plotnine 0.15.0.dev2__py3-none-any.whl → 0.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plotnine/__init__.py +2 -0
- plotnine/_mpl/layout_manager/_engine.py +1 -1
- plotnine/_mpl/layout_manager/_layout_items.py +128 -83
- plotnine/_mpl/layout_manager/_layout_tree.py +761 -310
- plotnine/_mpl/layout_manager/_spaces.py +320 -103
- plotnine/_mpl/patches.py +70 -34
- plotnine/_mpl/text.py +144 -63
- plotnine/_mpl/utils.py +1 -1
- plotnine/_utils/__init__.py +50 -107
- plotnine/_utils/context.py +78 -2
- plotnine/_utils/ipython.py +35 -51
- plotnine/_utils/quarto.py +21 -0
- plotnine/_utils/yippie.py +115 -0
- plotnine/composition/__init__.py +11 -0
- plotnine/composition/_beside.py +55 -0
- plotnine/composition/_compose.py +471 -0
- plotnine/composition/_plot_spacer.py +60 -0
- plotnine/composition/_stack.py +55 -0
- plotnine/coords/coord.py +3 -3
- plotnine/data/__init__.py +31 -0
- plotnine/data/anscombe-quartet.csv +45 -0
- plotnine/doctools.py +4 -4
- plotnine/facets/facet.py +4 -4
- plotnine/facets/strips.py +17 -28
- plotnine/geoms/annotate.py +13 -13
- plotnine/geoms/annotation_logticks.py +7 -8
- plotnine/geoms/annotation_stripes.py +6 -6
- plotnine/geoms/geom.py +60 -27
- plotnine/geoms/geom_abline.py +3 -2
- plotnine/geoms/geom_area.py +2 -2
- plotnine/geoms/geom_bar.py +11 -2
- plotnine/geoms/geom_bin_2d.py +6 -2
- plotnine/geoms/geom_blank.py +0 -3
- plotnine/geoms/geom_boxplot.py +8 -4
- plotnine/geoms/geom_col.py +8 -2
- plotnine/geoms/geom_count.py +6 -2
- plotnine/geoms/geom_crossbar.py +3 -3
- plotnine/geoms/geom_density_2d.py +6 -2
- plotnine/geoms/geom_dotplot.py +2 -2
- plotnine/geoms/geom_errorbar.py +2 -2
- plotnine/geoms/geom_errorbarh.py +2 -2
- plotnine/geoms/geom_histogram.py +1 -1
- plotnine/geoms/geom_hline.py +3 -2
- plotnine/geoms/geom_linerange.py +2 -2
- plotnine/geoms/geom_map.py +5 -5
- plotnine/geoms/geom_path.py +11 -12
- plotnine/geoms/geom_point.py +4 -5
- plotnine/geoms/geom_pointdensity.py +4 -0
- plotnine/geoms/geom_pointrange.py +3 -5
- plotnine/geoms/geom_polygon.py +2 -3
- plotnine/geoms/geom_qq.py +4 -0
- plotnine/geoms/geom_qq_line.py +4 -0
- plotnine/geoms/geom_quantile.py +4 -0
- plotnine/geoms/geom_raster.py +4 -5
- plotnine/geoms/geom_rect.py +3 -4
- plotnine/geoms/geom_ribbon.py +7 -7
- plotnine/geoms/geom_rug.py +1 -1
- plotnine/geoms/geom_segment.py +2 -2
- plotnine/geoms/geom_sina.py +3 -3
- plotnine/geoms/geom_smooth.py +7 -3
- plotnine/geoms/geom_step.py +2 -2
- plotnine/geoms/geom_text.py +2 -3
- plotnine/geoms/geom_violin.py +28 -8
- plotnine/geoms/geom_vline.py +3 -2
- plotnine/ggplot.py +64 -85
- plotnine/guides/guide.py +7 -10
- plotnine/guides/guide_colorbar.py +3 -3
- plotnine/guides/guide_legend.py +3 -3
- plotnine/guides/guides.py +6 -6
- plotnine/helpers.py +49 -0
- plotnine/iapi.py +28 -5
- plotnine/labels.py +3 -3
- plotnine/layer.py +36 -19
- plotnine/mapping/_atomic.py +178 -0
- plotnine/mapping/_env.py +13 -2
- plotnine/mapping/_eval_environment.py +85 -0
- plotnine/mapping/aes.py +91 -72
- plotnine/mapping/evaluation.py +7 -65
- plotnine/scales/__init__.py +2 -0
- plotnine/scales/limits.py +7 -7
- plotnine/scales/scale.py +3 -3
- plotnine/scales/scale_color.py +82 -18
- plotnine/scales/scale_continuous.py +6 -4
- plotnine/scales/scale_datetime.py +28 -14
- plotnine/scales/scale_discrete.py +1 -1
- plotnine/scales/scale_identity.py +21 -2
- plotnine/scales/scale_manual.py +8 -2
- plotnine/scales/scale_xy.py +2 -2
- plotnine/stats/binning.py +4 -1
- plotnine/stats/smoothers.py +23 -36
- plotnine/stats/stat.py +20 -32
- plotnine/stats/stat_bin.py +6 -5
- plotnine/stats/stat_bin_2d.py +11 -9
- plotnine/stats/stat_bindot.py +13 -16
- plotnine/stats/stat_boxplot.py +6 -6
- plotnine/stats/stat_count.py +6 -9
- plotnine/stats/stat_density.py +7 -10
- plotnine/stats/stat_density_2d.py +12 -8
- plotnine/stats/stat_ecdf.py +7 -6
- plotnine/stats/stat_ellipse.py +9 -6
- plotnine/stats/stat_function.py +10 -8
- plotnine/stats/stat_hull.py +6 -3
- plotnine/stats/stat_identity.py +5 -2
- plotnine/stats/stat_pointdensity.py +5 -7
- plotnine/stats/stat_qq.py +46 -20
- plotnine/stats/stat_qq_line.py +16 -11
- plotnine/stats/stat_quantile.py +15 -9
- plotnine/stats/stat_sina.py +45 -14
- plotnine/stats/stat_smooth.py +8 -10
- plotnine/stats/stat_sum.py +5 -2
- plotnine/stats/stat_summary.py +7 -10
- plotnine/stats/stat_summary_bin.py +11 -14
- plotnine/stats/stat_unique.py +5 -2
- plotnine/stats/stat_ydensity.py +8 -11
- plotnine/themes/elements/__init__.py +2 -1
- plotnine/themes/elements/element_line.py +17 -9
- plotnine/themes/elements/margin.py +64 -1
- plotnine/themes/theme.py +9 -1
- plotnine/themes/theme_538.py +0 -1
- plotnine/themes/theme_bw.py +0 -1
- plotnine/themes/theme_dark.py +0 -1
- plotnine/themes/theme_gray.py +6 -5
- plotnine/themes/theme_light.py +1 -1
- plotnine/themes/theme_matplotlib.py +5 -5
- plotnine/themes/theme_seaborn.py +7 -4
- plotnine/themes/theme_void.py +9 -8
- plotnine/themes/theme_xkcd.py +0 -1
- plotnine/themes/themeable.py +110 -32
- plotnine/typing.py +17 -6
- plotnine/watermark.py +3 -3
- {plotnine-0.15.0.dev2.dist-info → plotnine-0.15.1.dist-info}/METADATA +13 -6
- plotnine-0.15.1.dist-info/RECORD +221 -0
- {plotnine-0.15.0.dev2.dist-info → plotnine-0.15.1.dist-info}/WHEEL +1 -1
- plotnine/plot_composition/__init__.py +0 -10
- plotnine/plot_composition/_compose.py +0 -436
- plotnine/plot_composition/_spacer.py +0 -32
- plotnine-0.15.0.dev2.dist-info/RECORD +0 -214
- /plotnine/{plot_composition → composition}/_plotspec.py +0 -0
- {plotnine-0.15.0.dev2.dist-info → plotnine-0.15.1.dist-info}/licenses/LICENSE +0 -0
- {plotnine-0.15.0.dev2.dist-info → plotnine-0.15.1.dist-info}/top_level.txt +0 -0
plotnine/mapping/evaluation.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
import numbers
|
|
4
|
-
import
|
|
4
|
+
from typing import TYPE_CHECKING
|
|
5
5
|
|
|
6
6
|
import numpy as np
|
|
7
7
|
import pandas as pd
|
|
8
8
|
import pandas.api.types as pdtypes
|
|
9
9
|
|
|
10
10
|
from ..exceptions import PlotnineError
|
|
11
|
+
from ._eval_environment import factor, reorder
|
|
11
12
|
|
|
12
|
-
if
|
|
13
|
+
if TYPE_CHECKING:
|
|
13
14
|
from typing import Any
|
|
14
15
|
|
|
15
16
|
from . import aes
|
|
@@ -18,6 +19,9 @@ if typing.TYPE_CHECKING:
|
|
|
18
19
|
|
|
19
20
|
__all__ = ("after_stat", "after_scale", "stage")
|
|
20
21
|
|
|
22
|
+
|
|
23
|
+
EVAL_ENVIRONMENT = {"factor": factor, "reorder": reorder}
|
|
24
|
+
|
|
21
25
|
_TPL_EVAL_FAIL = """\
|
|
22
26
|
Could not evaluate the '{}' mapping: '{}' \
|
|
23
27
|
(original error: {})"""
|
|
@@ -108,68 +112,6 @@ def after_scale(x):
|
|
|
108
112
|
return stage(after_scale=x)
|
|
109
113
|
|
|
110
114
|
|
|
111
|
-
def reorder(x, y, fun=np.median, ascending=True):
|
|
112
|
-
"""
|
|
113
|
-
Reorder categorical by sorting along another variable
|
|
114
|
-
|
|
115
|
-
It is the order of the categories that changes. Values in x
|
|
116
|
-
are grouped by categories and summarised to determine the
|
|
117
|
-
new order.
|
|
118
|
-
|
|
119
|
-
Credit: Copied from plydata
|
|
120
|
-
|
|
121
|
-
Parameters
|
|
122
|
-
----------
|
|
123
|
-
x : list-like
|
|
124
|
-
Values that will make up the categorical.
|
|
125
|
-
y : list-like
|
|
126
|
-
Values by which `c` will be ordered.
|
|
127
|
-
fun : callable
|
|
128
|
-
Summarising function to `x` for each category in `c`.
|
|
129
|
-
Default is the *median*.
|
|
130
|
-
ascending : bool
|
|
131
|
-
If `True`, the `c` is ordered in ascending order of `x`.
|
|
132
|
-
|
|
133
|
-
Examples
|
|
134
|
-
--------
|
|
135
|
-
>>> c = list('abbccc')
|
|
136
|
-
>>> x = [11, 2, 2, 3, 33, 3]
|
|
137
|
-
>>> cat_reorder(c, x)
|
|
138
|
-
[a, b, b, c, c, c]
|
|
139
|
-
Categories (3, object): [b, c, a]
|
|
140
|
-
>>> cat_reorder(c, x, fun=max)
|
|
141
|
-
[a, b, b, c, c, c]
|
|
142
|
-
Categories (3, object): [b, a, c]
|
|
143
|
-
>>> cat_reorder(c, x, fun=max, ascending=False)
|
|
144
|
-
[a, b, b, c, c, c]
|
|
145
|
-
Categories (3, object): [c, a, b]
|
|
146
|
-
>>> c_ordered = pd.Categorical(c, ordered=True)
|
|
147
|
-
>>> cat_reorder(c_ordered, x)
|
|
148
|
-
[a, b, b, c, c, c]
|
|
149
|
-
Categories (3, object): [b < c < a]
|
|
150
|
-
>>> cat_reorder(c + ['d'], x)
|
|
151
|
-
Traceback (most recent call last):
|
|
152
|
-
...
|
|
153
|
-
ValueError: Lengths are not equal. len(c) is 7 and len(x) is 6.
|
|
154
|
-
"""
|
|
155
|
-
if len(x) != len(y):
|
|
156
|
-
raise ValueError(f"Lengths are not equal. {len(x)=}, {len(x)=}")
|
|
157
|
-
summary = (
|
|
158
|
-
pd.Series(y)
|
|
159
|
-
.groupby(x, observed=True)
|
|
160
|
-
.apply(fun)
|
|
161
|
-
.sort_values(ascending=ascending)
|
|
162
|
-
)
|
|
163
|
-
cats = summary.index.to_list()
|
|
164
|
-
return pd.Categorical(x, categories=cats)
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
# These are function that can be called by the user inside the aes()
|
|
168
|
-
# mapping. This is meant to make the variable transformations as easy
|
|
169
|
-
# as they are in ggplot2
|
|
170
|
-
AES_INNER_NAMESPACE = {"factor": pd.Categorical, "reorder": reorder}
|
|
171
|
-
|
|
172
|
-
|
|
173
115
|
def evaluate(
|
|
174
116
|
aesthetics: aes | dict[str, Any], data: pd.DataFrame, env: Environment
|
|
175
117
|
) -> pd.DataFrame:
|
|
@@ -207,7 +149,7 @@ def evaluate(
|
|
|
207
149
|
3 16
|
|
208
150
|
4 25
|
|
209
151
|
"""
|
|
210
|
-
env = env.with_outer_namespace(
|
|
152
|
+
env = env.with_outer_namespace(EVAL_ENVIRONMENT)
|
|
211
153
|
|
|
212
154
|
# Store evaluation results in a dict column in a dict
|
|
213
155
|
evaled = {}
|
plotnine/scales/__init__.py
CHANGED
|
@@ -74,6 +74,7 @@ from .scale_identity import (
|
|
|
74
74
|
scale_linetype_identity,
|
|
75
75
|
scale_shape_identity,
|
|
76
76
|
scale_size_identity,
|
|
77
|
+
scale_stroke_identity,
|
|
77
78
|
)
|
|
78
79
|
|
|
79
80
|
# linetype
|
|
@@ -217,6 +218,7 @@ __all__ = (
|
|
|
217
218
|
"scale_linetype_identity",
|
|
218
219
|
"scale_shape_identity",
|
|
219
220
|
"scale_size_identity",
|
|
221
|
+
"scale_stroke_identity",
|
|
220
222
|
# manual
|
|
221
223
|
"scale_color_manual",
|
|
222
224
|
"scale_colour_manual",
|
plotnine/scales/limits.py
CHANGED
|
@@ -78,10 +78,10 @@ class _lim:
|
|
|
78
78
|
self.aesthetic, series, limits=self.limits, trans=self.trans
|
|
79
79
|
)
|
|
80
80
|
|
|
81
|
-
def __radd__(self,
|
|
82
|
-
scale = self.get_scale(
|
|
83
|
-
|
|
84
|
-
return
|
|
81
|
+
def __radd__(self, other):
|
|
82
|
+
scale = self.get_scale(other)
|
|
83
|
+
other.scales.append(scale)
|
|
84
|
+
return other
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
class xlim(_lim):
|
|
@@ -194,7 +194,7 @@ class lims:
|
|
|
194
194
|
def __init__(self, **kwargs):
|
|
195
195
|
self._kwargs = kwargs
|
|
196
196
|
|
|
197
|
-
def __radd__(self,
|
|
197
|
+
def __radd__(self, other):
|
|
198
198
|
"""
|
|
199
199
|
Add limits to ggplot object
|
|
200
200
|
"""
|
|
@@ -206,9 +206,9 @@ class lims:
|
|
|
206
206
|
msg = "Cannot change limits for '{}'"
|
|
207
207
|
raise PlotnineError(msg) from e
|
|
208
208
|
|
|
209
|
-
|
|
209
|
+
other += klass(value)
|
|
210
210
|
|
|
211
|
-
return
|
|
211
|
+
return other
|
|
212
212
|
|
|
213
213
|
|
|
214
214
|
def expand_limits(**kwargs):
|
plotnine/scales/scale.py
CHANGED
|
@@ -148,12 +148,12 @@ class scale(
|
|
|
148
148
|
self.aesthetics if self.aesthetics else self._aesthetics
|
|
149
149
|
)
|
|
150
150
|
|
|
151
|
-
def __radd__(self,
|
|
151
|
+
def __radd__(self, other):
|
|
152
152
|
"""
|
|
153
153
|
Add this scale to ggplot object
|
|
154
154
|
"""
|
|
155
|
-
|
|
156
|
-
return
|
|
155
|
+
other.scales.append(copy(self))
|
|
156
|
+
return other
|
|
157
157
|
|
|
158
158
|
def map(self, x, limits=None):
|
|
159
159
|
"""
|
plotnine/scales/scale_color.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
-
from dataclasses import KW_ONLY, InitVar, dataclass
|
|
3
|
+
from dataclasses import KW_ONLY, InitVar, dataclass, field
|
|
4
4
|
from typing import Literal, Sequence
|
|
5
5
|
from warnings import warn
|
|
6
6
|
|
|
@@ -48,36 +48,72 @@ class _scale_color_continuous(
|
|
|
48
48
|
class scale_color_hue(_scale_color_discrete):
|
|
49
49
|
"""
|
|
50
50
|
Qualitative color scale with evenly spaced hues
|
|
51
|
+
|
|
52
|
+
See Also
|
|
53
|
+
--------
|
|
54
|
+
mizani.palettes.hue_pal : The palette class that generates colours
|
|
55
|
+
in HCL space.
|
|
51
56
|
"""
|
|
52
57
|
|
|
53
|
-
h: InitVar[float] =
|
|
58
|
+
h: InitVar[float | tuple[float, float]] = 15
|
|
54
59
|
"""
|
|
55
|
-
Hue.
|
|
60
|
+
Hue. If a float, it is the first hue value, in the range `[0, 360]`.
|
|
61
|
+
The range of the palette will be `[first, first + 360)`.
|
|
62
|
+
|
|
63
|
+
If a tuple, it is the range `[first, last)` of the hues.
|
|
56
64
|
"""
|
|
57
65
|
|
|
58
|
-
|
|
66
|
+
c: InitVar[float] = 100
|
|
59
67
|
"""
|
|
60
|
-
|
|
68
|
+
Chroma. Must be in the range `[0, 100]`
|
|
61
69
|
"""
|
|
62
70
|
|
|
63
|
-
|
|
71
|
+
l: InitVar[float] = 65
|
|
64
72
|
"""
|
|
65
|
-
|
|
73
|
+
Lightness. Must be in the range [0, 100]
|
|
66
74
|
"""
|
|
67
75
|
|
|
68
|
-
|
|
76
|
+
direction: InitVar[Literal[1, -1]] = 1
|
|
69
77
|
"""
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
or [hsluv](https://www.hsluv.org/).
|
|
73
|
-
https://www.hsluv.org/
|
|
78
|
+
The order of colours in the scale. If -1 the order
|
|
79
|
+
of colours is reversed. The default is 1.
|
|
74
80
|
"""
|
|
75
81
|
|
|
76
|
-
|
|
82
|
+
_: KW_ONLY
|
|
83
|
+
|
|
84
|
+
s: None = field(default=None, repr=False)
|
|
85
|
+
"""
|
|
86
|
+
Not being used and will be removed in a future version
|
|
87
|
+
"""
|
|
88
|
+
color_space: None = field(default=None, repr=False)
|
|
89
|
+
"""
|
|
90
|
+
Not being used and will be removed in a future version
|
|
91
|
+
"""
|
|
92
|
+
|
|
93
|
+
def __post_init__(self, h, c, l, direction):
|
|
77
94
|
from mizani.palettes import hue_pal
|
|
78
95
|
|
|
96
|
+
if (s := self.s) is not None:
|
|
97
|
+
warn(
|
|
98
|
+
f"You used {s=} for the saturation which has been ignored. "
|
|
99
|
+
f"{self.__class__.__name__} now works in HCL colorspace. "
|
|
100
|
+
f"Using `s` in future versions will throw an exception.",
|
|
101
|
+
FutureWarning,
|
|
102
|
+
)
|
|
103
|
+
del self.s
|
|
104
|
+
|
|
105
|
+
if (color_space := self.color_space) is not None:
|
|
106
|
+
warn(
|
|
107
|
+
f"You used {color_space=} to select a color_space and it "
|
|
108
|
+
f"has been ignored. {self.__class__.__name__} now only works "
|
|
109
|
+
f"in HCL colorspace. Using `color_space` in future versions "
|
|
110
|
+
"will throw an exception.",
|
|
111
|
+
FutureWarning,
|
|
112
|
+
)
|
|
113
|
+
del self.color_space
|
|
114
|
+
|
|
79
115
|
super().__post_init__()
|
|
80
|
-
self.palette = hue_pal(h,
|
|
116
|
+
self.palette = hue_pal(h, c, l, direction)
|
|
81
117
|
|
|
82
118
|
|
|
83
119
|
@dataclass
|
|
@@ -95,6 +131,11 @@ class scale_color_brewer(_scale_color_discrete):
|
|
|
95
131
|
Sequential, diverging and qualitative discrete color scales
|
|
96
132
|
|
|
97
133
|
See `colorbrewer.org <http://colorbrewer2.org/>`_
|
|
134
|
+
|
|
135
|
+
See Also
|
|
136
|
+
--------
|
|
137
|
+
mizani.palette.brewer_pal : The palette class that generates colours
|
|
138
|
+
that generates the brewer colors.
|
|
98
139
|
"""
|
|
99
140
|
|
|
100
141
|
type: InitVar[
|
|
@@ -146,6 +187,11 @@ class scale_fill_brewer(scale_color_brewer):
|
|
|
146
187
|
class scale_color_grey(_scale_color_discrete):
|
|
147
188
|
"""
|
|
148
189
|
Sequential grey color scale.
|
|
190
|
+
|
|
191
|
+
See Also
|
|
192
|
+
--------
|
|
193
|
+
mizani.palettes.grey_pal : The palette class that generates colours
|
|
194
|
+
gray scale color.
|
|
149
195
|
"""
|
|
150
196
|
|
|
151
197
|
start: InitVar[float] = 0.2
|
|
@@ -188,6 +234,8 @@ class scale_color_gradient(_scale_color_continuous):
|
|
|
188
234
|
--------
|
|
189
235
|
plotnine.scale_color_gradient2
|
|
190
236
|
plotnine.scale_color_gradientn
|
|
237
|
+
mizani.palettes.gradient_n_pal : The palette class that generates
|
|
238
|
+
the colour gradient.
|
|
191
239
|
"""
|
|
192
240
|
|
|
193
241
|
low: InitVar[str] = "#132B43"
|
|
@@ -220,6 +268,11 @@ class scale_fill_gradient(scale_color_gradient):
|
|
|
220
268
|
class scale_color_desaturate(_scale_color_continuous):
|
|
221
269
|
"""
|
|
222
270
|
Create a desaturated color gradient
|
|
271
|
+
|
|
272
|
+
See Also
|
|
273
|
+
--------
|
|
274
|
+
mizani.palettes.desaturate_pal : The palette class that generates
|
|
275
|
+
the desaturated colours.
|
|
223
276
|
"""
|
|
224
277
|
|
|
225
278
|
color: InitVar[str] = "red"
|
|
@@ -263,6 +316,8 @@ class scale_color_gradient2(_scale_color_continuous):
|
|
|
263
316
|
--------
|
|
264
317
|
plotnine.scale_color_gradient
|
|
265
318
|
plotnine.scale_color_gradientn
|
|
319
|
+
mizani.palettes.gradient_n_pal : The palette class that generates
|
|
320
|
+
the colour gradient.
|
|
266
321
|
"""
|
|
267
322
|
|
|
268
323
|
low: InitVar[str] = "#832424"
|
|
@@ -316,9 +371,11 @@ class scale_color_gradientn(_scale_color_continuous):
|
|
|
316
371
|
--------
|
|
317
372
|
plotnine.scale_color_gradient
|
|
318
373
|
plotnine.scale_color_gradientn
|
|
374
|
+
mizani.palettes.gradient_n_pal : The palette class that generates
|
|
375
|
+
the colour gradient.
|
|
319
376
|
"""
|
|
320
377
|
|
|
321
|
-
colors: InitVar[Sequence[str]]
|
|
378
|
+
colors: InitVar[Sequence[str]]
|
|
322
379
|
"""
|
|
323
380
|
List of colors
|
|
324
381
|
"""
|
|
@@ -332,8 +389,8 @@ class scale_color_gradientn(_scale_color_continuous):
|
|
|
332
389
|
def __post_init__(self, colors, values):
|
|
333
390
|
from mizani.palettes import gradient_n_pal
|
|
334
391
|
|
|
335
|
-
self.palette = gradient_n_pal(colors, values)
|
|
336
392
|
super().__post_init__()
|
|
393
|
+
self.palette = gradient_n_pal(colors, values)
|
|
337
394
|
|
|
338
395
|
|
|
339
396
|
@dataclass
|
|
@@ -430,6 +487,8 @@ class scale_color_cmap(_scale_color_continuous):
|
|
|
430
487
|
--------
|
|
431
488
|
[](`matplotlib.cm`)
|
|
432
489
|
[](`matplotlib.colors`)
|
|
490
|
+
mizani.palettes.cmap_pal : The palette class that generates
|
|
491
|
+
the colour gradients of this scale.
|
|
433
492
|
"""
|
|
434
493
|
|
|
435
494
|
cmap_name: InitVar[str] = "viridis"
|
|
@@ -457,7 +516,7 @@ class scale_fill_cmap(scale_color_cmap):
|
|
|
457
516
|
|
|
458
517
|
|
|
459
518
|
@dataclass
|
|
460
|
-
class scale_color_cmap_d(
|
|
519
|
+
class scale_color_cmap_d(_scale_color_discrete):
|
|
461
520
|
"""
|
|
462
521
|
A discrete color scales using Matplotlib colormaps
|
|
463
522
|
|
|
@@ -465,6 +524,8 @@ class scale_color_cmap_d(scale_discrete):
|
|
|
465
524
|
--------
|
|
466
525
|
[](`matplotlib.cm`)
|
|
467
526
|
[](`matplotlib.colors`)
|
|
527
|
+
mizani.palettes.cmap_pal : The palette class that generates
|
|
528
|
+
the colours of this scale.
|
|
468
529
|
"""
|
|
469
530
|
|
|
470
531
|
cmap_name: InitVar[str] = "viridis"
|
|
@@ -474,7 +535,6 @@ class scale_color_cmap_d(scale_discrete):
|
|
|
474
535
|
`matplotlib.cm.cmap_d.keys()` or see the
|
|
475
536
|
`documentation <http://matplotlib.org/users/colormaps.html>`_.
|
|
476
537
|
"""
|
|
477
|
-
_aesthetics = ["color"]
|
|
478
538
|
|
|
479
539
|
def __post_init__(self, cmap_name):
|
|
480
540
|
from mizani.palettes import cmap_d_pal
|
|
@@ -496,6 +556,10 @@ class scale_fill_cmap_d(scale_color_cmap_d):
|
|
|
496
556
|
class scale_color_datetime(scale_datetime, scale_color_cmap): # pyright: ignore[reportIncompatibleVariableOverride]
|
|
497
557
|
"""
|
|
498
558
|
Datetime color scale
|
|
559
|
+
|
|
560
|
+
See Also
|
|
561
|
+
--------
|
|
562
|
+
plotnine.scale_color_cmap : The parent class.
|
|
499
563
|
"""
|
|
500
564
|
|
|
501
565
|
_: KW_ONLY
|
|
@@ -2,7 +2,7 @@ from __future__ import annotations
|
|
|
2
2
|
|
|
3
3
|
from contextlib import suppress
|
|
4
4
|
from dataclasses import dataclass
|
|
5
|
-
from typing import TYPE_CHECKING, Sequence
|
|
5
|
+
from typing import TYPE_CHECKING, Sequence, cast
|
|
6
6
|
from warnings import warn
|
|
7
7
|
|
|
8
8
|
import numpy as np
|
|
@@ -387,14 +387,15 @@ class scale_continuous(
|
|
|
387
387
|
limits = self.final_limits
|
|
388
388
|
|
|
389
389
|
x = self.oob(self.rescaler(x, _from=limits))
|
|
390
|
+
na_value = cast("float", self.na_value)
|
|
390
391
|
|
|
391
392
|
uniq = np.unique(x)
|
|
392
393
|
pal = np.asarray(self.palette(uniq))
|
|
393
394
|
scaled = pal[match(x, uniq)]
|
|
394
395
|
if scaled.dtype.kind == "U":
|
|
395
|
-
scaled = [
|
|
396
|
+
scaled = [na_value if x == "nan" else x for x in scaled]
|
|
396
397
|
else:
|
|
397
|
-
scaled[pd.isna(scaled)] =
|
|
398
|
+
scaled[pd.isna(scaled)] = na_value
|
|
398
399
|
return scaled
|
|
399
400
|
|
|
400
401
|
def get_breaks(
|
|
@@ -520,11 +521,12 @@ class scale_continuous(
|
|
|
520
521
|
# When user sets breaks and labels of equal size,
|
|
521
522
|
# but the limits exclude some of the breaks.
|
|
522
523
|
# We remove the corresponding labels
|
|
523
|
-
from collections.abc import Sized
|
|
524
|
+
from collections.abc import Iterable, Sized
|
|
524
525
|
|
|
525
526
|
labels = self.labels
|
|
526
527
|
if (
|
|
527
528
|
len(labels) != len(breaks)
|
|
529
|
+
and isinstance(self.breaks, Iterable)
|
|
528
530
|
and isinstance(self.breaks, Sized)
|
|
529
531
|
and len(labels) == len(self.breaks)
|
|
530
532
|
):
|
|
@@ -2,6 +2,7 @@ from __future__ import annotations
|
|
|
2
2
|
|
|
3
3
|
from dataclasses import KW_ONLY, InitVar, dataclass
|
|
4
4
|
from typing import TYPE_CHECKING
|
|
5
|
+
from warnings import warn
|
|
5
6
|
|
|
6
7
|
from ._runtime_typing import TransUser # noqa: TCH001
|
|
7
8
|
from .scale_continuous import scale_continuous
|
|
@@ -20,24 +21,21 @@ class scale_datetime(scale_continuous):
|
|
|
20
21
|
"""
|
|
21
22
|
A string giving the distance between major breaks.
|
|
22
23
|
For example `'2 weeks'`, `'5 years'`. If specified,
|
|
23
|
-
`date_breaks` takes precedence over
|
|
24
|
-
`breaks`.
|
|
24
|
+
`date_breaks` takes precedence over `breaks`.
|
|
25
25
|
"""
|
|
26
26
|
|
|
27
27
|
date_labels: InitVar[str | None] = None
|
|
28
28
|
"""
|
|
29
29
|
Format string for the labels.
|
|
30
30
|
See [strftime](:ref:`strftime-strptime-behavior`).
|
|
31
|
-
If specified, `date_labels` takes precedence over
|
|
32
|
-
`labels`.
|
|
31
|
+
If specified, `date_labels` takes precedence over `labels`.
|
|
33
32
|
"""
|
|
34
33
|
|
|
35
34
|
date_minor_breaks: InitVar[str | None] = None
|
|
36
35
|
"""
|
|
37
36
|
A string giving the distance between minor breaks.
|
|
38
37
|
For example `'2 weeks'`, `'5 years'`. If specified,
|
|
39
|
-
`date_minor_breaks` takes precedence over
|
|
40
|
-
`minor_breaks`.
|
|
38
|
+
`date_minor_breaks` takes precedence over `minor_breaks`.
|
|
41
39
|
"""
|
|
42
40
|
|
|
43
41
|
_: KW_ONLY
|
|
@@ -80,22 +78,38 @@ class scale_datetime(scale_continuous):
|
|
|
80
78
|
date_labels: str | None,
|
|
81
79
|
date_minor_breaks: str | None,
|
|
82
80
|
):
|
|
83
|
-
from mizani.breaks import
|
|
84
|
-
from mizani.labels import label_date
|
|
81
|
+
from mizani.breaks import breaks_date_width
|
|
82
|
+
from mizani.labels import label_date
|
|
85
83
|
|
|
86
84
|
if date_breaks is not None:
|
|
87
|
-
self.breaks =
|
|
85
|
+
self.breaks = breaks_date_width(date_breaks) # pyright: ignore[reportAttributeAccessIssue]
|
|
88
86
|
elif isinstance(self.breaks, str):
|
|
89
|
-
|
|
87
|
+
warn(
|
|
88
|
+
"Passing a string to `breaks` will not work in "
|
|
89
|
+
f"future versions. Use `date_breaks={self.breaks!r}`",
|
|
90
|
+
FutureWarning,
|
|
91
|
+
)
|
|
92
|
+
self.breaks = breaks_date_width(width=self.breaks) # pyright: ignore[reportAttributeAccessIssue]
|
|
90
93
|
|
|
91
94
|
if date_labels is not None:
|
|
92
|
-
self.labels =
|
|
95
|
+
self.labels = label_date(fmt=date_labels) # pyright: ignore[reportAttributeAccessIssue]
|
|
93
96
|
elif isinstance(self.labels, str):
|
|
94
|
-
|
|
97
|
+
warn(
|
|
98
|
+
"Passing a string to `labels` will not work in "
|
|
99
|
+
f"future versions. Use `date_labels={self.labels!r}`",
|
|
100
|
+
FutureWarning,
|
|
101
|
+
)
|
|
102
|
+
self.labels = label_date(fmt=self.labels) # pyright: ignore[reportAttributeAccessIssue]
|
|
95
103
|
|
|
96
104
|
if date_minor_breaks is not None:
|
|
97
|
-
self.minor_breaks =
|
|
105
|
+
self.minor_breaks = breaks_date_width(date_minor_breaks) # pyright: ignore[reportAttributeAccessIssue]
|
|
98
106
|
elif isinstance(self.minor_breaks, str):
|
|
99
|
-
|
|
107
|
+
warn(
|
|
108
|
+
"Passing a string to `minor_breaks` will not work in "
|
|
109
|
+
"future versions. "
|
|
110
|
+
f"Use `date_minor_breaks={self.minor_breaks!r}`",
|
|
111
|
+
FutureWarning,
|
|
112
|
+
)
|
|
113
|
+
self.minor_breaks = breaks_date_width(width=self.minor_breaks) # pyright: ignore[reportAttributeAccessIssue]
|
|
100
114
|
|
|
101
115
|
scale_continuous.__post_init__(self)
|
|
@@ -156,7 +156,7 @@ class scale_discrete(
|
|
|
156
156
|
range = self.dimension(limits=limits)
|
|
157
157
|
|
|
158
158
|
breaks_d = self.get_breaks(limits)
|
|
159
|
-
breaks = self.map(pd.Categorical(breaks_d))
|
|
159
|
+
breaks = self.map(pd.Categorical(breaks_d)) # pyright: ignore[reportArgumentType]
|
|
160
160
|
minor_breaks = []
|
|
161
161
|
labels = self.get_labels(breaks_d)
|
|
162
162
|
|
|
@@ -43,6 +43,8 @@ class scale_color_identity(MapTrainMixin, scale_discrete):
|
|
|
43
43
|
"""
|
|
44
44
|
|
|
45
45
|
_aesthetics = ["color"]
|
|
46
|
+
_: KW_ONLY
|
|
47
|
+
guide: Literal["legend"] | None = None
|
|
46
48
|
|
|
47
49
|
|
|
48
50
|
@dataclass
|
|
@@ -52,6 +54,8 @@ class scale_fill_identity(scale_color_identity):
|
|
|
52
54
|
"""
|
|
53
55
|
|
|
54
56
|
_aesthetics = ["fill"]
|
|
57
|
+
_: KW_ONLY
|
|
58
|
+
guide: Literal["legend"] | None = None
|
|
55
59
|
|
|
56
60
|
|
|
57
61
|
@dataclass
|
|
@@ -61,6 +65,8 @@ class scale_shape_identity(MapTrainMixin, scale_discrete):
|
|
|
61
65
|
"""
|
|
62
66
|
|
|
63
67
|
_aesthetics = ["shape"]
|
|
68
|
+
_: KW_ONLY
|
|
69
|
+
guide: Literal["legend"] | None = None
|
|
64
70
|
|
|
65
71
|
|
|
66
72
|
@dataclass
|
|
@@ -70,6 +76,8 @@ class scale_linetype_identity(MapTrainMixin, scale_discrete):
|
|
|
70
76
|
"""
|
|
71
77
|
|
|
72
78
|
_aesthetics = ["linetype"]
|
|
79
|
+
_: KW_ONLY
|
|
80
|
+
guide: Literal["legend"] | None = None
|
|
73
81
|
|
|
74
82
|
|
|
75
83
|
@dataclass
|
|
@@ -82,7 +90,7 @@ class scale_alpha_identity(
|
|
|
82
90
|
|
|
83
91
|
_aesthetics = ["alpha"]
|
|
84
92
|
_: KW_ONLY
|
|
85
|
-
guide: Literal["legend"] | None =
|
|
93
|
+
guide: Literal["legend"] | None = None
|
|
86
94
|
|
|
87
95
|
|
|
88
96
|
@dataclass
|
|
@@ -95,7 +103,18 @@ class scale_size_identity(
|
|
|
95
103
|
|
|
96
104
|
_aesthetics = ["size"]
|
|
97
105
|
_: KW_ONLY
|
|
98
|
-
guide: Literal["legend"] | None =
|
|
106
|
+
guide: Literal["legend"] | None = None
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@dataclass
|
|
110
|
+
class scale_stroke_identity(MapTrainMixin, scale_discrete):
|
|
111
|
+
"""
|
|
112
|
+
No stroke scaling
|
|
113
|
+
"""
|
|
114
|
+
|
|
115
|
+
_aesthetics = ["stroke"]
|
|
116
|
+
_: KW_ONLY
|
|
117
|
+
guide: Literal["legend"] | None = None
|
|
99
118
|
|
|
100
119
|
|
|
101
120
|
# American to British spelling
|
plotnine/scales/scale_manual.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
+
from collections.abc import Mapping
|
|
3
4
|
from dataclasses import KW_ONLY, InitVar, dataclass
|
|
4
5
|
from typing import Any, Sequence
|
|
5
6
|
from warnings import warn
|
|
@@ -21,11 +22,16 @@ class _scale_manual(scale_discrete):
|
|
|
21
22
|
"""
|
|
22
23
|
|
|
23
24
|
def __post_init__(self, values):
|
|
24
|
-
from collections.abc import Sized
|
|
25
|
+
from collections.abc import Iterable, Sized
|
|
25
26
|
|
|
26
27
|
super().__post_init__()
|
|
27
28
|
|
|
28
|
-
if
|
|
29
|
+
if (
|
|
30
|
+
isinstance(self.breaks, Iterable)
|
|
31
|
+
and isinstance(self.breaks, Sized)
|
|
32
|
+
and len(self.breaks) == len(values)
|
|
33
|
+
and not isinstance(values, Mapping)
|
|
34
|
+
):
|
|
29
35
|
values = dict(zip(self.breaks, values))
|
|
30
36
|
|
|
31
37
|
def palette(n):
|
plotnine/scales/scale_xy.py
CHANGED
|
@@ -213,7 +213,7 @@ class scale_x_discrete(scale_position_discrete):
|
|
|
213
213
|
Discrete x position
|
|
214
214
|
"""
|
|
215
215
|
|
|
216
|
-
_aesthetics = ["x", "xmin", "xmax", "xend"]
|
|
216
|
+
_aesthetics = ["x", "xmin", "xmax", "xend", "xintercept"]
|
|
217
217
|
|
|
218
218
|
|
|
219
219
|
@dataclass(kw_only=True)
|
|
@@ -222,7 +222,7 @@ class scale_y_discrete(scale_position_discrete):
|
|
|
222
222
|
Discrete y position
|
|
223
223
|
"""
|
|
224
224
|
|
|
225
|
-
_aesthetics = ["y", "ymin", "ymax", "yend"]
|
|
225
|
+
_aesthetics = ["y", "ymin", "ymax", "yend", "yintercept"]
|
|
226
226
|
|
|
227
227
|
|
|
228
228
|
# Not part of the user API
|
plotnine/stats/binning.py
CHANGED
|
@@ -165,7 +165,10 @@ def assign_bins(
|
|
|
165
165
|
if weight is None:
|
|
166
166
|
weight = np.ones(len(x))
|
|
167
167
|
else:
|
|
168
|
-
weight
|
|
168
|
+
# If weight is a dtype that isn't writeable
|
|
169
|
+
# and does not own it's memory. Using a list
|
|
170
|
+
# as an intermediate easily solves this.
|
|
171
|
+
weight = np.array(list(weight))
|
|
169
172
|
weight[np.isnan(weight)] = 0
|
|
170
173
|
|
|
171
174
|
bin_idx = pd.cut(
|