plancraft 0.1.0__py3-none-any.whl → 0.1.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
models/prompts.py DELETED
@@ -1,158 +0,0 @@
1
- from plancraft.models.utils import gold_search_recipe
2
-
3
- VALID_ACTIONS = ["move", "smelt", "think", "search", "impossible"]
4
-
5
- ACTIONS_DESCRIPTIONS = {
6
- "move": {
7
- "description": "Transfer a specific quantity of an item from one slot to another",
8
- "format": "`move: from [Source] to [Target] with quantity N`",
9
- },
10
- "smelt": {
11
- "description": "Smelt an item in a furnace and moves the output to a specific slot",
12
- "format": "`smelt: from [Source] to [Target] with quantity N`",
13
- },
14
- "think": {
15
- "description": "Generate thoughts to help you decide on the next action",
16
- "format": "`think: <thought message>`",
17
- },
18
- "search": {
19
- "description": "Search for a recipe to craft a specific item",
20
- "format": "`search: <recipe name>`",
21
- },
22
- "impossible": {
23
- "description": "Stop task if it is certain that it is impossible with given inventory",
24
- "format": "`impossible: <reason>`",
25
- },
26
- }
27
-
28
- BASE_SYSTEM_PROMPT = """You are crafting in Minecraft. You need to decide on the next action.
29
-
30
- Crafting Grid: The crafting table is organized into a 3x3 grid. Each slot in the grid has a unique identifier:
31
- - Top row: [A1] [A2] [A3]
32
- - Middle row: [B1] [B2] [B3]
33
- - Bottom row: [C1] [C2] [C3]
34
-
35
- The output of the crafting process is placed in a designated output slot labeled [0] You cannot move or smelt items directly into slot [0]
36
-
37
- Inventory Slots: The remaining inventory slots (outside of the crafting grid) are used for storing items. These slots are labeled as [I1] to [I36]"""
38
-
39
- BASE_SYSTEM_PROMPT_EXAMPLE = """Example:
40
- - `move: from [I2] to [A1] with quantity 3`
41
- - `smelt: from [I5] to [I6] with quantity 1`
42
-
43
- Constraints:
44
- - You cannot move or smelt items into [0]
45
- - If an item is not in slot [0] then the recipe is incorrect
46
- - You need to move items from [0] to a free inventory slot to complete the crafting process"""
47
-
48
-
49
- def get_system_prompt(actions: list[str]):
50
- assert set(actions).issubset(VALID_ACTIONS), f"Invalid actions: {actions}"
51
- assert "move" in actions, "move should be one of the actions"
52
- assert "smelt" in actions, "smelt should be one of the actions"
53
-
54
- descriptions = ""
55
- for action in actions:
56
- descriptions += f"\n\t- {action}: {ACTIONS_DESCRIPTIONS[action]['description']}"
57
-
58
- output_format = ""
59
- for action in actions:
60
- output_format += f"\n\t- {ACTIONS_DESCRIPTIONS[action]['format']}"
61
-
62
- return f"{BASE_SYSTEM_PROMPT}\n\nActions:{descriptions}\n\nFormat{output_format}\n\n{BASE_SYSTEM_PROMPT_EXAMPLE}"
63
-
64
-
65
- CRAFTING_STEPS = [
66
- "Craft an item of type: andesite\ninventory:\n - diorite [I18] quantity 1\n - cobblestone [I30] quantity 1",
67
- "Craft an item of type: andesite\ninventory:\n - diorite [B1] quantity 1\n - cobblestone [I30] quantity 1",
68
- "Craft an item of type: andesite\ninventory:\n - andesite [0] quantity 1\n - diorite [B1] quantity 1\n - cobblestone [B2] quantity 1",
69
- "Craft an item of type: iron_ingot\ninventory:\n - iron_ore [I36] quantity 1\n - cobblestone [I30] quantity 1",
70
- ]
71
-
72
- BASE_ACTION_STEPS = [
73
- "move: from [I18] to [B1] with quantity 1",
74
- "move: from [I30] to [B2] with quantity 1",
75
- "move: from [0] to [I6] with quantity 1",
76
- "smelt: from [I36] to [I35] with quantity 1",
77
- ]
78
-
79
- THINK_STEPS = [
80
- "think: To solve this task I need to craft andesite using 1 diorite and 1 cobblestone side by side.",
81
- "think: Now I need to move the cobblestone into position [B2] to be right of the diorite.",
82
- "think: Now I can craft the andesite by moving it from the craft slot [0] to a free inventory slot.",
83
- "think: To craft an iron_ingot, I need to smelt iron_ore into an empty slot.",
84
- ]
85
-
86
- SEARCH_STEPS = [
87
- "search: andesite",
88
- None,
89
- None,
90
- "search: iron_ingot",
91
- ]
92
-
93
-
94
- def get_prompt_example(
95
- actions: list[str],
96
- use_text_inventory=True,
97
- use_multimodal_content_format=False,
98
- use_images=False,
99
- ) -> list[dict]:
100
- assert set(actions).issubset(VALID_ACTIONS), f"Invalid actions: {actions}"
101
- assert "move" in actions, "move should be one of the actions"
102
- assert "smelt" in actions, "smelt should be one of the actions"
103
-
104
- if use_images:
105
- assert (
106
- use_multimodal_content_format
107
- ), "use_images requires use_multimodal_content_format"
108
-
109
- example_dialogue = []
110
- for i, step in enumerate(CRAFTING_STEPS):
111
- text = step
112
- if not use_text_inventory:
113
- text = text.split("\ninventory:\n")[0]
114
-
115
- example_dialogue.append({"role": "user", "content": text})
116
- if "search" in actions and SEARCH_STEPS[i]:
117
- example_dialogue.append({"role": "assistant", "content": SEARCH_STEPS[i]})
118
- search_target = text.split("seach: ")[-1].strip()
119
- search_response = gold_search_recipe(search_target)
120
- example_dialogue.append({"role": "user", "content": search_response})
121
- if "think" in actions:
122
- example_dialogue.append({"role": "assistant", "content": THINK_STEPS[i]})
123
- example_dialogue.append({"role": "user", "content": "Ok"})
124
- example_dialogue.append({"role": "assistant", "content": BASE_ACTION_STEPS[i]})
125
-
126
- if not use_multimodal_content_format:
127
- return example_dialogue
128
-
129
- # convert to multimodal dialogue
130
- multimodal_dialogue = []
131
- for message in example_dialogue:
132
- if "Craft an item" in message["content"]:
133
- content_list = [
134
- {
135
- "type": "text",
136
- "text": message["content"],
137
- }
138
- ]
139
- if use_images:
140
- content_list.append(
141
- {
142
- "type": "image",
143
- }
144
- )
145
-
146
- multimodal_dialogue.append(
147
- {"role": message["role"], "content": content_list}
148
- )
149
- else:
150
- multimodal_dialogue.append(
151
- {
152
- "role": message["role"],
153
- "content": [
154
- {"type": "text", "text": message["content"]},
155
- ],
156
- }
157
- )
158
- return multimodal_dialogue
models/react.py DELETED
@@ -1,98 +0,0 @@
1
- import logging
2
-
3
- from dotenv import load_dotenv
4
-
5
- from plancraft.config import EvalConfig
6
- from plancraft.environments.actions import (
7
- SymbolicAction,
8
- NoOp,
9
- )
10
- from plancraft.models.utils import (
11
- convert_observation_to_message,
12
- parse_content_response,
13
- )
14
-
15
- from plancraft.models.act import ActModel
16
-
17
- logger = logging.getLogger(__name__)
18
-
19
- load_dotenv()
20
-
21
-
22
- class ReactModel(ActModel):
23
- """
24
- Model that does action with interleaved thinking step
25
- """
26
-
27
- def __init__(self, cfg: EvalConfig):
28
- super().__init__(cfg)
29
- self.max_invalid_actions = 3
30
-
31
- def step(self, observation: dict) -> SymbolicAction:
32
- # override the step method in ActModel to force thinking step
33
-
34
- self.history.add_observation_to_history(observation)
35
- observation_message = convert_observation_to_message(
36
- observation,
37
- objective=self.history.objective,
38
- bbox_model=self.bbox_model,
39
- oam_model="oam" in self.llm.model_name,
40
- use_text_inventory=self.use_text_inventory,
41
- use_multimodal_content_format=self.use_multimodal_content_format,
42
- use_images=self.use_images,
43
- )
44
- # add observation to history
45
- self.history.add_message_to_history(content=observation_message, role="user")
46
-
47
- i = 0
48
- while i < self.max_invalid_actions:
49
- message_window, image_window = self.llm.prepare_messages(
50
- history=self.history,
51
- max_messages_window=self.max_messages_window,
52
- system_prompt=self.system_prompt,
53
- prompt_images=self.prompt_images,
54
- )
55
- think_messages, think_token_used = self.llm.generate_unconstrained(
56
- batch_messages=[message_window],
57
- images=[image_window],
58
- start_messages_generation="think:",
59
- )
60
- self.history.tokens_used += think_token_used
61
- think_message = "think: " + think_messages[0].split("\n")[0].strip()
62
- self.history.add_message_to_history(content=think_message, role="assistant")
63
-
64
- # retrieve new message window (with thinking prompt)
65
- message_window, image_window = self.llm.prepare_messages(
66
- history=self.history,
67
- max_messages_window=self.max_messages_window,
68
- system_prompt=self.system_prompt,
69
- prompt_images=self.prompt_images,
70
- )
71
- action_messages, action_token_used = self.llm.generate_unconstrained(
72
- batch_messages=[message_window],
73
- images=[image_window],
74
- start_messages_generation="",
75
- )
76
- self.history.tokens_used += action_token_used
77
-
78
- action_message = action_messages[0].split("\n")[0].strip()
79
-
80
- self.history.add_message_to_history(
81
- content=action_message, role="assistant"
82
- )
83
-
84
- response = parse_content_response(
85
- action_message, valid_actions=self.valid_actions
86
- )
87
- if not isinstance(response, str):
88
- # valid action
89
- self.history.add_action_to_history(response)
90
- return response
91
-
92
- self.history.add_message_to_history(
93
- content=response,
94
- )
95
- i += 1
96
-
97
- # default move action
98
- return NoOp()
models/utils.py DELETED
@@ -1,289 +0,0 @@
1
- import base64
2
- import glob
3
- import io
4
- import pathlib
5
- import re
6
-
7
- import numpy as np
8
- import torch
9
- from PIL import Image
10
- from transformers import AutoModelForCausalLM, AutoTokenizer
11
-
12
- from plancraft.environments.actions import (
13
- StopAction,
14
- SymbolicAction,
15
- SymbolicMoveAction,
16
- SymbolicSmeltAction,
17
- convert_from_slot_index,
18
- )
19
- from plancraft.environments.recipes import RECIPES
20
-
21
-
22
- def numpy_to_base64(img_array: np.ndarray, image_format: str = "PNG") -> str:
23
- """
24
- Convert a NumPy array to a base64 encoded string.
25
-
26
- Parameters:
27
- - img_array: np.ndarray - Input image array.
28
- - image_format: str - The format to save the image in (e.g., "PNG", "JPEG").
29
-
30
- Returns:
31
- - str - Base64 encoded string of the image.
32
- """
33
- # Convert NumPy array to image
34
- image = Image.fromarray(img_array)
35
-
36
- # Save the image to a bytes buffer
37
- buffered = io.BytesIO()
38
- image.save(buffered, format=image_format)
39
-
40
- # Encode the bytes to a base64 string
41
- img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
42
-
43
- return img_str
44
-
45
-
46
- def get_downloaded_models() -> dict:
47
- """
48
- Get the list of downloaded models on the NFS partition (EIDF).
49
- """
50
- downloaded_models = {}
51
- # known models on NFS partition
52
- if pathlib.Path("/nfs").exists():
53
- local_models = glob.glob("/nfs/public/hf/models/*/*")
54
- downloaded_models = {
55
- model.replace("/nfs/public/hf/models/", ""): model for model in local_models
56
- }
57
- return downloaded_models
58
-
59
-
60
- class TrieNode:
61
- def __init__(self):
62
- self.children = {}
63
- self.is_end_of_sequence = False
64
-
65
-
66
- class Trie:
67
- def __init__(self):
68
- self.root = TrieNode()
69
- self.longest_sequence_length = 0
70
-
71
- def insert(self, sequence: list):
72
- node = self.root
73
- for num in sequence:
74
- if num not in node.children:
75
- node.children[num] = TrieNode()
76
- node = node.children[num]
77
- node.is_end_of_sequence = True
78
-
79
- if len(sequence) > self.longest_sequence_length:
80
- self.longest_sequence_length = len(sequence)
81
-
82
- def starts_with(self, prefix: list) -> bool:
83
- node = self.root
84
- for num in prefix:
85
- if num not in node.children:
86
- return False
87
- node = node.children[num]
88
- return True
89
-
90
- def get_next(self, prefix: list) -> list:
91
- node = self.root
92
- for num in prefix:
93
- if num not in node.children:
94
- return []
95
- node = node.children[num]
96
- return list(node.children.keys())
97
-
98
-
99
- def tokenize(
100
- model: AutoModelForCausalLM,
101
- tokenizer: AutoTokenizer,
102
- batch_messages: list[list[dict]],
103
- start_messages_generation: list[str],
104
- max_tokens=256,
105
- images=None,
106
- ) -> dict[str, torch.Tensor]:
107
- """
108
- Tokenize a list of messages and start the response message
109
- """
110
- assert len(start_messages_generation) == len(
111
- batch_messages
112
- ), "Length of start_messages_generation should be equal to batch_messages"
113
-
114
- message_texts = tokenizer.apply_chat_template(
115
- batch_messages,
116
- add_generation_prompt=True,
117
- tokenize=False,
118
- )
119
- # add the start of the response message for each message
120
- message_texts = [
121
- messages_text + new_message_start
122
- for (messages_text, new_message_start) in zip(
123
- message_texts, start_messages_generation
124
- )
125
- ]
126
-
127
- max_prompt_length = None
128
- # need to truncate if max_length is set
129
- if model.generation_config.max_length > max_tokens:
130
- max_prompt_length = model.generation_config.max_length - max_tokens
131
-
132
- if images:
133
- assert len(images) == len(
134
- batch_messages
135
- ), "Length of images should be equal to batch_messages"
136
- tokenized_messages = tokenizer(
137
- message_texts,
138
- return_tensors="pt",
139
- truncation=True,
140
- max_length=max_prompt_length,
141
- padding=True,
142
- images=images,
143
- )
144
- else:
145
- tokenized_messages = tokenizer(
146
- message_texts,
147
- return_tensors="pt",
148
- truncation=True,
149
- max_length=max_prompt_length,
150
- padding=True,
151
- )
152
- return tokenized_messages
153
-
154
-
155
- def objective_and_inventory_to_str(objective: str, inventory: list[dict]) -> str:
156
- inventory_str = ""
157
- for item in inventory:
158
- if item["quantity"] > 0:
159
- if "index" in item:
160
- slot = item["index"]
161
- else:
162
- slot = item["slot"]
163
-
164
- if isinstance(slot, int):
165
- slot = convert_from_slot_index(slot)
166
-
167
- inventory_str += f"\n - {item['type']} {slot} quantity {item['quantity']}"
168
-
169
- return f"{objective}\ninventory:{inventory_str}"
170
-
171
-
172
- def convert_observation_to_message(
173
- observation: dict,
174
- objective: str,
175
- bbox_model=None,
176
- oam_model=False,
177
- use_text_inventory=True,
178
- use_multimodal_content_format=False,
179
- use_images=False,
180
- ) -> str | dict:
181
- """
182
- Convert an observation to a message format
183
-
184
- Parameters:
185
- - observation: dict - The observation to convert.
186
- - objective: str - The objective of the observation.
187
- - bbox_model: Optional - The bounding box model to use.
188
- - oam_model: bool - Whether to use the OAM model.
189
- - use_text_inventory: bool - Whether to use text inventory.
190
- - use_multimodal_content_format: bool - Whether to use multimodal content format.
191
- - use_images: bool - Whether to append an image to the message content - must be used with use_multimodal_content_format.
192
- """
193
- if bbox_model is not None:
194
- # convert to tensor
195
- inventory = bbox_model.get_inventory(observation["pov"].copy())
196
- text_content = objective_and_inventory_to_str(
197
- objective, sorted(inventory, key=lambda x: x["slot"])
198
- )
199
- elif oam_model:
200
- text_content = f"{objective}\ninventory:\n"
201
- elif not use_text_inventory:
202
- text_content = objective
203
- else:
204
- # if not multimodal, we only have text - we just dump a JSON of the inventory
205
- inventory = []
206
- for o in observation["inventory"]:
207
- if o["quantity"] > 0:
208
- inventory.append(
209
- {
210
- "type": o["type"],
211
- "slot": convert_from_slot_index(o["index"]),
212
- "quantity": o["quantity"],
213
- }
214
- )
215
- text_content = objective_and_inventory_to_str(objective, inventory)
216
-
217
- if not use_multimodal_content_format:
218
- return text_content
219
-
220
- content_list = [{"type": "text", "text": text_content}]
221
- if use_images:
222
- content_list.append({"type": "image"})
223
- return {"content": content_list}
224
-
225
-
226
- def gold_search_recipe(recipe_name: str) -> str:
227
- """
228
- Gold search recipe for the given observation and action
229
- """
230
- if recipe_name not in RECIPES:
231
- return "Could not find a recipe by that name."
232
-
233
- out_string = f"Recipes to craft {recipe_name}:\n"
234
- for i, r in enumerate(RECIPES[recipe_name]):
235
- if r.recipe_type != "smelting":
236
- # sample a valid input grid (note that this is not guaranteed to be the only valid grid)
237
- input_crafting_grid = r.sample_input_crafting_grid()
238
- recipe_instructions = ""
239
- for item in input_crafting_grid:
240
- recipe_instructions += (
241
- f"{item['type']} at {convert_from_slot_index(item['slot'])}\n"
242
- )
243
- else:
244
- # smelting recipe
245
- recipe_instructions = f"smelt {r.ingredient}\n"
246
- out_string += f"recipe {i+1}:\n{recipe_instructions}"
247
- return out_string
248
-
249
-
250
- def parse_content_response(
251
- content: str, valid_actions: list[str] = ["smelt", "move"]
252
- ) -> str | SymbolicAction | StopAction:
253
- """
254
- Given a message and set of valid actions, parse the content to return the action
255
- or a message if the action is not valid/requires message response
256
- """
257
-
258
- action_match = re.search(f"({'|'.join(valid_actions)}):", content)
259
- if action_match:
260
- action = action_match.group(1)
261
- if action == "think":
262
- return "Ok"
263
- elif action == "impossible":
264
- reason = re.search(r"impossible: (.*)", content).group(1)
265
- return StopAction(reason=reason)
266
- elif action == "search":
267
- search_target = re.search(r"search: (\w+)", content).group(1)
268
- return gold_search_recipe(search_target)
269
- else:
270
- try:
271
- slot_from = re.search(r" from (\[[ABCI]?\d+\])", content).group(1)
272
- slot_to = re.search(r" to (\[[ABCI]?\d+\])", content).group(1)
273
- quantity = re.search(r"with quantity (\d+)", content).group(1)
274
- if action == "move":
275
- action = SymbolicMoveAction(
276
- slot_from=slot_from,
277
- slot_to=slot_to,
278
- quantity=quantity,
279
- )
280
- else:
281
- action = SymbolicSmeltAction(
282
- slot_from=slot_from,
283
- slot_to=slot_to,
284
- quantity=quantity,
285
- )
286
- return action
287
- except AttributeError as e:
288
- return f"Format Error: {e}"
289
- return f"Only select actions from the following: {', '.join(valid_actions)}"
@@ -1,53 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: plancraft
3
- Version: 0.1.0
4
- Summary: Plancraft: an evaluation dataset for planning with LLM agents
5
- Requires-Python: >=3.9
6
- Description-Content-Type: text/markdown
7
- License-File: LICENSE
8
- Requires-Dist: accelerate >=1.0.1
9
- Requires-Dist: coloredlogs >=10.0
10
- Requires-Dist: daemoniker >=0.2.3
11
- Requires-Dist: datasets >=3.0.2
12
- Requires-Dist: dill >=0.3.1.1
13
- Requires-Dist: einops >=0.8.0
14
- Requires-Dist: flaky >=3.8.1
15
- Requires-Dist: hf-transfer >=0.1.8
16
- Requires-Dist: huggingface-hub >=0.26.1
17
- Requires-Dist: hydra-core >=1.3.2
18
- Requires-Dist: imagehash >=4.0.0
19
- Requires-Dist: imageio >=2.36.0
20
- Requires-Dist: inflection >=0.3.1
21
- Requires-Dist: ipython >=7.5.0
22
- Requires-Dist: jinja2 >=2.11.2
23
- Requires-Dist: lxml >=4.3.3
24
- Requires-Dist: matplotlib >=3.9.2
25
- Requires-Dist: networkx >=3.2.1
26
- Requires-Dist: numpy <1.24,>=1.16.2
27
- Requires-Dist: openai >=1.52.2
28
- Requires-Dist: opencv-python >=4.1.0.25
29
- Requires-Dist: pandas >=2.1.0
30
- Requires-Dist: peft >=0.13.2
31
- Requires-Dist: pillow >=8.0.0
32
- Requires-Dist: psutil >=5.6.2
33
- Requires-Dist: pydantic >=2.9.2
34
- Requires-Dist: pyglet >=2.0.18
35
- Requires-Dist: pyro4 >=4.76
36
- Requires-Dist: python-dotenv >=1.0.1
37
- Requires-Dist: pyyaml >=6.0.2
38
- Requires-Dist: requests >=2.20.0
39
- Requires-Dist: seaborn >=0.13.2
40
- Requires-Dist: setuptools >=49.2.0
41
- Requires-Dist: tinydb >=4.8.2
42
- Requires-Dist: torch >=2.5.0
43
- Requires-Dist: torchvision >=0.20.0
44
- Requires-Dist: tqdm >=4.32.2
45
- Requires-Dist: transformers >=4.43.3
46
- Requires-Dist: typing >=3.6.6
47
- Requires-Dist: wandb >=0.18.5
48
- Requires-Dist: xmltodict ==0.12.0
49
- Provides-Extra: full
50
- Requires-Dist: gym <=0.23.1,>=0.19.0 ; extra == 'full'
51
-
52
- # plancraft
53
- Plancraft is a minecraft environment and agent that innovates on planning LLM agents with a retriever
@@ -1,26 +0,0 @@
1
- environments/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- environments/actions.py,sha256=SeeC9l1cJBs9pdba6BefQ_iQNfFf6FVTWm7HWkacbsY,6262
3
- environments/env_real.py,sha256=suU6f8tn9FGCnrMgjINJC4wibCpVsbIJmWtyNj__hJ4,9709
4
- environments/env_symbolic.py,sha256=BSInuOF7qTHzIjmWZ10kx-TsnzDtqqiq7SI3htuMG0M,7830
5
- environments/items.py,sha256=1R56LyK6tqIssQJMqHst6A9DeEfOX5DN-OBAkumGncw,217
6
- environments/planner.py,sha256=2B-0aunllmTuiHE7Jn5jHzCg6mMgxZjisiTDdpSKupk,3954
7
- environments/recipes.py,sha256=nXvOLCRljiZ5IgeevXuosU9IgSs7oQWQJFiuyRNSVFs,19571
8
- environments/sampler.py,sha256=ZBYoENKdQQ7wbAyVk-c9UNRWKPE0omv9he8c8QZ6wXg,7625
9
- models/__init__.py,sha256=PasK3jpbhpD0kxF4iHukcccZqvZg6lL240zie3DfLDY,622
10
- models/act.py,sha256=jdZunT7FcbHvcaJZ_wUDLSuObHjU6JZybghR_B0QJ8Q,6548
11
- models/base.py,sha256=fFM2BV9PqvIFtUlTz8iz5HPemYRy3S0EituM1XdJJSQ,4927
12
- models/bbox_model.py,sha256=CoX-odH59S-djkPOH2ViEmbYWo1sefmHiOcBlFWiAkg,16814
13
- models/dummy.py,sha256=QjxTIiKsWSmhUMAuw7Yy-OKKCLi_x3rwll4hH7ZNXso,1732
14
- models/generators.py,sha256=kmwhHDGCbhrf_tEY-Z7ALfcNnmsKTPssGWxwdLLZqaA,17386
15
- models/oam.py,sha256=pKVp1-vbDo6bEZdaLx4_5LPYFHnBxty09YvJMkM-kvw,9969
16
- models/oracle.py,sha256=5FACRc1CkRb1-LntSfyaOFOfgbvRwWZjnuIi6NWtIkQ,9651
17
- models/prompts.py,sha256=XwoRqd_5_VfCUXb10dCRFYXgw70mO2VoQocn3Z2zgs0,6165
18
- models/react.py,sha256=T57-Xh55LobkWLsh7V7PD3E7Merx5zx0wqY9ULIA2WU,3401
19
- models/utils.py,sha256=osKX0_uux9wzqYzq1ST0Cu5idrAnyfNvXrj0uO1eKo0,9424
20
- models/few_shot_images/__init__.py,sha256=nIkyB6w3ok-h4lfJKsrcMQzQF624Y9uxYV1FqCu3Lx0,351
21
- train/dataset.py,sha256=NrZjbIkosui1kaq7AIWSrYvvzrDxu_njH7FmGKY3xnI,5434
22
- plancraft-0.1.0.dist-info/LICENSE,sha256=YGR8ehDB4t-T-lOQKMfKNR-2zsOU7E3E5NA8t25HKE0,1070
23
- plancraft-0.1.0.dist-info/METADATA,sha256=fGHIBsicXNJAqBQWERKuMGPwThmE2RbfciQAX2AZy4A,1726
24
- plancraft-0.1.0.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
25
- plancraft-0.1.0.dist-info/top_level.txt,sha256=ZT60unZw3qNbZoGMCVc-V_0hI4YIYvTVGGScIgkCa88,26
26
- plancraft-0.1.0.dist-info/RECORD,,
@@ -1,3 +0,0 @@
1
- environments
2
- models
3
- train