K21dqmPZ58oTCywMmaR8z+7ukHSg93H8QBEEQdEliBCsIagRJS+ChRw24DU8y+H08JOnvczms2ihzS2CSmc3LK+8HbGdmfyxB5kb4PKR18TwdR5rZq2nU5WAzu6ytMvPk7wmcgSfhXaM9shZHJJ0DXGxms/PKBwAXmtl+JcjcGHcNbAB+AhyP5yJ5BzjazP5doq7fBq4ENs6Pmihpedyt9Rgz+1cp8oMgCIKgGoSBFQRBu5C0ZynBMlqQuRce3CA/0WLQDiQdYWbX14pMSffggT1+X2T/8cAeEeTCkXQDsIqZ7dGVzlXg3HcDH5jZ4R197iCoJPEMLz50a7lKEATVRtI/a1jmeWWSk+XcMK4qwtk1JnMjPFhKMR4ENm5mf5dC0qqSrpA0VdJ8Se9JGidpl1TlJOCH1dSxGJIelvS7DjzfREkXFdl3jKTPJf1c0nhJn0p6X9Jdkto8lzUIWks8w20+54OSrMByT0fqUQliDlYQ1AiSigWcELBJrcgsIqvcVELmYoGkicV2AavXiszEqrjbYTEMWLkd8jsbt+NRRI8CpgCrATuQ2qDU5NNdlInAhvmFybX0XNyldTBwBTAev1fPAcZKGlgLqR+CLkk8w21jU3xKwHV55XOroEtZCQMrCGqH8cAjFDYuVqghmflUws84fJdLZ3VgNzxhcRYBJc2VqpBM8DD8G+H5tAqxET7Pq8sjaQXgm8AuZjYuFb+JP8O5OjeQcfmR9DCe32wucAQecORc4CrgEuAHeCCWM8zs5oych4EXzGxYMdkF9BuCd4Q2wJ/P8cDJZjY5HbsDsIOkoemQ/mY2NQW++Sme4+/LeKfzotz8T3n+tyuA/fAcfaNa2WQTgWEFys8CPsfnG36e9x0OAT4BvgGU1a05COIZbtszLOmreD/kETN7tzXHdCbCwAqC2mEycKyZNelspsh6tSIzqG3uBpY1s+fyd6Q/5VqRCZ6v61eS7i3QGV4GH3Ho9K4irWR2WvaS9Hh+YJpm+AHeEdsa2Au4FBgC3Ifn1TsMGC1pnJlNb4d+vZLsiXhevTOBuyQNxN2e1gVexpOZg+cxA+8s7ocnjX4F2Aa4RtJHZnYPnlR9FzwZ9jt4BNHtgb+1oM9EoLekL5nZpwCS1sUTax+cfz8llsOnRuS/KAiCchDPcNue4c1xg7JdieprlTCwgqB2GEHxeZEn1pDMoIYxs6Oa2ff9WpGZOA//435N0uX4nzt42Pph+AjZ+e2Q32kws3pJhwPXAMfIk4Q/AfzVzJ5q5tAXzWwEgKRLgJ8BdWY2KpWdAwwHtsWjk5aq3+3ZbUlH4G/Wt0opGxYAc7NvouVJ0k8BdjWzx1LxG5K2AoZKegR3pTrSzO7PyJ3WCpVybqsb0DiKegnwaL6uGUYBzwH/KSZU0v14cuuYAxq0iXiG2/wMb46nDpmpRTO8/NPM9i/pS9YQYWAFQY1gZov8cGaj85nZ32tFZgHeK5OcSssMagwzmylpWzxU+/k0urIacD9wgpktNveCmd2eJnd/E39LPAQ4VdIZZlbM0JyYOd4kzQQmZcrqJH2EzwUpmeTO8yv8Lfuq+IubbkBzibYHAksB90nKuv32AKYCX8Xz8S00eMxstqRJtICZTZf0AT4P69+SdsPdWAsGRUkd1+3w9BTN5W77Go2GfhC0iXiGW/8M4wbW7bhBmaVLzFMLAysIapfzKP88gbLLNLNdWq5VfZlBbWJmbwK7S1oRGIAbWa+Z2WLpxpXcih5IyzmSRgMjJI0sckhdvogiZdmR7Aaazsvs0YJqd+HuP8emz3o8AXpzCctz59wTz+eXpQ5YsYVztsQkYAN5DsHfAr8zsyZJ2SX9FjgI2NHMXs/bNxC4GncfvAGYZWb1ad86Se4a+Lyu/c3sXUm9gd/hHdMlgT2AnYET8H7VFDP7bju/W9BJiWe41WyKRwye0g4ZNUsYWEFQu0R0vmCxIRlU41usuPjxEv5fvVQZZb4PrJlXtjH+RroJklbG3TaHmtlDqWwzFu1DLMDdfbK8BMwH+prZgwXkfoh30gYBr6eyXrjb3/9a8T0mJr2H4lHaRhQ4xyjcuBpsZi/n7VsCj172IzN7QdIYPLk1knrigQaOMLO3JP0Id4n6FXAv8GMzeyhFLVwKd2ndPLmJrdAK3YPFh3iGmx7XH1iJLjr/CsLACoJaJqLzBcFiQuoA/RXv8E8EPsMnuJ8OjDOzT/PmKbSHB4FL5Qm9X8HfaPemSOcMDwrxAXB0Co6zFvBr/A14jqnAVpL64RP9Z5nZZ+mt/cgUiexRYFm8M9ZgZldLuha4SNL7wHQ8CmB+J68YE/EAABvj86YWcS2S9HvgEGAf4CNJa6Rds81sNvA94JnMfKtXaAyAsQ/eIb0ztfuSwK3Ad4Gnc51UM/tEUgMeDe0iSTeYWWvco4IuRjzDbXqGN0+f72aeyxwf5EaROzNhYAVBEARB9ZkNPIlH8xoA9MTdeP6MR/EqJ9fhIfBzuWeuAO4AVilU2cwaJB0IXAa8gIdpPhWfP5FjJHAj/sZ7aaA/3mH7JT6n8jR8rt2neKCJi9Nxp+HRze7AQ1VfnrZbw/O4YfM07t6Xzwnpc1xe+dn4aNdGSUaOzYHfpPUNgZ+a2Z+yB0o6N51vIakTuiFulN0q6axmAm0EXZd4hlv/DOcMrMn5quIjWx+3cHzNI7N4oR0EtYikiWa2Ua3LDIIg6IxI+gnQz8xOkrQTPmdmdTN7X9IwfPThiBR4YEMzmyTpRGBdMztRUjd8DspKuVQYki4Dnso3zIIgWLwoFr45CILqE9H5giAIKsfNwLYpnPbhwDQzy+X+uR5YHpgs6Tk8CSz4SNlXJL0ITMDdCM+U9EqS0wN3JQyCYDEmRrCCIAiCIAiCIAjKRIxgBUEQBEEQBEEQlIkwsIIgCIIgCIIgCMpEGFhBEARBEARBEARlIgysIAiCIAiCIAiCMhEGVhAEtYt0A9LdTdY78rzllfswkqVlUCr7OtK/kV5AugtpmTw9cvX3K7s+QRAEQRCUnTCwgiBoG4t2+uuQZiI9hDQUqUcFz3wS8MOyS3Wj53cdci7nemBN4L9ISwFjgKGYbQC8ioeLzuqxZoX0CIIgCIKgAoSBFQRBKYzFO/79gF2Bu4CzgceQWsrgXhpmn2D2cUVkd+y55mL2LmZ1wD7AWMyeTfteBlbN0+PdCukRBEEQBEEFCAMrCIJSmJ+MhHcwew6zS4DBwGbA6QBIQjod6X9InyNNQlp0VMjrnIr0GtJ8pGlIFxQ8Y77bno88XYF0PtIHaSRtJFK3TJ0hSI8hfYQ0C+l+pPUXkQk7AEMzo3L9CpyrJ9KlSO8hzUN6Emm7PP1a1qcp6wOTMtsbAi81Uz8IgiAIghonDKwgCMqD2QvAfcC+qeRc4ChgKDAQuAD4A9J3MkedD/wy7fs6sD/wdhvO+gOgHtgWGAacDByY2d8LuBTYCjcAPwHuQloy7T8J+A+NbntrFjn/xUnukcCmuFF0H1K++15L+uQzHVgPAGkjYGfgzmbqB0EQBEFQ4yxRbQWCIOhSvATsnNwETwF2xeyxtO8NpK1wg+sepGWBnwAnY3ZdqjMFN3hafz6zs9L6q0hHAzsBtwBgdvsitaUjgE9xg+txzD5BWkDOba+xXvaYXsDxwI8wuyeVHQd8K32XM1utT1NuBv6CNCnpdQBm81v/9YMgCIIgqDXCwAqCoJwIMHzEail8lMcy+3sAU9P6QKAnMK4d55uYtz0dWK1RG30V+BWwNT63qVta+rThHF/F9X5iYYnZF0j/wb9D6/XJx2wusGcbdAmCIAiCoMYJAysIgnIyEHidRvfjPYG38urUpU/Rfuryto1FXZ/vAt4Bjk2f9fgo25K0npyeVmBffllL+gRBEARB0MWJP/4gCMqDtAEwBLgNN2LmA30xm5K3vJmOyNXZqUL6rIwHkTgfs7GYTQaWo+mLpQVA92YkTUl1GoNaSN2BbYiAFEEQBEEQ5BEjWEEQlEJPpDXwlzSr4kbSL4D/AiMxm4M0EhiJJOBRYFlgENCA2dWYfYY0CrgAaX6qszKwOWZXlkHHj4APgKOR3gbWAn6Nj2JlmQpshdQPmA3MWmSvf5crgQuRPgDewOeOrQ5cUQY9gyAIgiDoQoSBFQRBKewMzAC+AD4GXsDzYP0BswWpzi+B94DTgCvxIA7P4RH5cvwcN4R+Cayd6t9UFg3NGpAOBC5L+k0BTgVuz6s5ErgRH41aGuhfQNrw9Hk9sALwLDAEsxll0TUIgiAIgi6DzApNKwiCIAjKjvQw8AJmw9p4nAH7Y3ZbJdQKgiAIgqB8xBysIAiCjuUYpNlIW7ZYU7oKaXYH6BQEQRAEQZmIEawgCIKOQloLd0MEeLvFnFfSasCX0tYMzOZUULsgCIIgCMpAGFhBEARBEARBEARlIlwEgyAIgiAIgiAIykQYWEEQBEEQBEEQBGUiDKwgCIIgCIIgCIIyEQZWEARBEARBEARBmQgDKwiCIAiCIAiCoEyEgRUEQRAEQRAEQVAmwsAKgiAIgiAIgiAoE/8PNVQiiGh8gAsAAAAASUVORK5CYII=\n",
|
|
256
|
+
"text/plain": [
|
|
257
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
258
|
+
]
|
|
259
|
+
},
|
|
260
|
+
"metadata": {
|
|
261
|
+
"needs_background": "light"
|
|
262
|
+
},
|
|
263
|
+
"output_type": "display_data"
|
|
264
|
+
}
|
|
265
|
+
],
|
|
266
|
+
"source": [
|
|
267
|
+
"# here's one that fails the compatibility test:\n",
|
|
268
|
+
"example_data_doi='10.1186/BF03352885'# data of Calvo-Rathert et al., 2009)\n",
|
|
269
|
+
"# read in MagIC formatted PSV10-24 data compilation\n",
|
|
270
|
+
"df=pd.read_csv(dir_path+'/sites.txt',sep='\\t',header=1)\n",
|
|
271
|
+
"# pick out desired example\n",
|
|
272
|
+
"df=df[df['citations'].str.contains(example_data_doi)]\n",
|
|
273
|
+
"# use svei.svei_test to see if consistent with data model\n",
|
|
274
|
+
"# first pick out the directional data and put in array\n",
|
|
275
|
+
"di_block=df[['dir_dec','dir_inc']].values\n",
|
|
276
|
+
"# do the test and make the plot\n",
|
|
277
|
+
"resdict=svei.svei_test_varkap(di_block,plot=True)\n"
|
|
278
|
+
]
|
|
279
|
+
},
|
|
280
|
+
{
|
|
281
|
+
"cell_type": "markdown",
|
|
282
|
+
"id": "f35460be",
|
|
283
|
+
"metadata": {},
|
|
284
|
+
"source": [
|
|
285
|
+
"## Use svei.py module to correct inclination shallowing\n",
|
|
286
|
+
"- create directory for example data set\n",
|
|
287
|
+
"- download data set of Gilder et al., 2001 (doi: 10.1029/2001JB000325)\n",
|
|
288
|
+
" - oops this only has data for MAD <10.... \n",
|
|
289
|
+
"- do reversals test of Heslop et al., 2023\n",
|
|
290
|
+
"- filter data for MAD<10\n",
|
|
291
|
+
"- repeat reversals test\n",
|
|
292
|
+
"- run svei.find_flat()\n"
|
|
293
|
+
]
|
|
294
|
+
},
|
|
295
|
+
{
|
|
296
|
+
"cell_type": "code",
|
|
297
|
+
"execution_count": 10,
|
|
298
|
+
"id": "1f80d27d",
|
|
299
|
+
"metadata": {},
|
|
300
|
+
"outputs": [
|
|
301
|
+
{
|
|
302
|
+
"name": "stdout",
|
|
303
|
+
"output_type": "stream",
|
|
304
|
+
"text": [
|
|
305
|
+
"find_flat already created\n",
|
|
306
|
+
"20098/magic_contribution_20098.txt extracted to magic_contribution.txt \n",
|
|
307
|
+
"\n",
|
|
308
|
+
"1 records written to file /Users/ltauxe/PmagPy/find_flat/contribution.txt\n",
|
|
309
|
+
"1 records written to file /Users/ltauxe/PmagPy/find_flat/locations.txt\n",
|
|
310
|
+
"222 records written to file /Users/ltauxe/PmagPy/find_flat/sites.txt\n",
|
|
311
|
+
"222 records written to file /Users/ltauxe/PmagPy/find_flat/samples.txt\n",
|
|
312
|
+
"222 records written to file /Users/ltauxe/PmagPy/find_flat/specimens.txt\n"
|
|
313
|
+
]
|
|
314
|
+
},
|
|
315
|
+
{
|
|
316
|
+
"data": {
|
|
317
|
+
"text/plain": [
|
|
318
|
+
"True"
|
|
319
|
+
]
|
|
320
|
+
},
|
|
321
|
+
"execution_count": 10,
|
|
322
|
+
"metadata": {},
|
|
323
|
+
"output_type": "execute_result"
|
|
324
|
+
}
|
|
325
|
+
],
|
|
326
|
+
"source": [
|
|
327
|
+
"# download data from MagIC\n",
|
|
328
|
+
"dir_path='find_flat'\n",
|
|
329
|
+
"dirs=os.listdir()\n",
|
|
330
|
+
"if dir_path not in dirs:\n",
|
|
331
|
+
" os.mkdir(dir_path) # create directory if needed\n",
|
|
332
|
+
"else:\n",
|
|
333
|
+
" print (dir_path + ' already created')\n",
|
|
334
|
+
"\n",
|
|
335
|
+
"reference_doi = '10.1029/2001JB000325'\n",
|
|
336
|
+
"magic_contribution='magic_contribution.txt' # default filename for downloaded file\n",
|
|
337
|
+
"ipmag.download_magic_from_doi(reference_doi)\n",
|
|
338
|
+
"os.rename(magic_contribution, dir_path+'/'+magic_contribution) # move to dir_path\n",
|
|
339
|
+
"# unpack the file\n",
|
|
340
|
+
"ipmag.download_magic(magic_contribution,dir_path=dir_path,print_progress=False)"
|
|
341
|
+
]
|
|
342
|
+
},
|
|
343
|
+
{
|
|
344
|
+
"cell_type": "code",
|
|
345
|
+
"execution_count": 11,
|
|
346
|
+
"id": "78c00be8",
|
|
347
|
+
"metadata": {},
|
|
348
|
+
"outputs": [
|
|
349
|
+
{
|
|
350
|
+
"name": "stdout",
|
|
351
|
+
"output_type": "stream",
|
|
352
|
+
"text": [
|
|
353
|
+
"Heslop et al. (2023) test statistic value = 9.65\n",
|
|
354
|
+
"Heslop et al. (2023) critical test statistic value = 12.67\n",
|
|
355
|
+
"Estimated p-value = 0.10\n",
|
|
356
|
+
"Cannot reject null of common means at alpha = 0.05 confidence level\n"
|
|
357
|
+
]
|
|
358
|
+
},
|
|
359
|
+
{
|
|
360
|
+
"data": {
|
|
361
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEOCAYAAAB4nTvgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlVUlEQVR4nO3deZgV1Z3/8feXpiMNzU6LCE2DDq6JoiCuiRiFALJpAI3CkMSACkb4iZNBcCFGGKPRaCbBoXUyIoosJgO2kRhlRE1EERMSFVExsrQgioossvv9/VHVbdN2c283997qrvt5PU89devU9q32efxyzqk6x9wdERGRg2kQdQAiIlL3KVmIiEhCShYiIpKQkoWIiCSkZCEiIgkpWYiISEINow4g1cxsADCgadOmo4455piow8mct94K1scem6LLvRVeLjXXE5H64dVXX93s7gWVyy2u31l0797dly9fHnUYmdOzZ7BesiRFl+sZXi411xOR+sHMXnX37pXLY1ezyFo33hh1BCISY0oWcXHBBVFHICIxpg7uuFixIlhERNJANYu4GD8+WKuPQUTSQMlCRMrt3buX0tJSdu3aFXUokiY5OTm0aNGCNm3a0KBB8o1LaUsWZvZboD/wobt/PSxrBcwFOgFrgGHu/mm47wbgCmA/cK27PxWWdwMeBPKAJ4FxHtdXuEQiVlpaStOmTenUqRNmFnU4kmLuzt69e9m0aROlpaV07Ngx6XPT2WfxINCnUtlEYLG7dwEWh9uY2QnApcCJ4TnTzSwnPOc+YDTQJVwqX1NEUmTXrl20bt1aiSKmzIyvfe1rtG/fnh07dtTo3LQlC3d/HvikUvEgYGb4eyYwuEL5HHff7e7vAauBHmbWDmjm7kvD2sRDFc4RkTRQooi/mjQ/lcl0n0Vbd98I4O4bzezwsLw98FKF40rDsr3h78rlVTKz0QS1EFq3bk1xcTF5eXmMGDEihY9QR02bFnUEIhJjdeXV2ar+KeMHKa+Suxe7e3d3796kSRMAdu7cmZoI67qzzgoWEanz+vbty8yZMxMfWMkLL7wQ2RA8mU4Wm8KmJcL1h2F5KVBY4bgOwIawvEMV5VLZiy8Gi0gM5efnly8NGjQgLy+vfPuRRx6p8fV69uzJAw88UKtYanrulClTGD58+AFlixYtYuTIkQnPNTNWr15dvv3Nb36zfNy2TMt0sngcKPsLjQQWVii/1MwOM7POBB3Zy8Imq21mdoYFDan/WuEcqWjSpGARiaHt27eXLx07dqSkpKR8+/LLL486vKyQtmRhZo8CS4FjzazUzK4Abgd6mdk7QK9wG3d/A5gHrAT+CIx19/3hpa4GHiDo9H4XWJSumEWkfvniiy+4/fbbOfroo2ndujXDhg3jk0+C92p27drF8OHDad26NS1atOC0005j06ZNTJ48mRdeeIFrrrmG/Px8rrnmmq9ct6bnjhs3jsLCQpo1a0a3bt144YUXAPjjH//ItGnTmDt3Lvn5+Zx88snAgbWT1atXc+6559K8eXPatGnDJZdcAsC3vvUtAE4++WTy8/OZO3cuS5YsoUOHLxtb1q9fz8UXX0xBQQGtW7eu8llSJW0d3O7+vWp2nV/N8VOBqVWULwe+nsLQRKQmykY0rmjYMBgzBj7/HPr1++r+738/WDZvhiFDvrr/6qvhkktg/XooLPzq/iT96le/YsGCBTz33HMUFBRw7bXXMnbsWB599FFmzpzJZ599xvr16znssMNYsWIFeXl5TJ06lb/85S8MHz6cH/3oR1Vet6bnnnbaadx88800b96ce++9l6FDh7JmzRr69OnDpEmTWL16NQ8//HCV97rpppvo3bs3zz77LHv27KFstOznn38eM+Pvf/87//Iv/wIcOAr0/v376d+/P9/+9reZNWsWOTk55eeuW7eOk046iX/84x81+pbiYOpKB7eISI3NmDGDqVOn0qFDBw477DCmTJnCY489xr59+8jNzeXjjz9m9erV5OTk0K1bN5o1a5bUdWt6blktpGHDhkyYMIHdu3cn3beQm5vL2rVr2bBhA40aNeKcc85J6rxly5axYcMG7rzzTpo0aXLAuR07dmTLli0pSxSg4T5EJJGDjTfWuPHB97dpc/D9h1CrAFi7di0XXXTRAd8N5OTksGnTJkaMGMH69eu59NJL2bJlC8OHD2fq1Knk5uYmvG5Nz73rrrt44IEH2LBhA2bG1q1b2bx5c1LPcMcdd3DTTTfRo0cPWrZsyYQJE/jhD3+Y8Lz169dTVFREw4aZ+d+4ahZxcc89wSKSRQoLC1m0aBFbtmwpX3bt2kX79u3Jzc3llltuYeXKlbz44os88cQTPPTQQ0DiDw9rcu4LL7zAz3/+c+bNm8enn37Kli1baN68OWWjEiW61xFHHMH999/Phg0bmDFjBmPGjDngDaiDPfu6devYt29fwmNTQckiLrp2DRaRLHLVVVcxefJk1q5dC8BHH33EwoXBC5PPPvssr732Gvv376dZs2bk5uaSkxOMItS2bVv++c9/Vnvdmpy7bds2GjZsSEFBAfv27ePWW29l69at5fvbtm3LmjVr+OKLL6q81/z58yktDb49btmyJWaWVJw9evSgXbt2TJw4kR07drBr1y7+8pe/JPV3q43YJQszG2BmxVnzMV6ZZ54JFpEsMm7cOAYOHEjv3r1p2rQpZ5xxBi+//DIAH3zwAUOGDKFZs2Ycf/zxnHvuueXfO4wbN47HHnuMli1bcu21137lujU59zvf+Q59+/blmGOOoaioiEaNGlFYoXlt6NChQDCqxKmnnvqVe73yyiucfvrp5OfnM3DgQO699146d+4MBN9ojBw5khYtWjBv3rwDzsvJyaGkpITVq1fTsWNHOnTowNy5c4Gggzs/P59169Yd6p+4XGzn4C4qKvLJkycDMHr06IijyQDNwS0p8Oabb3L88cdHHYZkQHX/raubgzt2NQsREUk9JQsREUlIyUJERBJSshARkYT0UV5czJgRdQQiEmNKFnER0Rj3IpId1AwVFyUlwSIikgaqWcTFXXcF6wEDoo1DRGJJNQsRia1p06ZVOww5wCOPPELv3r0P+T6VZ7RLhTVr1mBmGRv7KZHYJYusHe5DJAvMnj2b7t27k5+fT7t27ejbty9//vOfqz1+0qRJ5ZMMVfU/38svv5w//elPaY87DmKXLNy9xN1H5+XlRR2KiKTQ3Xffzfjx45k0aRKbNm1i3bp1jBkzpnzgwMrqyr/I4yJ2yUJE4uezzz7j5ptv5je/+Q0XX3wxTZo0ITc3lwEDBnDnnXcCwaB7Q4YMYfjw4TRr1owHH3yQKVOmlA8AWDZNaYsWLcjPz2fp0qU8+OCDB0w29MYbb9CrVy9atWpF27ZtmTZtGhBMNHTmmWfSokUL2rVrxzXXXMOePXsSxj1nzhy6dz9wmKVf/vKXDBw4EIA//OEPnHLKKTRr1ozCwkKmTJlS7bU6derEMxUGC634bAAvvfQSZ511Fi1atODkk09O+bhu6uCOi1mzoo5AYmj8+PGsWLEirffo2rUr9ySYi2Xp0qXs2rWLiy666KDHLVy4kPnz5/PQQw+xe/dufv7zn5fve/755+ncuTNbtmwpnzCo4mx227Zt44ILLuD666+npKSEvXv3snLlSiAY4fWXv/wl3bt3p7S0lL59+zJ9+nTGjx9/0HgGDhzIqFGjeOedd+jSpQsQNKVNmDABgCZNmvDQQw9x4okn8vrrr9OrVy+6du3K4MGDD3rdyt5//30uvPBCZs2aRZ8+fVi8eDHf/e53WbVqFQUFBTW6VnVUs4iLwsJDnnVMpK76+OOPadOmTcJZ4c4880wGDx5MgwYNqGlT9BNPPMERRxzBhAkTaNSoEU2bNuX0008HoFu3bpxxxhk0bNiQTp06ceWVV/Lcc88lvGbjxo0ZNGgQjz76KADvvPMOq1atKq9Z9OzZk2984xs0aNCAk046ie9973tJXbeyhx9+mH79+tGvXz8aNGhAr1696N69O08++WSNr1Ud1SziIhzHnksuiTYOiZVE/+LPlNatW7N582b27dt30IRReAj/YFq/fj1HH310lfvefvttrrvuOpYvX87nn3/Ovn376NatW1LXveyyy5gwYQI333wzs2fPZvDgwTRu3BiAl19+mYkTJ/L666+zZ88edu/eXT7/RU2sXbuW+fPnU1LhW6u9e/dy3nnn1fha1VHNIi7uuy9YRGLozDPPpFGjRixYsOCgxx1sCtNE05sWFhby7rvvVrnv6quv5rjjjuOdd95h69atTJs2jWTnAurduzebN29mxYoVPProo1x22WXl+y677DIGDhzI+vXr+eyzz7jqqquqvW6TJk34/PPPy7c/+OCDA2IfMWLEAdPL7tixg4kTJyYVYzKULESkzmvevDm33norY8eOZcGCBXz++efs3buXRYsW8ZOf/CSpaxQUFNCgQYNqpynt378/H3zwAffccw+7d+9m27Zt5bPubdu2jWbNmpGfn8+qVau4rwb/MGvYsCFDhgzh3/7t3/jkk0/o1atX+b5t27bRqlUrGjVqxLJly5g9e3a11+natStz5sxh7969LF++nMcee6x83/DhwykpKeGpp55i//797Nq1iyVLlpRP15oKShYiUi9cd9113H333dx2220UFBRQWFjIr3/966Q7gxs3bszkyZM5++yzadGiBS+99NIB+5s2bcrTTz9NSUkJRxxxBF26dOHZZ58F4Be/+AWzZ8+madOmjBo1iktq2Nx72WWX8cwzzzB06NADmtGmT5/OzTffTNOmTbn11lsZNmxYtdf42c9+xrvvvkvLli255ZZbDqihFBYWsnDhQqZNm1b+t7nzzjurnfe7NrJiWtUyeXl5jBgxIqKI0kzTqkoKaFrV7JH106oe7AtufdUtIlI7sXsbyt1LgJKioqJRUceSURXaL0VEUi12ySJrtWkTdQQiEmOxa4bKWg8+GCwiImmgZBEXShaSInF96UW+VJu3pJQsRKRco0aN+Pjjj5UwYsrd2bNnD++//z5NmjSp0bnqsxCRch06dKC0tJSPPvoo6lAkTRo2bEjz5s1pU8N+zkiShZn9P+BHgAOvAT8AGgNzgU7AGmCYu38aHn8DcAWwH7jW3Z/KfNQi8Zebm0vnzp2jDkPqoIw3Q5lZe+BaoLu7fx3IAS4FJgKL3b0LsDjcxsxOCPefCPQBpptZTqbjFhHJZlH1WTQE8sysIUGNYgMwCJgZ7p8JDA5/DwLmuPtud38PWA30yGy49cCTTwaLiEgaZLwZyt3fN7NfAOuAncCf3P1PZtbW3TeGx2w0s8PDU9oDFQdxKQ3LvsLMRgOjAVq1alXl/YuLi4EYDv0RDnksIpIOUTRDtSSoLXQGjgSamNnwg51SRVmVr2q4e7G7d3f37vn5+QeNI3ZDf0yfHiwiImkQRTPUBcB77v6Ru+8Ffg+cBWwys3YA4frD8PhSoOKMJh0Imq2konnzgkVEJA2iSBbrgDPMrLEFs5GcD7wJPA6MDI8ZCSwMfz8OXGpmh5lZZ6ALsCzDMYuIZLUo+ixeNrPHgL8C+4C/AcVAPjDPzK4gSChDw+PfMLN5wMrw+LHuvj/TcYuIZLNIvrNw91uAWyoV7yaoZVR1/FRgarrjEpHs1akTbNoEOTnQpAn06wf/+Z+QoPsza2i4DxGRUEkJbN8Of/0rvPIK3HZb1BHVHUoWcbFkScpmyRPJdu3bQ9++8Npr0L8/FBRAy5bB74rTWj/4IBx1FDRtCp07wyOPBOWrV8O550Lz5sHsATWchbVOUrIQEalk/frgG9ejjoIf/ADWroV16yAvD665Jjhmxw649lpYtAi2bYMXX4SuXYN9N90EvXvDp58GyeXHP47sUVJGAwnGxS9+Eayvvz7aOETqscGDoWHDoEZw4YVwxx1BgigzeTKcd96X2w0awOuvQ8eO0K5dsADk5gYJZsMG6NABzjkno4+RFqpZxMUTTwSLiNTaggWwZUvwP/rp08EdrrwSioqgWTP41reC/fv3B53gc+fCf/1XkCQuvBBWrQquc8cdwbk9esCJJ8JvfxvhQ6VI7JKFmQ0ws+LYfaEtIhl3113w1lvw8suwdSs8/3xQXjbdx3e+A08/DRs3wnHHwahRQfkRR8D99wc1ixkzYMyYoB+jPotdsnD3EncfnVex7igiUgvbtgXNUC1awCefwE9/+uW+TZvg8ceDvovDDgtesc0Jx8OeP//LjvCWLcHsy331VeyShYhIqowfDzt3Bm80nXEG9Onz5b4vvghqHkceCa1awXPPfTk82yuvwOmnBwlk4EC4997gban6TB3ccaGalMghWbPmq2VHHvnVN9KvvDJYt2sXJIiq3HFHsMSJkkVcLFoUdQQiEmNZnSxiO7eFiEiKqc+CmMxt8bOfBYuISBooWcTF4sXBIiKSBkoWIiKSkJKFiIgkFLtkoS+4RURSL3bJImu/4G7dOlhERNIgq1+djZXf/S7qCEQkxmJXsxARkdRTsoiLG24IFhGRNFAzVFwsXRp1BCISY6pZiIhIQkoWIiKSkJKFiIgkpD6LuOjQIeoIRCTGYpcszGwAMKCgoKBG5xUXF9fvocoffjjqCEQkxmLXDHUoX3BriBARkarFLllkrfHjg0VEJA2SaoYys6+7++vpDkYOwYoVUUcgIjGWbM3iv8xsmZmNMbMW6QxIRETqnqSShbufA1wOFALLzWy2mfVKa2QiIlJnJN1n4e7vADcC/w6cC/zKzFaZ2cXpCk5EROqGZPssTgJ+AFwIPA0McPe/mtmRwFLg9+kLUZJyzDFRRyAiMZbsdxa/Bu4HJrl7+ful7r7BzG6s6U3Dfo8HgK8DDvwQeAuYC3QC1gDD3P3T8PgbgCuA/cC17v5UTe8Ze8XFUUcgIjGWbDNUP2B2WaIwswZm1hjA3WfV4r73An909+OAk4E3gYnAYnfvAiwOtzGzE4BLgROBPsB0M8upxT1FRKSWkk0WzwAVv3JrHJbVmJk1A74F/DeAu+9x9y3AIGBmeNhMYHD4exAwx913u/t7wGqgR23uHWujRweLiEgaJJssGrn79rKN8HfjWt7zKOAj4H/M7G9m9oCZNQHauvvG8PobgcPD49sD6yucXxqWfYWZjTaz5Wa2fPv27VUdEl9vvx0sIiJpkGyy2GFmp5ZtmFk3oLZjYzQETgXuc/dTgB2ETU7VsCrKvKoD3b3Y3bu7e/f8/PxahiciIpUl28E9HphvZhvC7XbAJbW8ZylQ6u4vh9uPESSLTWbWzt03mlk74MMKxxdWOL8DsAEREcmYpJKFu79iZscBxxL8S3+Vu++tzQ3d/QMzW29mx7r7W8D5wMpwGQncHq4Xhqc8Dsw2s7uBI4EuwLLa3DsZxeFbRfV6BFoRkRSryRDlpxG81toQOMXMcPeHannfHwOPmNnXgH8SfMPRAJhnZlcA64ChAO7+hpnNI0gm+4Cx7r6/lvdNWr0bgbZr16gjEJEYS/ajvFnA0cAKgm8dIOg3qFWycPcVQPcqdp1fzfFTgam1uVfWuOeeqCMQkRhLtmbRHTjB3avsWBYRkXhL9m2o14Ej0hmIHKLhw4NFRCQNkq1ZtAFWmtkyYHdZobsPTEtUUnOlpVFHICIxlmyymJLOIEREpG5L9tXZ58ysCOji7s+E40LVyfGZzGwAMKCgoCDqUEREYiOpPgszG0Xw8dyMsKg9sCBNMR0Sdy9x99F5eXmJDxYRkaQk2ww1lmDwvpchmAjJzA4/+CmSUWeeGXUEIhJjySaL3e6+xywYpsnMGlLN+EwSkf/4j6gjEJEYS/bV2efMbBKQF869PR8oSV9YIiJSlyRbs5hIMFPda8CVwJMEM93FWr0aJ+q73w3Wv/tdtHGISCwl+zbUFwTTqt6f3nDqpnoxTtTHH0cdgYjEWLJjQ71HFX0U7n5UyiMSEZE6pyZjQ5VpRDAibKvUhyMiInVRUh3c7v5xheV9d78H+HZ6QxMRkboi2WaoUytsNiCoaTRNS0RSO+dXObq7iEhKJNsMdVeF3/uANcCwlEeTAlk73MdNN0UdgYjEWLJvQ52X7kBSxd1LgJKioqJRUcciIhIXyTZDXXew/e5+d2rCkVrr2zdYL1oUbRwiEks1eRvqNODxcHsA8DywPh1BSS3Uh29BRKTeqsnkR6e6+zYAM5sCzHf3H6UrMBERqTuSHRuqI7CnwvYeoFPKoxERkTop2ZrFLGCZmf0vwZfcFwEPpS2qOqi4uLh+jBElIpIGyb4NNdXMFgHfDIt+4O5/S19YddPOnTvr7uCC/ftHHYGIxFiyNQuAxsBWd/8fMysws87u/l66Aqvr6tzggtdfH3UEIhJjyU6regvw78ANYVEu8HC6ghIRkbol2Q7ui4CBwA4Ad99AHR3uw8wGmFlxnfuXf7r17BksIiJpkGyy2OPuTjhMuZk1SV9Ih8bdS9x9dF5eXtShiIjERrLJYp6ZzQBamNko4BmydCIkEZFslLCD28wMmAscB2wFjgVudven0xybiIjUEQmThbu7mS1w926AEoSISBZK9tXZl8zsNHd/Ja3RSO0Nq5MjxotITCSbLM4DrjKzNQRvRBlBpeOkdAUmNTRmTNQRiEiMHTRZmFlHd18H9E31jc0sB1gOvO/u/c2sFUHfSCfCyZXc/dPw2BuAK4D9wLXu/lSq46n3Pv88WDduHG0cIhJLid6GWgDg7muBu919bcXlEO89DnizwvZEYLG7dwEWh9uY2QnApcCJQB9gephopKJ+/YJFRCQNEjVDWYXfR6XqpmbWAbgQmAqUTaw0COgZ/p4JLCH4anwQMMfddwPvmdlqoAewNFXx1FadHSdKRCTFEtUsvJrfh+oe4CfAFxXK2rr7RoBwfXhY3p4DJ1kqDcu+wsxGm9lyM1u+ffv2FIZ7cFn3tbiIZJ1EyeJkM9tqZtuAk8LfW81sm5ltrc0Nzaw/8KG7v5rsKVWUVZm43L3Y3bu7e/f8/PzahCciIlU4aDOUu6ejb+BsYKCZ9QMaAc3M7GFgk5m1c/eNZtYO+DA8vhQorHB+B2BDGuISEZFqJDvcR8q4+w3u3sHdOxF0XP+fuw8nmN97ZHjYSGBh+Ptx4FIzO8zMOgNdgGUZDrvu+/73g0VEJA1qMp9Fut1OMAbVFcA6YCiAu79hZvOAlcA+YKy7748uzDpKiUJE0ijSZOHuSwjeesLdPwbOr+a4qQRvTkl1Nm8O1m3aRBuHiMRSXapZyKEYMiRYL1kSaRgiEk8Z77MQEZH6R8kiRYqLi5k1a1bUYYiIpIWSRQrp4zwRiSslCxERSSh2HdxmNgAYUFBQEHUomXX11VFHICIxFrtk4e4lQElRUdGoqGPJqEsuiToCEYkxNUPFxfr1wSIikgaxq1lkrbIh0vWdhYikgWoWIiKSkJKFiIgkpGQhIiIJKVmIiEhC6uCOiwkToo5ARGJMySIuBgyIOgIRibHYNUOZ2QAzK866cZreeitYRETSIHY1i6i/4C4uLgYgLy+PEWXfPmTClVcGa31nISJpELtkUVfs3LkzusQhIpJisWuGqouyrklMRGJHyUJERBJSshARkYTUZxEXN94YdQQiEmNKFnFxwQVRRyAiMaZmqLhYsSJYRETSQDWLuBg/PljrOwsRSYPY1Syy9gtuEZE0il2ycPcSdx+dl5cXdSgiIrERu2QhIiKppz6LDNHQHyJSnylZZFja+lKmTUvPdUVEULKIj7POijoCEYkx9VnExYsvBouISBpkPFmYWaGZPWtmb5rZG2Y2LixvZWZPm9k74bplhXNuMLPVZvaWmX0n0zHXC5MmBYuISBpEUbPYB0xw9+OBM4CxZnYCMBFY7O5dgMXhNuG+S4ETgT7AdDPLiSBuEZGslfFk4e4b3f2v4e9twJtAe2AQMDM8bCYwOPw9CJjj7rvd/T1gNdAjo0GnWHFxMbNmzYo6DBGRpEXawW1mnYBTgJeBtu6+EYKEYmaHh4e1B16qcFppWFavaSY9EalPIuvgNrN84HfAeHfferBDqyjzaq452syWm9ny7du3pyLMjNDQJCJS10VSszCzXIJE8Yi7/z4s3mRm7cJaRTvgw7C8FCiscHoHYENV13X3YqAYoKioqMqEElv33BN1BCISYxlPFmZmwH8Db7r73RV2PQ6MBG4P1wsrlM82s7uBI4EuwLLMRZwZh9wk1bVragMSEakgiprF2cAI4DUzWxGWTSJIEvPM7ApgHTAUwN3fMLN5wEqCN6nGuvv+jEedIbVuknrmmWCtSZBEJA0ynizc/c9U3Q8BcH4150wFpqYtqDi47bZgrWQhImmgL7hFRCQhJQsREUlIyUJERBJSshARkYQ0RHkdVFxcXPNXaGfMSF9AIpL1YpcszGwAMKCgoCDqUA5JxVdoZ82aVb5dbRI59thMhSYiWSh2zVDuXuLuo/Py8qIOJWUqJo5qv8MoKQkWEZE0iF3NIk7KvupOyl13BesBA9ITjIhktdjVLEREJPWULEREJCE1Q9VjZR3feXl5aDYMEUkn1SzqsbLObs2HISLppppFPVRlx7emaRWRNFKyiIvCwsTHiIjUkpqh4mLu3GAREUmD2NUs4vIFd43ddx8As/bsSfy1t4hIDcWuZhHHL7iTsWHjRjZs3Jjc194iIjUUu2QhIiKpp2QhIiIJKVmIiEhCsevgzlZPX3llleW1mhtDRKQSJYuY2J2fX+0+dXSLyKFSM1RMHPPiixzz4otRhyEiMaVkERPHLF3KMUuXRh2GiMSUmqGyRNl4Uuq/EJHaULLIMjt37kxqBr6NGzcCSjIiEohdM5SZDTCzYnXqppb+niLZLXY1C3cvAUqKiopGRR1L3FSukai2IZI9YpcsstWiH/844/dUbUMkeyhZxMT+r30tkvuqT0MkOyhZxMQJS5YAsLJnz0juX9ZxXl3SKJsvHJRYROojJYuYOOrVV4HokkWZim9bVUwKGjpdpH5TspC0Odhrusm8vlsd1UxEMq/eJAsz6wPcC+QAD7j77RGHJBGpWDMpa95SAhFJr3qRLMwsB/gN0AsoBV4xs8fdfWW0kUlUKtdMqmv+qkp1/SdKPCLVqxfJAugBrHb3fwKY2RxgEKBkIV9RVeKomCCqO/ZgZRVVlWCq21/RoXby14WXBJRQs5e5e9QxJGRmQ4A+7v6jcHsEcLq7X1PpuNHA6HDzWOCtGt6qOfBZGo/P5DltgM1pvo+eX8+v50/vPWp7zqE8f5G7F3xlr7vX+QUYStBPUbY9AvjPNNynOJ3HZ/ic5Xp+Pb+eX8+fqvvUl7GhSoHCCtsdgA1puE9Jmo/P5Dm1oedP7/GZPKc29PzpPT6T59TGQe9TX5qhGgJvA+cD7wOvAJe5+xuRBlaHmdlyd+8edRxR0fPr+fX8qX3+etHB7e77zOwa4CmCV2d/q0SRUO0/ZIgHPX920/OnWL2oWYiISLTqS5+FiIhESMlCREQSUrKo58zst2b2oZm9XqGslZk9bWbvhOuWUcaYTmZWaGbPmtmbZvaGmY0Ly7Pib2BmjcxsmZn9PXz+n4blWfH8Zcwsx8z+ZmZPhNtZ8/xmtsbMXjOzFWa2PCxL+fMrWdR/DwJ9KpVNBBa7exdgcbgdV/uACe5+PHAGMNbMTiB7/ga7gW+7+8lAV6CPmZ1B9jx/mXHAmxW2s+35z3P3rhXegEr58ytZ1HPu/jzwSaXiQcDM8PdMYHAmY8okd9/o7n8Nf28j+B9Ge7Lkb+CB7eFmbrg4WfL8AGbWAbgQeKBCcdY8fzVS/vxKFvHU1t03QvA/U+DwiOPJCDPrBJwCvEwW/Q3CJpgVwIfA0+6eVc8P3AP8BPiiQlk2Pb8DfzKzV8MhjyANz18vvrMQScTM8oHfAePdfauZRR1Sxrj7fqCrmbUA/tfMvh5xSBljZv2BD939VTPrGXE4UTnb3TeY2eHA02a2Kh03Uc0injaZWTuAcP1hxPGklZnlEiSKR9z992FxVv0NANx9C7CEoA8rW57/bGCgma0B5gDfNrOHyZ7nx903hOsPgf8lGKU75c+vZBFPjwMjw98jgYURxpJWFlQh/ht4093vrrArK/4GZlYQ1igwszzgAmAVWfL87n6Du3dw907ApcD/uftwsuT5zayJmTUt+w30Bl4nDc+vL7jrOTN7FOhJMCTxJuAWYAEwD+gIrAOGunvlTvBYMLNzgBeA1/iyzXoSQb9F7P8GZnYSQQdmDsE//ua5+61m1poseP6Kwmao6929f7Y8v5kdRVCbgKBbYba7T03H8ytZiIhIQmqGEhGRhJQsREQkISULERFJSMlCREQSUrIQEZGElCxERCQhJQuRDDKze82ssZk9UKm8m5ldGVVcIokoWYhkiJm1Ihj0zYHjzGyKmc0xM3P3V4FvRhuhSPWULERSzMy+YWZrzezqSru6AisJRsZ9zN2nAJ8BzcP9u8ysbcYCFakBJQuRFHP31wjGKfrXSrtaAVsIBnr7R1jWOBwAEOBToFkGQhSpMQ1RLpIeHwInVip7m2BE2C7AEWY2jGAQxDLtCcbxEalzlCxE0uN24DAzK3L3tWHZa8AYdx9V+eBwPo6t7r47k0GKJEvNUCIpZmZ9gCbAH6hQu/Bg1M5HzKxxFacdCdyZmQhFak6jzoqkkJk1ApYBA4EfADvc/Y5ooxI5dKpZiKTWjcBD7r6GoNkp4RSnZjbQzPTarNRp6rMQSREzOxboRTDVJwTJYlK47/vAecBOYCOQS5BIhhG8JfVFeMy5wD+BL9x9agbDFzkoNUOJZECYCPa4+2wzW+zu55vZJGARcDKwmWC2w53uPtfMHnX370UYssgB1Awlkjlbw/VH4XoPcFilY3aEa8tIRCJJUrIQEZGE1AwlIiIJqWYhIiIJKVmIiEhCShYiIpKQkoWIiCSkZCEiIgkpWYiISEJKFiIikpCShYiIJKRkISIiCf1/JD8bbzakoWIAAAAASUVORK5CYII=\n",
|
|
362
|
+
"text/plain": [
|
|
363
|
+
"<Figure size 432x288 with 1 Axes>"
|
|
364
|
+
]
|
|
365
|
+
},
|
|
366
|
+
"metadata": {
|
|
367
|
+
"needs_background": "light"
|
|
368
|
+
},
|
|
369
|
+
"output_type": "display_data"
|
|
370
|
+
},
|
|
371
|
+
{
|
|
372
|
+
"data": {
|
|
373
|
+
"text/plain": [
|
|
374
|
+
"(1, 9.647524624224388, 12.672872030371195, 0.09759024097590241)"
|
|
375
|
+
]
|
|
376
|
+
},
|
|
377
|
+
"execution_count": 11,
|
|
378
|
+
"metadata": {},
|
|
379
|
+
"output_type": "execute_result"
|
|
380
|
+
}
|
|
381
|
+
],
|
|
382
|
+
"source": [
|
|
383
|
+
"# read specimen level data from publication\n",
|
|
384
|
+
"dir_path='find_flat'\n",
|
|
385
|
+
"df=pd.read_csv(dir_path+'/specimens.txt',sep='\\t', header=1)\n",
|
|
386
|
+
"# filter for maximum angle of deviation less than 10 degrees \n",
|
|
387
|
+
"df=df[df['dir_mad_free']<=10]\n",
|
|
388
|
+
"# first pick out the directional data and put in array\n",
|
|
389
|
+
"di_block=df[['dir_dec','dir_inc']].values\n",
|
|
390
|
+
"# do the reversals test of Heslop et al. (2023)\n",
|
|
391
|
+
"ipmag.reversal_test_bootstrap_H23(di_block=di_block,plot=True)\n"
|
|
392
|
+
]
|
|
393
|
+
},
|
|
394
|
+
{
|
|
395
|
+
"cell_type": "code",
|
|
396
|
+
"execution_count": 12,
|
|
397
|
+
"id": "5d43e0d7",
|
|
398
|
+
"metadata": {},
|
|
399
|
+
"outputs": [
|
|
400
|
+
{
|
|
401
|
+
"name": "stdout",
|
|
402
|
+
"output_type": "stream",
|
|
403
|
+
"text": [
|
|
404
|
+
"using model: THG24\n"
|
|
405
|
+
]
|
|
406
|
+
},
|
|
407
|
+
{
|
|
408
|
+
"data": {
|
|
409
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEUCAYAAAAspncYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACxmUlEQVR4nOydd5wT1RaAv7NLXzoiUqRZQECpYlcUCxaszyd2bPjs2BXRdW3Yu6jYsDesoIiCDbCgKAKiIKCAgvRet5z3x5mw2bAlu5tkJsn9+M0vyczk3jN354Y59zRRVRwOh8PhcDgcDofDUX4y/BbA4XA4HA6Hw+FwOJIVp1A5HA6Hw+FwOBwORwVxCpXD4XA4HA6Hw+FwVBCnUDkcDofD4XA4HA5HBXEKlcPhcDgcDofD4XBUEKdQORwOh8PhcDgcDkcFcQqVw+FwOBwOh8PhcFQQp1A5HA7fEWG4CKNK+pzIvmPU5pciqLftHba/owjfiDBdhJEi1AqTIXT+f2Ipi8PhcDgcjvjiFCqHw1FuEqDwXAGcEcsGPSXn8UT05fEC0BSY7PVfA3gLuESVTsAsoH+YDE3jIIPD4XA4HI44U8VvARwOhyMSVVanQF8bVPk37PPxwFhVfvY+/w40C5NhtUicJHE4HA6HwxE3nIXK4XBUGs/6M1SEu0RYJsISEe4XKfyNEUFEuFqEP0TYLMLfIgwpob1IF8Bo2u8jwngRVoqwQoQxIuwWag84CLgkzLWudQl9VRfhYREWi7BJhO9E2L88spTAbsC0sM+7AzPKHt30QUTqi0jD8M1vmRwOh8PhKAunUDkcjlhxOpAH7AtcCgwETgk7fhdwMzAE6AicDCyIYftZwMNAT6AXsBoYKUI1zKXuWwrd8JqW0ve9XrvnAl0xJegTkSIueWXJUhwLgXYAIuwBHAp8WMZ3Uh4RaSUio0VkE7AcWOpty7xXh8PhcDgCjXP5czgcsWKGKrd472eJcAHQG3hdhNrAlcBAVZ73zpmNKTmVbh9AlXfCTxbhHGAN0FOVCSJsYVs3PCK+kwVcBJyvykfevv8BhwCXAIOjkaUEXgbeFGGaJ9d/Vdkc5bWnMi8A9TEFdiGgvkrjcDgcDkc5cQqVw+GIFVMjPi8EtvfedwCqA+Pi1D4i7ATcDuwFNMYs8BlAy3L0sRNQFZgY2qFKvgjfYtcQlSzFocoGoG85ZEkXegJ7q+p0vwVxOBwOh6MiOIXK4XDEityIz0qhW3Es0i2U1j7ASOAf4ELvNQ+LUapWjj5CchZnJQnfV5Ysjuj5E1O2HQ6Hw+FIStwDgMPhSAQzgM2YW1zMEaERlvThLlXGqvIbUIeii0ZbgMwymprtnReehCIT2AeXQCJeXAEMEZGd/RbE4XA4HI6K4CxUDkeSIiJfAtNV9dISjk8C7lbVdxMqWDGoslaER4AhImwGvgYaAd1VeTIGXazEkhhcIMICoDlwH2alCvEX0NPL7rcOWKFKQYSc60V4ErhbhGWY9eRKoAkwNAZyOrblA8xCNVNENlP0b4aq1vVFKofD4XA4osQpVA5H6nI78KCIvK+qBWWeHX9uxBSfm4EWwGLgpVg0rEqBCKcAjwLTMUvT1VAkUcX9wIuYpakm0AZTsiK53nsNJUv4GeijyqJYyOrYhmIXBBwOh8PhSBZE1SVUcjiSkSgsVJlYLNF5qvpRImVLd0T4EpiuWj5lQQQFTlZlRFwEczgcDofDEXNcDJXDkdxUEZFHRGSlt90nIhkAqpoPfAyc6q+IacsAEdaJsGdZJ4rwlAjrEiFUEBGR6iJyrojc793D/UXEJapwOBwOR1LgLFQOR5LiWai6A8OBJ4A9gGeAHFV90Dvnf8BNqrqjT2KmJSI0x9wKARaUVW9KhO2BUKzQIlXWx1O+ICEiHYBPsOuf5u3eHSvM3EdVf/NLNofD4XA4osEpVA5HkuIpVM2AdupNZBEZDPxPVVt4n48F3geqqWpeCU05HL4hIp8BG4AzVXWNt68u8ApQXVWP8FM+h8PhcDjKwrn8ORzJzXdadFXkW6C590AKsBGrrVQj4ZI5HNGxHzAopEwBeO9vIix9vcPhcDgcQcUpVA5HatMQ2KSqaRuf4wg8m7BsipHU8445HA6HwxFonELlcAQQEdlNRD4XkdUiMltETog43hvoCZwhIl+ISCvv0N7AwrDV/k7AT1H0109EfhOR9SIyR0QOCO9LRH4XkQ0RfVXkul4RkUUiskZEZonI+ZHXFcO+GorIe941zROR0yraVjFtl3gdsbyGsDaL/fvEuq/S7rt4XJfHSOAZEdlPRDK9bX/gaeDDGPURd0RkexFZKiIt/JYlloiIish/SvrscPiNiIwSkeFhnyeJyIk+iuRIQ5xC5XAEDBGpghU7HYVZmAYAr4jIrt7x7YB3saKz67Fg/g+8h5xrgYfCmjsAC/gvrb/DgHuAc4A6wIHA3Ii+bvZk+RF4sxKXNwRo7RVrPRa4Q0S6x6mvJ4AtWFHe04EnRaRjJdoLp9jriMM1lPj3iXVfpd138biuMK4A/gDGYxapTcBXwCxgYIz6iDuqugSrq5ZT0jnePaKewljc8bdEZKL3/gIRGS8iK0RklafEltsF0suYqMVsA6Nsoimm9DocycLtwD3iZbwtCRH5q4S5cXd5OotoZ4OITBeRCyt1BY6kwyWlcDgChoh0Ar4D6oQlm/gU+F5VbxaRAUB/TFn43fvahcAa4FngOlXNF5HmmNLVVlX/LqW/b4DnVPW5Yo4NAPqr6r7e5yxgGdBVVX+PPL+c19kO+BK4QlXfimVf3ndXAp1UdZa372XgH1W9oTJyF9PX1uvAXNdiOl4l/X1i/bcp7b4DFsT6uorpfxegPRbzN0NVZ8ei3UTijeGPQDNVXVHCOT8Bv6jqORH7G2F14y5W1edF5FUsJnIilrTjSuBMoIuq/lEOmfpjiws7RRxao6obom0nrD2vVpq6WmmOQCAio4Blqtrf+xxVDUYR+Qsr9v5kxKF15XGTj2inNvb/801AP1WN1cKTI+A4C5XDETykhH2dvPcdsQeyXqr6P1X9H/ArcK6qXu3VnwJb3R9ehjKVCfQAGnsuXn+LyOMiEkr53RH4JXS+qq4H5nj7K3ZxIkNFZAOmDC7CamXFuq9dgfyQMuXxSwXbKpYSriOm41XG3yfWf5vS7ruY3weRqOofqjpSVT8MqjIlxtUi8oeIbPb+HkNCx1V1OrAQKM3d6DngZBGpHbH/DCAXz/Knqqer6uOq+rOqzgQuAtYCfSoguqrqvxHbBhHp41nBVnqWsDEislvENTsXP0dgEJFaIjJcRNaJyGIRGRR5TjlrMK4tZm5UJOY41M5sVR2MWd2P92S+W0RmishGz5p1r4hsTRQlIjuKyAfeHNwg5lrdL+z4LWJu65tF5F8ReakC8jnijFOoHI7g8TuwBLhWRKqKyOHAQUAt73htrEZPOKsxd7BwlmAuWqXRBKgK/AdzD+wCdAUGl7OvqFHVi73vH4C5kYVqNMWyr5jLHUkJ1xHrfkv7+8S6r9Luu5j2JSKPelau0PsStwpeS7y4C5tTQzBl8mTMehfOJGzcSuJVIBM4JWL/ucAbnrJaHNWwbJ0rQzvC3PlaR3sBEWQBD2PxmL2wv+lIEalWwfYcjnhzP3AYcBLQG/s9PLCY88qah1HhKUDDK/DVTdhvN5hr/rnAbsDFQD/MghViKPY7ezD2uzIQWOX1fxJwjfe9XYBjsGtzBAynUDkcCUZEvizBb1tFZIKq5mIrW0cD/wJXA28BIUvTOgqLwIaoi61eb0VV7wPeLK0vLK06wGOqukhVlwEPAkeVp69oritCtnxVnQC0wFbey9VXFMSyrRIp5jpi3W9pf5+Y9lXGfRfr69qdwoeN3cvYAoFnUboSuEFVn/dWor9V1aERpy4EWpfUjqquAt4Bzgtre0+sMPezpYhwB/Z3CE/UsRqYiVm2SiPLW9HfunmyvONtf6jqVCxOrw2mYDkcgcKbg+dhbu1jPIvwOUBBMacvxEqIVCmj2Tsj54aIHBN2fA7mgRCtjFU8N9vdgXEAqnq7qk5U1b9U9WNsYSbcetYKmKCqv6jqn6r6iap+EnZsEfCpqs5X1R9V9fFo5XEkjrJuNIfDEWNUtVcU50wlbHVNLI7mRe/jr8DZYceysPiIXyvSl4j8DZQUTBnTvoqhCoWxHVH3FQWzgCoisktYvEnnCrYVDaHriOU1oKorS/n7xLQvr7+S7juNZV+qenBx7wNOB6A63kNSKWwEapZxznPA5yLS3otBOxeYrqrfF3eyiFyBxUkeGlGv6z3gvShk34BZNyPb3QkL4N8LaIwtsmYALaNo0+FINDthltpvQztUdZ2ITCvm3PAajKW58D2IzcdwtipQqto7StnuFJFbsd+ILcB9WKZSPJfZgcDOmLU/09tCPAI8JSJ9sN+X91R1snfsbSw+908RGYMlmfpQVTfjCBTOQuVwBBAR2UNEanj+4tdgmbaGe4ffAzqJyEmeH/YtwNRKJAd4AbhMLO1zA+yHf1Ss+/La7ycitcVSYx+BrdJ9Huu+PLepd4HbRCRLRPYDjgNeLm9b5byOWP9toOS/T8z7KuW+i8d1hfq8RURqFbO/pojcUtn2Y0hxMWbF0RBYWsY5XwKzgXPF4uFOZduHOuvUlKk7gKNUtaKuPupZ1LZu3v6RmCJ1IaZUdQXysIdWhyNoRDsHIfoajMsj50Ypbrel8SC2aNEKqK2q16lqgYjsDbwBjAH6UuiyHbLQo5ZwqA32W78r8I2nnKGqC4B2FCaeegCYHHKZdgQIVXWb29wWsA1b3VqJrayNBnaOOH4oFvOyEXs4a12JvqpiPtyrMFevR4Ease4Le3D7yutnDTANuCCO19UQeB/zX58PnBajv02p1xHLayjr7xOHvkq872LdV1i7+cD2xexvhCUWqXQfMZKzDhYX8b8yzhsP3BlFezd6f89zsfi7RsWcc5X3tziwEnL3x7KWFTe+Chwctq+bt69/2D4F/lPSZ7e5LVEbZt3ZEv5bjsUBrsQSMIWfezswsYz2/gKuiYFcJbaDuU7Pi9j3KLbIUVJ712P1JIs71sSbg4f7/fdwW9HNufw5HAFEVa/FakqVdHwslmI6Fn3lYgGvF8ezL1VdShlBwjG+rhV4WZZiSVnXEctr8Nor8e8Th75KvO9i3VcYQvEujV2BYlOP+4GqrhWRR4AhIrIZ+BpTSrqr6pNgGciA7sA2mceKYTj20Hc/8L6qLg8/KCLXAndi2f9micgO3qGNqrraO+cELEFGb1X9p5yXtBJLfX+BiCwAmmMKdV4523E4EoKae99zWI2ppVic1C0UdZ8LUWYNRo86YXMrRPgcGwdMUtUbKyj2LCyW63TMVTHk0bAV73dltHduXSyT5wzvWH/Mpfx7bHHlFCxmMurSCY7E4BQqh8PhcCQcEVmLKVKKFSoOV6oysdiHp/yQrRRuxBSRm7FEJIuxYr4hjgPmq+r4shpS1UUi8jHmBlRcMopLMOtkZB2bFzGrE0A9zB2oKuVEzR3pFGy1fDrmgng1ljDD4Qgq12BWqfew2MDHvM9bEavBuC+2GFEWt3hbOK+GfXcnts3kGTWqOlJE7sOyadYEPvX6C09mk4Fdx45Yop9x2FwE80y4Hlt4qYopWieq6p8VlckRH1xhX4fD4XAkHBE5G7NOPY/FhYWnZd8C/KWq3xbz1cAiIpOAh1X1Nb9lcTjSFU+BqaeqA/yWxZE+OAuVw+FwOBKOqr4IICJ/YrEOSe1qJiLbAyOA1/2WxeFIc5ZgFh2HI2E4C5XD4XA4fENETga2qOoHEfuPA6qq6gh/JHM4HA6HIzpc2nSHw+Fw+MmtWPa8SNZ7xxwOh8PhCDROoXI4KoGIXCoiP4rIZhEZXsa5V4rIvyKyWkSeF5HqCRLT4QgybYGZxeyf7R1zOBwOhyPQ+KZQicgIEbnKr/4djhixECu6+XxpJ3nFX28AegOtsQfFnGg6EJGEBdamYl+peE0p1tdKYJdi9u+KZbxyOBwOhyPQ+GmhygEGi0i90k4SkeEiMqqinYjIlyLyeEW/H9HWjSLyg4isEZGlIjJSRDoVc15TEXnRO2eTiMwQkWLr1kTbZiIQkVtFRCO2f4s572IR+dO7tskicoAf8gYBVX1XVd8Hlpdx6tnAc6r6q6quxOrP9I+ymxIfZkWkb3n2l3WspL4q2l5A+ir3+AWlr4qMX6L7igEfAA+JyK5hsrQDHsQKMzscDofDEWh8U6hUdRowl+jqBASFXljtgH2BQ7ACiGNFpGHoBBGpD0zE0gEfDewGXIZlnalQmwlmJtA0bNs9/KBXt+QR4C6s8OY3wGgRaZlgOZONjsAvYZ9/AZqISKNKtlvSQ3BpD8elHavId1xf8eurIv0kuq/Kch2WMn2GiCzwisz+CqyhlOLWDofD4XAEhbhl+RORPsBNQCescOMPwEBV/S3snFuAw1V1/1LaGQ5sp6rHlLcf77tnR3yljar+VcHLiuy7NvYgcLyqjvT23QUcpKr7xarNKL9Xx/veIar6pYjsCIwCxgNXqGp+FG3cCvxHVUu0kInI98BUVb0gbN8fwIhKVBJPekTkDqCFqvYv4fgc4BJV/cT7XBWrtVPs/ei5WIWsAt1r1apVbL/5+flkZm5bJL6k/WUdy8vLo0qVbaspVLS9IPRVUj+V6is3l0xVKCgAVduAzdhKSjUgHytnX8P7zhbsByoUOJfnnVPde9Wwz6HjeWHfz/XOqeZ9Du8r8ng+UAAoVVBqkU8GVp8yH5gGNAO2x3JB/IOtndQCNoZ9ronVzVwMrFJVjesCnIgcBnTxLusnYJwGKA3tdtttp61bt95m/9yl6wFo2zhrm2N+MnOmhaW1a9fOZ0n8J1XGYvLkyctUtbHfcvhFSXOwPMTzXgjqb0EiSZW5VhKlzcF41qHKwipDT8X+Zx4MjBSRDqq6xTtnEub2V1NVN8a6H+AKzA//d2CQd/7S4hoRkf7AC5RP4aqDWflWhu07HvhERN4EDsZibJ4Fnojy4WCbNqOUrTP2IDJVRPYE3gXuUdXHy9EGQFsR+Qd7/vseGKSqc702qgHd2ba+w6eYhc1RMuuAumGfQ++LjRFR1WHAMICsrCxdv359fKVzlM306fDgg/Dmm5Cbu3X3XUB74MRmzRiYn8+cggJG9u4N9etDvXpQuzZUrw41athraKtRA6pVg8zMwq1KlaKfS9qXmQkZGYWvIvaakYGKcNPt9/DHn70Z9cmhbNqUDXxJVtZX9OgOTZv+yJ57tqT9bk1o2tTEzMqyrUYNazISEano73PUqOpnwGfx7qeitG7dmh9//HGb/ac8bbWH37xwn0SLVCq53j1atWpVnyXxn1QZCxGZ57cMflLSHCwP8bwXgvpbkEhSZa6VRGlzMG4Klaq+EyHEOZgLR09ggrd7IVAVWy6dE+t+VHWCiGwBNqjqNrFAEazG3N1yyzgvnEeAKcC3YfvaAhcDDwF3Yyuuj3nHoonlKq7NaGTrDCzAlLjHgf6qOqacbXyPxfX8ji1fDwa+EZGOqroc2A7IxJasw1kMHFraRTn4FfsbveV97gws9sbVEWTWrYMbboAnnzSLFEDXrnDEEeR168YrN97IYUceyYmPPcbDvgpqTBivDHnoHmx96TD69r2NCy+E3r1NYYI9/RWwGERkLyxhy/ZEuKKr6uW+CJXkpOoDTUVwY+EI4e6F+JLO4xs3hUpEdsIC7/cCGmP/SWYA4bE2oVXPmnHup0xU9T3gvXL0+yCwP7B/hDtdBvBjmPvbzyKyC3AJZShUJbUZpWxdgAbAG5hyOjb8YDRtqOroCHm+w+LczsYCxLeeGil6MfsCj4i8j1kPP1bVggq2UQWbR5lApojUAPJUNS/i1JeA4SLyKrAIU1aHV1B0R6KYMweOP96sU5mZcPHFMHAg7LILGzZsID8/n+knncTGjXE34JSKqnLNNdfQqtVZXHttZ0Dp2hWee850vyAjItcA92Jp0hdS9Lckqt8VEbkUWwzaHXi9JNdb79wrgeux/3feAS5S1c0VkT3IDB8+HID+/fv7KkcQcGORGJJhHrp7Ib6k8/jG0yd+JKbgXIgpO12xkIBqYeeEEi8U64YXw35iiog8BJyKxSvNjTi8CJgRse83ylDwymgzGjoDPwP7ATsTg2QfqroOs6yEUhovw4Iwdog4dXu2tVolA+uBN4G/ReQuT/EtL4OxhYEbsDHfiLmxthSRdaFkHV7s1L3AF8A8b8uOwTU44sXff8PBB5sy1a4d/PQTPPEE7GK3Sb9+/Rg/fjwZGRlkZfnrMz9z5kyGD3+DK6/8jC1b4KKL4Pvvg69MeVwBXK6qu6pqL1U9OGw7JMo24l6+INkYPnz41oebdMeNRcII/Dx090J8SefxjYuFystcthsWhP+Ft69bMf11AhaqaoUexqPsZwtmPYgJIvII0A/opaq/F3PKRCAyGm9X7AG6om2WJVMmNpZnqOokzwpyi4i8WoylpDzt1sDCQ74AUNUtIjIZOAx4O+zUw7AVpqRCVU8XkbrA6cA5wA0iMgGzWr0dTVyfqt4K3FrC4doR5z5IUUufI6hs3AhHHgkLFsA++8Ann0DdwhC4goIC2rVrx/fff89RRx3lo6CGSHs2b55HQUEG114L99xjYVVJQl3g48o0oKrvAohID6BFKaduLV/gnX878Cr2cJdSfPnll36LEBjcWCSGZJiH7l6IL+k8vvFy+VuJWTMu8FLgNgfuwyxH4RwAfBJFe3VFpEvEvlXA/Cj6+QvoKSKtscQAK1S1wDNNX6qq7QFE5ARgCNBbVf8pTggReQI4E0s8sVJEQpaadZ41Byx26hsRuQmzfnQFLqcwKQbhfUfZZlnsipnNp3ifb8fioM7FS2wQ5fXdj1n85mNWp5uxpB8vhp32IPCyiEzClMf/YTFwT0Upa6BQ1TXAk8CTItIROB94GnhMRN4AHg7PTOlIE7KzCy1To0YVUaYAMjIyOP3002nVqpVPAhqLFi3i5JP78c8/d7J+/f7065d0yhTA60AfrHxEvOmI1b0KsbV8gYtndMQFVVi1ymIxN22CzZvttbht82bo37/4zDCphZuHjrijCvn5kJdX9HXJEli8GLZssfxSublF3zdtCocfXv7+4qJQeQrLKcCjwHTMN/5qwqwYnvXjBOCIKJo8AHNnC+cdVf1PWf1gGelexNzwagJtMCVrO4pakup5n0uLqLvYex0XsT8Hz0qhqj+IyPFY8q+bMeXkZoo+LIT3XWabUWTo64xli/vTk2G2iLyCuZ696PklR3N9LbCHm+0wN8zvgL1Vdat1TVXf9CyDg7HcytOBo8LPSUZEpBlwHHAMppCPAHbEsibeqKqRmQ0dqcrkyfDAA5Y176WXoGHRknBnn302ffv25YQTTigxrXqiWLt2Lb//vpzly2vQvj0MG5Z0yhRYMp0cEdkPy9ZaJHGOZ9mNFaGyFCFC7+tQTHHu8PIFLVsmV6m9Z555BoALLrigjDNTn1LHYtMmmDkTZs+G1atN8QkpP1u2FN02b952X1nH1q0zi3e0nHKKZQZNbaKeh7Geg25exJfyjm9uLqxdC2vWFL6Wtq1eDStX2vuNG23btMlec3OLKk4FFYqMN+eUiihUcatDVWbHIpcAx6lqBcROL0QkB/gP0LkyLnyOoni1oI7DLHmHYUr7M1gw7TrvnP8Cw1S1vg/y9QX6Vq9e/YJNmzYluvv05aijYPRouOoqeOABVJX+/ftzxhlncNhhh3HKKaeQm5vLW2+9VWJ9q0QxbRp07qyICD/+GL+YKRHZoKpxCRQTkT9LOayq2rYcbZVVD+4X4E5Vfcv73AjzctiurJXxHj16aDKlTT/0UEu8Onbs2DLOTH22GYvffoOff4Y33oBPPzVlqDiqV7fSBqHXsrbizqtZE5o3Nyt3jRqFW6h0QuTWvLkt5hSDiExW1R7xGKNYEq95WNIcLA/xnBdB/S1IJMWNb16erVmMHg3z58Off1pI8sqV0a01iECdOrbVqwcNGth0qlnTttDUCVUhqVKlsNpIca+1akHbtnZ+1aqFr6H3tWtD4xKqvZU2B/18GsgFLvOx/2TiKMxF0ClTsWURlqHwNeAGVZ1azDmfUbTOWMLwCjuPzMrKcktpiWLSJPvVz8qCGy1R56JFixg/fjwHH3wwAG+++aafEgJW6+P+++9n4sSLUK3PJZckTQKKbVDVNgnsLm3KFzhFqpCxY8eapej55+GLL+CVVwoP9u0Lp58Ou+4KjRrZ01Tt2vZ0lYTm3iTBt3no5kV8GTt2LDNnwu23w9dfw6+/mntdyFpUrx60aGGhyW3amGJU1paVVeIaQ6DwTaHyCpc6okBVg1c4JjW4Eks+UaL5R1VXYm6ijnRgyBB7vfRS2G47AJo1a8bs2bMpqKj/QBzYsmULgwYNAhZSo8ZjDBpU5ldSGle+wFEsf/wBH34IEyfCV1/BihU2r086Ca6+ulCJcsQENw/TlxUrYPx4GD4c3n/f9rVqZQ4fzZpZXNKhh25NkpuS+Ouv4nD4y8HA+0ARhUpEsoDHVPVcP4Ry+MQ//8DIkeYTMHAgAOvWrWPWrFm0b9+eWrVq+StfGDVr1uTII+cyenRLBgyw/6ySFRF5tLTjURb2HUzRMgRnYHFZz2Pxsx1Udb6qfiIiofIFofo3KVm+YOhQC9u9+OKLyzgzxdiyxaxQ990H4yw0eWijRrDzzlx8771w4IHO8hQ/Aj8P03ZexBhVePVVs0DNnQsffGCesxkZQzn8cLj99ovp2dNvKRNLEhjRHI64cTbFF5WuCZyVYFkcfjN8uEWyHncc7GDJNidPnkz37t355ptv/JUtjH///ZcPPviZ0aNbUK1aJtdd57dElWb3iK0bcBo2BztF04Cq3qqqErHd6j281VbV+WHnPqiqTVS1rqqek4pFfQFGjhzJyJEj/RYjsdxxh8Um9eljStUNN8CCBYzcc09GNmwIBx3klKk4kgzzMC3nRYyZOhVOPRXOPBPuvtsMwOedBxMmQO/eI8nIGJl2yhQ4C1VMEJFqQCMsO159oLq3PYAFWt4ObAY2YBlslgFr1K+MIGmOiDTEYqcEaCAi4e4ImcDRJGehYkdleNsrrXbOOVt3dezYkREjRtCtWzefhNqWESNGcNlllwELOP30FjRv7rdElUNVD47c57kKPQeMT7xEqcHo0aP9FiExFBTAyy/Dxx/DW2+Zufbqq+0Jr359II3GwlEm7l6oOKtWmQJ1zz32+aKL4KGHbA0jxKefpu/4OoUqSkSkOtAB6IIVE27rbW0wJaok2lF8ra1cEfkbmIulO5+N1WKYoqr/xkxwR3EsA9TbZhRzXElRNyBHCcydC7/8YmmEvCxF8+bNo0aNGpx00kk+C1eUY489iZtuasqaNc1J1cy/qrpJRO4ExpCkNe4cCSAvz6Lbf/zRyhtcfrmVPPA5+6bDkUrk5lpJjsGDLW35mWeaMTjJKknEHferUwIi0hSrfxXaOlI4XpuxWlZzgW+xoMpl3rbKO74Fqx2VB1yIWayyKLRkbQ+0xBSyY73Pob6XYDWgxgNfAz+rapHaLI5KcTBmnfocOAlYEXZsCzBPVRf6IZjDJ957z16POWbrctugQYP4+uuvWbBggY+CbcuPPzZlzZqT6NAB9t7bb2niSmOsXo2jAjzyyCMAXHHFFT5LEidU4ayzTJm6807LylmCO1/Kj4Ujaty9UD4mToT//hcWLoSePeHJJ6E0h410Hl+nUHmISCawN+budQzmyw+wHvgG+AizIP0CzFbV/Cja/BRAVb+N4twGwB5Y+tCuwH6YogWwxmtrFDBaVZdEf2WOSFT1KwARaQPMD6rrZVgdKr9FSX3efddeTzxx667BgwczefJknwQqnsWLF5OTMxY4mgsuqJ8S4SAiclXkLqxo+OnAx4mXKDUY5yVkSNkHm88+g9dfh2OPtVipUiZDyo+FI2rcvRA9TzwB115r75991tYvqlYt/TvpPL6+FfYNAiIiQE/sP+5TMCtRHmYZGg18iVmHfKn/JCI7AAcCh2KKXjPMHe0L4FXgXVVd5YdsyYqIdMPcKgu89yWiqj8lSKxSycrK0vXr1/stRuqyapWlTs7MtNyvtYNrFBk69GUuueQsqlSZwr//dk5YxucEF/YtAJZiFuQhqro2Hv2Wl2Qr7JvS/PmnueauW2eVQtNk0SlZCvvGi1gU9o0nqfRb8OqrcMYZVt/w/fede1+IoBb29Q2vKvc5mCvezpiL3khgBDAmXkqK5Mi+wKNYUeMBmq3TSjvfi6V6C3jLU/66AMdjGbCeA4aKyHvAUGBCUC0tAeNHYAdgifdesRXxSBRLUOFIdb7+2gLb99tvqzI1efJk1qxZQ69evZAAmYGqVz8N6MAhh+yeMuVzElzY15EKDBoES5fCp5+mjTLlcCSC9evN8/3LL2GvvazyQFZcltJSj7RKmy4inUVkOPAPcB8W+3Qu0ERVT1bVN+OoTNXAAqy7A3sBn0lO9E9qavysqtnArphl7WmgDxZnNVVELvSyYzlKpg22+h16H0osErm19UU6R+L54gt7Pbgw2dz999/PWWedFShlCuCDDzKB7px4YvL/dIvIT56rc+jzqV4NOEcMuP/++7n//vv9FiP2fP45vPEGHH101EGEKTsWjnLj7oXiyc+3JJldupgyddddMHZs+ZWpdB7ftLBQici+wCDMbW4dZt15UlWnJ1CMekDI+1SwgOsMoMxYrEg8S9QPwA8iciPQD7gEy4Z1q4g8ADwdFFeZIKGq84p770hjilGohg0bxvTpifx5KJvBg2/jo4/+QeRpjjvOb2liQhcKfxPBFoi+x5L9OCrJt9+WGbqbfBQUWPKJxo3h3nuj/lpKjoWjQrh7oSiq8PDDMHQozJ4NO+0Er71mdaYqQjqPb0orVCLSFbgHOAyr/zQYeCLOLn07AmM0e5s+lgBfAft6n9/R7LITW5SFqm4AnheRF4BemOJ4H3Cjl3b4iVQtXFkRyoqbCicoMVSOOLJ8uaVLr169yGp3nTp12GefYPnBz5ixiYKC9ey779a6w6lGsMyBSc4777zjtwix54knYNIkSzW2445Rfy0lx8JRIdy9UMjSpXDZZfDmm2aZeu01y+iXWYlgh3Qe35RUqERkP+BWLJnDcuBqzGKzNbJfcqQNpmwJcKNm6+xK9ZkjjwEXYQHViyVHOmh2oYVIs1UlR47GlLstWMB1zPCsVl8AX4hIT+A2rLDwFSLyIXCFqhbEss8kpbS4qXBcDFVQuPVWGDECQhajyM+VYcIEe917b6hh3rKffvopf/zxBxdddBEZGcFxratV6y4ATjjBZ0EcDj9YuBCuu85yNqdqATaHI0GoWmHed96xGtjPPFNqokxHFKSUQiUi1TDl6Q7Mne4B4HZVXV3kPItdGo+l5gXYX3KkRaTFyDsvI3y/p4h9DLTG6kxdArTyXgV7CN8BS3tepKCvZmselj2wctdpctUH1nptFkFVJwF9RKQ38BJwKXCAiJyRYDfHIJIaAfD9+8OLL9r7KlWgQQPo2BH+8x8YMKDs3KaJpnVrmBfhYVmvnmXYK4trrrFltHjwww/2GmaNGjFiBB9//DGXXHJJfPqsAAUFFn8PFjCcQhwtIqHf5wzgCBFZHH6Cqr6beLGSn7vvvhuAG264wWdJYsRtt1mgx5tvlnsJPeXGwlFh3L1gylTfvvDRR3DTTVakN1ak8/imjEIlIgdgPvi7YZaag4G8SGXKoyam9ISWnxsBdYGVW9vLkR6YQlRfcuRp4FLNVgWexJJCZABnAu9TGAsVGs9M4E+vnYZYAonfNVv/qvR15kg1TCk7AFgrOXKwZuvUEk7/DYvd+hkrIvyziDwEZKvqxsrKkowkU9xUmXWoDj0UXn7ZHjKWLrVg7exs2xfE1Dy33GJLYiGitf7Urh2/VOahFLw9CrOgPv3006xYsaKEL/jDmDHzWLr0RLbb7j7atTvEb3FiyXMRn5+I+OwsxRVkypQpfosQO775Bp5+Gi68EHbeudxfT6mxcFSKdL8XNmyAs882Zer6622dIpak8/gGx5+lgohIDRG5H4tPqgkcraqHAM9i7nfboNm6AZiAFe1dD0wGVkWc9jymaGVi6dWHeJahehQdt7rAJGCN118B8IFm60zJkebATOBN4FfJkYMqfcFwHKagVQUaAA+Wcu72wCzgP0B74EXgWuAnEdkzBrIkHSLSTUQywt6XuPktq6qOVNUBmSWtxlavbsE0zZubA/RVV1l6np9+KhqwvWWL/XK2aGFK1p57wpgxRdv6/XcrkFmvnikv++wD07ys/tOmQe/eULcu1KkDnTsXJnIoD3XqmLyhbfvtTRk87zxo0wZq1oRddjHZC8Km7q23QqdO5e+vLFQLFao9C6eDiNAoYDnJv/pqE7A9PXtmpYxbhqpmRLE5ZaqCvPHGG7zxxht+i1F5pkyBgw6C+vUtIUUFSJmxcFSadL8Xhg41j/mbboIhQ6Jf14yWdB7fpLZQiUgXrMBtB8xydJ2qrvMODyijLlMf4FRMOXrNsz6FUy3sfSZwOTADuB5z+QNTVkZptm6SHOmMKS5/A6GovP8AdYCQieFqTPGrDJFKYolxUao6RUS6h43D+SLyBuaq+K2I3AHc4VfhYp9I7TpUnTpBnz7mGJ2TY/vOOQfmzLGI0xYt4OOPzd7/ww+mHC1cCPvvb3WYPvvMHlwmTTJlB+C00+y8SZPMvXDatK3xRoC58/XqBcOHl1/eggJTCN96yzJ3TZpkLouNGpmiFU/mzbOkFI0bbw1w/+eff3jggQcYMGAA7du3j2//5WDq1HbA6ApnXnI4kpbzz7fXiROhVSt/ZXE4kpjVq+Gee+DAA2Pr5ucwklKh8orcngc8jiWd6KOqRZbcyypyq9m6CVMsSuJq4D0K0/rWBPbXbH1JcqQF9lD+Ryi+SrP1b+DhiDb+AfIwhWozxaQDlhzZEzgZmAa8UoxiF8kHmFJ2JFZP6YrSTo4cB1UdKyK7YwWGs4GDRORUr4hwOhBZhyr16NDBCkiAKVKvvw5//VVY6vzSS+3400/bctUTT5jl6u23oZq3jrDrroXtzZtncUwhBSPS5WannaBpU8rkppvM2hRi0CDbwn0OWrc2C9vrr8dfoQrFT/XosTUa96+//uKpp57i+OOPD4xCtWULfPXVaqAeh6SUt58jntx+++0A3HzzzT5LUgkmTYLJk20pvUOHCjeTEmPhiAnpfC/k5MCyZXDnnfHrI53HN+kUKhGpBQwFzgY+A05X1aWlf6sc7edIBmb1+g+WjS8UG7UFU7DwUqKviqK5d7BCvmcDG4FFkiNVNVtzvb46AF8CtTDXw2bAPZIjg4EbMCvKsZptiSQkR+phbn59gRrApigUsG3w0safJSLjMMveTyJyiqqOL29byUZa1KFSLUzX89NP9jnyYWTzZrY+nf/8s1moqlWjWK66ylaJX3zRXP9OOqlQuQKL14qGq64qqiQ1bGivTz0Fzz5ritvGjZCbm5iV6GLc/fbbbz/Wr19PGesxCeW116ayYUNPdtzxXZo1O8pvcRxJwsyZM/0WoXLk51vMZVaWWdkrQdKPhSNmpOu98NtvVm3gzDPtv/t4ka7jC0mmUInIDsCHQA8gB8vgV+laThEcAByDjU0VYDZmyZqg2fp1eRryUqU/BVyGZRS8BatTdal3yn5hp2cBx0qOjAZuxJSs1phy11ly5AjgXcw9bQJwVEWUqSLyqb4oIj9hit/nIjJAVUuz2qUcItIUS3cf0jh+w4o+LyxHGw2x4PrDgWXAjar6WjHnCXA7cA5QG0sWcomq/lqpi4hkxgxo29beFxSYcvXDD9tm/qtZ017Luo1uvRVOPx1Gj7bYq5wcU4LOPbd8cjVqtK116803YeBAuP9+2Hdfi9N64gl4773ytV0RfvnFXrt2Zc2aNVx//fV06dKFCy+8EAlQoNKUKXWBARxxxF5+i+JIIl555RW/RagcQ4fagtCQIdCkSaWaSvqxcMSMdLwXJk+2HFZ16th0iifpOL4hkkahEpFOwEfAdsCJqvp+zPvIkUzsgTc8pVhj4FHN3hqbVSI5OTmCuZF1x1Kp1+lP/12mMz1jCUtYyMJaeeQdFvaV78Peb8CyCtalMC4qlAQDzJ2wlvd+H+BAYlDLSlWneXWr3sYKBO8CDE6HmlUichjmQrmAwr/FycDVInK8qn4aZVNPYBbMJkAX4CMR+aUYRelk4Fxgf2Aelt7/ZSB2CTCmT4dPPoHBg+1z166mMP37Lxx8cPHf6dYNXnnFfMtKslLtsottl19uq8bPPlt+hao4JkyAvfYyN8QQc+ZUvt1o+NX783TqxLp161BVfvopeLWcf/21NfAoffr4LYnDkSD+/tsSUOyxhyXUcTgcFWLlSnMMUbVkmc2b+y1R6pIUCpWXEn0U5hZ3oKpOjlnbOVIXU4L+AI4AukacUgOzLF1XUhs5OTnbKfo/Rc/OIKPIEnxr7x9ALrksZrHk5OQcAnyh2TpVcqQPcDowBRiGKVHfAft676/ymtpAYQIFwcYiJqjqKhE5ClMMbgRaisg5quaamMI8imWDvCI81kxEHgEewVLwl4qIZAEnAZ28hCgTvELKZ2Jum+G0ASao6lzvu68AV1ZY+s2bTVEqKLC06ePGwV13QffuFvMEFgt1+ulWt+qBB0x5WrHCsgG2bQsnnggXX2wWp//+1+KcGjQwi9Zuu0G7dtbWySdbfNPixYVKUIjevaFnz4otfe26qyWzGD3arFdvvAFffWUyxJPVq+2hrUYNaNOGZpmZPPXUU/HtswL8++8yJk78G+jAfvuVoOw6HMVwyy23AHBbrPMiJ4IPP4T16+Hxx2NSbTSpx8IRU9LpXlizxv7r/+UXy0lVgYoD5SadxjeSwCtUInIEFrs0HzhMVRfErO0c2Q34Bsvmtha4tZjTqgMtwr5THdii2ao5OTlVgasVvUmQ2vOYp7/z+8Z5zMtcwYpqm9lckEnmb3uy55WCXNiBDo1a0KITMA74Kicn5xLN1vFYkeFwuY7Aal2t0Gxd4u3uj2UXbIIpXpNiNQ4AqporIhcCfwF3ArW9uKrNsewnYLQGHi8mgckTwAVRtrErkK+qs8L2/QIUlyL/DeAUEdkVq1N2NhHFn8vF2LGWDCIz0zLzdepkdaguvLCopemFFywK9brrTIlo2NAUoJDFqnlz+PpruPZa2ycCu+8Ow4ZZ2ytXWuGKf/81t71jjjEXvRBz5mzNklduLrzQ0iKfdpotoZ10Elx9NTz/fEVHJTpC1qnddmPh4sU89NBDnHPOOXSoROB7PHjmmY/ZuPFsWrT4nR12aOe3OHHBc5m9E+iNlXookshXVev6IVeys2BBzP6rTDxjxtgCToyCPZJ6LBwxJV3uhWnTLHHv2rVw++0kLENsuoxvcUiQgq8jEZHjMFe0GcDhqluVi9i0nyMvYA+1AuRicVl9KKzzFLIC5WCWou28/Vva0/7kfvS7AdhnJSt/eI3XOi5laS3MilRAKOX2ZvKYzAL25QrN1pE5OTk1sAyFOZhr4cXZ2dlxfnosHyJyKfAYlvTjuFQtAiwi44GHVfWdiP0nAVep6n7Ff7PIuQcAb6vqDmH7LsCSpfSKOLcacB+Wgj8fczU8RFX/LKbdAcAAgGrVqnXfvDmV9VofeOYZS89+xhlMuuwyDjzwQD788EMOP/xwvyUrwp13/sPgwd9y2ml9efXVEgo8JwAR2aCqcakULSLvYZ4Bw4CF2G/oVlT1xSjaiHscY48ePfTHUCKTME55+lsA3rxwn7KacETDli226HPWWRZH5diKiExW1R5ln+kP8Z6HJc3BoBCU34K//7bSlBkZVnPqwAN9FSelKG0OBtZC5Vmm3sYmWh9VXRmHbpZjilQ173U5Fpu0PaYUdcTqSk3DXP8AqE/9akdy5HtY5r5+j/BILlY0F0w5y0SBPAqoQiZ70wZ4XXLkKs3WYcATOTk5bwOvAM/l5OQ0y87OvgNAcqQRhbW1ntJsvSsO110qqvq4iKzDihuPEJETVHVLouWIBxEFe4cCD3lxY995+/bGklREuuuVxDos7i2cupjFM5JsYE8sMcm/wBlYMpCOqroh/ERVHYY9YJKVlRXcVY9kJWSh6tiRnj17snFjMNcMfv21OfAfDjjAb0niSm/M++D7Ms8smeDEMToqxyefmLufCxpMRtw89Jm8PMvkt369TSWnTCWOGNdIjg3eqv97wK/ET5kCWyH5BnsoHo0pELWwyX4qVvh1M2FFfmtSkzM5k2pUywAOys7OfhPLPPg5trJqD7+CUpX5ZLLZG+UsoF+onezs7CXAUcBLwO0H5hz4u+TI11gmv97YQ/cgyRFfKs+o6nDgf56Mr4hIYJXvcvIj8IP3+irmznkX9vf73Hu/I6bsRsMsoIqnlIXojN27kXQG3lTVv1U1zxvjBhRmGHQkijCFCkBEApXZL8Tnn08AZrNfmbbSpGYJ9htcIcLiGG9W1XWqOgH7TT6zmNO3xjF6GWJfIUXn34033siNN97otxjlQ9Xclps1s9jMGJGUY5FkJMs8TOV7oaDAXPu+/BIefBAOKi7wIM6k8viWReAUKq/o7Chs1eKIeClTXnHeqVia9K+AUzRbt2AP1fcC9wBfA0cT5oJyPMdTj3qMYcxTt3LrVMmRy4C7sWQOF2CFfMEsVeGBJRuAL8JlyM7OzlvIwvPmMGdzL3q1a0rTAzALWbjy4ltOFs9KcjWmYD4hQXziLD9tgLbea2lb22gaU9X1mBJ8m4hkich+wHHYalskPwAni0gTEckQkTMxF9LZlbskR7kJU6g++ugjrr76avLy8kr/ToL55x9YvPg0qla9rTI1TZOBm7D5U7vMM4unpDjGjsWc+waws4jsKiJVqWwcY4BZvnw5y5cv91uM8vHVVxZTmZNj9adiRFKORfKRFPMwVe+FggKrODJihOWWuugif+RI1fGNhkBZHbw6U6Ow1cqYx0xFMBJo6b0/Giu6WwVLUx5SNDthxXYVoAMdtB3tZDGL7/05++frJUeexty2amLxLodSdEwFe7Cuhz1MP7T1QI408fpdUJOaVS/mYvrSl2d4Bi3U3/Kw8fANVX1QRBpjLnCzgAf8lKeyxKmY78WYdXMJ5jZ6kar+KiItsfi/Dqo6H1PSt8cyOmZhitRJXqFlR6JYswYWLbIMf61bM+X113nppZe4PzzRRgD45huAd+nZsyaZmX5LE1cGYwlilojIPMz9eiuqukcZ368NrI7YtxqoU8y5i7AkQDMJi2MsqeHwWMaWLVuWdFogGTZsmN8ilJ9nn7ViOTGOoE/KsUg+4jIPYz0HU/Fe2LzZXPsmTbJ6U16iPV9IxfGNlsAoVCJSCzMPNwIOiGU2vxJoHfG5sfeq2AQHWAw8DQwQpGZvetfOJfePZ3hmxpM5T34AHIlZGMBirnph/sOh6HHB3MoWAucDl0qONAWOx5S5AoCNbJz5KZ/udhIn0YEO/FroLTZMs+Pm7lgebgJ2Au4TkbmqmoCqq4nBc2Xsif09iuSlVtWXomlDVVdgf9PI/fMJq2mmqpuAS7zN4RehOlc77QQZGdx0003cdNNN/spUDJMmKdAjlp5PQWVEJb8flzhGKBrL2KNHDxfLGE/++ANef91KNMTQOuVIGHGPJ3ZzsHjeeMOUqbvvhiuvLLmcpCO+BEKh8lzJngJ6YFnlfk5At6OwSRzJRiy73UrgVs3WfyRHdjqZk89vRKOHJzFpbB55QyksshsiC5iTSeaK9rRv0prW0pjGy5vTfOAEJvSZxrRqK1iRh1m/Isc9YzrTc3vRq+re7B2uUDWN2dVWAlUtEJGzMaXjZRHZU1V/81uuyiIi7TFLZRtM+c3H/ja5WOxcVAqVH/TvD8uWwShf7ZdFGT4czjmn8PMOO8ABB8A990CbNr6JtS1//GGvO+/Mhg0b2LJlC/Xr1/dVpEg2b97MM88cDgynR48gDV7sUdWcSjaxNY5RVb0/btlxjN7n4SLyMBa/Edz0YRXgGq8WXdAsryXy3HNWsuGu2OdhSrqxSE6SYh6m2r2wejUMGmRhhwMH+q9Mpdr4loegxFBdgAUuZqvqyAT1eS6wKWJfAfA9cJJm6zmabe5hmq3rO9ChJ7BsDGNqs60yBVBlF3Z5+Wqurn0yJ2fszu5SgxoNCyjY52AOrnEZl2X0pW+1alSLVKY2Az8r2mUa0xbvyI7Upz5YzNXWHxbJkQ6SI+9IjrzqxX8lFC91+olYKvl3KhHvECQeBiZjLpkbsEK+PTCXvJN8kyqJqVXLvOkWLrRCglOmwLHHQn5+mV9NHLO9kLVdduHDDz+kQYMGTJ8+3V+ZIli8eClr1vwFfEOPwCZJji0icoiIXCoil4hIr2i/5+IYi2fjxo2BzV5ZLKNHwz77WMHxGJN0Y5GEJMs8TKV7QdVKRy5caOsR1f2rrLGVVBrf8uK7hcpLY/0YMAYr7li59izteA3N1n9KO0+zNVdyJJewdOhYzNIXmq35XlutgcZNafrzhVx4ODA6n/w5xbXXla4cy7E1l7I0/13eZQ5zUFSAO+tQ58592KfO3uxNU5ryIi+u2czmatiKznzMnH3un/z5WS96ndGJTrMmMOFlbFxCxYTHYxnh8rGH/oRX+VTVhSJyGvAp8LSInFFMUdxkYk/gIFVdLyIFQBVV/UlErsPGvqzYjbgiIn2BvtWj+JUMWawOOwzuvRc2bIDjj7cg1Vqe+q9qmX+eegrmz4fGjS296pAhdvy22+xH+d9/oUEDOPxweKmcNjoRs0yB1RzOzoYzzjAdZs0aC5b96ScrNbPHHnDfffYMFeLpp+GBB0y+OnWgWzf46COoUsUKFQ4cCD/8YNfSti08/HBhfeKoCSlUO+9Mly5duO+++2gTKBMabNzYAtV5NG9u45jKiEhzLKtrd8w9GqCZiPwInKCqC0v8ciEujjGCJ554wm8Romf+fJg6tWjB8BiSVGOR3AR+HqbSvXDPPfDzz3DHHcGpMpBK41tefLVQiUhN4DVgKXCGqhZUqr0cOR/4B5gtOfJkFF+J/PWughfzIjlyBvYD8HkuuZOwor4TgL6RjbSgBX3py1zm5g1jWOZsZocSSwiwei1r9/6UTx//nM+HN6Vp3oVc+HsmmZ0xq8hBwFjgynnMO3096zmIg77TbL1Ds7eOR2PMKiaejDtLjvjyt1PVccCtwGlYavlkRrC/Adg9GMqo+Dewsy8ShaGqI1V1QGaUGQnGj4fp02HsWHjzTXjvPXjkkcLjgwZZxfQbb7Qkd2+/DTt6eSjfeceeZYYONY+4UaOgZ8/C7w4fbsrSX3+V7xpq1rTX3Fyr2H7mmSbnpElWePCoo0wRBPjxR7jkElPCZs606wj/T+K000y5mDTJ/hO59VbLK1FuQi5/u+xC+/btueaaa8gKWMxGqHblnnv6K0eCeBRbKNpZVXdU1R2BXbx9j0bTgKquUNXjVTVLVVuGiomq6nxVre09xKGqm1T1ElVtqqp1VbWbqqZklr+k4hPvT3DEEf7K4agUbh4mjsmTbYHy6KPt/3SH//htoRqCWVoOU9VlMWjvYQoTQvSXHLk75LZXAiswl7vQd/KAx733d2LZ+6hHvZA1aCawCnMN3KrQ9KEPa1nLW7xVJc/Lmt6GNrSgRd4e7NGsMY2XZWdnXwZwWs5p1dvR7tRd2fWt3/htZ2x1ZivLWU4mmcdJjmRothZ4itNdYTLmYxaibMmRg7GA7sc0O6GWoruAPlgq9a/D/KCTjemYL/dcYBJwvYjkYy6oSecCVLcuPPmkWXN2281iu8eNsx/bdevgoYfMonPuuXb+zjsXWofmzTNl5fDDoWpVaNmSIq5m9epBu3Z2LFr+/tssUC1awK67QqdORY8/9pgpcp98Ylas+fMtFv3YY8061aoVdO5ceP68eXDNNdC+faH8FcKzUBW0bcvkH36gbdu2NGrUqIKNxYcXXhgGTKZHj6f9FiURHAb0UtU/QztUda6IXA6M80+s5GbgwIEAPPzww77KUSYFBWY232mnrXXhYk3SjIUj7qTKvfDOO7bI+fLLkBGU4B1SZ3wrgm9/BhE5GLgCeExVx8ao2fCYKGHbGKlIPseUqDwsGcUVmr01u+ASvHTpNakZMhEsBwZhWWkKgGUtaTmtBS2YwAQ2s5mqVOUMzuBszqY3vas0pvEQRWfn5OQcIznS6S3eOm4d69iDPfbAU9jC2cAGMsmsB4zwXP1+wOLLQjWg8jFF4BqshtZdWGxThZEcOVZyJFtypHs053uF+M7GsuI9l8T1qe6kcFwHYxmHvgAOBy73S6iK0qGDKVMhmjWDJV7hgRkzLLVqSRnjTj4ZNm2y5BHnnWfWq82bC4+fcAL8/js0L6Mq2vr1ULu2KUY77miufe++a4GyS5bAhReaclWvnilNS5aYIgXmrtiqlclw+unw4otm1Qpx1VVw/vlwyCFw550mT7lZt858GqtXZ3WdOvTs2ZOXXy7Oxd9fZs78G/g9beKnSqBSHguOJCFkcr72WntCdDgcpaJqHih7723u+Y5g4IuFSkRqYOnIZ2P1jWJFP+BtLC7qOs3WxaWdrNk6Q3JkX6we1FTN1o/CDt8OPALUbkazj4CzRzFqb29fTexBfLuWtKwDbM3MdziH05a2fM/3n3/N15OyyLrieI6v3ZjG7+/KrhfOYlbeTGbSkY6CKW35WEbBnYHqiiL2jH8klnK9WzGin0phYoyaWOG8d8ozUCEkR87BrHI1gOskR/bVbP2lrO+p6mwRuRZ4AnP/e7Ui/fuJqo4Jez8X6CAiDYGVyRgbFmk9ErHFX7Af4NLYcUdzsxs3zlztrr7aamt+/335MhjXqmWJKDIyoEmTot89+2xYvNgsZa1bWwBt796mdIEpWD/9BF9/DZ99ZrFdgwZZzFSzZubid/rpFrs+ZozJ99RThRa3qAjFT+20EzWzshg5ciS77bZbORqIP3l5sGLFbQDpolCNAx4VkVND5TK8mItHcBaqCpM0K8TvvGM/XqecErcukmYsHHEnFe6F996zBcVQ/HOQSIXxrSh+Waiuw3zkLymu9kdF0Wwdq9naQLO1pmbrY1F+Z6pm65BwZUpyZADwOlYTa00nOn0I8C//PkVhLBMADWhQJZfctRvYoFWpSle68hM/MZrRHdaz/rolLKn5Fm9JFapktqTl7cDaZSzbXIMaNKbx/ZqtzTVbO2FxO1SnOlvYAva3KelxKpTlbwtmWfsg+lHahv9615QBZFJKkctieBpzlXtQROpXQgZfEZGaItJJRDoBG5NRmSqLDh1MgRlXyuNpjRrmj/3QQ6bE/PorTJxYvn5EzBWvbdttFbEJE+Cyy6yPjh1NgVq0qOg5VaqYBWrIEItRX7++aGr4XXaByy+3RBXnnWd1QMtFWEKKGjVqcMwxx7DTTjuVs5H4MnOmJRVp3RoC5okYLy7HfoPmisg8EfkLmOPtSzpLsaMcqMKIEVaNNGClCxyOIFJQAIMHm+v7tdf6LY0jnIQrVCJyCFbUbbSqfpro/qPkOuw/8zrAdhOZuANAfepHZgfYkkEGm9lcC/izPvWpQhX+4q8CoD7e+K5iFStZST3qNQFeaUnLVwAu4ZJwX6NGXh+stmLjYzBFKfzhvoCiVsVfgR7RWJQ8t75XJEculJwifhWfU5iYIR9zMYwKz/XvMixpRqzcNhOGiFT3al+sAH4BpgIrROQRz4qaMtSpA1dcYfFUL7xgtW0nTbKYK7CkE88+a5n0/vzTzqla1RQYsBWx9u3hn1JzZ5bOrrvCK6+Y++EPP0C/fkVrZowaZUk0fv7Z4qVee81c/nbbDTZutIQVX35piTG+/94UtA4dyilEWMr0xYsX891337FpU1mewYll3Li/gANo2fIbv0VJCKq6QFW7AUdhiYIeBI5U1e5JHJ/pO5dccgmXXBLwGuI//2wT+qT4VqlIirFwJIRkvxdGjoTffoPrroMo81UllGQf38rgh8vfbZiicZiIDFHVIOYnmQO0wsanygxmzDyMw2hGM6ZTpF5NxhrWZNaiFlWo0naTF7JVhzohaw8AmWRSi1psZGMGUK8tbdcVUFBwJ3c+cWvOrYpZpz6rSc3/NKSh/MzPBVhs1A/AgVj67gwKFeACLD7sXs3WMiNJvOQVr2NK4vFY7FPIgveA19Y+wGuarROiHSQR6QoMxyx23USkg6rOiPb7AeBJLF7qfOBbb98+WLKUOlitspRhyBDzt779dksY0aQJnHWWHatf31KwXnONZeTr0MFin0LZxFevNstJbm7F+3/+eRgwALp3L3ThW7q08Hj9+vD++5a+fcMGi1F/9lkrDrxlC6xcaW6D//5rlptjjqlAluWwor7vvPMOl1xyCX/++SetW7eu+IXFmJ9/XgUU0L79NiGWKY2qfoYVVXfEgJo1k+D+efddeyo87ri4dpMUY+FICMl+L7zwgv3ffcYZfktSPMk+vpUhoQqViPQE9sMe4utS1PoS+/5yZHvMZSQfeFizdWWUXz0LeAFoC9y/lrVvLmABbdmm4GCVv/mbDDJoS1tmMYuFLGQv9mIqU6usZz0A+7Kv1qCG/MEf6zLJfGQNa37eyMaMfPJDy3J5wPRudBsD9Mkn/zbN1u+8azgYKza8a1i/32CxBbmSI9U0W7eUcT17YUoUWFbBg/EUKi81+2MUKljlYQmWJfEsYCiW5OGECrTjFycDJ3oPciHmisgSLCbNV4WqtDpUw4eX/hlMYbn11sLPGRlwww22RXL88baVRP/+tpVGWed07myWpXDOPLPw/f77wxdfFP/datXMYlVpwlz+zt5nH7bbbjtatWoVg4Zjx+LFXYCJKZ1BWkSuAoaq6ibvfYmo6oMJEiuluD9ONZ1iypdfWm2A7baLazdJMRaOhJDM98KMGfDBB2adKk/G3USSzONbWRKmUHmZ4O7B6v3kqOraeGaH89KNfwO0xBS347EU2eHnVAHqabYuD9/vJbM4yjvnIqDBTGbShz40pjFLKVxWn8tc1rGOfdhHZzFLPuIj+tOfK7hCpjGN+tRnJ3aSNawZN5/5/7me6/esRrUaoxgV3mUVYI9DOfQvYMnhHH5HmCyrJEcGY5agWhS6513tvf4oOXJIGWnTxwE3Y1azjVg180qjqv+ISDdVVRFpjVVI309Vyxl54xvrsbplkfyDjZOvqOpIYGRWVtYFfsuSMszzqii0aUNWVhb//e9//ZWnGKZOtdc9fC0rHXcuA17ErOOXlXKeYi6AjlRj4UJbYbn66rLPdTgcPPecLS5eeaXfkjiKI5ExVAcCvYA7VHUtQJyD/xthyRuqYtaZ3SVHtkZsSI7sh/1nvkxyZJ3kSIvIBiRHdgAeAjKmMpU88uhJzyIy55PPJCbNbUMb2Zu91/3DP7nP8/zmucxd25721KUu4xiX9xzPXXAjN2ZmkvncKlYVTGFKkWa2Y7vvBekLDM/Ozs73+t9TcuQb4HrgPiwr4ibMylfb2/bBYphKRLP1B6A35m55imbrK9EOYlmE/Q0fBBZj8XHJwmNAtldgGthabPpmKmaxcwSZ/HzzdQTWN2jA8OHDmR/K2R4Qli1T/vmnM9WqPUTbbQziqYOqtlG1hSzvfUlbCo9CfBkwYAADBgzwW4ySeeEFS2l52mlx7yrwY+FIGMl6L2zYAG+8YbUid9jBb2lKJlnHNxYk0uVvEPbA/UyC+luOWRp2xFY5Z4Zc47ykDJ9RGOeUBTyLFasNpyWe0rmBDUxhCt3oJt/wzZaVrNyqnI1n/PY96PH9ERzRswc97nmRF594gzf+h6WEzwSkKU1f2MjG1lWpuuMIRhSECgBjlpCci7hoDyxF+mOSI52wIsW9wmTsBuRiyqF6m3jfX1XWYHguhN+VdV5FUdX1IvIgcI+I7KmqUSe3SCQi8mHErl7APyLi2QXYHZsX5UgW7kgKFi0ypWqHHfhj/nzOOecc3n77bVq2bOm3ZFuZPHkz0JWWLZsGqlhjPBGRs4A3VXVzxP5qQD9VfckfyZKboBWrLkJeni23d+kCu+8e9+4CPRaOhJKs98Ltt5tR99WAF6hJ1vGNBQlRqESkBxb8f72qJsSVSrO1QHJkH+BKTBF5OOzwLljdpXCaSY5keDFFIaZiLnb1AL7iK3Znd47hmGqv8EqBohkAispzPHfblVx53nZsd8PlXH7ydKZvmM3sgmpUy2xDm8yOdDxoC1t4jdf4m7/DH5Vq3MRNkzPJvBu4+1Zu/ReYAjQkLD279z6kxCnwF5bM4krN1i2SI12B54HqwGWarX7Ub3kKuNHbKlVsOI4sj/gcWb/rz0QJ4kgwIWtUy5Z06tSJP/74g+23395fmSL4/fcawHAOKU/xguTnBeATLCYznDreMadQVYAhQSxSE+KXXyyd6EsvJaSYb6DHwpFQkvFe2LwZHn8cTj0VevXyW5rSScbxjRWJslBdDazGHrgThmbrEuzhPpJVWA2n8Gj/nTClK7zuSV/MZTAfkLWszf2UT6v3pS8HcEDG13wdshLVWM3qjLu5+9zudK+3G7v13p3d6UpXADaykclM5mu+Zh3r8ggb97rUza1K1ZeBmY/xWChVegOKKlNgmf0KsLgfBQ7XbJ0TdvwTIPR0+KHkyPaareujGqgYoaprRORxYLCI7KyqsxPZfzSo6jl+y+DwiTCFqkqVKuy8887+ylMMU6bkA5mpHj8ViVB8gqKW2P8bjlTjww8tS04qZ15xOGLEmDGwbp0VtncEl7grVCKyA3AS8Liqrol3f9Gg2bpEcuQs4HEs1ioDS/jQT3LkNqCqZusiLMtbLe9rm4Eqk5lMS1pyCIewnvVMZjKYW97tm9hUZyIT205kIjWoQV3qouiPy1jWQdFQQompWNY9ySKLMzijmqJZM5nZbznLP8JczQowJW4TpkDVAH7H0nmvBX7RbF0Wuh4vAUe4nTUTaALMjfnglc2TmKvjhUBSlJ0TkbZAB+yh7jdV9WPcHPEmTKEaPXo0a9euDVxSivff/y+wns6dP/FblLgjItModF/+SkTywg5nYqUrPvZDtlTgnHNs7eiFF17wWZJiGDsWevSABFmIAz0WjoSSjPfCm29CjRpw2GF+S1I2yTi+sSIRFqrzMCtPQq1TZaHZ+pbkyHjgD0yJ2YL9x74UKJAceRKYhCXTqEWhkpP5IR9Sk5r0pa/UoQ5f8VW+ouswK5cAbGITm3QT/E4LNrCc7izDCvH2A8Zvz/a79KNfjbrULRDkuDd4Qym0mGVgytc5wPuYhe8W4BVgJFAkitdzb3wK6O/tEuAPyZHJwCGaretiOniloKoLReR94FwRuSVRLp4VQUTqAs9hCn9B4W55BzgvlDzFkSKEKVQvvvgiv//+e6AUqrw8WLfuUGBjIsJKgsAI77UT8BEQ/ju1BXNrjnTJdUTJjjvu6LcIxbNunVX2vqrUbPkxJbBj4Ug4yXYvzJ1rCtVll1mGv6CTbOMbS+KqUIlIBjAAGKeqs+LZV0XQbF0kOXIE5haowDHeoQzgIiyhRSawLzALUw7JJ583eZO+9KUXvWhHu43zmf/waEa/WNg4kEc+nzOPQ2mNKW0HVqXqhKu5+r1qVLsxn/y1ueQefXv27RNuzbn1cMKKAQN5mq1vA0iO3EqhsnU85gozL+JyLgNe9a7lSO8advdkfqRSA1V+hgL/8baXE9x3eXgEK5p8MJZiHyyD4lOY++d5/ohllFaHylEBQgpVq1a8euml/BEq8hsQZs+GvLyLaNUK6tXzW5r4o6o5ACLyF5aUYpO/EqUWt912m98iFM9HH1mF8COPTFiXgR0LR8JJtnth8GBQhYED/ZYkOpJtfGNJvPNI7Y89/D8f534qjGbrRM3WY4A3Ig4JsEGzdTBwKnA2YQpoPvm8b//yd2CHLXux14hrufbXnvT8tSENP0E4iao00SW6d2a7zAYtaFG7N72zBjJw9xrUuGU96yc+xVMj7uGeDp7L3lLMxQ9MHZsvOdLA+xzpKrmN5USzVTVbv8UsLSE5hcSmxg/xJba6HNBa3ls5FjhfVb9S1Vxv+xJbBDjeV8mwOlSqOiAzM7Pskx1lE6pB1bIlmZmZtG/f3l95Ipg8eQuQm27xU6jqi06ZSiO+/96W2vfe229JHI5As2IFvPMOnHceBKz+vKMY4u3ydzrmuvZBnPuJBR9hSk2optMTmq2rvPf1KHQJA3NHAWAKU7KP5/ingMuyyPrfURzVDOi4iU2HbWZz3i05t6waxKBqmWRSQAF/8EfBn/z58Hd89z8sZXc/oDnQjEIr1BqgHfCv5Mh92MP960BN4ArN1hXFXYBXqLh32K6qWJashOIV+n0NuEFEmqjq4kTLECU12TbrH8AKts0C6Uh25s9HgfPuv58WO+9MTk4OcawtXm7ef/8T4CSaNPkB6OKzNIlDRNZSfFIKAFS1bgLFSRnOOMPWs155JWZlByuPKowcCYccAgm0vAdyLBy+kEz3wmuvwZYtcMklfksSPck0vrEmbgqVV0PkZOB91cRmm6sImq2rJEd2AvYG/tTsIhnq/gDGAYdgFp9bgGGAaLaGslDdnpOTc+c61u05kYlfNaBB9RrUyATqt6HN45/zea+ZzNxtAxvAMgmGxr4WcAqmVGVgDxZ1Kczydy3wiGZrNOsTNSmqCBRgKeP94DWs9tgpwKM+yVAWE4HbReRMVd0AICJZQA6FLoCOVGDNGli1ivwaNWi3xx6M+uijwLkmLFnSFriO/fdPu1q2l1FUoaoKdMViG+/0RaIUoF27dn6LsC3vvGO+rVdemdBuAzkWDl9IlntB1aoK7LEHdO7stzTRkyzjGw9EtcSFwco1LHIIpoQcr6rJYKEqFc8trwuwVrO1xOALyZHtsILCofDBAkzJuQ57UC/Of+tN4Gigdth3Qq56W4CmJVmliun/dQpjwT7UbPUt0aaI/Ar8q6q9yzzZB0Rkd2A0Ft82FXuo64xlVjxCVX+Nsp2GWHKLw4FlwI2q+loJ57bFFMyDsMyRz6vqdaW1n5WVpevXB35NItj8+it06gTt2pE7bRoZGRkEzZWyVSsL8/r9dwja/0kiskFVE1rsWkTOA3qr6mllnpwAevTooT/++OM2+095+lsA3rxwn0SLlFyoQrdusGyZzce6zvBYXkRksqr28FsOvyhpDgaFWP4WfPqpVRV49FFLSOEIBqXNwXi6/B2DPTCOjWMfCcMr+PtTFKcuBz7DHpgB3tdszZUc+QEbj1oR5+cBF2DZ+3piytRdwGDs73NttMqUx+nAAd77r8vxvXgwErhaROqpauDqyajqNBHZBYv1ao9ZBV8BXi1ndsInMMW3CaZ0fyQiv0QqZJ7V9jPv/FOwrJG7VvY6HFHgJaSY2qABrTdupG7AHubmzl3B/Pl/UbNmNwJYHssvvqBoQXZHMvPTTzBlCjz5pFOmHI4yuPlmaN4cLrjAb0kc0RLPhAXHAJ8ng7tfHDgOy3B3PHAWgGbrp1ga9Hcwd7gt3naxZutaLNNce6CJZutdmLWqpmZrudzlNFsLNFu/8rb4mB+jZxSmFB7usxzbICJVReRfoK2qPqOqV6vqVar6bHmUKc9F8CTgZlVdp6oTgA+BM4s5vT+wUFUfVNX1qrpJVafG4nocZTB/PjOBzt99x/XXX++3NNvw4IMvAt3ZeedZBMxw5if9MItvmYhIQxF5T0TWi8g8ESnRqiUibUVklIisFZFlInJvzCQOEP369aNfv35+i1HI99/b66GHJrzrwI1FipIM8zAZ7oWlS62ywAUXWP2pZCIZxjdexMVCJSJtgF0IbuxMXJAcOQ1z/RLgAs3WIinDNVvfAt7yzj3b25cnOdIVy4RYHYsnGOdZxJKd74BVwBHA2/6KUhRVzRWRXEoJho+SXYH8iLIAv1BooQxnb+AvERkN7AlMBy5T1WmVlMFRFvPn0w745aKLqJng+I1oaNmyP9CMnj3Tz2AZVuB36y7M2tsQK18RDc5KHEGXLl38FqGQ5cth0CDYbTfYaaeEdx+osUhtAj8Pk+FeGDbMPGRPOslvScpPMoxvvIiXy9+B3uuXcWo/cEiOVKVQKQJ4VnLkbc0uPh2wZmte2MdPgFDJ+A8kR5podlHLnuRIDazO1EGYG+XZmq2bY3kNsUZV80RkPIUuiEHjMeBGETlHtcjfozzUBiLdGVcDdYo5twVmiTwWiy+8AvhARNqr6pbwE0VkAJa+nWrJUM0v6Hguf3v07Am77OKzMNsye3YD4JS0S5nuMSLicwGWcfVLVf29rC+HWYk7qeo6YIKIhKzEN0Sc3h/PShy2LyWtxDfcEHnpPvLDD7B6NTz9NPiQWTNQY5GiJMs8DPq9sHQp3HUX7L+/hf0mG0Ef33gST4VqJTAjTu0HkQyKulBGVQPKS3bRKGxXFSxNe6Sr5JXAUViCi2OBi4GHKiFvohgP9BWRHVT1X7+FieAATEH9R0SmEzHmqnpsFG2sw7IyhlOXYmqFARuBCao6GkBE7sdi5XbDrFrhfQ/DMkmSlZXlt+tm0jN1xgwuBB7ftInufgsTwSeffMK4cUuAs9JSoQoV+K0EzkocdL77DjIyoHcg8xM5YoObhzHg449hwwa4+26/JXGUl3jFUO2PPTimgttaVHjWokEUxkbdotmWiruM7xUAT2IP8+sw69OiYk7dgULrV3XvczIw3nvdz1cpimcZFtP2MTAfSygSvkXDLKCKl9wiRGeguAyBoUyCjgSTv2gR+UCjgBXzBXjuuef588+7ANJSoQohIoeIyKXedkg5vlpeK3E/zB29GVZ/8APPBak4mQaIyI8i8uPSpUvLIZL/nHTSSZwUFJ+hn36C9u1hu+186T5QY5G6xGUexnoOBv1eeO01aNsW9t3Xb0kqRtDHN57E3EIlInWwlYqXyzo31dBsvV9y5DnM9397yZF6YXWqSuNyLFFFdWB8CckkhmIJLgRziRkWOiA5IljCiyOxH6YXA5CQIsQULJNhN0x5CQyqek4M2lgvIu8Ct4nI+Zjf+HFAcT+Hr2BZDw/FMphdjil1v1VWDkcp5OfTdelSJgHsvbff0mzD7be/zogRS2nRAho29FuaxOPF3L4L7A4s9HY382KrTlLVuWU0ERcrMRS1FPfo0SMov6lRsc8+AUnjvnEjjBsHp/tWwSM4Y5HaxN1bIxZzMMj3wtdfW7r0m27yxTM2JgR5fONNPFz+QmusU+LQdsyQHMmIU+KHZhQWhc2VHOmu2TqvtC94ys+3ZZwz0ys83B6Yodm6KuzwKVg8UC3MLXADXvILv1HVTSLyG6ZoBAIRyQCuxrIwVsWsgrepFh/vFgUXY/FzSzDL1kWq+quItMTcXjuo6nxVnSkiZwBPYTFzPwHHRsZPOWKLLloEeXlIkyaBTJk0fXomsEM6W6eeA9ZgGTfnA3hz50XgWaygemlstRKrbq0RWJqVOIjW8phzzTXX+C2CMW6c+TCdfLJvIgRmLFKbpJiHQb0XtmyBc8+F+vUhgIlooyao45sI4uHyF6rpvM1qXxCQHNlZcuQvTNl5U3Ik1kmKr8BM3HWB+sC5sWpYs3WFZus3EcoUmItlqL5VLYq3jvjJLxTeF0HgeuBuzM1yEXAVlchIqaorVPV4Vc1S1Zahor6eElU79JDo7XtXVXdW1bqq2iva4sGOijN13DgaAOPq1/dblG2YMmUKDz88CFiSzgrVPsDlEfNkPhY3WuZyp1eaI2QlzhKR/TArcXFeEq8Ae4vIoSKSCQzEWYnjy7vvQrVqkMYr1+mAm4eVY8wYmDMHHn8c6hTnJOkIPPFQqDpgfrN/x6HtWPAIsCN27UcBfWPc/iKsgC9YLNXiGLdfHB9gVql8zJQ+MgF9lodpQHMRqee3IB79sQDYw1X1OLx6YSLJamR3lEbNFSs4HWjVpo3fomzD9OnT+eabe4EtdA7SkkNimQ/ULGZ/DWBBlG1c7LWxBHidMCuxiKzzLF6o6kyskPdTWOKk40hRK/Gxxx7LscdGk1cnzowdC8ccA7Vr+yZCYMYi9Qn8PAzqvfD449CsGfz3v35LUjmCOr6JIB4uf22BuaqBieGJpAZFFclY+wDdi7m37Y+lQ38mxu1vg2brZ5IjR2JZ677WbB1f1ncSTCgGog3BcAVthRUdDjEGi01rBvzji0SOuLFrbi5PAHTo4Lco23DGGWdw8839+OuvzHS2UF0NPCoilwM/ePv2BB72jpWJqq7AFkYi98/HguXD972LraSnNL2DkFHv339hwQK4/HJfxQjEWKQByTAPg3gvDB9usVN33QVVq/otTeUI4vgmingoVG0o3mc2KFyH1QCqjqXqfC+WjXv1o46LZZtR9vs18HWi+42SkELVlmAoVNUwSx4AqqoisoXCLIqOFEFVeXvcOE4GpGVLv8XZhjVr4K+/qlCtGuyakuVli0dE1lI042UNYCKWcAds0Ssfq70XGejuiIIrrrjCbxHgF8/zf889fRUjEGPhCARBuxdU4fbbLV9SKoQfBW18E0lMFSrPZaoNRVf/A4Vm62TJkR2A7YB/ApQNL5X503tt66sURRkiIuFp7asB2SKyNSujqvq6rCoifYG+1as7Pa+izJgxg1M+/ZShwJcBVKiuuOIWYGc6djyLKvGqChhMLsOVEEh9xo2z+KkuXfyWxOEIJN9+C3PnWma/ZLdOpTux/i+8LrbKX1wdpcCg2bqJ4MZ4pSKrsLiy7X2WI8TXwE4R+74Bwp+4fX/YU9WRwMisrKwL/JYlWenYsSPLO3ak+q+/QgAVqnHjPgL2pnPns/wWJaGo6nC/ZUh1jjzySABGjx7tnxCffgr77Qf1/A2fDcRYOAJB0O6FF1+EmjV9TYIZU4I2vokk1gpVY+91WYzbdSQxnkvdUswq6Duq2stvGRyJo+FCr7RRABWqo46azNNPa9rFT4lIQy/eAhEptfpW6DxH+ejbN9b5lsrJ4sXm8nfnnf7KQQDGwhEYgnQv/P47PP88nH126mT2C9L4JppYK1ShB2anUDkiWUZAFCpHepCfn8/p//0v165cSfcaNWC74N1+U6cCSNopVMBSEWmqqkuw34biLMLi7Y91aYu04OKLL/ZXgHHj7PWww/yVgwCMhSMwBOleuOoqs07ddZffksSOII1voom1QlXfe10V43Ydyc9KoIHfQjjSh9WrV/PlV19xENC9ZcvAlZ4fO/ZzfvhhOHA/e+wRFG/YhHEIELI8HeynII448e23liq9Wze/JXE4AkdenlUUuOwy2D7tfv5Tk1grVKHo+U0xbteR/GwGsvwWwpE+NGzYkH9feQWOPDKQ7n5Tpy4kL+8LmjTJonHjss9PJVT1KwARqQJ0BN5X1YX+SpVaHHrooQCMHTs28Z2rwscfW+qyTP8NjL6OhSNQBOVemDoVcnNh9919FSPmBGV8/SBeCtXmUs+KEhH5EuIT8xLPthPVR5KNz2ZcWnJHopk/314DqFC1aXMGcEZaJ0BT1TwRuQ/4yG9ZUo1TTjnFv84nTrTUZbfe6p8MYfg6Fo5AEZR7IZSz4Ygj/JUj1gRlfP0g1grVud7r8yLyraoOjHH7SYOnkHQJvU/XRAgi8jA2Dh2IT90zh6NYvv76a14aOpQhQOMAKlQWP0U6xk9F8h3QHZjntyCpxAUX+Jgc9KGHzN3vhBP8kyEMX8fCESiCci+8/rrVmm/a1G9JYktQxtcPMmLcnu+pph2BRSgs2hkYRKSJiFwjIk+KyHbevv1EpE0AZOsrIsPy8/P9FiUpWbBgAR/PmmU/cgFTqFSVoUMPA153ChU8A9wvIgNF5AAR6Ra++S2co5zMmQPvvQf/+58pVQ6Howh//w2//gqnn+63JI5YEmuF6lnv9YJ0tk7BVle5KcCUdLVOAajqQO/6vyNgK9Ai0h2YCZwOnIfVUQM4DPA916+qjlTVAZkBiEFIRk4//XQW7rknjQBatfJbnCKsW7eONWtygc107uy3NL7zGtAaeBD4CvgxbPvBP7GSm169etGrV6/Ed/zaaxZDdemlie+7BHwbC0fgCMK98OSTliMpVWpPhROE8fWLWLtgbfFeYxIrE09FJBFKTrz7SLLxqU7h/REU7gceUdVsEVkbtn8McI5PMjliSUBjqETqsHnzl1StCu3a+S2N7/huDU5F+vfv70/HY8ZA9+6BWsTwbSwcgcPve2HDBlOoTjgBdtnFV1Higt/j6yexVqg2eK+1YtyuI/mpBWz0W4gIumOWqUgWAU0SLIsjxtxx223kzptHDkCLFn6LU4Tp020Rf7fdoFo1v6XxnVbAN6qaF77TywC4LwGzbCcLvjzY5OfDzz/D+ecnvu9SSOeHPEdR/L4XHnkEVq6EAQN8FSNu+D2+fhJrl79QQd9GMW7XkfxsR/AKPm+k+NpY7YElCZbFEWPm/Porf6hCkyZQo4bf4hThqqvOAS5w8VPGF0DDYvbX8445KkBubi65ubmJ7fT3320Jvnv3xPZbBr6MhSOQ+HkvLF0Kd9wB++4biHrXcSGd51q8FKrtYtyuI/kJokL1AZAtIiEXVRWR1sA9wDu+SeWICS8MHMhrEDh3P4BNm5oBTena1W9JAoFQfEKjRsD6BMuSMhx22GEcluintsmT7TVgCpUvY+EIJH7eCy+9ZOsNTz8NGbF++g4I6TzXYu3yF3pgTrMylY7SEJFMbAU6aArVNcDHwFLMJXEC5uo3ERjso1yOWBDQ+CmA6tUt50k616ASkQ+9twq8IiLh9QszgU7ANwkXLEU43w+3u8mToVYtaN8+8X2Xgi9j4Qgkft4LI0damYxOnXwTIe6k81yLqUKlqptFZBkQvCcYh5+0wFahF/gtSDiqugbYX0QOAbphFtufVDX9SnynGNOnT2fg4ME8AHQOmEKVm1vA1Km2PJnmGf6We68CrKRojOUWbIHjmUQLlSqcccYZie900iTo2hUClpnUl7FwBBK/7oXly2H8eLjhBl+6TxjpPNfiUWh1Li5rk6Moofthrq9SRCAinVX1F1X9HPjcb3kiEZG+QN/q1WOSNDOtWL16NavXrLHsOAFTqG688T42bHiS5s1/o1Gjmn6L4xuqeg6AiPwF3K+qzr0vhmzYYDmiatVKUI6oNWvMQnXVVYnprxwkfCwcgcWve+Hdd6GgAI47LqHdJpx0nmvx8OKcC7SNQ7uO5CV0PwRKoQJ+FpFpInKdiAQrDRyuDlVl2G+//fhh773ZBQKnUGVkdACOoVu39FWmIridMOuUiOwgIueLyL4+ypT0HHXUURx11FGJ6/CHHyA3F3r3TlyfUZLwsXAEFr/uhTfesBIZPXokvOuEks5zLR4WqjnAySJSXVU3l3m2Ix3YFcgF/vZbkAjaY0V9zwfuEpHxwMvACM8d0JHMBDSGKjOzL9A3reOnIvgI+AR4RERqYwV9s4DaInKeqr7kq3RJykUXXZTYDmfOtNfddktsv1GQ8LFwBBY/7oUZM+Dzz+Gaa1I3GUWIdJ5r8fjTTsUCijvEoW1HctIZmKGqgcqlqaqzVDVbVXcF9gOmAXcB/4rIW/5K56go+fn5dOjQgWdmzbIdAVKocnNzmTzZjDFOodpKdwpdbk8E1gDbAxdgiWPKREQaish7IrJeROaJyGlRfOdzEVGv3lXKccopp3DKKackrsM//oCaNaF588T1GSUJH4s0JRnmoR/3wgsv2OsllyS0W19I57kWD4VqivfaJQ5tO5KTLhTeF4FEVb9X1cuB44CZwEnRfjcZ/hNJJ9atW0eXjh1pvGEDVK8OjYOTdPS7777js8/qAF86haqQOsAq7/3hwHve4svnwE5RtvEElsiiCWZ1flJEOpZ0soicTnw8NALD6tWrWb16deI6/OoraNsWRBLXZ5QkfCzSl8DPw0TfC3PnwqOPwllnQevWCevWN9J5rsVDoZoDbABchRUHItIE2AH4xW9ZSkJE2orIYBH5DcssthJzA4yWwP8nkk7Uq1eP13JyOB7MOhWgB7wqVZoCg6hduyNtXOqeEPOB/UQkCzgC+Mzb3xD7v6RUvO+dBNysqutUdQLwIXBmCefXA7KB62Ige2A57rjjOC5REfD//AM//wwnnJCY/spJQsciTUmWeZjoe+Gzz2DLFhg0KGFd+ko6z7WYP9Spar6I/AC4gGIHmCsdwPe+SlEMInIJpgDtBUwHXgBeVdV/ytFG6D+RTqq6Dpjg1dc5E9gmQWrYfyJnAd9W+iIc21BQUEDGvHn2oVUrf4WJYPXqnYHb6NYtUHqe3zyIxS6uA+YBX3v7D8TccMtiVyBfVWeF7fsFOKiE8+8CngT+rZC0ScLll1+euM4mTrTX449PXJ/lIKFjkb4kxTxM9L3w+eew/faw664J7dY30nmuxWuV/GvgJhGpo6pr49SHIzk4ANiEBZoHjRuA14ELVTWaB7fiSIr/RNKJY489lpqLFvE2BE6hGjduDtCaLl1c5sYQqvq0iEwGdgQ+U9UC79Ac4OYomqgNRPqYrMZcCYsgIj2wRZ4rsPp4pSIiA4ABAC0DFIsXDSeeeGLiOnvpJWjQADqWaJj3lYSORfoSl3kY6zmYyHvhzz/h7bfhf/9LnwW0dJ5r8co3Mt5r21mpHAcC36nqFr8FKYaWqnpdJZQpqNh/Io+V1aiIDBCRH0Xkx7y8vEqIl3707t2b/Ro0sA8BegjeuHEjDzzQDshx8VMRqOqPqvqeZ+UN7ftIVSdG8fV1QN2IfXWBIot5IpIBDAWuUNWoJpWqDlPVHqrao3GAYvGiYdmyZSxbtiz+Ha1cCWPGwIABUKNG/PurAAkbi/QmLvMw1nMwkffCiy/a68CBCekuEKTzXIuXhepbLE32YcCYOPXhCDgish2WkOI2n0XZioh0A6Z4q+BdpZRlI1X9KYomK/SfSGn9en0PA4YBZGVlaRRyODyuvPJKq4kDgbNQNWnyAv/+u0faK1QichUwVFU3ee9LRFUfLKO5WUAVEdlFVf/w9nUGfo04ry7QA3jTm38hM+HfInKyqo4v10UEnP/85z8AfPnll/HtaPJkyMsLZP2pEAkbi/QmKeZhIu+FkSNhr73Sx90P0nuuxUWhUtV1IvIlcDRRpr11pCRHYpbKj/wWJIwfsSQZS7z3ChSn3SiFP/SlkRT/iaQLubmWmb9qAGOoCgpqsnjxmVSpAh1cUYnLgBcxd+DLSjlPsRirkk9QXS8i7wK3icj52CLOcWzrIbEaaBb2eUdgEpa2fWl5hE8Grr766sR09N139rrXXonprwIkbCzSmGSZh4m6F37/HX76Ce6+OyHdBYZ0nmvxzDQ2CivUuLOqzo5jP47gcgywGIjG0pMo2lD4o13pPGvJ8p9IujBu3DiOP/54JtSrRw8IlEL11lu/oNqQ3XffkerV/ZbGX1S1TXHvK8HFwPPYQsly4CJV/VVEWgIzgA6qOp+w2EURCfmnLY7WBTCZ6Nu3b2I6mj4dmjaFupGG+uCQsLFwBH4eJupeGDYMqlSBM85ISHeBIZ3nWtwVKuBYylhhdKQe3o9kH2BEWJC576jqvPCPwAJV3calzvsPIFoC/59IutCiRQsuvfhidnn4YStJ36LMvAMJY9CgM4Cm7Lnnp36LknKo6gqwTPkR++djcY7FfecvirdOpwT//ms/NzvssEP8Opk1C0aMgIsvjl8fMSAhY+FIinmYiHthyxZLRnHEEYGscx1X0nmuxU2hUtW5XuamU3EKVTpyJObm9pbfgpTCn0BTTBHaiog08o5FlYotGf4TSRc6derE/ZddBg89ZP+TVa3qt0hb2WOPF/j33zx69PBbkuAg5v96FlZ6oC22yDEXeBsrYeDiBytIv379gDjHMowcCfn5cP318esjBiRkLBxJQSLuhaeegr//NitVupHOcy3exUVfAx4QkV0j0ko7Up/TMUVlnN+ClIJgD3CR1MZiOxxJxvz589nxr79MUw2Qux/A3LmmSe25p8+CBIt3sMWIad4mQAfgJeAETNFyVIAbbtimDF7s+fNPqFMn8MvwCRkLR1IQ73shN9fipvbfH448Mq5dBZJ0nmvxVqjeAO4HzgBuiXNfgcJLyrEVVe3ljySJR0TqY/FTw4LoziYij3pvFRgiIhvCDmcCPYEpiZbLUTkWLVpEq1atuPe//+VaCFTK9KeffoXZsztRo0aXoJbqSTgicjpwOHCEqn4WcewI4B0ROU1VX/NFwCSnT58+8e/km2+ge/f491NJEjIWjqQg3vfCrD9g2TJ49924dhNY0nmuxasOFQCquhD4FDhPRILje+OIN2cB1YHhPstRErt7mwC7hX3eHdgZS6LR3y/hQohIXxEZlp+f77coSUGdOnUYOnQoJ4R8twNiodqyZQvXXTcQeIKuXQPlheg3ZwD3RCpTAKo6BrjPO8dRARYsWMCCBQvi10F+PsyYQTL4sMZ9LBxJQzzvBVVYsdxKsu29d1y6CDzpPNfibaECq73zAdAXSBudPZ0sUuF4MREXAd9HWccp4ajqwQAi8gJWF2qNzyIVi6qOBEZmZWVd4LcsyUDt2rW56KKL4LzzbEdAFKpq1apx+eV/cMcdG527X1E6A4NLOf4RcGGCZEk5zjzzTCCOsQx//QWbN0P79vFpP4bEfSwcSUM874UlS6CgAA45JOZNJw3pPNcSoVB9BMzHMqGljUKVxhwMtAfO9luQslDVc/yWwREbNm3axKeffspee+1FkwDWoJo+vQHQIBkW8xNJI2BRKccXAQ0TJEvKMXhwabpqDJg2zV47dYpvPzEg7mPhSBridS/k59saQ61a6Rk7FSKd51rcFSpVzReRocDdItJVVX+Od58OX7kGWIZl6Qo8InIwlomyJVAt/JiqpvE6U3IxZ84cjjvuOF599VVOC5hCde211/HVV3sDJzoLVVGqArmlHM/zznFUgEMPPTS+HXz5JVSrlhQKVdzHwpE0xOtemDsXNm2CXXeFmjXj0kVSkM5zLREWKoCngEHAjcB/E9SnI8GISFcsXfpNqrrRb3nKQkT6Y/fme0AvzDV1V6zg7yu+CeYoNzvttBPff/89bVu3hnM8w2MAklLk5eXx5psjWLmyOg0bnsiuu/otUeCITAoTTq2ESpJizJ07F4C2bdvGvnFVeP99K7STlRX79mNMXMfCkVTE614YM8Ze69ePabNJRzrPtYQoVKq6WkQeB24Ukfaq+nsi+nUknEHAGixuLhm4BrhUVZ8VkbXAjV79tMeBdT7L5igHNWrUoGfPnrBggVVV3H57qF1sCbCEUqVKFe6+ey6nn57PPvtYrWHHVr4GdoriHEcFOPfcc4E4xTJ89hnMmwc33xz7tuNAXMfCkVTE614YNQpqNk9v6xSk91xLlIUK4GFgIJCNuVg5UggR6YzVjLlbVVf5LE60tAXGeu83U1iE93HgSyB9CyokGR999BF169blgFBGxJ3Kek5PHN98A5DJfvv5LUmwSNfEPYkiJycnfo0/8ww0bgynnRa/PmJIXMfCkVTE415YtQq++AJ2vyLmTScd6TzXEqZQqepSEXkIuElEHgD+Buq6gr/Ji5fRb39gAnAPsApLdZwsLAfqeO//AToBU7Fg+TRfZ0ouBg0aRPPmzTngJK8ObAAUKlXlyCOP5NdfTwAuZN99/ZbIkU4cdNBB8Wl43jz44AP43/+SZjk+bmPhSDricS88+aQ5RjRpEvOmk450nmuJtFAB3IulwX0daAL8DKTv6Cc/hwFjsLpN3YBrVHWlvyKVi/FYYdFpwFvAoyJyGNAb2KY2jiO4jBkzhry8PBjqeZsGQKFat24dGRnV+OefTKpUwSWkcCSUmTNnAtCuXbvYNjx2LOTmwkUXxbbdOBK3sXAkHfG4Fz75xOpbB8DL3HfSea4lVKFS1TUiMg44BfgRcPV1kpvPgSuAB7GMXE/6K065uRSo4b0fgl3DfphydYdfQoUQkb5A3+rVq/stSuDZIVTMd84ce915Z/+E8ahTpw5XXfUho0dD166WTtfhSBQXXmglvGIey/D22xajmEQPTHEbC0fSEet7YelSmDgRrrsO5sSkxeQmnedaoi1UAOcCPYHtMTcrR5KiqnkiUgXIBK5V1ZKydQUSVV0R9r4Ac1sMDK6wb3SsWLGC119/naOPPprWIYUqABYqVeWbbwTAxU85Es5dd90V+0anTrV0ZnfemVQZVuIyFo6kJNb3wpAhVoPqzDPhVpdCJ63nWsIVKlXdICJnYnE3twDXJ1oGR2wQkRZADla8+QGfxYkKEYm6UGi4wuUILjNnzuTSSy+lTZs2gVKo9t57bxYt2g940ClUjoSzbzyC9j780F7PSa6a6HEZC0dSEst7IS8Phg2Dk0+G3XbD5SQlveeaHxYqVHWiiDwPXC0ib6vqj37I4ag4XkKKJ7F76DJVVZ9FipZlQFmyindOZvzFcVSWnj17smjRIurm5Vm6pdq1LQOZj6gq++/fi0cfbQ9AGsfpRoWINAHOxNKo36yqy0RkP2Chqv7pr3TJyfTp0wHoFKvCu6rw5puw997QtGls2kwQMR8LR9ISy3th1ixYvx6OOabSTaUM6TzXfFGoPK4BjgBeEpHuyVAI1lGEc4FjgCuS7IHnYL8FcMSWzMxMi6H64QfbsdNOIOKrTCJC37738OCD0Lmz7/pdoBGR7sA44E+gI5YpdBmW9GZXIDlycweMSy+9FIhhLMM338D06fDww7FpL4HEfCwcSUss74WxXtGVnj0r3VTKkM5zzTeFSlVXisg5wKfAXcCVfsniKB8i0garK/Y5VrMpaVDVr/yWwRFbxo4dy6xZs7i4oefNGQB3v1mzZjFu3C6AcMghfksTeO4HHlHVbK/AdogxQHL5lgWI++6LcQWL99+HqlWhf//YtpsAYj4WjqQlVvdCQQE88ADstVdS5WeJO+k81/y0UKGqn4nIE8BAERmrqh/5KY+jbESkOvAGUACc4yVzSErKiqdyMVTJwZtvvsmoUaO42FsZ81uhWrduHV26dKFRoyuBO51CVTbdgfOK2b8IK6/hqAB7xjJP/6pV8NRTcPjhUK9e7NpNEDEdC0dSE6t74dNPYf58uP123x0iAkU6z7UgpOm5BqtH9bKItPZZFkfZ3I9laeyvqvP9FqaSLAOWlrI5koCnn36aGTNmFKZM91mhEhEeeuhJFi06lcxMOPBAX8VJBjYCDYrZ3x5YkmBZUoYpU6YwZcqU2DT24IOwbh0MHhyb9hJMTMfCkdTE6l547jnIyoJQLXmHkc5zzXeFSlU3ASd7srwtIjXK+IrDJ0TkVKx20wOq+p7f8sSAg4FDwrYjgBuAeViAvK+ISF8RGZafn++3KIEmIyODBg0awOzZtsNnhSorK4tWrc4mP78TPXpA3bq+ipMMfABke9ZvAPUW1+4B3ommARFpKCLvich6EZknIsXGXYnI2SIyWUTWiMjfInKvV/oh5Rg4cCADBw6sfEMFBVYwu2vXpK1OHbOxcJRKMszDWNwLkybBiBGW7DIrKzZypQrpPNcC8R+Jqs4RkbOw/1hfEJHTk9mVLBURkb2B54HxwI0+ixMTSoinGisic4HzgdcSLFIRXB2qspk0aRIvvfQSgwcPZofffrOd7dv7KtPPP//MO+9sDzR37n7RcQ3wMWYVroWV1GgCTASiNYk8AWzxvtcF+EhEflHVXyPOqwUMBL4HGgMfev3fXakrCCAPxyp5xIsvwvLlFjCSmZyJT2M2Fo6yCPw8jMW98PzzULMm3HprpZtKOdJ5rgVCoQJQ1Q9F5AZsQs0GbvZZJIeHt1r8AbAQOElVc/2VKO5MAZyjVhIwc+ZMXnrpJW4fOBCWLYM6daB5c19lOvvss5kzpwXwsUunGwWqugbYX0QOAbph3go/qerYaL4vIlnASUAnVV0HTBCRDzEr8w0RfT0Z9vEfEXmVFM382aVLl9g0NGoUtGpllUuTlJiNhaNEkmUeVvZe2LQJ3noLjj8eGjWKiUgpRTrPNd9d/iK4F3gOGCwi5/stjANEpBG2elwNOFpVUzq2SERqYytnC3wWxREFZ555JqtWraLBokW2o3173yOEBw0axoYNt9CokWWAcpSOiHQGUNXPVfV+Vb03WmXKY1cgX1Vnhe37BUvBXhYHApGr5ynBDz/8wA+hUgIVpaAAfvwRuneHjKA9LkRPTMbCURZJMQ8rey988gmsXJl0ta0TRjrPtcBYqABUVUXkIqA5MExE1qnqG37Lla6ISD0sdXFboI+q/u6zSDHFS9EcXuRXMFeE9cDp5WinIbYQcDiW6OJGVd3GXVBEzgYuB3YB1mAuhYNUNa+i1+CwGCpmzLAPu+3mrzDA33/vDcCRRyath1Si+VlEfgVeBl5T1b/L+f3awOqIfauBOqV9ySvb0QNz7y3pnAHAAICWLVuWUyx/ufbaa4FK1oOZPNlSmd12W2yE8omYjIWjLOIyD2M9BytzL6gWVg/Yf/9Ki5KSpPNcC5RCBaCquSJyEjAay/y3QVU/9Fuu8iIiX4Z/VtVe/khSMTzz/SigM3C8qn7pr0Rx4dKIzwVYHMf3qrqyHO0E3m88Ffnqq6+47bbbGDZsGDuF4qd8VqiGDBnCe++dALR37n7R0x5bwDgfuEtExmPK1QjPHbAs1gGRqT/qAmuLORcAETkem3eHquqyks5T1WHAMIAePXpoSecFkccfj0GJwJs9z/v99qt8Wz4Sk7FwlEVc5mGs52Bl7oUnnrCQwosvthgqx7ak81wLnEIFoKobRKQvMBYYISL9VPVdv+VKFzzL1ChgX6BfqtYHU9UXK9tGsviNpyIbN25kzZo1NGzYEAKgUK1fv57Bgwejmk9m5mCOOMI3UZIKz0UoG8v0txemXN0FPC4io1T1v2U0MQuoIiK7qOof3r7OlOBCJCJ9gGcwF+ZpMbmIANKpU6fKNTBjBowZY3mhd945NkL5RKXHwhENSTEPK3ovqMLjj5v362OPxVioFCKd51ogFSqwQGURORyL33lLRM5R1Zf9litaks0iFcKLmRqD/RCeqqpv+yxS3PFc9rYnIqZQVWdE8fWS/MYPiuK7KRu/kQj69OlDnz597EMAFKqsrCyGDl3N//6XxwEHQP36vomStKjq98D33mLDU9hiRVnfWS8i7wK3ebG3XYDjsAWhIniJL14FTlDVSbGUPWh88803AOy77zbDEB1PPQU1atiyfJJT6bFwlEmyzMOK3gs//QQzZ1qGvyQOJ4w76TzXAqtQAajqKk+p+gB4yXvYf0RVk8r1IlkQkVaYArsT5uaXkpapECLSFXgB2D20C4upCr1GEwETd7/xatWqRSFGGrN2LSxYANWqQdu2vory3nu1AejXz1cxkhIRaQuchlmodsZKNESbnOhirKzDEmA5cJGq/ioiLYEZQAevEPnNQD3gYylMXjJeVY+M2YUEhEGDBgGViGUYP95c/Zo0iZ1QPlHpsXBES+DnYUXvheeft1cXO1U66TzXAq1QAajqOhE5GlvNeAjYRUSucIH8sUVEegIjgepYAoov/ZUoITwP/ANcASymaIKKaIm733hWVpZbQCiGXr160adPH2440Mtw3749VPHvJ+2BB4bx6aeZVKlyHv/5j29iJB0icgmmRO0FTMcWOV5V1X+ibUNVVwDHF7N/PrboEfqcNi62Tz/9dMW//PPP8MsvkJMTO4F8pFJj4YiaZJiHFbkX/vzTDLZnnw277BIHoVKIdJ5rgVeoAFR1k4icjD2EXgu0FZHTypk4wFECInIKMBxYBByUatn8SmEX4GRVnV2JNpLCbzzVUFWaN29O48aN7eEPoGtXX2UaNuxNVKtzxBHnufok5eMG4HXgQjcnYke7du0q9kVVuPxy81m9/PKYyuQXFR4LR8pRkXvhnXesgkB2dhwESjHSea4lhUIFoKoFwHUi8geWVW2yiPxHVX/yWbSkRUSqAfdhqbwnYv7MKV1nKoIJwG5YIekKkSx+46mGiPDqq6/ah/M9rzCfFarGjccxa9YWTj3VVzGSkZbOjTv2fPXVVwAcdFA04ZxhvPoqTJgATz8N9erFQbLEU+GxcKQcFbkX3n8fdt8d2rSJk1ApRDrPtaRRqEKo6jMiMg14C/hGRAYCT7v/kMuHFy/1BrA38DBwnarm+ipU4jkPeNaL3ZgOFLl+Vf06ynYC7zee0kyZYq8+KlR//AETJ0LNmtU47jjfxEgaRKQbMMVbKOsqpRRjdotmFSPbW04vVyzDli1w/fXQoQOce258BPOBCo2FIyUp773w4Yf22/7gg3EUKoVI57mWdAoVgKp+5/2H/ArwJHCMiJyvqv/6LFrgEXtyORt41Nv133TI5FcCu2AWpeISXEeblCIp/MZTjc8++4yLL76Y999+m47TPC+xLl18kyc7exLwAscddzO1azfzTY4k4kdgB2wR4kcKk8FEEvU8dBTl+VAUfXn44gtYuBAeftjXeMRYU6GxcKQk5bkXcnNhyBBo2RIuuSSOQqUQ6TzXkvYXU1WXichRWHHWe4DpXnDzW6qqIrIHsCDd46xE5ABggjcmTTEF9Djga6C/qv7pq4D+8jQwDhhCxZNSOHygbt26dO/enYbLl9uq+k47Qd3I3CCJYcMG+PDDucAbnHtuagTxJ4A2WBHt0HtHjGlbkYyX774LtWrB0UfHXiAfqdBYOFKS8twLAwfCd99Z/SmXbDc60nmuJa1CBVvjqh4VkU+BlzAXtnNE5EpgBPaQfICPIvqKiByJpUE/U0QaAHdgWfyuAR7yxi+daQEcpapz/BbEUT722msv3njjDStbD766+735Jqxf34899zyFQw/1TYykQlXnhX/EFr+2WdDw3GYdFWDs2LEAHBrtTbl2rQWLHHigKVUpRLnHwpGyRHsvvPgiDB0Kffs661R5SOe5ltQKVQhV/V1E9sViWe4ApmLXdqOvgvnPGGAmFt9TFfgUuDQsG1268xnQHQikQiUifYG+1atX91uUQLF27Vo2bdpkGf6++8529ujhiyyq8OCDi4BGXHxxNUoJBXKUzJ9AU8z9byte3cE/cS5/FeKOO+4AyvFg89JLsGQJ3HBDHKXyh3KPhSNlieZeWL0aLrwQOnaEt9M1IKKCpPNcSwmFCsCrS/WoiIzA3Nl2AoaKSBPgmXRLuCAiHbE08+2AfOA64H6XvKMInwAPeO6h09g2KcW7vkhV2P9IYGRWVtYFfsoRNN5//33OO+88fvvtN3aaMMF2HuCPIfrDD3OZPv0IqldvwymnfOCLDClAqJB2JLWBTQmWJWV4+eWXy/sFK4ydgtm5yj0WjpQlmnvhq69g82Yrw+bWM8tHOs+1lFGoQqjqQmBnEdkfuBNLsX6ViNwNvKyqm30VMM6ISCesrsupWNHZG4GnVHWVn3IFlKHe66Bijrlg+IDSrVs3br31VlrXqwfTp9v/eN27J1wOVbjzzqrATZx9dgNq1ky4CEmNiIQS4ygwREQ2hB3OBHoCUxItV6qw4447Rn/yZ5/B99/DvffGTyAfKddYOFKasu6FNWtg8GDYbjtz93OUj3SeaymnUIVQ1Qki0gs4GsjGiqneKiIPAs+nkoLhZe7bD4uNOg5YDzwI3K2qy/2ULcioaobfMjjKT8eOHenYsSOMGmU7evb0ZRnx2mtf4ocfjqZx41NcSt2Ksbv3Klg9uC1hx7YAPwH3J1qoVOGTTz4BoE+fPmWf/PTT0KhRygaLlGssHClNWffCeefBtGlw//0uEUVFSOe5lrIKFYDn3jZKRD4CDsUsEQ8At4vIq8BQVZ3io4iVQkRqA6djsWN7ACuBW4HHvFTeDkdKUVBQwJQpU+jYsSPVQ+5++++fcDmWL1/No48OAtZx7bUXk5WVcBGSnlAZARF5AbhCVdf4LFJKcffddwNRPNiMHAnvvAMXXZRyyShCRD0WjpSntHthzhxLdHnllXD11YmWLDVI57mW0gpVCE+x+gz4zKtfdTFwBnCBiPwCvAq8rqp/+yhmVIhIVeAw4DSs9lEW5hYzAHhNVdf7JlySISJXlXZcVZ3dIWD8+++/HHzwwTzwwAOc/7VXd3m//RIux6uv1iM39zJatjyTSy9NePcphaqe47cMqcgbb7xR9kmzZ8OAAbDbbuA9CKUiUY2FIy0o6V7Iy4Ozz4YaNeCKKxIsVAqRznMtLRSqcFT1J+B8EbkWOBOz8NwL3CMi3wKjvG16UBI4iEg94HDMffFoYDvMGvUq8CLwbVBkTTIui/hcFcs2thHLOOYUqoDRrFkzzjrrLI7Yc09Lw1S1qqV5ThA//vgjDzwwlFGjbgOu57HHcLFTMUBEDsbiPlsCRRxtVPUQX4RKcnbYYYfST1i5Evr1g40bLYbKpzpuiaDMsXCkDSXdCyNHwsSJcOed0KpVgoVKIdJ5rqVtDImqrlTVR1V1L2AXLM6qOnAXlnZ9voi8IiIDRGQ3ESn3WInIwyLycAW+V09EjhSRu0RkArAMeAs4Fkt9fhzQVFUvVNVvnDJVMVS1TcTWAmiGZYl0Bv+A8thjj7HjtGlQUGAZyerUSVjfs2fP4d13R7JuXRZHHeWClmOBiPQHRgN1gF5Ywd8GQDdghm+CJTkjR45k5MiRxR9cvBgOPhh+/hmGDYNOnRIrXIIpdSwcaUVx98K6debx2qoVzuOgkqTzXEs7C1VxqOps4HYstqoZcBRwBBZ3dbp32jrPPfAXYDpWu+hPYJ6qbtm2VQC6lNSnl0hiO6AN0BbYFejsfSdUajoPmIzFfY0CvvPSwzvihKouFpGbMAX2PT9lcXWotuXMM8/k6KOPpt9HH9mOY45JaP/Llp3Cli3/pX594ckncXWnYsM1WH28Z0VkLXCjqs4VkcexTKWOCvDAAw8A0DdS658zBw4/HBYutMQuRx7pg3SJpcSxcKQdkffCihWw7762xvD66yltqE0I6TzXnEIVgZd2/VngWU/p2Rk4AOiKKTtnYiupW78iIssxK9IyYBWw2dvaYbrTG5j1KwtohClSjYFwZyEF/sAUqOeB7zAFysVEJZ4MoInfQrg6VEXJz8/nl19+oVvnzuBlEuLooxPW/8iRC7j66mZAJs8+Cy1bJqzrVKctMNZ7vxmrPwXwOPAlVgbCUU5GjBix7c61a82s+s8/MGZMStacKo5ix8KRlkTeC08+CTNnwmuvmQeso3Kk81xzClUpeK50f3gbsNWy1JxCy1IbYHtMQdoOaIEpT9WxBwPFlLHNWGzOIqyI7DJgATAXs3T96ZSnxCIiJ0buwmKoLgHGJ14iR2lkZmYydepUexBctQratYOdd05I37NnF3DCCYeTn78P//vf85x0UkK6TReWU7hI9Q/QCXO7bkTRRSdHOdhuu+2K7njvPcsJvXIlvPpq2ihTUMxYONKW8Hth3DirObXnnnDqqT4KlUKk81xzClU58ZSsv73NPXQnN5FLKYrFb3yOi6EKLqFK7KedlpDu/v4bjjyygPz8a+nWrQWPPlr2dxzlYjyWdGca5mr7qIgcBvTGsrM6KsC7774LwInNm8OgQfD559CmDbz0UsJdZf1m61icGLmG5kg33n33XRYtgpdfPpHvvzcXv8cf91uq1CGd55pTqBxpiyvsm1w8/vjjfPnZZ7z12WeWTeeMM+Le59y50Ls3/PVXFbp0OZcvvrDEgo6YcilQw3s/BIsd3Q9Tru7wS6hk59HbboP58zlx5UorfH3nnXDNNWlZrfRRbxUkHR/yHEW5555H+fFHqFLlRAYMsGmRxkaVmJPOc80pVBF4gdCdVLVXOb6jwMmqmr7Oow5HjMnNzWXIkCE0bNiQSy+9lC1btrB+1iwyNm6EQw6Btm3LbqQSjBtnPvXL/t/efcdZVZ37H/98KUoHFbBFwBoFazDYYjCJojdXvVyNmth7IpCIJXoTE2NBDYpGY+wa0eiNGtGfBWKuDdFoLImKWAIWsCFFkN55fn886zCHw5yZOTPnzDkz87xfr/2a2W3tdfbZe2avvdZ61uy5bLXVOB5//DC6dIkWaMWWPQi5ma0GRhaahqQNgTvwmq7ZeGCL/82z7VnA+XhzwjHAGWa2rB5ZrwwLFsCECV4D9cILMHMmfPkljyxYAF27ws9/7lOPHuXOadk88sgj5c5Ci1DJ9+Hnn8OoUTB58iN07gz/+lfJ/4W0SC35Xos39CUmabQkq2nK2u7xavbfPW3XJ2f5YElPSZojaYmkyZLukvTNrG0Ok/R/kmZJWiDpZUmH1pDXH6VjrZOP5iSFpJ+axvfKXdc1rRtUjryFKosXL2bWrFlrOrmePWwYf12yxFcOH16y4y5Z4u3qBw2C2bOhb9+H+PDDY5k1698lO2ZLI2nDuk51TPIGYDkeTOYY4CZJ/ao57oF4kIvvAX3wfrAXF+VDNZZly7wd6rhx3ux1s828Cd8NN/igaN/+NpxwAl2vuoqun34KV17ZogtTAF27dqVr13X+3Ifiq7j70AzGjIFdd4Xrr4dBg7ry7LNdozBVIi35XosaqtI7k7WjVH0A/BK4v74JSroMf7NzPXAJHtxiC2Bv4Cp8LBeAgXh/oF8Bc/A/cA9L2s/Mns9Jc6u0b0voFzYMuMrM5uWuMLN5kkbi39v/NXrOwhpdu3bl+uuvr1pw220wbRr07Vuy6H5PPunjkXzwAcAyzjprHiNHnsRrr/Vl1113LckxW6jZeJ/Fmiht07rGjaSOwOF4y4KFwAuSHsUjsuZGCDwBuMPM3k77XooPkF6+SIKrV3vUvSlTPIbzokVrT4sX+0A5X3wBH38Mb78NS5f6vuuvD4cdBiefDN/6FrRrtybZ+++/H8aO5aijjirTB6sc99/v/27jXJROpd2HU6bAgw/CfffBxIk+1Npzz8HEifczeTLstltcC6XQku+1JlOgkjQeeBdYDJwErMLb198MXIMXFuYDF5jZn9I+OwG/w9vjLwEeBc7MPEhLao03LzklHeYucv55p6h+Pwd+jA/6+j4w0szuqUu+07HWPLinGql5ZvZFQSegav898ALZmWaW3T3+I2BCKgxkjn1mzu4XS/pPYDBZBSdJbYE/AxcA38GjFTZnOwNn17D+GfxclFVLH4dq2rRp9OzZk/bt23tV0UUX+YoRI6BV8SrXzbwgdcUVMH68L+vXD3bZ5UL69Nmctm1/xl577VW04wXA/84Uy3bAKjObnLXsTfyFUq5+wCM5220saSMz+7KIeVrbddfByy97zdKsWV5QWrKkalq9Ov++7dpBx46w8cYeq//UU2GnnWCTTWC//fIOnHPTTTcBLfPBJleci0ZRtvvw/ffhxhv9fdvUqf7zy5TKHnvAHXfA8cdDmzZwxhlxLZRSS77XmkyBKjkGLzztARwKXAscBDwB7I6/9bhd0tP4eFBPAK8CA4ANgdvwMZ4yQY/PAU5L00Q8XPYxwL+yjjkC+EFa929gL+A2SXPNbGx1mUyFPwrph1WAo/HBLm+sbmWKQliTzsDcnGWXAVPN7C5JxXzQqVQ9gBqeYDA8ZHNZtfRxqPbYYw8OPvhgbr/tNq82mj3b+04NHlyU9DMDOY4eDW++6cu6dIFf/ALOPht+9rN5vPzyp0U5VlibmT1XxOQ6kfXSKpnH2uMF5ts283tnPHz7WiSdDpwO0KshA489/LA/5fXp44Whjh29eV5m2mIL2HZbb5rXsWPV1KFDvV8ejBs3rv75bWbiXDSKktyHdbkHv/oKbr4Zevf2W+yb3/SGDIMHrzteYFwLpdWSz29TK1C9bWYXAUi6Bq8eXmFm16Vll+BN4fYGNsBv2uPMbEFafzrwrKRtzOx9YDhwpZk9kNafCRyYOViqwj4bGJTVRO4jSQPwAla1BSrg43p+voMkLcxZlvvfdDvgQzNbmZXPIcCVWdv0NbN18iBpKD5O1p+ylg0CjsIHLW4pPsVrqabkWb8zPh5OKBMz4+qrr6Z3795w+eXedqNzZ7jlFpDqmaY3Axk71qfx42HVKl/XsyecdZaX2zLNv2+++WZqfz8RGqq2flLZQSvyWAjkVtN0ARbUYdvM79Vti5ndCtwKsPvuu9f/YnjqKX893og6dOjQqMerZHEuGkVJ7sO63IPf+IZX+tblX0NcC6XVks9vUytQTcz8YmYmaSY+dklm2QpJc/GBdrcBJmYKU8mLeM1EX0mz8EFcX8raf7Wkl/H+SAB98XC+T2SCRyRtgan5Mmlmx9fv4zGB9CYmy47Aw7Xsdy/e3yez7TqvNCUdjveR+qGZTUvLugOjgaPNLLfWqjkbC1wqaZyZLcleIakD3i8tX2E5NAJJHHP00V6Y+tWv/D/lvfcWNJDv7NkwaRK8+iq8+CK89JLXSmW0aQOHHOJNQQ4+eK3uJyxYsIDOnTujehbeQkFq609VYx8qYDLQRtK2ZpZ5SbIL8HY1276d1j2Qtd2Mkjb3g0YvTAHcc4+3Sj+2EYYXqHRxLhpF2e7DQipx41oorZZ8fptagWpFzrzlWdaKqg7N1anrm8bMbXoI69Y65R63GBanmrM1JHXL2WYysK+ktma2Aqr6aVWzbSaNw/FaqePN7NGsVTvihcqnsh4cW6V9VgL9zKw5hja7DG/GOUXS9cB7afkOeMAKAZeXKW8B+O3//A+HvvwyO4wf74Wam27y0k8WMy80TZvmffWnTYOPPvI++5MmefToXN27wwEHeAHqwANho40yaRmLFy+hQ4cOzJs3j549e3LnnXdydCMNHtzC5TYzbgvsBpyBB9SpkZktkvQQcImkU/Ha9v/CWyrkuhsYLeleYHpKf3S9c17Bbr/9dqBlPtjkinNRek3lPoxrobRa8vltagWqQrwDnCypc1Yt1d54geHdFM1tOrAnHoQgE4BiAH6DZ9JYBvQ2s2caNff5/Rn4GfBTvD9ZjSQdiQfbOKGacbJeBXbKWTYCby45FA900eyY2UxJewM34QWnTGnSgL8BQ8xsRr79c6mCx95oSmzpMhb9dQJf3DmGOx57gWvowfXtT2D2McOZNX1XZg31/vyzZsH06V6IWrIkf3qdOnlwiV13hb33hr328gqu6iqd/vznPzNixAgmTJhA9+7dGTBgAPvss0/JPmuokqc/1VOSPgROBaq9l3IMwfvHzsT7YJxhZm9L6oX/He9rZh+b2ROSrgSepeoe/E0xPkelefLJJ8udhYoR56LRVPx9GNdCabXk89ucC1T34uMa3C3pQryQcAvwUFYt0HXALyRNxpsODsFrbKYDmNkCSaOAUamwNQHvl7UnsDq17V2HpLvT/vVt+peXmf0j/SG6SlJv4EG89mxjqpoLrkr5+CFeM3UuHgFwk7R+uZnNMbNFwKScvH8FtDGztZY3N6nZ4/clbYA3DxUwpZ5NH7PH3tgVGCvpzUxI2IyssTe+C3yON8+8mHKGbC7QihVVgcmWLl07UFlN84sXGbM+X8BHH81mfXVj6XyY8+VyZs1dxcrl7ViwdD0WrOrAag4ADlhzvB8uAW7Pn58NNvBOx716eYfk3r1hhx08RG6vXnXvbtW5c2f69+/PRqnK6vnnW8LoARXvDeDbddkw9bMaXM3yj/G/2dnLrqEOL6OaurZt25Y7CxUjzkXjaAr3YVwLpdWSz2+zLVCZ2eL0AHst8AqwFA/TmR1K/GpgE6oe2f6EF8R2yNrm18AMvFByEx6a/Q3WDgKRqwHhoGpnZudLegWvRToe/0M1A3gB+LaZfZI2/Qn+HV+bpoznqBqrqkVLBahX67t/Y4y9sWJZe/5w7F/p2LYjS5ct49O5X7Bh+w3p0KYDS5cv5/N5M9iw3Yas37oDi5ctZeaCWXRbvztt1J75y5YzY8FXdGy7Ea2sI4uWL+fLJfNYv3UPsPYsWr6Cecvm0bZVT1ZbexavWMHClfNpxcastA4sXbmcRSsXsXz15iyzjqyyZXiQyI3xS2sRHlAzM78QD9i0Cd71JTO/Kd7vWPgttCleWTwf74e8YVo3nU7rfcnXtvg6PTZrS7du8+jadSFbbrk5PXpAhw5f0anTYvr124xevWD16q9YsmQJm266KQBz585l6dKla+bnzJnD8uXL2WSTTdbMr1ixgo033hiA119/nW222YaDDjqIQ3KaFIbykdQJDxr0SS2bhjxGjx4NwIknnljWfFSCOBchI66F0mrR59fMYooppnpOeF+PJTnLzgUeq2bbN4Gjsua7k0K013IMg7vMew29Yz5/X5p/I80/lOZfSfOPp/nn0/yTaf7pNP9cmh+X5v+R5v9fmv9Xmn8gzU8yMBOjDbCu/MO2YJp14TIDrB8P2348Y5syxAD7PjfYKdxmW3GYAfZTzrdL25xvA9vsY4A99PWf2rh9zrPDttrbAJv50DP2xTuT7YQTTjBJlnHeeedZu3bt1swPHz7cunTpsmZ+yJAh1r179zXzp5xyim2++eZr5o877jjbcsst18wfeeSRtv3226+Z33fffW3bbbe11atXW8gPWGSlu4cW4CXrzLQAr2WfDxxSquMWOvXv37/ac3PkzS/akTe/WM8zWzoDBw60gQMHljsbFaG5nAvgNauAe6FcU757sBClvBYq9W9BY2ou91o+Nd2D8vUhhPqQtC/wFzPbJGvZacAxljMOmaQPgKFm9kSab4s3FdzSzKbmbLtm7A2gPz6gdbbWpKad9VjWBlhZh+0ivaaRx8ZIr72ZFW805SySTshZtBqYBbxsFRR9NEWGnZazuDveb7KpiPyWVqnz29vMepQw/YqW5x7MaGrXSkO1tM8LlfGZ89+D+UpaMcUUU+0TXkO1OGfZOeSvoToya34j6lZDtc4bEeDWBiyL9Oq4b1PIY7nSi6npnZfIb+S3uU4t7dy3tM/bFD5zs+1DFUIjKdfYG481YFmkV9i+lZ7HcqVXVClaZk9yxtEzs3fKkZ8QQgihrqLJXwgNJOk+vKYpM/bGOGBvWzfK30H4WBvfxSNJjgFeMbMag1JIes3Mdi9ifiO9CkuzpaWXk/ZuwJ1UDeGQGUNQ+BjutQ3sWzalPC+lEPktraaW3+akpZ37lvZ5ofI/c9RQhdBwpR57o9rw/A0Q6VVemi0tvWx/BD7DI7DOoO4Dr1eCUp6XUoj8llZTy29z0tLOfUv7vFDhnzlqqEIIIZSNpIXArlY1PmAIIYTQpJQkalMIIYRQRy+w9th/IYQQQpMSNVQhhBDKRtLm+ODqTwCTgBXZ681sQjnyFUIIIdRV1FCFEJoVSTtIulzSI5KeST8vlxS1IJVpWzyYy++AJ4HxWdOz5ciQpGGSXpO0TNLonHXfk/SepMWSnpXUO2udJI2U9GWarpSkcuVXUh9JJmlh1vTrCsjv+pLukDRN0gJJr0v6j6z1FXWOa8pvpZ7jlqCm+7Q5qu2+aa4k3SNpuqT5kiZLOrXceapOBKUIITQbkn4E3AQ8CkwA5gFd8BD1L0r6iZnd38BjdMJr9xc0II3tgH5AZ2AB8LaZTW5IvpqwW4CngSuonKAUnwMjgAPxADIASOoOPIRH9HwMuBS4H9gzbXI6MBi/3gwvIH4I3FyO/GbpZma5Az1D+fLbBvgEGAh8DHwfeEDSTsBCKu8c15TfjEo7xy1Bbdd9c5P3OjSzqeXMWIldAZxiZsskbQ+Ml/S6mf2z3BnLFk3+QggFK2WBoCEFFkkfAcea2d+rWbcPcK+Z9SkgvQvM7LL0+0bAvcAg/MHoWeBoM5tZQHq98IfDXYAPqCrwbY0P/PxDM/u4ruk1B5IWATub2QflzksuSSOAr5nZiWn+dOBEM9s7zXcEZgO7mdl7kl4ERpvZrWn9KcBpZrZntQcofX77AB8Bbat72C93fnPyMhG4GB/wvGLPcTX5/SdN5Bw3V7nXfUuSuQ7NbEy589IYJH0db71wppk9UMvmjSqa/IVQYSSdLulFSfMkrUo/X5R0Wj3S6pMzf5Skv0h6UNKx9Uivl6SXgDeAS/C3rxcDr6c89iowvQuyft9I0hPAfOArSU9J6llgFnsA/8qz7nWge4HpnZ/1+1V44XFTYDP8Ie/KAtO7E3ge6G5mO5nZt8xsZ3xA2+fxccoKUuzvOKVRtGuwDp4E+pcg3VLohxd8ATCzRXjBuF9169Pv/Si/aZI+lXRnqmXLqIj8StoY2A4f/Lziz3FOfjMq+hyH5ifPddgsSbpR0mLgPXwcz3FlztI6okAVQgWRNBIfj+d2fADgrwPfSfNnSrqiwCQnZqX9E7yfymvAK8BvJQ0tML1iFwiKXWB5EvijpK2zF6b529L6QmT3ddgfGGJmM8xsBjAUOKDA9PYAfmVmi7MXpofGC9P6QhX1Oy7BNVibJ4CrJY1IhcHDsqciH6uhOuG1itnm4TW11a2fB3QqY5+Z2cA3gd54obUzXsuaUfb8Smqb8nSXmb1XTZ4y+aqIc1xNfiv+HIfmp5rrsFkzsyH4vbUv3iR4WXlztK7oQxVCZTkZb/40PWf5v1LtzUTgFwWkl/1PeyhwuJm9BCBpPF4AuqGA9PYA/sPMlmcvNLNFki4E5hSQVm7+9gf6m9mslL+hZBUW6uhk4EbgHUkrqWpS1wb/I3xygelZevBplfL6Zda6OSntQnwCHJzykuv7eLv4QhX7Oy72NVibG9PPX1azzoDWRTxWQy1k3e+8C/4ioLr1XYCFVqa29Wa2EC9cA8yQNAyYLqmLmc2nzPmV1Ar4E7AcGJYWV+w5ri6/lX6OQ/OT575p9sxsFfBCanlxBvD7MmdpLVGgCqGy1PbWstC3mtn/tDcF/rFmhdkrkr5WYHrFLhAUtcBiZnOBH0nqgDeF6IQ/0EzOrRWqo07AypQ3w6PRZZoUbgvMKjC9YcAYSWfjTX8yBb5d8WZAh9cjj8X+jot9DdbIzJpSS4m3gRMyM6l/z9ZUNbl5G+8f90qa34XKao6TuVYy32HZ8pvu+zuAjYHvm1kmXH5FnuMa8purYs5xaH4KuA6bszb434SKEgWqECrLHcAzkq5m7QfuXYCz8WZrhWgn6e70e2v8j/AXAJK64W+4ClHsAkGxCywApMLTG/XZN8eWOfOzs37vRvW1KnmZ2dOp+eFh+Pnqib95vwt42Mxm17R/HsX+jot9DTY5ktrg/x9bA60ltcOv04eBqyQdDozFm2lOzGpyczdwtqRx+PV8DnB9GfPbH/gKmAJsgL/RHW9mmSZoZclvchM+oPP+ZrYka3lFnuN8+ZW0B5V7jpu1fNd9nmiLzUW++6ZZSv2ovws8DizBW7L8CDi6nPmqTkT5C6HCSPoxcDz+wJ2pYXkbuNvMbikwrd/kLLo/82Ai6VA8qlxBf5jk0e4yBYLs/BVcIFDW+DLJ7NSfCEkDgK3M7L5C0mwMkl4DDjSzL2vdeN19twGOA3YEOgCf4m+vR9fnbWOJvuOiXYN1ONbZNa03s2uKeby6kHQRkHteLzaziyTtD/wB7zPzMh6RbmraT8BIPOQ3eL+z80vdvCtffoF/A5fjBff5eB/C88wsU+AuV357A1PxfhDZD78/NrN7K+0c15RfYDUVeI5bgpru08bPTenVdt+UJVMlJqkH8CD+Qq8VMA34vZlV3Iu9KFCFEEIeWTU/uX6AvzFbambHF5DeYOAe4O94rdxAPIz61sAmwAFm9mFD8tzUyEPdZ2uLN11cAsw0s60aP1chhBBC3UWTvxAqTAq5uzXezGWJpJ3xau43zezpIqW/OfBubnCJOu5f1BqWPMd4DRhkZoUGuSi2I/DP9jRr9x1ahb8pW1hgelcCh5jZswCSBgFnmdk+ks7FmwL9Z0MzXYTvuKTXYDYzy21WmQkHfCctoHlhCCGEpi9qqEKoIJL+C/hfYBGwFG9Scgfe7GVfYISZXVtAejsA9+EPx5fhfWLuxgtCc4CDzGxSAekNpog1LMWuASo2SdviTY/mAueY2Wdp+XRgFytgUN+031fABpnmPqkPwHQz65ECaXxhZgUF4ijBd1zUa7C+JO0GPGBm25b6WCGEEEJDNKXoSiG0BJcBR5hZT+BnwF+AQ83sv/ExjwoNkXodqc0+cCnQCx/8tgseqe+3BaaXqWE50MwGAYcAPcxsH7yzbKGdrY/A+0m8jw/emZkyNUAfFJheUZnZFDM7EPh/eKCGc1MhqL5vov6Jf68Zw6mK+LWKtdvF11Wxv+NiX4P11QoPsBFCCCFUtKihCqGCSJpnZl3T762AZWbWtrr1dUzvS6A7HgVpMdA1ExlIUhdgipnV+aG12DUsxa4BKqV0vi7Bm771BrauRw3V9sAjeB8hgJnAYDObJGkn4DgzO6/ANIv9HRf1GqzD8XIH7xV+foYCH5pZg5tAhhBCCKUUfahCqCyfSRpkZv+H96VZKmk3M3td0i74A3ghlAo/KyUtygmzuhBoX2B6mRqW69L8cBpQw2JmU4ADJf0QrwG6DbiW+tcAlUwapHO4pF3xpo7z65HGe5L6AtvjBYf3MiF+zewtoKDCVFLs77jY12BtHsyZNzxc/jN4iOkQQgihokWBKoTKchHwmKS5wLvAmcCTkp7D+69cVGB6H0jqZWYfm9kGOet2Bj4rML2hwCOSLk3zM4HB6fft8KZnBTOz+9I4LZfg40d1rk86jcHM3qABY1yZj/ZezIE9i/0dX0Rxr8EaWdMa2DeEEEJYRzT5C6HCSNoM+BrwmpmtTmOy7AK8amYTCkxrB+CzVLuSu25/oJuZ5dYQ1JZma6qpYSmWVAuyH3CLmS0tZtrNUYm+46JdgyGEEEJzFwWqEEKDSJpgZt+u1PRaslT4vcDMLqm09CT9Bx7IZBczm5ezriserfD01PSwRZM0GuhuZgc3p2NVc+zH8cG9T2zsY4dQanEfN2/R1CKEJkJSa0kXVmB6+xQhjVKm15K1AX5ToekNA67KLUwBpGUj8eaGzZ6kHpJulDRV0jJJMyQ9LemAtMmZwLHlzGM+ksZL+kMjHm+ipJF51p0uaYmkX0h6VdJ8SbMkPSZpx8bKY2iZ4j4u+JjPSLJqprGNmY9iiT5UITQdmYfZotQ2lCC9UAaS/ljD6oL/xhc7vRrsDJxdw/pngAuKeLxKNgYfN+wUfAiBnnjgk41gTQEzuInATrkLU63mCHxoh/2AG4FX8abJlwBPSepbAYOFh+Yr7uPC7Ib/jc/9n7O4DHlpsChQhVBBmvDDcSifo/GBd6t7UGxdAenl0wNYXcN6Iz2INGeSuuHBPg4ws6fT4ml4YSCzzWiymu9IGo8HDFkMnIRH2BwB3AxcAxyDR6G8wMz+lJXOeGCSmQ3Ll3Y1+TsIf+jZEf9OXgWGm9m7ad+BwEBJQ9MuW5rZVEkCfo4PDL0Z/oA50szuSel2wAs9P8AHkb6OuplI9WOhXQgsAX6bE+kSSccB8/Da78fqeJwQ6izu48LuY0lbA92A58zsi7rsU+nigSqEytJUH45D+bwF/M3MHs1dIakd8D9lTi+fT/Faqil51tcnQmFTtDBNh0p6oYBALMfgD117AIfiww0cBDwB7A6cANwu6Wkz+7wB+euY0p6Ih+D/FR4Fsi/ehGk74D3gl2n7WennCPwhayjwb2Av4DZJc81sLDAKHyj6cPx7/g3wbXww6ppMBLaQ1CUTiEXSdsBPgR/lFqaSzngXh7kFffIQ6i7u48Lu4/54AfL1BnymihIFqhAqS1N9OA7lM5r8/WFXABeXOb18xgKXShpXTY1CB7yZVpNsS18IM1sp6UTgNuB0Sa8Dfwf+YmYv17Dr22Z2EYCka/B7eYWZXZeWXQKcD+zNumN9FZK/Mdnzkk7C35oPMLMXJC0HFme/ZZbUEW/OOcjMnk+LP5I0ABiaQvCfApxsZn/LSvfTOmRpYvq5I/Bi+v0aYEJuXrNchw918FK+RCX9DR9cfFId8hDCWuI+Lvg+7o+/1J3plWBr/NXMjqjXhyyzKFCFUFlG0/QejlX7JmVNr1kzsxtqWLeKAr/jYqdXg8vwN59TJF2Pvx0F2AFv0iXg8iIdq6KZ2ZjUEXtf/A3wQcA5ki4ws3znYGLW/iZpJv4CJbNshXwssZ4NyVtqmnMp/ga9B/73pBXQq4bd+gLtgCckZYcSbgtMBbYG1iOrgGNmCyW9RS3M7HNJs/F+VC9KOhA4EA/rX13+rwG+BXwrXb/5bE/VNRhCweI+rvt9jBeoxrDuS90m288sClQhVJAm+nD8XBHSKGV6oQKZ2UxJe+Oh0y+nqiBtwN+AIWY2o1z5a2ypidCTabpE0u3ARZJG5dllRW4SeZZlv1BZzbovLNrWkrXH8KY8P04/VwLv4A9S+WSOeQjwcc66FUDuANSFegvYUVIb4HfAH8zsndyNJP0O+CHwHTP7MGddX+BWvDngaGBOZkw9SdumdDfB+2UdYWZfSNoC+AP+ELoecDCwPzAEf55638z+u4GfLTRhcR/X2W7ACDN7vwFpVJQoUIVQ4VTh4zyZ2XeKlVYp0guVy8ymAd+XtAGwDf6QMMXMoq+LP+y0wd8QF8ssYNOcZbvgb5vXIWkjvMZwqJk9m5Z9g7WfHZazbn/Md4BlQG8ze6aadL/EH8j2BD5Myzrizfg+qMPnmJjyPRQPXHJRNce4Di9M7Wdm7+Wsa4NHFjvVzCZJegAf9wxJ6+NBAU4ys48lnYo3b7oUGAf8zMyeTVEF2+G1qf1Tk69udch7aFniPl53vy2BDWlG/acgClQhNAUxzlNo1lIB6tVaN2yG0sPOX/AH/InAArwz+nnA02Y2P6ePQUM8A1wr6VC8g/mPgS3I8yCGB3GYDZwm6RNgc+Aq/O12xlRggKQ+eKf8OWa2IL2RH5WihE0AOuEPXqvN7FZJdwAjJc0CPsej9NU1UM5EvLP+Lni/p9yBoW8AjgMGA3MlbZJWLTSzhcBhwGtZ/aX+TVXAisH4w+ej6byvB9wH/DfwSuaB1MzmSVqNRyobKWm0mdWlqVNohuI+Lug+7p9+fpF1b2bMztQUNzVRoAohhBDKZyHwDzzS1jbA+niTnP/FI2wV0x/x6ImZ4RRuBB4Gule3sZmtlnQU8HtgEh4y+Ry870PGKOAu/G12e2BL/OHs18AM4Fy8Wed8PDDElWm/c/HIYw/jYaOvT/N18SZekHkFb66Xa0j6+XTO8ovx2qydUxoZ/YGr0+87AT83s3uzd5Q0Ih1vjfTAuRNeCLtP0oU1BMYIzVvcx3W/jzMFqndzs4rXXH1Vy/4VSWZW+1YhhLKRtMrMihbivNjphRBCUyLpLKCPmZ0p6Xt4f5eNzWyWpGF4zcJJKUjATmb2lqSfAtuZ2U8ltcL7j2xoZlNSmr8HXs4tiIUQWoYoUIVQ4aJAFUIIxSOpO/BXvJXOJGCgmfVK6zoC9+DN/pYCz5jZ2ZI6403/+uD9RoYBp+HNnxbjtRPDaokkGEJopqJAFUKFiwJVCCGEEELlyjc+TQihcsQ4TyGEEEIIFSoKVCFUvhjnKYQQQgihQkWTvxBCCCGEEEKop6ihCiGEEEIIIYR6igJVCCGEEEIIIdRTFKhCCCGEEEIIoZ6iQBVCqDzSaKTH1/m9MY9b3HTHI1ma9kzL+iG9iDQJ6TGkDjn5yGz/g6LnJ4QQQghFEwWqEELdrP2QvwJpJtKzSEOR2pbwyGcCxxY9VS/k/KFRjuXuBDYF/onUDngAGIrZjsBk4MScfGxaonyEEEIIoYiiQBVCKMRT+IN+H2AQ8BhwMfA8UseSHNFsHmZflSTtxj3WYsy+wGwFMBh4CrPX07r3gB45+fiiRPkIIYQQQhFFgSqEUIhlqVDwGWZvYHYNsB/wDeA8ACQhnYf0AdISpLeQ1q718W3OQZqCtAzpU6Qrqj1ibjM8r1m6EelypNmppmwUUqusbQ5Ceh5pLtIcpL8h7bBWmjAQGJpV69anmmOtj3Qt0gykpUj/QPpWTv5qz8+6dgDeyprfCXinhu1DCCGEUKGiQBVCaBizScATwOFpyQjgFGAo0Be4ArgF6T+z9roc+HVa1w84AvikgKMeA6wE9gaGAcOBo7LWdwSuBQbgBb55wGNI66X1ZwIvUdUMb9M8x78ypXsysBteCHoCKbc5Xm35yfU58HUApJ2B/YFHa9g+hBBCCBWqTbkzEEJoFt4B9k/N/s4GBmH2fFr3EdIAvIA1FqkTcBYwHLM/pm3exws4dT+e2YXp98lIpwHfA/4MgNmYtbaWTgLm4wWsFzCbh7ScTDO8qu2y9+kInAGcitnYtOwnwHfTZ/lVnfOzrj8B9yO9lfJ1JGbL6v7xQwghhFApokAVQigGAYbXSLXDa3Esa31bYGr6vS+wPvB0A443MWf+c6BnVW60NXApsAfeN6lVmnoVcIyt8Xz/fc0Ss1VIL+Gfoe75yWW2GDikgLyEEEIIoUJFgSqEUAx9gQ+pakZ8CPBxzjYr0k/RcCty5o21mzA/BnwG/Dj9XInXoq1H3WXyadWsy11WW35CCCGE0EzFP/wQQsNIOwIHAQ/ihZZlQG/M3s+ZpqU9Mtt8r0T52QgP+nA5Zk9h9i7QmXVfIC0HWteQ0vtpm6ogFFJrYC8igEQIIYQQkqihCiEUYn2kTfCXMT3wQtEvgX8CozBbhDQKGIUkYALQCdgTWI3ZrZgtQLoOuAJpWdpmI6A/ZjcVIY9zgdnAaUifAJsDV+G1VNmmAgOQ+gALgTlrrfXPchPwW6TZwEd436+NgRuLkM8QQgghNANRoAohFGJ/YDqwCvgKmISPQ3ULZsvTNr8GZgDnAjfhQRfewCPmZfwCL/j8Gvha2v7uouTQbDXSUcDvU/7eB84BxuRsOQq4C69tag9sWU1q56efdwLdgNeBgzCbXpS8hhBCCKHJk1l13QNCCCEUjTQemITZsAL3M+AIzB4sRbZCCCGE0HDRhyqEEBrH6UgLkb5Z65bSzUgLGyFPIYQQQmigqKEKIYRSkzbHmxUCfFLrmFNST6BLmpuO2aIS5i6EEEIIDRAFqhBCCCGEEEKop2jyF0IIIYQQQgj1FAWqEEIIIYQQQqinKFCFEEIIIYQQQj1FgSqEEEIIIYQQ6ikKVCGEEEIIIYRQT1GgCiGEEEIIIYR6igJVCCGEEEIIIdRTFKhCCCGEEEIIoZ7+P+qBlBoB/GBPAAAAAElFTkSuQmCC\n",
|
|
410
|
+
"text/plain": [
|
|
411
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
412
|
+
]
|
|
413
|
+
},
|
|
414
|
+
"metadata": {
|
|
415
|
+
"needs_background": "light"
|
|
416
|
+
},
|
|
417
|
+
"output_type": "display_data"
|
|
418
|
+
},
|
|
419
|
+
{
|
|
420
|
+
"data": {
|
|
421
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAALECAYAAAAfGaoaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeZxN5RvAv68Z+77LMkRlKVS0SiZLRZKiKCoKKS0qRStSqKTUz16RJbSg0GaIiLK0WLIU2SlblrEMM8/vj/eOucadmTsz99xz753n+/mcz9x7znvOec47733uc99neY2IoCiKoiiKEs7kclsARVEURVGU7KIGjaIoiqIoYY8aNIqiKIqihD1q0CiKoiiKEvaoQaMoiqIoStijBo2iKIqiKGGPGjSKoiiKooQ9atAoiqIoihL2qEGjuIoxpp8x5q9MnjPeGBPnlEyKoihK+KEGTYjj+cIXH9sFPtq2MMb8Zow5aYzZYox5yg2Z3SaN/vLetnjapWkYedp19HpfwhgzyBjzhzHmmDHmoKevXzPGVEp17jPGmKWeNv8ZYxYbY25OR97GxpjEzBp2iqIoSgrRbgug+MUW4JpU+/Z6vzHG1Ae+AN4C7gauAkYZY46JyKhgCBlCnOf1+kpsv1wJbPfsS8zMxTwGy2LgNNAP+B04AVQDbgN6AU94ndIY+BBYDhwHugKzjTGNROTHVNcuC3wEzAXOMVIVRVEU/1CDxkGMMdHAUeA+EfnEGFMEmALkBtqJyEE/L5UoInsyaPMUsFxE+njerzPGXAz0Bvw2aIwxC4BNwG6gG5AHGA68BLwI9MDO7I0RkRe8zssNDADuBUoDfwGvisjHXm3yAu8A9wBJwFTgPx8yPOa5TxWsETIeeF1ETvvzDN59ZYw54Hm5148+TIsR2H6oLSKHvfZvBL42xphU92+e6vxexpibgDuAMwaNMSYXMBnbv/lQg0ZRFCXLqMvJWWoBeYFfPS6in7Bf9M1F5KAxppPHtVElg+tUNMbs8GxfG2Ou9dGmAfBNqn3fAFWMMRUBMnG/tlij6zqsofQ8MBsoBDTEzkg8b4zx/uIeiJ2J6AlcAkwCJhljmni1GQy0Ae7DzjjFYw2XMxhj+nmu/xxQEzvz8RDQNy1hM/FcmcYYUwJoAbyXypg5g2SwwqvHcCkM7Et16CVAgDcCIKqiKEqORg0aZ7kMOIKdaVgEvCUiT4hIssvjELABOJXONX7GGgAtsK6kg8AiY0yzVO3OA1LPQOzxOubv/QD+FpHeIrJRRD4E/gAqiciznn0fAauAJgDGmALA48BLIvKpp81ArKvnBU+bgsDDwAsi8oWIrBeRXthZDryu8yzwkIjMEJG/ReQr7MzQY+nI6+9z+SLWGHM09eZ1/ALs52Sd90nGmCVe7ddmcI/ngWLARK/zbwC6A/eKSFIW5FYURVG8UJeTs1wGRAGzsLMRn3kfFJEZwIz0LiAiX6fatcgYUwF4Bht34Q/i7/08/J7q/R58G0tlPK8vwLpkfkjVZiF2pgVsvEleYEmqNouBlp7XFwP5gc+NMd6zHlFAPmNMaRHZm+r8zDyXL34G7vex/0/PX+PjGEA77PM8gnUl+cQY8wjWoGklIjs8+0phZ7AeyIYbTFEURfFCDRpnuQw7A3E/9ou7F9bNkF2Wcu6X6G6gXKp9ZT1/M/ulmXqmQ9LYl3qGL7XrxXjtM2m08Sb5enfiNXPjxQEf+7LLcRE5J7vIKyzmT2y8Ty28jCYR2e5pl6ZMxpheQH+sMeOdTXUJUB6Y5XWfXPYUcxobc/UxiqIoit+oy8khPIGidYHhIrIKGwzb0xhTJt0T/eMyUjJ2kvkRuCnVvpuBrckzAw7yF3ASaJRq//XAWq82CdhYH2+844HWYrOHqorIXz62TGUnBQIROQB8DTxmjCnq73nGmFewcT8tUhkzYLOfagOXem2jsP/TS4E52RRbURQlx6EzNM5RFSgK/OJ5/xbwKDam5AkAY8ztwCCgiYjs9HURY8xQbEDuFqAINvC2GTZd2Ju3gSXGmNewsRpXYuNOngzYE6WBiBwzxrwLDDDG7AV+w86y3OaRFRGJN8aMAl41xvyDjXl5EKgB/Otpc9QYMxAY6Jm5mIsdo7WBy0Skt6/7+9OP2eQRrMH4qydo+Tds9lp1rLvsLEPLGPMONpD5bmCDMSZ55uy4iBwSkXhgTapz/gUSROSs/YqiKIp/qEHjHJdh3TRrAETkkDFmCNDXGDNURLZiDZ7q2IyitDgPmIBNhT6EDcZtKiLzvRuJyHJjTGtstlEvrJvpBe8aNMaYTsA44HwR2RKAZ/TmBaxr5h1S0rY7isg8rzZ9sOnJycGx07Apy3d6PccAY8wurDE2BFvHZSM2dTst/OnHLCMi24wxl2Hjlp7DBnkD/A18CwxLdUpyTZrUcT0fAZ2ckFFRFCWnYzLIOFUiCI8bpA1Q19+aLoqiKIoSDmgMTc6iJfCoGjOKoihKpKEzNIqiKIqihD06Q6MoiqIoStijBo2iKIqiKGGPGjSKoiiKooQ9EZu2XapUKalSpYrbYkQsGzZsAKB69eouSxK5uNnHK1eu3CcipYN+4yCh+sE5VDc4j+oG30SsQVOlShVWrFjhthgRy759duHoUqVKuSxJ5OJmHxtjtgb9pkFE9YNzqG5wHtUNvolYg0ZxFlVWzqN9rIQjOm6dR/vYNxpDo2SJ6dOnM336dLfFiGi0j5VwRMet82gf+0YNmgz48ssvad++vdtihBzvvvsu7777rttiRDTax6FBlSpViItLvb4orFq1imuvvdbHGTkbHbfOo33sG3U5ZUCrVq14/vnnWbVqFXXq1HFbnJDhiy++cFuEiEf7OLSpU6cOxYoVY9asWdx6661uixMy6Lh1Hu1j3+gMjR/cfffdjBkzxm0xQoqiRYtStGhRt8WIaLSPQ58OHTowevRot8UIKXTcOo/2sW/UoPEwePBgqlWrRuHChalVqxYzZqQslBwbG8ucOXNclC70mDZtGtOmTXNbjIgm030sYjeAn392RqgIYcsW+OMP/9svX76cWrVqUbx4cTp37syJEycAqxvmzZvHyZMnnRE0DFHd4Dzax75Rg8ZDtWrVWLRoEYcOHaJv37507NiR3bt3A1CzZk22bNnC4cOHXZYydBg5ciQjR450W4yIxu8+3r0b3ngDLr4YFi+2+8qXTzFulHM4cMB21+23w7JlGbefPHky3377LZs2bWLjxo28+uqrAFSoUIHcuXOfqQuiqG4IBtrHaSAiEbnVq1dPskPdunVl5syZIiKSkJAggGzdujVb14wk4uPjJT4+3m0xIpp0+zghQeSTT0RatBDJlcvOzVx7rciCBQG5N7BCQuBz7NRWt249eeklkeLFbdd165Z2X1SuXFlGjhx55v2cOXOkatWqZ96XL19eFi5c6Fe/5gRUNziPm30cyrpBZ2g8TJgwgUsvvZRixYpRrFgx1qxZc6Z40ZEjRwAoVqyYixKGFgUKFKBAgQJuixHRnNPHIvDPPymvH3kEVq2CPn1gwwb48Udo1MgdYcOM6Gh45RXYuhXeegtuusnuP3IEPvsMEhPPbl+pUqUzrytXrsyuXbvOvD9y5IjqBi9UNziP9rFvNMsJ2Lp1K127dmXevHlcc801REVFcemll2KNUVi3bh1VqlShSJEiLksaOkyaNAmAjh07uixJENi7F77/HurWhYsuAmOCctszfdy4MUyaBOPHw4kT8NdfkCePNWCqVYOoqKDIE4kULgxPPZXyfvJkePhh+29+9llIHt7bt28/02bbtm2UL18egF27dpGQkKBl/r3IUbrBJbSPfaMGDRAfH48xhtKl7fIU48aNY82aNWeOL1y4kObNm7slXkjy/vvvAzngA/X339C0KWzebN+XLg0NG8LUqZA7t6O3fv/tt2HLFjr+9x8kJcG110KnTnb6IFcu+62rBJSuXaFkSRg0CLp0gb594dgxGD58OC1btqRAgQIMHDiQdu3aAbBgwQIaN25M3rx5XZY8dMgxusFFtI99owYNUKtWLZ5++mmuueYacuXKxX333UeDBg3OHJ8yZcoZi1ixzJ07120RgkNyIPiMGXamZvFiG4SbbMzcey/s2WONnIYN4aqrwN+p4IQEWL8e1qw5e5swAa67jrm9esEzz0D37nD//WrABIGoKLjzTmjbFubOhcGDYckSuOeee7jxxhvZtWsXt912Gy+++CJgg4W7d+/ustShRY7RDS6ifewbk+xWiTTq168vgVh8btasWUycOJFPPvkkAFIpYcPOnTZTyBg4dSrt2ZgXX4RZs2D1ahvXEh1tZ1HGjrXHjxyB/Plh06YUg6VpU2jQwH5TJhvO0dFQvTpccok1YurVs/eNirKzMUHGGLNSROoH/cZBIjP6IT4eChaEXbugRg37r2naFCpXXs3//teNn35a6rC0ihI6hLJu0BmaDLj11lu1CqgPxo8fD0CnTp1clcMRFi+GW26BV1+Fxx5L37X06qt2++8/a6AsXgwxMfbYyZNQpox1FyUk2H3G2G/HBg2gTh2YMsUaMRddZONivBg/eTIQoX0cRhQsaP8mJkK3bjBvnrVjoTZFiizlu+/gxhut/RkdHbQQq5AlonVDiKB97BudoVGyRGxsLGBjCCKKb7+1xUkqVYK4OPs3qxw5Au+9B4cO2aInl1xif+L76ZJys49D+VdYIMiufkiOE583D55/HipXtpNyL78MTZrYGZwmTTI3fH76ycZ7b96csjVoYON5RGDIELjtttD3PEasbgghVDf4Rg0aRUnm88/h7rut8fHtt3Z2JYcSykorEDihH77/3ho18+bBv//afdWrwy+/WBt240abXe9tsFSsCMn10apWtTHoYPeffz7ceqv1QP75J9SsaWeJYmPtTNHtt0O+fAF9BEXJkFDWDUFxORlj8gIjgKZACeAv4HkR+doYUwX4G4j3OuV1ERngOdcAg4EunmMfAL0lUi0xxR22bbPGTP368NVXoHVFlExyww12E7GhUnFxdsYleUKua1f44Qf7ulAha8BUqZJy/tSpULSone1JbahceCFs324z98eOhXvugRIl4LvvbEyPoijBi6GJBrYDjYBtQAvgE2NMba82xUTktI9zuwGtgbqAAHOBzcAoJwVW0mesJ+i1a9euLksSIGJibCZTo0b22yYEiLg+ziEYA7Vr282bN96wx6pWtanhqWNtrrwy/euedx489xz07g3z58PEiVCrlj32ySc2ZKttWxuD7iY6bp1H+9g3rrmcjDGrgP7ASuwMTW5fBo0xZgkwXkTGeN4/CHQVkavTu766nJyladOmAMTFxbksSTYQsQEKl14KLVq4Lc05uNnHoTytHAgiTT+0aAFff20nFu+917qkLrnEHVkiQjeEOKobfOOKQWOMKQtsBS4FTmANml2kzMA8IyL7PG0PATeKyM+e9/WB70WksI/rdsPO6BATE1Nv69atzj+MEp6I2FKwQ4ZY7T96tNsShRRuKa303NM+2nbCuqCPe+1uKSILMrpPpBk0IrBggXVHff65Tap78kkYOtRtyZRII5QNmqAXuDDG5AYmAx+JyHpgH3AFUBmoBxT2HE+mEHDI6/0hoJAntuYsRGSMiNQXkfrJVX8V5RwSE+Ghh6wx06NHSlSmEgp4u6eLAi9h3dNV0mi/VEQKeW0LgiNmaGGMjd/5+GNbQmnoUEgubr5vn13SISnJXRkVxWmCatAYY3IBE4EE4FEAETkqIitE5LSI/OPZf6MxJnnhpKOA9yJKRYCjGhTsLiNGjGDEiBFui5F5Tp+GDh3sT9nnn7dp1S4UrvOHsO3jbCAi8SLST0S2iEiSiMzGzuBq6KuflCplZ2eaNbPvx461a1JdfbVd/stpcuK4DTbax74Jmib3zKh8AJQF2ojIqTSaJhsqyTMwa7EBwcnU9exTXGTWrFnMmjXLbTEyT1QUFC8Or78Or70W0lXQwraPA4jHPX0RaX/mLzPG7DPGbDTGvGSMSTPRwRjTzRizwhizYu/evY7IG4r07m2zo3buhOuug7vuSkkPdwIdt86jfeyboMXQGGNGYWNmmorIUa/9VwH/AX8CxbH+8zIicoPneHfgCaxPPTnG5j0RSTfLKdJ85Eo22bHDBhZUrWoDDkLYkAkFQsFP7nFPfw1sEpGHfByvitUJW4GLgWnARBEZlNG1c6J+iI+HN9+02Va33WaLVCtKZgkF3ZAWQZmhMcZUBh7CGjR7jDFHPVsHoCrwDXAEWAOcBO72On00MAtY7Tk+x7NPUTJm2zZ45BGoVg1uuskaNWrMhDy+3NOpEZHNIvK3xzW1GngFaBtEMcOKggWhXz9b4O/NN+2+9ettPPxpXwUzFCXMCEodGhHZSooLyRdp/lbwxMo869mUEGHYsGEAPPHEEy5LkgZbt9qU7A8/tO87d4Y+fc5ZLymUCfk+dohU7ukW6binUyOkr2cUbBXiZD76yK4o/r//2UDi5Lib7JBTx20w0T72TWhGQyohz7x585g3b57bYqTNwoUwbhx06WLrxo8ebWvJhxEh38fOMRKoCdwqIsfTamSMae6JscEYUwObEfVFcESMDAYOhM8+g2PH7AKbt9wC69Zl75o5eNwGDe1j3+haTkrwOXnSzpQE0vXz559WO196KTzxhJ1D37Pn7J+jit+4WIemMrAF63r2doQ8BCwC/gBqicg2Y8wQ4F5saYd/gEnAAH9mdFQ/nM3Jkzbhb8AAW9HgjTfclkgJVUI5hiZYSx8oOZn4eFi61Fb+WrDALnCze7c9NmWKNT7q1bMr+UVFZe7aGzbYbKXJk62RVLWq3R8drcZMGOKHe7qQV9teQC/HhcoB5M0LvXrB/ffb12CXV9i8GR58UMPOlPBAXU5KlhgyZAhDhgzxfTA+3mYSgTU2ihe3zvnBg63x8swzKRry7bfhvvvsCtdFikCDBrZdMulVAxs82C5m89ln0LOnzUV96aWAPF8okG4fK4oDlC5tP4Zg14fq2hVatbKTnf6i49Z5tI99ozM0SpZYunRpypvUMzDLlsHvv0PNmnbm5amnIDbWGiuFU61YsWSJnWVZuRJ++cX+TS6SIWLjXsqVs9epV88uRVy7NpQtayuFPf20/WlZpkyQnjx4nNXHihJkRoywvxd697brQo0aZRe/zAgdt86jfewbjaFRssfChXb25dQp6y6qX98aLw8/bI2P7HDypK3m+8svdjt82O5/+mm7bIHiGKHsJw8Eqh/8Z/16u+DlihUwaxa0bOm2RIqbhLJu0BkaJXNs326NjPr1bfBt7drpz8Bkh7x54a237OukJOvQX7cOrr02cPdQFCVdatSwE6kTJqSsD7V/P5Qs6a5cipIaNWgU/zhyxMasDB0KIgzeuxeOH6dPnz5nx7w4Ra5ccMEFdsshDPb0a58+fVyWRMnp5M5tg4PBxtPUrg3t2tkVRAoWPLutjlvn0T72jQYFKxkzc6Y1JAYOhDvugA0b+K1YMX777Te3JYtofvvtN+1jJeQoWtS6oEaMgMsug59+Ovu4jlvn0T72jcbQhCtJSdb9snSp1TB33hn4e5w6ZX+aLVwIL75o3T9XXhn4+yghRyj7yQNBxOuHILBggU3z3rEDnnsOXnklZBeuVwJIKOsGHX7hREKC1Ro33wwlStjUg65drUMb7HK6HTrA1Knw339Zv8/q1Xbdo16eEh+NGsEPP6gxoyjKGWJjraq4/35b11Jr1ShuozE0oYiIXUFu6VK7lS1rDZncuWHkSChVyjqwr7nGBsheeKE9b+NG+O47+PhjW1ju+uttEYn77rO1YDJizx54+WX44AM76+OdzpBKWw0YMACAlyKo7kuooX2shDpFitjl0k6dsipi/Xro2XMA11wDffu6M26TkiJ/pkh1g2/UoAkFvD+Bjz5qq+ceOGDfe7uTjLE1WvLl832dG26wRsnPP8OXX9ocy5497fnFi9v6MImJdqYldUXe6dPtT62TJ+Hxx22BuhIl0hR5w4YN2XtmJUO0j5VwIXdu+3fSJPj22w388ov9HRWM5dN++cUWARw0CF54wU5Ujx8f2TNGqht8ozE0biBii8l9+63d/vjDpiTnygX9+tnU6OTZlxo1svdzY/t2qFTJvr71Vpg92xahu+UWOwNz7bW2cN1ff1lH+MCBKTM+So4llP3kgSCk9UMYIwITJ8Jjj9nfaUOH2vVhnTIuPvwQHnnEVjhevhzGjIG+fe26VI8+6sw9czohrRtEJCK3evXqSUgybZpITIyI/eyLXHSRyGOPiRw+7Py9Dx4UmTJF5O67RYoVs/e/9Vbn76uEHcAKCYHPsVNbyOqHCGHrVpEmTayKGT068Nc/flykSxd7/aZNRf791+5PTBRp1UokOlrkhx8Cf18ltHWDupyc4vRp+5MheRbmrbfsbEipUraE//PP28DbKlWCJ1OxYtC+vd1OnYLFi+HYMWtaZfIn1MsvvwzAK6+84oCgCmgfK+FJ8rj97rtX+Ogjq24gcMX4ROxkc1ycVaOvvJLiQc+VyxYAvOIK62lfuRIqVMj+PUMN1Q2+UYMm0OzZY+c6582zmUbG2E/XiRP2eOPGdnOb3LltzE0W2b59ewCFUXyhfayEI8njNlcu6NzZ7jt61IbuXXklDB+ebnhehhhji5M/9pjNeUhN0aIwY4ZNzoxUg0Z1g280hia77N4Nn35qS/537myDauvWtcsA3HQTNGmiNcKVsCOk/eQBQGNogsvp07ageP/+Nt7lww9t9Ql/SUqyMzGFC9ul3PzhyJHArsSiWEJZN0R4cptD7NsHo0fbGY4KFeyaRrNn22N589rcxQ8+gLvuUmNGUZQcT3S0rc358892dqZ5c+jePWXiOj3277c5DP3721qi/v4GTzZmPv7YuqGUyEcNGn85ejTl9UMP2U/jnj02pH7dOvj8c/dkc4HnnnuO5557zm0xIhrtYyUcSW/cXn65XbW7Vy/7uy853TstVq60IYfz58OoUTB2bObC/URg3Djo1s3eN1JQ3eAbjaFJj6NHbT2XadPgm2/sJ/D8823xuZdfhjp1IrvYQTrsT65OrDiG9rESjmQ0bvPlgzfftHkJUVH2d+GIEbaGTN68Ke3+/dfWBi1VyuYvXHFF5mUxxpb1qlfPLkO3cqV1eYU7qht8E7kxNPnzy4py5WyEWPJ28822aAHAsGFQoMDZx2NioHx5W7yud2/rRjp+3LqV2rWzReqSa7ooSgQTyn7yQKAxNKHDqFHw8MN2JZeJE+3vxOTSW59+aj37pUpl7x4rV9qwxgYNbNJptP6UzzKhrBsi999apAhcdx0cOmSzjbZuhV277LHERGucpKZnT3j7bet8XbIEHnjAGjINGkR+LW1FURQX6N7d/pZ88EGbBVW1Krzzjv39Gag1d+vVs2GPnTrBnDlw222Bua4SWkSuQVOpkjX3fZErFxw+bI2d5O2//1JmX0qVshV2c6g7yR96eRauHDJkiMuSRC7ax0o4kpVx26IFrFkDPXrYihdOOA7uvx9q1oyMNXZVN/gmcg2a9DDGzsIULgwVK6bdRkmT48ePuy1CxKN9rIQjWR23JUvC1KlZqvPpN8nGzIoVNpbnkkucuY/TqG7wTeTG0KiPXFGyTCj7yQOB6oecy6lTUL26DUhevtwWUFf8J5R1gwaGKIqiKDmG3LltNMKWLXDvvbZonxIZqEGjZImePXvS01dgtRIwtI+VcCQcxm2DBjbwePZsGDDAbWkyTzj0sRuoQaMoiqLkOB55BO67D/r1g0WL3JZGCQQaQ6MoyjmEsp88EKh+UMCWGRs1yi50GRWluSD+EMq6QWdoFEVRlBxJ/vzw5JO20N5XX0GtWnZpvjlzzl7tRgkP1KBRskSPHj3o0aOH22JENNrHSjgSruO2QAFb4G/sWGjZ0i6i2aiRXYs41AjXPnaanFmHRsk2+fPnd1uEiEf7WAlHwnXc3nCD3U6csIXiv/vO1qspUcIe790bNm+GG2+EZs2gShX3ZA3XPnYajaFRFOUcQtlPHghUPyiZ5YUXYMIE2LHDvr/wQujY0a5TnJMIZd2gLidFURRFyYDXXoNt22DdOru2cfXqkLzotYhdJ+rDD0PTRZVTUJeTkiW6desGwJgxY1yWJHLRPlbCkUget8ZAjRp2e/zxlP27dsGCBfDRR3apwIYN4fbb4a674LzzAi9HJPdxdlCDRskSJUuWdFuEiEf7WAlHcuK4rVAB/v4bfv0VZsywW8+ecP750KqVNXgOHrRZVIFIDc+JfewPGkOjKMo5hLKfPBCoflCc5s8/oVIluwhm//62gN+FF9qZm9tvtwtl5grDoI9Q1g1B6U5jTF5jzAfGmK3GmCPGmF+NMc29jjcxxqw3xhwzxnxvjKnsdcwYY143xuz3bG8Yo+WPFEVRlNDlwgutMQPQrRuMHGkzo4YOhWuugYsugsREe3zQIHjgAbjnHrjjDmjRAp56KuVaLVpAtWp2JqhkSShYEK6+OuiPFPIEy+UUDWwHGgHbgBbAJ8aY2sBRYDrQBZgFDACmAcn/rm5Aa6AuIMBcYDMwKkiyKz7o3LkzAOPGjXNZkshF+1gJR3Tcnst550H37nY7eNAW7tuxw1YnBrv0wurV1gBK3mJiUs6vWdMaMsnHvv++M0WKAIzj2DFbHPCRR6BuXTeeLnQIikEjIvFAP69ds40xfwP1gJLAWhH5FMAY0w/YZ4ypISLrgfuBt0Rkh+f4W0BX1KBxlUqVKrktQsSjfayEIzpu06d4cZvu7c1XX6V/zltvnf3+5ZdT+vjXX2HyZBgzxtbHeeYZaNo0Zy7j4EoMjTGmLLAVuBR4GMgjIg97HV8D9BWRz40xh4AbReRnz7H6wPciUji9e6iPXFGyTij7yQOB6gclkjh40K5J9e67sGcPXHopzJ9vjadAE8q6IeghScaY3MBk4CPPDEwh4FCqZoeAZIMl9fFDQCFfcTTGmG7GmBXGmBV79+4NvPCKojhKRvF2Pto/aYzZY4w5ZIz50BiTN5jyKkooULw4PPccbNkCH3wAdepAsWL22Lx5cOSIm9IFj6AaNMaYXMBEIAF41LP7KFAkVdMiwJE0jhcBjoqPqSURGSMi9UWkfunSpQMqu3I2HTt2pGPqeVMloOTQPvaOtysKvISNt6uSuqEx5iagD9AEqAJUBfoHS1DFNzl03AaVtPo4b14bXPzRR9bl9N9/dl2qmBh4/nnYvTv4sgYTvwwaY0wfY8wVqfZdaYx51t8beWZUPgDKAm1E5JTn0FpswG9yu4JANc/+c457Xq9FcZXq1atTvXp1t8WIaHJiH4tIvIj0E5EtIpIkIrOB5Hi71NwPfCAia0XkIDahoFMQxVV8kBPHbbDxt4+LFYOFC21Mzeuv2yyrLl1g61bHRXQFv2JojDG7gQs8wb3J+woBG0WkvF83MmYUNmamqYgc9dpfGvgLeACYg/2F1UhErvYc7w48ATQlJcvpPRFJNyhYfeSKknVCxU/uHW/ncVF7H/sdGCgi0zzvSwF7gVIisj+966p+UHIamzbZlPHx4+GXX+zSDVkhVHSDL/x1OeUBTqXalwDk8+dkT12Zh7AGzR5jzFHP1kFE9gJtgNeAg8BVQHuv00dj07lXA2uwRs9oP+VWFCVM8RFvlxpf8XWQEn+X+noaY6fkWKpVg+HDbdBwpE6g+Zu2vRJ4BHjHa1934Bd/ThaRrUCaSWQiEgfUSOOYAM96NiVEaN/e2pxTp051WZLIJSf3cRrxdqnxFV8HKfF3ZyEiY4AxYGdoAiOpkpqcPG6DRXb6uHC6+cHhjb8GzZPAXGPMvcAm4AJsLEwzpwRTQptLL73UbREinpzax6ni7Vp4xdulJjm+7hPP+7rAPxm5mxRnyanjNphoH/vG7zo0npiZlkAlbBbCbO9YmFBDfeSKknXc9JOnFW/no93NwHigMbAb+BxYJiJ9MrqH6gdFyRqhHEPjd6VgETlqjPkRqCAiPzkok6IoORSveLuT2Hi75EMPAYuAP4BaIrJNRL4xxrwBfA/kxxo0fYMvtaIooYBfBo0xJgaYgv3VJNjCdm2Bm0Wki3PiKaFKmzZtAPj8889dliRyyYl9nFG8HTYQ2Lv9UGCoo0IpmSInjttgo33sG39naEZjs4saAsn+6bnAW2meoUQ011xzjdsiRDzax0o4ouPWebSPfeNvHZr9QGkRSTLGHBCREp79/4lIMYdlzBLqI1eUrBPKfvJAoPpBUbJGKOsGf+vQ/IPNbDqDMaYWsC3gEimKoiiKomQSfw2aIcBsY0xnINoYczcwDXjdMcmUkKZVq1a0atXKbTEiGu1jJRzRces82se+8SuGRkQ+NMYcALphU7bvB14SkZkOyqaEME2aNHFbhIhH+1gJR3TcOo/2sW/8rkMTbqiPXFGyTij7yQOB6gdFyRqhrBvSnKExxjzgzwVE5MPAiaMoiqIoipJ50nM53ev12gANgD1Yl1MloBywGFCDJgfSvHlzAL7++muXJYlcwrGPjTHvisjjXu8fFJEPvN5/LiJt3JFOCQbhOG7DDe1j36Rp0IjIDcmvjTHvATNF5B2vfU8A1RyVTglZbr31VrdFiHjCtI87AY97vX8Tuy5TMrr+W4QTpuM2rNA+9o2/dWgOAqVEJNFrXxSwT0SKOyhfllEfuaJknaz6yY0xR0SksNf7g946whhzWESK+D47eKh+UJSsEcoxNP6mbe8BUueI3Qr8G1hxFEUJc1L/QorMrANFUUIOf5c+eBz4zBjzDDaGJgaoBdzplGBKaNO0aVMA4uLiXJYkcgnTPo42xtxAynpMqd9HuSOWEizCdNyGFdrHvvG3Ds1cY0xVoAVQHruu0xwR2Z/+mUqk0q5dO7dFiHjCtI//5exEgf2p3uusboQTpuM2rNA+9o3WoVEU5RxC2U8eCFQ/KErWCGXdkGEMjTHmLmPMMGNMN2NM7lTHRjgnmqIoiqIoin+ka9AYY3oBb3jedgeWGWPO82rS0SnBlNAmNjaW2NhYt8WIaLSPlXBEx63zaB/7JqMYmoeBG0VkI4Axpj+w2BjTWES2khLop+QwOnXq5LYIEY/2sRKO6Lh1Hu1j36QbQ2OMOQwUE5Ekr32PAs9iC2QtD4WaEr5QH7miZJ1Q9pMHAtUPipI1Qlk3ZDRDsxWoA/yWvENE/meMOQYsAPI6JpkS0pw6dQqA3LlzZ9BSySrax0o4ouPWebSPfZORQfMR0BQvgwbsgpTGmJPAAIfkUkKcZs1sBfsFCxa4K0gEo32shCM6bp1H+9g3GRk0TwOTjDGXiMga7wMiMhmY7JhkSkjTpUsXt0WIeLSPlXBEx63zaB/7JqMYmtuwmUwtgXXYGZuPRWRvcMTLOuojV5SsE8p+8kCg+kFRskYo64Z007ZF5AsRuRM4DxiNXepguzHmS2NMm9R1aZScw7Fjxzh27JjbYkQ02sdKOKLj1nm0j33j1+KUIvKfiIwWkeuAmsAK4G1gt5PCKaFLixYtaNGihdtiRDTax0o4ouPWebSPfePv4pQAGGPyAlcAVwFlgSVOCKWEPg8//LDbIkQ82sdKOKLj1nmy08e//w5ffw19+gRQoBDBr7WcjDHXAfcBd2EXl5sITPAU1wtJ1Eeu5EhEYOtWWLECLrwQ6tbN0mVC2U8eCFQ/KDmNpCQYNswaMiVLwpo1UKJE5q8Tyroh3RkaY0w/4F6gBPApcIuI/BgEuZQQ59ChQwAULVrUZUkiF7/6eNcuWL7cGjDJ27599tgzz2TZoFGUrKK6wXky28e7d0OnTvDdd9CqFXzwQdaMmVAnI5fT1cALwEwROREEeZQw4bbbbgO0DoKTnNPHe/dag8XbgNntCWOLioKLL4bbboP69e1Wu7Y7gis5GtUNzpOZPp49Gzp3hvh4GDkSHnoITIQuWpSuQSMiNwdLECW8ePzxx90WIbI5cYLHGzeGjRuhbVtrxGzbZo8ZAzVqQNOmcMUV1nipWxcKFHBXZkVBdUMw8KePjx+HXr1gxAirHqZMgZo1gyCci/gVQxOOqI9cCStOnICffoIFC+z2009w8qQ9dsEFKbMu9evD5ZdD4cKOihPKfvJAoPpBiWRWrYK774Y//oAnn4RBgyBvgBYqCmXdkKksJ0VJZp8nTqNUqVIuSxKmpGXA5MplDZbHHmPfZZfBlVdS6oIL3JZWUfxGdYPzpNXHIvDuu9C7NxQvDt9+Czfe6IaE7qAGjZIl2rZtC6if3G/8MGCIjYXrrgNPoF/b2FgYM0b7WAkrVDc4j68+/ucfG/j7zTfQsiV8+CGULu2OfG6hBo2SJZ5++mm3RQh91q2DGTNsaoEfBkxqtI+VcETHrfOk7uM5c2zg75EjMHw4PPxw5Ab+pofG0ChKoEhKssG7M2bAzJmwYYPdf/nl0LhxhgZMKBHKfvJAoPpBiQROnIBnn4X33oM6deDjj22yo5OEsm7QGRolS+zZsweAcuXKuSyJy5w6BQsXWiPmiy9g506IjrbGy+OP2zTqChWydGntYyUc0XHrPHv27GH9enjssXKsWQNPPAGDB0O+fG5L5i5BM2iMMY8CnYDawBQR6eTZXwX4G4j3av66iAzwHDfAYCB5vfQPgN4SqVNLYUL79u2BHOonj4+30XYzZ9oiDwcPQv78cPPNcPvt1oFdvHi2b5Oj+1gJW3TcOsuJE3DNNe3ZuhXKlFnA119b1aMEd4ZmF/AqcBOQ38fxYiJy2sf+bkBroC4gwFxgMzDKGTEVf+gTiQuBpMeBAzBrVkpMzPHjttRmq1bWiGnWLOB1YHJcHweRP/+0tmjz5rYmoRI4dNw6x5w5djZmy5Y+XHcdfP45lCnjtlShQ9BjaIwxrwIVfczQ5PZl0BhjlgDjRWSM5/2DQFcRuTq9+6iPXMk2J09aI2b8eJs6kJgIFStC69bWiLn+euteikBC2U8eCPLkqS+nTq2gShUbQPnAA6BZxkqosmkT9OxpjfAaNWzMTNOm7sgSyrohl9sCeLHVGLPDGDPOGOOtWi4Gfvd6/7tnn+Ii27dvZ/v27W6LEXhE7JICjz4K550Hd95pl6ft1QuWLbPVet97zwb5OmzMRGwfhwC1a8Mnn0DlyrZmR8WKNuV12TK3JQt/dNwGjmPH4KWXoFYtW+1hyBCrjqpX1z72RSj8vNwHXAH8BpQEhgOTsa4pgELAIa/2h4BCxhiTOo7GGNMN66IiJibGWalzOPfeey8QQX7yPXtg0iQ7G7N2rY2uu+MO+y3XuLErfomI6+MQwhhrq955p111eMQImDgRPvrIFmPu0QPatbOhUUrm0HGbfURg+nR46in7G6pDB3jjDShf3h7XPvaN6waNiBwFkn1D/3iCh3cbY4qIyGHgKFDE65QiwFFfQcEet9QYsC4nZyXP2bz44otui5B9fLmUrrkGRo+Gu+6CYsVcFS8i+jgLpJVA4KNdJ2ySwHGv3S1FZEFm7nfJJdagGTwYJkywrzt3hqefhgcftC6p88/PypPkTHLquA0U69bZBMm4OJuKPXGi9W57o33sG9cNGh8kGyLJZYHWYgOCkyeD63r2KS7S1C0HbnYRgV9+sUbMxx/bYN8KFWwxh/vvh+rV3ZbwDGHbx9knowQCb5aKyHWBuGmRItbT2KMHfP+9LVA2dKid5m/Rwu6/6SZbG1FJmxw8brPFkSPwyivwzjtQsKD1bHfv7tuzrX3sm2CmbUd77hcFRBlj8gGngXrAf8CfQHHgXWCBiCS7mSYATxljvsIaO08D7wVLbsU3mzdvBqBq1aouS+InBw7AuHHWkFmzxrqUbr/dupSaNAnJVJew6+MAISLTAYwx9YGKwb6/MdbL2Lgx7NhhJ+zGjrVGTdWqNoD4/vtt3I1yLjl13GYVEfvb6plnYPduOys4cGD62Uvax2kgIkHZgH5Yg8R76wfcTUodmt1YA6ac13kGeAM44NnewJOdld5Wr149UZyjUaNG0qhRI7fFyJh160S6dxfJn18ERK65RmT0aJGDB92WLEPc7GNghQRJN6S1YWdpxqdzvJNHb+wDNgIvAdH+XDuz+uHkSZGPPxZp1MgOo1y5RG6+WeSTT0ROnMjUpSKesNENIcBvv4k0bGjHVP36Ij/95N95OV03pLXp0gdKlli4cCEAjRo1clkSH4hYB/Tbb8PXX0PevNCxo817vOQSt6XzGzf7OBRSM1OXePBxvCr2h9FWbObjNGCiiAxKo7130kC9rVu3ZkmuTZvsRN/48XYGp0QJO7weeADq1s3SJSOKkNYNIcKqVXYW5tNPbQ3OQYPszIy/7sycrhvSQg0asGHkP/xgtRLAsGGwZYtNgbj6anWahwsnTsDkydYJvWYNlC0LjzxiHdFafSpThILSysig8dG+PfCMiNTLqG0gfvAkJlq7edw4W28xIcEu29W5M9xzjzV0FMWbn36C116z9WQKFbLqqXfv8BoroaAb0iJnflOfPGk1Ua9ediWvypXh3nvhr7/s8U2bbKpDgwZQqZINOV+yxF2ZQ4wNGzawIXnxRbf55x/o2xdiYqBLF2uAjhsHW7fCyy+HrTETUn0cHggpyQSOExVlg4SnTrWxD++9ZycHH3vMljBq394WlU5MDJZEoYGO27MRgXnzbKjeNdfYr5L+/e3v6Ndfz5oxo32cBm77vJzazvGRb9ok8u+/9vWUKdZpmSePSNOmIm+9JbJ2rUhSUkr7Q4dEJk8Wuf12kXz5RNq0STn2008ip09LTiYk/OS//SbSqZP9P4JIy5Yi8+ad/X8MY3KqnxybPJAPGARM9Lw+JzYGaA6U9byuAawB+vpzDydj7H79VeTxx0VKlLDDslIlkRdfFPnrL8duGVKEhG4IAZKSRL78UuSqq+w4KFdOZMgQkSNHsn/tnKobMtpcF8Cprd5ll4l89ZXVLBdeaB/1rbfsf+TgQZHZs0WOHs3wnycidgRu22Zf//WXvVaZMiIPPSQyd67IqVP+XSeC+PHHH+XHH38M/o0TE0VmzRJp3Nj+HwoUEHnkEZENG4Ivi8O41sfirtIi7QSCGGxdqhhPuyHAP9jA4M3AK9glVDLWD0FIGjhxwgYN33yzDSJODvx8802RLVscv71ruDluQ4HTp+1v5tq17f+8ShWRkSNFjh8P3D1yqm7IaIvcGJqoKFmRlGTTc2+4wS5H2qoVVKmSvQsfP25XCPvsM+sIjY+HkiXtysvXXWfnF03QZr1zDidP2qpnQ4bAxo02Z/axx6yLKZwc0GFCKPvJA0GwkwZ27LCuqWnT7MoaYMPz2rWDtm01BTwSSEiwRfAGD7bRCzVrwnPPWddj7txuSxc4Qlk3RK5BExMjK8aOtSUWnapffvy4rTD72Wfw7rvWsBkyBN5/Hy677Owtwla+W7NmDQCXOJ01dPiwLQTy9ts2UOHyy23BhjZtIktL+CBofeyDUFZagcDNLMhNm2x2y7Rp8Ntvdt9116UYN+XKuSJWwHBz3LrBsWPwwQfw5puwfbtVUc8/b8tcOZVPorrBN5Fr0LilsD7/3M4k/PqrHd1gv3iPHoU8eawBdOIEXHqpDUYO09mc2NhYwMG1RP75x2abjRgBhw7ZiLo+fezfMO2zzOJ4H6dDKCutQBAqZR02brSLZE6bZhPzjIFGjaxx06YNlC7ttoSZx81xGyxE7EKmEyfambf9+61R+sILNlDcaRWlusE3atA4yf799ifYtm02lxOs+yt5EBYvbg2bJk3sJyGMWL58OQBXXHFFYC+8aZOd5Ro3zs7htmlj8xrrh+Tnx1Ec62M/CGWlFQhCQj+k4o8/rGEzbRps2GCzqG64wRo3rVuHzySvm+PWabZssWvYTpxojdF8+eC222z6der1lpxEdYNv1KAJNseOwerVdgYneatY0S6tCnZJ1RtvtIZOTuK332wO4yef2MVL7r/fptVfdJHbkuVIQllpBYKQ1Q/YX/+rV6cYN5s22V/8V1xhQwGbN7evQ3C1jojk0CHrIpw40ZYrAzuLdu+91kVYtKi78gWbUNYNatCEAsmBxLt3Q7VqNjbnqqvsMr933eVcDFA2+M3j/L80O4aXiJ2tev11+PZbKFzYPnPPnraQRw4nIH2cRUJZaQWCcNEPIvY3z+zZtuj1smWQlGQnd2+80Ro3N90UWnE3bo7bQHHqlFVJEyfCF1/YnITq1a0R06FD9nNLsovqBt+oQRNqHDxoY3BGjYL1663mmjXLFvkLIbLlw01Kslpi8GCrocuUgSeftBV9ixULpJhhjfrJnSNc9cP+/bYm6Dff2G3PHrv/0ktTZm+uucbdePlwjaERgZUrrREzZQrs3WvzPO6+2xoyV1wROuF7qht8owZNqCICCxfa8Pnhw6FIEZsufuyYdai7nOGTpV8IJ05YbfHWWzZIoGpVm7F0//0hOQvlNvorzDnCXj9gfxesWpVi3Pz4I5w+bSc6mza1Bs7NN9sC2sEknGZojh+Hn3+2E8WffALr1tncjVatrBFz8832faihusE3atCEE7feaueey5Wz9Ve6dg2+tsoK+/fbbKX//Q/+/Tcl9bptWxsvo4Qcoay0AkEk6odDh2D+fGvcfP11SpJllSpw5ZV2u+IK+/ErVMhVUV0jPh6WLrW/FRcutMZMQoKdebn2WrjvPruEX/HibksauoSyblCDJpxITLSO3ZEj7WyNMfDss3ap1lOnYNcumwpRsKDjovgVZb9pk60f8+GH9qdQixY20Dc2NnTmbkMYzWRwjojUD16I2NmGb7+1X+DLltmlzcDWRrn4YmvcJBs6l1wSuEnfUMpyOnzYzlz98IM1YJYvt7NYuXJZw65RI7tdd114GTGqG3yjBk24snUrjB1rP5V33AF//pmSEZQ/vzVsSpWyizO2bm2NnQ8+SNmfvFWubN1ZmSRdH+5PP9nU6+nTrZbs2BGeespqUcVv1E/uHBGvH3zw77/2C33ZspS/+/fbY/ny2fqfybM4V14JF1yQtd8dbo7b//6DRYtSZmB++cW65qKj7XM1amTTqxs0yJLaCxlUN/hGDZpI4eBBmDED9u2z29699u/jj0OzZvZT7qtQwpgx1nWVSc6pVJmUZIOXhwyBxYttcO/DD6csPaxkGq0G6hw5Tj/4QMTWVVm2LMXIWbnShumB/QhXq2a92pUq2b/er8uW9Z067uS4PXnSutK2bj1327YN/v7bPleePDZRNHkG5pprgjJxHTRUN/hGDZqcREKC/UnmbfS0bm0//e+/b11EvXrZ0H5/OX7cZmUNHWorTVWpYjOWHngg5zrqI4BQVlqBQPWDb06ftq6qZcvsmlNbtqQYEEePnt02OtqW0Eo2cLyNnvLl7fHkGR5j/H99/Lg1TnwZLXv2WIMlGWPsvSpXtluNGvZ321VXaZ6BU4SybtCIzJxEnjx2tsTXjMnatXapgeHD4YknrIsoHafykjlzYMYMrv3yS2sY1atna4C3aaOBvgFiyZIlAFx77bUuS6LkFKKjoXZtuz34YMp+ERt0vH27NTaS/ya//vFHuwDn6dMASzxnZX/c5s5tDaTKlW3GUbLhkrxVrBiaWUhOo7rBNzpDo6Swdi3072/LYhYpAu+8k7JkA1it9sMPMHo0sVOngggLWra0szrXX6+BvgFG/eTOofoh8CQm2iXYWraMJSEB+vVbAFi1kfw148/rPHnsbE/lyjah06kFHsMZ1Q2+0Z/SSgoXX2yLMaxaBf362blcsI7pqVOta2n9eihalNEdOtiKUy1aZO4eJ06k1KApXDjgjxBJjB492m0RFMVvoqKsypgyxY7b6tVdFiiCUd3gGzVolHOpU8euGr54sc1QmjrV/vyKibEVjO+9l+oFCvh3rTVrYOZMayStXm3jbJKS7Px04cJ2Vqhw4fCopxNkqus3ghKG6Lh1Hu1j36hBo5zNgQO2mu/o0TY6sEgRmxa+Z4/NlHrxRTh8mIW1a0P+/DRq1MjmSq5ebbdkw2XUKOuIX7ECXnrJzsjUqWOrVl12GVSoYO/Xu7etqXP55XD77XarVUvdV8DChQsBbB8rSpig49Z5tI99ozE0inVeL1lijZhPP7Vuoauugm7doF27lHzHn36yrqhvvyW2XDmoXp0F/frBDTekXKt4cWvIvPmmLWYRH29nZNJyL/35p003nzHDXh+sAfX55ymy5VDjRv3kzqH6wTnCdS2ncEJ1g2/UoMnJ7N8PH39sa9GsWWONjo4drSGT3hohS5aw+dgxqFqVqkWK2IJ9tWvbGZgKFbJugOzaZRetLFbMxuccOwZ169o6OrffbisMu7yGVTDZvHkzAFWrVg36vUNZaQUC1Q/O4ea4zSmobvCNGjQ5jb17bUzLp5/ahV8SE20JzW7doH370Kods2OHTSH/5htr3BQrBrfcAs89p1WHHSaUlVYgUP2gKFkjlHWDxtDkBP75xy5D8NlndlnZpCRb1/yZZ6xLKQsrtsbFxQHQtGnTwMrqTcWK1vV0/DjMnWvdUl9+aeUGG9dTuHBklQD1Iih9rCgBRset82gf+0ZnaCKVXbtSjJgffrCxKNWr26Dctm2teygbsSmu+XATElIqad17r119vEsXeOQROP/84MriMOond44crx8cRGNonEd1g290hiaS2L49xYj58UdrxNSqZReobNvWumkCFGA7ceLEgFwn03iXBX34YWvgvP02vPUWtGplKxz7WrMqDHGtjxUlG+i4dR7tY9+oQRPOiNjU6m++sTExyVlCderYir9t2liDxgEqVarkyHUzxbXX2m3HDpsmPno0XHihNWiSkqyrKozdUSHRx4qSSXTcOo/2sW/UoAknRGDzZhvMO38+fP+9jY8BW9vltdfsTMxFFzkuyjfffAPAzTff7Pi9MqRiRXj1VVsj58QJuy8uzsYHPfAA9Ohh6+CEGSHVxxGIiF176MQJu5Usacvs79oFO3em7E/e2rbNsRUEMoWOW+fRPvaNxtCEOtu3W8Ml2YjZvt3uP+88W/+lcWO7BTl+JOT95KtXWwPvs8/sbE3LlvDoozYFPEy+ldRP7hxRUfUFVpCUlLJv/34oUcIm0Q0efO45J05A3rzw/PN2Fer77oOmTXUt1tSEvG6IAFQ3+EYNmlDjn39sJlKyAfPXX3Z/yZLWgEk2YqpXd/WLec+ePQCUK1fONRn8YufOFHdU3rx2eWBjYNky655KZ0Vxt3Gzj0NZaQWCcuXqS9euK8iXjzNb585QoID14m7ezFnH8uWDmjXtDM7LL8P//gcHD9rFEzt0gE6d4JJL3H6q0CBsdEMYo7rBN2rQuElSkl3baMUK+PlnOxOzdq09VqQINGqUYsDUrq3LzmaHEyfsN9Vll9l+r1DB1uRp0MDWtmnZ0n5jhcnsjdOEstIKBNnVDydP2hU7Jkywf++9Fz780Lqx9u+HUqUCKKyihBChrBvUoAkWyfEvK1akbCtXwpEj9niBAnDddSkGzOWXh/Rc9qxZswC49dZbXZYkC4hYA3L2bPtt9Ntvdv9zz8HAgdbgOXXKzui4iJt9HMpKKxAEUj/s3Wvjz2Ni4NdfbZ3K5s2tS+rWW+3sTk4irHVDmKC6wTdq0DiBiM28WbECli9PMWAOHrTH8+Sxxezq10/ZatYMaQMmNRHlJ9++Hb76ys7eXHml/Z/dcAPceKOdvWnRwsYsBRn1kzuHU/ph+3YYPhwmTbLezmLFbGz6K69AmTIBv905HDkCW7fabds2u112Gdx1lz0+caL97VSkiK1JWbiwdZuVLBk4GSJKN4Qoqht8owZNdjl2DDZsgPXrrUtj5UprvPz7rz0eHW3dRd7GyyWXnF1PJQzZt28fAKUicW59wwYYNszO4CQHYdesCd9+C5Uqwddf25mdokXtN1bRona77Tb7c3z/fuuTKFrUfntk0Y3lZh+HstIKBE7rh8REGwI3YYItcr1pk60g8OKLsHixNSBKlbJ/K1a0dSEhJWSuVCk7fFIPnT17bEDytm0phku1avDkk/Z3VJEicPRoSvvoaJvk9847NqPL11JoTz8NQ4bA4cPWuEk2dIoUse8ffNBWgDhxAubNs97aChWsjL6GdkTrhhBBdYNvwmdKwE1E7Lzy+vUphkvy361bU9rlymW/+Fq0SDFe6tSB/Pndk90hIlpZVa8OI0bYn9qrV1vDZtkya5yA/b9PmQL//cdZaTKHDlmDZvBg+w0BEBVlvxkKFYK//7bv33nHfjMUKpSyFS9uo00BFi2Cf/6hVKFC1hhWwo6oKJtQ16yZ9V4mGxIFClh1sn69tXv37YPKlVMMmocfthUHwBojJUvaScMvv7T7Gje2wy+ZokXtuq1gjYu337bGSEyMvW65cimhd7lyWa/3kSN2O3zY/r3wwpTze/RIOX7oEOzebf+CHb4tW6bcO08eO3H55pu2APnu3TB5MlSoUIrzzrOyFSkC5ctHpAp0lYjWv9lAZ2i8OXHC/vT588+zjZb16+HAgZR2BQrYL72aNaFGDbvVrGnXR8ohDvPp06cDcMcdd7gsiYuIQHy81fiHDqUEFS9fDr/8krL/0CE7tt5/35732mt2jaqjR+35R4/aeJ3kWb02bWD6dKYDGMMdt9wCDz109reJw4Tyr7BAECoxdslDKHlN2MWLrdGxb1+KwVOqlB0yALNmWcMkJsZuRYsGT9bjx+H3360rzXt76CFo2NDa6HZpoemeM6xu+PJLG0v09dc2eLpIkbO3wYPtpPXvv8MXX5ztDitSxMbtFy5s++nECfs6zCe4s42b+jeUdUPOMWhErHZIdix7O5mTXyd/oSRTpkyK0eJtvFSqlOMzjtRPHmBEUubvd++GffuIve8+OHCABQkJUK+enSkCO04dDsgIZaUVCELFoIkkROysT7NmsZw8Cf36LeDIETurVLGiNVjGjLFtkmeHDh+22WF16sC4cbYOZmpWr7YGz3vvweOP23158qQYPYsW2et/+qn1BFevnrJdcIHrsf2OoDE0vgmaQWOMeRToBNQGpohIJ69jTYDhQAzwM9BJRLZ6jhlgMNDF0/wDoLdkIHj9ChVkRYsWZxsux4+f3ahAATsvmzw/m/yzp1o1a7iUKBGAJ49MDnnmoYsG8ydiDuNMHxcoYH+ulytnAyguuACaNIGuXe36VQ78XA1lpRUI1KBxjuzohtOnz3WJXXqpdVmtWmVLdKU+/t57NpRtxAg7k7VrV8r1oqLsBGnBgjbuf/v2FGOnXLnwrdLgpv4NZd0QTIPmDiAJuAnIn2zQGGNKAZuwBsssYADQUESu9hx/CHgKaAIIMBd4V0RGpXe/+sbIinLlzjVWvF+XKBG+I1rJmezbZ2N7PvjAaufSpW1Vt169AjprE8pKKxCoQRO5HDliy3tt2GA/Ir172/3t2sEnn6S0K1LExifNnWvfz5plQyWjo+2WO7d1991wgz3+88/2N3Hysehoa0hVq2aPr1hhjafjx22uyPHjNnjauuHs6iwHD6YcO37cZqD16WOPz59vJ/+rVPEdvB0qhLJuCLrLyRjzKlDRy6Dphp2RudbzviCwD7hMRNYbY5YA40VkjOf4g0DXZIMnLerXqycrVq508ElyNtOmTQOgXbt2LksSuaTbx4mJ8N13MHasXZz077+hbFk7g1OuXLZjuUJZaQUCNWicI1R1Q1KSraaxYUPKBnaGB2yszpIlZ59z1VVnr/m7evXZx5s0SQniPv98+/HzpnVrmDHDvi5XzobLFShgZ5wKFLC/RXr3trFByQHj0dHWqLnwQnv8rrvsx33rVvs7PDra3T4OZd0QCllOFwO/J78RkXhjzCbP/vWpj3teX5zhVXXmxVFGjhwJhJ7SiiTS7eOoKFu9rXlzO/depIjd36mTnZvv3NlmWunnQAkyoaobvIOpmzU79/jMmXbW5NQp6/o6ffpsb+64cXb2x/u4d1TCxInWaEo2WPLnPztoe/futD+O0dE2FujPP1O2v/6ynmawERPVqtmZm/PPh337RpIvH5x/fjuuvNIaO6NHW7UQFWWfNSrK5hfUqGENrRkzUo63bWt//0QaoWDQFAL2ptp3CCjsdfxQqmOFjDEmdRyNZ7anG0BMTIwz0ioAfPXVV26LEPH43cfJxgzY1O8xY+xcuxoziguEq24oXTr94/XqpX/8uuvSP57exzE62s4QNWjg+3ixYtbLnGzobNjwFdu32/pGV15pZ56GDLEzOd6VJGrVsgbNunXw1FMp+6+8Ug0apzgKFEm1rwhwJI3jRYCjvoKCPW6pMWCnlAMvqpJMgeSaLIpjZKmPk1dfj9DsRSX0Ud0QeIoXT50BdnYfN2gACQn2tYg1ahIT7WwM2DiegwftvsTEkF6TN1uEQu7xWqBu8htPDE01z/5zjnter0VxlUmTJjFp0iS3xYhostXHYTw7Y4x51Bizwhhz0hgzPoO2Txpj9hhjDhljPjTGRGCSbnihusF50utjY6whkydPikGTO7ed5SlZ0uYOhHLQcXYImkFjjIk2xuQDooAoY0w+Y0w0MAO4xBjTxnP8ZWCViKz3nDoBeMoYU8EYUx54GhgfLLkV37z//vu8n1woTnGEHNzHu4BXgQ/Ta2SMuQnog82ArAJUBfo7LZySPjl43AYN7WPfBNPl9CLQ1+t9R6C/iPQzxrQB/gdMwtahae/VbjRWUSXHl7/v2ae4yNzkXEfFMXJqH4uIp0iyqQ9UTKfp/cAHIrLW034AMBlr5CgukVPHbTDRPvZN0AwaEekH9EvjWBxQI41jAjzr2ZQQIXekzlmGENrHGXIx8IXX+9+BssaYkiKyP3VjTRoIDjpunUf72DehEEOjhCHjx49n/PjxbosR0WgfZ4ivDEhIyZA8CxEZIyL1RaR+6YxSWpQso+PWebSPfaMGjZIl9APlPNrHGeIrAxJSMiQVF9Bx6zzax74JhbRtR1i5cuVRY8wGt+UIEqWw1ZWDjnEnm8a153WBUsYYN561sgv3zCzJGZDJBe3rAv/4cjelRvWD86hucBzVDamIWIMG2BCq5ZkDjTFmRU55VshZz5uTnjUZT/ZjNF4ZkcBpETmdqukEYLwxZjKwG5t4MN7P26h+iED0WXM26nJSFCXUeBE4js1W6uh5/aIxJsYYc9QYEwMgIt8AbwDfA1s9W1/fl1QUJdKJ5BkaRVHCkPQyIrGBwN5thwJDHRZJUZQwIJJnaMa4LUAQyUnPCjnreXPSswaTnNSv+qyRSU56Vr8wPpZEUhRFURRFCSsieYZGURRFUZQcgho0iqIoiqKEPWrQKIqiKIoS9oStQWOMedQYs8IYc9IYMz6Dtk8aY/YYYw4ZYz40xuQNkpgBwxhTwhgzwxgTb4zZaoy5J412xhjzqjFmp+d5FxhjLg62vNnB32f1tK1qjJltjDlijNlnjHkjmLJml8w8q9c5840x4qnXoqRCdYPqBk/bsNYNoPohs4StQQPsAl4FPkyvkTHmJmw9iyZAFezK3f2dFs4BhgMJQFmgAzAyDWV0J/AA0BAoASwFJgZLyADh17MaY/IAc4H5QDnsysyTgihnIPD3/wqAMaYDWm4hI1Q3qG6IBN0Aqh8yh4iE9YZVXOPTOf4xMNDrfRNgj9tyZ/IZC2IH9UVe+yYCg3207Q184vX+YuCE28/g0LN2Axa5LXMwntVzrCiwEbgaECDa7WcI5U11wzltVTeE0ab6IfNbOM/Q+MvFwO9e738HyhpjSrokT1a4CEgUkY1e+37HPltqpgIXGGMuMsbkBu4HvgmCjIEiM896NbDFGPO1Z0p5gTGmdlCkDAyZeVaAgcBIYI/TguUQVDeobghlVD9kkpxg0BQCDnm9T35d2AVZskrqZ8Dz3tcz7AYWARuwJePvBJ50VLrAkplnrQi0B94FygNzgC88083hgN/PaoypDzQA3guCXDkF1Q2qG0IZ1Q+ZJCcYNEeBIl7vk18fcUGWrJL6GfC89/UMfYErgEpAPmxMwHxjTAFHJQwcmXnW48BiEflaRBKAIUBJoKazIgYMv57VGJMLGAE8Iecu0KhkHdUNqhtCGdUPmSQnGDRrgbpe7+sC/4jIfpfkyQobgWhjzIVe++piny01dYFpIrJDRE6LyHigOFDLeTEDQmaedRXWVxyu+PusRYD6wDRjzB5guWf/DmNMQ+fFjFhUN6huCGVUP2QWt4N4srphI7nzAYOwgVL58BEEBdyM9SnWwn5455NGUFUob1j/9xRsoFgD7NTjxT7a9QUWY6PicwH3AvFAMbefwYFnrQ4cA5oCUdjp801AHrefIZDPChhspkbydgVWWVcIp2cNYp+qblDdEPa6wd/nVf3g1RduC5CNf3Q/zz/Ne+sHxGCn6mK82j4F/AMcBsYBed2WPwvPWwKY6VFA24B7PPvPel6P8h6O9ZcfBn4BbnZbfiee1bPvDuAvz7Mu8KXcQnnLzLN6nVOFHJrF4Gefqm7wMYZUN4SXbsjs83qdk2P1gy5OqSiKoihK2JMTYmgURVEURYlw1KBRFEVRFCXsUYNGURRFUZSwRw0aRVEURVHCHjVoFEVRFEUJe9SgURRFURQl7FGDRlEURVGUsEcNGkVRFEVRwh41aBRFURRFCXvUoFEURVEUJexRg0ZRFEVRlLBHDRpFURRFUcIeNWgURVEURQl71KBRFEVRFCXsUYNGURRFUZSwRw0aRVEURVHCHjVoFEVRFEUJe9SgURRFURQl7FGDRlEURVGUsEcNGkVRFEVRwh41aBRFURRFCXvUoFEURVEUJexRg0ZRFEVRlLBHDRpFURRFUcIeNWgURVEURQl71KBRFEVRFCXsUYNGURRFUZSwRw0aRVEURVHCHjVoFEVRFEUJe9SgURRFURQl7FGDRlEURVGUsEcNGkVRFEVRwh41aBRFURRFCXvUoFEURVEUJexRg0ZRFEVRlLBHDRpFURRFUcIeNWgURVEURQl71KBRFEVRFCXsUYNGURRFUZSwRw0aRVEURVHCHjVoFEVRFEUJe9SgURRFURQl7FGDRlEURVGUsEcNGkVRFEVRwh41aBRFURRFCXvUoFEURVEUJexRg0ZRFEVRlLBHDRpFURRFUcIeNWgURVEURQl71KBRFEVRFCXsUYNGURRFUZSwRw0aRVEURVHCHjVoFEVRFEUJe9SgURRFURQl7Il2WwCnKFWqlFSpUsVtMSKWQ4cOAVC0aFGXJYlc3OzjlStX7hOR0kG/cZDIlSuX5M+f320xIpLExEQAoqKiXJYkcnGzj48dOyYiEpKTIRFr0FSpUoUVK1a4LUbEEhsbC8CCBQtclSOScbOPjTFbg37TIJI/f37i4+PdFiMiUd3gPC7rhuNBv6mfGBFxWwZHqF+/vqhB4xz79u0DoFSpUi5LErm42cfGmJUiUj/oNw4SBQsWFDVonEF1g/O4rBuOiUjBoN/YDyJ2hkZxFlVWzqN9rIQjOm6dR/vYNyHpB1NCn+nTpzN9+nS3xYhotI+VcETHrfNoH/tGXU7p8OWXX/Lxxx8zderUAEkVOaif3Hlc9pOryykdOnXqRMWKFbnrrrvo3r07S5YsCaB04Y3qBudxWTeoyykcadWqFc8//zyrVq2iTp06bosTUnzxxRduixDxaB+HPnXq1KFYsWLMmjWLW2+91W1xQgIdt86jfeybyHU5bd4MAZh9uvvuuxkzZkwABIosihYtqinbDqN9HB506NCB0aNHuy1GyKDj1nmy08dz587lxIkTAZYoNIhcg+bgQfj4Y7+bb9++nTvuuIPSpUtTsmRJHn30UcBO7c2ZM8cpKcOWadOmMW3aNLfFiGhyah8bY0oYY2YYY+KNMVuNMfek07aqMWa2MeaIMWafMeYNJ2T69ddfufzyyylcuDDt2rU76wshNjaWefPmcfLkSSduHXbk1HEbTLLaxzNnzuTmm2/m1VdfdUAq94lcg6ZgQejRA7Zvz7BpYmIiLVu2pHLlymzZsoWdO3fSvn17AGrWrMmWLVs4fPiw0xKHFSNHjmTkyJFuixHR5OA+Hg4kAGWBDsBIY8zFqRsZY/IAc4H5QDmgIjAp0MIkJCTQunVr7r33Xg4cOMCdd97J559/fuZ4hQoVyJ07Nxs2bAj0rcOSHDxug0ZW+viHH36gffv21K9fnz59+jgkmbtEblBw7dqy4u+/4eqr4bvvIFfattvSpUtp1aoVu3fvJjr67LCiU6dOkSdPHrZu3UpMTIzTYocNx44dA6BAgQIuSxK5uNnHbgUFG2MKAgeBS0Rko2ffRGCniPRJ1bYbcK+INMzsfTITFJz8RbBz506MMQBce+21NG7c+Mwv3QoVKjBlyhSuv/76zIoScahucJ7M9vGqVau4/vrrKVeuHIsXL85W2ncoBwVH7gxN3rwwdCjMmwfDh6fbdPv27VSuXPkcYwbgyJEjABQrVswJKcOWAgUKqMJymBzaxxcBicnGjIffgXNmaICrgS3GmK897qYFxpjaaV3YGNPNGLPCGLPi9OnTfgu0a9cuKlSocMaYAahcufJZbY4cOaI6wkMOHbdBJbN9/OKLL1KoUCG+++67iK5hE7kGDUDXrtCiBTz7LKxfn2azSpUqsW3bNnwpuXXr1lGlShWKFCnipKRhx6RJk5g0KeCz+4oXObSPCwGHUu07BBT20bYi0B54FygPzAG+8LiizkFExohIfRGp7+vHS1qcd9557Ny5E+/Z7G3btp15vWvXLhISEqhevbrf14xkcui4DSqZ7ePJkyfz/fffR7yXIbINGmPg/fehQAG47z44dcpnsyuvvJLzzjuPPn36EB8fz4kTJ/jxxx8BWLhwIc2bNw+m1GHB+++/z/vvv++2GBFNDu3jo0DqXw9FgCM+2h4HFovI1yKSAAwBSgI1AynQNddcQ3R0NO+++y6nT59m+vTpLFu27MzxBQsW0LhxY/LmzRvI24YtOXTcBhV/+vjo0aP06tWL+Ph4ChcuzIUXXhgk6dwjsg0agPPOg1GjYPlyGDTIZ5OoqChmzZrFX3/9RUxMDBUrVjwTQT5lyhQeeuihYEocFsydO5e5c+e6LUZEk0P7eCMQbYzx1r51gbU+2q4CHA8CzJMnD9OnT2f8+PEUL16cadOmcccdd5w5PnnyZLp37+60GGFDDh23QSWjPk5ISOCOO+7gnXfeOcv4jnhEJCw27NTyOiAe2AQ0TK99vXr15Cw6dBCJihJZvlz85csvv5Q777zT7/aKEikAK8S9z/pUYApQEGiAdTld7KNddeAY0BSIAp706IY8Gd2jQIECAemnVatWydVXXx2QaylKIEhMTJS7775bAPnwww8Dfn0gXkLAJvC1hUWWkzGmGfA+0A5YBpwHICI70zrnnKUP/vsPLrkECheGX36B/PkdlTnSGT9+PGBLwCvO4GYfu7n0gTGmBPAh0AzYD/QRkY+NMTHAH0AtEdnmaXsH8AZQBvgF6CEivmZzzkJX23YO1Q3Ok1YfiwhPPvkkw4YNY/DgwfTu3Tvg9w7lLKdwMWiWAB+IyAf+nuNzLae4OGjWDJ54At55J7BC5jB0vRbn0bWcnEMNGudQ3eA8afXxnj17qFu3Lvfccw9Dhw49KzMvUKhBkw2MMVHY4L+XgS5APmAm8IyIHE/VthvQDSAmJqbe1q1bz73g44/De+9Z46ZJE2eFV5QwRQ0aRQlPdu3aRbly5ciVTu217BDKBk04BAWXBXIDbYGGwKXAZcCLqRuKV1pm6dKlfV9t8GCoXh06dbJuKEVRFEUJY7788kuee+45RITy5cs7ZsyEOuHw1MmzMO+JyG4R2QcMBVpk6WoFCsDEibB7t52tUbLE2LFjGTt2rNtiRDTax0o4ouPWebz7ePHixbRr14558+ZF7KKT/hLyBo2IHAR2EMj0zCuugBdftIaN15osiv/oAnTOo32shCM6bp0nuY9Xr17NrbfeSkxMDHPmzCF/Dk92CfkYGgBjzCtAc+AW4BTwJbBARF5K6xyfQcHenDoF114Lf/8Na9ZAuXIBllpRwheNoVGU0Gbr1q1ce+21ACxZsuSc5TicQmNoss8AYDm26NY64FfgtWxdMXdumDAB4uOhSxcIA8NOURRFUcAuOHn69Gm+/fbboBkzoU5YGDQickpEHhGRYiJSTkQeF5HsOwtr1rRBwnPmwAd+Z4QrwIgRIxgxYoTbYkQ02sdKOKLj1lmSkpIYMWIE27dvZ9OmTVxyySVuixQyhIVB4yiPPWbTt598EjZvdluasGHWrFnMmjXLbTEiGu1jJRzRceschw4domHDhowZM4ZZs2ZRqFAht0UKKcIihiYrZBhD48327VC7tt0WLICoKEdlU5RQR2NolJzEv/H/ki86H0Xypl4XNXQ4evQoN910E8uWLePzzz+nVatWrsihMTShTqVKttje4sXw1ltuS6MoiqIEiUMnDnHZ6Mt44IsH3BYlTY4dO8att97KTz/9xJQpU1wzZkIdNWiS6dgR2rSBl16CVavclibkGTZsGMOGDXNbjIhG+1gJR8Jt3L44/0V2HdnFd5u+41TiKbfFOYdTp05x++23s3DhQiZMmEDbtm3Dro+DhRo0yRgDo0ZB8eLWuMnhBYoyYt68ecybN89tMSIa7WMlHAmncbt853KGLx9OrdK1OJJwhGU7l7kt0jlER0dz+eWX8/7779OhQwcgPPrYGNPeGLPOGBNvjNlkjGlojKlijBFjzFGvLc3yK5m+p8bQpOKrr+CWW+Cpp9T9pORYNIZGiXROJ53myrFXsufoHpY8uISqw6rycqOX6Rfbz23RADh9+jQ7d+4MuZRsf2JojDHNgPeBdsAy4DzPodzA30BuETkdaNl0hiY1LVrAI4/A0KEQ4hawoiiKkjWGLxvOr3t+5Z2b36FKsSrUL1+fuZvnui0WAImJidx///1ceeWV7N+/321xskJ/4BUR+UlEkkRkp4jsdPqmatD44s03oUYNuP9+OHDAbWlCkiFDhjBkyBC3xYhotI+VcCQcxu2Owzt48fsXufmCm7mz1p0ANKvajJ93/Mzhk4ddlS0pKYlu3brx8ccf07NnT0qWLHlOG5f7ONoYs8Jr6+Z90BgTBdQHShtj/jLG7DDG/M8Y470uw1bP/nHGmFKBEkwNGl8UKACTJ8M//0D37lpF2AdLly5l6dKlbosR0WgfK+FIOIzbnt/05HTSaYa3GI4xBoBm1ZqRKIks2LLANblEhEcffZQPP/yQl19+meeee85nO5f7+LSI1PfaxqQ6XhbrWmoLNAQuBS4DXgT2AVcAlYF6QGFgcsAkE5GI3OrVqyfZZtAgERCZMCH711KUMAJYISHwOXZqK1CgQAB7SwknZm+YLfRDXvvhtbP2nzh1Qgq8VkAe++oxlyQTGT58uADy7LPPSlJSkmtypAcQL+l8toDi2MWk7/fa1wb41Ufbcp62RdK7pr+bztCkxzPPQMOG0KMHbNnitjSKkiMwxpQwxszwZEdsNcbck0a7TsaYxFQZE7HBlVYJJ+IT4unxVQ9qla5Fr2t7nXUsb3Rerq98vatxNJ06dWLkyJEMHjz4zMxRuCEiB4EdWEMlw+aevwF5WDVo0iMqyi5gaQzcey8kJrotUcgwePBgBg8e7LYYEU0O7uPhQAJ26roDMNIYc3EabZeKSCGvbUGwhFR8E8rjdsAPA9h6aCsjbxlJnqg85xxven5T1u9bz47DO4Iq1/jx4zl8+DAFChSge/fuGRozodzHHsYBjxljyhhjigM9gdnGmKuMMdWNMbmMMSWBd4EFInIoEDdVgyYjqlSB4cNtFeHXX3dbmpDht99+47fffnNbjIgmJ/axMaYgdnr6JRE5KiKLgS+Be92VTPGXUB23a/5dw1tL36LzpZ25vvL1Pts0q9YMgLjNcUGT64033qBz58689957fp8Tqn3sxQBgObARWAf8CrwGVAW+AY4Aa4CTwN2BuqnWofEHEbj7bvj8c1i6FOpHbHkORQHcq0NjjLkMWCIi+b329QIaicitqdp2ws7mHAcOABOBQeJHfQutQ5OzSJIkGo5ryIZ9G1j/6HpKFfCdWCMilHurHE2rNmXyHYGLVU2Ld999lyeeeIL27dszadIkosJgHUFdyyncMQZGjoRy5aBDB1BFqChOUQhIPf18CJsNkZofgEuAMthZnbuBZ9K6sDGmW3Kq6enTAa/ppYQwH/76IUu2L2HIjUPSNGYAjDE0rdqUuM1xOP1jf/To0TzxxBPcfvvtTJgwISyMmVBHDRp/KV4cPvoINm60wcI5nAEDBjBgwAC3xYhocmgfHwVSL3lcBDtFfRYisllE/hZbuGs18Ao2VdQnIjJGPKmm0dHRARVaSSHUxu2/8f/y7Nxnub7y9dxf9/4M2zer2ox/4/9l9b+rHZMpPj6egQMHcssttzBlyhRy586dqfNDrY9DhbD4VBtjFgBXA8k/q3aKSPWgC9K4MTz9tF0S4ZZb7JZD2bBhg9siRDw5tI83Ygt3XSgif3r21QXW+nGuEKBsCSXrhNq47fVdL44mHGXULaP8yhxqWrUpAHM3zaVO2TqOyFSwYEEWL15M6dKlyZs3b6bPD7U+DhXCIobGY9BMEpH3/T0noDE03pw8CVdeCXv2wOrVUKZM4O+hKC7j5lpOxpipWOOkC7Yo11fAtSKyNlW75sAvIvKPMaYG8BnwqYj0z+geGkOTM/j+7+9pPKExLzR8gVcbv+r3eTWH16RKsSp83eHrgMozdepUfvzxR4YNG0auXOHpINEYmkgib15bRfjQIejSRasIK0rgeQTID/wLTAEeFpG1xpgYT62ZGE+7JsAqY0w81uiZDgx0RWIl5Dh5+iTd53SnavGqvNDwhUyd26xqMxZuWcjJ0ycDJs/nn39Ox44dWbVqFSdPBu66SgrhZNAMMsbsM8b86HrxrEsusSncs2bBmNRVn3MGL7/8Mi+//LLbYkQ0ObWPReSAiLQWkYIiEiMiH3v2b/PUmtnmed9LRMp62lUVkZdF5JS70iuhMm5f//F1Nu7fyIgWI8ifO3/GJ3jRtGpTjp8+ztIdgVle4Msvv6R9+/ZcddVVzJ49m/z5MydPakKlj0ONsIihAXoDf2CLbbUHZhljLhWRTd6NPItkdQOIiYk55yIB5bHHYM4cePJJiI2F6sEP6XGT7du3uy1CxKN9rIQjoTBu/9z/JwMXDaTdxe246YKbMn1+bJVYokwUczfNJbZKbLZk+eqrr2jbti2XX345X331FYUL+0rYyxyh0MehSFjE0KTGGPMNMEdE0qxE5FgMjTe7dkHt2lC1KixZApmMVFeUUMXNGJpgoDE0kYuIcOOkG1m2cxnre6znvMLnZek61314HQmJCSzruixb8syZM4eBAwcye/Zsihcvnq1rhQIaQxN4QiOboXx5GD0aVqyAV15xWxpFUZQcz5Q1U4jbHMfAxgOzbMyAdTut2LWCg8cPZun8/fv3A3DLLbewePHiiDBmQp2QN2iMMcWMMTcZY/IZY6KNMR2A64Fv3ZYNgLZtoVMnGDgQfvzRbWmCxnPPPZfm0vZKYNA+VsIRN8ftweMHefLbJ7mi/BV0r989W9dqVrUZgjD/7/mZPnfRokWcf/75zJgxAyDgC02qbvBNyBs0QG7gVWAvsA94DGgtIqGTiD9sGFSubBewPHzYbWmCwv79+8/8AlGcQftYCUfcHLfPz3uefcf2MbrlaKJyZa/y7pUVrqRwnsKZXn176dKltGjRgvLly3PNNddkS4a0UN3gm7CMofGHoMTQePPjj3D99XD//fDhh8G7r6I4gMbQKOHGTzt+4toPruWJq57g7ZvfDsg1W01pxR97/+Cvx//yq/2KFSto0qQJZcqUYeHChZQvXz4gcoQSGkOTE2jQAHr3hnHjYPZst6VRFEXJUQxaPIiyhcryyg2Bi2dsVrUZmw5u4u+Df2fYdteuXTRr1oySJUsyf/78iDRmQh01aAJJ375Qpw507QoRPh3Yq1cvevXq5bYYEY32sRKOuDFuTyWe4vu/v6d19dYUzpv9tOhkkpdBiNscl2Hb8847j5dffpn58+dTqVKlgMngC9UNvlGDJpDkzQsTJlhjpkcPt6VxlOPHj3P8+HG3xYhotI+VcMSNcbt813KOJBw5Y4AEihqlalChcIV042j++OMPVq1ahTGGJ598kipVqgRUBl+obvCNxtA4wWuvwYsvwtSp0K6dOzIoSjbQGBolnHhl4Sv0W9CPfc/uo0T+EgG9dqeZnZi1cRb/9vr3nEDj1atXc+ONN1KqVCl+//33sF2fKTNoDE1Oo3dvuOIKeOQRu4iloiiK4hhxm+OoV75ewI0ZsHE0B44f4Lc9v521f8mSJVx//fVERUXxySef5AhjJtTR/4ATREdb19OxYzaeJgJnwXr27EnPnj3dFiOi0T5WwpFgj9ujCUdZumMpzao2c+T6yW4sb7fTt99+S7NmzShVqhSLFy+mZs2ajtw7LVQ3+EYNGqeoUQMGDbIZT+PHuy2NoihKRPLD1h84nXQ64PEzyZQtVJbaZWqfFRg8atQoLrroIhYvXhyUmBnFPzSGxkmSkqBxY/jlF1i92hbfU5QwQGNolHDhyW+eZNTKURzsfZB80fkcucfT3z7N8OXD2dNzD8UKFePYsWMkJCRQrFgxR+4XyjgdQ2OM2UwGSxuJyPm+9ofLatvhSa5cti5NnTrwwAMwd67dpyiKogSEuL/jaBjT0DFjBqzbaeiQoVwx5QpWLl1JkSJFKFCggGP3y+F0yeqJ+u3qNOefD0OHwvz5MGKE29IEjB49etAjwlPT3Ub7WAlHgjlu9xzdw5p/1zjmbgK7evfc0XMhDnKXzU3+/Pkdu5e/RLhuqJTWJiLzRSTNxbV0hiYYdOkC06fDs8/CTTfBhRe6LVG2CYUPdaSjfayEI8Ect/M2zwNwzKBJTEyke/fuvP/++5RvXJ48bfOQO3duR+6VGSJcNzyY6n05oArwM/BReidqDE2w2LkTLrkEataERYsgKnsLpymKk2gMjRIOdP6iM19u+JK9z+wllwm8w+GZZ55hyJAhvPjii+RtmpeXFrzEv73+pXTB0gG/V7jgbwyNMaY90BeIAfYAnURkkTGmCTDcs/9nz/6tGVzrAaCmiDyTXjt1OQWLChXgf/+DpUvhrbfclkZRQhZjTAljzAxjTLwxZqsx5h4/zplvjBFjjM465xBEhLjNcTQ5v4kjxgzAY489xqhRoxgwYAA3XnAjAPP+nufIvSIJY0wz4HWgM1AYuB7YbIwpBUwHXgJKACuAaX5cchznztycg+MGjTGmuDHmJmPM3Z6/xZ2+Z8hyzz3Qpg289JLNegpjunXrRrdu3dwWI6LJwX08HEgAygIdgJHGmIvTamyM6YC6z0OGYI3bjfs3suPwjoDXnzlw4AADBgwgKSmJmJgYHnroIQDqnVePYvmKMXdT2ssgBIsw0A39gVdE5CcRSRKRnSKyE7gDWCsin4rICaAfUNcYUyOtCxlj8gMPAQczuqmjBo0x5iVgFzAbGArMAXYZY/o6ed+QxRgYORKKFoX774eEBLclyjIlS5akZMmSbosR0eTEPjbGFATaAC+JyFERWQx8CdybRvui2GntZ4MnpZIewRq3yYXuAhk/s2vXLho1asSrr77K77//ftaxqFxRND6/MXM3z8XtUI1Q1g3GmCigPlDaGPOXMWaHMeZ/HsPkYuBMx4pIPLDJsz/5/ERjTFLyBsRjZ3QyjoIWEUc24C7gX6xyivbsiwbaYv1p7Zy6t4hQr149CVlmzBABkZdfdlsSRfEJsEIc/HymtQGXAcdT7esFzEqj/XDgSWzQoCTrmjTadsNOca/IkyePQz2nBIvbptwmVYdVDdj1/vrrLzn//POlUKFCEhcX57PNyOUjhX7Ihn0bAnbfcAM4mfw58mzd5OzPWXnPZ3EFcB5QCvgReA34ABicqv2P2Dia5PdVU21lxA/dISKOTtN2BZ4Skc+Td4jIaeAzY0xej3Lxx3cWebRuDffdZxexvPVWqB+xsZdKDsf0N2WAQt77pK9sTueUQsChVPsOYf3wZ1/bmPpAA+AJoGJGsojIGGAM2KDgjNorocvppNN8v+V72l/cPiDXS15kMiEhgXnz5nHllVf6bJc8GxS3OY6LSl4UkHuHIacl/YSB5GXA3xOR3QDGmKHAi8APQJFU7YsAR5LfiFj9YIwph03XPuavYE66nC4Fvkrj2FdA3cxe0BhzoTHmhDFmUnYECwmGDYNy5axhE4bLwHfu3JnOnTu7LUZEE859bPqbm01/sxPYDfzltf2ZwalHyUDhARhjcgEjgCc8P5SUECEY43bFrhUcPnk4YO6m//77j4IFC7Jo0aI0jRmAasWrUaVYlbPWdXKDUNYNInIQ2IGdpUnNWry++z0u5mqe/cn7ihljZnmuMQfYYYyZ40/8rZMGTV4ROeDrgOeB82ThmsOB5dmSKlQoVgw+/BDWrbNBwmFGpUqVqFSpkttiRDRh3sfDgQFAIekruby2jOoVbASijTHexZrq4qXwPBTB+umnGWP2kKIXdhhjGgZAfiWLBGPcxm2Ow2C44fwbsnWdjRs3AtCwYUPWrVtHrVq10m1vjKHp+U2Z//d8Tie5Z0eHgW4YBzxmjCnjMUR6YmNpZwCXGGPaGGPyAS8Dq0Rkvde572BnZUuISBlsNtRhIMP0YMfq0BhjjgB1SHtNht9F5Jxp5HSu1x4bIf0HcIGIdEyvfcjVoUmLhx+G0aNh4UJoqHpYCQ2yW4fG9DcHgJLSN/MKxhgzFfvrrgspM73Xioj3rziDzYJKphKwDOt62isi6Ubcax2a8CZ2fCxHEo6wstvKLF9j+PDhPP7448yYMYNWrVr5fd4naz+h3WftWPrgUq6ueHWW7x+u+FOHxhiTGxgG3AOcAD4BnhWRE8aYpsD/gMqk1KHZ4nXuHqCGiPznta8IsE5EKqR3XydnaApy9lRz6s3vhTA8D/MK8HQG7boZY1YYY1bs3bs3q3IHlzfftMsjdOoER4+6LY2iBIoPsDUossIjQH5sUsEU4GERWWuMiTHGHDXGxHjiE/ckb0DyB/6fjIwZJbyJT4hnyfYlND0/a+4mEeGFF17g0Ucf5ZZbbqFp08xdp/H5jTGYkEjfDlVE5JSIPCIixUSknIg8LjZNGxGJE5EaIpJfRGK9jRkPubGuZ2/igQwX63LMoBGRXCIS5fnra8tMqdwBwAcisj2De44RkfoiUr906TCp5FioEIwfD3//DU895bY0ftOxY0c6dkx3kkzJJmHex1cDI01/s9H0Nz94bxmdKCIHRKS1iBQUkRgR+dizf5uIFBKRbT7O2SIiRuNp3MfpcfvD1h84lXSKZtUyX3/m1KlTPPjggwwcOJCuXbsyffr0TC8yWapAKS477zLi/o7L9P0DRZjrhoz4Hrgm1b5rgYUZnRjyxaiMMZcCTbHpnJFJw4bwzDPwxhs26+nWW92WKEOqV6/utggRT5j38fueTclhOD1u4zbHkTcqLw0qNcj0ud999x3jxo2jb9++9O3bF+u5zDzNqjZj6NKhHE04SqE8hTI+IcCEuW5IFxFp62PfImBRRuc6upaTMeYubFrlWmCciJzyOjZCRB7x4xo9sfnryVkOhYAorD/t8rTOC5sYmmROnoSrroLdu20V4TJl3JZIycHoWk5KqFJ3VF1KFyhN3H3+z5AkJSWRK5d1SKxYsYL62SyVEbc5jmYTmzH77tncctEt2bpWuOHvWk7ZuH4jf9qJyDkzNo7N0BhjegGPAl8A3YGHjTEtkvPSgY5YX3lGjAGmer3vhS2i9XDgpA0B8uaFSZNsTZquXWHmTFtZWFGywH//2US6YGL6m3ulr0z0vH4grXbSVz4MnlRKJPHP0X9Y9c8qBjUZ5Pc5mzdvpk2bNowaNYqrrroq28YMwHUx15EvOh9xm+NynEETBCb60cZgEwHOwkmX08PAjSKyEcAY0x9YbIxpLHZlTb++rUXkGF6FdYwxR4ETIhImUb+Z4JJLYNAgG0vzwQfQpYvbEqVJ+/a2oNXUqVMzaKlklaz28YkTcOGF8Nhj8PLLTkiWJneToox8LlWAzV5SgyaCcVI3zP97PuD/cge//vorzZs3JyEhgcTExIDJkS86Hw1jGrpWjyaS9a+IxGT1XCcNmtLYbCYARKSvMWYvsMizEmeWfF0i0i8w4oUoTzwBs2dDz54QGwsXXOC2RD659NJL3RYh4slqH0+fDvv2wbXXBlaejJC+0sLrdfYKhChhi5O6IW5zHMXzFeeychmHVMbFxXHHHXdQrFgxvv/+e2rWrBlQWZpWbUrvuN7sOrKL8oXLB/TaGaH61zdO1qFZDdwrIr+l2v8ANiamhIjkdeTmhGEMjTfbt0OdOlCzJvzwA0SHfOy2EkI0agQ7dsCff0KuLOYxBiqGxvQ3RTh36YNd2b1udtEYmvBDRKj8TmWurHAln931Wbptf/75Zxo2bEj16tX55ptvqFAh3fIlWeLX3b9y+ZjLmdB6AvfWTWtCMvIIQgzNZtLw4IjI+Z42a0TkktTHnaxD8xE2Oym1QB9i42B2Onjv8KZSJRgxApYuhcGD3ZZGCSPWr7c28EOdE7JszAQC0980M/3NZuA/bAnz5C3d0guKkhZ/HviT7Ye3++Vuql+/Ps8//zyLFi1yxJgBqFuuLqUKlHJ9GYQIpAvwYBpbMj7jb52sQzNERIakcWwyEJq+lFDh7rvt1r8/hOBMU5s2bWjTpo3bYkQ0WenjsWMhX9Qpnh5ZzRZtdI/3gYHYJQpye21ZWfJECSOc0g1xm21WU1oGTVJSEq+99hq7du0iKiqKfv36UczByPhcJhdNzm9C3OY4nMwW9kUk618RmZ/W5tXGZz2roPsyjDG1gfuADthlxpW0GD4cFi2Cjh3hl18gkwWgnOSaa1LXPVICTWb7+MQJW6Px5au+JWrJDrjI1dWA8wHjpK8ELhJTCQuc0g1xm+OoUqwK1YpXO+fYiRMneOCBB5gyZQq5c+fm2WefdUSG1DSr2oxpa6fxx94/uLjMxUG5J0S2/jXG9E3rmIj0T/fcYFiWxpjS2DUd7scuNLcIGC4inzp1z7COofFm3jxo2hR69ID//c9taZQQ5uOPoUMH2NPwTsquWwA7d0KerE2IBGAtpz5YP/jgrKzn5DQaQxNeJCYlUvKNktxZ607Gthp71rG9e/dy++238+OPPzJo0CB69+6d5YJ5mWXrf1upMqwKQ28cypPXPBmUe7pNEGJoJqTaVQ64DpglIu3SO9fJOjS5gVZAJ+AmbMbTFOyCVHeJyL9O3TuiaNLEZjy98w60bAk33+y2REqIMno0XFb5AGV+/hK6d8+yMRMgPge+BZ4z/c0+7wPSV6q6I5ISrqzcvZJDJw+d427avHkzN954Izt27GDatGncddddQZWrcrHK1Cpdi1kbZ+UYg8ZpROS+1PuMMTdhJ0XSxcmwwX+A0cAG4GoRqSUiAwBdOC6zDBoEF18MDzwA+/e7LQ0ArVq1ytQKtUrmyUwfJwcDD7psGiYhAe6/32HpMuQz7EzsPUDXVJsSwTihG5LjZxqf3/is/SVKlKBSpUp8//33QTdmkmldvTU/bP2BA8cPBO2eOVD/fgfcnlEjJ2NoVmGnia4C/jTG/C0iBx28X+SSL5+tInzllfDQQ/Dpp65XEW7SpImr988JZKaPx4yx2f03bPvIFmi8zPWlz84HLpO+kuS2IEpwcUI3xG2O49Jyl1K6oF10eNasWTRr1oxixYoxf/78oLmYfNG6RmsGLh7InI1zgpa+Hcn61xhTOdWuAthCnVszPFlEHNuw7qWXgD+Bk8As4DBQwcn7igj16tWTiGPwYBEQ+egjtyVRQojjx0VKlBB5/Ob1dny8+Wa2rwmskOx89vsxkX40zc41nNwKFCiQ7T5SgkN8QrzkGZBHen3bS5KSkuSll14SQAYOHOi2aCIikpiUKBXeqiB3TLvDbVGCAhAvztoNiUCS528iEA8sBS7P6FxHs5zELnEwABhgjLkOm92UBPxujPlQRIITih4p9OoFc+bAo4/C9ddDlSpuS6SEANOnw4ED0LP4BFtJr0MHt0UCyAt8afqbRVj38xmk77k+ckVJi0VbF5GQmMD1Fa6nQ4cOTJkyhQcffJBevXq5LRpg07dbVW/FR79/xPFTx8mfO7/bIoU7ub3fiPg/yxu00lsislhEumEjlh8Dagfr3hFDVBRM8ASA33cfBHBtkszSvHlzmjdv7tr9cwL+9vHo0XBB1SSqLJ4IN90E550XBOkyZC3wOrAE2JRqUyKYQOuGuM1x5D6Rm0HdBjFlyhQGDx7M2LFjyZ07d8YnB4nWNVpz7NQx5v09Lyj3i2T96zFgqgMVM2PMgAt1aETkBDbbaUqw7x0RVKkC770HnTrBW29BkOotpObWW2915b45CX/6ODkYeEqX7zHvb3e7mN4ZpG/69SLApnZLX9FS2BFGoHVD3N9xXF7scrZu2conn3zCnXfeGdDrB4LYKrEUyVuEmetn0vKilo7fL5L1rzFmAPA0kMsY001EJhhj2gAXiMjr6Z7spC/MzS0iY2iSSUoSadNGJHdukV9/dVsaxUWefFIkOlrkWNt7RYoWtQE1AYBsxtD4s9GPwz73QwlgBtZ3vhW4J4127bFZlIeAf7HLrRTx594aQxMeLF6xWOiLvPbDa3Ls2DG3xUmX9p+1l9JvlJbTiafdFsVRcD6GZj9wIXAN8KtnX1ngr4zOdXG1FyXLGAOjRkHJkraK8IkTbkukuMCJE/DRR3B3yyPk/+pzaNfOZsSFD2mlpgzHlncoi60oPtIY46sM649AAxEpClTFzji/6oSgSvCZMGECja5uBCvscgf584d2bErr6q3Ze2wvS3csdVuUcCcR2CQiS4EqACLyD1AmoxPVoAlXSpWCceNg7Vp4/vmg375p06Y0bZrxInFK1smoj5ODgXtf8DkcO2bjqsKLcyoIG2MKAm2Al0TkqIgsBr7Epm2efbLIdhHxLtqXiK4R5zrZ1Q0iwksvvcT9999P2VplKVKvCPXOqxdACZ2h+YXNyZ0rN1+s/8Lxe0W4/p2AXVXgDMaYO4FtGZ0Y9BgaJYDcfDM88gi8/TbExkIQCy21a5duBWolAGTUx6NHQ7VqUGvFR3DBBXDttUGSzFEuAhJFZKPXvt+BRr4ae7In52AXwTyGH8W3FGfJjm7wXpOpc+fOzKs1jyaVmhCVKyqAEjpDkbxFaFK1CTPWz+CNZm84WhsnwvVvPeAJY8zjQEFjzK9YF1THDM900heWjo8sCVgMNPOz/SRgN7aGzUagS0bnRHQMjTfHjonUqydSpIjI+vVuS6MEiXXrREBkxLN/2xevvBLQ6xOcGJoj5+yDhsCeVPu6AgvSvRZUAPoBF6XTphuwAliRJ0+egPaXEhgWL14s0dHRMmjQINm4b6PQDxm+bLjbYvnNyOUjhX7Imn/WuC2KY+B8DM0DXltn4FagrD/nuuVyugEYBfgbrj4IqCIiRbDrQ71qjEl3DnLDhg2MHz8egFOnThEbG8ukSZMAOHbsGLGxsUybNg2AQ4cOERsby/Tp0wHYt28fsbGxzJo1C4A9e/YQGxvLN998A8D27duJjY0lLs6W4968eTOxsbEsXLjwzL1jY2NZsmQJAGvWrCE2Npbly5cD8NtvvxEbG8tvv/0GwPLly4mNjWXNmjUALFmyhNjYWDZs2ADAwoULiY2NZfPmzQDExcURGxvL9u3bIX9+vnn8cWKPH2dPy5Zw+DCzZs0iNjaWffvsbPz06dOJjY3l0KFDAEybNo3Y2FiOHTsGwKRJk4iNjeXUqVMAjB8/ntjY2DN9OXbs2LOmN0eMGHFWyuCwYcPOKsM9ZMiQs5a2Hzx4MO3btz/zfsCAAXTsmGJsv/zyy3Tu3PnM++eee45u3bqded+rVy969Ohx5n3Pnj3p2bPnmfc9evQ4qyZFt27deO65586879y5My+//PKZ9x07dmTAgAFn3rdv357Bg1OSbdq0acOQIUPOvG/VqhXDhg0787558+aMGDHizPumTZsydmzKgnmxsbGOj70XXogjd2647tAwYoGFF14IBG7sBYlFPvYdxc62eFMEOJLehURkJ/ANMDWdNmNEpL6I1I+O1snpUOLw4cMANGjQgI0bN9KnT58zKdCp128KZVpVt3rwiw3Ou51CGWPMAmPMCWPMUc+2wbO/ijFGvPYfNca85H2uiHzotY0TkVki8o8xpkZG93XlUy0iCz0vJ/nZfq33W89WDVgZYNHCkzJloFYtWL0a7r3XrvnkMD///DOxsbEsWLDA8XvlVGJjY0lISCBPqkUmk5Jg7lxofZtQ8JsZULRoqNSeOYPpb1pgZ1tKAAeAH6SvfO3dRvpKCx+nbgSijTEXisifnn11sXVtMiIaqxcUF0k2iP3VDfPnz+euu+5i/PjxtGzZkvPPPx+w9WcqFanEhSUudEjSwFO+cHmuqnAVM9fP5PmGzsU2ZraPXeJREXk/jWPFROS0rwOeha0bY5MCvP12o4wxDwMiIh/5PNczxRNwjDEZrqgrIpszcb0R2JW78wO/AteLyNG02tevX19WrFjh7+Ujg3ffhSeegH79oG9fR2+VPAPRqVMnR++Tk0mrjydPtslty9/5kfo9r7PB4QH+PxhjVopI/Uyf19/kAb7CplyuAHZh3UH1gJ+A5tJX0l2g1hgzFfujpQtwqed616b6YYMxpgN2lmc7EIMNJtwvIndkJGfBggUlPj4+U8+m+EdmdMO4cePo1q0bF110EbNnzz5jzCQmJVL6zdLcXuN2PrjtAwelDTyDFg3i+fnPs/3J7VQsUtGRe7ipf40xx0SkYAZtFgCTUhs0xpgqwN9A7nQMmlnAxcCOVIeuwS6BYESkoc8bO+gHS16LISmNLTEL14zCLnj5oqdD0vSRx8TEZOAJjECSkkTuu8/GVHzxhdvSKA5x/fUi1aqJJHXpKlKggMjhwwG/B1mMoaEfvenHr/SjUqr9lejHSvrRJ8Nr2Fmdmdg6NNvw1KHBGi1HgRjP+9c8Si/e83cMUNIfObUOjbskJiZKnz59BJBmzZrJf//9d9bx5TuXC/2Qj1d97JKEWeePf/8Iu9ifzIAfMTTAAmAvsA9bXiHWs78K9sfKTs9ndhxQKtW5+9P4fj8n5i715lgMjYjkEpEoz19fW6bD1kUkUWwaZ0XgYR/Hz/jIS5cuHYjHCC+S69PUq2ddT54YHCc4derUmZgbxRl89XFyZeBHOh/HfPoJtGkDhQu7JKFP2gJPSF/Z7r3T8/4p/IibE5EDItJaRAqKSIyIfOzZv01EConINs/7F0SkoqddRRHpJiL7HXgmJRP4oxtmz57N4MGDeeihh5gzZw5FixY963jcZhuf2Pj8xo7J6RQ1StXgopIXORpH47L+jTbGrPDauvlo0xtbG6oC9ofGLGNMNayBcwV24ep6QGFgcqpzE0XE18Nl+MDhWodGfeVpkT+/LVCSNy+0bg2eYLtA06xZM5o1a+bItRWLrz4eMwZy54YHS38Jhw7B/fencbZrXAgsT+PYMrROTMSTnm5ISrJL89x666189913jBw50ueaTHGb46hTtg5lC5V1VFYnMMbQunpr5v89n/9O/OfIPVzWv6eTJw4825jUDUTkZxE5IiInxca7/Ai0EFtbaoWInBZbLO9R4EZjTBGvc30W0BOREhkJ5mhQsDHmLqABNqBvnLfVZYwZISKP+HGNMtgAodnAcaApcDdwjyNCRwIxMfDJJ9C0qZ2pmTHDrsIcQLp06RLQ6ynnkrqPkysDt24NRWd+BJUqwQ03uCNc2hjpK8d9HZC+ctz0d642hxIapKUb1q5dyz333MPHH3/MxRdfnOYX8vFTx1m8bTE9rujh83g4cFuN23hjyRt8/efX3F377oBfPwz1r+C7MnhyEO+ZY8aYcWleRKSzp81IETnHS+OYQWOM6YW1vr4AugMPG2NaiMhuT5OOQIYGDfaBH8ameefCru3SU0Rydl5cRsTGwtChNkj41VfBK205EHinXSvOkLqPP//cVgZ+rO1uuPtb6NMn4IZqAMhj+pvOpL2sQegskaw4gi/d8N1333HnnXdSsGBBTp48me75i7ct5mTiybBK107NVRWuomzBsnyx4QtHDJpQ1r/GmGLAVcBC4DTQDrge6GmMuQr4D/gTKA68i60xdcjrEme5q9MgdcAw4OwMzcPAjeKp+GmM6Q8sNsY0FpGtpK3wzkJE9pJGlVAlAx57DFautBlPl10GAVyhNbmGTYECBQJ2TeVsUvfxmDG2MnCDrZNt7nZoLnXwM5CeYD8HSxDFHVKP29GjR9OjRw8uvvhiZs+eTaVKldI9P25zHLlz5aZhZd+JLOFAVK4oWlVvxdQ1Uzl5+iR5o/MG9Pohrn9zY9dUq4FNDFoPtBaRDcaYu4GB2HWZDgNzsR6XM4hIhr++ReQ1X/udTNs+jM01T/La9yjwLNAMWC62UJ4j5Mi0bV8cPw4NG8Kff8KyZVC9ekAuGyZ1EMIa7z5et86WGnp9sPDspDpQqBAsdW4RvKymbYcLmrbtHN7jdtq0abRv354WLVowdepUCvsRwF5vTD0K5SnEwk4LM2wbyszZOIeWU1rydYevufmCmwN6bTf1rz9p2wG4R2NsWEl5bOmHj0VkfkbnOTlDsxWoA/yWvENE/meMOYZN6Qqsyar4JjlIuH59G3zx889QJPt25MMPn+O+VAKMdx+PHWuDgbvU+xX6rIGRI12UTFHSxnvctm7dmmHDhvHII4/gT3Xmfcf28evuX3nlhlecFDEoNKnahIK5CzJz/cyAGzSRrH89WVMDsCndK7EZUdOMMc+LyNh0z3VwhqYXgIgM8XGsAzBARDIsvpdVdIYmFQsW2CDhW25xJEhYcY4TJ6BCBfvvm1buCZuav3s3lMgw6D/LZKOw3nZ8rKKdfBgQ6Ssx2RIuAOgMjXNs376dZ555hhEjRlAik2P0k7Wf0O6zdix9cClXV7zaIQmDx52f3smP235kx1M7yGUiQ+c6PUNjjPkLuENEVnntqwt8JiLplo12bIbGlyHjdWyyMWaKU/dWfBDgIOHkdaFS149QAkdyH8+eXZQDB+Chzglw78d2VXUHjZlsErrRiorjfPXVV3Ts2JFTp06xdu1aGjbMXBzM5NWTKVOwDPXLR4a3s3X11nz2x2cs37mcqypeFbDrRrj+LQakLqL2BzaIOF2CvpaTMaY2NmiwA9Y/pgSLAAYJ33bbbYDG0DhJch+LLOCCCyD2+Newb18o1p45g/S167R5lkB4EesHPw/rB5+Kre6rRBinTp3ipZde4vXXX6dgwYLUqlUr08bM1v+2MnvjbJ677jmic0XG4qEtLmxBlIli5vqZATVoIlz/LgHe8LiY4o0xBbELVC/O6MSgjBpjTGmsYrsfu9DcIuCJYNxb8SK5kvDatXYxoGwECT/++OMBFk5JzeOPP86OHXZS7fXXIdfEj+xCpDfd5LZo/jASqA48ho2nqww8h60c6vzqqUpQ6dOnD0OHDuWhhx4iNjb2nAVV/WHMSlufrVs9X4Vnw5Pi+YsTWyWWLzZ8waCmgwJ23QjXv92xP34OGmP2AyWxazi1z+hEJ2NocgOtsAtK3gT8BUwBegI1ReRfR27sQWNo0mHbNhskXLJkwIKEFWd46in43/9g56r9lK5zHjz6qHUdOkx2s5xMf7MfqCZ95T+vfSWAv6RvxhU/nUZjaALD6dOniY6OZs+ePfzwww/cddddWbrOydMniXknhmsqXsPM9jMDK6TL/G/Z/3js68dY32M91UsFJsvUTYKR5eS5TyXsMkc7k5c7yQgno5T+AUZjfWFXi0gtERkApLvSrhIEkisJ//mnrSSclJTxOanYt28f+/btc0A4JZkdO/Yxbtw+br8dSsdNgVOnQtrdlIo9QOoiGfmB3T7aKmHG6dOnee6557jppptITEykXLlyZ4yZrOiG6eum82/8vzxyhT+1VsOLVtVbAQR0baecoH9FZLuILPXXmAFnDZpV2OCeq4ArjDEZBvQoQSQ5SPjLL6F//0yf3rZtW9q2bRt4uZQzNGvWlv/+a0u3bsCECVC3rt3Cg4nAN6a/6Wr6m+amv+kGfAVMMP1N4+TNZRmVLLBjxw5uuOEGBg8ezAUXXMDp06fPOp4V3TBixQguKHFBWFcHTouYojFcft7lzFw/M2DXjGT9a4xJNMYk+doyOtfJLKdYY0xlbABwL+BdY8x3QEG0/Hlo8Nhj8Ouv8Mor9ovyjjv8PvXpp592UDAlKQkSE5/mvPPghnLrYPnyoLiaAshDnr/Pp9rf3bOBTe92rHSDEni++eYb7r33Xo4fP86kSZPo0KHDOW0yqxtW/bOKxdsW89aNb0VManNqWldvTd8FfdlzdA/lCpXL9vUiXP+mTs0ui42/m5PRiY7F0JxzI2Ouwxo3d2HXd/hQRJ516n4aQ+MnJ07Y2Zo1a2zl2dq13ZZIwdbNe+QRGDcOOq3vA0OGwM6dUDY4qw9rpWAlNQkJCdSsWZOCBQvy6aefUj1AVccfnv0w438fz86ndlIiv+vhVY6w+p/V1BlVhzEtx9C1Xle3xckWwYqhSXXPwsBKEbkovXZBM4dFZLGIdAPKYTMf9JszFMiXz1YSLlLEVhI+cMCv0/bs2cOePXuclS2Hsm0bPPssNGy4h5ua7oSJE6F586AZM4riza5duzh58iR58uThm2++4eeff07XmMmMbjh88jATV03k7kvujlhjBuCSMpdwfrHzmblhZkCulwP1bzFstlO6BH1+T0ROiMgUEWke7HsraVC+vDVqduyAdu0glU/cF+3bt6d9+wyz6JRMIgLdu1uXU0JCe+6+pQXs2hVOwcBKBPHNN99Qt25dXnzxRQAuvPBC8ufPn+45mdENE3+fSPyp+IgMBvbGGEPrGq2Zt3keR04eyfb1Iln/GmM+NMaM89qmYZdAyLAYb2RUL1Kyz9VX2xo1DzxgpwcyiNfo06dPkATLWXz8MXz9NbzzDlSv3scWoClePKArpStKRpw+fZq+ffsycOBAateuTZcuXfw+11/dICKMWDGCK8pfETGVgdOjdY3WvP3T23y76Vva1speQG+E698dqd4fBT4Qke8yPFNEInKrV6+eKFngscdEQOSjj9yWJMfxzz8iJUuKXH21yOnTInLokEj+/CIPPxx0WYAV4tJnFygBzADisUX57kmj3f3YX26HPUrwDSDan3sUKFDAmY6LALZu3SoNGjQQQLp06SLHjh1z5D4L/l4g9EPG/TrOkeuHGqcST0mpN0pJh887uC1KtgDiJQS+431tkRlSrmSdt96CG26Abt1sJeE02L59O9u3bw+iYJHPE0/AkSPwwQcQFQXbR49m+/HjOdHdNBxbr6osdomUkcaYi320K4At1FkKWx6iCTajUskGR48eZdOmTXz88ceMHTs2QxdTavzVDSNWjKB4vuK0u7hdVkUNK6JzRdPyopbM+XMOpxJPZetaqn99E7Qsp2CjWU7ZYN8+uOIKSEiAFSvgvPPOaRIbGwtE7FoiQefLL+G222wG/UsvAUlJxBYrBqdPsyA+3i5bEUTcynLyrNtyELhERDZ69k3EVgtNd57dGPMUcIOIZOif0yynszl+/DiffPIJ9913H8YYTpw4Qb58+bJ0LX90w+4ju4l5J4YnrnqCITemuY5xxPHF+i9oPa01cffG0aRqkyxfx03960aWk7+EfAyNMSYvMAJoip2K/gt4XkS+dlWwSKZUKZg5E669Ftq0ge+/h7x5z2qSHCSoZJ9Dh+Dhh23GfO/enp0ffcSLR47A008H3ZhxmYuAxGRjxsPvQCM/zr0eWJvWQWNMN6AbkKW1hiKVdevW0a5dO1avXs3FF19M/fr1s2zMgH+64f1f3ud00mm61++eYdtIolm1ZuSPzs/M9TOzZdCo/k0Dt31eGW3YQnz9gCrYrKyWwBGgSnrnaQxNAPjkExEQefBBkaQkt6WJWLp1E8mVS2TZMs+OvXttMM1114kkJroiEy7F0AANgT2p9nUFFmRwXmdsHE0pf+6jMTQiSUlJMnbsWMmfP7+ULl1avv7666Dc91TiKanwVgW5aeJNQblfqHHblNuk0tBKkhSmOhWNock6IhIvIv1EZIuIJInIbOBvoJ7bskU8d94JL7xggzpGjDjr0ObNm9m8ebNLgkUO338PY8bYRSivuMKzs3dvOHSIzc8/z+YtW9wUzw2OAqlXSy2C/RHjE2NMa2Aw0FxEInuBmwDyyCOP0LVrV6699lp+//13br755oBcNyPdMGvDLHYe2Rnxqdpp0bpGa7Yf3s6ve37N8jVU//om7GJojDFlsZkPl4rI+lTHzkwpx8TE1Nu6dasLEkYYSUk2uOObbyAuDhrZmX+Nock+x45BnTr29apVUKAAsGgRXH899O5N7E8/Aa75yd2OoblYRP707JsA7BIfMTTGmJux60bdIiJpR7GnQmNoYObMmaxbt45nn32WqKiogF03I93QbGIzNu7fyObHNxOVK3D3DRf2HdtH2SFleaHhC7xywytZuobG0PgmrAwaY0xu4Gtgk4g8lF5bDQoOIIcO2To1+/bZIOHKlVm4cCEAjRr5E9qg+OKZZ+yKBvPn28QyEhLgssuspbN2LQuXLwfc6WM3lz4wxkzFrvPUBbgUu6jltSKyNlW7xsCnwO0i8kNm7pETDZqkpCTeeust8ubNy+OPP+7YfdLTDRv2baDG8Bq81vg1nm+YepmvnEPs+FgOHD/AqodXZel8N/VvKBs0rvu8/N2w8TNTscotd0btNYYmwGzYIFK0qMill4rEx7stTdizfLmNm+na1WvnoEEiIDJ7tmtyJYP7dWhmYuvQbMNThwaIwbqkYjzvv8euC3fUa/van3vktBiaPXv2yE033SSA3H333a7Fb/T8uqfkfiW37Dmyx5X7hwpDlwwV+iGbDmxyW5RMg8bQZA9jjAE+wNalaCMi2UviVzLPRRfZMra//w4PPMCG9evZsGGD21KFJQkJtiBzuXLwxhuenX//bXO277gDbrkFgA0bNuTIPhaRAyLSWkQKikiMiHzs2b9NRAqJyDbP+xtEJNqzL3nTJVVSMXfuXOrWrcvChQsZNWoUkydPxjiYOZfWuI1PiGfcb+NoW6stZQvl7HXJbqtxG2DTuLNCTtUNGRHyadseRgI1gaYictxtYXIsLVrAoEHQpw8PLVsGMTEaQ5MF3ngDVq+GL76AYsWwCzg9+qitpjds2Jl2Dz1kvarax0pW2bJlC82bN6d69erExcVxySWXOH7PtMbt1DVTOXTyUI4NBvamavGq1Clbh5kbZvLkNU9m+nzVDb4JeYPGGFMZeAg4Cezx+mXxkIhMdk2wnMqzz8JvvzFw6lR4RBVTZvnjDxgwwK4B2qqVZ+f06fDVV/D221Cx4pm2AwcOdEdIJew5cOAAJUqUoEqVKsyYMYMmTZpQoECBoNzb17gVEYYvH07tMrVpUKlBUOQIdW6rfhuvLXqNfcf2UapAqUydG+q6wRizALga6xIGWxizuudYE2w18BjgZ6CTiAQmg8dtn5dTm8bQOEh8vMhll4nkyycSpNoVkcDp0yLXXCNSooRdt0lERA4fFilf3sYmnTrlqnze4GIMTTC2SI2hSUpKkjFjxkihQoVk3rx5botzhp+2/yT0Q0YuH+m2KCHDr7t/FfohQ5cMdVuUTIEfMTTAAqCLj/2lgEPAnUA+4E3gp4yu5+8WFjE0SohRoABrhg1jTZUqdpphxgy3JQoLhg+HpUutV6lMGc/Ol1+G3bvtSufRZ0+YrlmzhjVr1gRfUCUs2bdvH7fffjvdunXj6quvpkaNGq7I4WvcjlgxgsJ5CtOhdgdXZApFLi13KbFVYhmydAgnT5/M1LlhrBvuAP7P3lnGyVFlffg5Ew8xgobg7h4cgrs7C+zizgssrhvcbdHFWSA4CyG4JUBwCR4sBAjEhSQTmczM//1wbmd6enq8e6p75j78LpOqrrp1qrrq9qlzj3wj6UlJs/GkuWuZWW5u1lxpRoXWooUmv/Tv31/9N93UTQ7t2kmPPJK0SAXNL79IXbtKO+2UlnT500891KmWatr9+/dX//79W0rEahAtNEXFq6++qkUXXVQdO3bUDTfcoIqEMkxLNe/bCaUT1OnSTjrxhRMTk6lQee3n18QAdOfHdzZqv4THhjnAJ2ntGGU8X7iFZgIwERgGbBnW3wzckbHt13iwT7Of64L3oYkUJtdee63/Y5VVYLfd4JBDPH/KUUclK1gBInnx8pISN8SYARUVcNxxsNBCUMt8+LxrHInUw3fffccCCyzAyy+/zFprrZWoLJn37f2f38+cijkcv/7xCUlUuGyzzDZs0HcDrh52NUeueyTtSxr2k5zw2FCu+nNUnQ18C5QBBwLPm9naQDdc0UnnL6B7TiTLhVZUiC1aaFqQmTPd9ADSTTclLU3Bcf/9fmluuy1t5W23+cqBA5MSq06IFpqC58svv9SLL74oyX1nZs2albBENamorNAyNy2j/vf3T1qUguW5Ec+JAei/w/+btCgNgibkoQFeBk7GLTS3Z3z2FTmy0EQfmkiTGD58OMOHD/eFLl3cj2avveDUUz20OwLA2LFw2mmw2WZukAHcZ+bcc2HbbeHAA2vdt9o1jkQClZWV3HzzzfTr14/TTjuNiooKzKxZFbJzSfp9+8pPr/DL1F9iqHYd7Lrirqy5yJpc8e4VVKqyQfsU4dggwIBvgHkmxFDqZLmwPgdHKYC3pXy0aKHJL1nncOfOlQ4+WALp/PPbfIXuKVO8YHanTtKIEWkfHHigr/zhhzr3jz40+WvFaqH5888/52X83WWXXTRuXrhc4ZB+3+46cFctet2imlM+J1mhCpzHvnpMDEBPfvNkg7ZPeGyo00ID9AJ2wKOY2gMH41m/VwIWwqeY9gmfX00Oo5yiD02kSdx00001V7ZvDw8+6Babyy+H0lK44YbgNNK2+PNP2HFHGDECHnoIVlopfPDqq/DYY3DxxbDCCnX2kfUaR9osY8aMYc0112TGjBncfvvtHHfccXnN+NtUUvftqKmjeOGHF7hgiwvo2K5jskIVOPuuui8rDlmRK965gn1W2afe77XAx4YOwGXAykAFMALYU9L3AGa2D3Ar8DCeh6Z2M3UjKarilI0hFqdMEMnnWW6+2b1h77jDPWLbCN9/DzvsAJMmec687bYLH8yaBWus4RmBv/wSOnVKVM66SLI4ZUtQTMUpJc37gbv00kvZd999WWWVVRKWqn7Off1crnnvGkadMoolei6RtDgFz/2f388Rg47ghb+9wM4r7Jy0OLVSyMUp286vTCSnfPzxx3wcqkHXwMyz3p53Htx1F/zjH1Benn3bVsZHH8Gmm3rA15AhacoMuG/Rzz/D7bc3SJmp8xpH2gQffPAB66yzzrycIxdeeGHBKzMff/wxw94fxj2f38PuK+0elZkGcsiah7BkzyW57O3LqM/QEMeG7MQpp0iTOPPMM4E6aomY+bTTfPPB+ee7dWLgQOjYek3PL78M++wDiywCr7ySMaM0YgRcdRUcfDBss02D+qv3GkdaLWVlZVx88cVcddVV9O3bl2nTpiUtUoM588wzGVc6jom7TuSE9aMzcEPp0K4DZ296Nie+eCJDRg1hq2W2qnXbODZkJ045RZpE6o2xQcXubrrJp6B23hmeesp9bFoZDz3kFbRXXx1eeskrac9DciXm889dsVmkYZWGG3WNc0ycckqOL7/8kkMPPZQvv/ySww8/nBtvvJGePXsmLVaD+frrrznkmUOYOf9MRpw0ghKLEwENZXb5bJa5eRlWW2g1Xv/767Vul/DYULBTTtFCE2kSjXqQTj0Vunb1uOVddoFBg6Bbt7zJ1tJcdx2ceSZstRU8+yz06JGxwSOPwFtveVa9BiozkMxgFUmeRx99lHHjxjFo0CB22223pMVpNNN7TucLfcEN698QlZlG0rl9Z07f+HTOfO1MPhj9ARstvlHW7eLYkJ1ooYk0iffeew+ATTbZpOE7PfwwHHYYbLCBV5fu1SsvsrUUlZVefPz662G//dxKU8M1ZvJkWHllWG45GDasUc7RTbrGOSJaaFqWH374gSlTprDhhhsyZ84cpk+fzoILNq4CcyEwZdYUVj13VSorK/nhmh/o2bl4LEuFwoyyGSx101JsssQmPH/Q81m3SXhsKFgLTeL5IPLVYh6a/NLkPAhPPSV16CAtv7z00Uc5l6ulKCuTDjlEAunEE72Sdg1KS6Vdd/VaV8OHN/oYMQ9N/lqh5KGpqKjQv//9b3Xp0kXrrLOOKos4d1NlZaV2f3R32dKmdTZaJ2lxippLhlwiBqDhY7KPG4WchybJlrgA+WpRockvI0aM0Ihq2eIawdtvS0ssIbVvL11zjZRgIb2mMH26tMMO/vRcdlkt+QP//FNaf33JTLr11iYdp1nXuJkkqdAAvYH/4cm4fgX+Vst2qwOv4AXw1JhjFIJCM2rUKG299dYCtNNOO+mPP/5IWqRmcc2714gB6NzHzk3svm0tTJ45Wd2v6K79n9w/6+cJjw1RoWnpFhWaAmfSJGnvvf0W3G47VwCKgPHjpX79vEj23XfXstGXX7rCNt980qBBLSpfrkhYoXkUeBwvZLcZnll0tSzbrQQcCexRbArNt99+q+7du6tbt266++67i9oyI0nv/PqO2l3cTvs8vk/Rn0uhcM5r58gGmEZMKCzlsJAVmqLw2DKzk8zsEzObY2YPJC1PBIYOHcrQoUOb3kHv3h7x9J//wLvvwlpruV9NATNqlOeY+eorL12VtbD4Sy/5RhUV8M47Xom8iTT7GhchobbLPsCFkmZIehcYBByaua2k7yXdS67qwLQAFRUVAKy00kocd9xxfPnllxx11FEFmfG3oYwvHc8BTx3AMvMvw72738vbb7/d5u7bfHDaxqfRuX1nrny3Zm28tjg2NIikNaqGNGBvYE/gDuCBhuwTLTT5JadzuN98I62xhgTSKadIs2fnpt8c8sUXUp8+Uq9e0rvv1rLRrbe66WaddaTRo5t9zLboQwOsA8zKWHcG8Hwd+yxPEVhonnjiCS2//PIanYN7o1AoryjXtv/dVp0v6zzP3yPJ+7a1ccpLp6jdxe30y5Rfqq2PPjS1jAVJC9AoYb0+xAMN2TYqNPnl559/1s8//5y7DmfNkk4+2W/JtdeWvvsud303g8pK6fHHpR49pL59pa+/zrJRebn0f//nsu++uzvZ5ICcX+NGkKBCszkwNmPd0cCQOvZpkEIDHAN8AnzSsWPHPFy17IwdO1b777+/APXr108//fRTix073/zrrX+JAeieT++Zty7J+7a18ftfv6vDJR10/ODjq61PeGyICk1OhI0KTevn+eelBReUunaV7rkn0Yrd770nbbyx5ulYv/6aZaNp06RddvGN/vnPWsKdio+ELTQzM9adXqwWmocffli9e/dWx44ddemll2ru3LktctyW4JWfXpENMP3jf/+IfjN55OhBR6vTpZ30x7TCcBovZIWmKHxoGoqZHRN8bT6ZMGFC0uK0al5//XVef732TJZNZtdd4YsvYOON3UnlgANg6tTcH6cORo70w26yCfzyC9xzD3zyCSy5ZMaGv/8Om2/uNQ9uv90T0rRrlzM58naNC5sfgPZmll44Yi2KyE8mnZdffpkVV1yRzz//nAsuuID27VtHLtPR00Zz8DMHs9rCq3H7LrdX8wFqo/dt3jhns3Moryzn+veun7cuXuNaSFqjakwjWmgKhrzP4VZUSFdd5aHdSy5Zh+NK7pg8WTr9dKljR6lLF+mii+qYPfrkE3eq6d5devnlvMjTFn1o/NA8hkc6zQdsSu1RTgZ0BlYFFP7dqSHHyJeFpqKiQnfccYe+/PJLSdKMGTNU3kqsdinKysu0yb2bqNsV3bJG4EQfmtxzyDOHqOvlXTWhdIKkxMeGgrXQJC5Ao4SNCk3B8Ntvv+m3337L/4E+/FBadll3tr3kkrxM6cyZI918s9S7t6eNOfzwenx6//c/nxJbainpq69yLk+KFrvGWUhYoekNPIvnofmNkIcGWBKYASwZlpcOikx6G9WQY+RDofnhhx/Uv39/ATrllFNy3n+hcMYrZ4gB6LGvHsv6eZL3bWvlm/HfiAHogjcukJT42BAVmmYJ6TWnOgNXAg+Ff7eva5+o0LQi/vqrKi3vFltIb7zhqXqbSWWl9Mwz0goreNfbbCN9/nk9O1x3nWs9G24ojR3bbBkKlSQVmpZouVRo5s6dq2uvvVadO3dWz549dc8997Ran5Jnv3tWDEAnDD4haVHaHHs/vrd6XtlTU2dNTVSOqNA0V0gYkOVNbEBd+0SFJr+89NJLeumll1r2oA895OFGIM0/vys5Tz3VpKiijz6SNt/cu1plFWnw4Hr8j8vKpGOO8R3220+aObPp59FAErnGgajQNJxbbrlFgHbfffeiz/ZbFz9P/lk9r+yp9e9aX7Pn1p5aIcn7tjXz6Z+figHo8rcvT3psKFiFJhanjDSJLbfcEoAhQ4a07IFLS+HVV+G55+D55734Y6dOsO22sMcenshu0UVr3f3XX+G882DgQFhoIbjkEvc9rtVXc8YM+O47OP98eO01OPdcuOyyRhWZbCqJXWNiccr6KCsrY9SoUay44orMnj2bV155hd13372oE+TVxezy2Wx636aMnDKSz475jGXmX6bWbZO8b1s7Oz+yMx//+TErD16ZdtYuqbGhYItTRoUm0iTGjh0LwKJ1KA95p7zcK1g/+6wrOL/8Amaw0Uaw556u4Ky0EuABSbfdBjfd5Jucdhqccw706BH6+usvV1y+/Ra++cb/fvst/Pabf96+Pdx1Fxx+eIudXpLXOCo0tfPRRx9xxBFHMGPGDEaMGEHnzp1zLF3hcfzg47nz0zsZdOAgdlup7uzXBTE2tFKG/TaMze7fjIvXv5hj1jsmqbEhKjQtTVRo2hgSfP11lXLz6acATFlkJV7ssCe3jt6DD9mQo/f7i4sP+JZFJ2coLn/8UdVX586wyiqw6qpVbb31YIklkjm3BIgKTU1mzpzJRRddxI033kifPn34z3/+wy677JInCQuHgV8N5OBnDuasTc7i6u2uTlqcNs+WD2zJj5N/ZOT/jaRT+04tfvyo0CRAVGjyy/PPPw/Abs2oVZQPpk1znea1+36n19uD2F3PsiVD6EA5lZ27UDJ7VtXGXbtWV1pSbemlc5pPpqkkeY2jQlOd33//nc0335xff/2VY489lquvvpqePXvmUcLC4LsJ39Hv7n6s22dd3vzHm7QvqT+PTqGODa2F10e+znYXbMcJ65/Abf+8rcWPHxWaBIgKTX4ppHny2bO9ruWjj8Lgwb681FJw4IFw0EGw5pJTsZdehPff9w9SisuSS7aIL0xTiT40+aOhCs2cOXPo1KkTkjjmmGM49NBD2WKLLVpAwuQpLStlg3s2YOLMiXx+7Ocs1n2xBu1XSGNDa0QSPVfuydyKuUz8diLzdWxZ3SIqNAkQFZr8MnHiRAAWXHDBRI5fXg5vvulKzDPPuGVm4YVh//1didl4Y/eVKWaSvMZtXaGZO3cuN998MzfccAOffPIJiy3WsB/z1kJ5ZTmHPXsYA78ayGuHvsY2y27T4H2THhvaAk99/BT7P7U/ay27FoMOHMQSPVtuOryQFZrWkYc70uIkMViVlnoJgief9DZ+vDv17r23KzFbb11HtFIREn8QkmHYsGEcd9xxfP311+y+++601pe+bEjifyP+x3lvnMf3k77n0q0ubZQyA/G+bQn27bcvL/R6gQOeOoB+d/fjuQOfY8PFN0xarBqEEiZfAU9JOsTMlgZ+wZNmprha0qW5OF4rGv4jLckzzzwDwN57752X/idOhM8/9zZ8uP/94QeorHSf3d12cyVmp518uTWS72scqU5FRQXHHnss9957L0sssQTPPvsse+yxR9JitRhDRw3l7NfP5sM/PmTVhVbl2QOeZfeVdm90P/G+zT+pa/z+ke+z26O70f+B/ty/x/0ctMZBCUtWg9uAj7Os7yWpPNcHa7VTTmuuub4+/vgTOrW8E3ibIFfz5BKMGlVdcfn88+pBR0suCeus423ttd0S0717sw5bFEQfmvxR25TTUUcdRe/evbnooovo1q1bApK1PF+O+5Jz3ziXF398kcV7LM7FW17M39f6e4McgLMRfWjyT/o1njhzIns/vjfv/PYOF25xIQO2HECJ5c83sKFTTmZ2ILA38C2wfIaFpkNUaBqB2fqCT+je3ROoNbTNV5Azg4XHX3/9BdCgSI+KCp8eGjOmqn3zTZUSE7qipMSjpddeu0qBWWstWGCB/J1HIdOYa5xr2opC8/XXX3PyySdz0003sdZaa3m20WJ3vmogo6aO4qK3LuLhLx+mZ+eenLfZeZy0wUl06dClWf0med+2FTKvcVlFGccPPp77ht/HPqvsw4N7Ppg3Z+GGKDRm1gP4BNgGOJKaCs2feMb/14AzJU3MhWytdsppySXhmGNgwoSqNnq0/4hOmABlZdn369LFf0Dnn7+q9erVsOUuzRsHioqePXsye7bnshs7trqykmqp9ePH+1RROl26wJpr+rRRSoFZY422dQ3rI/4g5A9JnH322dxwww307NmT0aNHs9Zaa7UJZWbizIlc/vbl3P7J7ZRYCWdtehZnb3o283eZPyf9x/s2/2Re447tOnLP7vew2sKrccarZ/DL1F8YdOAg+vbom4/Dtzez9IibuyTdlbHNpcC9kn7PeKYmAv2A4cAC+JTUI8AOuRCs1Vpo6opykmD69CpFZ/z46orP5MkwZQpMnep/U23GjLqP2akTdOvmVp7U38xW2/r55nMLRUmJR+ek/jb036l7pq5/Z1s3d65fi+nTPVIo82+2ddOnw+TJjzNnDsAB1a5BSQkssgj06eNt0UWr/p2+boklCiLVS0Hz+OOPA3DAAQfUs2Xuae0WmpKSEkniyCOP5Oqrr2aBNmAGLC0r5cYPbuTa965lRtkMDl/7cAZsOYDFeyye0+Mked+2Feq6xoN/GMxBTx9E947dee7A5+jXt19Oj12fhcbM1saVlHUklZnZAIKFJsu2iwJjgJ6SpjVbtrao0DSV8vIqJSdT2Uktz5jh0TilpdX/nblu7tycipZzOnTwCKIePdxfJfPvyy9vSfv2cOGFQ6opKgstFBWVXBF9aPJHSUmJ3nnnHTbddNOkRck7cyvmcu/n93Lx0IsZO2Mse6y0B1dscwWrLrRqXo4XfWjyT33X+OvxX7Pbo7sxdsZYHtzzQfZfbf+cHbsBCs2pwOXA9LCqG9AO+E7SuhnbLgKMxZ2E/2q2cElXx8xXK/Rq22Vl0pQp0ujR0ogR0mefSZ98In38sfThh9IHH0jvvScNGya9+6709tvS0KHSkCHSm29Kb7whvf669Oqr0iuveHv5Zemll7y9+KL0wgveBg/29vzz0qBB3p57ztvgwd73559LP/8sjR8vza69kO48SktLVVpamu/L1KZJ8hrTyqttl5R01f33+7mWlUn9+3sxd0kqLfXlxx7z5alTffnpp315wgRfHjTIl8eM8eVU8ePffvPl117z5Z9/9uUhQ3x5xAhfHjbMl7/6ypc/+siXP//clz//3Jc/+siXv/rKl4cN8+URI3x5yBBf/vlnX37tNV/+5Ltxuv/z+7XYcUeIpd7SBjfurmG/DdOgQf75hAm+/dNP+/LUqb782GO+nLr1HnrIl8vKfPn++305xV13SdtsU7V8442l2m67qvv2ppuk3Xar+vzaa6W9965avvJK6YADqpYvuUQ6+OCq5QsvlA47rGr5nHOko4+uWj79dOmEE6qWTznFW4oTTvBtUhx9tPeR4rDD/BgpDj7YZUhxwAEuY4q99/ZzSLHbbn6OKXbcUbrttqrlbbbxa5Sif381+9578kkfG+q698bNGKf1rtpPLPWW/nHjfaqsrMzJvUc91baBrsCiae064ClgIWBDYCWgBJ9yehx4q67+GtNarQ9NodOhg/ve9OqVtCRNo2vXrkmL0OqJ1zjSGCbNnMSn37zJQx/+yUd/bMz6d+0DPUezZMkxrL7w6jx7wLP06WM8Pzy/cnTs2DVaafNMp05d6drVXQBqY+H5FuahvR5iq4d+4cEv/sWsp1/mvJUfBPKb50LSTGBmatnMZgCzJU0ws22BK4CFgWm4U3DOYs3jlFOkSTz88MMAHHJIjWnRSI5I8hq39imn5lTbLhQmzZzE0F+H8tYvbzHk1yF8Pf5rAObrMB+bL7U5Wy29FVstvRXr9lmXdiUtp2HEsSH/NOYaS+La967lnNfPYb3F1uO5A59rcBmLbBRypuCo0ESaRJwnzz/RhyZ/FKNCM2XWFN7+9W2GjBrCW6Pe4stxXyJE1w5d2XSJTV2BWWYr1uuzHh3adUhMzjg25J+mXONB3w/ib0//jZ6dezLowEGst9h6TTp2VGgSICo0+WVu8Gru0CG5gbO1k+Q1TlKhMbPewL3A9niY57mSBtay7WnA2UAX4GngeElz6jtGISo0cyvmMq50HH9O/5Mx08cwZsYYxkwfw5/T/+SzsZ/x+ZjPEaJz+85sssQm8yww/fr2o2O7jkmLP484NuSfpl7jL8d9yW6P7saUWVP45ZRfWKBr46P7ClmhiT40kSYRB6v804av8W1AGbAIsDbwgpl9Iemb9I3MbAfgHGBrPFHX/4CLw7pEqVQls+bOYubcmfPa1NlTXVkJisqYGWOqLU+cORFR/QXTMBaeb2FWXnBl/tX/X2y1zFZs2HdDOrUv3BTobfi+bTGaeo3XXGRNPjrqI9797d0mKTOFTrTQRJrEAw88AMBhhx2WqBytmSSvcVIWGjObD5gCrC7ph7DuIeAPSedkbDsQGCXpvLC8DfCIpEXrO06nLp1027DbKK8sZ27FXMory/3flWn/zrK+rKKMWeXVFZVsbXb57DqP387asUi3RejTrQ+LdV+MPt360Kd7n6rl8O9Fui3S5BIESRHHhvyT8NhQsBaaqNBEmkScJ88/bdGHxszWAd6T1CVt3RlAf0m7ZWz7BXCFpMfD8oLABGBBSZPqPE5HE+fXLUuHkg50aNeB9iXtaV/Sft5y1w5ds7Yu7bvU+lnXDl3p0anHPIVlwa4LtqijbksSx4b8k/DYULAKTXGp/o3g008/nWFm3yctRwuxIO5r0OIklCo+sfNNgAXNLIlzXSqBY4In4cpMsPUXkK0caea2qX93B2ooNGZ2DHDMvBUDqkJLszE3/NcKaA/kvBBgfSQ0NiRyrgnR3sySONeCLVDTahUa4PvWHKWRjpl90lbOFdrW+balcw3MAHpkrOtBVdbRurZN/TvbtsjrzdwFbeu6xnNtnbSlc20o+asxHolEIo3nB/zNc4W0dWsB32TZ9pvwWfp24+qbbopEIq2TqNBEIpGCQVIp8AxwiZnNZ2abAnsAD2XZ/L/AkWa2qpnND1wAPNBiwkYikYKiNSs0meXMWzNt6VyhbZ1vWzrXFCfg8/TjgUfx3DLfmNmSZjbDzJYEkPQycA3wFvBraP9q4DHa0nWN59o6aUvn2iBabZRTJBKJRCKRtkNrttBEIpFIJBJpI0SFJhKJRCKRSNFTtAqNmZ1kZp+Y2Rwze6CebU8zs7Fm9peZ3WdmhZs3vBbMrLeZ/c/MSs3sVzP7Wy3bmZldZmZ/hPMdYmartbS8zaGh5xq2XdbMBpvZdDObaGbXtKSszaUx55q2z5tmJjNrzWkXmkwcG+LYELYt6rEB4vjQWIpWocFrt1wG3FfXRmn1XrYBlgaWxeu9FBvp9W0OBu6oZTDaDzgC2BzoDbxP9giRQqZB52pmHYHXgDeBRYHFgYdbUM5c0NDvFQAzO5jWnT8qF8SxIY4NrWFsgDg+NA5JRd3wgeuBOj4fiKdHTy1vA4xNWu5GnuN8+E29Ytq6h4Crsmx7NvBE2vJqwOykzyFP53oM8E7SMrfEuYbPeuJ5WjYCBLRP+hwKucWxoca2cWwoohbHh8a3YrbQNJTVgC/Slr8AFjGzYio1uiJQoVCsL/AFfm6ZPAYsb2YrmlkH4B/Ayy0gY65ozLluBIwys5eCSXmIma3RIlLmhsacK8AVwB3A2HwL1kaIY0McGwqZOD40krag0NRV76VYaEx9mzHAO8D3wCzczHxaXqXLLY0518WBA4F/A4sBLwDPBXNzMdDgczWz9YFNgVtaQK62Qhwb4thQyMTxoZG0BYWmUfVeCpTG1Lf5F9APWALojPsEvGlmXfMqYe5ozLnOAt6V9JKkMuA6YAFglfyKmDMadK5mVgLcDpwiqa0U3msJ4tgQx4ZCJo4PjaQtKDStod5LY+rbrAU8Lmm0pHJJDwDzA6vmX8yc0Jhz/RKfKy5WGnquPYD1gcfNbCzwcVg/2sw2z7+YrZY4NsSxoZCJ40NjSdqJp6kN9+TuDFyJO0p1JosTFLAjPqe4Kv7wvkktTlWF3PD570dxR7FNcdPjalm2+xfwLu4VXwIcCpQCvZI+hzyc60rATGBboB1uPv8Z6Jj0OeTyXAHDIzVSrR8+WPctpnNtwWsax4Y4NhT92NDQ843jQ9q1SFqAZnzRA8KXlt4GAEviprol07b9JzAOmAbcD3RKWv4mnG9v4NkwAP0G/C2sr3a+YfC+DZ8vnwZ8BuyYtPz5ONewbm/gp3CuQ7INboXcGnOuafssTRuNYmjgNY1jQ5Z7KI4NxTU2NPZ80/Zps+NDrOUUiUQikUik6GkLPjSRSCQSiURaOVGhiUQikUgkUvREhSYSiUQikUjRExWaSCQSiUQiRU9UaCKRSCQSiRQ9UaGJRCKRSCRS9ESFppViZl3M7Hkz+8vMnjSzw8zs3aTlSmFmM8xs2Tz0a2Z2v5lNMbOPct1/JFLsxLEhjg2tlajQFChmJjNbPmPdADN7uIFd7ItnBF1A0n6NPHaN44RqtUc1pp+6kNRN0shc9ZfGZsB2wOKSNmhqJ2a2pZmNzp1YkUhuiGNDk4ljQysnKjStl6WAH9T2ipUtBYySVJqkEGbWPsnjRyJ1EMeGBIljQx5JOlVxbNkbnrp6+Yx1A4CHw7+3BEYDpwPj8XTmh4fPLgbKgLl4euwjgcPw6rOpvm4GfsfTgn8KbB7W75ix7xfA5UAFMDusuzVsuzLwGjAZ+B7YP63/B/A06y/g1WE/BJbLdn4N2Hb70P9feFXZocBRWa7ZkUHGiiDnxXiNnsHABGBK+Pfiafv0xlPe/xk+fxavmzILqAz9zAAWAzoBN4Vt/wz/7pTxfZyN1wd6KOl7KLbW2eLYEMeG2Gp5NpIWILZavpiGDVrlwCVAB2BnvBjb/JnbhuXMQesQYAG8kN/p4UHrnG3fsG5I+kARHuzfgcNDH+sCEwn1UsJANBnYIHz+CPBYtvOra1tgQXxg3Tt8dgo+oNYYtGo5zwWAfYCuQHfgSeDZtM9fAB4Pg1sHoH/a9R2d0fclwAfAwsBCwHvApRnfx9VhcOuS9D0UW+tscWyIY0Ns2Vuccipu5gKXSJor6UX8bWGlhuwo6WFJkySVS7oef9AatG9gV9x8e3/o4zPgaXx+PsUzkj6Sm7YfAdauo7/att0Z+EbSM+Gzf+MDbIMI5/i0pJmSpuNvlP0BzKwPsBNwnKQp4ToOraO7g/HrPV7SBPwt79C0zyuBf0maI2lWQ2WMRPJAHBvqIY4NrY84l1e4VOBvBel0wAeqFJNUfR58JtCtIZ2b2enAUbi5VEAP/I2noSwFbGhmU9PWtQceSltOH1zqk622bRfD3/YAkKTGOOSZWVfgRtxcPn9Y3d3M2gFLAJMlTWlgd4sBv6Yt/xrWpZggaXZDZYtEmkgcG5w4NkSqES00hctveBn4dJah+kPTJMxsc3w+d3/cDN0Ln4O2sEm2EuyZ634Hhkrqlda6STq+ufJlMAZYPE12S19uAKfjb5cbSuoBbJHqCj+H3mbWK8t+2a7Bn/hgnWLJsK6ufSKRXBPHBieODZFqRIWmcHkcuMDMFjezEjPbFtgNeCoHfXfH53QnAO3N7CL8LSzFOGBpMyvJWJeeG2IwsKKZHWpmHULrZ2ar5EC+dF4A1jCzPUN0wInAoo3YvzvuxDfVzHoD/0p9IGkM8BJwu5nNH84hNaiNAxYws55pfT2KfycLmdmCwEVAQ0NlI5FcEccGJ44NkWpEhaZwuQR3LHsX97C/BjhY0tc56PsV/GH9AX+rm02a6RZ3jgOYZGafhX/fDOwbklL9O8w5bw8ciL+JjKXK6S1nSJoI7Ief/yRgVeATYE4Du7gJ6II7JX4AvJzx+aG4qX4EHhFyajjuCHyQGmlmU81sMeCycOwvga+Az8K6SKQliWMDcWyI1MSkaAmLFA/hzXA0PoC/lbQ8kUikMIhjQyRaaCIFj5ntYGa9zKwTcB4+x/1BwmJFIpGEiWNDJJ2o0ESKgY2Bn3HT8G7AnjH0MRKJEMeGSBpxyikSiUQikUjREy00kUgkEolEip6o0EQikUgkEil6okITiUQikUik6IkKTSQSiUQikaInKjSRSCQSiUSKnqjQRCKRSCQSKXqiQhOJRCKRSKToiQpNJBKJRCKRoicqNJFIJBKJRIqeqNBEIpFIJBIpeqJCE4lEIpFIpOiJCk0kEolEIpGiJyo0kUgkEolEip6o0EQikUgkEil6okITiUQiEQDMbFsz+87MfjKzy+vYrp2ZfW5mg1tSvkh1zKyHmT1mZt+b2bdmtlNd69P2W8LM3grf9ddmdlIyZ5Bb2ictQCQSiUSSx8zaAbcDOwGjgLfNbBNJ72XZ/BTgO6BHy0kYycJNwFBJB4bvr2c961OUA6dL+szMugGfmtkbkr5rKcHzQbTQRCKRSC2Y2RVmNs7MZGaHJS1PnukH/CLpZ0kVwH+BvTM3MrPFgV2Ae5p6IDN7wMxeb7KkEcysB7AVcCeApApJk2tbn76vpDGSPgv/ngF8DyzekvLng6jQRCKRSBbMbEPgXOAYoA/weAsdd2czG25mc8xslJn9s57tBwSFK7Mt38jtFgd+T9vlN6BvlkPeBJwFVDb9LDkF2K8Z+xcEZragmd1hZn+G7+sXMzsuy3aN+k4buM+ywATg3jD995CZzV/H+tqOswywLvBRY869EIkKTSskDFw/NXKfLcPgllMtPV/9FjJmtnQ4582SliXSLFYAKiU9J2mspFn5PqCZrQ88B7wMrA0MAK7I9iOZwShc6UpvvzRjOwDLIt+uwHhJn9YjT51I+kvSlOb0kTRhquZtYHngIGAl4G/AtxnbNfo7beA+7YH1gPskrQP8CFxex/psx+kOPA2cKumvhp57wSIptgJswCLALfgAVIZr3E8Bazdg327Ago08XkdgUaAkx+exJSBg8Yz1XYGZwJpp26TaFOA9YOdGHmuzsP/STZDzJ2BAjs556SDHZknfR7E1+Tt8IOOeVFi/GTAMmB7aF8AOOTzuQOC9jHXX4lNBte0zAPipAX3XuR2wEfBK2vKxwHUZ21wJjA7j0tjwDD/WxOv7etryEHwK68LQ7+SwzXwZ+52IKwxzgPHAU2mf5fW7yXIOF4fr0CkP32m9+4Tx+o+05VWAD2tbn+UYHYBXgTPzdY1aukULTQFiZksAnwCbAMfjbwC7AHOBD8xsx1r2KzGzdpJmSJrYmGNKKpO/hTbHjNwYdgTGSPoybd26+BvjJsDnwLNmtloLyROJpHMKcCpQQbBkBOfKQfiPxrqhDcB/1DGz88xsRj3tvHqOuyn+Vp7Oy8DS9Vg5Fzez0aG9ZGabNGG7j4FlzWzZcK5/B55N31nSuZIWl7Q0cCDwpqQDU5+b2WHBOrl0PeeZjX2B3vgLzt+APfGprVTfFwNX447La+BjyPDwWZ3fTTZy8H3tA7wL3GhmY8xshJlda2ZdM7Zrynda7z6SxgI/m9nq4fNtgG9qW59x7gbcC3wr6do6zrG4SFqjiq1mwx/MsUCPLJ+9GD7rQnjjAg4ARuCe66uT5U0MH5xH4w/4K8ChpFlOyLCkpC1vh5tVZ+JvRjtk9Hs5Hu0wE59/vxPomfZ5tX7T1j9MePvLtg3QPaw7OW1dH+AxYCowC3+rWz98tjQZb9TAkPDZusBL+BvdDHzg3jGt3yFZ9l06fLY8bpKdiluOXgXWyDiX/cP3MBu3LO1OtNAUfQMOA8rTlucP3+uWtWzfO9wvdbXe9RyzDDgmY91q4bj9atlnp3APrglsjr/dVwDbNXY7YHt8LPkZuCpt/YvAYhn9bQkMzli3V9i/bz3n+QA1LTRfZmxzJ/B++Pd84Zk/o5b+6vxu8vF9BXlmAw8C64fn/jfgkRx8pw3aB1fsPgS+xMe4RetZ/yKwGFXW7C9xpXA4sHvSz1xzW+ICxJbxhfiDWQFcUMvnm4cbcXeq3kCG4ubiFXFFYABpCg0eqVCOv3WugA/Uf9IwheYL/E1oBTzqYSrQK63vC4JMS+NvAiOAB9M+r9ZvWNcBVw42reXYHYEzwrpjwzoLD+jw8DCugTtpTgEWBNpRpUj0w82uvdP6/wewarhGl4UBY8XweW/cj+C6sN+iob9FcOXxjnC8lfBpwEnAQmHfdXDnyCvD53uHvqJCU+SNDIUmrLsbn+54CTgHWCnHx6zrh2z9RvQzFHg1V9vl4do+QE2F5r8Z21wIjAz/3iBcgzXr6DOv302W480B/gDap63bN8jZO21do7/TXN0Hba3FKafCYwXcWfubWj5PrV8p/O0MHCrpA0k/SJqeZZ/TgUcl3SzpR0kP4MpJQ7hY0suSfsTNvz2BDVMfSrpM0juSRkl6A48KOdDM6rq3tsIHg/cz1n9vZjPwt55rcatHKrJka3xQ+5ukdyV9hZvEZwMnyMNMU6GJE+TTZ5ODjEMkPSjp23CNLsCtSvuFzyfjSuSMsN/Y0N/xwChJx0v6StL3wP/hSt3B4VinAx/ITfHfS3oGuL5hlzZSbEg6Gne4fA3oD3xtZsdCzqacxuAKdTqLhL9jGyHq+/hLRqO2s3oS65nZGiHyJtWmmdkpjZCrLsoylkXNwBXVtnNd3002cvB9jQF+lFSeti41Pi+VsV1jv9MG7ROin75K+z66h/VvhuWvzezOMCVXDTM7zcy+Cds8HZyci5qYWK/wqBFZkEHmAz1O0m/17LMqbl5OJ1OZqI3h8w4sjTWzCqoeLMxsb3w6a3k8yVYJVQ7Gf9bS597Ac6rpr7MDMC7Iez1wmKSp4bPVgEmS5kUQSJpjZh+Gz2rFzBbCHfi2DnK1xxXBperaD7f0rBeUrHS64IonQdY3Mj5/t55+I0WMpK+Br4EbzOxOPKz7P/gUyRP17D65ns+H4c/BJWnrdgR+lTS6EWKuQ/UQ7Hq3swYk1gsvEmunbf8H8L9GyNVUvsVfXnYAvqptozq+m2w09/t6B9gy+C1WhHWpF81Rads15TttzD5bqabP5J6SpgVfmSfwl7fHUh+aWV/85WxVSbPM7D7cInlrbSdbDESFpvD4EZ/CWJ3sA0XK0et73DektIH91vpmUw+Zb00Q3prM83Q8iU+3nIlP/2yEzyl3zNZZeMD2AA7P8vGo8LD+aGZzgP+Z2appD2u2c7Ba1qfzALAkbmH6BZ/7fqw2GdMowZWVbGnBUyGODTl+pBVgnq/laOB5XAlYDJ9uTSUom0z9Ckt93Ai8F6wjD+FWyZOB09LkOAk4SdLKYfkGYDD+I9ojyLgd/pyly1/fdvMS64XtU4n1smUKJuz7YwNeqJqNpBlmdj0wwMxm4VaYLngk5JX1fTe19Nnc7+s63CfpVjO7KRzzOnzqbErado3+ThuyT11Imhb+2R6/TtnGqPZAFzMrw32UansBLRrilFOBER6yl4ATzTM+ZnIebsV4rRHdfgtsnLFuo6ZJWI3NgImSLpD0oaQfqD/b5CZ4yPabdW0k6WV8yulfYdU3wIJmtmpqGzPrhD/oKTNvSvnKNK9uAdwuaVB4wxyDJ59KpyzLfp/g1p8/JP2U0SakybVpxn6Zy5HWQSlumXsM+AF3Fn+P7Apvk5D0MR7dsyvuv3YpcL6kO9M2W5AqSwC4s/x/8WnUV8Nn20p6PqP7+rZraGK9FAeRYfltZpRTfVwInI9bFr7Gz2Hd8Fnev5tMJH0B7Iw7BH8B3I+/hB6fsV2jv9MG7gOuqLxqZp+ZWTVlxzwT83hgGp7yI12mP/Bp/V/xKaz2Ybq8uEnaiSe2mg2fCvkD/0HdEVgCf3saiJtddwzbDSBLXonM9fhb1lxcw18e9z35A38Y+oZttqQOJ+G0vsrxqSDwh60SOBJXEP6OR1KJqiihzH6vAwZm9FnbsfbCfW2WobpT8Ka4pWqeU3DYfhHcF+ZkYGFCtFW4ju/ijr1r41FkfwEPpB3rBVzJWhIfXEpCf3/iUWEpx+fN8MiuTcJ+64VrcDnucLwXMJLoFBxbkTXcofWetOWdcd+7bNt2BiaSke8KnyL5hjRH2djy+p2lxu/58SmwPTM+74Ird5kRb/OH8W4hPEjjWeCQpM+nuS1aaAoQSb/iWv+H+Pzvz7jVphOwsdx60Zj+nsGnW87B558Pxn1KwBWkpso5GP8hvyL0eyA+9VQXe9HwOffncPP4JfKncE88iuoFPPR6UfxBnRjkGYc7JZ+DW2GeC/0cjisoH+EP7sth/3T+hTs8f48nMVwy9LcxPnA/Ez57BFc4x4RjfornzDgwXINzaKBZOBIpMEbjL08plsBffLKxK56sLdN3Y1d86qQ8yz6RHCO3tCCf4nqcDMu7PLv1IDKmH4Ft8enFCZLm4uNbbbmLigYL2lqkjWFmFwGnSFqgBY+5Fq6kLSgviBaJRAqE4OQ7AndG/RXPP3W2pBpO7mb2DPC0pEdaVspICjObD2gnd/7thL8oPoL7EXWRNM7M2uOW/aGSbkvbd0M8sd4GuE/hA8Ankm5p4dPIKdFC0wYwsw5mdo6ZrWlmy5nZUbgl5e4WFqUT/vYWlZlIpMCQR+qciCdf+wF4J6XMmNmLZrZY+HdPPCz62YREjTiL4JFoXwCf4tPxA3FL82AzSyXNG0OI9Ep9j5I+xKeiPsUtyyXAXS19ArkmWmjaAEFLH4z7e3THI33+C1wbTcORSCQSaQ1EhSYSiUQikUjRE6ecIpFIJBKJFD1RoYlEIpFIJFL0RIUmEolEIpFI0RMVmkgkEolEIkVPrOUUiUQikRbDzDri2bhTbT48pUMn4Ay8JtI5eH6UOaFNwRNcTgT+Us3CtpFIjHKKRCKRSG4xswWBtYCV8bIoqbYUnielOVTg9YdGprWf8XwqIyRlK6gbaQNEhaaVYGb/Bywm6ZykZYlEIi2Pma2EF2dcHq/ddp5qFjPMx3G74yVCNsNzXa1F9aKWs3Cl4xe8lMk4qqwtk4DpVFliHsaLxB6A1xjqhNeNmp8qi85CuBVnGVxJ6ovXegM/72/wgo4f4PWNvosWnbZBVGhaCWbWGa9Ova6k8UnLE4lEWhYzuxeYJuk0M+uD1y5bLtcWizBltAWwU/i7Dq6EVOCVvIeH9gWuXIxVA39ozGwIgKQtGyFPZ2A5YE1cmVo7yLRw2GQSXpz2TeAFST83tO9IcREVmlaEmd0NfC/puqRliUQiLYuZvQ48JumesPwa8B9JT+Wg7wWA3fDik9vjGcfn4LXZ3sYtIe9Lmt7M49wEIOnUZvZjuPVmC2Dz8He58PEIPHP688C70XrTeogKTZER6qncgj+gM4AbJf07fHYwcJSkrRKUrwuwJP52lDIRLwB0BTriJuRTcTP0HVSZmqdTZYaegM+R/xnqy0QikTowszfx+kpzgXJgXWA/YHlJhzexz67A7ng1+R3xKaA/cGXgBeBNSaXNl75lMLPlgF1wpWxL/HxGA4/iNZC+aKglKVKYRIWmiDCzEuBj4DngKmBx4HXgeEmvmNm6wOuSereALItQZd5dnSqnvz517FaGKy/dw3IpruDUFm03F59zHwn8CKSKrX0taVZz5I9EWhthuubhNAvN3sAFktZtZD/rASfgfizz4UrMo7h/zmet4Uc/+P3sSpWy1h6fHrsL+K+kqclJF2kqMWy7uOgHLCTpkrA8MkwzHQi8gls5mhtBUINQ3HJt3HS7Oe4AuGjaJn/g/jsv48rHKGo6/s1KDYSZ8+Rm1g5XctJDOftS5fS3LLAp0C0cr9LMvgOGEczdkn7L8WlHIsXOdKBXQzYMfij749W2NwBm4grMQ/jz1aospWFq7FHg0RCRtS9wOHAzcKWZPQLcLml4clJGGktUaIqLpYDFzGxq2rp2+Pw1uFLwVy4OFKa2dsbfYrahSpkYCbwGfI5bS76UNKmR3Q9PXwiD5dTQfqpFnhJcwUlZhdbHFbljwuejgBdxc/hbkmY3UqZIpLXRHX+masXMegDHAf8EFsH9S/4Pt1LkZCwpdCRNBO4E7gzWqeOBQ4Cjgx/SFcDQ1mCZau3EKaciwsw2xgeaFWr5vFk+NGa2FHAQ/rayXlj9G64oDMXf1P5oSt/5IFh21sD9ibYGtsN9dWbiStdjwCBJMxMTMhJpIbJMOZ1PLT40wcn3FOBk3IrzGnA17hfT5n8UzGx+/GXpNFzR+wBXbAbH61O4xNIHxcVHwDQzO9vMuphZOzNb3cz6hc/7Ay81pkMz62lmx5nZO/hU0ZW478q5uLKwtKTjJT2WT2XGjO3MeM6Mp83YpCH7SKqQNFzSvyXtiTsf7wjch1twHgXGm9lDZrZ9sPJEIm2FGuOBmXU1s3NxS+uFwFvABpK2l/RG/LF2JE2RdDVuFT4R9w0cBAwzs80SFS5SK9FCU2SEqaDrga1wh9rvgQvwPAs/AetJGteAftamyrTaFc8f8QgwUNIveRG+VlnYGXgyyAFuYdlO4r2m92kluOXmYNzi1AvPJnoncH8TpskikYIm3UIT8tB8DCwrqSzkjjkHtzr0xUOWz5f0VWICNwIzVsAjJ7+R6p5Gy8/xrQNwGHAxrtwMxkPiB7e0LJHaiQpNK8HMTgaWkHRWHduU4LkkzgI2wUOnB+I/8p8m9XZmxjt4ltF0npHYJzf9WydgLzxyY3M80uoR4BpJ3+fiGJFIIWFm1wM/S7rdzDbEFZiFgE+Bf0p6O1EBG4EZNwNH41GSBmwv8WEysth8eNqJC/EXyvuBU5qbfyeSG6JC0wYIUUoH4NNIq+EpyG8BHpA0JUnZAMx4D4+cSmeQxB65P5atgSs2h+ED0pPAlTGaIdLaCH4gV+JWmQl49ODdko5LVLBGYMY2eJqK+dJW/ylVK63QooSUFT8Bk/GcW3/g/kjPxCm7ZIk+Ba0Yc/bHp5MeDqsPAVaUdGO+lRkzzIzDzXjcjOvNWLCWTW/Ep5lSzMQVrpwj6StJx+MRY1fhPjefm9mzZrZKPo4ZibQ0ZrYvPh19NB6KvAL+TB1tZismKVsjWZGav1N9zGiXhDCBC/CXoe1wS/dE4Cng+TDVF0mIaKFppZjZbsBFuHPsV+Hfg9LTfJtRApwHHAHMBs6TeDZ3MvAontuiBK/z8iewusS0LNvuh0cUlANXSo1zbm66jNYLj/Q4E38LvBfPvvxdSxw/EsklwSpzC+479ike9Tg87bOtgP8ViyXBjC3wKMuUhUbA7xJLJSeTLQBsIel/Ybk9Hup+GT6Nf7ykJ5KSr00jKbZW1HAT6E/4g/8b8A+gXfZtdT5oBkihlYK2bNzxtDDobVA5aCJoj7B+w7R+U20O6OCkr1Et120h/E12brh2dwMdk5Yrttga2oBt8VT+5cC/gA7N60/zgR4BTQB9D9oqmfPSxaDZoGlhjFkr6Wtdy/VfCa9tJdw3cf6kZWprLU45tRLMrIOZnYVPLy0eVt8q6UHVnuXzCKrPTXfFU4Fn9E0fs7lvmk2baTZ8utlGjwXLBsCzwEZ4gr8FgIFmrIYnvcukA17PKdVvSbAS5RwzupjxqBmlZkw0o856NpIm4Bai73Br1VHAcDPrnw/5IpFcEdI3XAy8CkwDNpJ0saS5zez6YWBv3PdmRWCwGSs3s89GI/EvYGk8W/gSEl+0tAwNQR5gsCnuMLwf8FlI1BdpIaJC0wows/WBz/DEWK/hbwovAeebWV11nTITzlXiBS/T+qYdaCjYltCjC6zRDV46ABZ5z2z/DsCGuKISqCiByi3wOk2ZZm0BrwRF5nZCYUoz7jfLedbq24E9cSVtAeBWM7auZ5+D8dw7R+EZkrsAQ8zsPjPLeUmJSKS5mNlC+LN+EfAgsL6kT3LU/c5A57TlErzSdosjMVbiK4mCruEmqVzSZXjUZjvgPTM7JlT/juSZqNAUMcEqMwDPYjk/sLukPSX9ilsb/g7U5fh7LlVKTSUwHe5/LPyAv+WZRsctD1oc2ocHsh2e0mX4ytB+a1xxSWNWZzjpCJhwD16GIaXUVABnS/yJhz3+HS+90R73s7mglnNc2MyuMrMHzKwxYdy7UH0w7gLsVM8+/8OTaA2U9AIeEXZlkPUrM6tPIYpEWgwz2wAvQbIF7itzuHKbFTuzfEgFGS88zcGMTmacbcZDZpzcUo6+IVhhTTM2NZtX0iWnSPoQr3j+FvAf4IFQLyuST5Ke84qtaQ23wnyMKwwP0cT5WtBmoDtA18Ebq+Nz8Ck/klJY7kmomFPTH6ZMMP5N0N9gZiXMFEwTvCvoMAP4O2gZ0E2g+0Hbpx3zjSz+NR9mOcf5cUfisip5OKOB5/VDRv+zQWc18VpvgEeMCPez6Zz09x9b227APrgD6i/AOvk5ho4NfnWV4fn5CdQtR323C753s9L8957K/3VTO9Bz4XhTQeNAK+Txe2oHDAhjx7t4ceHE75/W2hIXILYmfGlu0ZiOhwvum8N+98bn4FXVupRD2fMwt7KmElL5ve/XbwacIjhI0F64tefi2o+j+0Fz0/oqBz1dc7vV/wmPl8M3gkcFCwiYFvooAS0Aqs3hebswaJWBZoJ+BfVqxrXpGpQZ4dEjyyR9H8TW9hqeWO6scB++Byyc3+NpO9C1oDNAPZrYR2fQbqD9QAuGdZuDKrK8dCyR5/M5guqBEBXZXqby8L3tHxTQn4GVk76PWmtLXIDYGvFluUPtzWmD2eI57n/f6grNMoLRgsq/oLIcKtKUmsrZoEfCfu/hkRUpRWgGsFftx1Hf8GY0PSgcc0ADQCVp23SACWNhdjjebMF3gg6zQBuEaIc5oY8d0vaz0P+ioDVAZ4KOb+pgnOUa7YZP400Bdkv6noit7bTwtn9neMYeLSRLYXi5uA/0QbDKdg3re4C+wyOUpoEmg1YCPZnFSjs3n9aSIM/VWY47qYW+v42AcWHs2Czp76w1tsQFiK2BX5SHFQ8Lg9mNNDMks5Zj9ATGVE05vVcB5emWmfKgRMwAfQHqHfZbEi92NwN39L2RkOOo9mOpL2h8mqVmBuiutM/XgooZ1QeeaYJdB4OmZAxIM0CLgLqB3sHN2LNx03I+rtOywUqjYE6u81xji625DXe8fzTcc1cAJUnLVCWbOuFh3amp6Vn4dJKBLgnPYrpF5C3Q+1kUi1JqsbjmUNaDMyw0c0Fvt+D3uDQwgnn16pL//lpTi07BRYCZrYrnN1gXOEDSaWp+SGYNJP0F9AOehEU+gX6Cdune+e3wjJjrAOtKTA77/YaHda4J9A3yqZ7D9cOddlPRTfMBR5jNc+SdW9NnvWM5PHJ3kCOdcmBV4Bo8kWBnPJPntsDZDTj1RiFpJB6e+QCe7+Ph6PAXyRfh3noKT4VwtqTzlJYgswDohxdsTKVk6Iw/h0viyn+ntG1Lwvrh+MtPikrgUYnaUkzkioHAE+HYM3CfwUPyfMx5SBqFO3H/AAw2sz1a6thtgajQFDhmti0+pdMV6K88Z6CUNBp0CIztCO2z3R97ANMzBx55uOJISRNr69uMlcw4JmQF7pLt8FTdkyNwp+dUmOYs6DQMerxDWi6bQEe8nsomVI9s6oorHjlH0mw8j895eO6e10MIbSSSM4IyMwjYHThR0jUJi5SNbC8vnfDn4k2qR0LOBobilb+/x5WKGcDXsMBKZjbErN0Qs50+M2NXM3L6TIUX+SPwUhAbACtK/JbLY9Qvg8bjGZs/B54O5WkiOSCWPihgzGw//I1iBLCrPBw7D8ehI27J2Bj4BvgvHgreNcvmc4DzJa5vQL/LEjIVA78CN4WPKvFsxkvgMeDtcMXlTYld0/bvhDtArovn2blGYo4ZJ+LWmPKw700SF5jxOF5VO5UXZw5wm8TpDboQTSR8T//FMzNv40phJNI8zKwD8AyeguAISQ8kK1F2wvjxObAc1a0xpbjPXze8ICy4MrOnxIyQe2qtsP4LsNf9cR66BqzTE7qmFKFtJHKVW6dgMLPuwAv4uLu3pOcTFqnoiQpNgWJmh+F1hd4HdgnTQXk4Doa/AW6NKzCz8VDQTFNxilRa9YEwb0CaALwjVb2phYyiH4U+La2lKAUuwc2vS+H5Gs5WAxNnmbE6nifmJ4lPw7pF8am5XuFYvwKbKkvtqFxjZpvhg9NkYFtJP+f7mJHWi5m1Ax4BDgCOk/SfhEWqEzN64VnDN6e65X+mxHzh5aS9lJm3qkY/hwJ3UD2D+Q8SK+VW4sLAzHoAr+PT9btIeiNhkYqaqNAUIGZ2El5g7jU8WqjOQaAZxzEY0xcW/Ynqyst04BM8C3CmlWYmnjBvfqpP74wEVpCo9L55GDiIWqc1ywUjZ8KKLwF3SLzZ/DMCM7ri0QQVwPsSZbnot2HHtvXw9PNzcKXm25Y6dqT1ELLK3g0cCZwp6bqERWoQZpwEXEv1cWG2lHV6ubY+LsQd7dPHjVIpPwnwCoFQ7HIIsAzuKPx+shIVL9GHpsAws+NwZeY5PCw4X8rMWcBM2HAUzOmQ8bGAS/F57oH4PPgI3JfnT2ARqg9a4Bad29KWe1Ln/dXOYMX5gH2h8gWz2y80s3rrxIQsn+eYMdaMMWacGaxMLriYKfGmxNCWVGb82PoU6I9bh940sxVa8viRVsMFuDJzaREpM+vhzr7gU8rgLz/3NrKrT6GalbYCCrN2U66QNAnYDo8wHWRmyyYsUvGSdJhVbFUN97avBAaTx0rPeI2jVK0lwfsVMKc8hDGWgX4BdcGr7W4N2gLU0fetlhAvs31edQwdGMIwa9s2o71fjg+A59aUVyuAbgU9ALohI+xyBujIpL+7jOu7Kj4N9xuwZNLyxFY8DbdqCq/LVBTpAEC7hme9PIRozwJ9Bjq/KWHYoEupSoj5A2jxjM+3wbMWTwE9BeoO6gl6KKx/BbRM2HYJ0Kug30CDQYskfb3q+O5XACbhBXJjpe4mtDjlVCCY2V7Ak8Db+Fxq3oqwmdntwPG+tDjuX7tVBSw6DngXNnsDxuwDH24G81dCO+H+KPviD1tthdYexuseLYPPgW8JXEyVT0sdfITPcDELWFPSTy4ry+EOh/NRu8XnLanewpMtipml6riMBzaXNDZhkSIFjpltiltDPwC2lzSnnl0KAjN+wfOrpJgDXCDRZOuSGd2B7sBYaZ7FJ+Wb9ylVU+FzcB+UBfB0Ep1wq84k3C/lE2BR3N9vLjAKWFWivKmy5RMz64+7GrwD7CSpRa3MxU6uKxxHmoCZbYInzfoELzCZ74qyfwBzYIFOrp/MB1g7oA98vypstCfs3dFnjealfFkBj1iYTY2QawFMBDsJeAzPpluOO8gegefQyMwdI+YpOaXAv1Pry/DB8aewfBJ1KzOi7gKcjcbMSvDw9MWAD9WE6sWSPjOznfDBabCZ9Veepg8jxY+Z9cWLo/6KR7wUhTIT6JGx3BF/iWkOJXjenfnNeFliWFi/LdXHgk7ADrgSk/IDbIdPiR8UZEv9znXA8+WsgA98BYekoWZ2FG6hux44OWGRioroQ5MwYb70OTzB066SclbNtg5uAX6Hc8qCMjNPHFhxdbiso1tLqrnWdAIWhszEVxWCAyqhay+47H9ufqYL/nbVFzjdM4bWYC5UfASfVcCxeEBHCdC3I7zb24zhZvxGzQEskwrgosacfF0EZeYFPAz7WmComR3elL4kvYcPyuvgyffi8xapQQjPfhy3Ouwp96koCoL/WmbuqXKaoTCY0RP3m7kcOB941YwDwsfTqDEGMYuaY4Th+W0yX6RSKSIKFkn/xbOtn2RmByYtT1GR9JxXW254pNB3uCVjxRY+9nww4gOorMOvpdpnpaB/gX5nXorzOWVwZRlcJ5goV25q9DEZZlVm6fd70LIw4TP4vRLeLIdxgrllGX3MhsoshTHn9fNBjq/LDniUl9LabJqRah44JfRzbdL3XGyF14Drwv1xYNKyNExedQFtBtoQ9PcMnzbh5Q1KQTs3sf+Tgv9Mep9jwmdd8dpQM/Eq4KWgo4N/XUqOWaDheEmG19J8+UpBT4MK3jcJf5schitlqyQtT7G0OOWUEOFt/RE8GdV2kn5oYRE2grdGwoob1r5JRWgdyqDkFbyGzG14Er4l4J8bQp+l3So6Xy19zBLMtupBUQLKjoJO78GCCwIGfcOblGVGXHXyAZJ2Nd1wDBizktliA4GBkgbXe9b1s3CWde1wq1NTp4z+jZu5zzCzLyU91FThIq0LM9sTOB24TdJjCYtTL2b0wXNjzY9bRWZS8+Evwa1N9+H+K42lBxnm4dQxJGaasT4eBbYw8IbEW2bcizvibYaXFbhWnoRzZ+BEYHXc9+YuKWtm44JC0tyQQfhz4Ckz6ydpZtJyFTxJa1RtteGhmQKOT+DYVwIzoGQWfFdR3RKT/u/Scrj8YNDCtfTzLPxYT/TS3DIYMtetN6m+ZwlmXgrl0+veN9UqpsA3Qc5Mi9JHKStKKXQ6DPR/4S3sSppQYRtYnmoRYJQD3+TgmrfHc03MBFZP+v6LLfmG/9hPxH3nOiUtT8Nk1tN4BFLqGSzLWE5vc5p4jHWpHiE5CzQw6XNP6B7ZNoxDNyctSzG0xAVoiy3cpJV4VFCLmj9xR9dZVT/YN9SmSFSCTs6y/4LA/Xgkxn3wdXkt+6crNVkUkT/KYHoDlBmVugn6jqvgjjKYmdbfDMGWaVNDj01PGwhng74BZf2hwB2Pr8b9iTbO+Gzn8ENTgZdcWCJH135RPNfE90D3pO/D2JJrMC9D9yyKaEoB9G2WZ3R8limiMtBbjeh3ZdBHoImgN/CprFGgyXg4dtekzz3Be+WmMMZtk7Qshd4SF6CttfCjNh6vmdQtt33rUHx++XvQ8dnmivFQxmlVSsBhciVB2RSay0K/y4E+gcpSGFEGq5WF/WfCqLK6/XCURZmRYJrgXUFpmtVmrmBKUFTKv/HBrLwcZod1syqgfBZMeAxumQzrpikz3QVlmceZBto+yzVYBpgarC/hPKgx358PZRNPvFcBPJr0vRhbcg2P/hNwStKyNE5uPRheFtJfOM4BbQC6CvdjqQC9B1qonr4WA70A+hX3y6sIfc7F8880OodNa2z4dPd3wO9Ar6TlKeSWuABtqYW3sudxJ9NVc9u39sow05aCDs8iQxc86VulD6gWlAVltjLQqaCOUPEnVIbBpkIwQdBNnp8mmyNwjZbFqXeUoKPgDMG9gqMEywtOERwyE+ZOqnIGzpwSm1kJveamTQsJliiFiszj/AXaIyhk86ddgxvSlJlU+6IF74PUdGNROIHGlvPvv294qXiTZjibJyO7eoE+DePLLNDzoA5pn1tKEQHtgAcRzMWT7k0HXRo+6wQaSe2JOmeAlk36fAulAf3CmHVv0rIUcktcgLbUcEc2Aafmvm+9kGVQeD8cd2U8J8MmYXkNPM9LBfArlGfL6DsR1A12ucGtKemfTRFsEhSBqQ2wxmS2uYLr05UJwaKCnwR/yS1GlXVMZVUKhgk6hH0XqoSpM7IcexLozzA4zgFdFM7/7gxlRsCPLXgftMen7CYDfZO+L2Nr2YYn0JwFFOUPNqgEtAyehTerFRO0CrVnCj8f95OZVsc4UQY6gAZMNYF2Bz0JugfUotGiLXzfXB3Gqk2TlqVQW+ICtJUWpjmm5+utDPREFkvIG3g5hdLwRjgLeBfYKsgUMkXrBeaFYkvh3zsAm8NiM306KL3fGYJVgyLwf4I5qnL6TXf+zdYqBd8LFq2EDWfDkjOAX2BwufdT236ZrVzwumA1uXw1jjk3KDMVaetmgLYCtqK6428pcEEjr/fWeEr1N0F7NOF+WDFMdb2cj6mt2AqzATuGe+78pGVpmvwyPH3DpNDOTik1/gKkzUBrg06kpl9Nqk0ArVqHwlMZFJppeBmWWqeuQP9I66cCt8oWpaLYgHtnPrycyldAh6TlKcSWuABtoYWpppeCUrFUfo6htcMPdkqpKYWJW+LTW5nWiJnAZWn7zg96KwwIM0HHBrlPcSXo8aA0lMsdeQeGfk6U+8BkKjEVlVmUq7DNFMGtcivMrNlQMQfmXgBzfs+y/Vwoq/TjZlOSZsgtOlkVqDlZ1s0GnRbObR/cOfdX4F+NUTLx2laZ03t7N+G+OCl8H4ckfY/Glv+GhzqPxwu9FkVUU81z0Gn49FHq3q8AnYzXWxsHmhrGoc+o7muT3iYGxejlLEpN5thRBrovQ4aSoMhcF/pK378cdEXS1ymP99CeYcy4P2lZCrElLkBbaHgNJJFnB0DQ6qBbQHeA1scdkNMimmoki1s0Y/92pJmQgd3g33NccZght6DcXAlWCXfXpkgIZs6FORU1P09FJtXYrxKfT08P/ywF3QUzz4Pjhmf31Zkl96fJJkM2hUrTQbvn4Do/naXv95pwX5QAHwLjiMXoWn0LU00CRlKkESt45FHmvV+KW2vSn7lZtTyDosqPpgPofmoP+061d9KOb6CB1Ezml95aZQJLoBtwKe4qUEmOoi9bU0tcgNbe8ORPo/EESe1b+NgleJhwZRaFZhqwWt37l60LszN8WcrmwtET6g65nit4TW5ZSV+fLY/MvDYnvG2lQq9fIjgbwvQFsytH01XTv6fWNgv0MA3MEopnQ90etBOoW8ZnT2Xpf1gTv6N1wgB1V9L3amz5a3i6g7/w5G8jwzNYdPmI8Gnchj5z2RSaK4JS0g90OOjc8MzX1sdM0iwuoGWpfSor9Zyvm/R1ytM9dE+4bwbhDsK3JC1TobXEBWjtLQxgAk5M6PirA39mKDOVwfTdue59/zgQplVUHzAqZsPIJ7IPJukKS23TRHW2n0BrglYC9QB1xCOUFs9+rOsne2K9eo8zEw9pb6gy0xv0Iz6H/xceqdEn7fPNqTnltGcTv59OeIpzAQcnfb/Glp+G1+apAFbF02bvk7RM1eXTurhz7VL1bHdLA5/l2dSccvo19HFWeGam45aWbJFOlfhLzvOk5ZIK40NtCk0F6Pqkr2Ue76FlqArsuBOvHr580nIVUktcgNbcgKXCTZeqDfTfhOQwYBvcoawC+LEhb4ewxTVVeWJSbUo5zJ2SPbtwNiuKGtO+AO0YBrvU290cHxgrJ1Xvr3wubHEFdC2FyXUdazaem6djw6+XbqO6D04ZGZlKQf1xZ+pXQbs08XtZGvg53BtzcIft6CDcylr4ISoD7klaluzy6d/hmZsa/tY6LYuHW39MdWf7zDYLz1fzXlBaUorLVqCFsig62dqvoN5px90XdyaeTXUfnkyFpn8LXrf5cUvyTNAfoB1b8J7qgwczPJH0/VNILXEBWnPDKzbPwus1nQPUyLyb3+NrUTzr5pSgLKzZmB9M4A7YV67UzJQXj/ylvAmKSl0tpbjMBB0SBsMs282qhO8r3ZdmYiWc9iDQEXgNli+tZeppFp6g63XQsTTcQvN6lr4+zsP90Q4YCGwH/F9QbHZI+r6NLeff8z1hHCi4EH3QRtT0RymljqR2QSnJ5vcyF/Q/UN+wXXvc6vN3fKro2Fr2y9aG4tagQdR0HK5NoZkD2jAce2kf71SnFbqZ1+4tqr/4lIJaLOsz7k8jYI2k76NCaYkL0FobsFaY2rkqmeOrBE9TnjLnVgbFZoEs2y6Mz2l3qr6e/fwtoL1gYcEmlTlWZoS/Fd4K2hS3ztQy4P0lOEhp02Zz8Xwu5mb8r2+DynRT9Oww2ITBr2Im/O8tYAD1JDUEXZgxiM4E3Zjn+6VjsNYMp8iSrcVW5/e6RLDO3Jq0LNnl04HUzAczhzTrSJZ9lsmiZKQUmqxWKDycu64w7fTlCmp9samzTQNtAro37D8N9/lZLg/XrSSLYjUT1GK1+YDeeDXuR5K+jwqllRDJF5fg6fWvSuj4i+Km7lRFdQttg9QGZpgZT+BRNh8Bs8z4h39mfYCFgKFQXulBUc9nlrsOKMtyxVwvRVCZ/nlFlo0nAidLDMM3bpf9GCW4L+U8DOiIO+7eD6ttAzYan7oRXq23XVV/JV1g2y2BC4GPzGwDaucqPD/MXPzH6B3gvDq2bzaSyoDzcUV4v3weK9KinI7fq9cmLUgtfEHNZ24yMKWOfX6jKtggnfbAwbXsswk1K2inyBwXKnA/o7qYBIwN24I/q+PxadwDwv7dgUWAR+vpq9FIVOJWt3Qq8DG/RZA0GbgDONDMlmup4xYyUaHJA2a2BrA7cJOkqQmJMYOaA1U73J8nxalU//E04D6z/9sQ+Ba4Dk9CZ/472yVskk6mfpLqpqwDPGzwT+DHSpheDqUhZXo6cxeHj08340Dg2ZoHEK6j3IVHOANQBnuOgkn/Az2PK2krASvglg7D7+2M8y9J/W8+POtmViTmSuyDD4aLSewg1Ri88sETeI6Sc82sFuUxUiyY2ULAMcDDkn5NWp5sSHwHnIA/ZLNwpWBHKeuDndqnAq9JlvVjADNWM+MWM+4wox+ufGQqQClSltYUtSk+KeYAbwG34lO2X+Ah8Rvj40DXtG1LgNXM2MCsXiWpsZyM5/QqD39/Ap7J8THq4wZcmTu7hY9bmCRtImqNDXgEVxxqNdu2jBy6jqr58VLcn6Yk7fPJ2U23B75JjVpHa6juTL7ZpqI+UPU+mOkh3Zn7lamqblNmmyPPBkwlbi2ZCMfMrumsXF+bIfh3kKOX4MLfQRdQYCGewD/CtapRLDO24mq4xU0UQTVtPE3B4jSwICRovixTLsJTGqxFjSSfOpK6HYnrm4ZKOQPPTftsLu4oPH+QqTPusJzZVwVVWYf75Pi6bYKHnh9FHv116rnP7sRN6DXcCdpaCymrI7kimP5+AK6XdFaysmDA3sD6wC/A/RJz0z6voIaVTsArc2C3Tq7TpOiEW5oXouplSlR/sUpfrgCeAg4My4fjBp9eVM1+ZR43m1GiAuhaDmV/ADtCnxvh6x19+rhBlMGE3+HWJeGyDn78rwQLV0B788/ZV+LFhnaYT8ysA/6mN1rSpknLE2kaZtYenyMdIWn7pOXJB2b8ASyWtqoM2Ai3FuxP9Qf6e2Bx3DraEKbj00pzgBeBdYENyT4V9TywF/AeXsSxNutmOfCSxO51HdiM9YDdcCv3/RKTGihzIpjZ6ng5hDMlXZe0PImStEbV2hpwE/5g5/RNID+y6pfsb0elggHplpUKeOSX6laR2pLkpYdw/y5YWfC5aoZ5N6hKt7xIJd2CvNe4xabe8PDy8BZXCvpb+F5OBP6EC2fA3Mw3y5+S/i4y7qGTw3Xvl7QssTX5O9wjfId7JS1L/s5Ra4HG42HZs0GnhPWDsjzL31N3Ar3MNjj0dTrZy5hktmEN7LfOZx1PpDkzWHVm407FCyZ9rRtwv72NBxW06YCCaKHJIWY2H/AH8KKkv7XwsbfFq2j/EI6vjM8Nn/deFPhY0s/hTeQN3Hkuw1LzMXAF/pIypBzKfgRbpfo2tVlVUkzDX4p61ex+XvWFLmG5XB5NlXXDDsBOwGPMe8NLP7YAK8fNOeOAofj38JLE29WvA9cAZ2QIPgX3FfpamudkmBhm1gNPhvikpMOTlifSeMzsFWA1YGlJ5fVtX6yY0RFYEpgg8VdYtwfuiJt6uGfideGOxP3d6vHdrAR2+gxeuQA383ate/sGUwY8L7FvbRuY8QPui5e+zyUSl+dIhrxgZgfi13wnSS8nLU9SRKfg3PI3oCdwe0se1Myuxh1qrwQeB/6T8bnhTnMvAvcCX5rZbhKf4lEBr1Btfqkcn6V6Bg/2+WIu2J9Uc+qroG5lBlwP6Ujtt9mPeG6o2YKSGfj1S3e+rQRGgO0Jt94CSjNXG67I/DIDSnfFr7nwUhN74RFe72Q56OCMYwivkTIMeM+swSbxvCFpGvAQHr2wQNLyRBqHmS0FbA/c3ZqVGQCJMomfUspMYDL+gKZCHD8FFsCng+r5zRFucX1xHXwA6lL39g1mDm7BOL6e7bpnLHfAi4oWOs8AE4CjkhYkUZI2EbWmhtdr+oIWzPaKZ4zMrKg9E1gpbZu9qQqNTLXpKTlBfYJpdRpUTs8ypVMJugTPYzMdZlR4or26ctLMFHyh7AnvKgW/VsKR30LlHCiv8JpRk0dDxUnBxDwHNBJ2/z+gFO7LcryKMsBAXbOYpWeANsp+zXRQON8yqjsqzgJdnfR9FL6zNcL3dEbSssTW6O/unPDdLZu0LM0/F/UFPQb6CHQlGbmqatlnfMazWFehysa2SU3c7wFQvbX0QLdTvbRCKS2YfbiZ992/w29Bz6RlSapFC02OMLM1gbXxt7KWnMdbADeLplOGF8NLcRw134zmw80nSIwBVgGOArsTLEN+s3CcleGXs30KKnPKJ/Pwj+JRlN9WQsWcqu0qcefirUvh1kXBOkK7EujUDjr2hVu3x61c+wInwYdHAl19JimTklnhWveCGlNF5bi1pgYSj0osBnydcV06499h4kj6Cngfj3qKFBd/A96XNLLeLQsYM3oCnwD74NaVU/Aw6br2aU/1sQeqUik0FeFz36W4FbqxzAQek2iItexU4GF8GvoP4EiJoU04ZhI8gkdv7J20IEkRFZrccTD+o/p4Cx/3J3wKJV2rEP5jnSLbHHSZpDnzdhB/STwBPEdN5QDgHbApsOwpsHrH6l1mjlWVlXD5dJj5Exy0JYy7Fh6sgLNw39xzgfGdQb2q79cRmLAT6BV84BwIP6zmrghTM8WqAGTGUGB53NyanueiPW7qzooZ7ageoZHq85Pa9kmAR4DVg7IcKQJCDqo1qOeHv0jYGn/xSSXn7ALsXte0bFAafqX6eNTcnEqppHll+CBS47B4lE9tGG65qBf5FNoxEr0lFpd4rNHSJsdH+LRabckNWz9Jm4haQ8MVw9+AFxI6/qp4WGQ5Hp69Xsbn51GVQTdlJnko7fPFgW2B5UGGV7hNn4p5zdezPjANvsmc+qkI0zdTg7n2uIzjG2z4LkwVTA/TUKMELwhmZUxFlQoq06rvVlZ6Yr7StG0qlSFfKWgPvNRDBWgcaKu6r5n6UbOGTQV5SJPejO91ofCdJlI+I7YmfWeX4YrxwknL0vxz0Z7ULIswF9Q1bZt9wvM2HTQY1AG0etq6bJW0m9vSp6/mgv4LWqmeY00j5KtpzQ2v71TZGu6/prSU5h1pHpviNVvOSeLgkr7FM2TWxrW4MrILrtC8DxwLYGb7Aw/gbz8dwQa4csDuwMrAhxJv+bbMBUo8SOhJ/IWtHCiZBiWb4861v0n8mSGfzCoqfCqrJLytdcT9mMEDmFK5aboC6felGSxbASUh6++8l71062IXYCuJVc0okWrNSJpOZ2paolK+SAWBpAkhWuZvZnauwogVKWh2BYZJGp+0IDngddw02hl3jp0J/E9iJoAZO+FRSCl2AT6WWNuMJfCAgxdwC2pTqaTmTILhL2h34xGNHcO/p+EOvNksQpXABmZ0waeu3lLDpqCKjWeBC/BB9cFkRWl5Yth2DjCz64GT8EyNM5KWpzbMbEG8HMB4VzKsG27KTY8kmAWsLemHLPuX4JFD68AGXWD/cujwOxy9mdTlz8ztq+/L98CK1dc+hlcgGCroUZdZejo1ow/SqATuGwtHv4Y70db7Y2JGVzzEfRFcgSoLy2s1UCFqEczsH7jCuZ6kzxIWJ1IHZrY48DtwtqRrkpYnF5ixMG51Wg5P8XBNShHIklgP/IVgAYkpZqyL539oqmuDcCWlZ5bPZuFV6s/Ek+DVd4w5oRG2/RboLzVsKqpYCGP0aOBdSfsnLU9LE31ocsOuwFuFrMwASJooaVzam/6i1LRSlOEhz9n2r8Snpq6Hj56HMy6DU1apT5kJvEq1cOkZeEj4hNnQbW4t+xDGtJvxt6p0GcPgVIm/OF67KJ6W+AMzqzfUM7xlbgy8hmd0fQ7YspCUmcBL+EXYNWlBIvWyS/g7OFEpcojEeLlPyTYSV2RYNbKlFDDchAuwVDMPb0CPWj77CBiEJzCs63csVWdpIv5S1AO3JK9BsFK3JsIY/QKwg5l1TFqeliYqNM3EzFbELQ/FOIiNpmbBuA7Ad7XtIGmWpAsl7S7pYqU5FtfDmXgenAqorICHR8N/h8Afu0LJ5bjCUlrl4gOus3xSCfNvDxVn4o5/n+EFNQ+A0pfg0QrP1fVDSvYFcEWlXiR+l9hZYjmJ/VWAKc6DtelDokJTDOyM+7DV+vy0MkbVsv4UM/bFU1g05DdmFj5Vkm0KKJvl9t3wt1c9/c7B87Nsho8N6X11Aa4z45QGyFdsDMYVtzZXOiVOOTUTMzsVuBHPOfFLwuI0GjPrj7/plOBTL0dIejR3/dMV9+HZDI/IOg0YnWkJMWMjYFV4pS/0/hf0bQcf4MlFu8yCYXfBMuXA0xLvB9kXwSMqOqV1NR3YQ9JbuTqHpDGz83Gzfx9JY5OWJ1KTYOqfBDwl6eik5WkJQhXtoWRPfjcaj7jZhPqrZzeWaXj0Vbs6tinF84JtJzHbjOeAHQmpKtKYCewt8UqOZUwMM+uJh51fImlAwuK0KFGhaSZmNghYWdKK9W5coIQpmiWAMZKm565fDHcs3AR3LCzHw6tXksh6HDNbH3gLNwvjs2JfAQuUg7XD3+YOkhgUtn8BL1vQBZgDnX+FCVdCt57AEIkvcnU+SWFm/XAT+4GSWjotQKQBhND6L4B/SPpv0vK0FGYsBQzBp5eaG57dUNKTYGVjDnAfcLJCKRMzFsAzoq+Xpa9rpGQCOvKFmX0OTJa0TdKytCRxyqkZhLeyzaB6vaBiI0wj/ZBLZSbQG78+qQq57fE3q83q2Gc4/mYXprJOnAu9BNaeqjCo9IqyewHXA2/BfPfDtNnQ7Vbc2/h9M/bK2dkkx+f4G+fmSQsSqZXUd1PUY0FjkfgVT4IZpozzTiW1RzGl6AQcoLS6bGE6+QZqRjHOBcbkWsgC4G1g47bmRxMVmuaxGh4mmK1mUCR7wScj+1w5APLaN5sDdwJvwTrDoX1mH/OlbV8WfHq2hhkfQIflwuedcKvNfyhywjV5j6jQFDJb4NMsvyYtSEsjrwm3KrWnrcjFNEBlaNmUpkqyJwPN5DBqjkfleMh3a+MdfPxbN2lBWpKo0DSPLcLfNvVW1lAkpuJOeTPDqjl4OvE6FUBJ0yWd6krKLv9M25/w79p8fBak5nx9tpDPYuRtYA0zK4ZCeW2R9YEP2mquIInfgdvwvDWZ3ATZp5hxZWc29SskJaFlS99guPU3de1LgZuzbDedmsrVO6m8Oq2MD8Lf9ROVooWJCk3zWB/P4zIqYTkKmUOAi3HP+3vx0OqGvE0BIPFu6ONn3DR8J7W/CQ6huvWnjAzlyYwOZpxhxkAzzjKr4SRYqHyAD9xt6o2rGDCzHsCy+HRpm0VCuL/c1NQqPGDiNsiaxHUu7lO3Pl6srakpEwz3rfsMV/zPwjPmZnIJ/kKUypheClzYxGMWOn/gTuprJS1ISxKdgpuBmX0GTJC0Q9KyFCpmtiVwBNy0PJy8PpSU4UlotpWq1ZvK0fHYH1d6uuOD234Sk8Nnhie/2Qz3xZmJT+VsHwbjgsXMFsKV59Ml3ZC0PJEqzGxTPJR4N0nFmL4hp4TnrCcwPc0p90rgZFyRSNVZewO4Hb+vy2neC/YM4HiJh+uRbRXgCFwJelCqswZUUWNmrwM9JG2QtCwtRVRomoiZdcAfopslZSuYVtCYsTdwDP6jfoWU+6KMZrYr8Dis39WNJ1WuL3iJhKVzfcy65WEl/C0uvbLmTGB9qfBzh5jZH8Abkv6etCyRKszsROBWYAlJo5OWp1AxYxM8Z9c3Eh+nrTc8zDh9eri+SKZ05uLWiFXxUO6/JOpI1tk2CBnsTwC6Bz+8Vk+s5dR0VsZzGgxPWI5GY8ahuBUj9cO+vRmbSTk/lwF+jLXImLo2YEkzOkk0NDFfLshWv6mCqiisQucLYO2khYjUIFUO/o+E5ShoJN7DLaLzCMrMY1TPDzMbn2JehuovH1Bd0fklbPcrHqb9OZ7nATNOkLgvx6dQbHyFj23LAD8mLEuLEH1omk6qGOS3iUrRNM6h+kDRFTguD8cJCe9GZvtsSgsrM+Df1ViY9/Y2Fzd3f9PCcjSVb4AVQ7qASOGwLPBzW3UIbiZb4RmW05PzleBvQXvjisoP+HOaGTXZF9hD4ii8EOMS+JjTCbjFrG35j2Th5/B32USlaEHiwNh0UjdJ1l/rAidb9dp83At3AjM9T97DuA/e3FJ8qm6/PByvToIZenO81slIvBTDZhJlLS1LExmJD9Z9khYkUo1lKc5xoBBYjJqRRyVAV4lXJI6UWAk4Ch830qkAepvRCf8O0scwAeubsawZn5kx24yfzGok1mvNpO7JNqPQxCmnprMsMEnStKQFaQLXAf+mykozE7grD8e5Pfw9Ho6fA9/cD7f8CAyXGJeH49VLOG6xJttLH6Di9EYBYGbt8Cy5zyQtSxKYsRDui9cLGCQ1OifXx9QsYVCGK+7pod6fUf33SsBkPPKxEld2emR8/gf+NrU4ruwsB7xhxrKpQIFWzhg8VUbWYsOtkajQNJ1lKNK3Mol7zSijyin4knw4BQcT/G2hRZpP6n5bhpjMsVDog/t/FF0dt+ZixoLAl3hB2PbACWb8Q+KphvYh8b0ZJ0E1f5f2wKtmrJeKPpT4I2T9fhxXnkYCu6ZFUf0NeIKqaKnBuN/IAtS0Pq+Ll2Rp1UiqNLNRRAtNpAEsDoxIWoimIvEQ8FDSckQaxe/h7xKJShFJZ5Hwty0WDT0SL2+SSmbZFS9D0mCFJjARLziZsrB0xCOWFsTz1AAg8Ro+xdQxc5pY4gUzVsdz2ozFw+jTZUvRHtqEdSbFWGDhpIVoKaIPTdNZiLSHLRLJN5Jm46b1BZOWJTKP1HfRFseCbtRUGObLtmE9lFLzt6gEsmfwrc3nTeIXiScl3pFQWv2mUtxyMwN4CY+GaitMoA2NF9FC0wRClMkCtM1BLJIsE2lDA1QRkPouJiYqRTI8D5xOVYTSLHzap7G8jYcYrx36KgX+IzW/2KXEuWa8Hfr+GXiq0JNo5pg2NV5EhaZp9MLfINriIBZJljY1QBUBbVahkfgoZOa+EbfWPAOc1oR+ys3YCvfpWxZ4H3gyh3K+hFtm2iITgQXMrERSU0tLFA1RoWkaqQKBUxKVItIWmULV/RdJnpTfRzFGOzYbicG4A25z+5kD3NJ8iSIZ/EUIg6dm2HurI/rQNI2QMI7ZiUoRaYvMpur+iyRPJ6CyraSWjxQdKX+jNjFmRIWmaaRujrwkZDOzIWY2JB99J3mstnLMPB9rDm1kcCoSOkF+M1639POSxPPZVo/dAsdM3ZttYsyICk3TSNUduSTckDclKUwxER7etYG1kxq4ihEzuylcry3w7KqRwmBboEMcB5pPHBtyR9p4kfJp6ljH5q2GqNA0jVSoYlvylo8UBpXE57aQKCGOA5HCJeUInBle3yqJTsFNI1Xc8FxJLyYqSZEhacvU25ekLZOVpniQdCqAmT0CbJisNJE0hgBLxXu5+cSxIXekjReH41mY59a5QyshKjRNIzUvmRczXks+zEkMHK39mHk+Vt59NiKNYg55Nue39POSpDLR1o7dAsdM3ZttYsyICk3TaFOe460FM+uOJwJbEvgAuKcIczN0Ik/O6JEmEZ20I4VM6t5sEwpNnItvGqlw7c6JShFpMGbWGa+8uxyuzByBJwQrNqKFprAoA0rMLL4cRgqRvEbkFhrxIWwaqYR6McFZ8bA1/lD/XZLM7AlgjJmdKylrzZgCpTcwPmkhIvP4K/ztCUxKUpBIJAs9gQpqqYvV2ogWmqbxF36TxBT0xUMn4C9JqYiUUvw7LDalfkHaYJr9Aib1XcSxIFKILAhMKsKp9SYRFZomEG6OSXjF7UhxMBRYzczOMLMNgfuBIZKKLWV9VGgKi6jQRAqZNjVeRIWm6UwgKjRFg6TJ+LTTZsBtuJXtwESFaiRm1gWYjzY0QBUBE8LfOBZECpGFqLpHWz3FZm4vJEbj0TKRIkHST8CeScvRDFL32++JShFJZ1z42ydRKSKR7PQBhictREsRLTRNZyRe6j4SaSlS99vIRKWIpDMWjzpbJmlBIpF0zKwdsBRtaLyICk3TGQnMb2a9khYk0maICk2BEfzpRhFfbiKFx2J4Yr1fkhakpYgKTdNJ/ajEgSzSUiyL50Aam7QgkWqMJFpoIoVH6p5sMy9AUaFpOiPC39USlSLSllgdGJEWeh4pDEYCy5uZJS1IJJLG8uFvVGgi9fIDPne+VtKCRNoMa9GGHPyKiK+BHsQggUhhsSaeUG9UwnK0GDHKqYlIKjezr4C1k5alNWBmXYEzgRXxH4gbJMUU/wEzWwRYBPgiaVkiNUh9J2sBvyYpSCSSxlrAV5IqkhakpYgWmubxBbB2NDU3j+CNPxifvnsF2BR4PF7XaqQsgcOTFCKSla8AEV9uIgVCGDvXpo2NF1GhaR4fAwvgBQ+LCjPbx8x+MbO/zOwJM+uZoDhrAYsDB0n6L7A3sCHR0TKdjfEfzc+TFiRSHUkzgJ+ICk2kcFgC6EUbs+hGhaZ5vBP+bpGoFI3EzNYDbgcOxiNnZgB3JyhSBzx6J1VvpBz3T+qQmESFxxbAcEl/1btlJAk+BjaKVsVIgbBx+PtJolK0MFGhaR7f4WnoN09akEayNTBQ0nuSJuG+KzskKM9w3PpwnZltgStbf+BvvW0eM+uID1Dv1LdtJDHewbOyFp21NtIq2QJ/UW1TFt2o0DSDED77LtA/aVkayWRgpbS3yZXDukQIzr/bAb2BKwEDdm1Lzmz1sC7QBXg7aUEitZJSNovt5SbSOtkceF9SedKCtCRRoWk+bwDLmNkKSQvSCAbivj8vmNmNwDPA6UkJY2ZLAhcD3YD/AsdJmlLPPl3N7EozG2xmN2b6AJlZRzO73MzeM7NnzayY8wXtgFuwhiYtSKRWvsNfCqJCE0kUM5sfz1nV5iy6UaFpPi+Ev7skKkUjkDQL2BJ4GvgT2FnSM7k+jjnHmNnzZvaIma2eZZuFgWHAJFyxOhYYUF+/YdvlcN+f7sCrZpbuc3MrsB5wDvA68IaZ9W3+WSXCrsAHkmKV7QIllEAYCmwb/WgiCbM1buUekrAcLY7FpKPNx8y+AcZI2jZpWQoJMzsLOAT4F7A0cC6wsaSf07Y5Dthc0sFheSnc+XX+OvpdBleClgz5gAwPnT1S0odmVgKUAn0kTQ37/BdX4FfGrR23Snowx6ecc8ysD650ni/piqTlidSOmR0J3AOsJenLpOWJtE3M7H5gT2ChtjblFBPr5YbBwD/NrGdbjUIxs/bASXjo6k/A9cBxwB6SvgrbLAUcBFyWtms7oCxtuSysq/Nw4e+yZlYJ/IwrKQua2SphuRyfwpoatl0V6Avsj0dP3WtmMyQ93dhzbWF2Dn8HJypFpCG8GP7uCkSFJtLihJe5XYCX2poyA3HKKVf8D1cO90xYjkQIFpL/4gP5O7hS8yKuZGSa3zNNgs8BO5nZP81sB+AJ/C23LsqAnsA3eLjs78DCwEPA87i15j5gsJkdbmY34QrN6ZLeAd4CrgP+3thzTYAD8Gq5XyUt543lUQAAHtNJREFUSKRuJI0BPsWfg0gkCfoBC1HlCtGmiApNbvgQ/9E5OGlBEmIx3HF1N0n34j/Ci+BKzSNmtq+ZnQ78DXg0fUdJo4Gt8ER6ZwIvAxVm9rmZvRpy5szDzBbCf9wnAp8BXYHO+L28rKTlcb+aNYCbQ9/l+Hxyl1BiYRBwDbCjmT0ewqILDjNbFNgGeCQWpCwansfz0fRJWpBIm2RPoAIfR9scUaHJAeHHZiCwTfgRamt0xBPjzQEI4dYzgCdxpeJQ3GqzlaQalV8lfSfpgOCDtAxuTTkGV35eCj4zKY4FpgGnAEcAl+JWoGkpfxncUrOmpPsl/V3SGfg011V4aYVl8aJtm+PTUmfm5jLknAPwZ3Rg0oJEGszj+P14QNKCRNoWYbrpIOC1kF+szRGdgnNE8N34FjhN0k0Ji9OihAfpS2A+fPrnT1yBWVfSzEb2VQosIWlyWL4H+EzS7WH5Otya0xMPPR8NbIA7AT8AjARmAX+XtHFG3+vi04MfAwMkfW1m++ElF/Zu/JnnFzP7GGgnad2kZYk0HDP7FKiU1C9pWSJtBzPbDJ/yP1TSw0nLkwTRKThHSPrOzD4CjjWzmwt5iiAoIMfg862/4pWtZzSjy63wedvv8Boi6wMnZlNmzGxI+rKkLTM2mQ3MT1Wiv94Ey0/gReAfQA9ceVo17NMVn/JT+PeGmceW9JmZvQpMDcqMAdvi04UFRZhqWx+3REWKi4F41usVJf2QtDCRNsPB+Mvcc0kLkhRxyim33I6HBW+ZsBz1cSs+DfQhLu9rzfQjORIfxJfE/Wl+wv1lmsKVeMK/E8zsdtwXZl4kkqQ38Rw0c3ArzSu4EjMXzza8B24pW7iW/i8AdjGz94CPcOvOZbVsmyTH49Ni/01akEijeQy/J4vB6bxgMLMh6S1peYoJM+uMR3A+J2l60vIkRVRocssTuGXhhKQFqY2QUffvwE6S7sK1+g40r8BmN+Co0BbCLR41pknMrBP+A/02cCNu2amGpOuAi/AK3FPwvDVTMza7C5iOJ847FvdZmIJbhz4ExuJWmhpIGodbPi4Czg7915mVuKUJmT7/hjsDT01YnEgjkfQHbkk8slAdziOtjv1wa3Z9EaKtmjjllEMkzTKz+4DTzGwJSb8nLVMWOuJRPzPBHZrNbCrQqRl9fg1sj2fuXQq3evQws86SZpvZIrgFZyvcA/95YF9csbgwszNJT+DKYVYkfWpmV4XjzsCjnMbj1pdr8bpHw+rYfyaePbhQOQI/h9uTFiTSZG7HQ2f3pI57OVJFlunnSMM5AfgeeDNpQZIkWmhyz624uTmx2kj1MBG3YtxtZhua2dnA8niRzabyPjAKDzHeEVcsZlHl+/IQbjX5HtgI2AQ4GVf8emZ21hAk3YJbZCbhlqF38BIIPYH7gSkhB83lZrZ/LtPRm1l3M1vCzOpLANiUvjsB/wSGSBqe6/4jLcYruKWyYK21kdZBCHbYCLijkH03W4Ko0OQYSb8CDwPHhJwpBUW44ffDlY3bcOfZHYHVgoLTIKudmc1nZseZ2bnAODy6aPHw70uAU9Merv54CPdoSZ8CTwGr4ZFJ3UN/vc3sLjMbZmb3NeTahazM81M15fQIcG/4+FHc0jEHOA+4oSHnVR8hn86fuFL4jZktn4t+0/g77od0eY77jbQgIXXBnUB/M1szaXkirZqT8BfIgi/lkm9i2HYeMLOVccfUKyRdkLQ8dREUh9eBSnw6ajLuXzMjY7u++IPTE3gV90H5HfgRdzA+EffF6QO8J+mDtH1/w7PzHoQrPpV4RNTSeKRVCW4h+hTP47EX7li9oaT0sgjZ5P8Mn+q6JPS1N14z6gRgVUlzzKwXbkFaUdL4Rl2g6sfaHFdWN5U02sxOxUO+a0RUNbH/9sAI/DvYsK2/bRU7ZtYbjyJ8XlJTneQjkVoxsyXxUi93Sjo5aXmSJio0ecLMnsSz5y5byFWSQ56X6fg0R6qEwa+Szk/bZlE8d8uT+AB9Ufi7XvDB2Ry4P2Tpzez/ODy5Xkc8EqkdrsB8Bewo6U8zWw3P3rt86M/wsgaH4T45vYG3JX2X1m873CL0eehrI9w3aCTwEq50bBq2NcKUmKSfmnGtTgFWkHRSWO6E+/B0zIXyYWaH4dNle0l6trn9RZLHzK4GzgBWas69F4lkw8xuxl/elpP0W9LyJE2ccsof/8ITzRW0hQZYAX+DlKRKPDpjhYxt/oEXO/unpJtxK8rSaT/iP+BTP9Uws11wa0kFrqB8F/r/Gs8IPMbMtsYjnhYD9gm7tsMdfW/B87D0A4aG/gjTPN8A74XjvoHnpemO+/OMB5YMU2JL4o7H03ClBnOOMbO3zOwlM9umgdfqF2AzM+sSlrcFRuVImemCZz3+mDacR6IVciOuyJ+VtCCR1oWZLQwcDTwUlRknKjR5QtK3eIHEE8xsDTO7MjjgFhpfAoeaWbsQYnoQNSsFd8adb1O8DvQ0s83CQ3U9bhXJZDv8Ggj4BDgEnx6ahkfxbIX7ugzEfW8eM7PP8R/00tC2kHQUnmPh36Hfh3ETa1/canQ2HuZ8ED5d9T+8nMEVeE6cg4Fd06rPHg+cClyNOyw/ambVsgrXwvO4RehrM3sFt6Yc3oD9smJm7c3seTPbB3eSXhw4K041tR4kjcX9ug4zs6UTFifSujgdH5uvTlqQQiFOOeURM1sMf6uvxG+8OyUdn6xU1TGzHvh0zwp4GP/7wAGS5qRtsxauxJyATzVdi/t5rAn0wguhHZeZ0MnMLsKT7S0HbIwrH1vjysxw3Afnw9DH33BFZw3conML0E3SaaGvXrhTcTczKwN6hjD5LkHmRfAoqnNCP0NxU/8ovIbT65IuDH19BJwpaWhYPgsvt1DvHHSYvuoHLIiXZBhb3z519LUkHtq7Oj5dNiyGrrY+zGxx3NfsKUmHJi1PpPgxsyXwe+oJSTGBYyBaaPKIpD/xbLSdgeMLTZkBkDQNVzK2wCOe9kpXZsI2X+CRUScB/8GVhf0kLSdpAUkHp5QZM+tmZgPNbCY+XbQrMBWvuXQIrnh8BhyIW24M99/ZA49EGoZPS3UEDgjWrY7AALxiNriSuF3GqRwnacvgjLwv8ICkB4PSchjVs7aW40pViq5hXUOulyR9JOnF5igzoa/fgHVwh+j2uK9RpJUhryh/M3Cwma0dwv6bbNmLtE3MbCUz2yEsXoKPnTXyeLVlooUmz4Q8K8PxsLq164vaKXbM7H5c2eiK+8J0wE3uI4EXJX2ftu2m+PRQN3za6BzcCrQrPu01FbgJ9495EzhE0oS0/YbjOXSGAEempmrM7BxgqZQCaWbrA49KWiEs748rT5fgDsenA/3DNGGLYmYb4RammyWd2tLHj7QMwcL4Mx7yvyCwKF4R/qsk5YoUD2Z2N55zayj+AnqDpDOSlaqwiApNCxCcWQcD50hq1fOdZvYXroh8hlun/g5MkrRZLdtvjqfrnh9XMqbh1ph+IacPZtYu5PVI328RvLzCROCTdL+TEGL+MV59+xdcUbpG0n/C54viysy6uNn2A9yK9jWudLXIQxHCtD/Bf+BWyZyyi7QuzOxR3DL5PV4N/qOERYoUESGq8hTcN7AE6CtpTLJSFRZRoWkhzOwZPIHdWpJ+TFqeXGBern493K9mED6NMw3PJ3MtcByeQG+ypFXr6Kc9nvxuO9z5+CJJmY7Jte3bH89ZMx6fZpoV1i8NnIZbd56X9ExYvxQ+rfUKbjU7Co9CEW5ReljSsQ29Bs3BzM4ErgH2lfR0fdtHihsz64bnGSoDVleWavSRSF2Y2YF4IMWtMe9MTaJC00IEq8HXeOjyFmkRN0VJ+DE+DXdqXQ8Po34Cj2qaD89nswxe4+ld4GhJI3J07Ha4InA8XoPqXTyXzgLAVpJm17HvLcA0Seeb2Rr4tNXPeM6g/fG3n7znDDGz1XHF70Vg7xjZ1DYws63w6dPLVeBJNyOFRXBfGAH8gSferKhnlzZHdApuIeQVeE/Ao33OTFicZhFyx1yNWzj2w6tfbwisiittv+PWqFQF7z+Ad9Ic2prLWXik0exwnJ64T80sPGy7LubHp5nAo4sqgLGSfgnTgWV4ram8EZycH8Kn5o6JykzbQdJbeNqBs0JG8UikoVyKB1UcF5WZ7ESFpmV5DA9dvtjM1klamKYQrCMDcSvHcnjF7ItxZ8df8TDtp3Efltl4qOqBeFj2v2vpc1kzG2RmX5vZQ2a2QD1i7Itn6O2JKwXX4tNVI/H8OKua2cVmdpGZLZOx70vA2Wa2KjAGd1qeaGa9zEsZtMd9HPLJv4C1cWVmQp6PFSk8zsBzLN1nDaydFmnbBF/Dk4DbJX2StDyFSlRoWpDwJn48MAF40ppYaTphFsbvm9FmdgZufRmJhx+/jVtl+oTlEXioNnhCukUyOzOz7nim33fxBHhTgUFmlvXeDFae1XBrzPfhmLvg01x74Nd2KD4VNT/wgZmtlNbFQOBuvB7VY/gU4A54Yr+L8Xw7eXPWNLMd8ezJ90mKGYHbIJLG0UqstZH8E8bIB6kKcIjUQvShSYAQdjwUzzxbVP4TZtYBGAsci+ePWR9XcI6S9EDadpviPjXb49l6b8DLGzyLKzlzwroS3Al4i7BfCW7t6Ycn79sXd+x9VdL3ZvYy8Bo+7fQKHuLdCy+/cBJeJPOlsE0FXjhzaUlH13I+a+MKziK4InOQpLnNuUa1ERLpfY7n5Nk4OoW2XUKCxsfwKdINJA1PVqJIoWJmd+HBC5tLGpa0PIVMtNAkQLgpzwL2xHOgFA3hx/5Q4E5cYZgKXJChzHTFswO/hUcUzQCWDcsX4FNPj+MD+nJA7zCVBW5p6YJHHA0DDsAtMu8Gh8qOuFVlfXxa62U8W+bKuALUD3fs/QgPid4LV4hqYGbL4paa+4EjcMvSpU2/OrUT/GaexKe49o3KTNsmvMScgEf1PZRWHywSmYeZ7YbXa7omKjP1Ey00CRHe0J7Ef3B3lZStFlLBEvLArAr8nh4RFEJTh+JTP2PwyKE38amek4ABkl4L2/4TWAlPjjcDn+45CK+e/T1eQfsYvLr3psASeI6a0/HaR12B2/HimVPxiKFpeNKyOcD5uH/N4ODHk3kOZwDLSDoxLC8NfCipxtRYcwjf9f1BzhiiHZlHmEJ9CU85cETS8kQKh+D/9xk+1bRxZgb3SE2ihSYhwhvaYXhG3CfMbM1kJWocksZJeitLePOReP2ko/Hik1/hYd1X4mHcndK27YSXHNgF96FZFXcofhuPNPoenzrqjifJ6xW2vQZP+X0KXlLitfDvS/AIq4F4bplrcEtQCfh0lpmdamaDzewB3Km4c5o8XXCrU645F1dmBkRlJpKOpFeAy4DDzSwqNBEAzKwz8FRY3DcqMw0jWmgSJhSu+xD/Id2w2DM/mtllwEK4ZaYSP6+F8PIEW+L5Yk7DlYlzgW1DrShCXpjX8Kmm5YFVcIfjfvgUVx9gczzs+iHgakmVYd8n8eR+/XErzTB8GmkSXtTyPDO7Onx+FR6yfWIQ+17cB+ds/E352hxejwPwqbWH8eyw8YGLVCNMt74MbAZsIunzhEWKJIyZ3Yn7Ke4haVDS8hQLUaEpAEII97v4D/VWkqYkLFKTCTlqXgbew/1gNgBShSrvBv7CE8qNBW6R9Fnavq8BT0q6K0zTfAOsjFtbhgNL4VadQ/Cpp6clXRX23RP3zTkL96Hpi2cP/h3YQdJ0M5uGW35GS5pqZg/h/jh9qaoa/nCulA4z2wZPPPgxrrjFt6xIVsxsIdxhPPVi06zCp5HixcyOx6fSr5YUo5oaQVRoCgQz2x6PevoM2E7SjIRFahIhFH0yVaUEAJ4BVsQVlM640vBUln2/waOMvgzL9+HTcqPxcPEpuGKzM57I73ZJ66btfyBudWmHOyAPxus8zQ2+PVNw5aoE91/qCLwr6c7cXYF5smyCW5tGAltKmpTrY0RaF2a2Hj7d+g1+z0TH8TZGSOswGPer2jMm0GscUaEpIMxsL/yHdiiwS10p/AsVM7sSV0Juxi0en+AKxPO4VeUVYDNJP2TZ9y7cj+VIfJrqV3x6qDfuO7MoPtC/b2a7A2fVVvQyS983A9vizsc34D49C+BlDnL6Nmxm6+KO0OPxMhfxbTvSIMxsDzzr9TPA/qkp1UjrJ0y5D8NLsWxerC+1SRIVmgLDzA7B6yC9gWvopQmL1ChCReEPcafgHngl6Q544rpueI6ZcantJW2Ztm933NckVSKhAugmScHj/ztcSfoAOBU4UtILDZTrPdxnZx1gG9yHZ7KkPZt2prUeZ31caZuBD0q/5bL/SOvHzE7Dle6bgH9Gv6vWT8hR9S5uXd5Q0uiERSpKYpRTgSHpYeBwYGvglSLMJvwJsBs+JbQVbj69Dfdd6UOaMpOJpOl4NNDOeJ6ZyXiuHnDfmRm4780iuOd/vcqMmXUxsxPxSKkjJN0E7I6/BX3T6LOr+1ib45aZabgvVFRmIk3hJtzCeSpeJiPSijGzRfEX2B64ZT4qM00kWmgKFDPbFw8//grYsVhq/oTaNPcAe+MWlveB/RpiaQrWjefxqaalcD+Y/qGfnsD/SXqwEbJ0Cn1MwrMVn4yXahgfNtlG0rQs+/XGI+sb7Jwd8on8D/gNdwCOg1KkyYSM2XfjkXpnSLo+YZEieSCMNUPwxKPbSXo/WYmKm6jQFDBmtjOel+UPXHPPd9HEnBEe1HbAxIaazM3sWzxXyxPBMvU+HrX0LTC+sXPKZrYf7iS8HZ6PZhPcN+c33IIyKmP7zviU1/aA4WHgh9VXCsHMjsTDyr8Btpc0vq7tI5GGEMK5H8GzZZ8s6daERcorZjYkfTl9Oro1EsbIl4E1gZ0lvZmwSEVPnHIqYCS9iE899QDeN7MtExWocfyF+8wsnL7SzDYys3+b2fVmtnLaesMjoZ4DkPQXbl1ZVtLIJjrI9cCtPScEWZbDrT2P4kn3MrkQV8IWCnL3xhWqrIREfVfhFqk3gf5RmYnkihDhcihe/+wWMzs7WYkiuSJkWn8LWAvYJyozuSEqNAVOMEFuhPuOvGpmRyUsUr2Y2cK44+47wAgzuzP8+G+LWz1GA6XA22a2KszLnPw1XnE7lZdjh7CuqbyF++PshEeO3YjXbnoCT9qXST/gLklzJM3CE+6tX8s5dg/9nA38By9f8VczZI1EahCsg/vj089XmdllQflvdUjaMr0lLU++MLMl8PD85XHLe4MCGyL1ExWaIkDSSHy6ZAhwt5ndFwpAFiq34grEEsCSwNq4s++ZuB/MNZIuwh0fT0rb7xDgX2b2HZ6596HmvLmE67YPXtzyQtwP5xDchP9tll1+xR2ZUxajLfHpqWqY2Wp48cu9gDPw8gt5qdAdiYR76++4T835uLWmXd17RQqRYJV+B09Bsb2k1xMWqVXRPmkBIg0jZLbdCc/lcgGwnpntk6WWUiGwFu4LI2C6mT2BKzWdcQfdFJPwtxQAJH1tZqlilRNzkb9F0tsh5PtRvMDl+3jm4R2ybH4hMMTMNsKnnnrgSs08zOxg4C484mpbSW81V8ZIpD4kVZjZsXgR1jOBpc3soBAZGCkCQhb1p4Ey3Ifvs3p2iTSS6BRchATF5mE8v8upwP2FlKvCzF4E3pB0fYh6eh7PfFmO+7Mch/u03AMcrUZUGg+Ou1fhjruTgHMkDWvAfgasgCfu+05SWS3bzQdsgWc6HhqmnlIZkG/GLU3vAAdK+rOhckciuSKkxr8Fn47dNUbUFT6h8Oh/8IK7u2YGJERyQ1RoihQzWwp4EA9rHgQcI6nWHC8tiZktB7yOJ9FbEA+Z3gu3jJyMm8/nAjdKeqKRfd8b+rwQ94O5Fdg0W+bhXBHerB4AFsMzDF8sqTxfx4tE6iOkCXgStxTu1xClPtLymFkH/AXsn7j/3v7R1y5/RIWmiAm5Kk7Bf2Sn49aagSGz7hr4NM8jSaRPD06z6+G1kz7JlQyhwOSykiaG5duBH0LCvOb23Rs4Brg2mPh7Apfjod8/4NWyP2zucSKRXGBmq+O5j5bGo/FuKiRLbVvHzPri6SI2xV+8/hl97fJLdAouYiRVSroRWBcvgvgw8HpwPLsZzzia80zD5hxpZvea2aVm1iuLbNMlDZH0UY4VqplUDwVfJKzLBdvjyuFhZnYQMAKfIvs3sE5UZiKFhKSv8Si85/FSCU8VYWbxVkmw6n6Gv1QeJOnkqMzkn2ihaSWEqIej8R/kbrjDd14yjJrZ1Xg9pLvwEgfrAxurBaoDm9kJeGTRrcCqwObABrkw4wY/m89Cvx3xMg7HSfq0uX1HIvki3Lf/BK7GUyL8Q9LQZKVqmwQfv0uB0/EXon0kfZesVG2HqNC0MkLCpteB1YGJ+MN1Z21OsE3ovwM+vdVX0qQwmL4B3CrpmVwcowEy7Ipn/50Ujjs5B30uAVyCO/2C56w5KyQ3i0QKHjPbGC9suxx+/54vaXayUrUdzGwd4CE8TcR/8BfKWDG7BYlTTq0MSeMkrQFsBnyJTz19Z2Z/D8pIc2mHlwWYEY4nPCtwx+Z2bGbrmdlnZjbVzN4Mjs81kDRY0imSLmmuMmNmi5jZtcCPwN+A64ElJZ0elZlIMRGScK4N3IFbbD4zs01Tn5vZQmZ2ePC9izQRM+trZoemLXc2s3/hual642UMjovKTMsTb+xWSoh62BbPkjsdj4j6wcyOD2bRpvY7G5+zf8jMNjSzU/Bpp2al7jazBYEXgOvwN8zXgRfylUDMzJYys1uBUfjg/wSwoqQzYxhspFiRVCrpRDzPUjfgXTO7Jzxfl+LTxMslKWMr4EzgfjNb3cy2w18cB+BjyOqNSUMRyS1xyqkNEN7IdgHOo6qMwp3A3U3JpRKyFF+BW4H+wKdmmlU4M4ShniVpm7BsuD/AxpJqZOtt4jEMz7h8Ap5OXriid42kH3NxjEikUAg5lS7CFfYZeIDALZJOSVSwIsfMFsBTUczBgxJ+BE6U9FqigkWiQtOWCD/o/fH6QzvihRr/h5uohyQR3p0m2wZ4vZrVJM0J9aB+BpaQNLWZffcADsIVmTWBaXidphuiNSbS2gnh3S8DffGSH2cBL8YQ78YTIjrPBU7DE5vegr+IRV+lAiAqNG2UkPzuOOAIfN73d7w8wEDgy5Ye7IKyNRBYBq9ZtRfwqKQBTeyvIz7ddjCwG1524QvgNjxXT2nzpY5EioPwfJ2A56paHq+1do6kD5KUq1gwsy749Tsf6AU8ggdbxISGBURUaNo44UHdE//h3wEP9/4Wzz48GPigpZxjw9TYAcCywGeNnYsOb0/bA7uGNj8e6fU4nqPnw/hWGmnLhMCAo3Gfj4XwCMUrgLfis1GTkNfneNwiszDwCnC2pC8SFSySlajQROYRHAf3C21zXLmZjD/EQ/AaRiMKZeALytgGuKzbhL/t8HDuF3GL0+sxoVUkUh0z6wYci+d0WhT4EM9j83ws6wFmthhukTkJ9z16BbhC0tuJChapk6jQRLIS3kxS1o4dcOc3gAnAe8DnwHB8GufXxig5ZnYTgKRTG7FPJzzh3Vp4aOr6QD88XFzAV3iU1GDcEhNDriOReggRj4fhfnVL4474/wHuyUW1+2IiTMttiSsye+IvR88AV8bkmsVBVGgi9RIe9OXxKtSb45FCy+P5aMCdbH8GfsFLMIwCxuHKz0TcYjITjwooA94K+22DKySdgB540cmFwt/F8KmnZXG/mmVwixHALFyReie0YblIrheJtFXMrD3+8nICnrSyHHgWn6p9KVeJOQsRM1sSDxr4B17wdjJwH/AfST8lKVukcUSFJtIkQkjoGrjFZHWqKx+d6tldVClDdTEZV5BG4mGSX4T2U7TARCL5wcxWxAMGDsVfLqYAT+FTuO+2hinckFF9T9x3cPOw+n3cOvWEpFkJiRZpBlGhieSU4Ni7CFWWllTrQpU1ZhegEp8imhPaDKosOhOAcbmozxSJRJpGcCDeFv/R3xOYD5iKh4APBl6WNCkp+RpDsDKvRVXAwAb4S9UIPGJpoKSRyUkYyQVRoYlEIpFInQSL7I74y8gueMSPcIvp24TpX0njmnmcm6Bx/nW19NMOzzmVmibfnCqZP8YVsueBLwolyCHSfKJCE4lEIpEGE6yw6+N5njYHNga6ho9/oypY4Avga2CUpDkN7HsIgKQtG7i9AQsAK+AKzNq4JWZN3KIE7tP3Dl6e5aXmKl2RwiUqNJFIJBJpMmFqal1cuVkXVyhWpqpWoPASKb+ENp6qqeWJ+HRzKmDg9rD9sfj0dEc8Keb8VE1fL4RnPV4G99vrnibOX1QpUx/gVqPfc3/WkUIkKjSRSCQSySkhR9TqeNRQSvFYBg8NXwhXUprKFGAMHiyQiqwciReJbFQKiUjrIio0kUgk8v/t3DEKhEAQRNFaE0HvH3lFMTczmAUjMVu24L14DvDppoef+a6JltwTlzVjGjNnXFd9kmy5DwbOjIjZkxw+/uOJoAEA6k3vTwAA/pugAQDqCRoAoJ6gAQDqCRoAoJ6gAQDqCRoAoJ6gAQDqCRoAoN4FSP0RGy+9s7sAAAAASUVORK5CYII=\n",
|
|
422
|
+
"text/plain": [
|
|
423
|
+
"<Figure size 576x720 with 7 Axes>"
|
|
424
|
+
]
|
|
425
|
+
},
|
|
426
|
+
"metadata": {
|
|
427
|
+
"needs_background": "light"
|
|
428
|
+
},
|
|
429
|
+
"output_type": "display_data"
|
|
430
|
+
}
|
|
431
|
+
],
|
|
432
|
+
"source": [
|
|
433
|
+
"# if data pass the reversals test, then do this:\n",
|
|
434
|
+
"# try 'quick' version first: \n",
|
|
435
|
+
"# Code first tests if data are compatible with GGP model\n",
|
|
436
|
+
"# if they are, then you don't try unflattening them\n",
|
|
437
|
+
"# if they aren't then you try... \n",
|
|
438
|
+
"quick=True\n",
|
|
439
|
+
"if quick: # not exactly quick but quicker than not quick... \n",
|
|
440
|
+
" flat_df=svei.find_flat(di_block,plot=True,quick=quick)\n",
|
|
441
|
+
" # then the full way (much slower, but way better)\n"
|
|
442
|
+
]
|
|
443
|
+
},
|
|
444
|
+
{
|
|
445
|
+
"cell_type": "code",
|
|
446
|
+
"execution_count": 13,
|
|
447
|
+
"id": "1f3cf3fb",
|
|
448
|
+
"metadata": {},
|
|
449
|
+
"outputs": [
|
|
450
|
+
{
|
|
451
|
+
"name": "stdout",
|
|
452
|
+
"output_type": "stream",
|
|
453
|
+
"text": [
|
|
454
|
+
"using model: THG24\n"
|
|
455
|
+
]
|
|
456
|
+
},
|
|
457
|
+
{
|
|
458
|
+
"data": {
|
|
459
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEUCAYAAAAspncYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACyNUlEQVR4nOydd5gT1deA37NLX4o0EUQEFFFAAUHsiiKKBcH2gR0s+LNi77rEXrA3xK7YUVTACoqCjaIIWOgCAlKk9y3n++NM2GzYkt1NMpPd++6TJ8nM5N4zd+cmc+5poqo4HA6Hw+FwOBwOh6PkpPktgMPhcDgcDofD4XCkKk6hcjgcDofD4XA4HI5S4hQqh8PhcDgcDofD4SglTqFyOBwOh8PhcDgcjlLiFCqHw+FwOBwOh8PhKCVOoXI4HA6Hw+FwOByOUuIUKofD4XA4HA6Hw+EoJU6hcjgcviPCqyKMKux9MvuOU5vjRFDvcVDE9rYi/CDCDBFGilAjQobw8afHUxaHw+FwOByJxSlUDoejxCRB4RkInBPPBj0l5+lk9OXxCtAYmOL1Xw14D7hclXbALKBfhAyNEyCDw+FwOByOBFPJbwEcDocjGlXWloO+Nqnyb8T73sAYVX713v8FNImQYa1IgiRxOBwOh8ORMJyFyuFwlBnP+vOsCPeJsFKE5SIMFsn7jhFBRLhOhNkibBXhHxHuL6S9aBfAWNrvIcJ4EVaLsEqEL0TYJ9wecCRweYRrXfNC+qoqwuMiLBNhiwg/iXBYSWQphH2A6RHv9wX+KH50Kw4ispOI1It8+C2Tw+FwOBzF4RQqh8MRL84GsoFDgCuAq4E+EfvvA+4A7gfaAmcAi+LYfgbwONAF6AqsBUaKUAVzqfuRPDe8xkX0/ZDX7gVAR0wJ+lwkn0tecbIUxBKgNYAI+wHHAJ8U85lyj4jsLiKficgW4D9ghfdY6T07HA6HwxFonMufw+GIF3+ocqf3epYIFwPdgLdFqAlcA1ytysveMXMwJafM7QOo8kHkwSL0B9YBXVSZIMI2dnTDI+ozGcClwEWqjPa2/Q84GrgcuD0WWQrhDeBdEaZ7cv2fKltjPPfyzCvATpgCuwRQX6VxOBwOh6OEOIXK4XDEi2lR75cAO3uv2wBVgbEJah8R9gDuBg4EGmIW+DSgWQn62AOoDHwf3qBKjgg/YucQkywFocomoGcJZKkodAEOUtUZfgvicDgcDkdpcAqVw+GIF1lR75U8t+J4pFsoqn2AkcBi4BLvORuLUapSgj7CchZkJYncVpwsjtiZjynbDofD4XCkJO4GwOFwJIM/gK2YW1zcEaE+lvThPlXGqPInUIv8i0bbgPRimprjHReZhCIdOBiXQCJRDATuF5E9/RbE4XA4HI7S4CxUDkeKIiLjgBmqekUh+ycCD6jqh0kVrABUWS/CE8D9ImwFvgPqA51UeS4OXazGkhhcLMIiYFfgYcxKFeZvoIuX3W8DsEqV3Cg5N4rwHPCACCsx68k1QCPg2TjI6diRjzEL1UwR2Ur+/xmqWtsXqRwOh8PhiBGnUDkc5Ze7gUdF5CNVzS326MRzC6b43AE0BZYBr8ejYVVyRegDPAnMwCxN10G+RBWDgdcwS1N1oAWmZEVzk/ccTpbwK9BDlaXxkNWxAwUuCDgcDofDkSqIqkuo5HCkIjFYqNKxWKILVXV0MmWr6IgwDpihWjJlQQQFzlBleEIEczgcDofDEXdcDJXDkdpUEpEnRGS193hYRNIAVDUH+BQ4018RKywDRNggwgHFHSjCEBE2JEOoICIiVUXkAhEZ7F3D/UTEJapwOBwOR0rgLFQOR4riWag6Aa8CzwD7AS8AIVV91Dvmf8BtqrqbT2JWSETYFXMrBFhUXL0pEXYGwrFCS1XZmEj5goSItAE+x85/urd5X6wwcw9V/dMv2RwOh8PhiAWnUDkcKYqnUDUBWqs3kUXkduB/qtrUe38y8BFQRVWzC2nK4fANEfkK2AScq6rrvG21gWFAVVU9zk/5HA6Hw+EoDufy53CkNj9p/lWRH4FdvRtSgM1YbaVqSZfM4YiNQ4Fbw8oUgPf6NiLS1zscDofDEVScQuVwlG/qAVtUtcLG5zgCzxYsm2I0dbx9DofD4XAEGqdQORwBRET2EZGvRWStiMwRkVOi9ncDugDniMg3IrK7t+sgYEnEan874JcY+usrIn+KyEYRmSsih0f2JSJ/icimqL5Kc17DRGSpiKwTkVkiclH0ecWxr3oiMsI7pwUiclZp2yqg7ULPI57nENFmgf+fePdV1HWXiPPyGAm8ICKHiki69zgMeB74JE59JBwR2VlEVohIU79liScioiJyemHvHQ6/EZFRIvJqxPuJInKqjyI5KiBOoXI4AoaIVMKKnY7CLEwDgGEispe3vwHwIVZ0diMWzP+xd5NzA/BYRHOHYwH/RfXXHXgQ6A/UAo4A5kX1dYcny2Tg3TKc3v1Ac69Y68nAPSLSKUF9PQNsw4ryng08JyJty9BeJAWeRwLOodD/T7z7Kuq6S8R5RTAQmA2MxyxSW4BvgVnA1XHqI+Go6nKsrlqosGO8a0Q9hbGg/e+JyPfe64tFZLyIrBKRNZ4SW2IXSC9johbwuDrGJhpjSq/DkSrcDTwoXsbbwhCRvwuZGw+UpLOodjaJyAwRuaRMZ+BIOVxSCocjYIhIO+AnoFZEsokvgZ9V9Q4RGQD0w5SFv7yPXQKsA14EblTVHBHZFVO6WqrqP0X09wPwkqq+VMC+AUA/VT3Ee58BrAQ6qupf0ceX8DxbA+OAgar6Xjz78j67GminqrO8bW8Ai1X15rLIXUBf288Dc12L63gV9v+J9/+mqOsOWBTv8yqg/1bA3ljM3x+qOice7SYTbwwnA01UdVUhx/wC/Kaq/aO218fqxl2mqi+LyJtYTOT3WNKOa4BzgQ6qOrsEMvXDFhf2iNq1TlU3xdpORHterTR1tdIcgUBERgErVbWf9z6mGowi8jdW7P25qF0bSuImH9VOTez3+Tagr6rGa+HJEXCchcrhCB5SyLZ23uu22A1ZV1X9n6r+D/gduEBVr/PqT4Gt7r9ajDKVDnQGGnouXv+IyNMiEk753Rb4LXy8qm4E5nrbS3dyIs+KyCZMGVyK1cqKd197ATlhZcrjt1K2VSCFnEdcx6uY/0+8/zdFXXdxvw6iUdXZqjpSVT8JqjIlxnUiMltEtnr/j/vD+1V1BrAEKMrd6CXgDBGpGbX9HCALz/Knqmer6tOq+quqzgQuBdYDPUohuqrqv1GPTSLSw7OCrfYsYV+IyD5R5+xc/ByBQURqiMirIrJBRJaJyK3Rx5SwBuP6AuZGaWKOw+3MUdXbMat7b0/mB0Rkpohs9qxZD4nI9kRRIrKbiHzszcFNYq7VfSP23ynmtr5VRP4VkddLIZ8jwTiFyuEIHn8By4EbRKSyiBwLHAnU8PbXxGr0RLIWcweLZDnmolUUjYDKwOmYe2AHoCNwewn7ihlVvcz7/OGYG1m4RlM8+4q73NEUch7x7reo/0+8+yrquotrXyLypGflCr8u9FHKc0kU92Fz6n5MmTwDs95FMhEbt8J4E0gH+kRtvwB4x1NWC6IKlq1zdXhDhDtf81hPIIoM4HEsHrMr9j8dKSJVStmew5FoBgPdgdOAbtj34REFHFfcPIwJTwF6tRQf3YJ9d4O55l8A7ANcBvTFLFhhnsW+Z4/CvleuBtZ4/Z8GXO99rhVwEnZujoDhFCqHI8mIyLhC/LZVRCaoaha2snUi8C9wHfAeELY0bSCvCGyY2tjq9XZU9WHg3aL6wtKqAzylqktVdSXwKHBCSfqK5byiZMtR1QlAU2zlvUR9xUA82yqUAs4j3v0W9f+Ja1/FXHfxPq99ybvZ2LeYRyDwLErXADer6sveSvSPqvps1KFLgOaFtaOqa4APgAsj2j4AK8z9YhEi3IP9HyITdawFZmKWraLI8Fb0tz88WT7wHrNVdRoWp9cCU7AcjkDhzcELMbf2LzyLcH8gt4DDl2AlRCoV0+y90XNDRE6K2D8X80CIVcZKnpvtvsBYAFW9W1W/V9W/VfVTbGEm0nq2OzBBVX9T1fmq+rmqfh6xbynwpaouVNXJqvp0rPI4kkdxF5rD4Ygzqto1hmOmEbG6JhZH85r39nfg/Ih9GVh8xO+l6UtE/gEKC6aMa18FUIm82I6Y+4qBWUAlEWkVEW/SvpRtxUL4POJ5Dqjq6iL+P3Hty+uvsOtO49mXqh5V0OuA0waoineTVASbgerFHPMS8LWI7O3FoF0AzFDVnws6WEQGYnGSx0TV6xoBjIhB9k2YdTO63T2wAP4DgYbYImsa0CyGNh2OZLMHZqn9MbxBVTeIyPQCjo2swViUC9+j2HyMZLsCpardYpTtXhEZhH1HbAMexjKV4rnMXg3siVn7071HmCeAISLSA/t+GaGqU7x972PxufNF5AssydQnqroVR6BwFiqHI4CIyH4iUs3zF78ey7T1qrd7BNBORE7z/LDvBKaVITnAK8CVYmmf62Jf/KPi3ZfXfl8RqSmWGvs4bJXu63j35blNfQjcJSIZInIo0At4o6RtlfA84v2/gcL/P3Hvq4jrLhHnFe7zThGpUcD26iJyZ1nbjyMFxZgVRD1gRTHHjAPmABeIxcOdyY43ddapKVP3ACeoamldfdSzqG1/eNtHYorUJZhS1RHIxm5aHY6gEeschNhrMP4XPTeKcLstikexRYvdgZqqeqOq5orIQcA7wBdAT/JctsMWetQSDrXAvuv3An7wlDNUdRHQmrzEU48AU8Iu044Aoaru4R7uEbAHtrq1GltZ+wzYM2r/MVjMy2bs5qx5GfqqjPlwr8FcvZ4EqsW7L+zG7Vuvn3XAdODiBJ5XPeAjzH99IXBWnP43RZ5HPM+huP9PAvoq9LqLd18R7eYAOxewvT6WWKTMfcRJzlpYXMT/ijluPHBvDO3d4v0/L8Di7+oXcMy13v/iiDLI3Q/LWlbQ+CpwVMS2/b1t/SK2KXB6Ye/dwz2S9cCsO9siv8uxOMDVWAKmyGPvBr4vpr2/gevjIFeh7WCu0wuitj2JLXIU1t5NWD3JgvY18ubgsX7/P9wj/8O5/DkcAURVb8BqShW2fwyWYjoefWVhAa+XJbIvVV1BMUHCcT6vVXhZluJJcecRz3Pw2iv0/5OAvgq97uLdVwRCwS6NHYECU4/7gaquF5EngPtFZCvwHaaUdFLV58AykAGdgB0yjxXAq9hN32DgI1X9L3KniNwA3Itl/5slIrt4uzar6lrvmFOwBBndVHVxCU9pNZb6/mIRWQTsiinU2SVsx+FICmrufS9hNaZWYHFSd5LffS5MsTUYPWpFzK0wkXNsLDBRVW8ppdizsFiuszFXxbBHw3a875XPvGNrY5k8//D29cNcyn/GFlf6YDGTMZdOcCQHp1A5HA6HI+mIyHpMkVKsUHGkUpWOxT4M8UO2IrgFU0TuwBKRLMOK+YbpBSxU1fHFNaSqS0XkU8wNqKBkFJdj1snoOjavYVYngDqYO1BlSoiaO1IfbLV8BuaCeB2WMMPhCCrXY1apEVhs4FPe++2I1WA8BFuMKI47vUckb0Z8dg92zOQZM6o6UkQexrJpVge+9PqLTGaThp3Hbliin7HYXATzTLgJW3ipjClap6rq/NLK5EgMrrCvw+FwOJKOiJyPWadexuLCItOybwP+VtUfC/hoYBGRicDjqvqW37I4HBUVT4Gpo6oD/JbFUXFwFiqHw+FwJB1VfQ1AROZjsQ4p7WomIjsDw4G3/ZbF4ajgLMcsOg5H0nAWKofD4XD4hoicAWxT1Y+jtvcCKqvqcH8kczgcDocjNlzadIfD4XD4ySAse140G719DofD4XAEGqdQORxlQESuEJHJIrJVRF4t5thrRORfEVkrIi+LSNUkielwBJmWwMwCts/x9jkcDofDEWh8U6hEZLiIXOtX/w5HnFiCFd18uaiDvOKvNwPdgObYjWIolg5EJGmBteWxr/J4TuWsr9VAqwK274VlvHI4HA6HI9D4aaEKAbeLSJ2iDhKRV0VkVGk7EZFxIvJ0aT8f1dYtIjJJRNaJyAoRGSki7Qo4rrGIvOYds0VE/hCRAuvWxNpmMhCRQSKiUY9/CzjuMhGZ753bFBE53A95g4CqfqiqHwH/FXPo+cBLqvq7qq7G6s/0i7GbQm9mRaRnSbYXt6+wvkrbXkD6KvH4BaWv0oxfsvuKAx8Dj4nIXhGytAYexQozOxwOh8MRaHxTqFR1OjCP2OoEBIWuWO2AQ4CjsQKIY0SkXvgAEdkJ+B5LB3wisA9wJZZ1plRtJpmZQOOIx76RO726JU8A92GFN38APhORZkmWM9VoC/wW8f43oJGI1C9ju4XdBBd1c1zUvtJ8xvWVuL5K00+y+yorN2Ip0/8QkUVekdnfgXUUUdza4XA4HI6gkLAsfyLSA7gNaIcVbpwEXK2qf0YccydwrKoeVkQ7rwINVPWkkvbjffb8qI+0UNW/S3la0X3XxG4EeqvqSG/bfcCRqnpovNqM8XO1vM8drarjRGQ3YBQwHhioqjkxtDEIOF1VC7WQicjPwDRVvThi22xgeBkqiac8InIP0FRV+xWyfy5wuap+7r2vjNXaKfB69FyswlaBTjVq1Ciw35ycHNLTdywSX9j24vZlZ2dTqdKO1RRK214Q+iqsn1L3pUpOdjbpqpCbC6r2ALZiKylVgBysnH0172PbsC+ocOBctndMVe9ZI96H92dHfD7LO6aK9z6yr+j9OUAuoFRCqU4O6Vh9yhxgOtAE2BnLBbEYWzupAWzGvFgbez1vwmrXrlFVTegCnIh0Bzp4p/ULMFYDlIa2QYMG2rx58wL3zVuxEYCWDTMK3J9IZs608LPWrVsnve+gUl7HZMqUKStVtaHfcvhFUXMwFhJxXfg59/2mvM6zoihqDiayDlUGVhl6GlYd+nZgpIi0UdVt3jETMbe/6qq6Od79AAMxP/y/gFu941cU1IiI9ANeoWQKVy3Myrc6Yltv4HMReRc4Crs7eRF4Jsabgx3ajFG29tiNyDQROQD4EHhQVZ8uQRsALUVkMXb/9zNwq6rO89qoAnRix/oOX2IWNkfhbABqR7wPvy4wRkRVhwJDATIyMnTjxo2Jlc5RPL/9BoMHw4gRkJW1ffN9wN7AqU2acHVODnNzchjZrRvstJM9atSA6tWhWjV7VK8OVatCpUoFP9LTd3yfng5paTE9VIRb73mYRUuO5oNPurNlSyYwjmrVvuWgA5Wdd55Mx467s+9+jWjQAOrVs0eNGnldiuQ/dREp7fdzzKjqV8BXie6ntDRv3pzJkycXuK/P81Z/+N1LDk6mSABkeddi5cqVk953UCmvYyIiC/yWwU+KmoOxkIjrws+57zfldZ4VRVFzMGEKlap+ECVEf8yFowswwdu8BKiMLZfOjXc/qjpBRLYBm1R1h1igKNZi7m5ZxRwXyRPAVODHiG0tgcuAx4AHsBXXp7x9scRyFdRmLLK1BxZhStzTQD9V/aKEbfyMxfX8hS1f3w78ICJtVfU/oAGQji1ZR7IMOKaok3LwO/Y/es973x5Y5o2rI8isWQM33AAvvpi37YAD4JhjyO7UiWE33UT3Hj049emnedwvGSP4ZYrywOMPYutLx3LSSXdx0UVw3HFQrZpgX8HBQkQOxBK27EyUK7qqXuWLUClCRbqZiRU3Jo6CcNdFfHHjmZ+EKVQisgcWeH8g0BD7kUwDImNtwque1RPcT7Go6ghgRAn6fRQ4DDgsyp0uDZgc4f72q4i0Ai6nGIWqsDZjlK0DUBd4B1NOx0TujKUNVf0sSp6fsDi387EA8e2HRotewLbAIyIfYdbDT1U1t5RtVMLmUTqQLiLVgGxVzY469HXgVRF5E1iKKauvllJ0R7KYPx969IBZs6BKFbj0Uhg4EFq0YNOmTeTk5DDjlFPYvDnhBpwiUVWuv/56mjQ5j9tvbw8onTrB00/DQQf5KlqxiMj1wENYmvQl5P8uiel7RUSuwBaD9gXeLsz11jv2GuAm7HfnA+BSVd1aGtmDwKuvvgpAv379fJUjSLgx8Yegz0N3XcQXN575SaRP/EhMwbkEU3Y6YiEBVSKOCSdeKNANL479xBUReQw4E4tXmhe1eynwR9S2PylGwSumzVhoD/wKHArsSRySfajqBsyyEk5pvBILwtgl6tCd2dFqlQpsBN4F/hGR+zzFt6Tcji0M3IyN+WbMjbWZiGwIJ+vwYqceAr4BFniPzDicgyNRLFwIhx5qytR++8Gvv8Ljj0OLFgD07duX8ePHk5aWRkaGv/7zM2fO5LXX3uHGG79iyxa48EL4/vvgK1MeA4GrVHUvVe2qqkdFPI6OsY2Ely8IKq+++ur2GxuH4cbENwI9D911EV/ceOYnIRYqL3PZPlgQ/jfetv0L6K8dsERVS3UzHmM/2zDrQVwQkSeAvkBXVf2rgEO+B6Ij9PbCbqBL22ZxMqVjY3mOqk70rCB3isibBVhKStJuNSw85BsAVd0mIlOA7sD7EYd2x1aYUgpVPVtEagNnA/2Bm0VkAma1ej+WuD5VHQQMKmR3zahjHyW/pc8RVDZuhF69YOlSOOIIGDkSaueFwOXm5tK6dWt+/vlnTjjhBB8FNbZu3ZstWxaQm5vGddfBww/vGAcVYGoDn5alAVX9EEBEOgNNizh0e/kC7/i7gTexm7uUZNy4cX6LEDjcmPhD0Oehuy7iixvP/CTK5W81Zs242EuBuyvwMGY5iuRw4PMY2qstIh2itq0BFsbQz99AFxFpjiUGWKWquZ5p+gpV3RtARE4B7ge6qerigoQQkWeAc7HEE6tFJGyp2eBZc8Bip34Qkdsw60dH4CrykmIQ2XeMbRbHXpjZfKr3/m4sDuoCvMQGMZ7fYMzitxCzOt2BJf14LeKwR4E3RGQipjz+D4uBGxKjrIFCVdcBzwHPiUhb4CLgeeApEXkHeDwyM6WjgnDjjTB1Kuy5pyWhqF073+60tDTOPvtsdt99d3/k81i6dCl9+vTln3/uZePGwzjrLHjooZRSpgDeBnpg5SMSTVus7lWY7eULXDyjI6mowsqV8Pff8N9/sHYtrFsHF12UchO4FLh56IgbqpCTA9nZli8qKwu2bbN10fAjK8v2h4+LfI7etuuucOyxJZcjIQqVp7D0AZ4EZmC+8dcRYcXwrB+nAMfF0OThmDtbJB+o6unF9YNlpHsNc8OrDrTAlKwG5Lck1fHeFxVld5n3PDZqewjPSqGqk0SkN5b86w5MObmD/DcLkX0X22YMGfraY9ni5nsyzBGRYZjr2WueX3Is59cUu7lpgLlh/gQcpKrbrWuq+q5nGbwdy608Azgh8phURESaAL2AkzCFfDiwG5Y18RZVjc5s6Civ/PwzPPecpbv74ANLgRfB+eefT8+ePTnllFMKTbmeLNavX8/Mmf+xfHk19twTXnjBkv2lGIuAkIgcimVrzZc4x7PsxotwWYow4de1KKA4d2T5gmbNgllq74UXXgDg4osvLubIikOJx2TbNvjzT9i0CbZsga1b7bF6tbn8Llxoz7m5BT/CJRRKsn/LFigo9rJvX6hVK46jEUhinofxnINursSXko7nli22hrBypa0fhNcQIp/XroVly2DRojzlKKwMFfU6nhx/fOkUqoTVoSq2Y5HLgV6qWgqxKxYiEgJOB9qXxYXPkR+vFlQvzJLXHVPaX8CCaTd4x/wfMFRVd/JBvp5Az6pVq168ZcuWZHdfceneHcaMMSvVgw+iqvTr149zzjmH7t2706dPH7KysnjvvfcKrW+VLP78E/bbT8nOFr75Brp2TUw/IrJJVRMSKCYi84vYrarasgRtFVcP7jfgXlV9z3tfH/NyaFDcynjnzp01iGnTjznGEqyOGTOmmCMrDjuMyebNNqdnz7ZEM3PmwPLlsGqVKU1r1xbeWKVK0KABtGwJdevmL1MgUnQZg6L2V64MzZpB8+bQsCHUqWOPJk0KXRURkSmq2jnOwxV3EjUPi5qDsZCIuVKR06ZHj+fatTBhAsyda9Ns8WJYssQey5ebpagoKle2KVC/voUqV6li2ypVsufwI/J9Ya8rV4aMDKhZ00qCVK2aV5EkXIkkskpJ5HNGhk3JgihqDvp5N5AFXOlj/6nECZiLoFOm4stSLEPhW8DNqjqtgGO+In+dsaThFXYemZGR4ZbTksX48XbjVbs23HQTYG5148eP56ijjgLg3Xff9VNCwOp/DB48mIkTLyU7eycuvDBxylSiUdUWSeyu3JUvcIrUjowZM8ZWG159Fd57D774wqxCYNafVq2gcWNo08Ys0HXr2h1co0Z251Wtmj1Xrw577WV3WY544ss8dHMlvowZM4bcXPj0U7j7bpg82SxGYErJbrvZ+sAhh9jUatDAHvXrW4nGOnXspzb8XK1akd0FHt8UKq9wqSMGVPUAv2Uop1yDJZ8o1PyjqqsxN1FHReCBB+z56qu3u/o1adKEOXPmkBu+IQsA27Zt49ZbbwWWUKXKUwwa5LdE/uLKFzgA8xsaOxaGDoXPvfDs+vVtPh9+uCWYqVu3IsQo+YKbh+Wf9evhpZdsmi1davXus7NNITrxRJtqbdua4lTRppm//ioOh78cBXwE5FOoRCQDeEpVL/BDKIdPLF5sN2GVK8OVZjzfsGEDs2bNYu+996ZGjRo+C5hH9erVOfHEeYwe3YyLLoKmReXTCjgi8mRR+2Ms7Hs7+csQnIPFZb2Mxc+2UdWFqvq5iITLF4Tr36R0+YJnn7Xw3Msuu6yYI8s5W7dCt24weTLPVq4MXbpw2WuvmYUpBQMLU5RAz0M3V0rOpk3w44/w1Vf2PHmybWvTBuBZOneGvn0v47LL7KezIuO+ZRwVmfMpuKh0deC8JMvi8JvXXze3oJNPtuU1YMqUKXTq1IkffvjBZ+Hy+Pfff/nkk18ZPbopVaqkc3PKJvzezr5Rj/2Bs7A52C6WBlR1kKpK1GOQd/NWU1UXRhz7qKo2UtXaqto/lYv6AowcOZKRI0f6LYa//PKLxThNngy33MLIrl0ZWa8e7L23U6aSSNDnoZsrsfPll3DYYeaad8wx8Mgjlrvlggvgp5/g99+hWbOR7LTTSAYOdMoUOAtVXBCRKkB9LDveTkBV7/EIFmh5N7AV2IRlsFkJrFO/MoJUcESkHhY7JUBdEYl0R0gHTiQ1CxU7SouqxVuA/WJ4tG3bluHDh7P//vv7I1cBDB8+nCuvvBJYRN++TdltN78lKhuqelT0Ns9V6CVgfPIlSi0+++wzv0XwD1V491244QZz93vgAbjpJirwiDiKoELPlRhQtdDDoUPhiScsrPCaa+DII63GfZ06+Y9345kfp1DFiIhUBdoAHbBiwi29RwtMiSqM1hRcaytLRP4B5mHpzudgtRimquq/cRPcURArAfUefxSwX0lxNyBHCZk+3dIiN2q0PV/qggULqFatGqeddprPwuWnV6/TuOOOxqxZsyvlNfuvqm4RkXuBL0jRGneOJPD003DVVebz+t130LGj3xI5HCnJH3/AGWfYM8AJJ8Arr8DOO/srVyrhFKpCEJHGWP2r8KMteeO1FatlNQ/4EQuqXOk91nj7t2G1o7KBSzCLVQZ5lqydgWaYQnay9z7c93KsBtR44DvgV1WNc6b9Cs1RmHXqa+A0YFXEvm3AAlVd4odgDp8YPdqeTzzRcqcCt956K9999x2LFi3yUbAd+fXXxqxZcxqtW9uqYTmmIVavxlEETzzxBAADBw70WZIk8957pkx17GjBHVWrbt9VYcfEUSTuutiRrCxbl7j3Xksi8dhj9jPYqlXxn3XjmR+nUHmISDpwEObudRLmyw+wEfgBGI1ZkH4D5qhqTgxtfgmgqj/GcGxdYD8sfWhH4FBM0QJY57U1CvhMVZfHfmaOaFT1WwARaQEsDKrrZUQdKr9FKf98+qk9n3DC9k233347U6ZM8Umgglm2bBmDBo0BTuTCC3cqF1mUROTa6E1Y0fCzgU+TL1FqMXas1YSvUDc1M2fCgAGWk/mNN/IpU1BBx8RRLO66yM8ff8App+Q5Z0yYAHvuGfvn3Xjmx7fCvkFARATogv1w98GsRNmYZegzYBxmHfKl/pOI7AIcARyDKXpNMHe0b4A3gQ9VdY0fsqUqIrI/5laZ670uFFX9JUliFUlGRoZuLK4inqP0rFplVfzS062Ee+3afktUKEOGvMGll55HWtpUlixpT6NGyek3yYV9c4EVmAX5flVdn4h+S0pQC/tWOJ59Fi6/3CzJ06db4okKQqoU9k0UZS3smwhSce7n5sLAgTBkiKU8v/56s1BVqeK3ZMEnqIV9fcOryt0fc8XbE3PRGwkMB75IlJIiITkEeBIrajxAM3V6Ucd7sVTvAe95yl8HoDeWAesl4FkRGQE8C0wIqqUlYEwGdgGWe68VWxGPRrEEFY7yzpdf2i9M167blakpU6awbt06unbtigTIDFS9+llAG448ct+kKVOJJsmFfR2pzIIFpkx17gx33FGhlCmHIx7k5sJtt5mb31lnwX33we67+y1V+aBCKVQi0h4r5toXi2kaD9yHWXrWJrTvkFTDAqxrYjfrX0lIGmtmbEqQpyz9CvwqIoOAzliNh/Ow85khIk8DrxVVqNZBC2z1O/zaUdH57jt77tZt+6bBgwczYcKEwMVPffxxOtCJU07xW5KyIyK/AN284tmIyJnAJ6rqzLElYPDgwQBcf/31PkuSBD75xJ5feQXaFZ5Rv0KNiSNmKvp1MX26JbGdPBl697ZKIellWDau6OMZTYVQqETkEOBWzG1uA2bdeU5VZyRRjDpAOFO/YAHXaUCxsVjReMrVJGCSiNyCKVSXY9mwBonII8DzQXGVCRKquqCg144KzPff2/Phh2/fNHToUGbMSObXQ/HcccddfPLJYuB5evf2W5q40IG870SA54GfsWQ/jhj58cdiQ3TLBxs2wD33wIEHQtu2RR5aYcbEUSIq8nXxzTdw9NFQvbpVCDnnnLIpU1Cxx7MgyrVCJSIdgQeB7lj9p9uBZxLs0rcb8IVm7tDHcuBb4BDv/QeaWXxii+JQ1U3AyyLyCtAVUxwfBm7x0g4/k+qFK+NJcXFTkQQlhsqRQNassWW7ypXNjcijVq1aHHxwsHzi//xzCzk5G+ncmZSvPVUIwfGtTCE++OADv0VIPFlZ8L//wfLl8OabFJeNpUKMiaPEVNTrYutWOO88aN4cRo0qdj0iZirqeBZGuSwhLiKHishXwC/A/sB1wO6qem9YmZKQtJCQvCcheV9CUoK8JoX0GZKnsBTnbwDTJSS1Ivd7rn0nAv+HxUH1L2uf+do3vlHV7sCBmAXrEWCWiDwlIuXyf10KJmNjM7mYxyS/BHREMWhQfvee6Pdl4aefrJph5862dAd8+eWXPPPMM+Tm5sanjzhRq9Z9wLBy4e7ncMTMli1w7rmmSN1yCxxzjN8SORwpw7BhlgL9n3/gySfjp0w5dqRcWahEpAqmPN2DKYuPAHdHx0dJSASLn2rsbTpMQtI02mLkHZcWuV1C0gJL5dscqzN1ObC79yxYIoNdsLTn+Qr6aqZmQ9mLuHty7QSs99rMh6pOBHqISDfgdeAK4HAROSfJbo5BpHzETfXrB6+9Zq8rVYK6de2b8vTTLZ1w5cpFfjzpNG9uAeWR1KljFqLiuP56uPLKREhleWIBDjts+6bhw4fz6aefcvnllyemz1KgCp973yY9e/orS5w5UUTC389pwHEisizyAFX9MPlipQ4PPPAAADfffLPPkiSIE0+Er782d7/bbovpI+V+TByloiJdF6oQCtmjfXt45JH4/3ZUpPGMhXKjUInI4ZgP/j5YWvGjgOxCkk1Ux5SesNWmPlAbWL29vZB0xhSinSQkzwNXeFam54C9vM+eC3xEXixUeDzTgfleO/Ww1Ox/aab+XebzDEkVTCk7HFgvITlKM3VaIYf/icVu/YoVEf5VRB4DMlV1c1llSUVSKW6q2DpUxxxjNVhycmDFCrvpyMy0bWPHQkZCslyXnjvvhEsvzXufFqPRtGZNeySCsA94RIXc559/nlWrVhXyAX8YM2YB//57KnXrPky7dkf7LU48eSnq/TNR7122zWKYOnWq3yIkjokT7XvttttiVqagnI+Jo9RUpOvimWdMmdp9d1s3TMRPaEUaz1hIeTcwEakmIoOx+KTqwImqejTwIlbPZAc0UzcBE7CivRuBKcCaqMNexhStdCy9+v2eZagO+cetNjARWOf1lwt8rJk6U0KyKzATeBf4XUJyZJlPGHphClploC7waBHH7gzMAk4H9gZeA24AfhGRA+IgS8ohIvuH3R+914U+/JZVVUeq6oD0wiJHq1aFXXaBXXeFDh3g2mth3Dj45Rd46KG847Ztg5tugqZNTck64AD44ov8bf31F5x8slmNataEgw+22CKw527dLKV4rVq23PXNNyU/oVq1TN7wY+edTRm88EJo0cJc7lq1Mtkj3e3i6eIXiaqNFeSLnxIR6tevH//+ysA332wBdubAAzPKRTFfAFVNi+HhlKlieOedd3jnnXf8FiMx3HOPWdsvu6xEHyvXY+IoNRXluvj7b3PqOOQQmDcvceuRFWU8YyWlLVQi0gErcNsGsxzdqKobvN0DiqnL1AM4E1OO3iogfXlkibN04CrgD+AmzOUPTFkZpZm6RULSHlNc/gHCkXqnA7WwFO1g7ojfluQcCyBaSSw00ENVp4pIp4hxuEhE3sFcFX8UkXuAe/wqXOwT5bsOVbt20KMHfPCBLU8B9O8Pc+fCW2+ZUvXpp2b7nzTJlKMlS8zl7dBD4auvYKedbGU4x/N0PessO27ixLximtWq5fXZvLnVcHr11ZLLm5trCuF771lx3YkTzWWxfn1TtBLJggXmctiwITRpAsDixYt55JFHGDBgAHsHqMbN9Omtgc/o29dvSRyOJLFihX1XXXvt9vnpcDiKJjfXfrKrVIEXXojdEcRRdlJSofKK3F4IPI1l7+uhqvmW3IsrcquZugVTLArjOmAEeWl9qwOHaaa+LiFpit2Uzw7HV2mm/gM8HtXGYiAbU6i2UkA6YAnJAcAZwHRgWAx1qT7GlLLjsXpKA4s6OHocVHWMiOyLFRjOBI4UkTO9IsIVgfJfh6pNGxgzxl7PnQtvv21LVs2a2bYrrrD9zz8Pzz5rvgEZGfD++3ml0vfaK6+9BQssjimsYOwZlcNljz2gcWOK5bbbzNoU5tZb7XHXXXnbmjc3q9Hbbydeofr1V3vu2HF71rC///6bIUOG0Lt378AoVFlZ8M03a4E6kaWyHA4A7r77bgDuuOMOnyWJM+++a4s6Z55Z4o+W2zFxlImKcF088oh5sj/7rN0KJJKKMJ4lIeUUKhGpATwLnA98BZytqiuK/lQJ2g9JGmb1Oh3YRl5s1DZMwcJLib4mhuY+ADp5sm4GlkpIKmumZnl9tQHGATUw18MmwIMSktuBmzErysmaaYkkJCR1MDe/nkA1YEushYEj8TIdniciYzHL3i8i0kdVx5e0rVSjQtShUs1LK/zLL/Y++pt161YrSgGmWBx2WJ4yFc2118JFF1kSjG7d4LTT8pQrsHitWLj22vxKUr169jxkCLz4oilumzebBpGM0u2RCpXHoYceysaNGylmPSapvPXWNDZu7ELTph/StOkJfovjCBgzZ870W4T4s22b3RkeeKC5M5eQcjkmjjJT3q+LrCzL5Netm1UZSDTlfTxLSkopVCKyC/AJ0BkIYRn8ylzLKYrDgZOwsakEzMEsWRM0U78rSUOaqSohGQJciWUUvBOrU3WFd8ihEYdnACdLSD4DbsGUrOaYctdeQnIc8CHmnjYBOKE0ylQ++VRfE5FfMMXvaxEZoKpFWe3KHSLSGLgUcxsFS+TxnKouKUEb9bDg+mOBlcAtqvpWAccJcDeWMr8mlizkclX9vUwnEc0ff0DLlvY6N9eUq0mTdsz856UJp7jLaNAgOPts+Owzi70KhUwJuuCCkslVv/6O1q1334Wrr4bBg83hu3Zts5iNGFGytktDhEK1bt06brrpJjp06MAll1yCBChQ6ddfawMD6NHjQL9FcQSQYcOG+S1C/BkxwqzqjzxSbM2pgiiXY+IoM+X5usjNtZ/pf/6Bp54q1bQpMeV5PEtDyihUItIOGA00AE5V1Y/i3kdI0rEb3sgQvobAk5q5PTarUEKhkGBuZJ2wVOq1+tGv1QxmpC1nOUtYUiOb7O4RH/k54vUmLKtgbfLiosJJMMDcCWt4rw8GjgC+LsHpFYiqTheRLsD7WIHgVsDtqhqsIjwJQES6Yy6Ui8j7X5wBXCcivVX1yxibegazYDYCOgCjReS3AhSlM4ALgMOABVh6/zewWmnxYcYMy699++32vmNHU5j+/ReOOqrgz+y/vxWr2LatcCtVq1b2uOoqy9T34oslV6gKYsIEW4W+4oq8bXPnlr3dWIhQqDZs2ICq8ks4SUWA+P335sCT9OjhtyQORxLYsAFuvtms4OWsRoDDkShuuMG89h98EHr39luaiklKKFReSvRRmFvcEao6JW5th6Q2pgTNBo4DOkYdUg2zLN1YWBuhUKiBov9T9Pw00vItwTf3/gCyyGIZyyQUCh0NfKOZOk1C0gM4G5gKDMWUqJ+AQ7zX13pNbSIvgYJgYxEXVHWNiJyAKQa3AM1EpL+quSaWY57EskEOjIw1E5EngCewFPxFIiIZwGlAOy8hygQR+QRLqR9dnKEFMEFV53mfHQZcU2rpt241RSk31wK4x46F++6DTp0s5gksFurss61u1SOPmPK0apVlA2zZEk491TJoDRkC//d/FudUt65ZtPbZB1q3trbOOMPim5Yty1OCwnTrBl26wP33l/wc9trLkll89plZr955B7791mRIJCtXwuLFlv5ozz1pkpbGkCFDEttnKVi2bCXff/8P0IZDDilE2XVUaO68804A7oqMRUxlHn3UrFOjR5e6nl65GxNHXCiv18WECTZtLr/cFKtkUV7Hs7QEXqESkeOw2KWFQHdVXRS3tkOyD/ADls1tPTCogMOqAk0jPlMV2KaZqqFQqDJwnaK3CVJzAQv0L/7avIAF6atYVWUrW3PTSf/zAA64RpBL2tCmflOatgPGAt+GQqHLNVPHY0WGI+U6Dqt1tUozdbm3uR+WXbARpnhNjNc4AKhqlohcAvwN3AvU9OKqtsazn4DRHHi6gAQmzwAXx9jGXkCOqs6K2PYbUFCK/HeAPiKyF1an7Hyiij+XiDFjLBlEerpl5mvXzupQXXJJfkvTK6/AvffCjTeaP0C9eqYAhS1Wu+4K331n38RHHWW+AvvuC0OHWturV8P555vyVr8+nHSSueiFmTsXdtutdOdwySUwdaqlJVK1+KzrroOXXy7tqMTGH3/Yc5s2LPn3Xx577DH69+9Pm0RH8ZaQF174lM2bz2fXXf+icePWfouTEDyX2XuBbliph3x5qVS1th9ypQqLFsXtJ9F/Vq+276peveCE0scLlqsxccSN8nhdZGfDLbfYGuRDDyXH1S9MeRzPsiBBCr6ORkR6Ya5ofwDHqm5XLuLTfkhewW5qBcjC4rJ6kFfnKWwFCmGWogbe9m17s/cZfel7M3DwalZPeou32q5gRQ3MipRLOOX2VrKZwiIOYaBm6shQKFQNy1AYwlwLL8vMzEzw3WPJEJErgKewpB+9ymsRYBEZDzyuqh9EbT8NuFZVDy34k/mOPRx4X1V3idh2MZYspWvUsVWAh7EU/DmYq+HRqjq/gHYHAAMAqlSp0mnr1vKs1/rA889b1O755zPxsss44ogj+OSTTzj22GP9liwf9923mNtu+5Ezz+zJW28VUuA5CYjIJlVNSKVoERmBeQYMBZZg36HbUdXXYmgj4XGMnTt31smTJxe4r8/zViD63UsOLq4ZR1G8/75Zyr//3mIqHfkQkSmq2rn4I/0h0fOwqDnoF37P/bvusnXURx6xvE+OxFLUHAyshcqzTL2PTbQeqro6Ad38hylSVbzn/7DYpJ0xpagtVldqOub6B8BO7FTleI4fgWXu6/sET2RhRXPBlLN0FMgml0qkcxAtgLclJNdqpg4FngmFQu8Dw4CXQqFQk8zMzHsAJCT1yautNUQz9b4EnHeRqOrTIrIBK248XEROUdVtyZYjEUQV7H0WeMyLG/vJ23YQlqQi2l2vMDZgcW+R1MYsntFkAgdgiUn+Bc7BkoG0VdVNkQeq6lDsBpOMjIzgrnqkKn/+ac/77EOXLl3YvDmYawZ//LErcDqHH+63JAmlG+Z98HOxRxZOcOIYHaVn2DBLTNM5sDqDo2jcPEwSqmbMHTQITjkFril98IAjTgSy5Je36j8C+J3EKVNgKyQ/YDfFn2EKRA1ssp+JFX7dSkSR3+pU51zOpQpV0oAjMzMz38UyD36Nrazaza+gVGYh6Wz1RjkD2F6WMzMzczlwAvA6cPcRoSP+kpB8h2Xy64bddN8qITk6QedeJKr6KvA/T8ZhIhJY5buETAYmec9vYu6c92H/v6+917thym4szAIqeUpZmPbYtRtNe+BdVf1HVbO9Ma5LXoZBR7KIUKgARCRQmf3CfP31BGBOeV+sX459B5eKiDjGO1R1g6pOwL6Tzy3g8O1xjF6G2GGk+Py75ZZbuOWWW/wWo+z89x+MGmWBIIUlx4mRcjMmKUQqzMPydF2MGAF33AFHHAFvvplcV78w5Wk840HgFCqv6OwobNXiuEQpU15x3mlYmvRvgT6aqduwm+qHgAeB74ATiXBB6U1v6lCHL/hiyCAGTZOQXAk8gCVzuBgr5AtmqYoMLNkEfBMpQ2ZmZvYSllw4l7lbu9K1dWMaH45ZyCKVl13jdtIlxLOSXIcpmM9IEO84S04LoKX3XNSjZSyNqepGTAm+S0QyRORQoBe22hbNJOAMEWkkImkici7mQjqnbKfkKDERCtXo0aO57rrryM7OLvozSWbpUli69CwqVbqLdu38liah3IbNn5rFHlkwhcUxti3g2HeAPUVkLxGpTFnjGAPAf//9x3///ee3GGXnjTcswU6vXmVuqtyMSWoR+HlYXq6LxYthwABo3x6+/DKvAkqyKS/jGS8CZXXw6kyNwlYr4x4zFcVIoJn3+kSs6G4lLE15WNFshxXbVYA2tNHWtJZlLHvo18xfb5KQPI+5bVXH4l2OIf+YCnZjXQe7mX5s+46QNPL6XVSd6pUv4zJ60pMXeAHN09+ysfHwDVV9VEQaYi5ws4BH/JSnrCSomO9lmHVzOeY2eqmq/i4izbD4vzaquhBT0nfGMjpmYIrUaV6hZUeyWL8eFi2CqlWhRQumvvcer7/+OoMjE20EgB9/BPiQzp2rk57utzQJ5XYsQcxyEVmAuV9vR1X3K+bzNYG1UdvWArUKOHYplgRoJhFxjIU1HBnL2KxZs8IO85WhQ4f6LUJ8+Phju0Ps0qXMTZWbMUktEjIP4zkHy8N1oQpXXgmbN1sZxzIac8tEeRjPeBIYhUpEamDm4frA4fHM5lcIzaPeN/SeFZvgAMuA54EBglTvRreaWWTNfoEX/ngu9NzHwPGYhQEs5qor5j8cjh4XzK1sCXARcIWEpDHQG1PmcgE2s3nml3y5z2mcRhva8Huet9hQzUyYu2NJuA3YA3hYROapahKqriYHz5WxC/b/yPfVpKqvx9KGqq7C/qfR2xcSUdNMVbcAl3sPh1/89Zc977UXVKrEbbfdxm233eavTAUwcaICnTnmGL8lSTjDy/j5hMQxQv5Yxs6dO7tYxkTxzz95mUbLhSNEhSTh8cRuDlo+pREjbKq0Lp+JX1OWQChUnivZEKAzllXu1yR0OwqbxNFsxrLbrQYGaaYulpDscQZnXFSf+o9PZOKYbLKfJa/IbpgMYG466av2Zu9GzWkuDWn4367sevUEJvSYzvQqq1iVjVm/osc9bQYzsrrStfJBHBSpUDWO29mWAVXNFZHzMaXjDRE5QFX/9FuusiIie2OWyhaY8puD/W+ysNi5mBQqP+jXz0opjfLVfpmfV1+F/v3z3u+yCxx+uBUabNHCN7F2JMLdb9OmTWzbto2ddtrJV5Gi2bp1K88/fyzwKp07B2nw4o+qhsrYxPY4RlWd7W0rNo7Re/+qiDyOxW8EK31YjFzv1ZwLmoW1RLzyirn7nXdeXJorF2OSegR+Hqb6dbFihSlUVataQgq/SfXxjDdBiaG6GAtczFTVkUnq8wJgS9S2XOBn4DTN1P6aae5hmqkb29CmC7DyC76oyY7KFEClVrR64zquq3kGZ6Tty75SjWr1csk9+CiOqnYlV6b1pGeVKlSJVqa2Ar8q2mE605ftxm7sxE5gMVfbv1gkJG0kJB9ISN704r+Sipc6/VQslfwHZYh3CBKPA1Mwl8xNWCHfzphL3mm+SZXC1KhhsT9LlsBbb1mJqZNPhpycYj+aPGZ7v/WtW/PJJ59Qt25dZsyY4a9MUSxfvoK1a/8GfuCAA/yWJjmIyNEicoWIXC4iXWP9XEWPY9y8eXNgs1TGxLZt8OSTcPzxEKc6cCk/JilIKszDVL4utm2Dbt1sPfCdd0pd8zqupPJ4JgLfLVReGuungC+w4o5la8/SjlfTTF1c1HGaqVkSkiwi0qFjMUvfaKbmeG01Bxo2pvGvl3DJscBnOeTMLai9jnTkZE6uvoIVOR/yIXOZi6IC3FuLWvcezMG1DuIgGtOY13ht3Va2VsFWdBZi5uwL5jP/q650Pacd7WZNYMIb2LiEiwmPxzLC5WA3/Uk39qrqEhE5C/gSeF5EzimgKG4qcQBwpKpuFJFcoJKq/iIiN2JjX1zsRkIRkZ5Az6pVi68/FLZYde9uxf02bYLeveGZZ0zJAfO9fvRRGDIEFi6Ehg3h3HPh/vtt/113wUsvWf3eunXh2GPh9RLa6ETMMgVWczgzE845B+bMgXXr4Lbb4Jdf7Mdhv/3g4Yfh4IjyHc8/b/U0Fi6EWrVg//1h9GioVAmmT4err4ZJk+xcWraExx/Pq08cM3O9KbzHHnTo0IGHH36YFoEyocGWLU1RXUDjxtCkid/SJBYR2RXL6toJc48GaCIik4FTVHVJoR/Oo8LGMT7zzDN+i1A2xoyxL68BA+LWZMqPSeoS6HmYytfFpEn2G/jKK/bbHgRSeTwTga8WKhGpDrwFrADOUdXcMrUXkouAxcAcCclzMXwk2k5ZCS/mRUJyDvYF8HUWWROxor4TgJ7RjTSlKT3pyTzmZQ9laPoc5oQTSwiwdj3rD/qSL5/+mq9fbUzj7Eu45K900ttjVpEjgTHANQtYcPZGNnIkR/6kmXqPZm4fj4aYVUw8GfeUkPjyv1PVscAg4CwstXwqI9j/AOwaDGdU/AfY0xeJIlDVkao6ID3GjATjx8OMGXZ/8u675mf9xBN5+2+9Fe6+26qq//671dDczctD+cEHMHgwPPusGXBGjcofG/7qq6Ys/f13yc4hnH0oK8tyQZx7rsk5cSJ06AAnnGD3UgCTJ1vG5MxMmDnTzqNHj7y2zjrLlLSJE+HXX63+RrVq0T3GQIRCtffee3P99deTkZGQmrWlJly7soJYp57EFor2VNXdVHU3oJW37clYGlDVVaraW1UzVLVZuJioqi5U1ZreTRyqukVVL1fVxqpaW1X3V9WUzvKX8rzyCjRqlH+yO1ISNw8Tx/DhZpU64QS/JXEUht8WqvsxS0t3VV0Zh/YeJy8hRD8JyQNht71CWIW53IU/kw087b2+F8veRx3qhK1BM4E1mGvgdoWmBz1Yz3re471K2V7W9Ba0oClNs/djvyYNabgyMzPzSoCzQmdVbU3rM/dir/f+5M89sdWZ7fzHf6ST3ktCkqaZmuspTvdFyJiDWYgyJSRHYQHdT2lmUi1F9wE9sFTq30X4QacaMzBf7nnAROAmEcnBXFBTzgWodm147jmz5uyzD5xxBowdawrUhg3w2GNm0bngAjt+zz3zrEMLFpiycuyx9qXdrFn+2pp16lgAbEncDP75xyxQTZta/ofo1N9PPWWK3OefmxVr4ULIyDAXwVq1YPfdLelXmAUL4PrrYe+98+QvFZ5Cldu8OVMmTaJly5bUr1+/lI0lhpdeGgpMoXPn5/0WJRl0B7qq6vzwBlWdJyJXAWP9Eys1uPrqqwF4/PHHfZWjVOTk2JdU796lXB0pmJQeE0fCSNXrYvNmeO01K+C7885+S5NHqo5novDNQiUiRwEDgadUdUycmo2MiRJ2jJGK5mtMicrGklEM1Mzt2QWX46VLr071sIngP+BWLCtNLrCyGc2mN6UpE5jAVrZSmcqcwzmcz/l0o1ulhjS8X9E5oVDoJAlJu/d4r9cGNrAf++2Hp7BFsolNpJNeBxjuufpNwuLLwqmPcjBF4HqshtZ9WGxTqZGQnCwhyZSQdIrleK8Q3/lYVryXUrg+1b3kjevtWMahb4Bjgav8Eqq0tGljylSYJk1guVd44I8/YOtW88EuiDPOgC1bLHnEhRea9Wrr1rz9p5xiyfF2LaYq2saNULOmKUa77WaufR9+aKldly+HSy4x5apOHVOali83RQrMXXH33U2Gs8+2H5D1Efmhrr0WLroIjj7aAnLDyfpKxNq1VkC0enXW1qhBly5deOONglz8/WXWrH+AvyqKhaowyuSx4EgBpkyB1att8jscjgIZPtymySWX+C2Joyh8sVCJSDUsHfkcrL5RvOgLvI/FRd2ombqsqIM1U/+QkByC1YOappk6OmL33cATQM0mNBkNnD+KUQd526pjN+INmtGsFrA9M9+xHEtLWvIzP3/9Hd9NzCBjYG9612xIw4/2Yq9LZjEreyYzaUtbwZS2HCyj4J5AVUURu8c/Hku5vn8Bop9JXmKM6ljhvA9KMlBhJCT9MatcNeBGCckhmqm/Ffc5VZ0jIjcAz2Duf2+Wpn8/UdUvIl7PA9qISD1gdSrGhkVbj0QscRZYzFFR7LabudmNHWuudtddB6EQ/PyzKUexUqOGJaJISzMvnsjPnn8+LFtmlrLmzS1TUbdupnSBKVi//GLZk7/6ymK7br3VfMebNDEXv7PPhs8+gy++MPmGDMmzuMXEvHn23LIl1WvUYOTIkeyzzz4laCDx5OTAqlV3AfmthOWYscCTInJmuFyGF3PxBM5CVSwpvTr8hfcVHOfaACk9Jo6EkYrXRU4O3HefeWaUOF44waTieCYSv1z+bsR85I8rqPZHadFMHYMlbijJZ6YB0yK3SUgGYEV4c4AV7Wj3CXD+v/w7BMgX0FKXupWyyFq/iU01K1NZOtKRX/iFz/isDdB1IxvT3uM9BjIwvRnN7p7FrPUrWVm1GtWqNqTh4OWZywd7fc4B9qhKVbaxDcx6WNjtVDjL3zYsxffHJTnnKP6PPOUsHSuuV6xC5fE8Zql6VERGp2pgtxfLt4f3dm4qKlPF0aaNKTBjx0KrVgUfU60anHiiPW6+2ZJLfP+9uQHGikjhrngTJlgyrxNPtPfLlllGwEgqVTIL1NFHm8K0884WzxWOV2/Vyh5XXQWXXgovvlhChSoifqpatWqcdNJJJfhwcpg1yyx9u+8ODRr4LU1SuAr7DpsnIkswz4Bdse/llLMUO2Jk2zYYOhSOPNIy5Dgcjh34/HPzxnj7bVeiLegk3eVPRI7Girp9pqpfJrv/GLkRUzJqAQ2+5/tdAHZip+jsANvSSGMrW2sA83diJypRib/5OxfYCW9817CG1aymDnUaAcOa0WwYwOVcHulrVN/rg7VWbPwL7CYj8uY+l/xK8O9A51gsSp5b3zAJySUSyjctvyYvMUMO5mIYE57r35VY0ox4uW0mDRGp6tW+WIUpkdOAVSLyhGdFLTfUqgUDB1o81SuvmF4xcaLFXIElnXjxRcsiNH++HVO5cp7yNWKErZAtLjJ3ZtHstRcMG2buh5MmQd+++au8jxplSTR+/dXipd56y1z+9tnHfMgvvxzGjbPEGD//bApaibMsRyhUy5Yt46effmLLluI8g5PLmDF/A4fTrNkPfouSFFR1karuD5yAJQp6FDheVTulcHxm0rj88su5/PIUrBX+yy8WaJkA2VN2TBwJJdWuC1VL0tS0KfTcIR2a/6TaeCYaPyxUd2GKRncRuV9Vb/FBhuKYC+yOjU+lP/hjZne604QmzCBfvZq0daxLr0ENKlGp5RYvZKsWtdKIsGSlk04NarCZzWlAnZa03JBLbu693PvMoNAgxbLKfVWd6qfXo578yq+5WGzUJOAILH13GnkKcC4WH/aQZmqxkSRe8oq3MSWxNxb79JS3+xGvrYOBtzRTJ8Q6SCLSEXgVc3/cX0TaqOofsX4+ADyHxUtdBPzobTsYS5ZSC6tVVm64/35Lh3733XYf06hRXh3NnXayArzXX28Z+dq0sdincDbxtWvNJTArq/T9v/yyWZo6dcpz4VuxIm//TjvBRx9Z+vZNm2CPPUzJO/xwW8xevdrcBv/9F+rXh5NOssyEJSJCofrggw+4/PLLmT9/Ps2bNy/9icWZqVPXALm0br1DiGW5RlW/woqqO0pA9eopep1M8xxD9i/Iq71spOyYOBJKql0X48ZZmOHLL5fM9T5ZpNp4JpqkKlQi0gU4FLuJr01+60v8+wvJzpjLSA7wuGbq6hg/eh7wCtASGLye9e8uYhEtaRl9XKV/+Ic00mhJS2YxiyUs4UAOZBrTKm1kIwCHcIhWo5rMZvaGdNKfWMe6XzezOS2HnHDx2Gxgxv7s/wXQI4ecuzRTf/LO4Sis2PBeEf3+gMUWZElIqmimbivmfA7ElCiwrIJH4SlUXmr2p8hTsErCcixL4nnAs1iSh1NK0Y5fnAGc6t3IhZknIsuxmDRfFaqi6lC9+mrR78EUlkGD8t6npZkr380FRC327l10bYt+/exRFMUd0769WZYiOffcvNeHHQbffFPwZ6tUMYtVmYlQqM4//HAaNGjA7rvvHoeG48eyZR2A7znuOL8lSRwici3wrKpu8V4Xiqo+miSxUpLBJV5VCAjffQf16uWt2sSRlB0TR0JJtevi5ZfNze/UMqUdSxypNp6JJmkKlZcJ7kGs3k9IVdcnMjucl278B6AZprj1xlJkRx5TCaijmfpf5HYvmcUJ3jGXAnVnMpMe9KAhDVlB3rL6POaxgQ0czME6i1kymtH0ox8DGSjTmc5O7MQe7CHrWDd2IQtPv4mbDqhClWqjGBXZZSVgv2M45m9g+bEce0+ELGskJLdjlqAa5LnnXec9T5aQHF1M2vSxwB2Y1WwzVs28zKjqYhHZX1VVRJpjFdIPVdXv49F+EtiI1S2LZjE2Tr6iqiOBkRkZGRf7LUu5IaxQtWxJRkYG//d//+evPAUQXrhv377o41KcK4HXMOv4lUUcp5gLoKM8sWyZmaP79rWVHofDkY9Zs8xF/pJLLCuuI/gk85vsCKArcI+qrgdIcPB/fSx5Q2XMOrOvhGR7xIaE5FDsx3ylhGSDhKRpdAMSkl2w5BRp05hGNtl0oUs+mXPIYSIT57WghRzEQRsWszjrZV7eOo956/dmb2pTm7GMzX6Jly6+hVvS00l/aQ1rcqcyNV8zDWjwsyA9gVczMzNzvP4PkJD8ANwEPIxlRdyCWflqeo+DsRimQtFMnQR0w9wt+2imDot1EIsj4n/4KLAMi49LFZ4CMr2kFMD2BBV3UDqLnSPIbNsGixZBWhobGzbk1VdfZWE4Z3tAWLVKWbSoPZUrP0bLHQzi5QdVbaFqC1ne68Ie5XgU4sOAAQMYEM7akio89ZRlXrn00oQ0n5Jj4kg4qXRdDBkC6en5vUyCRiqNZzJIpsvfrdgN9wtJ6u8/zNKwG7bKOTPsGuclZfiKvDinDOBFrFhtJM3wlM5NbGIqU9mf/eUHfti2mtXblbPxjN+5M51/Po7junSm84Ov8doz7/DO/7CU8OmANKbxK5vZ3LwylXcbzvDccAFgzBISupRL98NSpD8lIWmHFSnuGiHj/lhGvyre+SgWu7QZKzZcJJ4L4U/FHVdaVHWjiDwKPCgiB6hqzMktkomIfBK1qSuwWETCmR73xeZFAD2WHWXi778tj/zuuzN7wQL69+/P+++/T7NmzfyWbDuTJ28FOtKsWWPSo1PglFNE5DzgXVXdGrW9CtBXVV/3R7LUIGhFqWPi44+ha1cLqEwAKTkmjoSTKtfFnDmWoOmccyzbblBJlfFMFklRqESkMxb8f5OqJsWVSjM1V0JyMHANpog8HrG7FVZ3KZImEpI0L6YozDTMxa4OwLd8y77sy0mcVGUYw3IVTQNQVF7ipbuu4ZoLG9Dg5qu46owZzNg0hzm5VaiS3oIW6W1pe+Q2tvEWb/EP/0RaBqvdxm1T0kl/AHhgEIP+BaYC9cgrOov3OqzEKfA3lsziGs3UbRKSjsDLQFXgSs1UP+q3DAFu8R4B9frlv6j30fW75idLEEeS+ftve27Rgnbt2jF79mx2DlLZeWDmzGrAq4GrN5JgXgE+x2IyI6nl7XMKVRHcf//9fotQMn79FWbMKEVGmdhJuTFxJIVUuS6uusrW/m67zW9JiiZVxjNZJMtCdR2wFrvhThqaqcuxm/to1mA1nCKj/ffAlK7Iuic9MZfBHEDWsz7rS76s2pOeHM7had/xXdhKVG0ta9Me4IELOtGpzj7s021f9qUjHQHYzGamMIXv+I4NbMgmYtxrUzurMpXfAGY+xVPhVOl1ya9MgWX2y8XifhQ4VjN1bsT+z4Hw3eEnEpKdNVM3xjRQcUJV14nI08DtIrKnqs5JZv+xoKr9/ZbB4RNh977dd6dSpUrsWVjBLB+ZOjUHSGe//fyWJKkIBScoaob9bjjKEz945QDOOMNfORyOALJsmdWeuvJKKzXiSB0SrlCJyC7AacDTqrou0f3FgmbqcgnJecDTWKxVGpbwoa+E5C6gsmbqUizLW7jo7Vag0hSm0IxmHM3RbGQjU5gC5pZ39xa21Pqe71t+z/dUoxq1qY2ik1eyso2i4YQS07Cse5JBBudwThVFM2Yys+9//DcaczXLxZS4LZgCVQ34C0vnvR74TTN1Zfh8vAQckbbXdKARMC/ug1c8z2GujpcAN/jQf4kRkZZAG+ym7k9V9WPcHIkmrFA1a8Znn33G+vXrA5eUYsSI/wM2st9+n/stSsIRkenkuS9/KyLZEbvTsdIVn/ohWyrRv7+tEb3yyis+SxIjkyZZxe7ddktYFyk3Jo6kkArXxbffWv2pM8/0W5LiSYXxTCbJsFBdiFl5kmqdKg7N1PckJOOB2ZgSsw37YV8B5EpIngMmYsk0apCn5KR/widUpzo96Sm1qMW3fJuj6AbMyiUAW9jCFt0Cf9GUTfxHJ1ZihXj7AuN3ZudWfelbrTa1cwXp9Q7vKHkWszRM+eoPfIRZ+O4EhgEjgbOiziVXQjIE6OdtEmC2hGQKcLRm6oa4Dl4RqOoSEfkIuEBE7kyWi2dpEJHawEuYwp+bt1k+AC4MJ09xlBMiFKrXXnuNv/76K1AKVU4ObNhwDLC5oliohnvP7YDRQOT31DbMrTnaJdcRxW4JVEziTk4OfPqpxU8lLslvao2JI2mkwnUxeLDViOzc2W9JiicVxjOZJFShEpE0YAAwVlVnJbKv0qCZulRCchzmFqjASd6uNOBSLKFFOnAIMAtTDskhh3d5l570pCtdaU3rzQtZ+PhnfPZaXuNANjl8zQKOoTmmtB1RmcoTruO6EVWocksOOeuzyDrx7sy7JwwKDTqWiGLAQLZm6vsAEpJB5ClbvTFXmAVRp3Ml8KZ3Lsd757CvJ/MTZRqokvMscLr3eCPJfZeEJ7CiyUdhKfbBMigOwdw/L/RHLKOoOlSOUhChUL355pvMnj3bX3mimDsXsrIuZbfdrABzeUdVQwAi8jeWlGKLvxKlJnfddZffIsTOjz9aNe/TTiv+2DKQUmPiSBpBvy4+/NAMuDffDJUr+y1N8QR9PJNNotOmH4bd/L+c4H5KjWbq95qpJwHvRO0SYJNm6u3AmcD5RCigOeTwkf3l7MIu2w7kwOE3cMPvXejyez3qfY5wGpVppMv1oPTW6XWb0rRmN7plXM3V+1aj2p0b2fj9EIYMf5AH23gueyswFz8wdWyhhCR8WxXtKrmD5UQzVTVTf8QsLWE5heSmxg8zDltdPseHvkvCycBFqvqtqmZ5j3HYIkBvXyXD6lCp6oD0ipLuLdEsWmTPzZqRnp7O3nvv7a88UUyZsg3IqijWqe2o6mtOmaogjBhhd4o9ohPqOhyOJ58069QtBUX+OwJPol3+zsZc1z5OcD/xYDSm1IRrOj2jmbrGe12HPJcwMHcUAKYyNbM3vYcAV2aQ8b8TOKEJ0HYLW7pvZWv2naE719zKrVXSSSeXXGYzO3c+8x//iZ/+h6Xs7gvsCjQhzwq1DmgN/CsheRi7uX8bqA4M1ExdVdAJeIWKu0VsqoxlyUoqXqHft4CbRaSRqi5LtgwxUp0ds/4BrGLHLJCOVCY3FxYtQoEL77uPps2bEwqFSGBt8RLz0UefA6fRqNEkoIPP0iQPEVlPwUkpAFDV2kkUJ+U45xxbtxo2LG7lBRPH++/DMcckvFJpSo2JI2kE+bqYPNnipx5+GGqnyDdekMfTDxKmUHk1RM4APlJNbra50qCZukZCsgdwEDBfM/NlqJsNjAWOxiw+dwJDAdFMDWehujsUCt27gQ0HfM/339albtVqVEsHdmpBi6e/5uuuM5m5zyY2gWUSDI99DaAPplSlYTcWtcnL8ncD8IRm6u4xnEZ18isCuVjKeD94C6s91gd40icZiuN74G4ROVdVNwGISAYQIs8F0FEeWLECtm4lp149Wrdty6hRowLnrrBiRUvgRg49tMLVsr2S/ApVZaAjFtt4ry8SpRCtW7f2W4TYmDPHrMTXX5/wrlJmTBxJJcjXxTXXWK6Wiy/2W5LYCfJ4+oGoFrowWLaGRY7GlJDeqpoKFqoi8dzyOgDrNVMLDb6QkDTACgqHa0blYkrOjdiNekH+W+8CJwI1Iz4TdtXbBjQuzCpVQP9vkxcL9olm6tmxfC4RiMjvwL+q2q3Yg31ARPYFPsPi26ZhN3XtscyKx6nq7zG2Uw9LbnEssBK4RVXfKuTYlpiCeSSWOfJlVb2xqPYzMjJ048bAr0kEm0mToEsX6NCBrIkTSUtLI2iulC1bwvz58Pvv0KaN39LkR0Q2qWpSi12LyIVAN1U9q9iDk0Dnzp118uTJBe7r8/yPALx7ycHJFCm1ePxxu2ucPRsCWLIgFRCRKaqaAukKEkNRc9Av4jH3x441w+0TT1gNKkdwKWoOJjK+5iTshnFMAvtIGpqpuZqpvxSlTHn8B3yFZazaALylmZoFTMLGI5ps4GJgCrAZu5m/w3udBdwQqzLlcTY29ifhfwzTSOAIEUmsf0cpUdXpWJHnG4HJwC+YRbBVrMqUxzOY4tsIG//nRKRt9EGe1fYr4GtgF6AplrnRkWi8hBTT6tRh8+bNgVOm/v57FfPn/0LVqq72SATfYLUAHeWBN96A/fZzypTDEcG6dXDBBVZF4EJf02A5ykqiFaqvU8HdLwH0wjLc9QbOA9BM/RJLg/4B5g63zXtcppm6Hss0tzfQSDP1PsxaVV0ztUTucp7i9633SIz5MXZGYa6Nx/osxw6ISGUR+RdoqaovqOp1qnqtqr5YklTvnovgacAdqrpBVScAnwDnFnB4P2CJqj6qqhtVdYuqTovH+TiKYeFCZgLtv/2Wm266yW9pduDRR18DOrHHHrOolKxy68GnL2bxLRYRqSciI0Rko4gsEJFCrVoi0lJERonIehFZKSIPxU1iH+jbty99+/b1W4yiWboUfvkFTjqp+GPjQEqMSTkk6PMwiNfF+PG23vfss5CRVB+AshPE8fSThPx0i0gLbOU/qLEzCUFCchbm+iXAxZqp+VKGa6a+B7znHXu+ty1bQtIRy4RYFYsnGKuZGpkEI1X5CVgDHAe8768o+VHVLBHJoohg+BjZC8iJKgvwG+bSF81BwN8i8hlwADADuNKzlDkSycKFtAZ+u+Yaql96qd/S7MDuu/cDmtClS8UzT0UU+N2+CbP21sPKV8RCpJW4AzBaRH6LtjRHWImfweI7c7A5nLJ06NDBbxGK50dzi6Jbcry/U2JMyieBnodBvC7GjIG0NDiyoDuGgBPE8fSTRK2FHuE9j0tQ+4FDQlKZPKUI4EUJyfuaWXA6YM3U7Ii3nwM7e68/lpA00sz8lj0JSTWsztSRmBvl+ZqpBbkQBgZVzRaR8cDhfstSCE8Bt4hIf9V8/4+SUBNYG7VtLVCrgGObYpbIk7H4woHAxyKyt6puizxQRAZg6dupUqVKdDuOkuK5/O134IHQqpXPwuzInDl1gT4VLmW6x/Co97lYxtVxqvpXcR+OsBK3U9UNwAQRCVuJb446vB+elThiW0pbiW++OfoUA8g339jy+8HJiTFLiTEpZ6TCPAzadfHLL/Dcc9C3L9Qq6I4h4ARtPP0mkQrVauCPBLUfRNLI70IZUw0oL9lF/YhNlbA07dGuktcAJ2AJLk4GLgMeK4O8yWI80FNEdlHVf/0WJorDMQV1sYjMIGrMVfXkGNrYgGVljKQ2BdQKw+LiJqjqZwAiMhi4HdgHs2pF9j0UyyRJRkaG366bKc+0mTO5BHh60yY6+S1MFJ9//jljxiwHzquQClW4wG8ZcFbioPPLL9C+PVSv7rckjsTh5mEJUIUrroCqVeGhlHY6doRJVAzVYdiNY3lwW4sJz1p0K3mxUXdqpqXiLuZzucBz2M38Bsz6tLSAQ3chz/pV1XufCoz3ng/1VYqCWYnFtH0KLMQSikQ+YmEWUElEIs0e7YGCklqEMwk6kkzO0qXkAPX32cdvUXbgpZdeZt68+wAqpEIVRkSOFpErvMfRJfhoSa3EfTF39CZY/cGPPRekgmQaICKTRWTyihUrSiBS8jjttNM47bTT/BajcFasMJe/rl2T1mXgx6R8kpB5GM85GKTr4pdfbFrcey/suqvf0pSOII1nEIi7hUpEamErFW8Ud2x5QzN1sITkJcz3f2cJSZ2IOlVFcRWWqKIqML6QZBLPYgkuBHOJGRreISERLOHF8dgX02sBSEgRZiqWyXB/THkJDKraPw5tbBSRD4G7ROQizG+8F3BIAYcPA64TkWOwDGZXYUrdn2WVw1EEW7bQcdUqJlaqBAcc4Lc0O3DffW8zfPgKdtkFGjYs/vjyhhdz+yGwL7DE29zEi606TVXnFdNEQqzEkN9S3Llz56B8p+bj4CS50ZWazz+35fhTT01al4Efk/JJwr01yjoHg3RdDBli1qmzfStsU3aCNJ5BIBEuf+E11qkJaDtuSEjSEpT4oQl5RWGzJCSdNFMXFPUBT/n5sZhjZnqFh/cG/tBMXROxuw8WD1QDcwvchJf8wm9UdYuI/IkpGoFARNKA67AsjJUxq+BdqgXHu8XAZVj83HLMsnWpqv4uIs0wt9c2qrpQVWeKyDnAECxm7hfg5Oj4KUd80UWLAJCmTSFg6dIBfv89HdilIlunXgLWYRk3FwJ4c+c14EWsoHpRbLcSq24va1GUlTiI1vJSc30SCuWWiU8/hUaNoGPHpHUZ+DEpnwR+HgblulizBl5/Hfr3h7p1/Zam9ARlPINCIlz+2nvPO6z2BQEJyZ4Skr8xZeddCUm877AGYibu2sBOwAXxalgzdZVm6g9RyhSYi2UN73UNCraO+Mlv5F0XQeAm4AHMzXIpcC1lyEipqqtUtbeqZqhqs3BRX0+Jqhm+SfS2faiqe6pqbVXtWsJ6V45SMG3cOOoCYwMY9Tt16lQeffRWYDntgzRDksvBwFVR82QhFjda7BKoV5ojbCXOEJFDMStxQV4Sw4CDROQYEUkHrsZZiRNHdrZZqE44wVKZOcotbh7GzldfwbZtcG5BxVUcKUsivuHaYH6z/ySg7XjwBLAbdu4nEP/CkUvJK+C7DVgW5/YL4mPMKpWDmdJHJqHPkjAd2DVABX77YQGwx6pqL7x6YSIivkrlSAjV//uPs4HdW7TwW5QdmDFjBhMmPARsq8gWqoVAQdkKqgGLYmzjMq+N5cDbRFiJRWSDZ/FCVWdiBc+HYImTepHiVuKTTz6Zk0+OJX+OD/z0ky3Hn3BCUrsN9JiUbwI9D4NyXUyfbusL++/vtyRlIyjjGRQS4fLXEpinGpgYnmiqkV+RrBbn9h/C3NsOw9KhvxDn9ndAM/UrCcnxWNa67zRTxxf3mSQTjoFoQTBcQXfHig6H+QKLTWsCLPZFIkfC2GvbNp4BaNvWb1F24JxzziEU6sucOekVWaG6DnhSRK4CJnnbDgAe9/YVi6quwhZGorcvxILlI7d9iK2klwu6Jam2U6n47DOoXBm6d09qt4Eek3JM0OdhUK6Lzz4zZSrVk14GZTyDQiIUqhYU7DMbFG7EagBVxVJ1john4179qF7xbDPGfr8Dvkt2vzESVqhaEgyFqgpmyQNAVVVEtpGXRdFRTlBV3h83jjMAadbMb3F2YONGmDu3EpUqwd57+y1N8hCR9eTPeFkN+B5LuAO26JWD1d6LDnR3RDBw4EC/RSic776zC7tOcp0TAj0mDt8IwnWxYAFMngz33++3JGUnCOMZJOKqUHkuUy3Iv/ofKDRTp0hIdgEaAIsDlA2vPDPfe27pqxT5uV9EItPaVwEyRWR7VkZVvSr5YuUhIj2BnlWrOj2vtPzxxx/0+eYbngXGBVChuuqqO1Hdk332OY8KVr/5SlwJgfKNquWGHjDAb0kcjsAwZow990r6srsj0cTbQlUbW+UvqI5SYNBM3UJwY7zKI2uwuLKdfZYjzHfAHlHbfgAi77h9v9lT1ZHAyIyMjIv9liVVadu2Lf+1akXV2bMhgArVmDGjgYPYb7/z/BYlqajqq37LUF44/vjjAfjss898liSKOXNg0yZo1ar4Y+NMYMfE4StBuC6++w5q1IDWrX0TIW4EYTyDRLwVqnAVlZVxbteRwngudSswq6DvqGpXv2VwJAlV6i32wuICqFCdfPIUnn5aK1z8lIjU8+ItEJF6RR0bPs5RMD17xjuvUpz49FN77tEj6V0HdkwcvuL3dbF4Mbz9NlxwQflIeun3eAaNeCtU4Rtmp1A5ollJQBQqR8UgJyeHs08/nRs2baJTnTpQO3ihONOmAUhFTJm+QkQaq+py7LuhIIuweNuDVzwsQFx22WV+i1AwP/0Eu+0GLZPv6R3YMXH4it/Xxf33myfsTTf5Kkbc8Hs8g0a8FaqdvOc1cW7XkfqsBlK4hJ0j1Vi7di3jxo/nSKBTAK1TY8d+zY8/vgoMZr/9guINmzSOBsKWp6P8FMSRALZuhXHj4LDD/JbE4QgEWVnwxhtw+ukQwAoejjgQb4UqHD2/Jc7tOlKfrUCG30I4Kg716tXj35degt69A+nuN336ErKyvqF+/Qx22cVvaZKLqn4LICKVgLbAR6q6xF+pUpNjjjkGgDHhaPcg8Omn8O+/cNZZvnQfyDFx+I6f18WoUbBuHfzf/yW964Th5ll+EqVQbS3yqBgRkXGQmJiXRLadrD5SbHy24tKSO5LNwoX2vNtu/spRAHvueQ5wDu3bQ0UtKa2q2SLyMDDab1lSlT59+vgtwo4MGwYNGsBJJ/nSfSDHxOE7fl0X27bBPfeYZao81cF18yw/8VaoLvCeXxaRH1X16ji3nzJ4CkmH8OuKmghBRB7HxqENial75nAUyHfffcfrL7zA/UDDAFqoLH6KCpeQogB+AjoBC/wWJBW5+OKAJQFVha++MutU5cq+iBC4MXEEAr+ui6eesgoC774L6eUoItTNs/zEO8+I76mmHYFFyCvaGRhEpJGIXC8iz4lIA2/boSLiu5eziPQUkaE5OTl+i5KSLFq0iE9nz7YvuYApVKrKk092B952ChW8AAwWkatF5HAR2T/y4bdwjhKycCGsXw8dOvgticPhO9u2weDBcPDB5cvdz7Ej8VaoXvSeL67I1inY7io3FZhaUa1TAKp6tXf+PxGwFWgR6QTMBM4GLsTqqAF0B+71S64wqjpSVQekl6clrSRy9tlns6RjR+pD4BSqDRs2sH59FrDVKVTwFtAceBT4Fpgc8Zjkn1ipQdeuXenatavfYuTx5Zf23LmzbyIEbkwcgcCP6+LXXy2c8Oqrk9ptUnDzLD/xdsHa5j3HJVYmkYpIMpScRPeRYuNTlbzrIygMBp5Q1UwRWR+x/Qugv08yOeJJOIYqYApV5cq12LJlHGlp0Lat39L4ju/W4FSmX79+fouQn3HjoEkT6NTJNxECNyaOQODHdfHTT/Z86KFJ7zrhuHmWn3grVJu85xpxbteR+tQANvstRBSdMMtUNEuBRkmWxRFn7gmFyFq8mFBamt3gBYjff4fcXNhnH6hWzW9pfGd34AdVzY7c6GUAPISAWbaDRuBuaiZNgi5dfM20ErgxcQQCP66LESOgVSvYddekd51w3DzLT7xd/sIFfevHuV1H6tOA4BV83kzBtbH2BpYnWRZHnJk7YwazwZQpn4LjC2PgwP7Axey7r9+SBIJvgHoFbK/j7XMUQVZWFllZWX6LYaxZA7NnwwEH+CpGoMbEERiSfV1MmQLffgsDBiSty6Ti5ll+EqVQNYhzu47UJ4gK1cdApoiEXVRVRJoDDwIf+CaVIy68cuWVvAWBTJm+dWsToDEdO/otSSAQCk5oVB/YmGRZUo7u3bvTvXt3v8Uwfv7Znn1WqAI1Jo7AkOzrYtQoSEuD8mrIcfMsP/F2+QvfMDeMc7uOFEZE0rEV6KApVNcDnwIrMJfECZir3/fA7T7K5YgH4fip3Xf3V44CqFHDcp5U5ERoIvKJ91KBYSISWb8wHWgH/JB0wVKMiy66yG8R8njnHahVCw45xFcxAjUmjsCQ7Oti7FjYd18ryVYecfMsP3FVqFR1q4isBIIVAe7wm6bYKvQivwWJRFXXAYeJyNHA/pjF9hdVdWW/U5wZM2Zw9aBBPAK0D1hCipycXKZONeeAiqxQAf95zwKsJn+M5TZsgeOFZAuVapxzzjl+i2BkZcFHH8Gpp0JGhq+iBGZMHIEimdfFtm3w449w7bVJ6zLpuHmWn0QUWp2Hy9rkyE/4epjnqxRRiEh7Vf1NVb8GvvZbnmhEpCfQs2rVuCTNrFCsXbuWtevWWXacgClUt976MOvWPcfOO//JLrtU91sc31DV/gAi8jcwWFWde18p2LTJckHVqOFzLqhx4yyGqlcvf+UgQGPiCBTJvC5mzYLs7PJduN3Ns/zEO4YK7Ka5ZQLadaQu4eshUAoV8KuITBeRG0Wkqd/CROPqUJWeQw89lEmdOtEKAqdQpae3AU6iY8eKq0xFcTcR1ikR2UVELhIRf/3GUoQTTjiBE044wW8x4L33oGZN6NHDb0mCMyaOQJHM62KSV0GvPCcecvMsP4mwUM0FzhCRqqq6tdijHRWBvYAs4B+/BYlib6yo70XAfSIyHngDGO65AzpSmcDWoOoJ9Kzo7n6RjAY+B54QkZpYQd8MoKaIXKiqr/sqXcC59NJL/RbB3P0+/NCsU9X9XygIxJg4AkeyrgtVePJJS5ferl1SuvQFN8/ykwgL1TQsoLhNAtp2pCbtgT9UNVD5NVV1lqpmqupewKHAdOA+4F8Rec9f6RylJScnhzZt2vDC3Lm2IUAKVVZWFlOmmDHGKVTb6USey+2pwDpgZ+BiLHFMsYhIPREZISIbRWSBiJwVw2e+FhH16l2lLH369KFPnz7+CjFmDKxaBWec4a8cHoEYkwpI0Odhsq6LL7+EqVMtfiotEXfZAcHNs/wk4l891XvukIC2HalJB/Kui0Ciqj+r6lVAL2AmcFqsnw36j0hFY8OGDXRo04aGW7eaC9JOO/kt0nZ++uknRo+uBYxzClUetYA13utjgRHe4svXwB4xtvEMlsiiEWZ1fk5E2hZ2sIicTWI8NJLO2rVrWbt2rb9CvPOOzbMAuPtBQMakYhLoeZis6+Kxx2CXXaB//4R35StunuUnEQrVXGAT4CqsOBCRRsAuwG9+y1IYItJSRG4XkT+xzGKrMTfAWAn0j0hFo06dOrx1xx30BrNOifgsUR7VqzcGbqVatba0auW3NIFhIXCoiGQAxwFfedvrYb8lReJ97jTgDlXdoKoTgE+Acws5vg6QCdwYB9l9p1evXvTyMxGEqi3J9+gBAUmg4/uYVEBSYR4m47pYvhy++sqUqYBMh4Th5ll+4n5Tp6o5IjIJcAHFDjBXOoCffZWiAETkckwBOhCYAbwCvKmqi0vQRvhHpJ2qbgAmePV1zgVuLuD48I/IecCPZT4Jxw7k5uaSFtAaVOvX7wncRfv24HKNbOdRLHZxA7AA+M7bfgTmhlscewE5qjorYttvwJGFHH8f8Bzwb6mkDRhXXXWVvwL89Rf8+y906+avHBH4PiYVk8DPw2RcF/ffD7m5gfF+TShunuUnUavk3wG3iUgtVV2foD4cqcHhwBYs0Dxo3Ay8DVyiqrHcuBVE4H9EKhonn3wy1Rcv5n0IVPwUwJgxc4HmdOjgtKkwqvq8iEwBdgO+UtVcb9dc4I4YmqgJRPudrMVcCfMhIp2xRZ6BWH28IhGRAcAAgGYBu5bCnHrqqf4K8LUX/nb00f7KEYHvY1IxScg8jOccTPR1kZUFw4bBYYdVjBhZN8/yk6hwufFe285K5TgC+ElVt/ktSAE0U9Uby6BMQel+RJ4qrlERGSAik0VkcnZ2dhnEq3h069aNQ+vWtTcBugnevHkz99/fGghViB/bkqCqk1V1hGflDW8brarfx/DxDUDtqG21gXyLeSKSBjwLDFTVmCaVqg5V1c6q2rlhw4axfCTprFy5kpUrV/onwDffmCW4RXDKT/o+JhWThMzDeM7BRF8XU6fCypXwv/8FytM8Ybh5lp9EWah+xNJkdwe+SFAfjoAjIg2whBR3+SzKdkRkf2CqtwreUYr41lPVX2JoslQ/IkX16/U9FBgKkJGRoTHI4fC45ppr4GfPwzRAChVA06avsGjRfhVeoRKRa4FnVXWL97pQVPXRYpqbBVQSkVaqOtvb1h74Peq42kBn4F1v/oXNhP+IyBmqOr5EJxEQTj/9dADGjRuX/M5zc02h6tUrUHeQvo5JxSXw8zDR18WHH0KlSnDccQlpPnC4eZafhChUqrpBRMYBJxJj2ltHueR4zFI52m9BIpiMJclY7r1WoKA7ASXvi74oAv8jUpHIyrLM/JUDWIMqLa06S5eeS1oa7Lef39L4zpXAa5g78JVFHKdYjFXhB6huFJEPgbtE5CJsEacXO3pIrAWaRLzfDZiIpW1fURLhg8R1113nX+fff2/p0o86yj8ZCsDXMamgpMI8TOR1oQoffAAHHAANGiSsm0Dh5ll+EplpbBRWqHFPVZ2TwH4cweUkYBkQi6UnWbQg70u7zD4qqfAjUpEYO3YsvXv3ZkLt2nSGQClU77//G9nZ9dhnn92oUcNvafxFVVsU9LoMXAa8jC2U/Adcqqq/i0gz4A+gjaouJCJ2UUSqeS+XxeoCGER69uzpX+dPPQXVqpmFKkD4OiYVm0DPw0ReFwsXwuzZcPnlCesicLh5lp+EK1TAyRSzwugof3hfkj2A4RFB5r6jqgsi3wKLVHUHlzrvByBWAv0jUpFo2rQpV1x2Ga0ee8xckHbd1W+RtnPjjecAjenS5Uu/RSl3qOoqsEz5UdsXYnGOBX3mbwq2TqcU//5rXyu77LJL8jv/4Qfo3RtqR3s9+4uvY1KBCfo8TOR1EfYyP6QCZQ5w8yw/CVOoVHWel7npTJxCVRE5HnNze89vQYpgPtAYU4S2IyL1vX0xpWIL+o9IRaJdu3YMvuoqq6zYpAlUruy3SNvZf/9XGD06mwMO8FuS4CDm/3oeVnqgJbbIMQ94Hyth4OIHi6Fv376AD3EMixbB4sXQMXglJ30bE0egSeR1MWGCxU+1LbQCZfnDzbP8JLq46FvAIyKyV1RaaUf552xMURnrtyBFINgNXDQ1sdgOR4qxcOFCdvv7b9NUA+TuBzB/fmcAp1Dl5wNsMWK69xCgDfA6cAqmaDmK4Oabdyh3lxxeftmeA5g62bcxcQSaRF4XH39s3+0VyZ3bzbP8JFqhegcYDJwD3JngvgKFl5RjO6ra1R9Jko+I7ITFTw0NojubiDzpvVTgfhHZFLE7HegCTE22XI6ysXTpUnbffXce6tOHGyBQCtULLwzjjz/aUblyB9q391uaYCAiZwPHAsep6ldR+44DPhCRs1T1LV8ETBF69OjhT8dffw1dusCee/rTfxH4NiaOQJOo62LtWouhuu22hDQfWNw8y0+i6lABoKpLgC+BC0UkOL43jkRzHlAVeNVnOQpjX+8hwD4R7/cF9sSSaPTzS7gwItJTRIbm5OT4LUpKUKtWLZ599llOaeLl/giIQrVt2zauv/5q4Bn22w+qVvVbosBwDvBgtDIFoKpfAA97xziKYNGiRSxatCi5nW7YABMnwkEHJbffGPFlTByBJ1HXxZIlULMmeB5wFQY3z/KTaAsVWO2dj4GewIdJ6C8QVCSLVCReTMSlwM8x1nFKOqp6FICIvILVhVrns0gFoqojgZEZGRkX+y1LKlCzZk0uvfRSuOgi29C8ua/yhKlSpQrXXTebzMzNzt0vP+2B24vYPxq4JEmypCznnnsukOQ4hu++gy1b4Pjjk9dnCfBlTByBJ1HXxdq1cOKJgcvNknDcPMtPMhSq0cBCLBNahVGoKjBHAXsD5/stSHGoan+/ZXDEhy1btvDll19y4IEH0mjePNvYsqW/QkXw++91gbpOocpPfWBpEfuXAvWSJEvKcvvtRemkCWLUKAsWCVj9qTC+jIkj8CTiuti0CbZuhcMPj3vTgcfNs/wkXKFS1RwReRZ4QEQ6quqvie7T4SvXAyuxLF2BR0SOwjJRNgOqRO5T1aN9EcpRYubOnUuvXr148803OWv+fNsYEIXqxhtv5JtvDgJOdQpVfioDWUXsz/aOcRTBMccck9wOc3Nh9Gg45pjA+q8mfUwcKUEiroslSyAtLXCl2JKCm2f5SYaFCmAIcCtwC/B/SerTkWREpCOWLv02Vd3stzzFISL9sGtzBNAVc03dCyv4O8w3wRwlZo899uDnn3+m5W67WXSwCOy+u99ikZ2dzbvvDmfFiqrUrn0qbdr4LVHgiE4KE0kFypdVeuZ5FtmWyVpAmDrV5tigQcnprxQkfUwcKUG8r4uNG2HZMqhfH5o2jUuTKYWbZ/lJikKlqmtF5GngFhHZW1X/Ska/jqRzK7AOi5tLBa4HrlDVF0VkPXCLVz/taWCDz7I5SkC1atXo0qULzJtnK+hNmwZi9bxSpUoMHjyP//u/HA46CNJjqmxWYfgO2COGYxxFcMEFFwBJjGOYOtWeA+zjlPQxcaQE8b4upk+H7Gxo2DAuzaUcbp7lJ1kWKoDHgauBTMzFylGOEJH2WM2YB1R1jc/ixEpLYIz3eit5RXifBsYBrshCijB69Ghq167N4Vu32oYArZj98ANAOoce6rckwaKiJu6JN6FQKLkdTp1qKc0CNMeiSfqYOFKCeF8XTz5p7n516sS12ZTBzbP8JE2hUtUVIvIYcJuIPAL8A9R2BX9TFy+j32HABOBBYA2W6jhV+A+o5b1eDLQDpmHB8tX9EspRcm699VZ23XVXDu/d2za0aOGrPACqyvHHH89ff50CXMIhh/gtkaM8cuSRRya3wx9+gPbt7U4yoCR9TBwpQTyvi8WL4b33oMO1UKVK8ceXR9w8y08yLVQAD2FpcN8GGgG/Au4/krp0B77A6jbtD1yvqqv9FalEjMcKi04H3gOeFJHuQDdgh9o4juDyxRdfkJ2dDc88YxsCsHq+YcMG0tOrsGhROmlpcOCBfkvkKI/MnDkTgNatWye+sxkzYMoUePTRxPdVBpI6Jo6UIZ7XxahRkJMDO+9c5qZSFjfP8pNUhUpV14nIWKAPMBlw9XVSm6+BgcCjWEau5/wVp8RcAVTzXt+PncOhmHJ1j19ChRGRnkDPqgGIBQo6u+yyi70IUMr0WrVqceONn/Dpp9CxI9SqVfxnHI6ScsklVqorKXEMb7xhgYDnBLveclLHxJEyxPO6eO456NChYn+vu3mWn2RbqAAuALoAO2NuVo4URVWzRaQSkA7coKqFZesKJKq6KuJ1Lua2GBhcYd/YWLVqFW+//TYnnngizcMp0wPi8vf99wLg3P0cCeO+++5LXmeffAJHHx34KPykjokjZYjXdbFwIfz2Gzz4IEyJS4upiZtn+Um6QqWqm0TkXCzu5k7gpmTL4IgPItIUCGHFmx/xWZyYEJGYC4VGKlyO4DJz5kyuuOIKWrRoQfMAWagOOuggli07FHjUJaRwJIxDkqWtz5sHf/0F//tfcvorA0kbE0dKEa/rYsQIe+7VC6aMi0uTKYmbZ/nxJapUVb8HXgauE5HOfsjgKBteQornMKX8SlVVn0WKlZXAimIe4WMcKUCXLl1YunQpXfffH/77D6pVg7ALoE+oKocf3pWlS/cF4KijfBUn8IhIIxG5XkSeE5EG3rZDRcR/U2PAmTFjBjNmzEh8R195YaXHH5/4vspI0sbEkVLE47rYtAnuvBOaNIG99oqTYCmKm2f58cPlL8z1wHHA6yLSKRUKwTrycQFwEjBQVef7LUwJcLe25Yz09HSLofrtN9vQooUV9vUREaF37wd55BFo08Z3/S7QiEgnYCwwH2iLZQpdiSW92Qs4yz/pgs8VV1wBJDiOQRVef90qmLZqlbh+4kRSxsSRcsTjuvjxR1i3zlKm+/wz4ztunuXHN4VKVVeLSH/gS+A+4Bq/ZHGUDG/V+HEsKcXT/kpTMlT1W79lcMSXMWPGMGvWLC4Lay0BcPebNWsWY8a0AoRu3fyWJvAMBp5Q1UyvwHaYL4D+PsmUMjz8cBIqVfz5p6VLHzw4Je4ikzImjpQjHtfFmDGWl+WUU+IgUIrj5ll+/LRQoapficgzwNUiMkZVR/spj6N4RKQq8A6QC/T3kjmkJMXFU7kYqtTg3XffZdSoUVx21VW2wWc/jA0bNtChQwcaNLgGuJejj/ZVnFSgE3BhAduXYuU1HEVwwAEHJL6TsWPtOUXuIpMyJo6Uo6zXxaZN8OKLcNxxULt2nIRKYdw8y08QKvNdj9WjekNEmvssi6N4BmNZGvup6kK/hSkjxcVTOVKA559/nj/++AO8mhj4XBNDRHj88edYuvRM0tKga1dfxUkFNgN1C9i+N7A8ybKkHFOnTmXq1KmJ60AVnn8e2rULRPbMWEj4mDhSkrJeF0OHwsqVcOut8ZMplXHzLD++K1SqugU4w5PlfRGpVsxHHD4hImditZseUdURfssTB44Cjo54HAfcDCwAzvVRLsDqUInI0JycHL9FCTRpaWnUrVs3MApVRkYGzZufT3Z2O/bfH3bayVdxUoGPgUzP+g2g3uLag8AHsTQgIvVEZISIbBSRBSJSYNyViJwvIlNEZJ2I/CMiD3mlH1KWq6++mquvvjpxHYwcCb//DmedlRLufpCEMXEUSNDnYVmvi9dftwLtLmur4eZZfgLxQ6Kqc0XkPOyH9RUROTuVXcnKIyJyEJaZcTxwi8/ixIVC4qnGiMg84CLgrSSLlA9Xh6p4Jk6cyOuvv87tt93GLgFRqH799VeGD98Z2NXFT8XG9cCnmFW4BlZSoxHwPXB7jG08A2zzPtcBGC0iv6nq71HH1QCuBn4GGgKfeP0/UKYz8JHHH388cY2rwh13wB57QNilNgVI6Jg4iiLQ87As18V//1neI2edysPNs/wEQqECUNVPRORmbELNAe7wWSSHh7da/DGwBDhNVbP8lSjhTAWO8FsIR/HMnDmT119/nbsHDoTVq61svc8p9c4//3zmzm0KfMqJJ/oqSkqgquuAw0TkaGB/zFvhF1UdE8vnRSQDOA1op6obgAki8glmZb45qq/nIt4uFpE3SfHMnx06dEhc4yNHwrRp8PLLkJGRuH7iTELHxFEgqTAPy3JdPP885OZa7SmH4eZZfnx3+YviIeAl4HYRuchvYRwgIvWx1eMqwImqWq5ji0SkJrZytshnURwxcO6557JmzRrqLltmG1q39t0t6fbbh7Jp053UrQsHH+yrKCmBiLQHUNWvVXWwqj4UqzLlsReQo6qzIrb9hqVgL44jgOjV85Ri0qRJTJo0Kf4N5+bCbbdZkpdzffeALhEJGxNHUQR+Hpb2ulCFV16BI46Azq5y6nbcPMtPYCxUAKqqInIpsCswVEQ2qOo7fstVURGROljq4pZAD1X9y2eR4oqXojmyILFgrggbgbNL0E49bCHgWCzRxS2quoO7oIicD1wFtALWYS6Ft6pqdmnPwWExVEGJnwL455+DAKt/WilQ37CB5VcR+R14A3hLVf8p4edrAmujtq0FahX1Ia9sR2fMvbewYwYAAwCaNWtWQrGSww033AAkoBbM7bfDjBnw1lspdyEnbEwcRZGQeRjPOVja6+Kbb2DOHLjppjJ1X+5w8yw/gfuWVNUsETkN+AzL/LdJVT/xW66SIiLjIt+rald/JCkdnvl+FNAe6K2q4/yVKCFcEfU+F4vj+FlVV5egnUD7jZdXvv32W+666y6GDh3KHrO8RVGfFar777+fjz46Bdibnj19FSWV2BtbwLgIuE9ExmPK1XDPHbA4NgDRSYxrA+sLOBYAEemNzbtjVHVlYcep6lBgKEDnzp21sOP85OmnE1AKcP16eOQROPts6Ns3/u0nmISMiaM4EjIP4zkHS3NdqMLNN0OjRnDmmWXpvfzh5ll+AqdQAajqJhHpCYwBhotIX1X90G+5KgqeZWoUcAjQt7zWB1PV18raRir4jZdXNm/ezLp166hXr54VHgVfFaqNGzdy++23Azmkp9/Occf5JkpK4bkIZWKZ/g7ElKv7gKdFZJSq/l8xTcwCKolIK1Wd7W1rTyEuRCLSA3gBc2GeHpeT8JF27drFv9Hhw2HbNrjgAt9daEtDQsbEURyBn4eluS5mz4ZJk2x9IYXCCJOCm2f5CaRCBRaoLCLHYvE774lIf1V9w2+5YiXVLFJhvJipL7AvwjNV9X2fRUo4nsvezkTFFKrqHzF8vDC/8SNj+GzKx2/4SY8ePejRo4e9mTbNnvfbzzd5MjIyGDJkLQMGZHPkkVC3oMpKjiJR1Z+Bn73FhiHYYkVxn9koIh8Cd3mxtx2AXtiCUD68xBdvAqeo6sR4yu4XP/zwAwCHHLLD6Zael16yulNHpeZ6T0LGxFEkqTAPS3Nd/O79Qh9+eCIkSm3cPMtPYBUqAFVd4ylVHwOvezf7T6hqIF0vUh0R2R1TYPfA3PzKpWUqjIh0BF4B9g1vwmKqws/pMTSTcL/xKlWqxCBGBWbtWliwAKpVgz339FWUDz+sCUCfPr6KkZKISEvgLMxCtSdWoiHW5ESXYWUdlgP/AZeq6u8i0gz4A2jjFSK/A6gDfCp5lpfxqnp83E4kydzq5XGOWxzDnDnw/fcQCqWkdQoSMCaOWAn0PCzNdfHVVxZCuM8+CRIqhXHzLD+BVqgAVHWDiJyIrWY8BrQSkYEukD++iEgXYCRQFUtAMc5fiZLCy8BiYCCwjPwJKmIl4X7jGRkZbgGhALp27UqPHj24+bDDbEPbtr4Gzz/yyFC++CKdSpUu5IwzfBMj5RCRyzEl6kBgBrbI8aaqLo61DVVdBfQuYPtCbNEj/D41TS5F8Pzzz8e3wWeftXl0ceqWv4v7mDhiIujzsKTXRVYWfPYZdO0KNWsWe3iFw82z/AReoQJQ1S0icgZ2E3oD0FJEziph4gBHIYhIH+BVYClwZHnL5lcErYAzVHVOGdoIvN94eURV2XXXXWnYsGEg3P0Ahg59F9WqHHvshTRo4KsoqcbNwNvAJW5OlJzW8Ywb3LABhg6F00+Hxo3j126SieuYOMoNJb0u7rwT/v4bnnwyMfKkOm6e5SclFCoAVc0FbhSR2VhWtSkicrqq/uKzaCmLiFQBHsZSeX+P+TOX6zpTUUwA9sEKSZeKVPAbL4+ICG+++aa9+d//7HnffQv/QBLYeeexzJq1zWWCKjnNnBt36fn2228BOPLIWMI2i+G++2DjRktGkcLEdUwc5YaSXBfz58PgwdC/Py5jayG4eZaflFGowqjqCyIyHXgP+EFErgaedz/IJcOLl3oHOAh4HLhRVbN8FSr5XAi86MVuzADynb+qfhdjO4H2Gy/3TPeMGj5aqObMgQkToHr1KvTq5ZsYKYOI7A9M9RbKOkoRsTpu0axoMjMzgTjFMXz+ORx6KBxzTNnb8pG4jomj3FCS6+KhhyAtDe6+O8FCpTBunuUn5RQqAFX9yftBHgY8B5wkIhep6r8+ixZ4xO5czgfCRuz/qwiZ/AqhFWZRKijBdaxJKQLvN14e+eqrr7jsssv46MMPaRsAhSozcyLwCieffAe1ajXxTY4UYjKwC7YIMZm8ZDDRxDwPKyovv/xyfBqaMQN+/dWql6ZoMoowcRsTR7ki1uti9WoYNszKsO26a4KFSmHcPMtPSipUAKq6UkROwIqzPgjM8IKb31NVFZH9gEUVPc5KRA4HJnhj0hhTQHsB3wH9VHW+rwL6y/PAWOB+Sp+UwuEDtWvXplOnTtRbtcqKkDZtCg0b+iLL5s3w8cfzgHe44IKQLzKkIC2wItrh145S0rJly/g0dPXVKZ+MIkzcxsRRroj1urj1VvteHzgwwQKlOG6e5SdlFSrYHlf1pIh8CbyOubD1F5FrgOHYTXKFrR4gIsdjadDPFZG6wD1YFr/rgce88avINAVOUNW5fgviKBkHHngg77zzDoRXyA4+2DdZ3nsPNm7sS6dOfeje3TcxUgpVXRD5Flv82mFBw3ObdRTBmDFjADimLG56H38MY8fCbbfBHnvESTL/iMuYOModsVwX06bBkCEWmtu+fbIkS03cPMtPSitUYVT1LxE5BItluQeYhp3bLb4K5j9fADOx+J7KwJfAFRHZ6Co6XwGdgEAqVCLSE+hZtWpVv0UJFOvXr2fLli2W4e+nn2zjQQf5IosqPProUqA+l19eJdU9pfxiPtAYc//bjld3cD7O5a9I7rnnHqAMNzXZ2XD99dCqFdxxRxwl848yj4mjXFLcdZGba1MgLQ288CBHEbh5lp9yoVABeHWpnhSR4Zg72x7AsyLSCHihoiVcEJG2WJr51kAOcCMw2CXvyMfnwCOee+h0dkxK8aEvUuX1PxIYmZGRkfo+OHHko48+4sILL+TPP/9kD58VqlGjspg27TiqVGlBnz4f+yJDOSBcSDuamsCWJMuScrzxxhul/7AqXHWVZVX56CMoJ4s3ZRoTR7mluOvitdfgk0/g3nthl12SJFQK4+ZZfsqNQhVGVZcAe4rIYcC9WIr1a0XkAeANVd3qq4AJRkTaYXVdzsSKzt4CDFHVNX7KFVCe9Z5vLWCfC4YPKPvvvz+DBg2ief36FkhfuTJ07Jh0OVTh3nsrA7dx3nl1qVEj6SKkNCISToyjwP0isilidzrQBZiabLlSjd122610H1SFe+6B556Do4+Gk0+Or2A+UuoxcZRrirou1q+3mKnGjeG665IoVArj5ll+yp1CFUZVJ4hIV+BEIBMrpjpIRB4FXi5PCoaXue9QLDaqF7AReBR4QFX/81O2IKOqaX7L4Cg5bdu2pW3bthbzoQodOkD16kmX48YbX+fnn0+kYcM+PP540rsvD4QLhwlWD25bxL5twC/A4GQLlWp8/vnnAPTo0aNkH3z5Zatc2rmzWafKkb9qqcfEUa4p6rq44QZTqkaOLDeG2oTj5ll+yq1CBeC5t40SkdHAMZgl4hHgbhF5E3hWVaf6KGKZEJGawNlY7Nh+wGpgEPCUl8rb4ShX5ObmMnXqVNq2bUvVr7+2jYcdlnQ5Vq1ayxNP3Aps4LrrLiMjI+kipDzhMgIi8gowUFXX+SxSSvLAAw8AJbypWbECQiHo0gV+/NGCRsoRpRoTR7mnsOvi66/hhRfg/PPB1aiNHTfP8lOuFaownmL1FfCVV7/qMuAc4GIR+Q14E3hbVf/xUcyYEJHKQHfgLKz2UQbmFjMAeEtVN/omXIohItcWtV9VH02WLI7Y+PfffznqqKN45JFHuOjLL23jsccmXY53361DVtaVNG16LldemfTuyxWq2t9vGVKZd955p2QfWLoUDjwQli+Ht94qd8oUlGJMHBWCgq6L5cuhXz/YfXd48MHky5TKuHmWnwqhUEWiqr8AF4nIDcC5mIXnIeBBEfkRGOU9ZgQlgYOI1AGOxdwXTwQaYNaoN4HXgB+DImuKEX0rXBnLNrYZyzjmFKqA0aRJE8477zyOO+AAGDAAqlSBI45IWv+TJ0/m0Uef5dNP7wJu4okncLFTcUBEjsLiPpsBVSL3qerRvgiVIuxSkuj5Tz+1aqWbNsHnn/ti3U0GJRoTR4WhoOvi3Xdh0SKzUjVq5INQKYybZ/kpf0tTMaKqq1X1SVU9EGiFxVlVBe7D0q4vFJFhIjJARPYRkRKPlYg8LiKPl+JzdUTkeBG5T0QmACuB94CTsdTnvYDGqnqJqv7glKnSoaotoh5NgSZYlkgXlhpQnnrqKXb76y+Lnzr88KRqNHPmzOWDD0aydm0G3bvDKackretyi4j0Az4DagFdsYK/dYH9gT98EyxFGDlyJCNHjiz+wCFDoFcvaNIEfv4Zjjoq8cL5RMxj4qhQRF8Xubnw4ovQvDl07eqbWCmLm2f5qXAWqoJQ1TnA3VhsVRPgBOA4LO7qbO+wDZ574G/ADKx20Xxggapu27FVADoU1qeXSKIB0AJoCewFtPc+Ey4/nQ1MweK+RgE/eenhHQlCVZeJyG2YAjvCT1lcHaodOffccznxxBPp65O73/r1fdi27f+oVUt47rlyFcfvJ9dj9fFeFJH1wC2qOk9EnsYylTqK4JFHHgGgZ8+ehR/0ySdw6aUWIPLRR7DTTkmRzS9iGhNHhSP6urj7bivkO2yY+y4vDW6e5ccpVFF4addfBF70lJ49gcOBjpiycy62krr9IyLyH2ZFWgmsAbZ6j9aY7vQOZv3KAOpjilRDIDI1mQKzMQXqZeAnTIFyMVHJJw3w3fjv6lDlJycnh99++43999vPbgoBTjwxaf1/9tkirrqqCZDOkCGwxx5J67q80xIY473eitWfAngaGIeVgXAUwvDhwwvfuX49vPEGXHONlRYYMaLcK1NQzJg4KiyR18WwYTBoEOy7L/Tp459MqYybZ/lxClUReK50s70HsN2ytCt5lqUWwM6YgtQAaIopT1WxGwPFlLGtWGzOUqyI7EpgETAPs3TNd8pTchGRU6M3YTFUlwPjky+RoyjS09OZNm2a5bVdvdp+Cdu2TUrf8+fn0rPnseTkHEz//i9z1llJ6bai8B95i1SLgXaY23V98i86OQqgQYMGBe+YNctipFasgPbtLX6qbt3kCucThY6Jo0LToEEDVOHtt+Hccy3J5bhxUMndCZcKN8/y4y6jEuIpWf94D3fTndpEL68oFr/xNS6GKri8/bY9n3lmUrpbsgSOPz6XnJwb2G+/pjz3XFK6rUiMx5LuTMdcbZ8Uke5ANyw7q6MIPvzwQwBOPfX/27vzOCmqc//jny+LIqsLIEQFjUoUcbt4XWOMcePmqjEal7jEXaNgMK4/Y+KKGtcoGncjGr1Ro/Gq0ZCLu8Y9URHRiCK4I8g6MMwMzPP746lmeppZumdqprtnnvfrVa+Z2k6drq6aqVPnnOck74e++grGj4fLLvP5q6+GU07xAbA7iZXOSQjATTf9heuvh/fe25+11vJ/JUUYwrDDiPusvihQhU4rBvYtLzfccAPPTprEA5MmeTSdQw5p82NOnw677w4ff9yNESOO4bnnYtDHNjAG6JH8fhned3QnvHA1rliZKhfjr7sO5s5l/7ffhrfegkmToLLSL9zf/Q5GjCh2Ftvd+PHjgXjQC3Vqa+H008dTUwPXX78/xx0HPXo0v19oXNxn9UWBKkfSEXqEmX2/gH0MONDMokFpCCmpqanhsssuY80112TMmDFUV1ez+IMP6FJZ6SGZNtigTY8/aRIceijMmTOPb3/7Cf72t/1ZffV4nZm27EHIzawWKHg0GElrAnfgNV1z8MAW/9PItr8EzsabEz4EnGRmVS3IenFVV8Mjj/DI9Onw2WcwdSp85ztw4IFw5pmdsiCV8cgjjxQ7C51Sqd6HM2d6gMvKyke49VY4PnolpyLus/riDX0bkzRBkjU1ZW331wb23ybZbv2c5ftJelLSXEmVkj6QdJek/8zaZn9J/ydptqRFkl6VtG8Tef1pcqyV8tGRJCHpZyTje+Wu65esa//RYkM9S5YsYfbs2Ss6vp42Zgx/q6z0laee2mbHrayEc86BvfaCOXNgs83+wvTphzNnzr/b7JidjaQ1853yTPL3QDUeTOYw4CZJK3Wwk7QXHuRiN2B9vB/shal8qPbwxhtw223+RDhoEBx0EP2Afjfe6AEopk6Fu+7q1IUpgH79+tGv30p/3kPbK6n7sLYWHnjAb4epU2H8+H4cd1xcF2mJ+6y+qKFqe2OpH6XqI+BXwP0tTVDSJfibneuBi/DgFusBOwJX4mO5AOyC9wf6NTAX/wP3sKTvm9kLOWl+O9m3M/QLGwNcaWYLcleY2QJJl+Pf2/+1e87CCv369eP666+vW3D77f6qcZNNYO+9Uz+emUeXPvNMmDYNoIozzljApZcezRtvDGerrbZK/Zid2By8z2JTlGzTtcmNpF7AAXjLggrgRUmP4hFZcyMEHgncYWbvJvtejA+Q3v6RBM1g1iyfFi6smz77zHvKz5sHS5fWTfPn+zKArl19ELS99+b+6mro25eDY4TpFe6/3/+9Hhzh29pNKdyHtbUeBv3FF+Hzz33s6rfegi228GHYPvnkfh54IK6LtMR9Vl/ZFKgkPQu8BywBjgaW4+3rbwauwQsLC4FzzeyPyT6bA7/D2+NXAo8CYzMP0pK64s1Ljk0Ocxc5/7yTqH5nAifig75+CFxuZvfkk+/kWCse3JMaqQVm9lVBJ6Bu/+3wAtlYMxuftepj4PmkMJA59tic3S+U9N/AfmQVnCR1B/4EnAvsikcr7Mi2AE5rYv3T+Lkoqs4+DtXMmTMZOHAgq622mlcVnX++rxg3zh8oU1Jb6/94zz/fKwAAhg+Hrbc+j/XWW4fu3X/BDjvskNrxAuB/Z9IyDFhuZh9kLXsbf6GUazPgkZzt1pa0lpl906KjX3ghVHzbC0jH3eFN8aqroaam7vfc+ZoaL0h908ghe/TwCH39+/vvPXpAnz4wbJi3XRo8eEVnvpuSEUnjoabOTUnkmDgn7apo9+GHH8IVV/hoGrNn+7Lu3f12uftuj1/UrRucc05cF2mK+6y+silQJQ7DC0/bAfsC1wKjgInANvhbj9slPYWPBzUReB3YFlgTuA0f4+mAJL3TgeOTaTIeLvsw4F9ZxxwH/CRZ929gB+A2SfPM7PGGMpkU/iikH1YBDsUHu7yxoZVJFMKm9AHm5Sy7BJhhZndJSvNBp1QNAGqbWG94yOai6uzjUG233Xbsvffe3H7bbTBmjBeqdt0VUuoA+8UX/s/2tts8+ATA2mvDr34FJ54IY8cu4NVXP0vlWKE+M3suxeR6k/XSKrGA+uMFNrZt5vc+ePj2eiSdAJwAMGTIkIaPfs89sMMJoC7w1ERYZRV/mltllfpTjx7Qt2/d/E47eVukddf15dlT//6+TR6eeOKJvLbrTOKcFEWb3If53IMVFX4bfu973u911139tsodrDeui3TF+ayv3ApU75rZBQCSrsGrh2vM7Lpk2UV4U7gdgTXwm/YIM1uUrD8BeEbSRmb2IXAqcIWZPZCsHwvslTlYUoV9GrBnVhO5jyVtixewGixQAZ+08PONklSRsyy3n9swYLqZLcvK58nAFVnbDDezlfIgaTQ+TtYfs5btCRyMD1rcWXyG11JNa2T9Fvh4OKFIzIyrr76aoUOHwuWXw/33Q69ecMstLR7S3gymTPFmfY88Aq+/XrduyBAvs40eDZmWUzfffDPNv58IrdVcP6nsoBWNqAD65izrCyzKY9vM7w1ti5ndCtwKsM022zR8MUybBre87L/f1f6jLfSMpn4riXNSFG1yH+ZzD26xhbeWbW48qbgu0hXns75yK1BNzvxiZibpa3zsksyyGknz8IF2NwImZwpTiZfwmonhkmbjg7i+nLV/raRX8f5IAMPxcL4TM8EjEt2BGY1l0sx+1rKPx/Mkb2KyjAAebma/e/H+PpltVwo2IukAvI/UIWY2M1nWH5gAHGpmubVWHdnjwMWSnjCzyuwVknri/dIaKyyHdiCJww491AtT55zjCydMgI03zjuNOXPgX/+CV16pm+ZlXeWrrQajRsFxx3kAiuxWhIsWLaJPnz6ohYW3UJDm+lM1177zA6CbpI3NLPOSZEvg3Qa2fTdZ90DWdrNa3NyvBNxzj7c+P/zww4uck9IR56QoinYfduniU3PiukhXnM/6yq1AVZMzb40s60Jdh+aG5PvaOXOL7sPKtU65x03DkqTmbAVJq+ds8wGws6TuZlYDdf20Gtg2k8YBeK3Uz8zs0axVI/BC5ZNZD45dkn2WAZuZWUcMbXYJ3oxzmqTrgfeT5ZviASsEXFqkvAXgt2efzb6vv86mzzyDwANS/OQn9baprfVuKJ9+6v34Z86E99+H997zac6cldMdPNgLUT/6EeyxR11tlJmxZEklPXv2ZMGCBQwcOJA777yTQw89tM0/a1ipP1V3YGvgJDygTpPMbLGkvwAXSToOr23/Ed5SIdfdwARJ9wJfJulPaHHOS8Dtt98OxENNtjgn7a8c7sO4LtIV57O+citQFWIqcIykPlm1VDviBYb3kmhuXwLb40EIMgEotsVv8EwaVcBQM3u6XXPfuD8BvwBOwfuTNUnSQXiwjSMbGCfrdWDznGXj8OaSo/FAFx2OmX0taUfgJrzglClNGvB34GQzm5VveirRsTfKTc2CJSya+A9m3f0wtz/xEtcwgGtXO5o5h/yCOTO3YvZJXkj66isvQH3+ufftb0zv3rD55rD99j7tsEPD7eoB/vSnPzFu3Dief/55+vfvz7bbbstOO+3Udh82rNBIf6onJU0HjgMavJdynIz3j/0a74Nxkpm9K2kI/nd8uJl9YmYTJV0BPEPdPXh+Gp+jWCZNmlTsLJScOCdFU9L3YVwX6YrzWV9HLlDdi49rcLek8/BCwi3AX7Jqga4DzpH0Ad508GS8xuZLADNbJOkq4KqksPU83i9re6A2adu7Ekl3J/u3tOlfo8zsleQP0ZWShgIP4rVna1PXXHB5ko9D8JqpM/AIgIOS9dVmNtfMFgNTcvI+H+hmZvWWdzRJs8cfSloDbx4qYFoLmz5mj72xFfC4pLczIWEzssbe+AHwBd4880KKEbK5BcygqsrHaaqs9EjODf2eO79oESxaaMz+cjGfzJhDd/qydHEX5s5dxtz5y6mp6cGiqlVZaj2BPZLJHVYJ3Nl4nvr3h/XWq5uGDYNNN/VpnXXy727Vp08fRo4cyVpreSySF17oDKMHlLy3gO/ls2HSz2q/BpZ/gv/Nzl52DXm8jCoX3bt3L3YWSk6ck+Io9fswrot0xfmsr8MWqMxsSfIAey3wGrAUD9OZHUr8amAQcHsy/0e8ILZp1ja/AWbhhZKb8NDsb1E/CESuRsJBpcPMzpb0Gl6L9DP8D9Us4EXge2b2abLpz/Hv+NpkyniOurGqOrWkAPV6sxs2oj3G3qip6sn1h/2NXqv0ZmlVFZ/N+4o1eqxJz+69WFpdzRcLZrFmjzXp0a0ni6uq+HrRbFZftT/duvRk4dJqZi+aS8/u/elCLyqqavimch6rdR2A0ZPF1TUsqJrPKl0Gsry2J0uWVVNRs5CuDGSZ9WRxzTIWL6ugunZdqmp74aMWzMPLjt2AxXhAzcx8BR6waRDe9SUzPxi/TA2/hQbjlcUL8X7IfenCcmr5nH495rPe0E0Y8K1V6NdvAX37VrDBBuvQvz/07Dmf3r2XsPXW32LddaGqaj6VlZUMHjwYgHnz5rF06dIV83PnzqW6uppBgwatmK+pqWHttdcG4M0332SjjTZi1KhR7LPPPgV996HtSOqNBw36tJlNO70JEyYAcNRRRxU1H6UkzkloSFwX6YrzmcPMYoopphZOeF+PypxlZwCPNbDt28DBWfP9SUK0N3MMg7vM64imms/fl8y/lcz/JZl/LZn/azL/QjI/KZl/Kpl/Lpl/Ipl/JZn/32T+X8n8A8n8FAOzLvzBAFuDl2x9pls/LjbANudB241JNpiTDLC9GW8ncLNtyI8NsLM5xa7qNsZ2W2U7A+yJ4Sfa09/9hR04bAcDbP7/TrLZ0z+2I4880iRZxllnnWU9evRYMX/qqada3759V8yffPLJ1r9//xXzxx57rK2zzjor5o844gjbYIMNVswfdNBBtskmm6yY33nnnW3jjTe22tpaC40DFlvb3UOL8JJ1ZlqE17IvBPZpq+MWOo0cObLR83PQzS/ZQTe/1IIz23q77LKL7bLLLkU5dqnqqOcEeMNK4F4o1tTUPZiPtrguinnvF1tHvc+a0tQ9KF8fQmgJSTsDfzazQVnLjgcOs5xxyCR9BIw2s4nJfHe8qeAGZjYjZ9sVY28AI/GqoWxdSZp2tmBZN2BZHttFeuWRx/ZIbzUzyyOOVuEkHZmzqBaYDbxqJRR9NIkMO7OBVf3xvpPlopzyW055hbbP71AzG9CG6Ze0Ju5BKL9rJV8d9XNBeX62xu/BxkpaMcUUU/MTXkO1JGfZ6TReQ3VQ1vxa5FdDtdIbEeDWViyL9PLctxzyWKz0YirPc1NO+S2nvJZjfjvS1FHPfUf9XB3xs3XYPlQhtJNijb3xWCuWRXqF7VvqeSxWeqlKomUOJGccPTObWoz8hBBCCPmKJn8htJKk+/CapszYG08AO9rKUf5G4WNt/ACPJPkQ8JqZNRmUQtIbZrZNivmN9Eoszc6WXk7aW+OxHDNDOGTGEBQ+hntzA/sWVVuem7ZQTvktp7xC+eW3I+mo576jfi7oeJ8taqhCaL22HnujwfD8rRDplV6anS29bH8APscjsM4i/4HXS0Vbnpu2UE75Lae8QvnltyPpqOe+o34u6GCfLWqoQgghFI2kCmArqxsfMIQQQigrbRK1KYQQQsjTi9Qf+y+EEEIoK1FDFUIIoWgkrYMPrj4RmALUZK83s+eLka8QQgghX1FDFULoUCRtKulSSY9Iejr5eamkqAUpTRvjwVx+B0wCns2anilSnpA0RtIbkqokTchZt5uk9yUtkfSMpKFZ6yTpcknfJNMVklSMvEpaX5JJqsiaflPMvCbHXVXSHZJmSlok6U1J/5W1vmTOb1N5LdXz21k0dY+Ws+buj3In6R5JX0paKOkDSccVO09piKAUIYQOQ9JPgZuAR4HngQVAXzxE/UuSfm5m97fyGL3x2v1FrUhjGLAZ0AdYBLxrZh+0Jl9l7BbgKeAySisoxRfAOGAvPIgMAJL6A3/Bo3o+BlwM3A9sn2xyArAffs0ZXkicDtzc3nnNsrqZ5Q70DMXJK/izx6fALsAnwA+BByRtDlRQWue3qbxmlNr57Syau+7LVaPXnJnNKGbGUnIZcKyZVUnaBHhW0ptm9s9iZ6w1oslfCKFgbVkgaE2BRdLHwOFm9o8G1u0E3Gtm6xeQ3rlmdkny+1rAvcCe+MPRM8ChZvZ1AekNwR8OtwQ+oq7AtyE+8PMhZvZJvul1BJIWA1uY2UfFzktDJI0D1jWzo5L5E4CjzGzHZL4XMAfY2szel/QSMMHMbk3WHwscb2bbN3iAts3r+sDHQPeGHviLmdcG8jIZuBAf8Lwkz28Def0nZXJ+O7Lc674jylxzZvZQsfOSJknfwVsjjDWzB5rZvKRFk78QSoykEyS9JGmBpOXJz5ckHd+CtNbPmT9Y0p8lPSjp8BakN0TSy8BbwEX4G9gLgTeTPA4pML1zs35fS9JEYCEwX9KTkgYWmMUBwL8aWfcm0L/A9M7O+v1KvPA4GPgW/pB3RYHp3Qm8APQ3s83N7LtmtgU+oO0L+DhlBUn7O07SSO0azMMkYGQbpNtWNsMLvwCY2WK8cLxZQ+uT3zejuGZK+kzSnUkNW0ZJ5FXS2sAwfPDzkj6/OXnNKOnzG8pbI9dcWZN0o6QlwPv4uJxPFDlLrRYFqhBKiKTL8fF4bscHAP4OsGsyP1bSZQUmOTkr7Z/j/VTeAF4DfitpdIHppV0gSLvAMgn4g6QNsxcm87cl6wuR3d9hd+BkM5tlZrOA0cAeBaa3HfBrM1uSvTB5aDwvWV+oVL/jNrgGmzMRuFrSuKQwuH/2lPKx0tAbr1nMtgCvrW1o/QKgd5H6zswB/hMYihda++C1rBlFz6uk7kme7jKz9xvIUyZfRT+/DeS15M9vKG8NXHMdgpmdjN8vO+NNfKuKm6PWiz5UIZSWY/DmT1/mLP9XUnszGTingPSy/3GPBg4ws5cBJD2LF4B+X0B62wH/ZWbV2QvNbLGk84C5BaSVm7/dgZFmNjvJ32iyCgt5Oga4EZgqaRl1Teq64X+0jykwPUsefrokef0ma93cJO1CfArsneQl1w/x9vKFSvs7TvsabM6Nyc9fNbDOgK4pHisNFaz8vffFXwY0tL4vUGFFaF9vZhV44RpglqQxwJeS+prZQoqcV0ldgD8C1cCYZHFJnt+G8lrq5zeUt0bujw7DzJYDLyYtKU4Cxhc5S60SBaoQSktzby4LfbOZ/Y97MPDKihVmr0lat8D00i4QpFpgMbN5wE8l9cSbSPTGH2o+yK0VylNvYFmSN8Oj0WWaFG4MzC4wvTHAQ5JOw5v/ZAp8W+FNgQ5oQR7T/o7TvgabZGbl1lLiXeDIzEzSx2dD6prjvIv3kXstmd+S0mmqk7lWMt9h0fKa3Pd3AGsDPzSzTLj8kju/TeQ1V8mc31DeCrjmOoJu+D1e1qJAFUJpuQN4WtLV1H/g3hI4DW+2Vogeku5Ofu+K/3H+CkDS6vibr0KkXSBIu8ACQFJ4eqsl++bYIGd+Ttbvq9NwrUqjzOyppPnh/vj5Goi/eb8LeNjM5jS1fyPS/o7TvgbLkqRu+P/IrkBXST3wa/Vh4EpJBwCP4001J2c1x7kbOE3SE/g1fTpwfZHyOhKYD0wD1sDfAD9rZplmaO2e1yw34QM6725mlVnLS+78NpZXSdtRuue3w2vsum8k4mK5aez+KGtJv+gfAH8FKvGWKT8FDi1mvtIQUf5CKDGSTgR+hj9wZ2pY3gXuNrNbCkzr/JxF92ceTCTti0eVK+gPmTzaXaZAkJ2/ggsEyhpfJjEn6U+EpG2Bb5vZfYWk2R4kvQHsZWbfNLvxyvtuBBwBjAB6Ap/hb7AntOQtZBt9x6ldg3kc67Sm1pvZNWkeL1+SLgByz+2FZnaBpN2BG/C+M6/iUelmJPsJuBwP+w3e9+zstmzm1VhegX8Dl+IF94V4H8KzzCxT4G73vCbHHQrMwPtNZD/8nmhm95bS+W0qr0AtJXh+O4um7tH2z016mrs/ipKplEgaADyIv6DrAswExptZ2b+oiwJVCCE0IqvmJ9dP8DdsS83sZwWktx9wD/APvFZuFzyM+obAIGAPM5vemjyXG3mo+2zd8aaLlcDXZvbt9s9VCCGEkL9o8hdCiUnC7m6IN3OplLQFXi3+tpk9lVL66wDv5QaXyHP/VGtYGjnGG8CeZlZokIu0HYh/tqeo33doOf5mraLA9K4A9jGzZwAk7Qn80sx2knQG3hzov1ub6RS+4za9BrOZWW6zykyY4DvpJM0LQwghlLeooQqhhEj6EfA/wGJgKd6s5A682cvOwDgzu7aA9DYF7sMfji/B+8TcjReE5gKjzGxKAentR4o1LGnXAKVN0sZ406N5wOlm9nmy/EtgSytgUN9kv/nAGpkmP0kfgC/NbEASSOMrMysoEEcbfMepXoMtJWlr4AEz27itjxVCCCG0RrlFVwqho7sEONDMBgK/AP4M7GtmP8bHPCo0dOp1JO32gYuBIfjgt33xSH2/LTC9TA3LXma2J7APMMDMdsI70Rba4fpAvJ/Eh/jgnZkpUwP0UYHppcrMppnZXsD/4oEazkgKQS19E/VP/HvNOJW6qF/Lqd9ePl9pf8dpX4Mt1QUPsBFCCCGUtKihCqGESFpgZv2S37sAVWbWvaH1eab3DdAfj4K0BOiXiRgkqS8wzczyfmhNu4Yl7RqgtpScr4vwpm9DgQ1bUEO1CfAI3kcI4GtgPzObImlz4AgzO6vANNP+jlO9BvM4Xu7gvcLPz2hgupm1uglkCCGE0JaiD1UIpeVzSXua2f/hfWmWStrazN6UtCX+AF4IJYWfZZIW54RfrQBWKzC9TA3Ldcn8qbSihsXMpgF7SToErwG6DbiWltcAtZlkoM5TJW2FN3Vc2II03pc0HNgELzi8nwnxa2bvAAUVphJpf8dpX4PNeTBn3vBw+U/jYaZDCCGEkhYFqhBKywXAY5LmAe8BY4FJkp7D+69cUGB6H0kaYmafmNkaOeu2AD4vML3RwCOSLk7mvwb2S34fhjc9K5iZ3ZeM1XIRPn5Un5ak0x7M7C1aMcaV+ejwaQ7umfZ3fAHpXoNNsvIb2DeEEEKoJ5r8hVBiJH0LWBd4w8xqkzFZtgReN7PnC0xrU+DzpHYld93uwOpmlltD0FyaXWmghiUtSS3I94FbzGxpmml3RG30Had2DYYQQggdXRSoQgitIul5M/teqabXmSWF33PN7KJSS0/Sf+GBTLY0swU56/rh0QpPSJoedmqSJgD9zWzvjnSsBo79V3xw76Pa+9ghtLW4jzu2aGoRQpmQ1FXSeSWY3k4ppNGW6XVm3YDzSzS9McCVuYUpgGTZ5Xhzww5P0gBJN0qaIalK0ixJT0naI9lkLHB4MfPYGEnPSrqhHY83WdLljaw7QVKlpHMkvS5poaTZkh6TNKK98hg6p7iPCz7m05Ksgenx9sxHWqIPVQjlI/Mwm0ptQxukF4pA0h+aWF3w3/i002vCFsBpTax/Gjg3xeOVsofwccOOxYcQGIgHPlkLVhQwg5sMbJ67MKnVHIcP7fB94Ebgdbxp8kXAk5KGl8Bg4aHjivu4MFvjf+Nz/+csKUJeWi0KVCGUkDJ+OA7Fcyg+8G5DD4pdSyC9xgwAaptYbyQPIh2ZpNXxYB97mNlTyeKZeGEgs80EsprvSHoWDxiyBDgaj7A5DrgZuAY4DI9Cea6Z/TErnWeBKWY2prG0G8jfKPyhZwT+nbwOnGpm7yX77gLsIml0sssGZjZDkoAz8YGhv4U/YF5uZvck6fbECz0/wQeRvo78TKbhsdDOAyqB3+ZEukTSEcACvPb7sTyPE0Le4j4u7D6WtCGwOvCcmX2Vzz6lLh6oQigt5fpwHIrnHeDvZvZo7gpJPYD/V+T0GvMZXks1rZH1LYlQWI4qkmlfSS8WEIjlMPyhaztgX3y4gVHARGAb4EjgdklPmdkXrchfryTtyXgI/l/jUSCH402YhgHvA79Ktp+d/ByHP2SNBv4N7ADcJmmemT0OXIUPFH0A/j2fD3wPH4y6KZOB9ST1zQRikTQMOAX4aW5hKtEH7+Iwr6BPHkL+4j4u7D4eiRcg32zFZyopUaAKobSU68NxKJ4JNN4ftga4sMjpNeZx4GJJTzRQo9ATb6ZVlm3pC2FmyyQdBdwGnCDpTeAfwJ/N7NUmdn3XzC4AkHQNfi/XmNl1ybKLgLOBHVl5rK9C8vdQ9ryko/G35tua2YuSqoEl2W+ZJfXCm3PuaWYvJIs/lrQtMDoJwX8scIyZ/T0r3c/yyNLk5OcI4KXk92uA53PzmuU6fKiDlxtLVNLf8cHFp+SRhxDqifu44Pt4JP5S92uvBFvhb2Z2YIs+ZJFFgSqE0jKB8ns4VvObFDW9Ds3Mft/EuuUU+B2nnV4TLsHffE6TdD3+dhRgU7xJl4BLUzpWSTOzh5KO2Dvjb4BHAadLOtfMGjsHk7P2N0lf4y9QMstq5GOJDWxN3pKmORfjb9AH4H9PugBDmthtONADmCgpO5Rwd2AGsCGwClkFHDOrkPQOzTCzLyTNwftRvSRpL2AvPKx/Q/m/Bvgu8N3k+m3MJtRdgyEULO7j/O9jvED1ECu/1C3bfmZRoAqhhJTpw/FzKaTRlumFEmRmX0vaEQ+dfil1BWkD/g6cbGazipW/9pY0EZqUTBdJuh24QNJVjexSk5tEI8uyX6jUsvILi+7NZO0xvCnPicnPZcBU/EGqMZlj7gN8krOuBsgdgLpQ7wAjJHUDfgfcYGZTczeS9DvgEGBXM5ues244cCveHHACMDczpp6kjZN0B+H9sg40s68krQfcgD+ErgLsDewOnIw/T31oZj9u5WcLZSzu47xtDYwzsw9bkUZJiQJVCCVOJT7Ok5ntmlZabZFeKF1mNhP4oaQ1gI3wh4RpZhZ9Xfxhpxv+hjgts4HBOcu2xN82r0TSWniN4WgzeyZZ9h/Uf3aoZuX+mFOBKmComT3dQLrf4A9k2wPTk2W98GZ8H+XxOSYn+R6NBy65oIFjXIcXpr5vZu/nrOuGRxY7zsymSHoAH/cMSaviQQGONrNPJB2HN2+6GHgC+IWZPZNEFeyB16aOTJp8rZ5H3kPnEvfxyvttAKxJB+o/BVGgCqEcxDhPoUNLClCvN7thB5Q87PwZf8CfDCzCO6OfBTxlZgtz+hi0xtPAtZL2xTuYnwisRyMPYngQhznA8ZI+BdYBrsTfbmfMALaVtD7eKX+umS1K3shflUQJex7ojT941ZrZrZLuAC6XNBv4Ao/Sl2+gnMl4Z/0t8X5PuQND/x44AtgPmCdpULKqwswqgP2BN7L6S/2buoAV++EPn48m530V4D7gx8BrmQdSM1sgqRaPVHa5pAlmlk9Tp9ABxX1c0H08Mvn5Vda9mTEnU1NcbqJAFUIIIRRPBfAKHmlrI2BVvEnO/+ARttL0Bzx6YmY4hRuBh4H+DW1sZrWSDgbGA1PwkMmn430fMq4C7sLfZq8GbIA/nP0GmAWcgTfrXIgHhrgi2e8MPPLYw3jY6OuT+Xy8jRdkXsOb6+U6Ofn5VM7yC/HarC2SNDJGAlcnv28OnGlm92bvKGlccrwVkgfOzfFC2H2SzmsiMEbo2OI+zv8+zhSo3svNKl5zNb+Z/UuSzKz5rUIIRSNpuZmlFuI87fRCCKGcSPolsL6ZjZW0G97fZW0zmy1pDF6zcHQSJGBzM3tH0inAMDM7RVIXvP/ImmY2LUlzPPBqbkEshNA5RIEqhBIXBaoQQkiPpP7A3/BWOlOAXcxsSLKuF3AP3uxvKfC0mZ0mqQ/e9G99vN/IGOB4vPnTErx2YkwzkQRDCB1UFKhCKHFRoAohhBBCKF2NjU8TQigdMc5TCCGEEEKJigJVCKUvxnkKIYQQQihR0eQvhBBCCCGEEFooaqhCCCGEEEIIoYWiQBVCCCGEEEIILRQFqhBCCCGEEEJooShQhRBKjzQB6a8r/d6ex0033WeRLJm2T5ZthvQS0hSkx5B65uQjs/1PUs9PCCGEEFITBaoQQn7qP+TXIH2N9AzSaKTubXjkscDhqafqhZwb2uVY7k5gMPBPpB7AA8BozEYAHwBH5eRjcBvlI4QQQggpigJVCKEQT+IP+usDewKPARcCLyD1apMjmi3AbH6bpN2+x1qC2VeY1QD7AU9i9may7n1gQE4+vmqjfIQQQgghRVGgCiEUoiopFHyO2VuYXQN8H/gP4CwAJCGdhfQRUiXSO0j1a318m9ORpiFVIX2GdFmDR8xthuc1SzciXYo0J6kpuwqpS9Y2o5BeQJqHNBfp70ib1ksTdgFGZ9W6rd/AsVZFuhZpFtJSpFeQvpuTv+bzs7JNgXey5jcHpjaxfQghhBBKVBSoQgitYzYFmAgckCwZBxwLjAaGA5cBtyD9d9ZelwK/SdZtBhwIfFrAUQ8DlgE7AmOAU4GDs9b3Aq4FtsULfAuAx5BWSdaPBV6mrhne4EaOf0WS7jHA1nghaCJSbnO85vKT6wvgOwBIWwC7A482sX0IIYQQSlS3YmcghNAhTAV2T5r9nQbsidkLybqPkbbFC1iPI/UGfgmcitkfkm0+xAs4+R/P7Lzk9w+Qjgd2A/4EgNlD9baWjgYW4gWsFzFbgFRNphle3XbZ+/QCTgKOw+zxZNnPgR8kn+XXeednZX8E7kd6J8nXQZhV5f/xQwghhFAqokAVQkiDAMNrpHrgtTiWtb47MCP5fTiwKvBUK443OWf+C2BgXW60IXAxsB3eN6lLMg0p4Bgb4vn+x4olZsuRXsY/Q/75yWW2BNingLyEEEIIoURFgSqEkIbhwHTqmhHvA3ySs01N8lO0Xk3OvFG/CfNjwOfAicnPZXgt2irkL5NPa2Bd7rLm8hNCCCGEDir+4YcQWkcaAYwCHsQLLVXAUMw+zJlmJntkttmtjfKzFh704VLMnsTsPaAPK79Aqga6NpHSh8k2dUEopK7ADkQAiRBCCCEkooYqhFCIVZEG4S9jBuCFol8B/wSuwmwx0lXAVUgCngd6A9sDtZjditkipOuAy5Cqkm3WAkZidlMKeZwHzAGOR/oUWAe4Eq+lyjYD2BZpfaACmFtvrX+Wm4DfIs0BPsb7fq0N3JhCPkMIIYTQAUSBKoRQiN2BL4HlwHxgCj4O1S2YVSfb/AaYBZwB3IQHXXgLj5iXcQ5e8PkNsG6y/d2p5NCsFulgYHySvw+B04GHcra8CrgLr21aDdiggdTOTn7eCawOvAmMwuzLVPIaQgghhLIns4a6B4QQQkiN9CwwBbMxBe5nwIGYPdgW2QohhBBC60UfqhBCaB8nIFUg/WezW0o3I1W0Q55CCCGE0EpRQxVCCG1NWgdvVgjwabNjTkkDgb7J3JeYLW7D3IUQQgihFaJAFUIIIYQQQggtFE3+QgghhBBCCKGFokAVQgghhBBCCC0UBaoQQgghhBBCaKEoUIUQQgghhBBCC0WBKoQQQgghhBBaKApUIYQQQgghhNBCUaAKIYQQQgghhBaKAlUIIYQQQgghtND/BzuinQ4/SilBAAAAAElFTkSuQmCC\n",
|
|
460
|
+
"text/plain": [
|
|
461
|
+
"<Figure size 864x288 with 5 Axes>"
|
|
462
|
+
]
|
|
463
|
+
},
|
|
464
|
+
"metadata": {
|
|
465
|
+
"needs_background": "light"
|
|
466
|
+
},
|
|
467
|
+
"output_type": "display_data"
|
|
468
|
+
},
|
|
469
|
+
{
|
|
470
|
+
"data": {
|
|
471
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAALECAYAAAAfGaoaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5gUxdOA3ybnrCBZUBGUJJhFThAVFAwYQFFBEX/mhAEMgBgwfoqKiiIoqIiKBFEQUJCkgIAEESRIBkGQcKQL9f1Re9zecWHv2N3ZUO/z9HM7Mz0ztX1zdTXV1VVORDAMwzAMw4hmCngtgGEYhmEYxrFiBo1hGIZhGFGPGTSGYRiGYUQ9ZtAYhmEYhhH1mEFjGIZhGEbUYwaNYRiGYRhRjxk0hmEYhmFEPWbQGIZhGIYR9ZhBY3iKc66vc25VHs8Z5pybEiqZDMMwjOjDDJoIx/cPX7JoJ2XRt51zbpFz7pBz7m/n3MNeyOw12YyXf/vb1y9bw8jXr4vfdgXn3IvOuT+cc/udc7t8Y/28c65GpnMfdc7N8fX5zzk30zl3WQ7ytnLOpeTVsDMMwzDSKeS1AEZA/A2cm2nfdv8N51xzYCzwGtAZOBt4zzm3X0TeC4eQEcQJfp/PQsflLGCDb19KXi7mM1hmAslAX+B34CBQF7gS6Ak84HdKK+AjYB5wALgD+NY511JEZmW6dmXgY2AycJSRahiGYQSGGTQhxDlXCNgH3CIio5xzZYDPgcLADSKyK8BLpYjI1lz6PAzME5EnfNvLnXOnAY8DARs0zrlpwGpgC9ADKAK8AzwNPAXcg3r2BovIk37nFQb6AzcDxwGrgOdE5DO/PkWBN4AbgVRgJPBfFjLc57tPbdQIGQa8JCLJgXwH/7Fyzu30fdwewBhmxyB0HBqKyB6//SuB751zLtP922Y6v6dz7lLgGuCIQeOcKwB8io5vMcygMQzDyDc25RRaGgBFgYW+KaJf0H/0bUVkl3Ouq29qo3Yu16nunNvoa987587Los/5wMRM+yYCtZ1z1QHycL9rUaPrAtRQ6g18C5QCWqAeid7OOf9/3C+gnogHgdOBEcAI51xrvz4DgI7ALajHKRE1XI7gnOvru34voD7q+bgT6JOdsHn4XnnGOVcBaAe8lcmYOYLkUuHVZ7iUBnZkOvQ0IMDLQRDVMAwjrjGDJrQ0BfainoYZwGsi8oCIpE157AZWAEk5XONX1ABoh04l7QJmOOfaZOp3ApDZA7HV71ig9wNYKyKPi8hKEfkI+AOoISKP+fZ9DCwGWgM450oA9wNPi8iXvj4voFM9T/r6lATuAp4UkbEi8qeI9ES9HPhd5zHgThH5RkTWish3qGfovhzkDfR7ZUWCc25f5uZ3/CT072S5/0nOudl+/Zflco/eQDlguN/5FwH/A24WkdR8yG0YhmH4YVNOoaUpUBAYj3ojvvI/KCLfAN/kdAER+T7TrhnOuWrAo2jcRSBIoPfz8Xum7a1kbSwd7/t8Ejol83OmPtNRTwtovElRYHamPjOBK3yfTwOKA1875/y9HgWBYs6540Rke6bz8/K9suJX4NYs9v/l++myOAZwA/p97kankrLEOXc3atB0EJGNvn2VUA/WbccwDWYYhmH4YQZNaGmKeiBuRf9x90SnGY6VORz9T3QLUCXTvsq+n3n9p5nZ0yHZ7Mvs4cs89eL89rls+viTdr3r8PPc+LEzi33HygEROWp1kV9YzF9ovE8D/IwmEdng65etTM65nkA/1JjxX011OlAVGO93nwJ6iktGY64+wzAMwwgYm3IKEb5A0cbAOyKyGA2GfdA5d3yOJwZGU9JX7KQxC7g0077LgHVpnoEQsgo4BLTMtP9CYJlfn8NorI8//vFAy9DVQ3VEZFUWLU+rk4KBiOwEvgfuc86VDfQ859yzaNxPu0zGDOjqp4ZAE7/2Hvo7bQJMOEaxDcMw4g7z0ISOOkBZYIFv+zXgXjSm5AEA59zVwItAaxHZlNVFnHOvowG5fwNl0MDbNuhyYX/+D5jtnHsejdU4C407eSho3ygbRGS/c24g0N85tx1YhHpZrvTJiogkOufeA55zzm1DY15uB04F/vH12eecewF4wee5mIw+ow2BpiLyeFb3D2Qcj5G7UYNxoS9oeRG6eq0eOl2WwdByzr2BBjJ3BlY459I8ZwdEZLeIJAJLM53zD3BYRDLsNwzDMALDDJrQ0RSdplkKICK7nXOvAn2cc6+LyDrU4KmHrijKjhOAT9Cl0LvRYNyLReRH/04iMs85dxW62qgnOs30pH8OGudcV2AocKKI/B2E7+jPk+jUzBukL9vuIiJT/fo8gS5PTguO/QJdsnyd3/fo75zbjBpjr6J5XFaiS7ezI5BxzDcist451xSNW+qFBnkDrAUmAW9mOiUtJ03muJ6Pga6hkNEwDCPecbmsODViCN80SEegcaA5XQzDMAwjGrAYmvjiCuBeM2YMwzCMWMM8NIZhGIZhRD3moTEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKKemF22XalSJaldu7bXYsQsK1asAKBevXoeSxJ/hGPsf/vttx0iclzIbuAxph9Ch+kG74h33RCzBk3t2rWZP3++12LELDt2aOHoSpUqeSxJ/BGOsXfOrQvZxSMA0w+hw3SDd8S7bohZg8YILaasvMPG3ohk7Pn0jngfe4uhMfLF6NGjGT16tNdixCU29kYkY8+nd8T72JtBkwvjxo2jU6dOXosRcQwcOJCBAwd6LUZcYmMfXmrXrs2UKZnri8LixYs577zzsjgjvrHn0zvifextyikXOnToQO/evVm8eDGNGjXyWpyIYezYsV6LELfY2EcGjRo1oly5cowfP5727dt7LU7EYM+nd8T72JuHJgA6d+7M4MGDvRYjoihbtixly5b1Woy4xMY+crjpppt4//33vRYjorDn0zvifezNoPExYMAA6tatS+nSpWnQoAHffJNeKDkhIYEJEyZ4KF3k8cUXX/DFF194LUbskJIScNcsx37vXmjQABo1gv/+y9u9//sP/v47b+fEGfPmzaNBgwaUL1+ebt26cfDgQUB1w9SpUzl06FCO5//zD8SLCjHd4B3xPvZm0PioW7cuM2bMYPfu3fTp04cuXbqwZcsWAOrXr8/ff//Nnj17PJYycnj33Xd59913vRYjNtixA847D0aNCqj7uwMH8u4772Tc+dxzsHy5GjXlyum+55+HDz+EQ4dgyxZ47TX488+M561dq/du3z5PRlW88emnnzJp0iRWr17NypUree655wCoVq0ahQsXPpL/I/vz4YorYOvWcEjrLaYbvCPux15EYrI1a9ZMjoXGjRvLmDFjRETk8OHDAsi6deuO6ZqxRGJioiQmJnotRvSzfbtIYqLIBReIFCkiMm1azv3/+UcSK1SQxIYNRf77T/ctXy5SuLBIt27p/VJSRM47TwREKlQQKVBAP//f/+nxWbNE3nlH5LjjRMqXP+q+wHyJgL/jULW86IdatWrJu+++e2R7woQJUqdOnSPbVatWlenTp2d7fkqKyPTpOvzjxgV826jFdIN3hGPsI1k3mIfGxyeffEKTJk0oV64c5cqVY+nSpUeSFO3duxeAcmlvvgYlSpSgRIkSXosRHcyeDZs2ZX3suuvg6qth7FioWxeuvBJ69oS//tLjCxbArl3p/Xv3psSePZRYvhw6dIADB+D++6F4cXjxxfR+BQrAzJkweTK0aQO9eqkH58EH9fhLL8E990Dp0jBnDrRsGZKvHqn880/e+teoUePI51q1arF58+Yj23v37s1RN/z+O7RqpZ/nzcvbfaMR0w3eEe9jb6ucgHXr1nHHHXcwdepUzj33XAoWLEiTJk1QYxSWL19O7dq1KVOmjMeSRg4jRowAoEuXLh5LEsFs3KjTPx06QJ06MH26Gh5prFwJ06apIVKhAkycCOeeC2+8AQ0b6r4LL4RLLoGvvwbn4LHHGFGgABQqRJd339Vppauvhuuvh8qVM97fObj4Ym2ZGTUKRo9WYycOk3HlNcxow4YNRz6vX7+eqlWrArB582YOHz6cY6r5X37R2bzSpePDoDHd4B3xPvbmoQESExNxznHccVqeYujQoSxduvTI8enTp9O2bVuvxItIPvzwQz788EOvxYgstm/XWJRVq2DoUDjlFI1ZGTJE/5P16AE+IxmADz6AQoWga1fdrllTX+c3b4Zbb4WKFaFfP/jmGxg0SPucfDIfrljBh8uWwZgx0Ls33HUXdO+eN1mLFoXOnePSmAGNod6+PbC+qakwcOA7bNy4kZ07d/LCCy9www03ADBt2jRatWpF0aJFsz3/l1/U1rzuOn0M/B+BWMR0g3fE/dh7PecVqpbXGJrevXtL+fLlpWLFivLQQw/JhRdeKB988IGIiJx++umyaNGiPF0v1jl8+LAcPnzYazEig/37RV56SeSzz0TKlRMpVUqkaFGR1q1FkpK0z3PPaRDFE09ozMzBgyKVKol07JjztVNSRNq21XPr1hVJTAzL2BPB8+TBaNBMPvww93FITBQpUKCWNGnygtSvX1/Kli0rt9xyy5E4hXbt2sngwWPlk09EUlOzvsYpp4h06CCycqXIihXZ94sVTDd4R7zrBs8FCFU71qDgNMaNGyfXXXddUK5lxCjffad/ShMniqxbJ9KypcjJJ2vAbxqpqSI336z9Pv9cZNQo/TxpUu7X/+cfkerV9b9imP4bRrLSCkYrUqSZtGuX8xj8+6/+Cnv31l9V5rjfxYsXy5lnniMnnSTy4INZ/2r+/VfPfeGFnO9lGNFCJOsGi6HJhfbt21sW0CwYNmwYAF3TpkvimQkToEQJDawtVkzjYlJSoGDB9D7Owccfw513wtln67zD2LFZx7dk5rjjYMUKnSZyzsY+CFStCjfemHOfN9+EV17RUKcRIzSGesECKFxYj592WkOqVp3DwoXQsaP+ijOTkgJPPQWXXabbw4ZBqVJw7bVB/ToRhT2f3hH3Yx8OqwkoCgwB1gF7gYVAW9+x2oAA+/za037nOuAl4F9fexlwud0zWB4aI2tatmwpLVu29FqM4PPffzov4M9HH6mHZNCgo/unporUri3Svn145JPwjD0R/BYWjJabfjh8WKRKFTnixfnmG8mw6l1E5MUXdd8bb4gsWSLy9NO5O9DOOksdeLFMzOqGKCDedUO4PDSFgA1AS2A90A4Y5Zxr6NennIgkZ3FuD+AqoDFq+EwG1gDvhVJgI2emTZvmtQjBZe1a/XnNNVCkiEZyOqfLYR59FA4f1oDdzPz5p2bZffzxsIkac2PvERs36q/08suPPjZmjCbBu/tu3b7ySmjbFpYt0+0ff9SV8J066ar5jz+G/v01ed5ZZ6VfZ/FiXeBWqpRun3mm9s3swIsl7Pn0jngf+7CschKRRBHpKyJ/i0iqiHwLrAWaBXD6rcBrIrJRRDYBrwFdQyiuEYv89huceCKUL6+tbt2My1zuvx/OOQduvx3mzk3PUz9gAOzcqUuu33xT9y1ZAjNm6OfFi3UOol278H4f45h58UVdeXTXXdCsmS4qmzxZjw0aBLVrp08VOaeLzT74QLcLF4Zu3XTbObjqKrWDR45Mv74IJCTAQw+l7zvzTNi3T2cQU1Ph3nvhppvC8GUNIw7wZNm2c64ycAqwzG/3OufcRufcUOec/1rS0wD/V+Pfffuyum4P59x859z87YGuyTTyxQcffMAHado9L4ho3Eg403OL6H+OAwfgllvg5pvhiSc0NgVg6lT49lt45BGNcalTB555BjZs0JwwXbpA06YawyKi/8muvVbLCdxwgxo8NWuG7evke+yNDNx4oz4Sn32mNu7ll6t3ZccOSEqC//0voxfFf2V2ixbw0Ufpnpdy5dSD88UXaqiA5kbctUvt5DTOPFN/zpunTr133tH7b9wY0q8aVuz59I64H/twz3EBhYEpwPu+7VJAc3RaqjLwFTDJr38KcKrf9sno1FOOcTQWQxNaWrduLa1bt877iT//rIEH550XfKGy47//dOnzkCFHH5syRaRWLW0HDui+jz9WGUeNEnn/fV255M+yZSIlSmgwRNqy7DCS77HPA0TwPHkwWpp+2L5dV8Zn5vHHRXbsyNuYff65ZFgNNWSIbi9Zkt4nOVmkdGmRhg312JVX6s+hQ/N2r0gmHM+nkTXxrhvCezP1CI0EvgMKZ9Onis9gKePb3g2c5Xe8GbA3t3uZQROhdO+uj13hwprkI5xkjthMTRW56CI5spQ6jeRkkVNPFbn//uyv9ckneh6IbNwYGnk9JJKVVjBaKPTDvn0i1aqJDB8u0quXSMGCGkuenHx0v6Qkkffe02N//nn0o/nXXyKLFwddRMM4ZiJZN4Rt2bZzzqErnSoD7UQkKZuuaXk00xZBLkMDguf6thuTcarKiCaefhpOOEGDcHfv1uXOwWTnTi0H0KyZRmhOnw6nn67xM5nX1TqnS6fnzNESAGkULKj7cqrddfPNMGWKTldlLjlgxCUlS8L69VpGa+hQuO8+LcuVOfi3ZEn9eeed+jNz1YSkJK12sXkzfPddeh0owzByJpx5aN4F6gMXi8iBtJ3OubOB/4C/gPLAQGCaiOz2dfkEeNg59x1q7DwCvBVGuY0sGORLxX932jKQQKlZE559NgQS+fj5Z3j9df3sy9tC27ZatygrSpfW/x6ZCaQQ6bBh+t+nUHjTOeV77KMA51xRYBBwMVABWAX0FpHvs+jbFX1JOuC3+woRmRZ6SbOmgC8qsVu3wM/ZtQseeEDDsjp0gE8/VXv/zDPBryYmoI9bgQKRvUIqlp/PSCfexz4sQcHOuVrAnUATYKtzbp+v3QTUASai+WmWAoeAzn6nvw+MB5b4jk/w7TM8ZPz48YwfPz5vJ/Xtq6+coJM1fhWLg8ZVV2mw7syZGtXZpImuVAoFzunSljCTr7GPHvxTPJQFnkZTPNTOpv8cESnl16aFR8zgUaaM1iX9/HNIToYXXtAY9F9/hZNP1iXeTz4JF12kfatVg8ceSy/CPm8evPceLFqUv/uvWqWGUrCI8eczoon7sfd6zitUzWJoIoxNm0QKFBB58kndfuYZrXeUFoibHQcPiuzcmXOfpCSRN98UGTcuOLIaETVPDiwGOmaxvyswMz/XjDT9cPvtImXKiMycKVKkiCbyS+P55/VP54wzRB54QAOJK1XSEmIi6aW+ihSRgOpT+fPWW3rurbcG53sYsU8k6YbMzaptG+Hhs890Pestt+h28+Zw6JC+hmbH1KlaSqBCBU0Ysnt3+rGZM3Xt7Akn6NTSAw/A8OGh/Q5G2MkmxYM/TZ1zO5xzK51zTzvnorKcy5VXwp49kJio000dOqQfe/xxffR/+02zCIwZA+vWQfHievyNN2D5cq280b27ZijIzeMiojO/992n2w8/HIIvZRhhxgwaI1+8+eabvJmWaC4Qhg/XhBynnKLbLVrolM306el9Dh1S7d2nj26fcooG+D76qGY1a9483a8+frzmibn8cvXHDxmiKVjjgDyPfZTinCsMfAp8LCJ/ZtHlZ+B04HigIzpV/WgO14vYPFVpJb3GjtU6UwX8NHPBgun5btLwj6U/5RQ49VSdzX3kEQ3tymn6KTVVMyD36QO33qrGT6NGauRs2XLs3yVens9IJN7H3qkHKfZo3ry5zJ8/32sxYpYOvlfIcePG5d75zz+hfn0YODD9lRA0UKBCBfXEbNumwbsLF2rq1nfeybgqadYsTWJXp44aQYcOacBBZk0fB+Rp7POJc+43EWkeshvkfv8CwGdAGeBKyX5VpP85nYBHRSTXDOSRqB+uvlqNl6++OrbrbN+enjPSn//+S491v+QSaNhQi2+mGU9PPKHvHQsXwvHH5//+4Xg+jayJB92QE2bQGKHn55+1VPHEiRrRmMaDD8L772se+LZt1df++efqf8+K7dvh4MGjl34YQcdLpeVL8fARWri2nfitiszlvBuAx0XkjNz6RqJ+SErSAOBixYJzvXfegb171VB68UUYNUorh1evru8D/pmPQetaNW2qsfvPPBMcGYzYI5INGptyMkLPhRdq/SN/Ywaga1fNH3/JJVrg8fvvszdmQF87zZiJB9JSPLTPyZhxzrX1xdjgnDsVXRE1NjwiBp/ChYNnzIhoKqVevdQ5OmqU5r1JW5SX2ZgBaNxYDZoffwyODIYRbqIygM4IIQcPqudk924N5M2cjM7Hq6++CkDPnj1zvt7evdlr6iZNtBUsCFWqqOFj5ErAYx+F+KV4OISmeEg7dCcwA/gDaCAi64HWwDDnXClgGzACeCHsQkcgzum7QsmS+h7wwANZT0NlplUrnRnevz//OS9j+fmMdOJ97M2gMdLZskX902krj269Nb3ccCbmzJkT2DXfflvzwKxbl32yuuuvz7uscUzAYx+FiMg60rOEZ0Upv749gfjU3AFQpIjO6OaFVq3g1Vdh9uz0QOW8EsvPZ6QT72NvMTSGsnSpGi+7dumKoT//1ODcQNL6P/WURhZmlQG4WTP10PzyS/BlNkJGJM+TBwPTD1mzb59W9GjVSpP4RQrJyeo8jsM1ABFHJOsGi6GJdaZPh9tv17WaOXHiibqWc9Ys6NRJIwMDrVFUrRr07w+ffJJx/5o1sGCB5nQ3DCPiKVVKk237GzMiMG6clknzim7dtEpJjL5/G0HCDJpoRkR9wx9+eLTBsnGjelwSEmDSJA26zYmSJaF3b41pSWPGDOjRI0stMmDAAAaklRS44w7N6nXXXbDML//Z11/rTzNogkqGsTeMILN+vc4S79mj2198obH6DRvC3Lk5nwuheT737dOfoaiWEkvEu24wgybUrFihKT6DSVISvPWWapjzz1eDYuHCjH0eekgNkldegb/+0nN8AWMZ2L9fjZGsljasWgUffADffnvUoUWLFrHol1/gmmv0+p9/rq93112Xrn0mTtRkeLVrH/t3No6waNEiFuW3cI9h5MLq1bo6asYMOHxY81bWqwcnnaS1ZXMjFM/nvffqz5Urg3rZmCPudYPXtRdC1UJaq2XUKJHFi3Pvl5oqctFFGQuvBIMnn9QCLGedJfLee0fL8scfIs6J9O6dvu+NN/SchQsz9u3fX/fPmHH0fZKSROrWFSlUSOSkk0QuuURk2rSMcjgnsmKFbk+ZkvEe334rMnv2sX5bwwOI4HotwWiRVsspkjhwQMusPfywyNtv65/0d9+lH09JEbnuOpEvv1QVl5mdO0Vee03k0KHgyLNqlaoSEHn33eBc08g/kawbzEOTV7Zu1VU555+fe6Drl1/CTz9Bz546/ZLmw82Jf/+Ffv0gu4BFEZ1OuukmXY10553qqQE44EvZUby45nh58MH0826+WZNPfPBB+r5t2+Cll3TS/IILjr5XoULqnXn0UQ3uLVoUzjpLj+3bB4MG6blp5Qxat9aEF2nJLi6/HM49N/fvbBhGxFCsmKq3H39Up+v112dc7Lh9u3pKrrtO92/dmn4sJUVD8B55RMs4BIN33lFHcMGC5qExcsFriypULWRvYB9+qK8KLVtqBens2LtXpHp1kSZNRKZP13M+/zzna2/ZInLaadr3+efT9ycnH903KSnjdvfuIhdemPP1u3TRkr779ulrVKtWIgULivz5Z87nZWb3bnm2cmV5FkTmzMnbucYx8+yzz8qzzz4b0nsQwW9hwWjmocmZ555TNbRjR9bHk5K0UnfJkurEXbNG9z/xhAg8KwUKPCuPPRYcWZo0UUf33Lki//wTnGvGKvGuG8xDk1fGj9dstT/9pFXkkpNh3ryj+73wgnpS3n5bvR+VK8Po0dlfd8MGTSy3dq0uKUibNP70Uz1//XqtOJcWdFsoUwqhhg21xMB992Vfma5HD/USjRqlSfNmzNAl2vXq5W0Mtm5lRWIiK044QQtOGmFlxYoVrFixwmsxjBjmoougfHlVS1lRqJCqqClTdPXTTTfpgsYBA+Ckk1ZwzTUreOmlY5dj504tyXDRRXDmmYElB4xn4l43eG1RhaqF5A0sNVU9M3ffnb6vXz+RwoVFxo7N2HfAAJE770zfvvNOfZ05cODo627bJlK7tnpPZs7MeGz0aJHSpUUqVBA55RSRWrWO9s6IiCQmihx3nL5W+d83s/xnnCHy4ov6+Y8/AvnWWZOSInL4cP7PNyIaIvgtLBjNPDQ5k5KiKmzz5tz7Ll6c7uQdPVrk4MHgyfHNN6rSfv5ZZOlSdVwH8/pG3olk3eC5AKFqIVVY/lNAu3ZpcG7hwiIjR2Y/BTNpkg73uHFHHztwQKRvX/WpZsXKlSKNG+v5w4dnL9err4oUKyayenX2fVJSsj9mGD4iWWkFo5lBE1pSU3WG+6mn0velpKjxk1UgcXbcf79I8eJqxIwYoSpw2bLgy2sETiTrhviacsprRNl//+ly5zTScr0ULJi+r1w5+OEHOOMMjYZr3Rr++efoayUkQNmyWjEuM8WKQZ8+6lPNipNP1vOmT1ffbnY8/LBOc9Wpk32fAsH5lT/zzDM8YyV5PcHG3ohknnnmGfr0eYZdu3TGXHxprJ56Cho1gtNP1ywPgdC/vwYnFy2aPjNugcHZE++6IX4MmgUL9C9i5EgYOlT/+R8+nH3/H36AWrWgc2fdFoEGDTQ2JjNly2r/7t1hxAg4/vij+xQpon+J/ucfPKiVpqdMyV3+4sU1xiabYpGAHqtYMfdrBYENGzawIbsJdiOk2NgbkUza89mhg4YELlumC0JfeknVXdGisHx5YNcqUyY9TC9tMWU8h4jkRtzrBq9dRKFqzRo3zugnu/tunY7ZuVPk0UfVd3n++Rq/kpnBg3X1D4gsWqT7Fi3S7SFDju6fF1JTdSnAd9+l55OZNOnYrmkYQYYIdisHo9mUU+jZvFnV23PPiTRrJlKzpsju3aoC03LUfPutTktltZDz559Fnn1WZM+e9H1Vqoh06xYe+Y2siWTd4LkAoWrNnBP5/Xf9DezfL1K2rMhNN6X/Vj7/XCdna9ZMN1r27hW54w4dlrZt0/+SUlI0qRyIbN161C84T6xdK1KihF4LRDp1OrbrGUYIiGSlFYxmBk14OOsskTPP1LC+X345+vjDD6sabN0643qJlBSRFi10LYT/2oOWLXW/4R2RrBtid8qpQAFdwiyiSe1279YpoTQ6ddJlyykpmkVq0yYoUQKmToUHHtCl06VLa9933tEppapVAy/YmB21a2vyvO+/h2ee0RIGUUivXr3o1auX12LEJTb2RiTj/3zeeSe0aaNq7+yzj+772mua63Pq1Ix5QD/8ML1yS+HC6fu/+ipjlZZZs2DYsKOvO3KkJgCMN+JdNxTKvUuUUq2a5mX5/HMYPhzq1tWaRf40a6Y5ZMaP1/6gk7tpmW7T6N5ds/J27Bgc2YoV0xSb/uk3o4x///3XaxHiFht7I5Lxfz5vuy33/t27azm4l19WFZ2QAI89prlnunXL2LdSpfTPyclwyy2aouvyy9Nz1KxYoaGPfftq6q0TTjjmrxQ1xLtucOpBij2aN28u851Tz8u8eWqu+1eSNgwjW5xzv4lIc6/lCBXNmzeX+dmVFzHCTlKSGjDnnqvJ/MaMgSVLdIGnP3//rYbPPffoOo9bblFn/NdfaxUWgBdfhN699fP998Obb4bxi8QBkawbYtdDA5qlt0ULffLbt/daGsMwDCMLChfWxZ7Fiqkhc8UVRxszoIbPu++qc/3ll3UZ+OTJGReWjh6tJecqV9Z6Um+8kfPiUCN2iG2D5uyzYd26+PI5homePXsC8Oqrr3osSfxhY29EMvl9PosV058NG6bX281M7dpadmHlSs1rc/zx6caMiE4/zZ+vS8QrVNBogsWLoXHjfH6ZKCPedUNsGzRgxkyIOJBW2dsIOzb2RiQTyuezcGENh1y1iiO1opKToV07LXmXllP0mmt0TYdz6qWJF4Mm3nVDbMfQ2By5YeSLSJ4nDwamH6KXSpV0oeihQ+nrNy6+WONr/voLtmzRBakA552n/X77LetrDRumi1zTprdEbHoqNyJZN8Tusm3DMAwj5njxRU2a7l+BpksXWL1aMxKnGTOgAcFffJHx/NRUNVz27oWePbUUw9NP63VPO033G9GJGTRGvnjwwQd50D9xhBE2bOyNSCbUz+cdd2hZO3+D5ppr9Od558G+fen7zzwTTjopfVsEHnoI/vc/KFlSA5CvvRaee05XRtWood6fwYM1+DgrUlL0Gv75cCKFeNcNZtAYhmEYUU2ZMroy6rjj1FDx57vvNIbmjDM0z83AgdrHOQ2x/PRTXQi7ZAlMmqSBxxMmaC6cLVuOvtfAgbpyKnO6MsN7LIbGMIyjiOR58mBg+iH2SEpS70naaqk0pk7VaafNmzUt2UUXwauvav6a7PjrL51+6tIFPvooff/q1boCq3VrTSYfj/E2kawbzENjGIZhRD2FCx9tzIAaH4MHw7ffwsKF8PrrORszoEHCDzygQcMzZ+o+EZ3uKlxYp6NWrtTVVZs3Zzz3v/800d+aNcH4VkZeMIPGyBf33HMP99xzj9dixCU29kYkEyvP51NPQZUq0KEDHD4MQ4fCTz9pfanq1TUfztSp2m/mTF0eDjB3rsbl1K2bdZ2pUBIrY59fzKAx8kXx4sUpXry412LEJTb2RiQTK89n2bIaWzNypMbLtG+vwcN33KHH69bV0grDhmlszrPP6gqqCy/UajtnnAEvvKD7wkWsjH1+sRgawzCOIpLnyYOB6QcjGOzerfWnzjoL3npLk/mlMXKkFsn89lstnpkbqalw8CCUKBE6eYNBJOsG89AYhmEYRj4oWxb++EO9NP7GDEDHjlCtGkycmPt1Dh3S5eXPPx8SMeMGM2iMfNGjRw969OjhtRhxiY29EcnY86kULqxTTwMH5tzv8GHYtk0NmpEjNfg4v8T72JtBY+SLihUrUrFiRa/FiEts7I1Ixp7PdE44QZd2HzqUfZ/Ro+HEE3Vl1Zo12ZdpCIR4H/uwxNA454oCg4CLgQrAKqC3iHzvO94aeAeoCfwKdBWRdb5jDhgAdPddbgjwuOQiuM2RG0b+ieR58mBg+sEIF599psHDS5fqqqnMtGyp+XF+/VUNoAce0JVUmfn9d82J8/zzUKpU/uUZNQq++QY+/zx/50eybgiXh6YQsAFoCZQFngZGOedqO+cqAaN9+yoA8wH/6hs9gKuAxkAj4ArgzjDJbRiGYRj5pkkTDR6uUwduvRV+/jl9WmnZMt2+806oWBEuuUSTAPqvjErrW6SITl9lV5IhEEQ0WeDixcc2tRWphMWgEZFEEekrIn+LSKqIfAusBZoB1wDLRORLETkI9AUaO+dO9Z1+K/CaiGwUkU3Aa0DXcMhtZE+3bt3o1q2b12LEJTb2RiRjz2dGGjTQ3DS33KKekZYttRYUqHFStCikDdcTT8CgQenGxhdfwGWX6Xb9+lpV/LXX4MCBrO+V29hPn64ZlR97LDazHHsSQ+OcqwycAiwDTgN+TzsmIonAat9+Mh/3fT6NLHDO9XDOzXfOzd++fXsoRDd81KhRgxo1angtRlxiY29EMvZ8Hk3TpvDee1ob6r334KabNBh45Ei47jqoVEn7XXCB1qQqWBA+/FCXfR84kG7APPmkBhD7l2PwJ7exHzxYV2bt3RuZxTWPlbDnoXHOFQa+B1aLyJ3OuSHAdhF5wq/PLOADERnmnEsBThORP33HTgZWAgVyiqOxOXLDyD+RPE8eDEw/GJHAli0aMFy7dvq+NWvgnHNg+3b1znz9dXpuGhE1ejZuhFWrdCVVairs2QPlyuV8rx07dBn5//6n17zoIhg+PO8yR7JuCKuHxjlXABgOHAbu9e3eB5TJ1LUMsDeb42WAfbkFBRuGYRhGJHPCCRmNGdDsxNu3Q5s2MGZMxkR7zkGfPnDDDZqEb+ZMNX7Kl9cSDb/8kv29Nm6EU0+FHj20+vjvv2ffN1oJm0HjW600BKgMdBSRJN+hZWjAb1q/kkBd3/6jjvs+L8PwlC5dutClSxevxYhLbOyNSMaez2OjY0eYMQO++07jazJzySXw8sswYQK0aKErpO67D2bNgrZtsx/7Jk1g0SKtIt64MSxfnvNy8mgkIIPGOfeEc+7MTPvOcs49lod7vQvUB9qLiH9I0zfA6c65js65YsAzwOK0KSbgE+Bh51w151xV4BFgWB7ua4SAevXqUa9ePa/FiEtieeydc0Wdc0Occ+ucc3udcwudc21z6P+Qc26rc263c+4jX4oIw0Ni+fkMB87ptFKhQjn3u+IKGDBAq34PHAjr1sHNN+vY79sHs2drv9RULaq5d296IHDjxpCcrFmOYwoRybUBW4CSmfaVAjYHeH4tQICD6BRSWrvJd/xi4E/gADANqO13rgNeBnb62sv4Yn9yas2aNRPDMPIHMF8C+NsOdgNKoisda6MvXFeg08+1s+h7KbANXSRQ3qc7BgRyH9MPRizzyCMiBQuK3HyzSI0aIiDSsKFIcrIeX75c9332Wd6v7ZVuCKTlYgMeoQiQlGnfYaBYICeLJsnLdpGYiEwBTs3mmACP+ZphGDGM6CrHvn67vnXOpaV4+DtT91uBISKyDMA51x/4FHgCw4hjnnkG1q7VVVSXXAIvvaQxNgUL6vFTTtE4nbTVVQAjRsCKFdC/vzcyB4NADZrfgLuBN/z2/Q9YEGyBjOigU6dOAIwcOdJjSeKPeBr7TCkeMnMaMNZv+3egsnOuooj8Gw75jKOJp+cz0vAf+6+/hpSUdCPGnwIFMhozSUlwzz3QvfvRfaOJQA2ah4DJzrmb0RwxJ6HBvW1CJZgR2TRp0sRrEeKWeBl7X4qHT4GPJT2mzp9SwG6/7bTPpYGjDBrnXA808zg1a9YMrrDGEeLl+YxEMo99VsZMGt99px6cjz/W1VR79uhS7pQUja/JKiA50gk4D41zrhQ6n10DLWPwrYjsC6Fsx4TlmTCM/ON1rglfiofP0DQNV0r6qkj/Pr8Dz4vIKN92RWAHUCk3D43pByPeeecduPde2LBBE/1t2KAlES68EC6/PPupJ691Q04EvGzbZ7zMAmaIyMhINmYMw4heckjxkJmsUjpss+kmw8idNGfO8OFaT+ruu7XoZYMGuix87FhdQr53b46XiSgCXbZd05e9909gim/ftc65D0MpnBG5dOzYkY4dO3otRlwSB2OfXYqHzHwC3O6ca+CcKw88haV08Jw4eD4jlryMfaNG+vOjjzTL8G236fbLL2shzKuuUkMnmpZ2BxpD8z4wAWhB+tz0ZLRQpBGHnHvuuV6LELfE8tg752oBdwKHgK0uvYLencAM4A+ggYisF5GJzrmXgZ+A4sDXQJ/wS234E8vPZ6STl7EvXVorgDdtCsOGpWckrloVhgyBX3+F3r21Cni0EFAMjXPuX+A4EUl1zu0UkQq+/f+JSLkQy5gvbI7cMPJPJM+TBwPTD4YBXbpotuAvvwz8nEjWDYF6aLahK5tWpu1wzjUA1odCKMMwDMMwQsuIEV5LEFwCDQp+FU1w1Q0o5JzrDHwBvBQyyYyIpkOHDnTo0MFrMeISG3sjkrHn0zvifewD8tCIyEfOuZ1oDocNaIbOp0VkTAhlMyKY1q1bey1C3GJjb0Qy9nx6R7yPfcB5aKINmyM3jPwTyfPkwcD0g2Hkj0jWDdl6aJxztwVyARH5KHjiGIZhGIZh5J2cppxu9vvsgPOBreiUUw2gCjATMIMmDmnbti0A33//vceSxB+RPPbOuYEicr/f9u0iMsRv+2sRsSQlMUwkP5+xTryPfbYGjYhclPbZOfcWMEZE3vDb9wBQN6TSGRFL+/btvRYhbonwse8K3O+3/Qqa9TcNq/8W40T48xnTxPvYB5qHZhdaHyXFb19BYIeIlA+hfPnG5sgNI//kd57cObdXREr7be/y1xHOuT0iUiZYcuYX0w+GkT8iOYYm0GXbW4HMa8HaA/8EVxzDMKKczG9IsbnqwDCMiCPQxHr3A1855x5FY2hqAg2A60IlmBHZXHzxxQBMmTLFY0nijwgf+0LOuYvQuLustgt6I5YRLiL8+Yxp4n3sA81DM9k5VwdoB1RF6zpNsKq28csNN9zgtQhxS4SP/T9kXCjwb6Zt8+rGOBH+fMY08T72lofGMIyjiOR58mBg+sEw8kck64ZcY2icc9c75950zvVwzhXOdGxQ6EQzDMMwDMMIjBwNGudcT+Bl3+b/gLnOuRP8unQJlWBGZJOQkEBCQoLXYsQlNvZGJGPPp3eEYuwPHYJt24J6yZCRWwzNXcAlIrISwDnXD5jpnGslIutID/Qz4oyuXbt6LULcYmNvRDL2fHpHsMd+50646irYswfmz4dCgS4j8ogcY2icc3uAciKS6rfvXuAxNEHWvEjIKZEVNkduGPknkufJg4HpB8PImTVroF07WLsWPvkE0uKNI1k35GZvrQMaAYvSdojI2865/cA0oGjIJDMimqSkJAAKFy6cS08j2NjYG5GMPZ/eEayx/+UX6NABUlJg6lS44IJgSBd6cgsK/hi4OPNOX0HKnsCmUAhlRD5t2rShTRvLYu8FNvZGJGPPp3cEY+w//xwSEqB0aZg9O3qMGcjdQ/MIMMI5d7qILPU/ICKfAp+GTDIjounevbvXIsQtNvZGJGPPp3ccy9inpkLfvtC/P7RoAaNHQ6VKwZMtHOQWQ3MlupLpCmA56rH5TES2h0e8/GNz5IaRfyJ5njwYmH4wjHT27YOuXeHrr+G22+Ddd6FIkaz7RrJuyHHKSUTGish1wAnA+2ipgw3OuXHOuY6Z89IY8cP+/fvZv3+/12LEJcc89snJsGKFvoI99xzceCM0aQITJwZNRiN+Md3gHfkZ+7Vr4bzz4Jtv4LXX4MMPszdmIp1ASx/8hxo07zvnTgRuBv7Pty/KnFJGMGjXrh0A06ZN81aQOCTgsU9KglWrYNky+OOP9LZiBRw+nN6vdm1o0ACKFQuZzEb8YLrBO/I69j/+CNdfr8G/338Pl1wSQuHCQJ5WlTvnigJnAmcDlYHZoRDKiHzuuusur0WIW7Ic+337YNEi+O03WLBA259/qjcGwDk48UQ1XNq105/162srVSqs8huxjekG7wh07EXglVegVy+oVw/GjoWTTw6xcGEgoFpOzrkLgFuA69HicsOBT3zJ9SISmyM3YpY9e9KNlzQD5s8/VUsBVKkCZ5wBjRrBaaelGy4lSgR8i0ieJw8Gph+MeGXvXujWTeNlrrsOPvoob+80kawbcvTQOOf6otNLFYAvgctFZFYY5DIinN27dwNQtmxZjyWJcZKSYOFCXT85dy789hu7V64EoCxAtWpqvNxwAzRrpp+rVvVUZCO+Md3gHbmN/eLFasSsXg2vvgoPP6zO21ghtymnc4AngTEicjAM8hhRwpVXXgnYPHnQ2b1bjZdZs7T9+iscOKDHatSAZs248vBhKF2aaZMnQ+XK3sprGJkw3eAd2Y29CAwZAvfdB+XLa7K8li09EDDE5GjQiMhl4RLEiC7uv/9+r0WIDfbt07ScP/2kWmbePE0IUbAgNG0KPXrA+edr83le7h89Ws81Y8aIQEw3eEdWY79nD9x1F3z2GbRpAyNGwPHHeyBcGAgohiYasTlyIyLZuxd+/hmmTNGfv/+uSwwKFoSzzoKLL9Y0nWefDSVLeiZmJM+TBwPTD0Y8MG8edO6sS7P79oXevVXVHAuRrBsivHamEans2LEDgErRlkoy3CQl6bTRlCnafv1VVx4VLQrnnqvLDC64QD+XCazOq429EcnY8+kdaWNfvnwlXnsNnnwSTjgBpk+PrhIG+cUMGiNfXHvttYDNk2fJjh2a1OHbbzVZ3Z49UKAANG8Ojz6qXpjzzst33hcbeyOSsefTO6699loOHYJixaYxbRp07AiDB0OFCl5LFh7MoDHyxSOPPOK1CJHF8uUwZowaMXPmaBRelSqataptW7joIo3GCwI29kYkY8+nN4hAs2aP8N57+v40dCjcemtsrWLKDYuhMYz8smwZfPmltj/+0H3NmsEVV8Dll+vnArkVtI9MInmePBiYfjBiiX/+gf/9T8sXnHcefPIJ1K0bmntFsm4Im4fGOXcv0BVoCHwuIl19+2sDa4FEv+4viUh/33EHDADSyogOAR6XWLXEooStW7cCUKVKFY8lCSMisHSpGjBffaVeGee0NO1bb8HVV2temBATl2NvRA32fIYPEVVH99yjM9tPP72VO++EatXic+zDOeW0GXgOuBQonsXxciKSnMX+HsBVQGNAgMnAGuC90IhpBEKnTp2AOJgnF9GVSGlGzMqV6nVp2RLuvVeNmBNOCKtIcTP2RlRiz2d42LIF7r5bZ7qbN4dhw+Ceezrx88/xO/ZhM2hEZDSAc645UD0Pp94KvCYiG33nvwbcgRk0nvLEE094LUJoWbJEEzd89ZUWeCxQQONgHn4YrrrK0xwwMT/2RlRjz2doEdH4mEce0ZybL72kaqlQIRv7sMfQOOeeA6pnMeW0mXQPzKMissN3fDdwiYj86ttuDvwkIqWzuHYP1KNDzZo1m61bF7GlpoxIZNs2zTo1fLh6ZQoWhFatNFf4VVfBccd5LWHYiOR58mBQsWJz+fbb+ZxzTnwFTRrRzcqVcOedMG2aznR/8IEWlwwnkawbIiFicQdawbsW0AwoDXzqd7wUsNtvezdQyhdbkwERGSwizUWk+XFx9M/HCzZs2MCGDRu8FuPYSU2FSZPg2muhenXo2ROKFIGBA9Wn+8MPcMcdEWXMxMzYe8h//2nwZPPmWpwvrbqEcezY8xl8Dh7UxHiNGmlpt8GD1ajJbMzE+9h7vmxbRPYBacsNtvmCh7c458qIyB5gH+CfcawMsM+Cgr3l5ptvBqJ4rnbzZv1PNmQI/P03VKwI998P3btrZeoIJurHPgJo3FirSrz9Ntx+u9qxt92mK0VOOslr6aIbez6Dy8SJGq63ejV06gT/93+aESIr4n3sPTdosiDNUEnzwCxDA4Ln+rYb+/YZHvLUU095LULeSUlR7fDBB5ovJiVFp5RefFGDe4sW9VrCgIjKsY8wChRQ4+XOO7UCxTvvwBtvwGuvwaWXau2byy/XuAQjb9jzGRxWr9bYmHHj1BMzZQq0bp3zOXE/9iISloYaT8WAF4Hhvs+FgLOBeuj0V0XgCzRGJu28/wHLgWpAVdSY+V9u92vWrJkYhoiI/POPyPPPi9SoIQIixx8v8vjjIn/95bVkEQswX8KkGzI34F7Ua3sIGJZDv65ACurFTWsJgdwjK/2waZNIv34iVavqY1K9ukjfviIbNgRnTA0jEPbsEenVS6RIEZGSJUVefFHk4EGvpUrHS92QWwtnDM1TwAHgCaCL7/NTQB1gIrAXWOpTYp39znsfGA8s8R2f4NtneMiaNWtYs2aN12LkzKJFOo9Qo4YWNalXT1ctbdgAAwZE7dxCVIz9sZGW4uGjAPrOEZFSfm1afm9atSo884zOQI4eDaedBv36Qa1acOWVMGGCOvWMnImD5zMkpKSo8/jkk9VpfMMNGgT8xBOBO4/jfewtU7CRLxISEoAInKtNTtbEDAMHwowZUKKE5v++915o0MBr6YJCOMY+ElYyZF4RmcXxrkB3Eclz2b1A9cPatfpP5qOPdBFcjRpqI3frpoaOcTQRqxsiFBGdCX/8cc0Wcf758PrrcNZZeb9WvOiG7LAZYiNf9OvXz2sRMrJjB3z4IQwapB6YE0/UgIjbboNy5byWLqhE3Nh7S1Pn3A5gJzqV/aJknaAzX5x4Irzwgnpqxo3T1SXPPqutTRsNKL7yyqgJvwoL9nwGzty5ashMmwZ16mj+zo4d859KIN7HPv48NIcPQ1ISlCyZ8wU2b9YnrV076Nw5576Gd6xerYbL0KG6trFVK3jgAY3oLFjQa+milkh4CwvAQ1MHXUSwDjgNjb8bLiIvZtM/KHmq1q3Tx+2jj9R2rlgRunRRr03jxvm6pBFnLFkCTz8NY8dqRohnntFVd0WKeC1Z7kSCbsiOSMhDExr++w92+9LXpKSAr74IQ4ZA7dqaXnH6dHjvPV3e4M+oUXD66ZpkrW/f8MkcRaxYsYIVK1Z4J8Bvv+kk8ymn6O/0ppu0ztLUqdChQ0wbM56PfYQgImtEZK2IpIrIEuBZ4Noc+gclT1WtWqoW1q7VqYJWrdQx2KSJtv/7Py0WGK/Y85k9f/yh78eNG8NPP+lztHq1zogHw5iJ+7H3Oio5VK0ZiFSoIPLKKyLt24ucfLJIYqLI3Lkil16qyxjS2oknpodwt2ql+846S2TKFJEDB+QoUlKO3udPYqLIJ5+IbN+ec78opmXLltKyZcvw3jQ1VWTSJJHWrfV3VKaMrlbavDm8cnhMOMaeCFjJgAYGD8tD/xuABYH0DfYqyB07RN5+W6R5c300CxYUueIKkS+/zFqFxDKe6IYIZ/FikeuvF3FOVy716iXy77/Bv0+86IbsmucChKo1q18/3XApUEC1jT+//Sby/fci69frP0oRNVRuvVXXySUlpfdNOy6iT2HNmmr4rF6d8ZqHD4u8+67ICSfofS+5JOO5McSsWbNk1qxZ4blZUpLIZ5+JNGmi41q1qhqqu3eH5/4RRjjG3kulRTYpHrLo1xao7Pt8KroKsk8g9whlWoelS9XOTlv+XbasSPfuItOm5f4uFAuEVTdEOHPm6Ps0iJQuLdK7d2jfc2NdN+TWPBcgVO2IwpoxQ2TmzNx/S9kxdapI/foiW7fqdo8e+vpVurRIiRLphtKSJZq4AkTOP1/kqadEvvoq//c1RPbtE3nrLZHatXVcTz1VZMiQyErKEKN4bND0RWNj/FtfoCaaa6amr9+rwDYgEViDTjkVDuQe4chTlZwsMnmyviOVKiVHcts8+qjIggUx+64T96SkiHz7rUhCgv7OK1TQfEah8Mh4gRk0HrSgKaw//tBhevll1UD9+6uZvX69yGWXidx1l/bbs0ekQwd9kjNrqqw0V2KiyDvvRO1TvmTJElmyZEloLr59u2qAihV17M87T2Ts2Ph4vQ2AkI69j0hWWsFo4U68uW+fyOef6zRUoUL6WJ98ssjTT6tHJ5YIx/MZiSQmirz/vr53pRmvr78usndv+GSId93guQChakFVWOefL3LKKVkbKocO5XzuW2+JtGt39D/jUaN0+Fu21Kmq/JCaqlMx3buHfaI+JHO1a9eK3HuvSPHiOjbt2x+bdy1Gifd58mA0LzOJ79ih//hatdLZcFAncJ8+atxEu+cm3mJo1qwR6dlTpHx5/V02bSry6af5V+vHQrzrBs8FCFULqsIaNkyH6uGH837u4MF6bosWIl9/nfEp79VLj919d96vu3ixyIUX6vmtWqmHyJ/Zs0Vuv1393iFg7ty5Mnfu3OBcbOFCkc6ddSqvcGGRbt3UM2ZkSVDHPhsiWWkFo0VKaZQtW9RR27KlBoyCSL166gSePz86jZtwPJ9ek5QkMmaMSNu2+nsrWFDk2mtFpk/39ncW77rBcwFC1YKqsBITdajOOSfv56amirz5pkitWnJkVdWvv6Yf79lT9733nm7v3Svy3Xciw4eLDBwo8swzIrfcIvLTT3r81181fgd0Smbw4KyNlqJFtc/EiXmXOVzMnJkeuF26tI7Fxo1eS2VIZCutYLRIMWj82bxZZNAgXcRXsKD+WdSoIXLffbrg0os3fiMjf/2lxma1avr7OeEEnTZcv95rycJHJOsGzwUIVQu6wtq0SWT//vyfn5ws8s036on45ZeM+y+7TI2l5GRdOeW/pNw51Wqffqr9160TeeghkRdeSI+/OXRIp7BWrdLtmTP13A4dQuahWbhwoSxcuDDvJ6am6mtM2tLr447TVWW7dgVbxJgl32OfByJZaQWjRaJB48+OHSJDh4pceaVIsWJyZLVU586qCnbs8FjAHAjH8xlOdu0S+eCDdId4gQIaRTB6dOQZmfGuG+IvU3Aksnu3ZlUqXlxrEc2dq+kjy5XTVrhwzuf/8w9Urw733adZc6+6SusYrV+fe0bkfJLnmiGpqZo7/uWXYc4cqFwZHnsM7rwzZDLGKvFeryUYRJN+SEyEKVP0z2f8eNi+HQoU0Fo/bdvCZZdBs2aRk0syFmo57dunxUhHjYJvv9UE8/XqwS23aGm4atW8ljBr4l03mEETK9xwg2bJXbkSzjxTc7E/8wz06qXlW++4Q/stXaoZkrt3P6YCNIsWLQKgSZMmOXc8dEgzLr/yCqxYocVxevaErl21cKSRZwIe+2MgkpVWMIhW/ZCSokmyv/tO2/z56sqtWBEuvji91a7tnYzheD5Dwc6dasR88w18/71WUqlSBa6/Hm6+WY3G/NZYChfxrhvMoIkVpk5VTfbZZ3DddfpKUaKElm79919Yvlw1X5MmWkjk9NO1IE1zv+dy714oVSr7v9qpU9WDdOmlucuzeze8/76WldiyBZo21dpYHTtCIauJGulEstIKBrGiH3bsgMmTtQTD5Mn6pwb63pCQoK1lS6sMnhUi+o41YYK2n39Wg7FqVbj6ajVkzj8/cjxfkUIk6wYzaGKF1FQ44QQt2TpnTvr+jz7SksAzZ+pf55o16r9+9lnVfm3bqi/7v//0+A03ZF2/6ocftOBjqVKwaRPzli0D4Mwzz8zYb/NmePNNrZG1Z48aWY8/Dq1bR/7rTZQwb948IIuxDyKRrLSCQSzqBxH48081bKZNU0fszp16rEYNaNECzjsPzj0XGjUK3XtFOJ7P/PLPP1pDacoUbX//rftPPx2uuEINmebNdUovGol33WAGTSzRr58aI3v2QOnSum/fPvVHHz6sRk+aUfHff2pozJ2rBk21ajot9dFH8Nxz8OST6dddsEBf88qUUYNlwgQSXn4Z8M3VLlqkvu9Zs+DTT/U15/rr4dFH4YwzwjgA8UG8z5MHg3jQD6mp6oydMSO9pXlwSpTQKZQzz9TWrBnUrRucf+SREkMjAn/9Bb/+qu9zP/+sBh9A2bJaVLRNG2jXLnY8WPGuG8ygiSVSU7WqeNWqGfffdJNORU2fDhdemP35KSnQrRsMH67Butdeqx6W//1PJ5Vnz4YDB+Ckk1i6dCmIcPqqVerVSUrSa5x6qhpDXbqE7nvGOUuXLgXg9NNPD9k9IllpBYN41A8iuk5gzhxt8+bpu8qhQ3q8ZEmtAt2oETRsqF6L+vWhUqW8OVfD8XxmJjlZq1b//rt+pwUL9B1r1y49XqaMeqguvFDfzZo1i82Z73jXDWbQxAP79mkw8Dnn5N43JUU9NcOG6aqpN9/UfVu26Eoq0GUXn3wCb78Nf/yh2q5tW9WIkyapgTN4sPZNTY1e/20cE8lKKxiYflCSklQ1LFyojtZFi9Sr899/6X3Kl9cVPnXrpreaNbVVr64LNMNBcjJs2qRG2Zo16n356y+Ng1m+XJ3QoItCGzZU5/A558DZZ6thZrEwwSGSdYMZNEbWJCXpq1upUun71qyBd96Bt95idlISnHIK5z35pK4bPf547XP4sE55Vaqk01+TJmWM6TGOmdmzZwNw3nnnhewekay0goHph+wRUcNhyRI1FtLa6tWwYYMe96diRc3CULmy/tkfPjybMmWgQYPzKF1aVUjRotqKFNH3H+f0OklJ6aomMVHfvfbsUc/Kzp26nmHrVm3//KPvVmkULKiruerVg9NO05bmWQqXkRVpxLtuiEGnmxEUChfWdvgwjB0LH3yg0YYFC0LVqvTevBmKF2fazTdn9EcXKaJaDTSXzi+/6Gtf5mWE+/fbsu180rt3b8D7GAUjNnFOPS/Vq6vj1Z/Dh2HdOvWSpLVt29Tg2LYNFi+G1at7k5wMMC3fMpQpAxUqqLFUtap6W6pU0ViXWrXUkKldO34Nl+yId91gBo2RNVu36rLr997TzzVr6sqo226DlSt5v1UrnbAeOlT3ZUXnzvDww9rnzTfT9y9dqtF4Q4eqd8fIE++//77XIhhxSpEimtbq5JOz77NixfuIqOGxd696XQ4d0nb4cEYPT9p7U5Ei6skpVUpnrmMxviUcxLtusMfGSCcpSaeIhg/X7FJJSboE4N574ZJL0iehq1al3sknq4/4hhuyv16FCpq1+NNPNbFeoUJwzTW6AqpSJU25uXix+qozYx6cbKlXr57XIhhGtvg/n8WLp89GG6En3nWDRWsaGtj70EO6dLt9e/jxR7j7bs06PGGC+p39I+qcY3qfPkx/6aXcyxZ066YT4ePHaw7xsWM1UPjzz3WyvGtX3fZnyxb1M999d9C/aiwwffp0pk+f7rUYhpEl9nx6R7yPvQUFxyt79sBXX2nemVmz1O/boYN6TS67LNf6UQHnO0hJgeef19zhN96o01d//aXemkGD4J574K231AuURlrWY4CRI9O9QHv36jm33KJJBOOUeM81EQxMP4SOSMlDE4/Eu24wgyaeOHhQp5Q+/1w9JQcPwimn6DLtW27Jk294zZo1ANSpUyewE6ZNg4su0lVSaZ4XETWeKlRQmfzZv1+NmqVLNaFE4cKayvOPP1TWjz8OWNZYI89jnw8iWWkFA9MPoSMcz6eRNfGuG8ygiXUOHNBCL19+qdM+aZmDO3VSr8lZZ4WnJMGFF2qq0v37dWI9jcREjZVJk2H5cjWyChbUNaJNm+o02GuvaTxP+fK62mrVKm8r8MU4kay0goHpB8PIH5GsGywoOBbZv18z+375pcatJCamGzHXXaeeklymlHJjypQpAFycNjWUG2efDXfdldGYgfQYnDVrYPt2rRd1zTWamK9GDS28Uq+eLoOYM0cTZNSpA6++qon94pA8j71hhBF7Pr0j3sfePDSxwr//qidm7FgN5N2/X/PAXHONljBISAjqWsigztWmpqpXZvNm9SilFdLMjo8+0hSgDRoc+72jkHifJw8GcacfwojF0HhHvOsG89BEK8nJGlsyZYrGxcyerYZB5coa2HvddVq8JEQJHYYPHx68ixUooAUxO3dWmXMyZiD7vDf55cCBoz1HEUxQx94wgow9n94R72Nvy7ajiX/+0WDY667TKaRzz4Wnn9YppSef1LKymzfrSqCLLgppdqoaNWpQo0aN4F3whhvgjTc0I3EgrFihwcF//x1Y/82btfr3tm26nZqqMUUXXKBpSQcOPDqnexpz5uj9QKfyGjTAlwrVE4I+9kYG1q+HJ57Q+kZG3rHn0zvifezNoIlkNm2CESO02nXDhpr7u2tXXWZ9/fUwapTGnSxYoFl8zzorbIUgJ06cyMSJE4N3QefggQc0XiYQEhN1ZdSJJ2rluQcf1KXoWbFtG7RqpXE3Zcvqvscf12XqGzaoUfPAAxpzlMb+/Rp/dOGFcN556gUD2LhRA5cXLcrvNz1mgj72xhE2btTZ2Zde0nT7N93ktUTRhz2f3hHvY29TTpHExo1qrMyYoblY/vxT95ctq96YTp00yV3TpuFZmZQDAwYMAOAyr0oXnHGGVs+bMEHHauBAXS31wgsZ+23fDq1bq+EyfToUK6b7nVNj8frrdUXVZ59Bx456rGnTdIOlZk0t25A2zXX55frz55+huTfTyJ6PfYyQkgJz58JJJ2m42b//qt27Y4cupJs/P702a2qqpk+K80SsAWHPp3fE+9hbULBXJCfDsmVqwMyapYGw69frsRIloGVLzcPSqpV6Z/wz9UYAW7duBaBKlSoeS+LjscfUEOncOX3f7t3qYVm5Er77TqfhAuHFF3X66bTTdKl45hVhJ5+sx8aMCZr4eSEcYx/JgX/BoEmT5nL88fOZPFm3x4/XX/XDD6uNm7lY8WefaZaDW2/V2dELL4yqsKuwEnG6IY6Id91gBk04OHxYE8L99lt6W7xYE9uBpvk///z01rjxMS+rNlBDMa2W1CWXBO+6t9+uxsz27WGb4gs3kay0gkGRIs2lQIH5PP+8liy77bac80ru3An9+mk2gYMH1dF32WXw4YcazpZGaqrOfJYrF/KvEBB//aXqJbcKJYYRKJGsG2zKKdgcOqTZbdMMlwUL1Hg5fFiPlymj0yX33KM/zztPy9J6PIWUV8aPHw9A+/btPZbEj337tLBm9+5qEJ5/PqxbF/wil1dcob/nvXvTY3LGjNE2aFDIi2pG5NhHGc7pwsAzzgisf4UKOvP44os62/j997B2bfqvH3Sa6tFHtQh927bqFMwJEa348dtv8H//p7PKgTBmjDob/e+dFWvWaDaEJk1UDYVLxdjz6R3xPvbmockvKSmqMf74Q6eO0n4uW6avfKCvaWecoa1ZM21168bEW31E5pqYMEGNjUGDNBFft27hGeuUFH1N371bP6fd8/Bh/U+VmKiv90H6jxLvuSaCQZMmzWXRomPTDyL6K922TW3n1av13eS22zT0qmtX9ezccYcWm8+cjb5PH43lL1NGbeMePdRoKlpUjS3n1Lty/PGaKPvGG3Xh4skna57KiRNztp1nz07PgPDNN+qsTGPjRi14nxZSFkwiUjfECXGvG0QkJluzZs0kKOzaJfLbbyJffinSv79I584ijRuLFC0qojpNW40aIpdeKvL44yKjRomsWiWSmhocGSKQ7du3y/bt270WIyMpKSINGog4p23RotDdKzVVJO37f/utPgNffKHb69aJfP+9SP36ur9gQZEtW4J263CMPTBfIuDvOFQtaPpBRN54Q6RiRZFXXhE5cCDjsZkzRcqVEylTRmTwYJGdO3V/SopIly4it90msmePyEMPiVx+ebrKqFw5o3oBkRde0GMjR+rj3batyOjRIlu36v4JE0SWL894/8OH9U/ixBPTZRs7VqRwYZGqVUU+/jhowyCHDunPiNQNcUK86wbz0IAu0V27Vj0ua9bo6qI0r8u//2bsW7u25iGpX18DQ9M+lykT9O9g5INhw9Qz89BD8PrrobvPXXdpVuZNm3Tl06JFOr0lAqefrsELtWppMc7zz897UMWuXXr91FT17DVoENa4qoh+CwsCwfbgimTvgPv7b/WuzJmjzrtWreCHH/RYSkp6uqiUlPTY/9mz1eG3aZN6Uxo3hquvTr/mBx+oRwe0mP3DD+v0UnKyTn1Nngx33qmBy1OmQJs2MG6c9u/YUa9XtKiWSXv88fQUTPl1Ig4cqNNt//d/6bVnjdgkknVD7MfQiKhRkmasbNgAW7ZoW79e9/kiw49QrpwaK9dco1qiTh3Nd3LyyenrOOOc0aNHA3DNNdd4LEkm0qqGt24d2vs0bgzvvaf5ab7/Hvr2TTc4Bg7UNb8PPZQejXn4sCY3ue++wIybNWvUMEujaFH9T/TKK4z+5RcgAsc+jsnJEKhdWzMxzJ2r00SJien9/XNf+i9kzLzKKjN33KHvUKmpmmezUCF9DBMSdIb78GFdHNm6tS6WXLECSpdWVda0qRpUZcqoEQUwcqSWRnvjDT1v714Nfg4kR9tLL2kiwuOP19DA+fNHc8UV6c9ncnLWOT7Hj1d13Lx5uoFlHBsRq5fDRbhcQcC9wHzgEDAs07HWwJ/AfuAnoJbfMQe8BPzray/ji/3JqTUrVUqkTh2R4sWP9t2WLCly0kkiF10k0r27yPPPi3z2mcivv4r8809MTxUFi5YtW0rLli29FsM7li3TZ+mll0T69hXZvDnn/gsWiBQqJFKrlsh554m0bq3n+j9rs2aJdOsmsnevzkn8/rvIihX6bN57r85brFiR+9j/95/IM8+ITJmS769HBLuVg9GCOeUUSSxcKFK+vMh112V9fPx4nUXPzJdfHj3Ndcop6cevvlrkiitE3npLH/0VK0T+/luPjR4tcuutIomJIh07ipQq1VJatGgpEybo7DyIlC2rM7BnnKH9RERuvDH9XuXLi4wbl36/1FSRt98WueYaffwPHkw/tnt3+jSbkZFw6OVI1g1hm3Jyzl0DpAKXAsVFpKtvfyVgNdAdGA/0B1qIyDm+43cCD/uMHgEmAwNF5L2c7te8dGmZ3749nHACVK+uwbh16mi0nk0PHTO7d+8GoGxuSy1iFRF9Jb38cp3mCoRRo+CTT/TVd8cO9QwuWqQZoHfv1tfUAgV0X1bP6N69ULo0u//7D775hrK33HJ0fqLvv9e5iI0bdXvIkHzVvopkt3IwiKi0DkFm716daspr5ZM9e7Tu64ED6s2pVUunpEADmEeMUMdhGtdfD198kfEaycmwadNuypWDBQvK0q+fJuLes0erjyQm6ixsnTr6J7R+PcybBwMG6GqvN95Q71PHjurNKlcO/vtPY+4nTdLZ1/vuU29SvXrqgTrzTD2eJuvGjbouo1gxdZoWKaLbacvrx4/XP8HKldUR77/sPhC2bNHFlI0awaWXRtYC1XDo5YjWDeG2oIDn8PPQAD2A2X7bJYEDwKm+7dlAD7/jtwO/5HafWH0DMyKIxo3V65KSkvdzU1LSvTqpqSKdOmnw8Jw5uZ87caK+1j71VMb9ffro/gYNRKZNE+nVS2TbtvRzvvhCZN68jK+72UAEv4UFo5l+yB9//SUybJjIiBGBPaqBsn+/SI8eInPn6p9Dly4igwaJJCeLTJqk2/v3a9+FC9W52batOttBpEqV9Gu1by9HOeUbNEg/3qxZ+v6CBUXatBH5/HM9dvCgyIsv6vfLKrb2o49EihRJP/+SS0SWLNFja9eK3HST/tlNmZIub6wRyboh7EHBzrnngOqS7qF5EygiInf59VkK9BGRr51zu4FLRORX37HmwE8iUjqLa/dADSRq1qzZbN26dSH/PvHKF75XsxtuuMFjSTxk2jSNtHzttfy/pqWmagKSuXM1urN371xP+WLkSBg8mBt++glGj06PFl20CL76SguWZg5IaNNGo0NB1/peeKGu473zzizvEdFvYUEglj00XhNO3XD4sMbhHD6sazNAK5ysXatemKQkbRUq6DJ60HyYW7dqmzZNHaetW2tIXEqKenRSU/VP+qyz1HR56in1AC1dCu++q/mDJk3SbAxnnqkxSf/9p+sBtm5Nv07lypqM8bLL1LMza5bGOM2cCV9/DT/9pGsJypdXuSdN0hrE//6r9y1fHoYOVbnff1/XGpxySvpalAoVVM7UVK0A8+yzX7BuHbRrdwNt2mj8VNmyOgarV+u4rF2rKbtq1ND1CjVrZhzT/ft1mf/OnerczZyUMaJ1Q7gtKI720AwBBmTqMwvo6vucgs9b49s+GZ16yjGOxt7AQkvcx9AEiwMH9BXxiiv0dTQAWrZsKS1btBA56yyRUqV0zW9u7NmjMTlffily330a0HDFFenH33orQ3ci+C0sGM30Q+iINt2Qmpoe1yMism+fOjL79hU591yRhARdEp8VO3aoZ8afPXs0k8Njj4l07arhcyIiQ4ZIBq9R9er6p5jGtdeqw7dqVZGGDdUBfNFF6cdvukmkWLGM12jYUI8lJ4uccIJIwYItpVy5llK6tB5/9VU9vmJFxvPS2iefpB//3/9E7rhDQ/VAf2blzI1k3RApHprCInK3X58lQF9J99C0EZG5vmPNgGmShYfGH3sDCy379+8HoESIs+LGDZLDut9MHBn7nTvhnHM0PmzixLwXF0rL4X/4sAYF3H77kUMR/RYWBEw/hA7TDVlz+LBmbF6wQFd2nXlmxj/5Awf0zzEnNZCaqnFHf/yhJeqKF093si5ZAtWq7ffFDpVg7lz1rjRpoiF648frirs6dXSx7saNGr5XoYIeu+km9Sxdd50usGzQQIu2ZiaSdUMkGDQ9gFtF5HzfdklgO3CGiPzpnJsNDBWRD3zHb0Njas7J6T6msIy44PBhjXwMcmRiJCutYGD6wTAykpysBk1uy+cjWTeELQe/c66Qc64YUBAo6Jwr5pwrBHwDnO6c6+g7/gywWET+9J36CfCwc66ac64q8AgwLFxyG1kzYsQIRowY4bUYcUmGsS9SJLKWWQQB59y9zrn5zrlDzrlhufR9yDm31Tm32zn3kXPOspl4jOkG7ziWsS9UKPpzAYWzqNBT6OqlJ4Auvs9Pich2oCPwPLALOBvo5Hfe++hy7iXAUmCCb5/hIR9++CEffvih12LEJXEw9pvRWLuPcurknLsU1SetgdpAHaBfqIUzciYOns+IJd7H3kofGPkiyVeAs3AY0/EbSjjGPhLcypmnp7M4/hnwt4j09m23Bj4VkSq5Xdv0Q+gw3eAd8aIbsiP2Sx8YIcGUlXfY2B/hNGCs3/bvQGXnXEUR+Tebc4wQY8+nd8T72IdzysmIIYYNG8awQDPkGkHFxv4IpYDdfttpn7NcAemc6+GLzZm/ffv2kAsXr9jz6R3xPvZm0Bj5It7/cLzExv4I+wD/GhFpn/dm1VlEBotIcxFpflxW61GNoGDPp3fE+9jH7JTTb7/9ts85t8JrOcJEJWCHFzd23qyw8ez7ekC23zXEY18rlBcPEsuAxsAo33ZjYFsg002mH0KP6YaQY7ohEzFr0AArIjVwKdg45+bHy3eF+Pq+8fRd0/ClcyiEX4oHIFlEkjN1/QQY5pz7FNiCrqQcFuBtTD/EIPZd4xubcjIMI9LIMsWDc66mc26fc64mgIhMBF4GfgLW+Vofb0Q2DMNrYtlDYxhGFCIifYG+2Rwulanv68DrIRbJMIwoIJY9NIO9FiCMxNN3hfj6vvH0XcNJPI2rfdfYJJ6+a0DEbGI9wzAMwzDih1j20BiGYRiGESeYQWMYhmEYRtRjBo1hGIZhGFFP1Bo0zrl7fWnMDznnhuXS9yHn3Fbn3G7n3EfOuagrku6cq+Cc+8Y5l+icW+ecuzGbfs4595xzbpPv+05zzp0WbnmPhUC/q69vHefct865vc65Hc65l8Mp67GSl+/qd86Pzjnx5WsxMmG6wXSDr29U6wYw/ZBXotagATYDzwEf5dTJOXcpms+iNVAbqAP0C7VwIeAd4DBQGbgJeDcbZXQdcBvQAqgAzAGGh0vIIBHQd3XOFQEmAz8CVYDqwIgwyhkMAv29AuCcuwlLt5AbphtMN8SCbgDTD3lDRKK6oYprWA7HPwNe8NtuDWz1Wu48fseS6EN9it++4cCALPo+Dozy2z4NOOj1dwjRd+0BzPBa5nB8V9+xssBK4BxAgEJef4dIbqYbjupruiGKmumHvLdo9tAEymnA737bvwOVnXMVPZInP5wCpIjISr99v6PfLTMjgZOcc6c45woDtwITwyBjsMjLdz0H+Ns5973PpTzNOdcwLFIGh7x8V4AXgHeBraEWLE4w3WC6IZIx/ZBH4sGgKQXs9ttO+1zaA1nyS+bvgG87q++wBZgBrEBTxl8HPBRS6YJLXr5rdaATMBCoCkwAxvrczdFAwN/VOdccOB94KwxyxQumG0w3RDKmH/JIPBg0+4Ayfttpn/d6IEt+yfwd8G1n9R36AGcCNYBiaEzAj865EiGVMHjk5bseAGaKyPcichh4FagI1A+tiEEjoO/qnCsADAIekKMLNBr5x3SD6YZIxvRDHokHg2YZ0NhvuzGwTUT+9Uie/LASKOScO9lvX2P0u2WmMfCFiGwUkWQRGQaUBxqEXsygkJfvuhidK45WAv2uZYDmwBfOua3APN/+jc65FqEXM2Yx3WC6IZIx/ZBXvA7iyW9DI7mLAS+igVLFyCIICrgMnVNsgP7x/kg2QVWR3ND578/RQLHzUdfjaVn06wPMRKPiCwA3A4lAOa+/Qwi+az1gP3AxUBB1n68Ginj9HYL5XQGHrtRIa2eiyrpaNH3XMI6p6QbTDVGvGwL9vqYf/MbCawGO4Rfd1/dL8299gZqoq66mX9+HgW3AHmAoUNRr+fPxfSsAY3wKaD1wo29/hu/rU97voPPle4AFwGVeyx+K7+rbdw2wyvddp2Wl3CK55eW7+p1TmzhdxRDgmJpuyOIZMt0QXbohr9/X75y41Q9WnNIwDMMwjKgnHmJoDMMwDMOIccygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+oxg8YwDMMwjKjHDBrDMAzDMKIeM2gMwzAMw4h6zKAxDMMwDCPqMYPGMAzDMIyoxwwawzAMwzCiHjNoDMMwDMOIesygMQzDMAwj6jGDxjAMwzCMqMcMGsMwDMMwoh4zaAzDMAzDiHrMoDEMwzAMI+op5LUAoaJSpUpSu3Ztr8WIWXbv3g1A2bJlPZYk/gjH2P/22287ROS4kN3AYwoUKCDFixf3WoyYJCUlBYCCBQt6LEn8EY6x379/v4hIRDpDYtagqV27NvPnz/dajJglISEBgGnTpnkqRzwSjrF3zq0L2cUjgOLFi5OYmOi1GDGJ6QbvCJNuOBCyix8jTkS8liEkNG/eXMygCR07duwAoFKlSh5LEn+EY+ydc7+JSPOQ3cBjSpYsKWbQhAbTDd4RJt2wX0RKhuwGx0DMemiM0GLKyjts7I1Ixp5P74j3sY/IeTAj8hk9ejSjR4/2Woy4xMbeiGTs+fSOeB97m3LKgXHjxvHZZ58xcuTIIEkVO9g8uXeEaZ7cppxyoGvXrlSvXp3rr7+e//3vf8yePTuI0kU3phu8I0y6waacopEOHTrQu3dvFi9eTKNGjbwWJ6IYO3as1yLELTb2kUOjRo0oV64c48ePp3379l6LExHY8+kd8T72sTvltGZNUC7TuXNnBg8eHJRrxRJly5a1JdseYWMfWdx00028//77XosRMdjz6R3xPvaxa9Ds2gWTJgXcfcOGDVxzzTUcd9xxVKxYkXvvvRdQF96ECRNCJWXU8sUXX/DFF194LUZcYmMffhYuXMgZZ5xB6dKlueGGGzh48OCRYwkJCUydOpVDhw55KGHkYM+ndwR77P/999+gXSscxK5BU7Qo3HcfBKBkUlJSuOKKK6hVqxZ///03mzZtolOnTgDUr1+fv//+mz179oRa4qji3Xff5d133/VajLjExj68HD58mKuuuoqbb76ZnTt3ct111/H1118fOV6tWjUKFy7MihUrPJQycrDn0zuCOfaff/45derUYcGCBXk6zzm3L1NLcc695Xe8tXPuT+fcfufcT865WkERGEBEYrI1O/lkERB5/nnJjdmzZ0ulSpUkKSnpqGOHDx8WQNatW5frdeKJxMRESUxM9FqMuCQcYw/Mlwj4Ow5VK1GiRMBjMX36dDnhhBMkNTX1yL5zzz1XnnzyySPbVatWlenTpwd8zVjGdIN3BGvsJ02aJIULF5YLL7xQDhw4kOEYkCgB/p0BJYF9wIW+7UrAbuA6oBjwCvBLoNfLrcWuh6ZMGejYEZ57DtblnPR0w4YN1KpVi0KFjo6R3rt3LwDlypULhZRRS4kSJShRooTXYsQlNvbhZfPmzVSrVg3n3JF9tWplfKncu3ev6Qgf9nx6RzDG/ocffuDKK6/k1FNPZezYsRQrVuxYLnct8A8ww7d9DbBMRL4UkYNAX6Cxc+7UYxLaR+waNACvvw7Owf33g2S/PL1GjRqsX7+e5OTko44tX76c2rVrU6ZMmVBKGnWMGDGCESNGeC1GXGJjH15OOOEENm3alPbGCcD69euPfN68eTOHDx+mXr16XogXcdjz6R3HOvYLFiygQ4cOnHLKKUydOjU7I72Qc26+X+uRwyVvBT6R9D+e04Df0w6KSCKw2rf/mIltg6ZmTXj2WRg3Dj75JNtuZ511FieccAJPPPEEiYmJHDx4kFmzZgEwffp02rZtGy6Jo4YPP/yQDz/80Gsx4hIb+/By7rnnUqhQIQYOHEhycjKjR49m7ty5R45PmzaNVq1aUbRoUQ+ljBzs+fSOYx37Ro0a8eijj/Ljjz9y3HHZ1qZNFpHmfi3LZcDOuZpAS+Bjv92l0Cknf3YDpfMttP89JQfPRTRzJLFeSgq0agULF8KSJVAr6/ij9evXc//99zNjxgycc9x4440MHDiQhg0bMmLECBo3bhzmbxDZJCUlAVC4cGGPJYk/wjH2llgvI/Pnz+eOO+5g1apVtGvXDoCTTz6Z5557jssvv5w777yTDh06hErcqMJ0g3fkd+wXLlzICSecQJUqVXLtG2hiPefcU0AbEWnpt+9NoLCI3O23bwnQV0S+zuIyeSJqEus55zoBfYCawFagq4jMyPksoGBB+PhjaNQIunaFqVOhwNGOqZo1azJmzJgM+8aPH0/9+vXNmMkCU1beEetj75yrAAwBLgF2AL1E5LNs+tYBBqJvgoeAj0TksWDL1Lx5cxYuXHjU/iVLlrBz504zZvyI9eczksnP2K9atYpLL72URo0aMWXKlGCKcwswINO+Zeg0FADOuZJAXd/+YyYqppycc22Al4BuqGvqQiDwzHm1a8Obb8K0afB//xfwae3bt2fUqFF5kjVeGDZsGMOGDfNajLgkDsb+HeAwUBm4CXjXOXfUHLtzrggwGfgRqAJUB8IavNGwYUPmzJkTzltGPHHwfEYseR377du307ZtW1JTUxk0aFDQ5HDOnQdUA77MdOgb4HTnXEfnXDHgGWCxiPwZlPtGw5STc242MEREhgR6zlG1nETgmmvgu+9g3jz12Bj5xuq1eEcs13LyvbHtAk4XkZW+fcOBTSLyRKa+PYCbRaRFXu9zrLWcjOwx3eAdeRn7nTt3cvHFF7N8+XJ+/PFHzj333IDuEciUk3PufaCEiNycxbGLgbeBWsCv6GzL3wHdPDfZIt2gcc4VBA6gllx3dO36GOBRETmQ3XlZFqfcsQMaNoRKldSoObblaIYRs3ho0DQFZotIcb99PYGWItI+U9+PgMJoboszgaXAfSKyJLf7mEFjxDu33HILX3zxBWPHjuWyyy4L+LxILk4ZDVNOlVGldS3QAmgCNAWeytzROdcjbSnZ9u3bj75SpUowbBgsXQpPPHH0ccMwvCYvqyCqA53QGJqqwARgrG8q6ij89UNWKRoMI554/fXXmThxYp6MmUgnGgyaNC/MWyKyRUR2AK8D7TJ3FJHBaUvJsl1ydumlWhLhzTfzVOvJyMgHH3zABx984LUYcUmMj/0+IHPSpzLA3iz6HgBmisj3InIYeBWoCNTP6sL++iGrJJpGcIjx5zOiyW3sd+/eTa9evTh06BCVKlXioosuCqN0oSfiDRoR2QVsBII3N/bSS3DaaXDrrbBtW9AuG09YATrviPGxX4km7jrZb19jsl4FsZhg6gUjKMT48xnR5DT2e/bs4bLLLuO1117jt99+C7Nk4SHiY2gAnHPPAm2By4EkYBwwTUSezu6cLGNo/Fm6FM48E1q0gIkTs1zKbRjxipd5aJxzI1FDpTs6xfwdcJ6ILMvUrx6wEOgA/ATcD9wL1Pd5bLLFYmiMeGLfvn1cdtll/PLLL3z55ZdcffXV+b6WxdAcO/2Beejb23JUiT1/TFc8/XSddpo8GV5++dglNAwjWNwNFEdrwHwO3CUiy5xzNX3Ve2sCiMgKoAvwHroy6kqgQ27GjGHEE/v376d9+/b88ssvfP7558dkzEQ6UeGhyQ+5emhAl3J36gRffw0//wznnRce4WKAtJwFd999dy49jWATjrG3TMFGfjHd4B1Zjf3SpUtJSEjgrbfeonPnzsd8j0j20MS3QQOwezc0barGzeLFUDooJSVinrT6Vt9//73HksQf4Rh7M2iM/BItuuHHtT9SsnBJzq5+tteiBA3/sU9NTaWAL5Ri9+7dlC1bNij3MIPGAwI2aABmzdJYmttvB4vON+KM1FT4/nt1UJYvr/vMoDFimY17NlLv7XpULV2VlfeuxDnntUhBJTk5mU6dOnHGGWfQu3fvoF47kg2aaImhCS3nnw+PPQYffgjffuu1NIYRVv78E664AsaO9VoSwwgPj095nP1J+1m1cxUz18/0WpygkpqaSrdu3fj6668pUaKE1+KEFTNo0ujXT7MId++uGYWNHHnzzTd58803vRYjLgn22P/6q/48O3Y874aHRLpumLV+Fp8t+YyHznmIUkVKMXTRUK9FChpvvPEGF1xwASNGjOC5557jwQcf9FqksGIGTRpFi8Lw4bBzJ/zvfxpTY2TL1KlTmTp1qtdixCXBHvtffoGyZaFevaBd0ohjIlk3pKSmcN/391G9THX6X9Sf6xtcz6hlo9h3eJ/XogWFt956izlz5tCrVy+efPJJr8UJOxZDk5kBA6BXLzVuunQJvmCGEWE0aQLHHacZDNKwGBojFvngtw/o8W0PPu/4OZ1O78TM9TNpMbQFQ68cStcmXb0W75gZMmQIS5Ys4f/+7/9CFhcUyTE0ZtBkJiUFWrbUxHtLlkCNGsEXzjAihMREKFMGeveG/v3T95tBY8QaIsJJb51E5ZKVmXXbLJxziAj13q7HCaVPYHrX6V6LmG82b95M1apVw3KvSDZobMopMwULwscfQ3IydOumS0CMo3j11Vd59dVXvRYjLgnm2P/2mz7iFj9jBItI1Q2/bPyFNbvWcGezO494L5xzdGvSjZ/X/cyqnas8ljB/vPXWW5x00knMnTs3Ysc+XJhBkxV168Lrr8PUqfDWW15LE5HMmTOHOXPmeC1GXBLMsbeAYCPYRKpuGLF4BMUKFePq+hkz5d7S+BYKuAIMWzTMG8HyiYjQp08f7r//fi655BIaN24csWMfLmzKKTtEoEMH+OEH1fpNmgRNNsOIFK69FhYsgDVrMu63KScjlkhKSaLq61VpdWIrvrj26OKNbYa34e///o6anDQpKSncf//9DBo0iG7dujF48GDCVUHeppyiEefgo4+gUiUtj2DKz4hBfv3VvDNG7PPD6h/YsX8HXRpmvdCjY/2OrNq5imXbsyrqHnmMGDGCQYMG8eijjzJkyJCwGTORjhk0OXHccTBiBKxcCffd57U0EcWAAQMYMGCA12LEJcEa+02bYONGuLDRf9C4MXz33bELZ8Q9kagbPl3yKRWKV+DSky7N8vhVp16FwzF6+egwS5Y/br75ZsaNG8fLL7+cwaMUiWMfTsygyY2LLoInn4ShQ2HkSK+liRgWLVrEokWLvBYjLgnW2KfFz1xUeKbWMYuzrKJGaIg03bD30F7G/DmG6xtcT5GCRbLsU6VUFc6veX5EGzS7d+/mhhtuYN26dRQoUID27dsf1SfSxj7cmJ8qEPr0gSlT4N57oVUrOP54ryXynJFm3HlGsMb+11+hcGE4aeM0TSx5zjlBua4R30Sabhjz5xgOJB+gS6Oc84pdc+o1PPzDw6zeuZq6FeqGSbrAOHjwIFdeeSWzZs3i5ptvplatWln2i7SxDzfmoQmEQoVgyBDYuxceeMBraQwjKKTFuheaOU2NmWLFvBbJMILOZ0s/o3a52pxX47wc+6Wtfvrmz2/CIVbApKSkcNNNNzF9+nQ+/vhjrrjiCq9FCgjnXCfn3HLnXKJzbrVzroVzrrZzTpxz+/za08G6pxk0gdKgATz9tE47jRvntTSe079/f/r7Z2IzwkYwxj4lBebPh4Qm/8HChZCQEBTZDCOSdMOO/TuYvHoynU7rlOvqpdrlanPGCWfw9fKvwyRd7ogId999N6NHj+aNN97gxhtvzLF/pIy9c64N8BLQDSgNXAj4r6UsJyKlfC1oAtuUU1547DH48ku46y7NJly2rNcSecaKFSu8FiFuCcbY//GHLtxrW2qGZtYzg8YIEpGkG7764ytSJIXODTsH1P+aU6/hqZ+eYtOeTVQrUy3E0uXOwYMHWbRoEb169eKBAGYHImjs+wHPisgvvu1NAM652iG9q4hEfAOmAQeBfb62IrdzmjVrJiFh3jyRAgVEevQIzfUNIwx8+KEIiPzb9WGRokVFDhzIcByYL979vVcAvgESgXXAjdn06wqk+OmFfUBCIPcoUaJEEEfTiFRaDm0p9d+uL6mpqQH1X759udAXefvXt0MsWc4kJyfL/v37RURk7969AcsfDoBEyfnvtyBwGHgCWAVsBN4GigO1AUENnI3AUKBSTtfLS4umKad7Jd1F5V1d4ObN4eGHYfBgmB69tT+M+GbePHUwll88Dc49N9LiZ95BFWJl4CbgXefcadn0neOnF0qJyLRwCWlENpv2bOLndT/T6fTcp5vSOLXSqdSrWI9xK70LK0hKSqJLly506NCB5ORkSpUqFWnJ/go55+b7tR6ZjlcGCgPXAi2AJkBT4ClgB3AmUAtohk5HfRoswaLJoIkc+vWDOnXgjjvgwAGvpfGEZ555hmeeecZrMeKSYIz9vHnQsvF/uAiLn3HOlQQ6Ak+LyD4RmQmMA272VjIjUCJFN3z5x5cIwg2n3ZCn8y476TJ+XvczB5LCr9sPHTrE9ddfz8iRI7n44ovznDAvTGOfLCLN/drgTMfTBu4tEdkiIjuA14F2vr/p+SKSLCLbgHuBS5xzZYIhWDQZNC8653Y452Y55xKy6uCc65FmNW7fvj10kpQooR6av/6CZ58N3X0imA0bNrBhwwavxYhLjnXsDx7UtDPXHDdDS3xEkEEDnAKkiMhKv32/A9l5aJr69MJK59zTzrls/wP464fk5ORgymz4ESm6YeTSkTSt0pR6lfLm0L+07qUcTD7IzPUzQyRZ1hw4cICrr76aMWPG8NZbb/H444/n+RqRMPYisgudTgqkrlJan+C4oII1dxXKBpyNuqaKArcCe4G6OZ0Tshgaf267TaRgQZEFC0J/L8MIEnPmaPzMyvZZx8+IeBdDg7qot2badwcwLYu+dYAT0RezhsAfQK9A7mMxNLHN6p2rhb7ISzNfyvO5+w7tkyL9i0jPST1DIFn2dOrUSZxz8sEHH4T1vnmFXGJotAvPAvOA44HywAygv+9/eT3f32xF4Avgp9yuF2iLCg+NiPwqIntF5JCIfAzMAtp5LRevvqrlEW6+OW6nnozoY948/Vlr7bRIjJ/ZB2R2P5dBX2IyICJrRGStiKSKyBJUiV4bBhmNCOeLpVqAMq/TTQAli5TkgpoXMGn1pGCLlSNPPvkkn332Gd27dw/rfUNEf9SgWQksBxYCz6MvIRPRv+elwCEgsCVoARAVBk0WCMFyUR0L5cvDsGGwbBk88YTX0oSVXr160atXL6/FiEuOdeznzYNTjv+PwssiK37Gx0o06PBkv32NgUCqBkaGXohzIkE3fLX8K86pfg61ymWdUTc3Lq17KUv+WcKWvVuCLFlGfvjhB3r37g3A6aefTqdOnY7pepEw9gAikiQid4tIORGpIiL3i8hBEflcRE4UkZIicoKI3CIiW4N134g3aJxz5ZxzlzrnijnnCjnnbkKT9ITXfM6OSy/VwpUDB8KkyBApHPz777/8+++/XosRlxzr2M+bB7fUnIYT0VplEYSIJAKjgWedcyWdc+cDVwLDM/d1zrV1zlX2fT4VeBoYG055jaPxWjds2L2BBVsWcFW9q/J9jUvqXgJole5QMWLECNq2bcu3337Lvn37gnJNr8fec4I1dxWqBhyHuq72Av8BvwBtcjsvLDE0aezfL3LaaSJVqoj880/47msYeeS//zR+5tez7xMpXlzk0KEs++F9HpoxaB6a9fjy0AA10Smpmr7tV4Ftvn5r0CmnwoHcw2JoYpe3f31b6Iss374839dISU2Ryq9Ulhu/vjGIkqXz8ccfi3NOWrVqJXv37g3JPUIFAcTQeNUiPlOwiGxH161HLsWLw6efwllnwZ13wtdfQ2TlDTAMAH77TX/W3zIVWrSAIllXH/YSEdkJXJXF/vVAKb/tnkDP8ElmRANjV4ylXsV6nFrp1Hxfo4ArQJu6bZi0ahKpkkoBF7zJjGHDhnHbbbfRunVrxo4dSwmrch80In7KKWpo3Bj694dvvoFPPvFampDTs2dPeva0/yVecCxjP28eVGELpdf/Aa1bB1kyw/BWN+w+uJtpf0/jynpXHvO1LqlzCdv3b2fR1kXHLpgfZcqUoV27dowbNy7oxky862UzaILJI4/oW+9998G6dV5LE1IOHDjAAVvZ5QnHMvbz5sENx/+kG2bQGCHAS93w/arvSUpN4spTj92gaVO3DQCTVgUnNnL9+vUAXHPNNYwfP57ixYsH5br+xLtedjolFns0b95c5s+fH/4br10LjRppiYSpU6GA2YxG5FCzJnxc6HYu2jUaduyAggWz7Oec+01EmodZvLBRsmRJSUxM9FoMI8h0/rozP679kc0Pb6Zggayf7bzQ+L3GHFfiOKbcMuWYrjNkyBDuuusufvjhBxIib2VhnnDO7ReRkl7LkRX23zbYnHgivPkmTJsGr7zitTSGcYRNm2DDBuGM/6bq6qZsjBnDiEYOpxzmu7++o/0p7YNizAC0qt2KWRtmcTD5YL7OFxFeeOEFunfvTqtWrTjnnHOCIpeRNWbQhIJu3eC66+DJJ+Hnn72WJiQ8+OCDPPjgg16LEZfkd+x/+AFOZC1ld62DVq2CL5hh4J1umP73dPYc2hOU+Jk0Wp3YioPJB/ll4y95PvfQoUPceuutPPnkk3Tu3JkxY8ZQLMRJLONdL5tBEwqcgw8/1AKWnTrBtm1eS2QYTJoE15SZqhsWP2PEGGNXjKVE4RJcXOfioF3zwloXUsAV4Me1P+b53FGjRjF8+HCeffZZPv3005AbM4bF0ISWxYvh7LPhvPP09dhc/IZHpKTA8cfDhDKdOOfQzzr/lENqAYuhMaKNugPrctpxpzGu87igXvfsD8+mcIHCzLwtsGKVSUlJFC5cGBFh7ty5nH322UGVx2tCHUPjnFtDLhm/ReTErPabhyaUNGoE77wDP/4IAwZ4LY0Rx/z2G+zcKTTZ+aNON1meJCOGWLVzFWt2reHSupcG/dqtarfi102/kng4dwP4xx9/5NRTT2XFihU452LOmAkT3YHbc2lZYgZNqLntNp126tsXFizwWpqgcc8993DPPfd4LUZckp+xnzQJGrGEYnu223STEVK80A1pS6svPSkEBs2JrUhOTWbm+pw9NN999x2XXXYZxYoVo2jRokGXIxBiRC/XyK6JyI8iku38X8RnCo4J3nlHg4NvvllflWNgLjUUORSMwMjP2E+aBF2rT4GNwMXBizEwjMx4oRsmrZ5EnfJ1OKnCSUG/9vk1z6dwgcL8uPbHbA2mKVOmcM0119CwYUOmTp1KuXLlgi5HIMSIXs7sgakC1AZ+BT7O6USLoQkXP/yghSwffhhee81raYw4YvduqFgR/qjVllMKr4U//8z1HIuhMaKFwymHqfBSBW5pfAuDLh8Uknu0HNaS/Un7mXfHvKOOLViwgBYtWlC3bl1++uknKlasGBIZIgUv8tA4524D6ovIozn1symncHHJJXD33fB//weTJ3stjRFH/PgjFEw5RN1N06FNG6/FMYygMmv9LBKTEkMSP5NGq9qtWLBlAbsO7DrqWP369enWrRtTpkyJeWPGQ4aSQ+xMGiE3aJxz5Z1zlzrnOvt+lg/1PSOWl1+GBg2gc2f4+2+vpTkmevToQY8ePbwWIy7J69hPmgSti8+h4KEDNt1khJxw64ZJqydRqEAhWp0YutxKrU5sRaqk8vO69Lxin332Gf/++y/Fixfn7bff5vjjjw/Z/QMlFvWyc644cCdwtDWZiZAaNM65p4HNwLfA68AEYLNzrk8o7xuxlCwJY8boGtqrr4b9+72WKN9UrFjR3kY8Ii9jL6IGTbfqkzVtQJSnXTcin3DrhkmrJ3F+jfMpXbR0yO5xdvWzKVG4BD+u/ZHU1FR69+7NTTfdxGsRFj4QC3rZOZfinEtNa0Ai8DSQa7RzyGJonHPXA28DdwFjRSTZOVcIuMq3/wER+SIkNycCY2j8+f57uPxy9dSMGGFLaI2Q8ddfcMopsLX22VSuWghmzQroPIuhMaKBrfu2csJrJ/BCqxfo1aJXSO/V+pPW/Lv3X06fczqffvopd9xxB4MGDaJQofhaWxOGPDR1Mu3aJyL/BHJuKH8TdwAPi8jXaTtEJBn4yjlXFOgBhMygiWjatoXnntPSCJdeCrfc4rVERowyeTKUYxfHr58PtzwV9vu7fu54oJT/Pukja8IuiBGT/LD6ByA0y7Uzc1aFsxjQdwC/r/2d5557jt69e+PsZTToiKh+cM5VQZdrBzyVEcoppybAd9kc+w5onNcLOudOds4ddM6NOBbBIoInnoAzz4TevaNy6qlbt25069bNazHikryM/eTJ0Om4H3GpqWENCHb93GWun9sEbAFW+bW/cj3XuQrOuW+cc4nOuXXOuRsDOOdH55z4vMCGh4RTN/yw+geOK3EcTao0Cfm9mh3fDPbAwwMe5sknn4xIYyYW9LJzrpxzbjyaZGICsNE5NyGQ+NtQ/vEXFZGdWR0QkV3OuSL5uOY7wNHr5qKRAgV0+faFF+rKpyef9FqiPFGjRg2vRYhbAh375GRd4TS22hQ4UErLcISPd4D+wMfSRw7k49zDQGX0xWiCc+53EVmWVWfn3E1YTq2IIVy6QUSYunYqF9e5mAIudO/ma9asoWbNmrRr2o6C9xSkSLP8/OsKDzGil98AdgMVRGSPc64M8D7wGnBbjmeKSEgasBc4EaiTTdubx+t1AkYBfYERufVv1qyZRAVXXy1SqpTI1q1eS2LEGLNni4DI3sp1Ra64Ik/nAvPlWP7++7KTvhqjl6fzoCRqzJzit284MCCb/mWBlcA5gACFArlPiRIl8jQeRuSxdNtSoS8yZMGQkN1jxowZUr58eenZs6eIiJzz4Tly/pDzQ3a/aABIlMD/Zy9Hg3pXAy18+1sDf6JTST8BtTKdtxUol2lfGWBTbvcM5ZRTSTK6mjO3EoFeyGehPQs8EnwxPWbAADh4UEsjGEYQmTwZTuYvSm1brXmQwssQID++71OAFBFZ6bfvd+C0bPq/ALyLKsEccc71cM7Nd87NT05OzodoRiQxZc0UAFqfGJpSHmPGjKFNmzYcd9xx3H333QC0qNmCuZvmciApr07H+MI51wZ4CdUBpYELgTXOuUrAaHTVUgVgPkfH0hYG9mXalwjkmmI/ZAaNiBQQkYK+n1m1vJSe7g8MEZENOXXyV1jbt28/ti8QLk45Be66CwYP1rIIUUKXLl3o0qWL12LEJYGO/eTJcHe1sbrRoUOIpTqKc4B3XT+30vVzP/u3XM4rhbqb/dmNKsUMOOeaA+cDbwUikIgMFpHmItI83lamhJNw6YYpa6dwUoWTqFWuVtCvPXjwYDp27EijRo2YNWsWJ56oxZ1b1GxBUmoSczfNDfo9g0EE6eV+wLMi8ouIpIrIJhHZBFwDLBORL0XkIDrj0tg5d6rfuT8B52a63nnA9NxuGvF/1c65JsDFQNPc+orIYGAw6LLt0EoWRPr00fw0HTrAr79C9epeS5Qr9erV81qEuCWQsd+7F375BT6pMg4aN4ZawVf6ufChr+WVfah72Z8y6BT2EZxzBYBBaPqH5EgM0IxXwqEbklKSmP73dG5qeFPQr71161YefvhhLr30Ur788ktKlkxfoXxBzQtwOGasn0HL2i2Dfu9jJRL0snOuINAcGOecW4V6VsYAj6Ke1t/T+opIonNutW//n75912a+pojMAGbkdu+QGjS+XDTnA8uAoSKS5HdskIjcHcBlEtDCVOt9SqsUUNA510BEzgi60F5QsSJMmADnnw/t28OMGVCqVO7necjTTz/ttQhxSyBjP20alE3eQe3Ns6Bb+APOpY/kWEQuB1YChZxzJ4tI2oqoxqgO8acMqjS/8OmFNI/vRufcdT4FaHhAOHTDvM3z2Ht4L63rBG+66d9//6VChQpUqVKFmTNnctppp1G4cOEMfcoXL8/px5+eIWNwJBEmvVzIOeef5G2wz5mQRmV02uhaoAWQBIwFnkL/f2eePsnggXXOBWQpishRHpuQGTTOuZ7AvegX+R9wl3OunYhs8XXpAgRi0AwGRvpt90QNnLuCJ20E0LAhjBoFV1wBnTrB2LGa2dUw8sHkyXBN4W9xSalw5ZVhuafr526WPjLc9znb1QjSRz7K9pi+sY0GnnXOdUdXOV2Jupz92Q1U9duuAcwFmnG0wjRijClrpuBwXFT7oqBcb+LEidx8880899xz3HnnnTRp0iTbvi1qtuDj3z8mOTWZQgUifpIjFCRLzkk30wKM3kr7f++cex01aH4mdw/s8ABkcOjffAZCGRR8F3CJiDzg86SMA2Y659J83wH5iEVkv4hsTWuoS/qgiMSe0rrsMhg4UL01773ntTQ50qlTJzp16uS1GHFJIGM/eTLcWn6sTl+eETZHZme/zzdn0wKZ4L8bKA78A3wO3CUiy5xzNZ1z+5xzNX0LLvz1Qpo+2CYih4P1hYy8Ew7dMGXNFM444Qwqljj2NP9Dhw7l8ssvp2rVqrRsmbtz4MJaF5KYlMjCLQuP+d7BJhL0sojsQnPIZBX2sQy/HHTOuZJAXfw8sCJSM4CW5fr0UJqXx6GrmdKE7OOc2w7M8EVA5yvGRUT6Bke8COWuu+CrrzSu5sYboXxk1vLM6Q3GCC25jf2KFfD3nwc4q8gP0L1r2EprSB9p5/c536/Oovmrrspi/3oyZR32O/Y3Ab4kGaEl1Lph3+F9/LLxFx4+9+FjvtYrr7zCY489xiWXXMLXX39NqQCm+lvUagHAtL+ncWa1M49ZhmASQXp5KHCfc24iOuX0IFrT8RvgFedcRzRp3jPAYhH5Mxg3DWUtpyXAzSKyKNP+24Dn0aQ5RUNycyK8llNu/P47NG0KDz4Ir7/utTRGlNGnDyx49lvG0x4mTtTyGnkkWLWcXD9XhqNLH2w+1useK1bLKXr5/q/vafdZO37o8gNt6uY/+/Xvv/9O06ZNuf766/nkk08oUiTwhHlnfnAm+w7vY9ndy0Ka1C8SCaSWk3OuMPAmcCNwEM0h95iIHHTOXYzWc6wF/Ap09b2QpJ27hmxeTkTkRF+fpSJyeubjofTQfIyuTlqUSaCPnHOH0KXYRlY0bgzdu8Nbb8H//qdLuw0jAETg009hYNWxsLe0Z9W1XT/XBs3uWTvTISE9gNcw8szkNZMpUrAI59c8P1/nJyYmUrJkSRo3bsxPP/3EBRdcQME8xis+cPYD3PzNzUxePTksdaSiDd8CoLvJIk5WRKYApx51UjrdA7hFlvG3ocxD86qIvJrNsU+Bk0J175igf38oXhwefdRrSbKkY8eOdOzY0Wsx4pKcxn7uXFizOpWEfeO1CGrRkDlBc+NDNOldGXTFQ1qL3LzxRlAIpW4QEcb8OYbWJ7amROGAc7Me4bvvvqN27dr8+OOPALRs2TLPxgzA9addT5VSVXjj1zfyfG4oiQW9LCI/Ztf8+mS5zCzsIdrOuYbALcBNZFylYPhTubLWd3riCfjyS7juOq8lysC552bOe2SEi5zG/tNPoWXhOZTYsy1sq5uyoRgwVPpIipdCGOEnlLph8bbFrP1vLb0u6JXnc4cPH063bt1o2LDhMdc8KlKwCHc3v5tnpj3Dnzv+5NRKOTkcwkcs6GXnXJ/sjolIvxzPDVUMTYabOHccOpd2KxrhPAN4R0S+DNU9ozqGJo3Dh3XKYMkSffWuX99riYwIJjkZqlWDD8r2pMPfA2H7dihbNl/XOtYYGtfPPYHOgw+QPmFQMnnEYmiik77T+vLs9GfZ8sgWKpeqHPB5gwYN4p577qFVq1aMGTOG0qWPSjydZ/5J/Iea/1eT25rexqDLBx3z9aKFQGJojvH6n2TaVQW4ABgvIjfkeG4Ig4ILAx2ArsCl6Iqnz9Fo5/oi8k9IbuwjJgwagE2bdNlt+fJq1JTJvITfMJRJk+Cyy4R9letS8oxT4bvv8n2tIBg0JwOTgErADv9j0kfq5FuwIGEGTXTS+L3GlClahhndAs+b+Msvv3DuuefSvn17Ro0aRbFiuZYECpjbx97OyGUj2fDQBioUrxC060YyoTZosrnnpcCNInJrTv1CGZ69DQ0KXAGcIyINRKQ/WknXCJRq1TTh3qpV0LWrRn1GAB06dKBD+OsDGWQ/9p9+CheUXkzJbWvh6qs9kCwDX6Ge2BuBOzI1I4YJlW5Ys2sNi7ct5upTA3u2U1NTATj77LN5//33+frrr4NqzAA8cM4D7E/azye/Z3YqeEMM6+UfgFx/8aGMoVmMuonOBv5yzq31Jdwx8krLlvDyy/DII/D223DffV5LROvWoalwa+ROVmN/4AB88w18evJoWOS8jp8BOBFoKn0k1WtBjPASKt3wzfJvAAIyaH755RfuuOMOvv76a0455RR69OgREpkaVW5EvYr1mLp2Kg+e82BI7pEXYkEv+yXfTaMEmpRzXa7nhjKGxifYLb5WE7WyWqJTTptCdmNiaMopDRGt8zRlCsybp6USDMPHN9/ANdfAnhMbUbp6Ofj52GrNBGHKaTjwsfSRKcckSIiwKafo44KPLtAMvXdmn6FXRHj77bd55JFHqF69Ot988w2NGzfOtn8wuGPcHXy9/Gt2PLYjLnLShCGGJgWNv0szTg6iDpJ7RGRBTueGdPRFZJ2I9BeRk4HWwBYgFfjdOfdyKO8dczgHH30E5cppBuEDB3I9xYgfRo2CM8uvovTaJWrZeE9RYJzr5ya5fu4T/+a1YEb0sW3fNmZvmJ2jd2bv3r106tSJ+++/n8suu4zffvst5MYMaObgXQd3seyfzPVTjXxSGJ09KgwUFpGSInJubsYMhNig8UdEZopIDzRi+T7AXAx55fjjYdgwWLoUHn/cU1Hatm1L27ZtPZUhXsk89gcOwPjx8NjJ6pLnqqu8ESwjy4CXgNnA6kzNiGFCoRvGrhiLIDkaNC+88AJfffUVAwYMYMyYMZQPU9mYC2tdCBARFbhjQS+LSCpQD6ju+xwwYc9DIyIH0dVOn4f73jHBZZfBAw/Am2/C2WfDTTd5Ikb79u09ua9x9NhPnAiJiXDx3tG6Iq52bW8E80P65JwvAnRpt/SRAeGQxwgfodANP6z+gZpla3L68Udluz9Cv379uPLKKznnnHOCfv+cqFW2FtXLVGfG+hncc9Y9Yb13ZmJBLzvn+gOPAAWccz1E5BNf7aeTROSlHM8NRx4aL4i5GBp/Dh3S+jxz5mhMTYsWXktkeEjnzrB80noW7aoFzz2nCRmPkWDVcsrxHv3cHukjnuQhsBia6CFVUjn+leNpX689Q68cmuHYpk2buP/++3nvvfc47rjjPJIQbvz6Rqb9PY1ND2/ChakYrFeEIYbmX+AcNOXDIBFp6pyrDMwSkRwrDMR+BFMsUrQojB4NJ56o0wsrV3otkeERadNNT588Und06uStQHkjtjW/ERSW/rOUfw/8S0KthAz7Z8+ezVlnncUPP/zAmjVrvBHOx4W1LmTLvi2s2eWtHDFCCrBaRObgqwUnItuA43M70QyaaKVCBZgwAQoUgHbtYFd4V8RffPHFXHzxxWG9p6H4j33adNMlOz7TKci6dT2WLk/Epns4zgm2bpj29zQAEmonALqS6Z133iEhIYHixYsza9Yszj777KDdLz+0qKle8hnrA0/4FwpiRC9/glYVOIJz7jpgfW4nhj2GxggidevC2LGap+bOO+GLL3Q1VBi44YYcM1AbIcR/7EeNgvPK/UHpNb/DA296KJVhKMHWDT/9/RMnljuRWuU0Pcmrr77KY489xhVXXMHw4cMpV65cUO+XH+ofV5+KxSvy87qf6dqkq2dyxIhebgY84Jy7HyjpnFsInAx0ye1ETwwa51wquvqhn4hM9kKGmOG887Qyd69eGldz++1hue0dd1jCV69IG/s9e3S6aeQpn8PvBeD66z2WLM9kaX075yoAQ4BL0LIJvUTksyz6dQL6oSsnDwHfA/eJyJ6QSWzkSjB1Q6qkMv3v6RlWN91yyy0UKFCAhx56iAIFImOSoYArwAU1L/DcQxMjenm4r4F6cXcAc33TTjni1dNwEfAeEFAJaefcCOfcFufcHufcSudc99zOWbFiBcOGDQMgKSmJhIQERowYAcD+/ftJSEjgiy++AGD37t0kJCQwevRoAHbs2EFCQgLjx48HYOvWrSQkJDBx4kQANmzYQEJCAlOmaM6wNWvWkJCQwPTp04/cOyEhgdmzZwOwdOlSEhISmDdvHgCLFi0iISGBRYsWATBv3jwSEhJYunQpoHPDCQkJrFixAoDp06eTkJBwZJ54ypQpJCQksGHDBgAmNmpEQrlybL3vPvjzT8aPH09CQgI7dmgJndGjR5OQkMDu3bsB+OKLL0hISGD//v0AjBgxgoSEBJKSkgAYNmwYCQkJR8bygw8+yODGHDRoUIalgW+++WaGdNuvvvpqhhL2AwYMoJNfbEf//v3p0iXd2H7mmWfo1q3bke1evXplyOzZs2dP7rknffXAgw8+yIMPPnhk+5577qFnz55Htnv06EGvXunVeLt168YzzzxzZLtLly7079//yHanTp0YMCB9sU3Hjh159dVXj2x36NCBN99M9360bduWQYPSi9FdfPHFfPDBB0e2ExISwvLsffopJCau5uVlrzK9aVOoUiVoz16YyE77v4OWSKkM3AS865w7LYt+s4DzRaQsUAd9QXsuFIIa3rB422J2HdxFpS2VuP7660lOTqZy5co88sgjEWPMpNGiZgtW7VzFlr1bvBYlqhGRj/zaUBEZLyLbnHO5ljT3xEMjItN9H0cEeMqLwO0icsj3paY55xaKyG+hkTDKKFBAK3H/+acueXn66ZDf8tdffyUhIYFp06aF/F5GRhYtWsQjjzyCyO9cWXsx//19ECJs3tz1c+2AFkAFYCfws/SR7/37SB9pd9R5zpUEOgKni8g+YKZzbhya+vyJDOeLbMh0egqQ4yoII/SkGcTB0A0/rf0JZsGrU1+lfv367NixgypVqhzzdUNBWj6aGetncP1p3nhLgzn2XuErbN0KfaHx9+K+55y7CxAR+TjLc0NYbTvXiroikueQcOdcPWAa8ICIjMquX0wv286O8eOhQwd4+GF47bWQ3irNA9G1a9eQ3sc4mmHDhrFqFTz/fFd+b/UQjWYOgm3bNIt0kMjvsm3XzxUBvgPOBeYDm4Fq6Lz4L0Bb6SPZFqh1zjUFZotIcb99PYGWInJUkg3n3AXABKAMsB+4WkR+yE1OW7YdOoKlGxITE6l3ST02zd7Etddey9ChQylVqtSxCxgiklOTOf6V42l3cjtGXBPou3pwCYdeDsOy7fHAacDGTIfOBeagdkvWuUpEJCQNLXGQ4vuZVUvJ4/UGoQpLgAVAqSz69ECV6PyaNWtKXHL33SIgMmmS15IYIeTWW0XKlkySlMpVRK66KujXB+ZLfv7u+/I4fVlIX2pk2l+DvvxGX57I8Xz16mzNtO8OYFou51UD+gKn5NDniH4oUqRI0MfMCC6XXXaZ4JAzbz5TUlNTvRYnIHqM6yElny8piYcTvRYlZACJEiK7QS/Pv2jJg8z79+Z2bsgmIUWkgIgU9P3MqhXM4/XuBkqjCm80GgSYuc9gEWkuIs29TLLkKa++Cg0awK23wvbtIbtNUlLSkZgbI7xs25bEyJFJPNdyMgW2bYVbbvFaJH+uBR6QPhmng3zbD5N73Nw+1NviTxlgb04niRa7nQiMzKHPEf1QqJAt8AwVx6IbNmzYwJ49GtPd6Z5O0BUe6PlA1CSr69ywM4lJiYxfMd6T+8eIXk4Rkay+RK5fLLKiqnJBRFJEZCZQHbjLa3kikuLF4fPPYedOXfEUoinFNm3a0KZNm5Bc28iZ889vw6FDbeiSPAwqVoTLL/daJH9OBuZlc2wuuce4rAQKOedO9tvXGK0NlRuFgKhKxBOL5Fc3zJgxg2bNmh0J2N9eYTvUSs8/Ew20qNmCaqWr8dnSoxblhYVY0MsikmUCPRGpkNu5IX1Ncc5dD5yPKqOh/laXc26Qz+uSH0xx5USjRvDKK1rz6dlnoU+foN+ie/dcF5oZISA1FRITu3Na7UTKTbtf8w8VKeK1WP446SNZloKXPnLA9cv5TVtEEp1zo4FnfasZmwBXAucddSPnbkJXSm0AagLPA1OPSXrjmMmPbnj//fe59957qVOnDrf7Uk+MXj6axpUbU61MtWCLGDIKFihIp9M7MfDXgew6sIvyxcNTIDONSNHLzrlpaPmCZN+uTSJSzzlXG1gL+AewvSQi/f3OzVjfwg8R6ebr866IHOXUCJlB4wvkuxcYC/wPuMs5105E0ta0dQFyNWicc8ejEc/fAgeAi4HOwI2hkDtmuO8+WLgQ+vaFU0+FICdc8l92bYSPCRNg69YujO36Lgw7DJEXlF3E9XPdyL6sQeEArnE38BHwDzqffpeILHPO1QT+ABqIyHqgAVrRuzywCw1G7pX1JY1wkRfdkJSUxAMPPMC7775L27Zt+eyz/2fvvOOkKJoG/NQFcg4iSYKYUQRFUMw5R4zoK+acE58JjBgw+75mQRFzQDGCARUQBRUQVHIQJGe442J9f9Qst7e3e7d3t7uzu9cPv/4dM9PTU5N6a6qrq96kSZMmLFq/iJ8W/8QDhz4QR0njw9ldz+axnx7jg78+4OIeiVUwkqxfvlpVX46wrYmqFkbYFjp7MRyhDsNAfC00VwBHquosABG5B5uCeaiqLiT6PC7qtfU8NkS2ELheVT+Og8zpgwg8/zzMmWM/ep07Q8+eMWs+EMOmXr16MWvTUTFDhkDbtjns+sersPvu0L273yKF8jNQnlPPzxU1oKprgJPDrF8ENAhavgOofiZOR0ypTN+wcOFCRowYwS233MLgwYPJzDTXyvf/fB/At+nP1aFH6x7s2HxH3vzjzYQrNOnQL6vq3VHUCavpxlOhaQnMCRJgoIisBH4UkSOIMo+Lqq4EDoqPiGlOIInlPvvASSfBH3+Yz0UMOPZYCyGSyvEOUo1ffoEffoCd2h/M8b9OZuxjjyUs1UW06EA92G8ZHP4STd+wePFi2rZtS5cuXfj7779p3bp1qe3vzniXHq170KVZ6oUVEhHO7no2935/L/9u/Jc2Ddsk7NgJ6pezRCQ4JsqLqvpimHqDReQhYCZwh6oGC7VQRBQYA9yiqquCdxSRQ7FRmDZY6Ic3VfXbigSLp1PwQmCP4BWq+iw2tXIsUDuOx3YEaNnSlJqVKyEoum51ueKKK7jiCueXnUgefRQaN4Y7d2/NFSLQr5/fIjkcZaiob/j000/ZZZddeOGFFwDKKDML1i3g5yU/c8auqWedCXB217NRlA//+jChx01Qv1wYmC3olXDKzG1Y9O62wIvAKBHZHktj0BPogMWmagiMCN5RRC4F3vLqjvL+viMiFeZ1iGdgvZsBVHVImG39gPtUtcLge1WlRgbWK4+777acT598AieUiU/mSHLmzoUdd4TbbizgwREdoEcP+PTTuB2vGoH1/iGy9VUA1YG6XbWEiwEusF7iUVWGDBnCbbfdRo8ePRg5ciTt2rUrU2/IhCHcMuYW5l47l85N4/YTEXe2f3p7dt9md0aeNdJvUWJKVQLriciXwGeq+kzI+m2BpUBj9XKwicgc4FRVnRZUrxvwvqoGz34sQ9yGnMIpMkHbRojIW/E6tiMMd94JI0farJj994em1fO+D+SFaty4cQyEc1TE449DZibcvPOnrF+6FPr1I0mvfFJ5JToST7i+Yf78+Vx55ZV8+eWXnHHGGQwdOjSin8e7M95l7zZ7p7QyA3BYp8N4d8a7FBYXkpWRmLhHSdwvK+H9ZgMfP8HbmmDDVMH8iTn/l0vC49CIyO4i8igRvJQdcaJWLRg6FFasiMnQ00knncRJJ51UfbkcFbJ4MbzyCpx3HjR793lOqlWLk55/3m+xwqID9XsdqN9jIcoPw7Jmfw68jM1QrNAp2JHahOsbFixYwPjx43n66ad5++23Iyoz89bOY9K/k1J6uCnAoZ0OZX3een5b+lvCjpkM/bKINBGRo0SkjohkeSMyBwJfiUgvEdlJRDJEpDnwNBYFfH1QExOAR7y8boH8bo8B4yo6dkLURhFpiTn4nI8FyfoRuC4Rx3YEsddecPvtNvS0115w7bVVburaauzrqBwPPGDxZwadNxcOGc21Z54JZyR9h/8csBNwDeZP1wGbUt0WuNBHuRxxJtA3rF+/njFjxtC3b18OOeQQFi1aRJMK8o0FZjf13bVvvMWMO4d0PASAb+d/yz5t90nIMZOkX87Gst7vjKU/+hs4WVVnisjZwIPANsAGzCn47JD9L8cifq8VkdVAc+wD6ayKDhxPH5ps4ESgP3AUNuPpLeB6YBdVXRGXA3s4H5oIFBVB377w8cfw0Uc2+8mRtMybBzvtBJdcAv9reJslHV24ENrGN9hYVX1otu5/j6wGtteBui5oXTNgjg6sOOJnvHE+NPFl/vz5HH/88cyZM4c5c+bQvn37qPbb75X9yCvK49dLf42zhIlh9+d2Z9sG2zLmvDF+ixIz4p2cMug47bGsAEu8kA0VEs8hp+XAC9hYWG9V3dWLBhgx064jAWRmwogRsPfecPbZMClSlPryWbVqFatWraq4oqNa3HMPZGXBnbfkwauvwoknsqp27VS49suA0HGFupgDoCONeeONN9hnn334999/+eKLL6JWZpZuXMrExRM5eaeT4ytgAjms02GMWzSOLYVbEnK8dOqXVfUfVf0pWmUG4jvkNA3YH+gFzBaR+aq6No7Hc0RLvXowahT07m0znn77DdpULlZC375mEnZxaOLHX3/BG2/ADTdAm4kfwqpVcPnlqXLthwNfyj3yDOYv1x64Cnhd7pFDA5V0YMWxJRypwwUXXMCwYcOoX78+v/32GzvuuGPU+46aNQpFOXnnk+MnYII5tNOhPPXzU0xcPDEhOalSpG8oFxEpIkLgXVUt1wgTz1lOB4tIByxq6M3A0yIyGqhPdOHPHfGkVSub9turF5x+Onz3XaVyAt10001xFM4BloKrXj0YMAA47XnYfns4/HBuyiuTaD4Zucz7e3vI+su9AjbDIbWnsjgIuC2ICD169KCwsJBTTz21UsoMwMi/R9K5aWe6btM1HmL6wkEdDiJDMvhm3jcJUWjSpF8OnZrdCvO/+6zCPVU1IQWz1rwIrMMC5TwSz+Pttdde6oiCd95RBdWrr/ZbEkcQP/1kt2XgQFX9/XdbePTRhB0fmKwJ6hv8KPXq1Yvh1aq5zJ49Ww855BB96623qtXOhi0btNZ9tfTGL2+MkWTJQ6+Xeum+L+/rtxgxA9isCX5fsQB8syqql7Bp26o6TlUvBbbFZj7snqhjO8rhjDPgxhvh2Wdh+PCod1u2bBnLli2Lo2A1F1W4+WbYdlv7yzPPmKnGy0Lsrr0jGXj33XfZY489+PXXXyksLMkzWJXn88s5X5JflJ9Ww00BDu10KL8s+YWNeRvjfqw07huaYLOdyiUx0X6CUNUt2GwnF1gvWXj4YfOjufRS2G03i0JbAWedZTPoUnmsNlkZORLGj4cXXoAGW1aZE/cFF2wNhuiuvcNPVJVHHnmEAQMG0KdPH9555x3aBs26q8rzOXLmSFrUa8F+7feLtbi+c1inwxg8bjDfL/ye43c8Pq7HSoe+QURepbQPTT3gEKLQGRKu0DiSkKwseOcdm/l0yikwebLlgCqHAQMGJEi4mkVBAdx2G+y6K1x4IfDIi5CXB9dcs7WOu/YOPxk/fjwDBgzgrLPOYujQodSpU6fU9so+n/lF+Xw26zNO3eVUMjMyYylqUtBnuz40rt2Yd2a8E3eFJk36htCgu5uAV1R1dEU7xi0Ojd+4ODRVYPJkS4uw334werQpOo6E8uyzprt8+ikcd2QBdOoEu+wCYxIbx6K6cWiSHReHpvIsXbp0ayLJ0aNHc/jhh5ORUX2vhTFzx3DkG0fy8Vkfc+JOJ1a7vWTkslGXMXzacJbdvIxGtRv5LU61SFQcmqqQ8NQHjiRm773hxRdtxtPNN5db9Z9//uGff/5JkGA1g5UrLYfooYfCscdigQ+XLIHrSgfVdtfekUhycnK46aab6NSpE9OmWb7AI488MqIyU9nnc/i04TSq3YjDOx8eE3mTkf579ie3MHdrJOR4UdP7BqfQOErzn//YD+hTT1kCoQicd955nHfeeQkULP25+WbYtMmsNILCE0/YVO1jjy1VL92vvYg0E5GPRGSziCwUkXMi1DtfRH4VkQ0islhEHhERZ1aMIT/88APdunXj8ccfp3///nTs2LHCfSrzfK7JXcO7M97l3N3PpV52+PxO6UDvdr3ZodkOvDb1tbgeJ937hopI+pdfRGoD/8MS2zXDUijcrqpf+CpYOjNkCPz5J1xxhcXd33//MlXuvPNOHwRLX777Dl5/3VJt7bIL8NVomDgR/vc/CPkSrgHX/r9YRPFWwJ7AZyIyVVVnhNSrh6VS+RloCXyCxbx6KGGSpjE33ngjTzzxBJ06deKbb77h0EMPrXgnKvd8Dp86nLyiPC7d69KqipkSiAjndzufO7+7k/lr59Opaae4HKcG9A3lkvQ+NF6mzVuAYcAi4FjM23l3VV0QaT/nQ1NN1q61SMJr18Ivv0AUX2aOqpGXB926QX4+TJ8O9eoq7LsvLF0Ks2ZB7doJl8kvHxrvfV8LdFXVWd664Vg+l3I9HkXkRuAQVT2houM4H5qKGThwIGvXruXBBx+kQYMGMW9fVen6XFca1GrAzxenfxL2ResX0fHJjgw8aCADDx7otzhVxvnQVANV3ayqg1R1gaoWq+qnwHxgL79lS2uaNrX0CAUFcPTREDIuO2/ePObNm+eTcOnFkCEwcyb8978WboYvv4Sff4Y77girzKT5td8RKAooMx5Tgd2i2PdAINSK44iS/Px8rr32WkaPtskkgwYN4umnn660MhPt8znhnwn8ufJPLu2R3taZANs13o5DOh3C69NeJ16GhDTvGyok6RWaUESkFdbplem4RORSEZksIpNXrlyZeOHSjR13hE8+MUvBfvtZciGPCy+8kAsvvNBH4dKD+fPh/vstAfoxx2BR9QYOhA4doH//sPuk+bVvAKwPWbceixQaERG5ANgbGFJOna39Q3AgOAds3LiR448/nmeeeYaAZVskbDqdCon2+XzxtxdpWKshZ3Y9s0rHSUX6d+vPvLXzGLdoXFzaT/O+oWISHcK4muGPs4GvgRcqqutSH8SQ339XbdVKtVkz1YkTVVV17NixOnbsWH/lSgNOPFG1fn3Vf/7xVnz6qSqovvRSxH0Sce3xKfUB0B3ICVl3EzCqnH1OBpZjw9BRHcelPihh6dKl2r17d83MzNShQ4dWu71ons81OWu0zv119IpPr6j28VKJTXmbtMGDDfSijy+KS/sJ6hsSnvog2uK7AFELatakt4HPgeyK6juFJsbMmaPaubMpNfPn+y1NWjBqlL2BDz/srSgqUu3eXbVTJ9X8fF9l81GhqY85BO8QtO514KEI9Y8GVgL7VOY4TqExli9frh06dNB69erp559/nrDjPjbhMWUQ+tu/vyXsmMlC/5H9teGDDXVz/ma/RakSyazQpMSQk5jt8xVs1sNpqlrgs0g1j+23N9+OwkI47TRmTpvGzJkz/ZYqZcnNhWuvhZ13huuv91YOHw6//w733QfZkRPSz5w5M22vvapuBj4E7hWR+iLSBzgJKJNoTEQOBUZgfcIviZU0tbHfJWjZsiUnnXQSY8eO5ZhjjolJ2xU9n/lF+Twx8QkO6nAQ3Vt3j8kxU4nzu53PxvyNfPTXRzFvO537hqjwW6OKpgDPAxOBBtHu4yw0ceLjj1VBD9p2Wz3ooIP8liZlufNOVVD9+mtvxaZNqm3aqO6zj1lqyuGggw6K+7XHx2zbWHiGkcBmbGbjOd767bAw6Nt5y98Bhd66QPkimmPUZAvNzz//rHvttZfOnj07Lu1X9HwO+32YMgj9fFbiLELJRFFxkXZ8sqMe8foRMW87QX1D0lpoUiEOTQfgMiAPWBbkqHaZqo7wTbCayoknwh138OADD0ANDuBUHUaNgsDlO+wwb+WQIfDvv/Duu2XizoTy4IMPxl9IH1HVNZhfTOj6RZjTcGD5kASKlfLk5+dz3333MXjwYFq3bs3KlSvp0qVLzI9T3vNZrMU8MuER9mi1B0d3OTrmx04FMiSD/+zxH+774T4Wb1hMu0btYtZ2uvcNFeK3RhWv4iw0caSwUPXoo1UzM1VHjvRbmpRi+nTVBg1U99pLdXNgCH3xYtV69VRPP91X2YLBRwtNIkpNs9C8//77uttuuymg/fv313Xr1vkix6iZo5RB6BtT3/Dl+MnCnNVzlEHo4B8H+y1KpSGJLTQp4UPjSDIyM5k+aBDTd9kFzjzTwtw6KmT1ajNwNWgAI0d6MWfA4s0UFsJD0QW4nT59OtOnT4+bnI70wH57jPHjx1NcXMzHH3/M0KFDady4cdyOW97z+fD4h9mu8XacsdsZcTt+KrB9s+3Zf7v9eW3qa6XuU3Wp6X2DU2gcVeLq227j6kaNzFn4xBMtU7cjIkVFpvstWWI5J9sFrMw//ACvvQY33gidO0fV1tVXX83VV18dP2EdKc+CBQs49NBD+frrrwG4//77mT59OieeGP9s1pGezwn/TGDconHctO9NZGdGdnqvKfTv1p+/V/3NL0ti58+eLH2DiIwVkS0isskrM4O2HSYif4tIjoh857mVxISk96FxJCePPvqo/adNG8v1dNRR8O23FsPfUYa77oJvvrF8n717eyvz8y1fVseOViFKtl57hyMEVeW1117j2muvBWDt2rUA1KuXuMSPkZ7PweMG07xucy7qflHCZElmTt/tdK798lpe/f1VerXrFZM2k6xvuFpVXw5eISItsFmMFwOjgPuAd4DeZXevAn6PecWrOB+aBDJ3rmq7dqotWpiTiKMUH32kCqqXXBKyYfBg2/Dpp36IVS44H5qUY8WKFXrKKacooAcddJDOT6J4UVOWTlEGofd9f5/foiQV/Uf21wYPNtCNeRv9FiVqiMKHBhgLXBxm/aXAhKDl+kAusHNFbUZT3JCTo0pMmTKFKVOm2ELnzmadyc62aTs1OQ5CCLNnw/nnw957w9NPB22YPx/uvRdOPRWOO65SbZa69g6Hx0cffcRnn33Go48+yrfffktHnxLKhns+B48bTMNaDbmq51W+yJSsXNz9Yjblb+K9Ge/FpL0E9Q1ZgRQiXomUjGuwiKwSkfEicrC3bjcsNxuwNe7UXKLL1VYhSZ9tu6q4bNvx5eCDDwZg7NixJSv/+gu89Xz+OexVs/OHrlhho3GrV8Nvv1l6JsDyNR19NEyYYNesXeWmbYa99jHGr2zbiSJdsm3n5OTwxx9/0KtXL1SVuXPnxmUqdmUIfT5nrZ7Fzs/uzG19bmPw4YP9EywJUVV2/d+uNK/bnHEXVj+/U4L6hgqzbYtIL+BPLOr3WcCzwJ7A7cBKVR0QVHc88JKqDquubM6HxlElnnzyybIrd9nFnFyPOsoUmw8/hCOOSLRoScGGDZZscvFiGDMmSJkBePZZGD3a0mtXUpmBCNfeUeOYPHky/fr1Y+XKlSxYsIBGjRr5rsxA2efz4XEPUzurNtf3vt4XeZIZEeHi7hdz85ib+WvlX+zScpdqtZcsfYOq/hy0+JqInA0ciwW/bBRSvRGwMRbHdUNOjiqx5557sueee5bdsNNOZnno3NmGUt58M+Gy+c2WLXDyyTB1Krz3HvTpE7Rxxgy45Ra7NldcUaX2I157R42gqKiIBx98kH333ZecnBw++OADGjUK/Y3wj+Dn85/1//D6tNe5uPvFtGrQyl/BkpTzup1HVkYWr/z+SrXbSuK+QQEBZgBbZ46ISH1ge299tXEKjaNKTJo0iUmTJoXf2KaNWWr69IF+/eDxxxMrnI/k5kLfvhaaZ9iwEPeYvDw45xxo1MimO5VEva4U5V57R1qTm5vLIYccwh133MFpp53GtGnTOOSQ5AqYHPx83vP9PQjCzfvd7LNUycs29bfhpJ1O4rWpr5FflF+ttpKhbxCRJiJylIjUEZEsEekHHAh8BXwEdBWR00SkDnA3ME1V/47JwWPhWZyMxc1yii9R5QzJzVXt21cVVG+8scIcRanO+vWqBx2kKqL63HNhKtx0k12LUaOqdZx0z+WUiJJqs5yWLl269f/XXHONvv7661pcXOyjRJEJPJ8zVszQjHsy9PovrvdbpKTni9lfKIPQ16a8Vq12kiGXE9ASmIQNI63D8jAeEbT9cOBvbHbTWKBjee1VpjinYEeVCESj7Nq1a/kVi4osnfSzz1ryoldfhaz0c91avdr8fH//HV5/3QwxpfjiCzj2WLjySvOdqQZRX/tq4JyCk4ONGzdyww03MGzYMKZOncpuu8VkMkhcCTyft/9xO98v/J65186lRb0WPkuV3BRrMT1e6MHmgs38ddVfZGVUrY9MUN9QoVOwb8RKM0q24iw0SURxsep996mC5SvKz/dbopiyYYPlZqpdW/WTT8JUWLLEYvTssYdZrVIAnIXGdyZOnKidO3fWjIwMvfHGG3XFihV+ixQ1Pyz4QRmEPvjDg36LkjKM/GukMggd9vswv0UpF1wuJ0e6MWHCBCZMmBBdZRG480547DHzkj3tNPOcTQPy8y2UzJQp8P77cMIJIRWKiswylZMDb78NdepU+5iVuvaOlOSRRx6hT58+FBUV8f333/PYY4/RsmVLv8WKivHjx3PF81fQpmEbrut9nd/ipAwn7nQiPVr34N4f7qWgqKBKbdT0viH9bP+OhHD77bcDlYx3cOONULeuDbscfrgpN61bx0fABFBcDP37w9dfw9ChcPzxYSoNGmRBB195xaa1x4AqXXtHSlFcXEzfvn15/vnnadKkid/iVIrLbriMGStm8NKHL1EvO3EpF1IdEeGeg+/hhLdOYPi04VzY/cJKt1HT+wbnQ+OoEjO9aMA77bRT5Xd+5x248EKb7fP++yHzmlODtWvhsstMJxs8GAYMCFPpqafMf+iCC6o1qymUal37KHE+NImlsLCQN998k5YtW3LMMccQ6JclRs9MosgvymeHgTuQnZnN3wP/rrIvSE1FVen1ci9W5axi5tUzK53EM0F9g/OhSXRxPjRJzrRpql26qGZlqb74ot/SVIpvv7XUVVlZlo4p7GSTV15RBdVTT1UtKEi4jNUF50OTEPLy8vSVV17RLl26KKDHHnus3yJVi6cnPq0MQj+b9ZnfoqQsn836TBmEDv19qN+ihAXnQ1M9RORqL2dEnogM81seB3z//fd8//33VW9g991h0iSLJHzppXD33ZYSIIlRhfvus3RV9epZ/MABA8IYXt59Fy65BI480gILxnhWV7WvfZIjIs1E5CMR2SwiC0UkdM5YoF5XEfnKyxeT3A9PGP766y969uzJRRddROPGjfnoo48YNWqU32JVmfVb1nPP9/fQPa879Za4oaaqckyXY+jWqhuPTniUYi2u1L7p3jdUiN8aVTQFOBU4GXgOGBbNPs5CE19iFu+goED1wgtVQfWCC5J2BlRBgerFF5uY556rumlThIrvv6+amam6//7lVKoe6R6HBngLeAdoAOwPrAd2C1NvJ+Ai4CTrylLLQvPee+9py5Yt9cMPP0zamDKVYcCYAcogdK9994r785nujJg2QhmEfvJ3uGmTkUmGODR+Ft8FqJSwcL9TaJKDuXPn6ty5c2PTWHGx6t132+PYo4fqL7/Ept0YsW6d6nHHmXh33BFhiElV9YMPbBxqv/1sLneciOm1j4BfCg1QH0tot2PQuuHAQ+Xs0yVVFJoJEyboyy+/vHV5/fr1vsgRa2aumql17q+j5314XkKez3SnoKhAOzzRQfu80qdS+yWob3AKTUyEdQpNevPee6qtW1uo3SuuUF271ldxZs5Uvfpq1QYNVDMyVJ9/vpzKb71lysy++1rI4BTHR4WmO5Absu5mYFQ5+0Sl0ACXApOBybVq1YrDVYvMb7/9pocffrgCut1222l+kloiq8K/G/7VTk920haPtNBF6xb5LU7aEPBHGrdwnN+ilCKZFZqU8KGJFhG51PO1mbxy5Uq/xUlrvv76a77++uvYNtq3L/z1F1xzDbzwAuy2G3z2WWyPEQU5OXDVVZZn88UXLc7M5Mk2q6kMhYVw001w9tnQuzd8+aXN3oojcbn2yUMDbIgpmPVAw+o2rKovqureqrp3VoKiVasqTz31FL169WLatGkMGTKEP//8k+zsys1eSVbWb1nPMSOOYcXmFXx+zue0b9w+3Z/PhHFh9wtpXrc5j0x4JOp9avy191ujqkzBWWiShriP1U6apNq1qyqonn++6qpV8TtWEL//rrrLLnbY669XXbasnMrLllnyJjBTTl5eQmRMZx8azEKTE7LuJmJgoQkuiRpy+vPPPzUrK0tPOOEEXZWgZzhR5Bbk6kFDD9Lse7N19JzRW9cn4vmsKQz8bqAyCP196e9R1Xc+NEkgRNTCOoUmaVi0aJEuWhRn8/KWLap33mlOtk2aqD72mK2LA5s3q951l2p2tmqbNqpjxlSww9ixqttuq1q3rurw4XGRKRKJuPY+KjQBH5odgta9Tgr50KxcuVJfeumlrcuTJ09OC6ffYIqLi/X8j85XBqFvTnuz1LaE9A01hDU5a7TlIy1135f31aLiipP7JqhvcApNtYS0iMZ1gMGYg2AdIKu8fZxCk0ZMn6569NH2uG6/verQoTGzhhQXq77zjmr79tb8OedUYAwqKlJ98EFzqtlxR9WpU2MiR7Lhl0Jjh+ZtbKZTfaAPkWc5idcX7Aqo9//a0RwjHgrNihUr9LbbbtP69euriOisWbNifoxkYcj4Icog9J6x9/gtStrz2pTXlEHoi5OTI16XU2iq38EN8jqs4DKovH2cQhNfvvjiC/3iiy8Se9Avv1Tt1s0e27ZtVYcMUV2zpkpNFRerfvaZas+e1ly3bqo//FDODkVFNiV7zz1th7POiutMpvJIxLX3WaFpBowENgOLgHO89dsBm4DtvOWOYfqFBdEcI5YKzdq1a0spMmeddZbOmDEjZu0nG5/P+lwz7snQvu/2DWs18KVvSGOKi4v1wKEHatOHmuqKTeUnKE1Q3+AUmkQXp9DEF9/GyYuLVb/4QvWQQ+zxrV1b9eyzVb/+2pSOCtiyRfXNN1V79bLdO3ZUffll1cLCCDvk56u+8YbqbrvZDjvsYMs+DiGksw9NokosFZqlS5dqmzZt9Oyzz9Y///wzZu0mI1OXTdVGgxvpns/vqZvywsdZcj40sWf68umadW+W9h/Zv9x6zocmCYSIR3EKTXxZunSpLl261F8hfvtN9aqrzL8mYLW56SZzKA7RUGbPVr3xRtXmza1q586WcSHiyNWKFapPPaXaoYPtsOuuqiNGlKP5JI5EXHun0JRPcXGxvvfee1roPQ85OTnVai8VmLVqlrZ6tJW2faytLly3MGK9pOgb0pDbxtymDKKUA3YoCeobklahcckpHalPbi6MHAlvvWXTpgsKoEEDtMdeLNymJ2/O681/f9uXFVltOOUUy7Rw6KGQIQrr18O//8KSJVZmzoTRo+G336ztAw6AW2+FY4+FjLSKclAuLjlleFSVr7/+moEDB/LTTz/x+uuvc95558VBwuTin/X/sP/Q/ckpyOGH/j+wS8vYZI53RE9OQQ57v7g36/PWM+3yaTSv19wXOZI5OaVTaBxVIpBz5oQTTvBZktIULF/DHw99xtovf6bxnMl0LZxCHfIAKGrVmsz6dS35UmEhLF8OW7aUbiArC/bbz/IwHXssdO/uw1mUTyKuvVNoyjJ27FjuvvtufvzxR9q3b89dd93FxRdfnHIZsSvL4g2LOfz1w1m6aSnfnf8dPVr3KLd+svYN6cDvS3+n18u9OGGnE3j/9PfLPHsJ6hucQpNonEITXw4++GDAOvlkYPZseOUVGDbM9JTGjeH44+HU4/I4vt0Uak2eANOmmfVG1awtrVpBmzbQujW0bVtS6tTx+3TKJRHX3ik0pVFV9t57b5YtW8Ydd9zBRRddRO3ateMoYXIwY8UMjh5xNOu3rOfzfp+z/3b7V7hPsvUN6caj4x/l1q9v5ZUTX+HC7heW2pagvsEpNInGKTTxZdWqVQC0aNHCl+PPnQujRsH48TBxIixeDJmZpsQEEl2nSTDWMiTi2juFBn7++WceeughXnnlFZo1a8a8efNo06YNdZJc4Y0V3y/4npPePol62fX4vN/n7LntnlHt53ffkO4UazFHDD+Cnxf/zISLJrBHqz22bktQ3+AUmkTjFJr0orAQfvkFvvrK3GWmTbP1HTtaxoF997XMCW3a+Cll+lCTFZoFCxZw9dVX89lnn9GiRQs+/PBDDjjggARL6B9FxUU8OuFR7v7ubrZvtj1f9vuSDk06+C2WI4h/N/7LPi/tA8DEiyfSrlG7hB27MgqNiOwA/AG8r6rnikhHYD4WkiHAw6p6XyxkS0xCE0fa8eGHHwJw6qmnxrztzZvh55/NP3fOHPv744+wYYO5v+y/PzzxBJx8sik0NY14Xvuazueff865555LUVERDzzwANdccw0NG1Y7jVTKMHv1bM4feT4/Lf6J03Y5jRdPeJFmdZtVqg33fMafNg3b8Nk5n3HA0AM47s3j+PGCH2lUu1EyXvv/ApPCrG+iqoWxPljaWmj22sssNGnur+cbsRirzc+H6dNh3jwbMlq40IaPJk82iwyYO8v225f46R56KDSrXP+adjgfmuoTyUJzyimnMH/+fD744AO23357HyTzB1XltamvcdXnV1ErsxbPHvMs5+x+TpUcnp0PTeIYPXc0x444lkM7Hcqos0dx1OFHAcnhQyMiZwGnAn8CXUIsNNlOoakEIntrRsZkateGWrVs8kpmJrRsCV27WiLnVq2guNh8ROvUgSZNzJm0USNo0MBKq1bp64tRHdavt4TIjRs3LrdecbHNip492xSWxYth0SKYOhWmTDGlJkDdujap6MADreyxh/nr1qDZ0lER7bWvDjVFoSkqKuKtt96ia9eu7LnnnmzYsIHs7Gzq1q3rt4gJY2PeRq747ApG/DGCQzoewvBThtO2Udsqt5eI59NRwtDfh3LhJxdyTJdjGHr0UOpk1Yl331ChQiMijYDJwGHARZRVaP7FInuPAW5R1VWxkC1th5zatIELLoC8PPvRLCqyCS5Ll5ovxjvvRNdOdjbsuKMpQC1amGKUnQ0NG0LTpiWlSRP7W6eOKVDZ2VYC9evVi+vpJpTCQti0qTGrVsHatVZWroRly+z6rlhhZeVKU15yc0vv36KFXc/rroOePWGnnaBdO7t+zqJWMe6HIjZ89NFH3HXXXcyYMYOrrrqKZ599lkaNGvktVsLIL8rnjWlvcP8P97Nw/ULuPfhebj/gdjIzMqvVrns+E8sF3S+goLiAyz+9nPM+P4+RZ42M9yGzRCTYQfVFVX0xpM59wCuq+k+IlW8V0BOYAjTHhqRGAEfFQrC0tdBU5BS8aVOJT4aIhSNZt85+nDdtKtk+fz7MmAF//mnLhYWmGFU2Jlfz5qYYBazYOTmmbDVpYlagFi3MQlGrlpW6da3UqVOijBUVmawZGWZtqlvXFKU6dUrOo6jIZN+40c4pM9OUqowM2xYo+fklpajIziuwrbDQlJA1a0oUlnXrLAbdypWwahWoBjTCM8ucZ6tWZglr2RK22w522AG6dIFOnVJiVnTS846njZ955pkV1Kw66W6hyczM1OLiYnbaaSfuvfde+vbtS0YNMQVuyt/Ei7++yOM/Pc6SjUvovm13njr6KQ7oEBvH50Q8n46yDJsyjAseuIBdWuzCuMfHVdr3KVoqstCIyJ6YktJdVfNFZBCehSZM3W2BpUBjVd1QbdlqqkJTXQoL7Qd+zZoSRWjt2hKLUEGB1SksNMVi4UKYNcv8RQLKSK1atu/y5abgJBMiJVangAWqSRNTWFq3hjffPJjsbHjmmbE0bWoKWatWdk6O+OJ8aKpPRkaGvvrqq5x77rlkZaWtoboUq3JW8czPz/DML8+wdstaDu54MP+3//9xROcjYhoc0PnQ+MeuPXfl71V/0/H6jnx05kd027ZbzI8RhUJzPfAAsNFb1QDIBP5S1R4hdVsByzAn4fXVFs7v3AvxKqmWy2nzZkscvWyZ6sKFqjNnqk6Zojpxourkyfb/P/6wMnWq6q+/qo4bpzpmjOonn6h+/LGVUaNUv/vO9pk+XXXaNEt5NGmS/Z061dbPnm3H+fdfS1u0erXqunWqmzap5uZWnOdx8+bNunnz5oRcG0dpEnHtSfNcThkZdXXoUDvX/HzVgw5SHT7cljdvtuW337bldets+YMPbHnlSlv+5BNbXrrUlgNJjhctsuUxY2x57lxbHjvWlv/+25bHj7flP/6w5V9+seXff7fl33+35V9+seU//rDl8eNt+e+/bXnsWFueO9eWx4yx5UWLLOfUw8Om6ja7/am1bt1OGYT2uuV+7d57va5cafU/+MDqr1tny2+/bcuBR2z4cFvOz7floUNtOcCLL6oedljJ8hNPbNYjjih5Pp98UvWEE0q2P/qo6qmnliwPHqx65pkly/feq9qvX8nyXXep9u9fsjxggOoll5Qs33ST6pVXlixfd52VAFdeaXUCXHKJtRGgf387RoB+/UyGAGeeaTIGOPVUO4cAJ5xg5xjg6KNV//vfkuXDDrNrFOCggzRuz97MmZu1W8+l2vyyM7Xu/XX1sc8+ivmzRwW5nIB6wLZBZQjwPtAS6AXsBGRgQ07vAN+V115lSs34NEkB6tVLLT+beqkkbJrhrn0sSF9nrc35m1iVk8v/ff0449a/xcLJO5OZcyfn7X4Otxx1HnMn7spjv8Tv+LVq1SOzem44jipSt249mtSrxx3HPcezq5dy01c30nLlDqzLbQs0SYgMqpoDbB1zEJFNwBZVXSkihwMPAtsAGzCn4LNjdWw35OSoEm+88QYA555bZljUEWcSce3Tfcipqskpk5ENeRuYtGQSYxeM5ev5X/PLkl8o1mIa1mrIoZ0O5bRdTqPvrn2pm52YmVuub/CP4GtfUFTAI+Mf4Z7v76FJnSY8dfRTnLHbGdV2+naRgn3AKTTxxY2T+4fzoak+qarQqCrz183nh4U/8OPCH5m4ZCJ/rfwLRcmUTPZpuw+Hdz6cIzofQe92vcnOTHzMCdc3+Ee4az99xXT6j+zPr0t/pVOTTlzZ80ou7H5hlZ2GnULjA06hiS8FBQUAZLsgPQknEdfeT4VGRJoBrwBHYtM8/09V34xQ9wbgNqAu8AFwharmVXSMZFZothRuYcG6BaXK/HXzmbd2HnPXzGXtlrUANK3TlH3b70uvtr3o1bYXvdv1pnEd/6dMu77BPyJd+8LiQkb+PZJnfnmGHxb+QO3M2py404mct8d5HN3l6Eopvk6h8QGn0DgcVcdnheYtzGnwImBP4DNgP1WdEVLvKOB14FAsUNdHwERVHVDRMRKl0BRrMRvyNrBuyzrWb1nPui3rWLdlHWu3rGVN7hpW56xmVc4qlm9ezvLNy1m8YTFLNixBKemXszOy2a7xdmzfbHs6N+nM7q1258AOB7Jry13JkJox1dwRO6Yum8orv7/CW9PfYlXOKhrWakivdr3o3bY3vdr1Yvdtdme7xttFnPnmFBofcApNfBk2bBgA/fv391WOmkgirr1fCo2I1AfWAl1VdZa3bjiwJFRREZE3gQWqeru3fBgwQlW3reg4tevW1pcmvkRRcRGFxYUUFBdQWFxIsRZTVFxEkRaRX5RPXmEe+UX5FBQXUFBUQEFxAXlFeeQV5pFXlEduQS65hbnl/g1WTkLJlEya12tOq/qt2Kb+NrRt1Jbtm25P56ad6dikI52adGLbBttW2+8hkbi+wT8qc+0Ligr4au5XfD77cyYunsi05dMo0iIAGtVuxI7Nd6RV/Va0qt+KnVvszC19bgGcQuMLTqGJL26c3D/S2YdGRLoDE1S1btC6m4GDVPWEkLpTgQfVi/IoIi2AlUALVV1d7nFqiXJHFPIg1MqsRXZmNtkZ2WRnZlM7sza1MmtRO6s29bLrUTerLnWz65b+6/2/fnZ9mtRpQpM6TWhcpzFN6zTd+v/mdZvTsHbDtLOyuL7BP6pz7Tflb2La8mn8sfwPpi2fxrx181i+ySyHHZt0ZPyF44HkVmjSdtr2r7/+uklEZvotR4JogfkaJJxYBuSqBL6drw9EPNc4X/sO8Wy8HBoAoQG21gPhUl6H1g38vyFQRqERkUuBS7euGESF4SwVJc/7l8JkATFPBFgRPvUNvpyrT0Q811hf+3/5F7loa5tJm+gsbRUaYGY6z9IIRkQm15RzhZp1vjXpXD02AaEJlRpREnW0vLqB/4eri1q+mRehZl1Xd67pSU0612hJL1unw+FIdWZhye92CFrXDZgRpu4Mb1twveUVDTc5HI70xCk0DocjaVDVzcCHwL0iUl9E+gAnAcPDVH8duEhEdhWRpsCdwLCECetwOJKKdFZoQtOZpzM16VyhZp1vTTrXAFdi4/QrgLew2DIzRGQ7EdkkItsBqOqXwCPAd8BCrwyM8hg16bq6c01PatK5RkXaznJyOBwOh8NRc0hnC43D4XA4HI4aglNoHA6Hw+FwpDwpq9CIyNUiMllE8kRkWAV1bxCRZSKyXkReFZHaCRIzZohIMxH5SEQ2i8hCETknQj0RkftFZIl3vmNFZLdEy1sdoj1Xr25nEflURDaKyCoReSSRslaXypxr0D7fioiKSDqHXagyrm9wfYNXN6X7BnD9Q2VJWYUGy91yP/BqeZXE8r0MAA4DOgKdgXviLVwc+C+QD7QC+gHPReiMTgcuBA4AmgE/EX6GSDIT1bmKSC1gDPAtsC3QDngjgXLGgmjvKwAi0o/0jh8VC1zf4PqGdOgbwPUPlUNVU7pgHdewcra/iYVHDywfBizzW+5KnmN97KHeMWjdcOChMHVvA94NWt4N2OL3OcTpXC8FfvRb5kScq7etMRanpTegQJbf55DMxfUNZeq6viGFiusfKl9S2UITLbsBU4OWpwKtRKS5T/JUhR2BIvWS9XlMxc4tlLeBLiKyo4hkA+cDXyZAxlhRmXPtDSwQkS88k/JYEdk9IVLGhsqcK8CDwHPAsngLVkNwfYPrG5IZ1z9Ukpqg0JSX7yVVqEx+m6XAj8BMIBczM98QV+liS2XOtR1wFvA00Ab4DPjYMzenAlGfq4jsDfQBnkmAXDUF1ze4viGZcf1DJakJCk2l8r0kKZXJbzMQ6Am0B+pgPgHfiki9uEoYOypzrrnAOFX9QlXzgSFAc2CX+IoYM6I6VxHJAP4HXKeqNSXxXiJwfYPrG5IZ1z9Ukpqg0KRDvpfK5LfpBryjqotVtVBVhwFNgV3jL2ZMqMy5TsPGilOVaM+1EbA38I6ILAMmeesXi8gB8RczbXF9g+sbkhnXP1QWv514qlowT+46wGDMUaoOYZyggKOxMcVdsZf3WyI4VSVzwca/38IcxfpgpsfdwtQbCIzDvOIzgPOAzUATv88hDue6E5ADHA5kYubzuUAtv88hlucKCDZTI1B6Yp1121Q61wReU9c3uL4h5fuGaM/X9Q9B18JvAapxowd5Ny24DAK2w0x12wXVvRFYDmwAhgK1/Za/CufbDBjpdUCLgHO89aXO1+u8/4uNl28AfgOO9lv+eJyrt+5UYI53rmPDdW7JXCpzrkH7dKSGzmKI8pq6viHMM+T6htTqGyp7vkH71Nj+weVycjgcDofDkfLUBB8ah8PhcDgcaY5TaBwOh8PhcKQ8TqFxOBwOh8OR8jiFxuFwOBwOR8rjFBqHw+FwOBwpj1NoHA6Hw+FwpDxOoUlTRKSuiIwSkfUi8p6I9BeRcX7LFUBENolI5zi0KyIyVETWisgvsW7f4Uh1XN/g+oZ0xSk0SYqIqIh0CVk3SETeiLKJvlhE0Oaqenolj13mOF622osr0055qGoDVZ0Xq/aC2B84AminqvtUtREROVhEFsdOLIcjNri+ocq4viHNcQpN+tIBmKU1L1lZB2CBqm72UwgRyfLz+A5HObi+wUdc3xBH/A5V7Er4goWu7hKybhDwhvf/g4HFwE3ACiyc+QXetnuAfKAAC499EdAfyz4baOsp4B8sLPivwAHe+qND9p0KPAAUAVu8dc96dXcGxgBrgJnAGUHtD8PCrH+GZYf9Gdg+3PlFUfdIr/31WFbZ74GLw1yzizwZizw578Fy9HwKrATWev9vF7RPMyzk/b/e9pFY3pRcoNhrZxPQBqgNPOnV/df7f+2Q+3Eblh9ouN/PkCvpWVzf4PoGVyK8G34L4EqEGxNdp1UI3AtkA8diydiahtb1lkM7rXOB5lgiv5u8F61OuH29dWODOwrvxf4HuMBrowewCi9fitcRrQH28baPAN4Od37l1QVaYB3rqd6267AOtUynFeE8mwOnAfWAhsB7wMig7Z8B73idWzZwUND1XRzS9r3ARGAboCUwAbgv5H487HVudf1+hlxJz+L6Btc3uBK+uCGn1KYAuFdVC1T1c+xrYadodlTVN1R1taoWqupj2IsW1b4ex2Pm26FeG78BH2Dj8wE+VNVf1EzbI4A9y2kvUt1jgRmq+qG37Wmsg40K7xw/UNUcVd2IfVEeBCAirYFjgMtVda13Hb8vp7l+2PVeoaorsa+884K2FwMDVTVPVXOjldHhiAOub6gA1zekH24sL3kpwr4KgsnGOqoAq7X0OHgO0CCaxkXkJuBizFyqQCPsiydaOgC9RGRd0LosYHjQcnDnUpFskeq2wb72AFBVrYxDnojUA57AzOVNvdUNRSQTaA+sUdW1UTbXBlgYtLzQWxdgpapuiVY2h6OKuL7BcH2DoxTOQpO8LMLSwAfTidIvTZUQkQOw8dwzMDN0E2wMWrwq4VKwh677B/heVZsElQaqekV15QthKdAuSHYJXo6Cm7Cvy16q2gg4MNAUdg7NRKRJmP3CXYN/sc46wHbeuvL2cThijesbDNc3OErhFJrk5R3gThFpJyIZInI4cALwfgzaboiN6a4EskTkbuwrLMByoKOIZISsC44N8Smwo4icJyLZXukpIrvEQL5gPgN2F5GTvdkBVwHbVmL/hpgT3zoRaQYMDGxQ1aXAF8D/RKSpdw6BTm050FxEGge19RZ2T1qKSAvgbiDaqbIOR6xwfYPh+gZHKZxCk7zcizmWjcM87B8B+qnq9Bi0/RX2ss7Cvuq2EGS6xZzjAFaLyG/e/58C+npBqZ72xpyPBM7CvkSWUeL0FjNUdRVwOnb+q4FdgclAXpRNPAnUxZwSJwJfhmw/DzPV/43NCLneO+7fWCc1T0TWiUgb4H7v2NOAP4DfvHUORyJxfQOub3CURVSdJcyROnhfhouxDvw7v+VxOBzJgesbHM5C40h6ROQoEWkiIrWB27Ex7ok+i+VwOHzG9Q2OYJxC40gF9gXmYqbhE4CT3dRHh8OB6xscQbghJ4fD4XA4HCmPs9A4HA6Hw+FIeZxC43A4HA6HI+VxCo3D4XA4HI6Uxyk0DofD4XA4Uh6n0DgcDofD4Uh5nELjcDgcDocj5XEKjcPhcDgcjpTHKTQOh8PhcDhSHqfQOBwOh8PhSHmcQuNwOBwOhyPlcQqNw+FwOByOlMcpNA6Hw+FwOFIep9A4HA6Hw+FIeZxC43A4HA6HI+VxCo3D4XDUYETkcBH5S0TmiMgDEep8KyJTRGS6iDwvIplB224QkRnetg9EpEHipHcEEJFGIvK2iMwUkT9F5BgR2d27b4GyQUSuC7NvexH5znsOpovI1X6cQ3URVfVbBofD4XD4gKeY/AUcAywAfgBuUdUJIfUaqeoGERHgXeADVX1bRNoC44BdVTVXRF4FflPVZxN6Ig68az9JVZ/z7mtjVV0TtD0TWALso6qLQvZtDbRW1d88hfRX4GRV/SuBp1BtnIXG4XA4ghCRB0VkuYioiPT3W5440xOYr6pzVbUIeB04NbSSqm7w/psF1AWCv4SzgLreD2Z94N/KCCAiw0Tk66oI7zBEpBFwCPA8gKoWBSszHkcAs0OVGa/+UlX9zfv/JmAm0C6+Uscep9A4HA6Hh4j0Av4PuBRoDbyToOMe6w0J5InIAhG5sYL6gzyFK7R0KWefQ0WkSETmBK1uB/wTtLwIaBth/6+BFcAG4H0AVV0CPAosBJYBWar6YRSnHMx1wOmV3CcpEZEWIvKciPzr3cv5InJ5SJ1K3Wtvn4rud2dgJfCKiPwuIsNFpGlIM2cDb0ZxrE5AD+CXqE46iXAKTRriPfxzKq5Zap+DvRckplp5vNpNZkSko3fO+/sti6PS7AAUq+rHqrpMVXPjfUAR2Rv4GPgS2BMYBDwY+kMYhgWY0hVc5kc4RivgNWBMReJE2qCqhwNtgNrAoV67TYGTsR/UNkCmiJxbwTFC212vqmsrs08y4g3V/AB0wZSHnYBzgD+D6lT1XkP59zsL2At4VVW7A7OBrf5QIlIHOA54r4JzaAh8AFyvquujkCmpcApNkiIirUTkGU+DzxeRlSLyvojsGcXuQ4DelTzkBOwFqZS5uKqISD0RyRGRPYKUnkBZKyITROTYSra5v7d/xyrIM0dEBlV2P0f6ICLDgOFARuBZ9NbvLyLjRWSjV6aKyFExPPSNmO/DAFX9S1WHAc8At1WwX5GndAWXojDnlQGMAP4LTAzZvBhoH7TcHvOzCIun4H0CnOStOhwbslqpqgXAh8B+FcgdKl+pIScRGSsiL4vIXSKyTETWeHXqh+x3lZjza56IrBCR94O2xfueheMWoB5wvKp+r6oLVPUnVf0hqE5V7zWUf78XA8tUdZy3/B6m4AQ4HvhZVVdFalxEsjFl5i1VfT9SvWTGKTRJiIi0ByZjHcMVmMZ/HFAATBSRoyPslyEimaq6qbwHNxyqmu+9IMXVFD9ajgaWquq0oHU9MKVqP+B3YKSI7JYgeRyO64DrgSK8L2DPL+QT4Gfs+eyBfVXnAIjI7SKyqYJyewXH7YN9sQfzJdCxAstmOxFZ7JUvRCSSInEX5vPySJhtk4DOItLZO9f/ACODK4jNnmnl/T8L64sCzqKLgF7eB4oAhwVtQ0T6V/Ejoy/QDDgYs3KcDNwa1O49wMPA/4Ddsf5kiret3HsWjhjdx9MwB+knRGSpiPwtIo+KSL2gOlW911DO/VbVZcBcEenqrToMmBG07zmUM9zk3btXgD9V9dEK5EheVNWVJCvYy7gMaBRm2+fetrrYSzoHOBP4GygEugbWh+x3PabF5wBfAedhnVw7b/vBEZaPwMyoOZjp9KiQdh/AOrAcbCz+ecy7nnDtBq1/AxgSqQ7Q0Ft3TdC61sDbwDogFxgL7O1t6+jVDy5jvW09gC+w8f9NWCd+dFC7Y8Ps29Hb1gX7alkHrAVGA7uHnMsZ3n3Yglm6TvTa2N/vZ8mVSr97/YHCoOWm3r08OEL9Zt4zUl5pVsEx84FLQ9bt5h23Z4R9jvGeuz2AA7AfqyLgiJB6hwBLgW295UGU7RuOxPqPucBDQes/x4aR2nvvzDRgOvAU5isTqHeP1wdMxyxctYO2neK13bac8x8GfB20PBaYFlLneeAn7//1vff/5gjtlXvP4ngfc70+4DVgb68fWASMqM69jvZ+Y4rdz959+iLonjcGVgP1w7QbuMf7ezJMwxTDKcCJfr+PlS2+C+BKyA2xl7EIuDPC9gO8B+9ESr46vseGmHbEFIFSnRY2a6EQ+wLdAeu0/yU6hWYq9vWzAzYDYh3QJKjtOz2ZOmJfBX8DrwVtL9Wuty4bUw76RDh2LeBmb91l3jrxXtYp3su3O+awuRZoAWRSokj0BLbF64C89s8HdvWu0f1Yx7Kjt70ZNhY9xNtvW6+9Vpjy+Jx3vJ0w8/BqoKW3b3egGBjsbT/Va8spNClYCFFovHUvAXnYj8QAYKcYH7O8H7m9K9HO98DooOUW2PDRMUHrBhGi0PhdCK/QvB5S5y5gnvf/fbxrs0c5bcb1nkU4Zp53vYOVvb6erIG+KCb3Otz9dkXdkFMSsgM2FDgjwvbA+p28v3WA81R1oqrOUtWNYfa5CRsXfUpVZ6uN274epTz3qOqXqjobM/k2BnoFNqrq/ar6o9p48TfYDJGzvHH7SByCvfw/hayfKSKbsK+cRzGrR2CWyaFYR3aOqo5T1T8w8/gW4Eq1seTANMWVasNnazwZx6rqa6r6p3eN7sS+KE/3tq/BlMhNWnps+gpggapeoap/qOpM4FpMqevnHesmYKKq/p+qzlSb4fFYdJfWkQqo6iWYP8IY4CBguohcBjEbqliKKdHBtPL+LquEqD9hHxYBumJf36NEpFBECoG7ge295XO8cyg3sJ5EGZwtxuSHLCtlXSSUCJR3z8IRw/s4W1ULg9YF+usOQXVica8h5H6L+Vv+EXSfGnrrIwZFDEbSIEBilt8COMoQcZaBR+hLvFzDxBUIYVfKjp+GKhORmLL1wKrLRKSIkhcQETkVG87qAjTCOp1a2EsbycH4VOBjLeuvcxSw3JP3MaC/qq7ztu0GrFbVrTMGVDVPRH72tkVERFpiZvFDPbmyMEWwQ3n7YZaevTwlK5i6mOKJJ+s3IdvH4UgrVHU6NqTyuIg8j03rfgEbCnm3gt1D44GEMh579u8NWnc0sFBVF1dCzO6UnoI9CbMsBnMl5iB6LPCP9+P2P4IC64nIfhoUWM/7eNgTSgVn+6gScsWaP7EPmaOAPyJVKueehSMW9/FH4GDPjzHgrBv48Fzg/Y3VvYay9xvgEC3rP3mylg6KeDo2dL8VsQCJ11I6QGJ/IKUCJDqFJvmYjQ1hdCV8pxFw+pqJ+YZsjrLdiF8zFRD6pQTel5JYzI73sOGWW7Dhn97YGHKtcI15L9VJwAVhNi/wXurZIpIHfCQiuwa9oOHOQSKsD2YYsB1mYZqPjXW/HUnGIDIwZSVcGPDAlMZoju9IUcTifFwCjMJ+PNpgQ6yBIGRrqPiHriKeACZ41pHhmCXyGuCGIDmuBq5W1Z295ceBT7EfykaejEdQMvsIVd2M/aAHn88KIN/7sUdEeuMF1vOWA4H1SkUKDiJicLZEoaqbROQxYJCI5GJWmLrAsao6uKJ7FqHNWNzHIZify7Mi8qR33CHY8Nlar06l77W3rsL7Xc65lRcUMZhAgMR8qhAgMRlwQ05JhvdifQFcJRb9MZTbMStGRfEkgvkT2DdkXWWndYdjf2CVqt6pqj+r6iwqji65Hza18dvyKqnql9iQ00Bv1QyghYjsGqgjIrWxDiFg1g0oX6Em1QOB/6nqJ97X5lIsbkYw+WH2m4xZf5ao6pyQsjJIrj4h+4UuO1KXzZg17m1gFuYgPoHwSm6VUNVJ2Cye4zGftfuAO1T1+aBqLSj52gdzkH8dGzod7W07XFVHVfLwUQfW84gqOFuAasxyqoi7gDswq8J07Br08LbF/Z6FQ1WnYpavvbH7OBT7KL0iqE5V7jVEd78VGC0iv4nIDcE7S5igiCGyxyJAov/47cTjStmCDYUswX5Qj8ZmGfTEOpIteDN0iODgF7oe++IqwL4EumC+J0uwF6CtV+dgynESDmqrEBsKAnspi4GLMAXhP9hMquBZQqHtDgHeDGkz0rFOwXxtOlHaKbgPZqna6hTs1W+F+cJcA2yDN9vKu47jMPP7ntgssvXAsKBjfYYpWdthHUqG196/2KywgOPz/tjMrv28/fbyrsEDmMPxKcA8nFOwKylQMKfVl4OWj8X87cLVrQOsCrxvUbZ/L6b0Z1VHTleiutaBvrwpNvx1csj2uphyd0SYfZt6/V9LbNLGSOBcv8+pssVZaJIQVV2Iafk/Y2O+czGrTW1gXzXrRWXa+xAbbhmAjTn3w3xKwBSkqsr5KfZD/qDX7lnY0FN5nEL04+8fYybWe9XeupOxWVSfYf4B22Iv5ypPnuWYU/IAzArzsdfOBZiC8gv2on7p7R/MQMzheSYWQnw7r719sU78Q2/bCEzhXOod81csxsNZ3jUYQJD52OFIcioTWK/C4GwR9rlaSzvKOuKAmpUFteGtdwixwmvZoIjBVDtAYjLgsm3XUETkbuA6VW2ewGN2w5S0FmoJ0BwOh494Tr5/Y46qC7GYU7dpScTZ4LofYlm2RyRWSkdFiEVRzlRz/q2NfTSOwPyI6qrqcrGgiG8C36vqf0P274UF1tsH8zEcBkxW1WcSeBrVxlloagAiki0iA8TSDGwvIhdjlpSXEixKbexrzSkzDkcSoDYb5yoswNos4MeAMiMin4tIG+//jbHpzyN9EtVRPq2wGWpTgV+xofk3MavzpyISCJi3lKCZXoF7rKo/Y8NRv2KW5gzgxUSeQCxwFpoagKeZf4r5ezTEZvq8DjzqTMEOh8PhSAecQuNwOBwOhyPlcUNODofD4XA4Uh6n0DgcDofD4Uh5nELjcDgcDocj5XEKjcPhcDgcjpTH5XJyOBwOR8IQkVpYNO5AqY+FdKgN3IzlQBqAxUPJ88paLMDlKmC9lk1s63C4WU4Oh8PhiC0i0gLoBuyMpUUJlA5YbJTqUITlG5oXVOZi8VP+VtVwCXUdNQCn0KQJInIt0EZVB/gti8PhSDwishOWkLELlrvtdi2d9DBex22IpQjZH4t11Y3SCS5zMaVjPpbKZDkl1pbVwEZKLDFvYEliz8RyCtXGckg1pcSi0xKz4nTClKS2WK43sPOegSV+nIjlNPrLWXRqBk6hSRNEpA6WnbqHqq7wWx6Hw5FYROQVYIOq3iAirbHcZdvH2mLhDRkdCBzj/e2OKSFFWDboKV6ZiikXyzTKHxoRGQugqgdXQp46wPbAHpgytacn0zZeldVYctpvgc9UdW60bTtSC6fQpBEi8hIwU1WH+C2Lw+FILCLyNfC2qr7sLY8BXlDV92PQdnPgBCzZ5JFYxPE8LDfbD5gl5CdV3VjN4zwJoKrXV7Mdwaw3BwIHeH+39zb/jUVOHwWMc9ab9MEpNCmGl1vlGewF3QQ8oapPe9v6ARer6iE+irgVL+VCM8xMXA+ohZmQh2Cy302JqXkDZoLeEO3XnMPhMETkWyzXUgFQCPQATge6qOoFVWyzHnAilk3+aGwIaAmmDHwGfKuqm6svfWIQke2B4zCl7GDsfBYDb2F5j6a6vie1cQpNCiEiGcAk4GPgIaAd8DVwhap+JSI9gK9VtVkC5ekCdMW+fgJj2h0xc2/TKjRbiCk2Sylx+JsPzMY6nJXVFtzhSEO84Zo3giw0pwJ3qmqPSrazF3Al5sdSH1Ni3sL8c35Lhx99z+/neEqUtSxseOxF4HVVXeefdI6q4qZtpxY9gZaqeq+3PM8bZjoL+ApzrqvuDIKweCbcjpj5dl9snHoPzPISYA2mgPyBzUIIdvzLocQa8xL2JXk1JdM1G1F6Kmc7YDes06kdJMdSbGz+N8zMPUFVN8T8hB2O1Gcj0CSaip4fyhlY5u19sPf1bWA4loG7KE4y+oI3NPYW8JY3I6svcAHwFDBYREYA/1PVKf5J6agsTqFJLToAbURkXdC6TOyHHWxce32sDiYiLTHHv6OwIa523qb1mNPfy97facAcVY3q2CKyBEBVv42ibgbQGpv+2Y0Sp78jgNuBYhGZAnyPmcF/dNM2HQ7A+oN15VUQkUbA5cCNQCvMv+RazEoRs74kmVHVVcDzwPOedeoK4FzgEs8P6UHg+3SwTKU7TqFJLf4B5qvqDhG274JZL6qMiOyAjb0fD/TGpkMuxxSGH7wyo5qOdFOiregdZ4lXvgmSs74nX8Dp70rgBmCjiHwFfAJ87Kw3jhpMxP7Ac/K9DrgGs+KMAR7G/GJq7A+3qv4KXCwitwCXYn3Kd8BEEXkQ+LQmX59kx/nQpBAikolNxXwXeBrIxzqtuqo6SURexCwlj1Sy3W2xYatzsGEtMF+dgPPf7/GeCSBCK8wSVAh8qkqlFBFPwTmMEqe/NsAWbCbDCOBLVc2LqdAORxIRxodmNPCyqr4bVKcepsgMwIZ5PwIGq+qkxEuc/IhIXWwo6lbMQv4TcKuqjvNVMEdYnEKTYniznB4DDsF8S2YCd2JxFuYAe6nq8ijaycAUgCuxmQwZwO/Yj//bqrokLicQVhZ2xKZ/ZgOKDWl1V6VKDsCev09vTEE7EwvEtRp4FXheVefFQm6HI5kIVmi8ODSTgM6qmu/FjhmAWR3aYor+Har6h28CVxIRMlTxZYq1iGQD/YF7sCHwT7Ep8Z/6IY8jPE6hSRNE5BqgvareWkG9BsDFmCKzA+a0+wrwmqr+FXdBw8rEF1hsi0Cy1ALgeVWurX7bkg0cjp3zSd4xvsQsXF8587EjHRGRx4C5qvo/EemFKTAtgV+BG1X1B18FrAQinIFNJGiAfficokqFH23xkUXqA9cDd2EflEOB66obf8cRG5xCU0MQkWbYePm1WGyYCcD/gPf9HooR4Q9s6ncwn6hyUmyPI+2AS7zSGpsp9SDwkQuu5Ug3RKQpMBizyqzEZg++pKqX+ypYJRBhT6yvquutKgR+UaWPfzJJK8wavgbYDvPvuw740H0g+UtGxVUcqYyINBGRwcBCYBA2NLWvqvZR1RHxVmZE6CLCuSIcIRLxefsKy/cSYDPwRaxlUdXFqjoQm35+MeZD8D4wQ0TO9IaqHI6UR0T6YsPRl2BTkXfAAnJeIiI7+ilbJTmAkjxNYBNZeong57t6J2adOQLYD7Nyvw+M8ob6HD7hLDRpihdX4irgDmwWwzvAg6Fj5iLsjjm9KfCqKjNiJwPnAMO8touwXConho6Di1AbeB04zav7LHCjKnF9OD0n675YB9UVmIw5/H0Xz+M6HPHCs8o8A/TDhpcuDsRS8bYdglkkU6LjF+FMLDxEg6DVa1VJSPDQcHgzxA5U1Y+85SzM8n0/9mF2RbAjtiNxOIUmzfCsDPdjcSXqYNaPAeECRImwNzCWkuB4OcCBqvwW/fHIwKY2nooF0/s/VWZ5s5aWUvrragtwtiojI7SVBagqCQ3i5Sk25wL3Ae0x8/wpqjo+kXI4HNVBRA7HPiC2xZ7lB1W1oHpt0g9zrl8H3KvKzGqKWdnjZ2F9VDcs5hbAuap8mEg5osHLdv46FpjwLeAqVV3rr1Q1DFV1JU0KlobgS8zKocBz5dfXT0E1qBSDfhSmXgboZTDvOxj5LXS+AMjwtg0B3eztXwS6DrQt6F0hbQfavzIx10IzQK8D/Rb0DdCOUVy/ulisn2JM+RoE1PH7vrriSnkF+6G/x3tu/wT2jk27ek3Iu70etFPiz0+zQPuCXgG6u9/Xu4J7kYVZfAuwlC17+S1TTSq+C+BKDG6iTXe+y/sR3oCZP7/Avqq2ibyffh9G6fg6TL0XIC/ftucq/FkEdUcBArqp9P7FuV5H+FCYthV0L6/NU0B/Bv0F9IzYXxN9LEi2QtDVoBGvhXcdA0NvV2PJ6hTLIXWo3/fYFVfCFWzm0mjvWR0K1Itd27ok5N0tBB3o9zmnQgF6AYuwVC+X4o2GuBLf4pyCUxwR2QUL9nQvlrRyZ7Xs2zdgQfHKu8evYsNMAXKgeKiInCQiN4rIYSLUB70QamVblTrAzhnw/bGw20Flm9xSB149zJMlN2Tj16r8KsLxwBuYabYnMFSE0yKcX5aIHCsiZ4tI+/KvRmAfBPMfqu+tyvQEP6WCXRdhJuP/quo5mNOfAt+IyFNeUDKHIykQkX2w2FEHYr4yF6hqTgW7VYbMkGUJs65aiNBOhANESCtnWlX9Gct4/h3wAjDM82t0xBO/NSpXqlYwReV6zCqzCjit8m2ogF4FOg90LhRdhikaG7Evi03Q/iEozi9raclTmPU16GDILbR1BQprFNpuBo4HPRF0Nugy0KdAs73jfhnGcjM2zDnWwqZsbsQsT5uA/aI8ry0h7eeAXl6F61wPmyWiWJ6bffy+9664gjnQ52LDGt3jcwy9K8QCuwl0lxi2f4n3Xq7z/p4d/+umAjrQG0rbAvpyoF+K033KxIauFZth2tLvZyedi+8CuFKFmwbNMeuLYgGzto1Ru908pUGDyhbYMh4KwwwfFS6zDuLGjfCtwlsKnQP7PRb5ODoqjEIzpmy9upfBZXkwRKFfoN3Z0Z2LPhsy/r8WtHU1rs1hmH9NAWb9ciZkVxJeMCvJrd67MIFyhpSrfywVzA/tF9DRoDHxzfHabguaF+ajo1l8r5/2D1HSNoM+mID7doangM7FrOi+P0vpWHwXwJVK3jAbplnoWVCujOUPq/ejva5Emaml8GYBFBdAcTEUhyohU739pocoQblYNNIIx9E+XucVaCcf9JKQOgLTZ8Emr85GhVfULDXaHnQM6GLQL0DbhDlGJuj/gf4E+iFolxhcnyZY7hvF4k408vt5cKXmFO9r/3nv+XuLJHNYB+0Oeh5o75D1V4Ju8N7zj0Drgw4I81GTA9otzjJ+GOa40xN0/3pjiX7XAvv7fb/SsfgugCuVuFnmXJYPLAB6xqH95lgeJU8xebIYcoqDXvxi0Fzvq2YTaC9vv96eZWeTNzw0Hahf/rF0P9B/QQs80+9m0PODtu8JBbmlO55chd1+BF3k7afe3zmg2V75L+YAvAT03DhcIwFuwiKWzgZ29fu5cCX9C+b4/5b3bj6IN8swWQroTd47vNH7+5C3/qggS6l6/cdw0G/CKBZFoI3jLOd/g/qOQJ/2TQLvY0ds6DoHOMLv+5ZuxXcBXIniJtmX2WNeZ/YF0DyOx9rHFCYpgJUFYTqdn0AvJWT6JpaJ9gIsUF2FX45eR7cxpO1c0MB08P2xsfWg7ZuLYNYF2PTR4P02gnYFfSKk89wMenicrtMBWNyddUBcjuGKK6oK5tD+sff+3+q3PGXl0+aE91nbEZttGNqHLAf9IMz63xMga2vv+Ju9/mYD6B4Jvp/bAFM8K/tJft+/dCpullOS4yVD+wALlPcscIKqro7X8VT1F1XtCMVPQ4twz8dOwNuqzA/Zb6GqDlXV91V1S7i2Ragjwh4itMdeag2pkk1JzpYp2AvvRRXWQqi3AHb4DYv1EEwm9sXTl5IggXj/Pzny2VYdVf0Rm5r5D/CFiFwcj+M4ajbezJhPgBOxQG2P+CxSOLbBLMfBFAO7YUMsoelVVmM5pnIo6QNy4AREZGygxENQVZYCu2L96c1AV1WmxeNYkWXQFVjE5t+BD0TkjEQeP51xCk0S44XY/g44AbhWVa9R1cL4HIteIlwvwpki1MNi2YR7PuphcVqiabOOCEeJcLyXZG4+5uk/Czia0lNAi4BZqmwGUGUTsD/wC7AK5Adseuo04AdKppvnYMEE52MzoYIpwBLIxQVVXQj0Ab4GXhKRe1w+KEes8DLFv4dli79AVf/ns0iRWIANwQZTHxiOOcEuxvKzbcHe1ytUmYy9Oy8DrwCHwKfrbdczm8HCfURYKsJzXmqUmKHKalVeUOW/qiyKZdvRy6BrsbAQE4ARInKCH3KkGy71QZIiItsCY7Ckcmeo6ifxOxYXY1OTMzEl4Dcs6VqoJSTA86pc4cV7aQrkqFLKKiNCE2Ai0Ab7CquHKUgBJWkz8CQWL6YR8AeW56nCDsYLh345sIcn60uqFIlwJOa0WwfrYNcBe6iyvMKLUA28XC4vABdi53SjuhfLUQ28dBwjgDOBy1X1BZ9FKhcvjcpXUCbH0iasD+iL5WMareWkTxChB/AjJZbWXOBNVdLSAioijbAPoj2A41T1G59FSmmcQpOEiMh22EPeBhtjjdtD7uViyoFSX0GbsK+uHULW49WdDHTHvsICCsooVU4MavcxzJJTK8Khi4BPMaVtVKy+lEToDpyEKUyvqbIiFu1WfFzJAB4HrsO+Oi9X1YTmpHKkB56V7yXgIuAWVR3is0hRIcJZwItAw6DV+UBr1egspSLchcVtCbYOr1OlaazkTDY8S/xYoBPmKPyTvxKlLm7IKckQkXbA99i49BHxUmZEZC8RGQcN/obicErHM5jvzmJsmmER1jnNwhyHG1L6+TlBhAeClncgsjIDaCbknwg8CvqHyKj9vK/SKGTnBBE+F+EjEXqXalX5XZVBqjyaKGXGjqvFWHya+4GLsSEo9345qsKdmDJzX6ooMx5zKBtJeD3Wf0TLZsxKHEwsox8nHZ5P5BFYMt9PRKSzzyKlLM5Ck0SIyDaYf0gbLH/Q5DgdpxPmi1IfEJhaDLsJZAb8P3KAbqrMEdmquGzCHP3WAo0jND1LlZ3sGNyEpWMISRegQX8Dv/dFwJhiOCYHi3g8urS8NMacIrNNXp6mdIbwg7wx+aRARAYBAzGl8Do3/OSIFhE5G8sj9jrQPxWeHRHqAO8Cx2AvdSAWVT5wVGXeTRGaY8PPzbEPohzgElXeDKpTDzgdG6oeo8rf3vre2IfUDFV+89ZlYRMDtgXGq/J7tU42jojIDtgw/QosInplFEEHuGnbyVIwX5Qp2At8QJyPdR3W4ShkKlyj8E+xFwdiOYy5AOrcBNN+taB6mo9F923k/T90umWgTLT2VbAMuW/Y7KSI9YPKZC/2DZsICg8Oug0WU2aTNxW0OMz+r/t9/0Kur1Ayzf4Bv+VxJTUK5iSbh1loa/stT/Ry6xOUDpS5GXQwaK0qttcC9E7Qx0EPDtnWAHSm1x8EYmIdBvqA9/8N3t9bzAqs33lhHXK89ef4fb0qeAYOwhTBb4AqXb+aXHwXwBUF81P50evMjkzA8S43xUkUflJLa1CspnzMeQsOzoEnC0ui9GogrsQHIR1XcCkE3R2LCrrZW/4SixwaGuJcPeXJ+/8mhbsDCs064KASWfWp0kpUmWjFCvpGjK+PYFM7e1PF7MVeGy9453St38+YK8ldgLbYl/ks4hhnKj6y65Qw7+TnMWg3I1QpAr3eU2SCj7UgTL+0BfQ/lI11tQk0qdOWAP/x+o1n/JYl1Yob4/cZzwHwVWyK8n80ZLglTrwLrIeTCy2USib2+0smdD4LRtaFqzNLklUDFh9mD8pMz1Rg1AbYbTH834XAo9hwUCZwMHCqWWvK4EUd3oJZ1+8PrK8F9yPCSyJ8gCkV2SW7lZkVXQjEbDqr58fzPjAJm7UxT0S6VLYdtZ7pSmzW1RMicnysZHSkF9707Hfw4iZpHONMxYllUCqmVD42XbvKiHAjZkXOFeF7ka1OwS0pO1GhKWXj4OQDnSnbYdQl8uzNpEBVXweeAK4WkbP8liel8FujqukF87VQ4I4EH7cVvDcpgsUjnDWkAMuDsrZk2KcgH8YWwUlqySk3hrGgFK+DvHDDTstAG8Lo0TCqEB7MhR+LYEueZ70JWHDyoLioHPlGx/i69Kd0gs4i4OdqtFcfmxW2iThlRXYltQswxHvWzvJblsrLrk1BV4R5P38D7VDFNkPTJeSBjvK2HRKybQuWHyrUErMWtEdI3QLQyX5fsyifiWxgvNdvxCzDeboX3wWoyQVzbFNgGAnO3gy0hA8Gla/QFKnlT8rPwfxY2oDuAvqDmXlHLYVzNWRoKqRsWQM5YRSRwnNAp7E1ZHpxsZWwchRGlnPxHGx6eMcYXZeHg5SZQFlTzTZbYxGFFxPH7MiupF7BHFYVeNZvWaKXWU8AnQE6H/T9MMqEYkPOc/BSmVSy/fvDtLc2aPvFWPqTfNBPML+ag0DXeErLctB9vLone8pNEejPoK39vn6VeDYCw5AzqOLQd00rvgtQUwuWQmAj8BMJdgDEsmpvgqx1MCcki3bw/zcrvDHK68AahmlnJEwqR5lRz4ozqsCUo2KvbFFYey0Ubyh/361trDelKZxS82MRZpreCNndQY8BvdmTudJKItAvxEJTCIyPwTXf05PzayDT7+fPFf8LNvNmlWfBSwknYCzHWqiFJJyPnGK+Lm2qcIyrKOsTMzOK/QSbuFDmva9KX5AMBYsSrcBTfsuSCsX50PhAUH6mLVgU4NBcJ/E8dgbwIVAfChvD/6S0W0zwkHO9V1T7naDKKFU2evtnisglIvIkMBUyi8s/YlY2HJ1l76R4pTaQcz9saFj+vgDkQNZzcNE78EVh6RAVOcDjGVhk4Prw4igsVPwDWGbiiNFVRaSFiPxHRM4TkeDopm9Scm82Av8C50QhZ7mo6hQsKvJh2DCjowbj+c69iA1JnpfIPqCanE3pUAy1MZ+UcEEkMymbjiQiIuwvQn8s+vdM7MNiExab5sKK9vd+0zaolskRR7h1qYCqfo1Fcb9WRA7zW55kJ6mdo9KY/2GzaI5S1X9i1agI2wP/h4Uff0uV98JUa4wpAB5LMP+57DBV7fnw4j48DHoAfNcSzm0KS+oCmyEjF7R+GGfdILY6HQfRoKH1dfW8YxdQEpcmX6HORpuFlaew4UYY5nWa+athy78wswsMrms+twBtBc5uE3SgWsC5IjyqyuzS10k6YU6/dTBNa7OI7KWqS9Q+i84XkbuxOBczVTXU4bBKqOqrIrI/cJeIjFfVr2LRriMluQDL0Xa9qv7ltzCVYBOmvAQH0JuHWZmOYmtsKwqAB9RyskVEhJ2BXYBTgFNha4CqgV67jYCxqiyI6VmkFv+HXdthIrK7qq7zWZ6kxQXWSzAicjo2y+heVY3Zl7oI22HB8gKB8HKAW1X5b8jxBViJBa7C+qXlmA5USulQ7AvyCiw9QR+gjvVTK4Cdsb5tC2UnHZQiYJoJYQWWPeFZYEds5O1zb92yPHhiOWS1gYys0k0osKQAOgJFQVpYj1yYWAuygzva9cDRqkwMuQbvY74LgbqFwBuqekF5JxILRKQulnCzObC7pt6MFkc1EZG2wF+YEnC4WpTplECEDli8rIaUZLnvp8pIL43K6UAH4FfgWywNyS5e/YXAB6qs8tq6AovXVITleQomD2ijUaZMSHdEpCfWSb6mqhf5LU/S4veYV00qmHPoKuwHLTu2bevtlA16t9Q7bh1gd6Ctt9wLi/i7AdgC69aEGf8uAN0V9j/ZrCTB29YpHO35mKyPwgcmtBQpvBnwUfFKA4WvFQq8UhxpXN7b/79B+9ZTWLQujI/NWixGRiHov6CHeOc/sfSxUeCbBD4He2Jmsbf9fiZdSXzBhkVzgc5+y1I1+bUD6COgz4EeGKGOgL6DxX0JficLQfcGbU7ZeDLBZSPoTlHKUxt0Z9CUit9ThecmMGGhj9+yJGtxPjQJIijhXH0s3kxovpLqUouyubkyRWQX7MtoPDBXRD7AlJk2WIyXttD4B0o7pxQCj4LkwPQ3wpwNJUPm98LWRNsB3aC8nIyK6VE3AI3yIWMzkAMvFZoRKMsrUk4eqAzgUix2TTts2Kxd4zAWplygK/Yl2RoYJUJ74EtK54fJwcxDUSNCHxEeF2GQCK0rs6+aP81A4EwXZ6JmISJHY5mn71fVeX7LU0VWAbOxIaFIPjI9geMICWaFvYufYe9jeX1gXeBDEc4tTxARdsdmEE4Clohwe4XSpy73Yuf6vBe7yBGK3xpVTSnY7BnFcvvEoX3dNeRraBPo/cCfWA6mYGvEFuDuoH1bgf5NSYjwkVgwvLOBDfCBlky9zlX4W6G2Qk+FtRoUadiznhRGmH4d2P8OhaXFVq8gDxafB5tXla1bXFjSZrgZTrkKq4ojTOnOpVQ0YlVsqudpmMY0FFPcCjCfpqinl4KeRMlMjwLQVVRyOqgnwwRgNdDC7+fTlfgXLADcCuBvUmRWU9lz0PrYdOxCLB5VAehJ3ra+oJOxGDSPgK6L0A8Ueu2sj7A9uP/YDHpqGDnEa2NBmPr7+X2d4vgMnez14UP9liUZi+8C1IQCNMEcVX6uzA9n5Y+jvUDHgv4OehtoBja0ETq8ophVomvQvllYjJlOeFMcgSPhrFybvp2rNhT0kUJjhYs8RUPDlLx8yA8TDK9YYWU4BaUQi2kR3DFtAR0D67+ApzaGP1aOwpZIylO49RsJyg2DfS1Wego16KyQdgtA76nCc7Gbp1C94vcz6kr8CzbUpJhl4zC/5anaOejNYd6rHNBrKD2de3OEd1BBV3pt7Y/lXorQj2wtX4bIcLz3LheEqbsZ9DK/r1Ocnp8GwH2YCbwYaO+3TMlW3JBTYngAaAFcrnF0AFTlZ1UOVqW7Kg+rUowNN2mY6oHQ4IF9C1X5S5X5qoH6q/+AobVsJlIdzKhwdBH0WWMzCSM9PsXZ8HWGvXOhNPP2KzU8lIkFkQpMld6IhU4/RbXRMbDPQWX9igOnVBhpelXo+s3AWCzxn3fOWqSqYcfHRMgSYUcR2oXZHGpGz8JmY1QKVZ0BPA5cKCJ9Kru/I3UQkRbAkdjQCMDXItLVR5GqSs8w6+piz3HwdO56hO8ACoDjAVQZB1yCve/lkRv4jwgdsTQRDQg/S1eBORW0l6o8CdyJDdkVA7f6Kk0S4hSaOCMi52I5fT5W1d99EKEvlvAxVKnJxoajyqH+DlAU8oOfvQUe+c5cdsKh2LaDw2wTynnksoFFwGVYcra9VNkkgkDvzeF3eSHHdKBw+lop8oFbgJNKlLXIiNAKi875GzBbhLe8GRwB3qKsD84HFbUbgYex+zNaRMqdLuZIae7AfoT7YyEb+qrqdF8lqhrTIqyPJgRIETY5YZ4IX4qwGriHUmEkShGwJD8YtK474RWlAKOx2VXpyAOYQ/CJwMvA5VXJM5fW+G0iSueC/YL/hr3ICowEmvggR0PMi3YD9jWUC/SveL/DriybtiC3GAr+CpOzKagEr9PQUo5/jc7AZkDMxaKP5nv1l0PxltJ1C4ugx3vQtcCGwiK2WQA6GzTqoSXQzyg9Y2wT6CVB27NAH8XSQcwGPbmK9+UAzBKlXnFZudOwAJ0wpfplv2UJL5+2AP0G8ztbAnpUOXUbYykGKhom2uy9N4H3PQ/0F8z3ZUrQ+1UcoU9YD/oC6J5Bx70C9GnK+sYFSi5o7wRet6agT4J+DnprZfqYGDxTrTGr87t+Pz/JVHwXIJ0LcKz3Q3U9MAD4jjj60JQ9vmaB3oP51HwBs/cEdgAaRSn/QLi82Hxo1qr9nVRUfv6nKpfNoNdTdppnQJEqtOSXOWqpE0Y8iYWOXwLHbjbH5DL7FXjK0TOgvSpx3RaHaevFODwfuwNTgSOwGBNLcDlb0q5gX9O5eGETkq2Ajqd0+oLNoDuWU39b0H8iKCKFoO+B7ge6B+ivWG6lkaBtQe+KsF9omYlN7W6DhaRYT/lpFgLHToizNWhd7GMmIM9m0BEJfq7u835fdvf7GUqW4rsA6Vowv5A/sPHcWt66BCeg1OcpcdQr9jqFdmHqCWiZuDjYcNUmaK9wkMLuGtkRuMolF/RH0HOx2UOhsXS8slbhNIUdFBoqsNaTsRFwOsz8CYqDnQTzvLY9K09xDjz0ODZzq1yFDvRbr3MM7uDjYj2hJLjlAV7n9H9+P7uuxPT+tvesM0mZfBL76Am1eJSySEbYb22E9/nNCPVrYZaZcI684cqCIGUhkkUmXF/SGpttNQF0HOhxcbpux1DWoTmfMDnv4vhsNbP+mYQqUslcnA9N/DgLi4Fyh3qh89V7ChNIf0oc9QTzUzkxuIIIF2PTl/NFyBfhTFsvtbEhqnHwTyGMw3zxwvnghp6WYpmzi4rLbivDQlUOUOUNzCEmwjOZhRkwZuP5EDayvFS6K+gpsONKkHXYmHsgNHst75wFpC6ceh0W/XiGiLQsR6YLsem1GzCz7k/AcxWdSFUIPBOq+iMwCrhNRBrH41gOX7gJe2ke9VuQCBRREkgqgEKFEXqXRFh/ightwqw/EpuEEMnXJhCTRrF3uDUljnrh+oRwua8KsGBWrwH7ev9/V4SjIhyzOmQSvnPLDLMuLqjqGqxfOktEtk/UcZMZp9DEAS8B5P9hjqXh8iklilDnOSUo6p0IvbFgf4HnIBt4U+Tbrljo8vexjkEsOXgnIs82CkaAPDHf2Zewj4hiBV1G0IwFo6ijyJ/HinC4d7yQDkGx/vYzKMlgUAh9ZsKWp7FZS2djeXFaYA6GmV4Jeb7rZWCOma2w2QJhUcsbswM2ZHggcKRquUHAYsVALNfWVQk4liPOeErzpVhajYV+yxMOVfPdwpSIQkyB/xP4pIJd+2OWp1CKMWUEEVqIsL0IWZRNbRBKIFCcYLOmygmsSS72dXUX1jms9+Tu651L6Gyrayo4dlX4gZKPJzw5vlVlXRyOVR6PY4rcbQk+bnLit4koHQslwY/6+SuH3k+JT0oB6ArQFkHbfwtvun14JCXTh7yyvZZNgRBcwvnVTAnav44ChWWD7hWrOfUWFYZvN1fhuEA7xUARnLvF/HnC+s1EKJsUHvfaaahwzSTQc4KvRzIULGLxSpwvTcoXbGaTArv4LUvFsmof0AGgF4DWinKfOWHetXzMgXeIN2S0yRs+6kXpYdyqlmLMlybf+3sd5q/TAhs6/zPMPpswP8JDY3zN2oN+gA2lPQ1a16fn7Hmvv07r1A9RXQu/BUi3gn1h/ILNXsnyVxYV0EtAR4G+CNo2ZPva8J3Gd+shK0gZCZR/tPxZTMHLRQqjg/Y9XOEPjTwjKZKjcZGCrMfSNfSEjM9hQ2U6wAJYvxmeKbBz2kZhSTHkbcGCc60C7eT3cxP0/PTxrtl1fsviSrXuYxYWhmC037LE7xx1Upj37WPQEyjt3F/oKRqbK/HeBnz+coIUowLKOhQXge7vyfMcEX3wVL3jd4/ivJqAdiWB/jDVfNa6en3GzX7L4ndxQ06xpw8WfOpRVS30UxDvHr+kygmqXKpaZtw7ghm8Z6PSoR9QuO1fC3gcnPU6FAlaL9iQ+bbYbPWvsPcuy6sTGs8uYny8AtADgXagh0LuMRVbr7cKkQNcBI2bwTUf2VTve4tNqalVG2uoCfBERQ0mClUdD/wI3CAiCRuPd8Sc4zCH4Lj4XiUJt1MSj6kYc267GUu+WjeoXibWGVRm2HYOcB4Wl+p/XhtZlO0oMoDXRRgEXE7J0FU46gKnlndQEc4C/sXSkiwV4ZhKyOwLavGMfgSu8NwdaiyBGRaOGCEib2K+F21VNUJAuLgctyOwN5ZiYZyGubEi0h7oCMxW1WUi7IVNJa9PGX+TOZhfcx7mCrRlItTqXbqOElkRAfOpXY/lwQz9bVZsyD7Q/xQDGeEaLFIlS4QTMaecemWPrYAUYx3mamwqdD4wVJWPg84/C4o+hYxQJ8HpwAGa+PHvsIjI6cC7wPGq+pnf8jgqj4h8haW26Oj3h0088fzw+mFDHi+oMkeEsylJxAv2gs7Gclk1p0LfTQWeWgDXHwb8jn14xOKHuhAYpMoD4TZ6SWbnUNoHZzPQWrXCaMa+4iW5fQs4RlW/9Fsev6jR2lysEZFWmGPasAQrM0djWscrmA/G21527+A6VwGzMO/auSLSV5VfgV28fUJMJp2xkbMpwM+FUGs1pcwyxZSvzIApMc2I7Pi/GvvAy1PQLZgjdfCMCwXmi8hh8MFDlOpoAtagdYWQcznwpreyAXAQ8GOwMgNgPywZoZm2FdgZWCHCExaZ2HdGAsuwCNOOFENEOmCzel5KZ2UGQJWJqlyjyi2qW1MOvItlhVaso8jFon+vJKrfnPxi6NoAeJ3YKTNF2BfW0HLq7EBZK1Ix0CEGx483H2LX92K/4LGB0AAANQ9JREFUBfEVv8e80qlgJlgFdkrwcddQ2t9lI6apB7Z3wr5OguvkAA1tu26LBb/KtVguYSP+Ps3WhHD5xZCv5cekyVNYorA+wvY1xXDuX1CUDwUFltBy5e+gT5kcuh50JVxyPbAZRobxsynIAbKwbOG5IcfIBS2TvA00wxtrDzgoBse42AR6ut/PkXfP7sE6085+y+JKpe/dAO8dS4t7B7oT5ix8HGiFgUFB7wzxodkMuqwS/jMa5t2sTskH/TBcfxAid3vMZyd43xzQJn7fgyifu6exD8LGfsviV3EWmhjhWUQuAMaq6swEHjcL8wMJJgMbvw9wGWXNJLWwhJCosgxzcPk/kBeB4tLWFwHYEegGeffA6Fz7kAk8PqGjW4VY3Jqe2HB0cUFJvWLsQ+nwYhiyPWRkQ1YW1MqGOnvCc3Uxi0l/4EQYfilQz9IdhRpPsjaqfQG3pewU0rzA+QWjSrEqV2DTu9dQ+uuvPrBP6D4+8ZL39z++SuGoCucAP6nqPL8FqS4inIClb3kGeBv4UqTCWCvnUzqBaz1gmyocPvT3aTM2RF5ZCoD7VPmnvEre9hsxi9J67KPvQk2SoegoGAHUpgI/oXTGKTSxoyfQBXgjkQf1ftBnUjbmzK9B/28aZtdMKHnBVVmpypPAcyDhHKt+B5kPdQ6C7eqWHmYOVTTyFW5W+HcTnHkerHsXxhXDC1hIiDOA6UXQNCTIVi1g8XlY5/kG8BXM3sF8cJYQorMUASrCa97/y2g72Lh9JDIp7biId4C55eyTMFR1MZYd/JzQ4UNH8iIiu2MpLd70W5YY8Rr2stfHhn/2BU6qYJ/Q4faKnO2iYRn2PqyOsD2SM2gx5lM3JZqDqPI8FnTrRKCLKm9XSkp/Ccyu7ee3IL7ht4koXQqW2j0Pf5JPdgHmY+bGPODSkO0XUiauDDOCttfDOuFtsKneX4SYe5eAZmMOxTnwa4hJt1htKErXe+blxwlK8wAI7DAFliqs84ahpipMUFN+gttZGTARe+sKi+C3IosjUyoBZmD6ZiHoOtAzKJnmuQH0yPKvmfal7DTSYsKkgPDxmbrIu1c9/ZbFlajv2f2Ygr2N37JU/1w0I8ywTw7oVSF1LgV9FfRyr/84MmjoppDocjeVVyrafzro6+Vs3wR6v9/XM0HP332YEpfyz19VirPQxABveu1ZwKequi7Rx1fVOZgXb3vML+bFkCqvYc7AudjX0zIssi4ishewGBgPLAIZAByPTYF8DbgVaK8WKdcL930PJR9hxVgmbE7FFKeDVLlRvbfLk0/hjxXQUi0QbiPM/+5n4G9KdCzBJkEET73MzIA9sA9ECSpbv/gyMYWsExYpeAeguSqjK7hsjSj7VRfpK88vPsCsRjX3iyv1OB4Yr6or/BakuqhSjM0yCp4woFgqEDwH+l8x0+sF2BT1ScAY4BAsHMKPVN86EynfyiZgNDY8PZXw6RDAOo9rPJnTPRTCSOx6Jf1087jgt0aVDgXYH3vBzvRblnJkFGxGU0+CotACSyltudkMhM1MjQ1RTgK2wBEK7xfBexvgnwotCFj23JAvp3cUenpWm9BtpUqow29IKSyCp/4EBgF1orse2pnSjot5oN/7fZ/CXPNPgAUkOLGpK1W6V+28d+hWv2WJ3TlpW9CpnqUmF/S8oG1nR3gnj/W2Z3lW0+pYZyI5BueBbgN6vff/iqw4GynJEP4P6F5+X9s4PYMZmOPiu37L4kdxFprYcBzmCfuV34JEQo2/VHWSquYAiEhdyjrrFWPxM8K1UQwcBrwOY6ZA3zfh9M6q7SZFIcIESn1BbcY+3tbnQoNwOWECRwUKh1N6qnUBW6d3FwO5GfDsLpg16atogkupMg+LFzQX81Ieg6WsSDZGYdNGd/VbEEeFHOf9/dRXKWKIKktU6YZZOeqpMjxo85kRdgus70BpZ7uqEMm68y/mU/ME5nxXnhVoM+ZT186r1w74WoSG1ZQt6fD66M+Ao0SkvHxYaYlTaGLD8cCP6sNwUzXZgqUUCEaweDVhUdUNqnqpqnZX1fNUdVWUx7oOmGxfU0VF8PkmeO5vmHUBZL6BdTpFpUd9CoA/iqFeKyxfyQosnPwFwF2Q8yeMLbL8kbPBnHz3xmZJVYgqP6jSRZXGqhyvWuZaJAOfe3+P91UKRzQci/my/eW3ILFGlS2qZYZkl0WofroIl2F9SzS/MYXYx064Id9wispq2JpAtqJ2ZwD/pewsyIbAyyKlZmOlC59iQ+p9/BYk0bhIwdXEC6K1ALhJVR/3WZxKIyL7Yz+axdiXzjOqGrPMrSJkYwHzDsa0jieA5cHKgzcWfwqwM0zuANtcAi0EJmMzoorz4Nd7oX0B8IkqMz3Zu2Hzw4NzIWwC+qjqtFidg9+IyK9Arqru77csjvB4VsHVwPuqeonf8iQCEfbAhqDDWQKWAldj0WujsRRswH6EK0Ixq+r2lG+VycOUyx6Yb90sLFRDaJ3JWJTwtPkhFJHGmDJ5r6oO8lmchOIUmmoiIhcArwJdVXWG3/JUBRFphg1pLFNzMI5h27yHfbnWw76S/gV2Uy01hBQsyyGYY5vXuW2L+fu1yIOMDK+Nw1WZKCLZ3sbtsU4zH+rMg1V3Qf06wHdaNn9VyiEiDwK3YDPoEhaB2hE9IrIH9iyer6qv+y1PovBSH7xNYqPpFhE5/DhYH/EUFntmI4AID2FW4lClJhfYVZUFcZDTN0Tkd2CNqh7mtyyJxA05VZ8DsC+zP/0WpKqo6hpVHRcHZaYRFrMiMI5eC5vGdHA5u/2MRdHzgvHdVgTNFDJqY7Of6mOdFapagF3/94EZ0Pgj2FAM9YdiMy7+EmHvWJ6TT/yA+QD0rqiiwzcO8P7+4KsUCUaVidiMyUQp2kr5ygzY71ozDcq/pMoAzJobqc104wdg35rmR+MUmupzIOY/k44vRXWJmEI70g6ew3Jv4GNgOnSbD1mh9ZsF1V+tqv1UtSus+wWyO2NDUA2wcfJXqnUGycEEbEjwQL8FcUTkQCz8QYQM9umLKn9g07S/oExOuJhSSNkAooH1wWRROlI6ItQi/IfUbMwvL934EfMp7OG3IInEKTTVQETaYMMdP/otSzKiynosTkSut6oAGyv/vvz9dKmqnq6qu8Mht1J6hlMO8FGEXdtT1qS8baUFTzJUdQMW6dQpNMnL3sDEmvpho8ok1a1O0aEsJbwisnX3KA+TSXjrTAallZocbKZPMNmUJR94JJ38Z4KY6P1NBwt11DiFpnr09P5OLLdWzeY04FksLPcHwFFUwjytykdYsr81WNLN4cAdEap/H9J2HiFDACLUEeEGEZ4V4awkya4dDT8Be0czJd2RWESkERbYcorPoiQDp1J6RlEecASRFZoc4F4sd1JFRHpXM7xthdhH08tYn7MVVTZjfUEgdIR6xx4TxXFTkSWYK0Q3vwVJJK5zrB7dsBcjbWbUxB7ZA6Q2PLwGik/FIosuFGHHaFtQ5RlVmqvSSJXLVQP+NWXqjQQexjq2IkzRvHirJDbj6kfgAeAqrOMbUsUTSzRTsGG0Tj7L4SjL7t7fqb5KkQR4w0/bAZdgqTuaqjIDeIcSS2sR9o4uAK5QZRBl86pVls3YUHUdVa5TDatAnQy8hw0xTQD2VyXlIzqHw7MUTqGGKTRullM1EJEPsdlNUf84Jwve7IRrMKX2WVXGx/4YcjDwGexRz/qPrSEfFJinSpdYH9OOSyaQrRoIvrd1/RGYlSg4oFYh0DjSrKtkQUR6Ylau01T1Q7/lcZQgIldhFoH2aklFHSF47+QNmK/NbOCekNANOVRdqVFgJdAp2d/jRCIijwFXYulwQv2M0hJnoake3UhBM7MIfYBvgHOwHFSjRcqdeVRVHgTqwV6EDJML0EmkjL9LTFClKFSZ8agfKghmCo+LHDFmOibrnj7L4SjLbtjMvJQPERAvvHdyiCrHqXJ9iDJzFaV9XAqxoJ/h3uFgcr0yHbPEThBhnQjfidAmxqeQivyB9W01xqrrFJoqIiJ1sHHzVJyuPYDSIcnrYcHvYo1nkgk7iWATkZPJxYvxmFIQUGrysWGCZIwQXApVzcUCikUVBdmRUDoDc2uqQ3B1EGFX4BFsZlKAQizv3GvAcuydDR1mVmCxKvWw2UuvYVlsG2O59b4TqfG/b3O9v519lSKB1PQbXh0CgaTmllsrOQkXmyAe8QqGApvNGDQS02EKcrCx9HMSPbtAlZVYvJDJWEf5OXB0Cs1ymEcN+tpKITpj98ZReXal7LRrAXI9f7ltsb7pPko7Gwsl78Le2OyngNNwIG9TWxH2FWGiCLNEGCxSSnFKdwLPZI1RaGrSzY01gYckFTuyZ7GvmICVJoeQWQEx4imsM7oc/lMIN46AIdOBX/2KzKnKdGAfP44dA+ZRMrPOkQSISCb2cVNj/ZpEOAyzqPylyjeV3H0OZX+HMgiarahKkQi/YlaawIeXwtY+ZANlP86zgNbYLKaA8961WATyqyopY6qyFLOC15iPIGehqTqBhyTlFBpVRgH/wSwVvwIXqvJB7I+jqqqPqGpn1eIdVYfco8oH6RZmPIHMA5qJSBO/BXFspTX2Ixsu/kraI8IQLAjmI8DHIjxWmf1VmQI8RmnftmLgw5CQCl8Ar2N+NeuxMA6nedt+wcIa5HjtbAb+BxwK1A5qox7QrzLypTJe5u0FOAuNIwraY18My/0WpCp4CkzMlRhHXAk4I7XDnFAd/tPK+xsp83TaIkIHzNoR7FR/pQjPVPKj5UdsPDow+7A2FkSyBTZ7CW9Y+EpPgWqOWYM2eduKRTgWOB8LdPorZjG7HpsiHuqfU5NYBmzjtxCJwik0VacFsMrTgh2ORLDS+9vCVykcwQTuxcpya6UnLTG/lmCFJh+7Jgsq0U44HzYJt16VeYSxiqtSSEiaExFGALdj/jVZmAVnUCXkSgdWYrPwagROoak6LYBVfgvhqFEEnjen0CQPgXtRE/uCvylr8Sjy1leGcZgloTY2fJcDfK1avWuqygoRumGZ6lsAH3qRx2sSq6hB/YVTaKqOU2gcicYpNMlHjVVoVNkkwuFYbrXtsCHRUwJDQZVoZ4sX6PN+YCdsCOrBGMn4LxbQr6ayCmguIhk1YTTBKTRVpykw028hHDWKQLycZuXWciSSRt7fDb5K4ROq/A50FEGqE/5AlTVYVFtHbFmPTf6pB5VTNFMRN8up6tSh4kiWDkcsCQQirF1uLUciqQ0U15TQ8pFIoVhONY1A7J4a0Wc4habq1CZOkW5FZKyIjI1H234eq6YcM17H8iLR5lNDOqcUIW79QIBEvy9+vJ819dgJOGaN+ghyCk3VaQYc7T2QT/otTKrgvbx7Anv61XGlIiLypHe9MoEjfRbHUcLhQLbrB6qP6xtiR1B/EfAfikck+KTDKTRVJxPCpqh3OOKJ4t7bZCKD8NOOHY5kIPAblV1urTTBOQVXnfXAp6p6ud+CpBKqenDg60tVD/ZXmtRBVa8HEJGNwLf+SuMIYizQwT3L1cf1DbEjqL+4AHiVssk90xKn0FSdPOI0LpnIl9mPjiPdjxnnY8XdZ8NRKfKIszk/0e+Ln8pETTt2Ao4ZeDZrRJ/hFJqq45wzUwwRaYMF2WoGjAbe9BxtUwIRycBMx/kV1XUkjLh92DgcMSDwbNYIhcaNxVedLZQO+e1IYkSkJZbArhD4HrgDU25SiUDn5MIFJA/5QIaIuI9DRzIS6DNqxEeQewmrzhosuJ4jNTgdGKeqtwCIyI9YyPVHfJWqcgSetzW+SuEIZr33tzGw2k9BHI4wNMbSUeT4LUgicBaaqlOjcmSkAdmUjpS5idSbylhjw+wnMS4dhSOZaQGsrglpD8ApNNXBKTSpxSfAKSJymYgcCIwAXvdZpsriFJrkwyk0jmSmRuUcdApN1VkFtPAcNR1JjqrOxwLSHQ8MxvxobvJVqMrT0vtbYzqoFGCl97dlubUcDn9oSckzmvY4H5qq8w92/VoDS3yWxREFqjoFOMFvOapBB+/vP75K4Qhmufe3ta9SOBzhaQ1M8VuIROGsC1Vnnve3s69SOGoSnYFVqlojMzsnKcuwKbGd/BbE4QhGRDKxj6B5FdVNF5xCU3WcQuNINJ2B+X4L4SjBc7ZcgOsHHMlHG2ziQ43pM5xCU3UWYjlcXEfmSBROoUlO5uEsNI7kI/BMOguNo3xUNR+YC3T1WxZH+iMi9TGF5k+/ZXGUYR7QRUTEb0EcjiC6eH+dQuOIiilAN7+FcNQIugICTPVbEEcZpgONgO38FsThCGIPLKDeAp/lSBhOoakeU4HtRaSR34KkOiLSTESeFZEvROQhEannt0xJxp7e3yk+yuAIT0DJdB83jmSiG/CHqhb5LUiicApN9Zji/d3DTyGqihi+R8sVkdrA19jz+F9saOUDZ8IvxZ5YmP2FPsvhKMsfmD/dnj7L4XAA1rdjz+MUfyVJLE6hqR6TvL/7+ipFFRCRE7EYGptF5FcR2d5HcfbGhlOuUtVPgX5Ad5wJP5h9gcmplB28pqCqm4A5OIXGkTy0B5pQw4aonUJTDVR1OTALONBvWSqDiHQBXsGCzNXG0gB86KtQptCELrsfb0BEmmBWwB98FsURmUlAb2dVdCQJgY/syb5KkWCcQlN9fgD2T7EUCD2B71T1Zy+OxhOYL1Bjn+SZBBQCz4vIycBb2IvoIuIafTAFzyk0ycuPWFRWPy2dDkeAA7EEvL/7LUgiSaUf4WTlR8y0t7vPclSGZUBXEanjLe8MFFM6G3XC8KbAHwHkAhcDfwN93fDKVg4ECoCf/RbEEZEfvb8H+CqFw2EcAPykqoV+C5JInEJTfb71/h7lqxSVYyxmAflFRIYB32H+K754w4vIHsCrQA9gAjBQVXMr2Ke1iIwQkUkiMlREmodsbyEi74jIPBH5TkRSOV7Q0cCEiq6Jw1f+AtbgFBqHz4hIUyzMw48V1U03nEJTTVR1MeZJfrzPokSNZ/k4H7gVe+iPVNXhsT6OiGSKyJ2e0vGtiBwcpk4nbIbTGGAQ9uP9SAXt1vHqLwKuwSxLn3u5SwIe/h9hlqijgDeB0SLSIjZnljhEZDvMf+ZTv2VxRMYbuv0eONz50Th85lBsiHqsz3IkHHFW/eojIvcBtwMtVXWN3/IkC951OQy4GfO6fxY4wst6HahzPbCzql7uLbcDpqhqROVDRHoBLwDdVVW9H5B5wNGqOlNEWmLO2s29HxpE5CvMT2dvLNjUPao6LLZnHHtE5Argf8Auqvq33/I4IiMiFwEvA91UdZrf8jhqJiIyFDgZ+z1yQ06OSvMZdi2P8VsQvxCRuiIyWERGi8iLIrINcA5wsapOUNV3gBeBU0N2LQTqBi3X89aVRz7QADhURPp4+9QFdhWRQ4FMLClbU0+2TGwaeHNMoTkDuFdEjqj6GSeME7AUGzP9FsRRIZ97f1PGWutIL7zJKccBX9Q0ZQacQhMrfgGWAGf6LYgfeBaSt4AdsRlTGzFzZz7mMB2gCZAXsvt7mGIyWETOx6aPP1HBIRsBHTBF8iNgMWZifRC4D/gJeB34VkQGAJ8A9YHLVPUfYIa3rl8yDw94fkFHAB85B+nkR1WXAr/iFBqHf/QEWmJ9Y40jy28B0gFVLRaRt4HrRKS5qq72W6YE0xI4CGjlzVj6QkR6A+OBt0TkUSxI3snAPsE7qupyEdkP8+c5EhuWOlxEVmKB/65T1W8C9UVkF+BLbMbPOmxIaxMWRberqhaJyK2Yc+aDmEXmS6AF0ElENmD+N02w57+eiJydpOHBT8dkHOG3II6oGQUMFJHWnoLjcCSSk4EirM+rcTgLTewYgf349PVbEB8oxiwkGbDVYpMFjAauwDzuM4B9VXVJ6M6q+o+qXqOq/YATgZWYI+ytwNsiskNQ9Su97XdiQ1gvA9nAhiCl5Atge1V9R1VvUdVnMB+nl4BvMAvSOmBXTBm7OEbXIdacg2XXrlHRPlOcd7B3oUZaax3+4Q03nQ2MqYEf1YBzCo4Z3o/4DGCNqu7vtzyJRkR+AnbBFIUlmI9LL1XdElJvbPCyqh4ctC0Li0VT37P0BBzcJqjqS97yi8BOWACzf4ENmJVmMzaF/m9seKmJpyAFH3sPbIr6/4AnVHWNiNwCtFbVG6t9EWKIiHQE5gN3quoDPovjqAQi8itQrKo9/ZbFUXMQkf2xWavnqeobfsvjB85CEyM8H4dXgT7JHvPEm049QETGiMibIrJjNds7HmgLfAwsxXxpRoQqM1FQhCkmnbx2BVNc1gXVeRuz3jTxth3s7VMbU2yuBv4DlFFQvJkn473jrBWR+piJdkYl5UwEl2KWr9f9FsRRad4E9q7ue+VwVJJ+2Afhx34L4hfOQhNDPCfOJcArqnqV3/JEQkSewhLpDcYiHN8I9KjqmL8XnK8Q8/kowJyBl1TlC1VELgXuAoZjM5MaAIcFLDZenVeweDXLMYvL2diMpg7YjKcvgP+o6iRC8KaFf4nNgmqCOc9dFJjenQx42cf/Acar6il+y+OoHCLSFrt/D6rqnX7LkyqUZ711lI8Xm2sJMFpVz/ZbHr9wFpoY4o1bvg38R0Qa+i1PODyrx0VYaoEvVfVRLLDdidVothZwFrCfFz/mE2wK9dYZRCKSJSJ7iMgjIjJcRG7whphKoaovAucBW4CRWNya/JBqL3l/z8Hi0TTGhp/OwvxrCimb7DLQ/mIsIvGp2JDYBcmkzHichvn2/M9vQRyVx/MT+xy4SERq+S2Po0ZwOtAM8ymssTgLTYwRkX2wGTjXqerTfssTiqdkrMeC2f3rrXsb+Cbgp1KFNm/EZhQ9gQ3/XItZSrbz/FR2wCwhHTBFYxRmUVmkqv2reMwLgKe842RgoefXYsNdi4HeYRShpMe7PxOxzmmnJFS2HFEgIsdiz/yZqvqu3/I40hvPh7EpFoCzxv6oOwtNjFHVX4BxwM3J+HXmPezPAh+LyJkicj+wHxbPpapMBFZgfixNgBuwoaf13vbh2DDPDCxi8J7Ao8ApVU1HoKpDMcvMaqA38BVm1cnFvlIaichjIvKWiFwjMcqG7vkf7SMiB4hIvVi0GcIh2NT2x5wyk9J8hTl1X+m3II70RkR6YH3gczVZmQGn0MSLB7Ef7n4VVfSJO4ChmJmyOeaPcqSInC8iraJpQES2EZGHReRVzIn3Q+AUYAfgScwvJTCNek8s9stmVV2O5SXaDVN6sr32dhSR70VkhVgyyS4VyeC9vI2w4bJdgIVYPp26mLd/bewr+SxPpmohInWxqeivAY8Dv3n+ErHkdsyxeliM23UkEO/Zfx44yJtd53DEi6uxD7nX/BbEb9yQUxzwhg1+w6YP75KkQdsAU0ywmT9/Yy/F/sDBqjorpN4uWPLI5nhTAzHn2z+wIaa3MKUlkItpXtC+s7BMxHtjQ1J5wHTM1+UoTAGZgSkJ72MKyFVYoLxyZ0qJyHzMh+dOLDDfGcAALOHmEV6dJpgDccPqDEOJyO3AXsAZXgC/+4AdVPWsqrYZ0n4vzNp1s6o+Fos2Hf4hIs0wJXuUqp7jtzyO9EMsee1c4HlVvcZvefzGKTRxQkT6YmH9z1fVpJ16KyKPA5mqep23fBPmf3J6UJ12wGQsC/afwNPYs7ODt70DMA2L/aJB+4m3z42YNTDgrJuJhYg/RFU3ikhP4EVV7R607wzsy+MAbGjp85CIwdtiysWHmBJ0MLAKU5Z+BHZU1RO8unUx/5omVZhKHnytXgV+CoqJ0wv4r6ruXdU2Q9r/ClP6Oqjqpli06fAXEXkYS866k6rO8VseR3rhzVi9EgskushvefzGDTnFjw+xH+37vCl1gSSJyUYrTM4AvwLbhtQ5CUt29riqfon5qHQI2r4Bb+gohLOxhJ25WG6nT7EZVeOw6MGbxbJJvwnsLiK3i9EQ2AYzobbF/HNeE5FzAcSSSv6B/VDUAlaoaltV7YYpLtOAbiLyf2LJKt8BPgwoMyLSQEReF5HlIvK3iJwQ5bWaBpwplogzAzifakbxDTwTInI4ZmG63ykzacUT2NDqrX4L4kgvPOv6JcBwp8wYTqGJE55D561YDqObRGQw8FO4qco+8wNwjYi09BSJW711wRRTWmH5EcgSkctEZF8s7cObYRzS9saUiSzMeff/sGB4DbBn72zMgfgCYB6WWHI5NktsFjBWVS9T1Ycxf5+BntXnDWza+SFY4LnLPGXoUaAz5uD8ChbP5kugNaXTG7yAWYl6YF83r4jInlFcq2cx5eofYBHmG3RzFPuFRUT2AmaKyGmYJWsBbqp2WqGqy7Bnsb9Y9GeHI1bcBNQBHvZbkGTBDTnFGRH5BfthF2y2z9WqusFfqUrwFITBwHWYkvEmlpU6OJDdNpjlZhg25HQLlmG8PRYv5RtgYFC6ggxMkesH7IsNBZ0DTMEUmmJvnwwsquWhmKVoLeZTUxuLNVOkqrd5bXYEJmDTslcC9VRVPQVxEqCY/8m9QB/gIcxJeT1m6Rmnqnd7ba3DfF9WestPAP96MXmiuWbtMMvQgurMRPKm+L+MBTcEuFxVX6hqe47kxHteZgPvq+p5fsvjSH1EpD32TL2rqv/xW55kwSk0cUZETgU+AEYmc9RXTwnJUNXCCNu3w2bgNMecf18KN0XQU34+w2Y+BXxXVmNWmQ6Yc/D72NfFfzFn5EHY0NIZ2LDLBizq5aWYZWUeMAR7ga/1/g5U1REi0glzaj5WVad4MrwMTFbV573lfYGnA5GLRWQBFh/kZ0+h+xj41Avql1A8x9H53mLzSNffkdqIyEOY9bMH5sTZ1ws94HBEhYjsBHRU1a/Ectydg/kKLvRZtKTBKTQJQEQewxxj91PVn/yWJ56IyEdYXJtFmNWkK2ZtGYM51K4Oqrsr5lvTCDPLnwEciylOo7Chnfsxp+BPgdtVNV9EumHRiBULQHebqj4X1O4jQLaq3uAtnw/0U/3/9s48TKryWOO/AkFEBTdE5eIWFDQI6nVFVFwgRIhL3FBvcAkqIMaNixIvojGYxCUQQQ2Cyr2KohJFFokbKKhBMSpq3OKG4nUXETUgksof79fMBGdglp453T31e55+cHrOOf1N231Onaq33vIe6ecTUEfVLUAHVKbaz92/roO3ZI2Y2bVI/LyXuz9T368f1A+p0+5N5Gi9GdKpdXL3F7NcV1A8mNk4dIP3GHAA8Ht3r3HJuxSJgKYeSNqUV1DpZY9Svgs3syXAN8BS1Bm1DdDC3XepZPt2SNPSCWVsWgHd0QX+izW8TlNU8vpk9RKemW2Jyk9z0GDLPkBvd38q/b4HcC4qcz2OSmBboLlQFWae6oJkiDUfGWINqo/XDLLDzO5An8XX0KyxpzNeUlBEmGa8nYN8zhoBbbyG8/dKlRAF1wPuvhR9EDsj/UnRk7qRTjOz8WZ2mZm1TOWTDZC49QhUbupExR1QAKRW1kNRKakN0rx0WVMwk/gOZWguMLM/mdkoS67D6Uu+BwoWFqLsSy6YORxpge5Dpa9BSBh8FGpHv7mab0WNSAHZeKQHigGGDYPTUSm1KfJhCoIq4+7LUea7MbKLiGBmNSJDU08krcZd6EK/p7vXqt03a8zsRhSI3IN0NbuhLqXfoyzLsygD0g6dvIe5+5Q8vfamqCTVGV0c5iKx8sHova20dGRmD6OTwb1mNhAFMdPc/aj08xigWV3PgUqmfP8DHOnu99XlawWFg5kdBMwCRnhM4g6qgZm1RJrD99Fg3YI1bM2KyNDUE6mMMQCJYm9N6cOiJJkGno4ClZ8AK1FpZ+f07wOopXl7lEW5A7jazH6xluNWmslZjZHI/6URyuo0SWv5GDhkLfuug2Y+gTquvkb/T0CZG0vHrDOSId8vgQkRzDQs3H02sh0YYmYdsl5PUFRcjm4S+0cwUzER0NQj7v4pEnXtgsSuRUfKNI0FvgWOQZmZLihQeAN1NDVGepSlwEh3vwLNWxpayTEPNbNFwDIzez6p+St7/UZIY3MQys7sC0xCAdS3QCPTTKrpZnaXyYW4PBOA0WbWG2l9WgArzWx/JDRegbxw6oSkp/o/NBH83Lp6naCgGYwC6ZsL0JcqKEDS+WkQcH00D1ROBDT1jLtPR0PrBic9R7GxHppRNQNdmDuik/MPkbfMYSiYaYFEwTkV/qdp33/DNNzxDqAvyrTcCEyzyl2VhyAzqdnIl+ZOoD/KtrRD7eJDkRZmFnC/ma0SJLv7BORVcx7S2TyI2h/vRRNrB7n7N9V6R6pICgbHpXX2dfcla9klKEFcA1oHomC8JDR1Qd2RboL+F9k7XJTxcgqa0NBkgGkUwhPoIrx7+UGOxYCZvYC+YNsi3Uo75Ksxrdw2O6CA4zzU4XU5qv1+jQZbLkcOl28BA9z9sHL7fojmNK2PxMLNgbvdfaaZPY98a65BJaZOKDCfjAKZ6Uib0hxlYPYBmrp7hdbzZnY+mj7eDJgCnOLuK2r+7lSOmQ0CRgND3f23dfEaQXGQgttJSIy+V85DKQhWJ+kV+wH7u/sTWa+nkIkMTQakmULHIH3JZNPwxGLiaODnaJZRW+C01YKZrdG07KeBC1G25G8oANkFBSHd0zYdgQ5mtn7adzvUKbUxEvt+grqVbkz+MctQMNQZ6VDuQcLevujisCPKtgxOvz8FlcC+h5kdD5yJnIXbofr0JbV7ayrGzPZBgunpaMxB0IBJmrqBqER7axGeA4J6wDRn7nTgyghm1k5kaDIk6TimIifh42tjo1/fpDvMjYCl5X11kgfMfCR8/BoFNJ+hIKMr8At3fzJt2x+VfVam380DegIj0OgEUEnpOhSoNEYGhSOAq9AAy1ORhudHKEDaIK1rJeoqOw0YXZEBlZndBDydGzdgZl2AUe6+Vy3fntVfZxs0n+ob5EP0+Vp2CRoIZvYjYCYSiJ+W9XqCwiHd3D2LSk37prbtYA1EhiZDkp5mCMrWjMh4OdXCxeIKTAJPQgMhZyF9wBNIT9MD2AHYqdy2OyKvmv4oUHkK6Vt2BLqhstH9SHN0KhLsnomyLu2QELlLKtnlBl0uR4LrhSgLNIbkg2NmW5rZDDP72Mzmp+fLd5p0oKzjKS+kVssZqKTVK4KZoDzu/gD6vJ5qZhHQBMAqWcLk9OMxEcxUjVDYZ8816EJ/kZm94e43Zb2gWtIE+dDcDXyAnII3QqMNzgduSA65LYH9gX1S+v0BMzsW+AMwCt2VnIX0N4tQueY1lMmZhr7s55f7oi9DYxD+goKme1DQ0x24ImWUpqIRDP1Ql9Qo1FnVGhn6HQP8OF9vRGpDvwtoD/R091fydeygpLgMCYSvM7Pn3P25rBcUZM4oNPfriGLTWGZJlJwKgHThm448VI5193szXlKNSS3XfwNeR4FMayT8vRkYnv57LvKNmZSbeJ32fQ4Y7O6PpJ/nIlHvB+lhSHPTNh3vZXcfmrbtDkxEotu+KJj5FulVLkFB1quoBPUlmocyLe3TEk34nurub+bpfWiMusBOBPqVQKAa1CFm1gp4DpVK93b3DzNeUpARZjYAuB74nbtHV1M1iAxNAeDuK5JZ3UPAJDP7ibs/mPW6ashyFHi0REFEI9SyfTbKsuwMPOTukyvYtzkSDufw9PgOBTIGXOXun5nZKHRnqw3dHzKzI1HpKReovJhz/DWzH6AA6yykvfkQ+A9gkbtPzMPfvYqUDboBBTNDI5gJ1oa7f2JmR6D5Y1PNrFtd2QcEhYuZ9UQ3ZdNR92VQDSJDU0CY2cbIX2VHVKKYk/GSqo2ZjUSt3K+hjMw8YEPUifQkEgs/g7InuHu3cvv+GjgQzb1qj4KSXigj0w953XRz9/lmdhGwq7v3qeK6nkRZno6oXDUATfPeLZ9i7BTMXI3Ka1e4e5yUgiqTgpp7Ucn0uGJqFAhqR/LLegJNZd/f3b/KeElFRwQ0BYaZbY7u0tqi+unDGS+pWqTOoQXIQbg3yq5sgDp8FqXNlua2Xy2gaYzKQz9FAuC2wObu7mnw5EKkqXkf1Ze7VbVElJyI90MBzR7IWfjVXMkqHyQX45HIO2cM6uiKL1hQLczsPJTNHIV0YvEZKnGS1cXjqJNzb3dftJZdggqIklOB4e4fm1k3VH6aYWbHuvvUbFdVLaaii3ofpF+5GbivKkZy7r7SzB5Ewc/HwAXAxWY2HrVzL0Hp2OXI++aztR3TzHZDRntNgFvQQM35wKPIHDAvpGBsHOrGGglcEBeioIaMQmL6c9Fn/tIM1xLUMWa2BXJZb4Fu0iKYqSGRoSlQzGwT1P68O3ByvnUedYmZ9UMt201RiWl4VVLnqW31cjQKYTfU6vwNyqa8CZzh7i9UYx05t+LhwD/RhaIRyhpd6e6XVrBPa9RJtRSYVUFbekWvsy4SAB+H2s4vjWAmqA0p2zcOidgHu/s1GS8pqAPSef5RNMi3u7v/JdsVFTcR0BQwZtYCZTwOBIYBI0r1Qpm0J4uRgdQr6YQ+F7jG3e+p4TEvBjZDxnxzkHPxoShY6bp6uSplc2am7dqgyeGHrckDIpXCcqaB/+3uV9dkrUGwOinrNxE4Hjjb3cdkvKQ6xcweLf9z+XJ0KVLuprUTOs/MynhJRU8Y6xUw7v4lcsC9DWUuJqRsQMFjZm3S1Ovjzax5es7M7HzTRO35aZRBjnXQ7KY3AFJG5+/IW6amrERZomFI0zIclbLGpOdWZwxwobsfDuyFSlv91vA3tkei5z2BPhHMBPnE3VeiuWdT0IT4C7NdUZAvUiZ4NhrhcnQEM/khNDQFjrsvN7O+6OJ+GbC9mR3n7h9kvLRKMbPOwAMolbop8EszOwCdnE8BzkBC4VvMbIm7359a12cDV5vZZajU1gu4ohZLuR1lW75A4xcmoW6rd5C/zeq0RVmhnJ7nifRcRX9jz3T874CDIlUc1AXpe3EcMAH4rWny8rBSzNSWekYmh5m1BR5GthG9iq3xo5CJDE0RkMYM/Ar5muwOPJeEw4XKVeik2weNPHgetWIfh7o25qUv8a+BY8vtdyKwHXIJvg74L3d/vaaLcPd3kRvx52iQ5vWUTeV+qIJd5gHnmlmjJNQ7KT23CjNrbGa/QiMZ3kNOxxHMBHWGa/p7X6SpuRhlayocuBoUNmbWAd00bQH0iGAmv0RAU0S4+x3A3ijj8IiZXZS0JoXGFshrJjdV+Jn03D+QqV2OVuk50rafuvvh7t7S3dunOTffIxdwpHkna8Td/470LTeist2LaM5URXqEgSgFvAQFVXe6+5Ryr7s5qnkPQ3fM+4QteVAfpPLTmehm4SzgvpStCYoEMzsYjWZZD2V1Y3p2nglRcBGSTmTjUcbjUeAUd1+Y6aLKYWbXITHuycDGwIOodPQRKvuMQiWnfsCB1ZlxlHQrU5G2phnK+IzL8/o3Apa5+7Jyzx2JgqIWwFnh/htkRbLGH43Gh/SONt/CJ3VwjkWGo73d/Z1sV1SaFOLdfbAW3H0p8nk5DfhP4EUzOzV1ChUCQ9Bnawlqt74bzW2ahcz2NkP6ra7VCWYSdwN/cPdWqLX7stSdlDfc/YtcMGNmLc1sAupkWgTsEcFMkCXufgPSl20PPG1m+2W8pKASzKyJmV2DhvPOAvaLYKbuiAxNkWNm26Lyx4GoHDLI3d80s04oKzLA3d/LaG1NgJX5sm9PHV5fAU1zosgUbMzNR5BhZr1R1uho5FtzFJr+vSXwG+Dy3GyoIMgaM+uIAu1t0U3EqFIUCxcrZtYGuBM5lI9B2eQV2a6qtIkMTZGTov2Dkei2K/CSmQ1DF+J9UACQV8xsQzObYGbvmtkzZnZgJWtbkedZNN+ibqWuaR3ro/bqd/N0/A2BI5Ap4HTgT0hQvJ+7D4tgJigk3P0lNMZjGhqVMNnMWma7qgBW6WWeRaagJ7j72RHM1D2RoSkh0h3BSMo6h8YBZ+b7rs3MJiMx73Akor0R6JIEuHVKape+FXUf7YzaH/vn429MRoYvoVbtr9BcqdFVcQsOgqxIpebzgd+hsujJ7v5YtqtqmKRGhcvR2JZXkcdMdcvqQQ2JgKYEMbMhaH7RhkhVP8TdH8/TsRuhYGYTd/86PTceeMbd/5iH47dB/gyvu/viSrbZGrWvfwg8Vdtgxsyaog6SS5C+5z3gcHd/vjbHDYL6xMz2RSM4foBubC4uL2wP6pak5bsV+CESAA/2mJhdr0TJqQRx9ytRF9DpqL4+18xmmFmXfBwe+BoFHbm7w63JQ2nLzM4BXkAeNK+b2aEVLsD9XXefkvxsahzMmNm6ZnYGupO6FrV07+XuW0cwExQbyQ9pV+AGlLF5trxg2MxapeaBOO/XguSC/rNyPzczs+HIxHMTNMagfwQz9U9kaEqcpDM5B53gNgUeQ2Lhh2oaDKS20QuRcr8zMsPr6u7/WOOOaz7mzqgLYE93fy/pciYDW+W79pzekzOAwcBWyCfnEuDPIaoMSgEz64GsHdqi7+lFyMjy58DO9VEeLlXMbBQwCAWPW6IbsB2Qc/jZ7v55Zotr4ERA00BIF/HT0UW8DdKK3ADclmZGVfd4PYBuwCfAuNrejZjZUcCpaY5S7rmPgN3c/f9rc+xyx2sPDEDjF1oiD58RwCMRyASlRvrOX4JuZr5Cn/nR7n5OpgsrcsxsUzRzbjnQGo2lOcvdK3IfD+qRCGgaGKn1+STkNro7OtHdhlq/n87qwm5mO6FhbXu7+8LUJTAJZWhqLMpNgzEPR+3YhwArUPfStTGyIGgIpPbuP6MbmZdRi/f9EcRXn2S6ORQ4D2iCDA6HhFapMIiApoGStC97Irv/PsC6yATvduB2d381gzUNQh0CC1Ep6Hh3n12D4zRBwcuJyEtmAyT0HQvc5O4f5m3RQVAEpO/7QOBcoB0qPV/k7vPWtF8gzGw99P5dDGwETAT+GOMLCosIaAKSd8VPUebmYMCA15EXy3Tg8fryUEhDIdsAb7j7kmrstxnQEzkR90Tp9SVIhzMRmJPm4QRBgyUF+6cDl6JZao8gTd3syNh8n3RuHIAyMpsDDwAXuvuCTBcWVEgENMG/YWZbIafcXsBBQFNgKfAkMAdNip1fmxRrEtXh7ufW4hibI4O9A9BE7V1R195HwAxkNjbT3ZfX9DWCoFQxsw2QVcFgNDj2KeRjMy18l1adBwci8W9LFMhc4e5zMl1YsEYioAkqJZ30DkEZj/2RvwLIsfdlYAHwPGq1fgN4vypZEDN7FMDdu1Vh2/VQF1V7FLR0Tv9ukzZZhrx2HkOBzLN5dicOgpIlGcGdgroWt0XGfGOB8Q2tNJvKct1QIHMk0Bi4B/iNu/81u5UFVSUCmqDKJHV/V6ALZYFF63KbrADeAd5GmZJP0+Mz4BvUFbAc6WRATsPrpkcLZGqXe7RBw/e2LHf8f6JS2AJkKz4X+GuMJAiC2mFm66By7UCgO/AdMAU1DMws5e9YMuo8ATgZ2AmNO7kZGOvub2S5tqB6REAT1IqkeemIgo/cY1tUn98MCXKriqOTyafIBfit9HgbtUa+5O7f5GvtQRB8HzPbEegP/Ax9hxcjLdod1KOeri4xs9YoC3MSyj6DMr1jgbtq46kVZEcENEGdklLamwLNkR4nl5FZiUpXuazNl8DiEO4GQWGQBMSHoov+kcD6wBeoBXw6MqL8LKv1VYdUTuqMslC90VBbQy7hE1Fn51vZrTDIBxHQBEEQBGskmfT1RM0CvVDHj6Pyb65ZYK67f1TL1xkFtWsYSMdpDHSirGlgf8rWPB8FZNOABdHdVTpEQBMEQRBUmTQLag/gxyhQ2BdlYAHeRY0CC9LjJeCdqnYbVqdhIG1vKAO8AwpgdkWZmE4oowTS9c1Fo1Vm1jboCgqXCGiCIAiCGpNKU7uj4GZ3FFB0oGz4sQPvIy3c28DHSCf3Sfr3K1R2/ha4Pm1/JipNNwWaARtT1jDQCjUNbIc0exuWW84SyoKpeShr9F7+/+qgEImAJgiCIMgryW6hI+oaygUe21HWMNCsFodfDHxAWcNArnngBWBhlJAaLhHQBEEQBPVGKhM1pyzjsj5lzQL9kVh3HGUNA8tREPMp8HkY/wWVEQFNEARBEARFT6O1bxIEQRAEQVDYREATBEEQBEHREwFNEARBEARFTwQ0QRAEQRAUPRHQBEEQBEFQ9ERAEwRBEARB0RMBTRAEQRAERU8ENEEQBEEQFD0R0ARBEARBUPT8CwInSMYYb27OAAAAAElFTkSuQmCC\n",
|
|
472
|
+
"text/plain": [
|
|
473
|
+
"<Figure size 576x720 with 7 Axes>"
|
|
474
|
+
]
|
|
475
|
+
},
|
|
476
|
+
"metadata": {
|
|
477
|
+
"needs_background": "light"
|
|
478
|
+
},
|
|
479
|
+
"output_type": "display_data"
|
|
480
|
+
}
|
|
481
|
+
],
|
|
482
|
+
"source": [
|
|
483
|
+
"# if 'quick' results are promising, do the full way\n",
|
|
484
|
+
"# this is slower, but much more reliable and gives better confidence bounds\n",
|
|
485
|
+
"quick=False\n",
|
|
486
|
+
"verbose=False\n",
|
|
487
|
+
"flat_df=svei.find_flat(di_block,plot=True,quick=quick,verbose=verbose)\n",
|
|
488
|
+
"\n"
|
|
489
|
+
]
|
|
490
|
+
},
|
|
491
|
+
{
|
|
492
|
+
"cell_type": "code",
|
|
493
|
+
"execution_count": null,
|
|
494
|
+
"id": "a902ba13",
|
|
495
|
+
"metadata": {},
|
|
496
|
+
"outputs": [],
|
|
497
|
+
"source": []
|
|
498
|
+
}
|
|
499
|
+
],
|
|
500
|
+
"metadata": {
|
|
501
|
+
"kernelspec": {
|
|
502
|
+
"display_name": "Python 3 (ipykernel)",
|
|
503
|
+
"language": "python",
|
|
504
|
+
"name": "python3"
|
|
505
|
+
},
|
|
506
|
+
"language_info": {
|
|
507
|
+
"codemirror_mode": {
|
|
508
|
+
"name": "ipython",
|
|
509
|
+
"version": 3
|
|
510
|
+
},
|
|
511
|
+
"file_extension": ".py",
|
|
512
|
+
"mimetype": "text/x-python",
|
|
513
|
+
"name": "python",
|
|
514
|
+
"nbconvert_exporter": "python",
|
|
515
|
+
"pygments_lexer": "ipython3",
|
|
516
|
+
"version": "3.9.7"
|
|
517
|
+
}
|
|
518
|
+
},
|
|
519
|
+
"nbformat": 4,
|
|
520
|
+
"nbformat_minor": 5
|
|
521
|
+
}
|