pixeltable 0.3.15__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pixeltable might be problematic. Click here for more details.
- pixeltable/__init__.py +1 -1
- pixeltable/__version__.py +2 -2
- pixeltable/catalog/__init__.py +9 -1
- pixeltable/catalog/catalog.py +559 -134
- pixeltable/catalog/column.py +36 -32
- pixeltable/catalog/dir.py +1 -2
- pixeltable/catalog/globals.py +12 -0
- pixeltable/catalog/insertable_table.py +30 -25
- pixeltable/catalog/schema_object.py +9 -6
- pixeltable/catalog/table.py +334 -267
- pixeltable/catalog/table_version.py +358 -241
- pixeltable/catalog/table_version_handle.py +18 -2
- pixeltable/catalog/table_version_path.py +86 -16
- pixeltable/catalog/view.py +47 -23
- pixeltable/dataframe.py +198 -19
- pixeltable/env.py +6 -4
- pixeltable/exceptions.py +6 -0
- pixeltable/exec/__init__.py +1 -1
- pixeltable/exec/exec_node.py +2 -0
- pixeltable/exec/expr_eval/evaluators.py +4 -1
- pixeltable/exec/expr_eval/expr_eval_node.py +4 -4
- pixeltable/exec/in_memory_data_node.py +1 -1
- pixeltable/exec/sql_node.py +188 -22
- pixeltable/exprs/column_property_ref.py +16 -6
- pixeltable/exprs/column_ref.py +33 -11
- pixeltable/exprs/comparison.py +1 -1
- pixeltable/exprs/data_row.py +5 -3
- pixeltable/exprs/expr.py +11 -4
- pixeltable/exprs/literal.py +2 -0
- pixeltable/exprs/row_builder.py +4 -6
- pixeltable/exprs/rowid_ref.py +8 -0
- pixeltable/exprs/similarity_expr.py +1 -0
- pixeltable/func/__init__.py +1 -0
- pixeltable/func/mcp.py +74 -0
- pixeltable/func/query_template_function.py +5 -3
- pixeltable/func/tools.py +12 -2
- pixeltable/func/udf.py +2 -2
- pixeltable/functions/__init__.py +1 -0
- pixeltable/functions/anthropic.py +19 -45
- pixeltable/functions/deepseek.py +19 -38
- pixeltable/functions/fireworks.py +9 -18
- pixeltable/functions/gemini.py +2 -3
- pixeltable/functions/groq.py +108 -0
- pixeltable/functions/llama_cpp.py +6 -6
- pixeltable/functions/mistralai.py +16 -53
- pixeltable/functions/ollama.py +1 -1
- pixeltable/functions/openai.py +82 -165
- pixeltable/functions/string.py +212 -58
- pixeltable/functions/together.py +22 -80
- pixeltable/globals.py +10 -4
- pixeltable/index/base.py +5 -0
- pixeltable/index/btree.py +5 -0
- pixeltable/index/embedding_index.py +5 -0
- pixeltable/io/external_store.py +10 -31
- pixeltable/io/label_studio.py +5 -5
- pixeltable/io/parquet.py +2 -2
- pixeltable/io/table_data_conduit.py +1 -32
- pixeltable/metadata/__init__.py +11 -2
- pixeltable/metadata/converters/convert_13.py +2 -2
- pixeltable/metadata/converters/convert_30.py +6 -11
- pixeltable/metadata/converters/convert_35.py +9 -0
- pixeltable/metadata/converters/convert_36.py +38 -0
- pixeltable/metadata/converters/convert_37.py +15 -0
- pixeltable/metadata/converters/util.py +3 -9
- pixeltable/metadata/notes.py +3 -0
- pixeltable/metadata/schema.py +13 -1
- pixeltable/plan.py +135 -12
- pixeltable/share/packager.py +138 -14
- pixeltable/share/publish.py +2 -2
- pixeltable/store.py +19 -13
- pixeltable/type_system.py +30 -0
- pixeltable/utils/dbms.py +1 -1
- pixeltable/utils/formatter.py +64 -42
- {pixeltable-0.3.15.dist-info → pixeltable-0.4.0.dist-info}/METADATA +2 -1
- {pixeltable-0.3.15.dist-info → pixeltable-0.4.0.dist-info}/RECORD +78 -73
- {pixeltable-0.3.15.dist-info → pixeltable-0.4.0.dist-info}/LICENSE +0 -0
- {pixeltable-0.3.15.dist-info → pixeltable-0.4.0.dist-info}/WHEEL +0 -0
- {pixeltable-0.3.15.dist-info → pixeltable-0.4.0.dist-info}/entry_points.txt +0 -0
|
@@ -157,12 +157,14 @@ def retrieval_udf(
|
|
|
157
157
|
"""
|
|
158
158
|
# Argument validation
|
|
159
159
|
col_refs: list[exprs.ColumnRef]
|
|
160
|
+
# TODO: get rid of references to ColumnRef internals and replace instead with a public interface
|
|
161
|
+
col_names = table.columns()
|
|
160
162
|
if parameters is None:
|
|
161
|
-
col_refs = [table[col_name] for col_name in
|
|
163
|
+
col_refs = [table[col_name] for col_name in col_names if not table[col_name].col.is_computed]
|
|
162
164
|
else:
|
|
163
165
|
for param in parameters:
|
|
164
|
-
if isinstance(param, str) and param not in
|
|
165
|
-
raise excs.Error(f'The specified parameter {param!r} is not a column of the table {table._path!r}')
|
|
166
|
+
if isinstance(param, str) and param not in col_names:
|
|
167
|
+
raise excs.Error(f'The specified parameter {param!r} is not a column of the table {table._path()!r}')
|
|
166
168
|
col_refs = [table[param] if isinstance(param, str) else param for param in parameters]
|
|
167
169
|
|
|
168
170
|
if len(col_refs) == 0:
|
pixeltable/func/tools.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
|
1
|
+
import json
|
|
1
2
|
from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, Union
|
|
2
3
|
|
|
3
4
|
import pydantic
|
|
4
5
|
|
|
5
|
-
import
|
|
6
|
+
from pixeltable import exceptions as excs, type_system as ts
|
|
6
7
|
|
|
7
8
|
from .function import Function
|
|
8
9
|
from .signature import Parameter
|
|
@@ -69,7 +70,9 @@ class Tool(pydantic.BaseModel):
|
|
|
69
70
|
return _extract_float_tool_arg(kwargs, param_name=param.name)
|
|
70
71
|
if param.col_type.is_bool_type():
|
|
71
72
|
return _extract_bool_tool_arg(kwargs, param_name=param.name)
|
|
72
|
-
|
|
73
|
+
if param.col_type.is_json_type():
|
|
74
|
+
return _extract_json_tool_arg(kwargs, param_name=param.name)
|
|
75
|
+
raise AssertionError(param.col_type)
|
|
73
76
|
|
|
74
77
|
|
|
75
78
|
class ToolChoice(pydantic.BaseModel):
|
|
@@ -137,6 +140,13 @@ def _extract_bool_tool_arg(kwargs: dict[str, Any], param_name: str) -> Optional[
|
|
|
137
140
|
return _extract_arg(bool, kwargs, param_name)
|
|
138
141
|
|
|
139
142
|
|
|
143
|
+
@udf
|
|
144
|
+
def _extract_json_tool_arg(kwargs: dict[str, Any], param_name: str) -> Optional[ts.Json]:
|
|
145
|
+
if param_name in kwargs:
|
|
146
|
+
return json.loads(kwargs[param_name])
|
|
147
|
+
return None
|
|
148
|
+
|
|
149
|
+
|
|
140
150
|
T = TypeVar('T')
|
|
141
151
|
|
|
142
152
|
|
pixeltable/func/udf.py
CHANGED
|
@@ -262,7 +262,7 @@ def from_table(
|
|
|
262
262
|
"""
|
|
263
263
|
from pixeltable import exprs
|
|
264
264
|
|
|
265
|
-
ancestors = [tbl, *tbl.
|
|
265
|
+
ancestors = [tbl, *tbl._get_base_tables()]
|
|
266
266
|
ancestors.reverse() # We must traverse the ancestors in order from base to derived
|
|
267
267
|
|
|
268
268
|
subst: dict[exprs.Expr, exprs.Expr] = {}
|
|
@@ -297,7 +297,7 @@ def from_table(
|
|
|
297
297
|
|
|
298
298
|
if description is None:
|
|
299
299
|
# Default description is the table comment
|
|
300
|
-
description = tbl.
|
|
300
|
+
description = tbl._get_comment()
|
|
301
301
|
if len(description) == 0:
|
|
302
302
|
description = f"UDF for table '{tbl._name}'"
|
|
303
303
|
|
pixeltable/functions/__init__.py
CHANGED
|
@@ -8,7 +8,7 @@ the [Working with Anthropic](https://pixeltable.readme.io/docs/working-with-anth
|
|
|
8
8
|
import datetime
|
|
9
9
|
import json
|
|
10
10
|
import logging
|
|
11
|
-
from typing import TYPE_CHECKING, Any, Iterable, Optional,
|
|
11
|
+
from typing import TYPE_CHECKING, Any, Iterable, Optional, cast
|
|
12
12
|
|
|
13
13
|
import httpx
|
|
14
14
|
|
|
@@ -73,16 +73,10 @@ async def messages(
|
|
|
73
73
|
messages: list[dict[str, str]],
|
|
74
74
|
*,
|
|
75
75
|
model: str,
|
|
76
|
-
max_tokens: int
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
temperature: Optional[float] = None,
|
|
81
|
-
tool_choice: Optional[dict] = None,
|
|
82
|
-
tools: Optional[list[dict]] = None,
|
|
83
|
-
top_k: Optional[int] = None,
|
|
84
|
-
top_p: Optional[float] = None,
|
|
85
|
-
timeout: Optional[float] = None,
|
|
76
|
+
max_tokens: int,
|
|
77
|
+
model_kwargs: Optional[dict[str, Any]] = None,
|
|
78
|
+
tools: Optional[list[dict[str, Any]]] = None,
|
|
79
|
+
tool_choice: Optional[dict[str, Any]] = None,
|
|
86
80
|
) -> dict:
|
|
87
81
|
"""
|
|
88
82
|
Create a Message.
|
|
@@ -101,25 +95,27 @@ async def messages(
|
|
|
101
95
|
Args:
|
|
102
96
|
messages: Input messages.
|
|
103
97
|
model: The model that will complete your prompt.
|
|
104
|
-
|
|
105
|
-
|
|
98
|
+
model_kwargs: Additional keyword args for the Anthropic `messages` API.
|
|
99
|
+
For details on the available parameters, see: <https://docs.anthropic.com/en/api/messages>
|
|
100
|
+
tools: An optional list of Pixeltable tools to use for the request.
|
|
101
|
+
tool_choice: An optional tool choice configuration.
|
|
106
102
|
|
|
107
103
|
Returns:
|
|
108
104
|
A dictionary containing the response and other metadata.
|
|
109
105
|
|
|
110
106
|
Examples:
|
|
111
|
-
Add a computed column that applies the model `claude-3-
|
|
107
|
+
Add a computed column that applies the model `claude-3-5-sonnet-20241022`
|
|
112
108
|
to an existing Pixeltable column `tbl.prompt` of the table `tbl`:
|
|
113
109
|
|
|
114
110
|
>>> msgs = [{'role': 'user', 'content': tbl.prompt}]
|
|
115
|
-
... tbl.add_computed_column(response=messages(msgs, model='claude-3-
|
|
111
|
+
... tbl.add_computed_column(response=messages(msgs, model='claude-3-5-sonnet-20241022'))
|
|
116
112
|
"""
|
|
117
|
-
|
|
118
|
-
|
|
113
|
+
if model_kwargs is None:
|
|
114
|
+
model_kwargs = {}
|
|
119
115
|
|
|
120
116
|
if tools is not None:
|
|
121
117
|
# Reformat `tools` into Anthropic format
|
|
122
|
-
tools = [
|
|
118
|
+
model_kwargs['tools'] = [
|
|
123
119
|
{
|
|
124
120
|
'name': tool['name'],
|
|
125
121
|
'description': tool['description'],
|
|
@@ -132,17 +128,16 @@ async def messages(
|
|
|
132
128
|
for tool in tools
|
|
133
129
|
]
|
|
134
130
|
|
|
135
|
-
tool_choice_: Optional[dict] = None
|
|
136
131
|
if tool_choice is not None:
|
|
137
132
|
if tool_choice['auto']:
|
|
138
|
-
|
|
133
|
+
model_kwargs['tool_choice'] = {'type': 'auto'}
|
|
139
134
|
elif tool_choice['required']:
|
|
140
|
-
|
|
135
|
+
model_kwargs['tool_choice'] = {'type': 'any'}
|
|
141
136
|
else:
|
|
142
137
|
assert tool_choice['tool'] is not None
|
|
143
|
-
|
|
138
|
+
model_kwargs['tool_choice'] = {'type': 'tool', 'name': tool_choice['tool']}
|
|
144
139
|
if not tool_choice['parallel_tool_calls']:
|
|
145
|
-
|
|
140
|
+
model_kwargs['tool_choice']['disable_parallel_tool_use'] = True
|
|
146
141
|
|
|
147
142
|
# make sure the pool info exists prior to making the request
|
|
148
143
|
resource_pool_id = f'rate-limits:anthropic:{model}'
|
|
@@ -152,20 +147,8 @@ async def messages(
|
|
|
152
147
|
# TODO: timeouts should be set system-wide and be user-configurable
|
|
153
148
|
from anthropic.types import MessageParam
|
|
154
149
|
|
|
155
|
-
# cast(Any, ...): avoid mypy errors
|
|
156
150
|
result = await _anthropic_client().messages.with_raw_response.create(
|
|
157
|
-
messages=cast(Iterable[MessageParam], messages),
|
|
158
|
-
model=model,
|
|
159
|
-
max_tokens=max_tokens,
|
|
160
|
-
metadata=_opt(cast(Any, metadata)),
|
|
161
|
-
stop_sequences=_opt(stop_sequences),
|
|
162
|
-
system=_opt(system),
|
|
163
|
-
temperature=_opt(cast(Any, temperature)),
|
|
164
|
-
tools=_opt(cast(Any, tools)),
|
|
165
|
-
tool_choice=_opt(cast(Any, tool_choice_)),
|
|
166
|
-
top_k=_opt(top_k),
|
|
167
|
-
top_p=_opt(top_p),
|
|
168
|
-
timeout=_opt(timeout),
|
|
151
|
+
messages=cast(Iterable[MessageParam], messages), model=model, max_tokens=max_tokens, **model_kwargs
|
|
169
152
|
)
|
|
170
153
|
|
|
171
154
|
requests_limit_str = result.headers.get('anthropic-ratelimit-requests-limit')
|
|
@@ -224,15 +207,6 @@ def _anthropic_response_to_pxt_tool_calls(response: dict) -> Optional[dict]:
|
|
|
224
207
|
return pxt_tool_calls
|
|
225
208
|
|
|
226
209
|
|
|
227
|
-
_T = TypeVar('_T')
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
def _opt(arg: _T) -> Union[_T, 'anthropic.NotGiven']:
|
|
231
|
-
import anthropic
|
|
232
|
-
|
|
233
|
-
return arg if arg is not None else anthropic.NOT_GIVEN
|
|
234
|
-
|
|
235
|
-
|
|
236
210
|
__all__ = local_public_names(__name__)
|
|
237
211
|
|
|
238
212
|
|
pixeltable/functions/deepseek.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
import json
|
|
2
|
-
from typing import TYPE_CHECKING, Any, Optional
|
|
2
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
3
3
|
|
|
4
4
|
import httpx
|
|
5
5
|
|
|
@@ -7,8 +7,6 @@ import pixeltable as pxt
|
|
|
7
7
|
from pixeltable import env
|
|
8
8
|
from pixeltable.utils.code import local_public_names
|
|
9
9
|
|
|
10
|
-
from .openai import _opt
|
|
11
|
-
|
|
12
10
|
if TYPE_CHECKING:
|
|
13
11
|
import openai
|
|
14
12
|
|
|
@@ -33,17 +31,9 @@ async def chat_completions(
|
|
|
33
31
|
messages: list,
|
|
34
32
|
*,
|
|
35
33
|
model: str,
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
max_tokens: Optional[int] = None,
|
|
40
|
-
presence_penalty: Optional[float] = None,
|
|
41
|
-
response_format: Optional[dict] = None,
|
|
42
|
-
stop: Optional[list[str]] = None,
|
|
43
|
-
temperature: Optional[float] = None,
|
|
44
|
-
tools: Optional[list[dict]] = None,
|
|
45
|
-
tool_choice: Optional[dict] = None,
|
|
46
|
-
top_p: Optional[float] = None,
|
|
34
|
+
model_kwargs: Optional[dict[str, Any]] = None,
|
|
35
|
+
tools: Optional[list[dict[str, Any]]] = None,
|
|
36
|
+
tool_choice: Optional[dict[str, Any]] = None,
|
|
47
37
|
) -> dict:
|
|
48
38
|
"""
|
|
49
39
|
Creates a model response for the given chat conversation.
|
|
@@ -60,8 +50,10 @@ async def chat_completions(
|
|
|
60
50
|
Args:
|
|
61
51
|
messages: A list of messages to use for chat completion, as described in the Deepseek API documentation.
|
|
62
52
|
model: The model to use for chat completion.
|
|
63
|
-
|
|
64
|
-
|
|
53
|
+
model_kwargs: Additional keyword args for the Deepseek `chat/completions` API.
|
|
54
|
+
For details on the available parameters, see: <https://api-docs.deepseek.com/api/create-chat-completion>
|
|
55
|
+
tools: An optional list of Pixeltable tools to use for the request.
|
|
56
|
+
tool_choice: An optional tool choice configuration.
|
|
65
57
|
|
|
66
58
|
Returns:
|
|
67
59
|
A dictionary containing the response and other metadata.
|
|
@@ -76,39 +68,28 @@ async def chat_completions(
|
|
|
76
68
|
]
|
|
77
69
|
tbl.add_computed_column(response=chat_completions(messages, model='deepseek-chat'))
|
|
78
70
|
"""
|
|
71
|
+
if model_kwargs is None:
|
|
72
|
+
model_kwargs = {}
|
|
73
|
+
|
|
79
74
|
if tools is not None:
|
|
80
|
-
tools = [{'type': 'function', 'function': tool} for tool in tools]
|
|
75
|
+
model_kwargs['tools'] = [{'type': 'function', 'function': tool} for tool in tools]
|
|
81
76
|
|
|
82
|
-
tool_choice_: Union[str, dict, None] = None
|
|
83
77
|
if tool_choice is not None:
|
|
84
78
|
if tool_choice['auto']:
|
|
85
|
-
|
|
79
|
+
model_kwargs['tool_choice'] = 'auto'
|
|
86
80
|
elif tool_choice['required']:
|
|
87
|
-
|
|
81
|
+
model_kwargs['tool_choice'] = 'required'
|
|
88
82
|
else:
|
|
89
83
|
assert tool_choice['tool'] is not None
|
|
90
|
-
|
|
84
|
+
model_kwargs['tool_choice'] = {'type': 'function', 'function': {'name': tool_choice['tool']}}
|
|
91
85
|
|
|
92
|
-
extra_body: Optional[dict[str, Any]] = None
|
|
93
86
|
if tool_choice is not None and not tool_choice['parallel_tool_calls']:
|
|
94
|
-
extra_body
|
|
87
|
+
if 'extra_body' not in model_kwargs:
|
|
88
|
+
model_kwargs['extra_body'] = {}
|
|
89
|
+
model_kwargs['extra_body']['parallel_tool_calls'] = False
|
|
95
90
|
|
|
96
|
-
# cast(Any, ...): avoid mypy errors
|
|
97
91
|
result = await _deepseek_client().chat.completions.with_raw_response.create(
|
|
98
|
-
messages=messages,
|
|
99
|
-
model=model,
|
|
100
|
-
frequency_penalty=_opt(frequency_penalty),
|
|
101
|
-
logprobs=_opt(logprobs),
|
|
102
|
-
top_logprobs=_opt(top_logprobs),
|
|
103
|
-
max_tokens=_opt(max_tokens),
|
|
104
|
-
presence_penalty=_opt(presence_penalty),
|
|
105
|
-
response_format=_opt(cast(Any, response_format)),
|
|
106
|
-
stop=_opt(stop),
|
|
107
|
-
temperature=_opt(temperature),
|
|
108
|
-
tools=_opt(cast(Any, tools)),
|
|
109
|
-
tool_choice=_opt(cast(Any, tool_choice_)),
|
|
110
|
-
top_p=_opt(top_p),
|
|
111
|
-
extra_body=extra_body,
|
|
92
|
+
messages=messages, model=model, **model_kwargs
|
|
112
93
|
)
|
|
113
94
|
|
|
114
95
|
return json.loads(result.text)
|
|
@@ -5,7 +5,7 @@ first `pip install fireworks-ai` and configure your Fireworks AI credentials, as
|
|
|
5
5
|
the [Working with Fireworks](https://pixeltable.readme.io/docs/working-with-fireworks) tutorial.
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
|
-
from typing import TYPE_CHECKING, Optional
|
|
8
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
9
9
|
|
|
10
10
|
import pixeltable as pxt
|
|
11
11
|
from pixeltable import env
|
|
@@ -29,14 +29,7 @@ def _fireworks_client() -> 'fireworks.client.Fireworks':
|
|
|
29
29
|
|
|
30
30
|
@pxt.udf(resource_pool='request-rate:fireworks')
|
|
31
31
|
async def chat_completions(
|
|
32
|
-
messages: list[dict[str, str]],
|
|
33
|
-
*,
|
|
34
|
-
model: str,
|
|
35
|
-
max_tokens: Optional[int] = None,
|
|
36
|
-
top_k: Optional[int] = None,
|
|
37
|
-
top_p: Optional[float] = None,
|
|
38
|
-
temperature: Optional[float] = None,
|
|
39
|
-
request_timeout: Optional[int] = None,
|
|
32
|
+
messages: list[dict[str, str]], *, model: str, model_kwargs: Optional[dict[str, Any]] = None
|
|
40
33
|
) -> dict:
|
|
41
34
|
"""
|
|
42
35
|
Creates a model response for the given chat conversation.
|
|
@@ -55,8 +48,8 @@ async def chat_completions(
|
|
|
55
48
|
Args:
|
|
56
49
|
messages: A list of messages comprising the conversation so far.
|
|
57
50
|
model: The name of the model to use.
|
|
58
|
-
|
|
59
|
-
|
|
51
|
+
model_kwargs: Additional keyword args for the Fireworks `chat_completions` API. For details on the available
|
|
52
|
+
parameters, see: <https://docs.fireworks.ai/api-reference/post-chatcompletions>
|
|
60
53
|
|
|
61
54
|
Returns:
|
|
62
55
|
A dictionary containing the response and other metadata.
|
|
@@ -70,20 +63,18 @@ async def chat_completions(
|
|
|
70
63
|
... response=chat_completions(messages, model='accounts/fireworks/models/mixtral-8x22b-instruct')
|
|
71
64
|
... )
|
|
72
65
|
"""
|
|
73
|
-
|
|
74
|
-
|
|
66
|
+
if model_kwargs is None:
|
|
67
|
+
model_kwargs = {}
|
|
75
68
|
|
|
76
69
|
# for debugging purposes:
|
|
77
70
|
# res_sync = _fireworks_client().chat.completions.create(model=model, messages=messages, **kwargs_not_none)
|
|
78
71
|
# res_sync_dict = res_sync.dict()
|
|
79
72
|
|
|
80
|
-
if request_timeout
|
|
81
|
-
request_timeout = Config.get().get_int_value('timeout', section='fireworks') or 600
|
|
73
|
+
if 'request_timeout' not in model_kwargs:
|
|
74
|
+
model_kwargs['request_timeout'] = Config.get().get_int_value('timeout', section='fireworks') or 600
|
|
82
75
|
# TODO: this timeout doesn't really work, I think it only applies to returning the stream, but not to the timing
|
|
83
76
|
# of the chunks; addressing this would require a timeout for the task running this udf
|
|
84
|
-
stream = _fireworks_client().chat.completions.acreate(
|
|
85
|
-
model=model, messages=messages, request_timeout=request_timeout, **kwargs_not_none
|
|
86
|
-
)
|
|
77
|
+
stream = _fireworks_client().chat.completions.acreate(model=model, messages=messages, **model_kwargs)
|
|
87
78
|
chunks = []
|
|
88
79
|
async for chunk in stream:
|
|
89
80
|
chunks.append(chunk)
|
pixeltable/functions/gemini.py
CHANGED
|
@@ -53,8 +53,8 @@ async def generate_content(
|
|
|
53
53
|
config: Configuration for generation, corresponding to keyword arguments of
|
|
54
54
|
`genai.types.GenerateContentConfig`. For details on the parameters, see:
|
|
55
55
|
<https://googleapis.github.io/python-genai/genai.html#module-genai.types>
|
|
56
|
-
tools:
|
|
57
|
-
`config
|
|
56
|
+
tools: An optional list of Pixeltable tools to use. It is also possible to specify tools manually via the
|
|
57
|
+
`config['tools']` parameter, but at most one of `config['tools']` or `tools` may be used.
|
|
58
58
|
|
|
59
59
|
Returns:
|
|
60
60
|
A dictionary containing the response and other metadata.
|
|
@@ -103,7 +103,6 @@ def invoke_tools(tools: pxt.func.Tools, response: exprs.Expr) -> exprs.InlineDic
|
|
|
103
103
|
|
|
104
104
|
@pxt.udf
|
|
105
105
|
def _gemini_response_to_pxt_tool_calls(response: dict) -> Optional[dict]:
|
|
106
|
-
print(response)
|
|
107
106
|
pxt_tool_calls: dict[str, list[dict]] = {}
|
|
108
107
|
for part in response['candidates'][0]['content']['parts']:
|
|
109
108
|
tool_call = part.get('function_call')
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Pixeltable [UDFs](https://pixeltable.readme.io/docs/user-defined-functions-udfs)
|
|
3
|
+
that wrap various endpoints from the Groq API. In order to use them, you must
|
|
4
|
+
first `pip install groq` and configure your Groq credentials, as described in
|
|
5
|
+
the [Working with Groq](https://pixeltable.readme.io/docs/working-with-groq) tutorial.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
9
|
+
|
|
10
|
+
import pixeltable as pxt
|
|
11
|
+
from pixeltable import exprs
|
|
12
|
+
from pixeltable.env import Env, register_client
|
|
13
|
+
from pixeltable.utils.code import local_public_names
|
|
14
|
+
|
|
15
|
+
from .openai import _openai_response_to_pxt_tool_calls
|
|
16
|
+
|
|
17
|
+
if TYPE_CHECKING:
|
|
18
|
+
import groq
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@register_client('groq')
|
|
22
|
+
def _(api_key: str) -> 'groq.AsyncGroq':
|
|
23
|
+
import groq
|
|
24
|
+
|
|
25
|
+
return groq.AsyncGroq(api_key=api_key)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def _groq_client() -> 'groq.AsyncGroq':
|
|
29
|
+
return Env.get().get_client('groq')
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@pxt.udf(resource_pool='request-rate:groq')
|
|
33
|
+
async def chat_completions(
|
|
34
|
+
messages: list[dict[str, str]],
|
|
35
|
+
*,
|
|
36
|
+
model: str,
|
|
37
|
+
model_kwargs: Optional[dict[str, Any]] = None,
|
|
38
|
+
tools: Optional[list[dict[str, Any]]] = None,
|
|
39
|
+
tool_choice: Optional[dict[str, Any]] = None,
|
|
40
|
+
) -> dict:
|
|
41
|
+
"""
|
|
42
|
+
Chat Completion API.
|
|
43
|
+
|
|
44
|
+
Equivalent to the Groq `chat/completions` API endpoint.
|
|
45
|
+
For additional details, see: <https://console.groq.com/docs/api-reference#chat-create>
|
|
46
|
+
|
|
47
|
+
Request throttling:
|
|
48
|
+
Applies the rate limit set in the config (section `groq`, key `rate_limit`). If no rate
|
|
49
|
+
limit is configured, uses a default of 600 RPM.
|
|
50
|
+
|
|
51
|
+
__Requirements:__
|
|
52
|
+
|
|
53
|
+
- `pip install groq`
|
|
54
|
+
|
|
55
|
+
Args:
|
|
56
|
+
messages: A list of messages comprising the conversation so far.
|
|
57
|
+
model: ID of the model to use. (See overview here: <https://console.groq.com/docs/models>)
|
|
58
|
+
model_kwargs: Additional keyword args for the Groq `chat/completions` API.
|
|
59
|
+
For details on the available parameters, see: <https://console.groq.com/docs/api-reference#chat-create>
|
|
60
|
+
|
|
61
|
+
Returns:
|
|
62
|
+
A dictionary containing the response and other metadata.
|
|
63
|
+
|
|
64
|
+
Examples:
|
|
65
|
+
Add a computed column that applies the model `llama3-8b-8192`
|
|
66
|
+
to an existing Pixeltable column `tbl.prompt` of the table `tbl`:
|
|
67
|
+
|
|
68
|
+
>>> messages = [{'role': 'user', 'content': tbl.prompt}]
|
|
69
|
+
... tbl.add_computed_column(response=chat_completions(messages, model='llama3-8b-8192'))
|
|
70
|
+
"""
|
|
71
|
+
if model_kwargs is None:
|
|
72
|
+
model_kwargs = {}
|
|
73
|
+
|
|
74
|
+
Env.get().require_package('groq')
|
|
75
|
+
|
|
76
|
+
if tools is not None:
|
|
77
|
+
model_kwargs['tools'] = [{'type': 'function', 'function': tool} for tool in tools]
|
|
78
|
+
|
|
79
|
+
if tool_choice is not None:
|
|
80
|
+
if tool_choice['auto']:
|
|
81
|
+
model_kwargs['tool_choice'] = 'auto'
|
|
82
|
+
elif tool_choice['required']:
|
|
83
|
+
model_kwargs['tool_choice'] = 'required'
|
|
84
|
+
else:
|
|
85
|
+
assert tool_choice['tool'] is not None
|
|
86
|
+
model_kwargs['tool_choice'] = {'type': 'function', 'function': {'name': tool_choice['tool']}}
|
|
87
|
+
|
|
88
|
+
if tool_choice is not None and not tool_choice['parallel_tool_calls']:
|
|
89
|
+
model_kwargs['parallel_tool_calls'] = False
|
|
90
|
+
|
|
91
|
+
result = await _groq_client().chat.completions.create(
|
|
92
|
+
messages=messages, # type: ignore[arg-type]
|
|
93
|
+
model=model,
|
|
94
|
+
**model_kwargs,
|
|
95
|
+
)
|
|
96
|
+
return result.model_dump()
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def invoke_tools(tools: pxt.func.Tools, response: exprs.Expr) -> exprs.InlineDict:
|
|
100
|
+
"""Converts an OpenAI response dict to Pixeltable tool invocation format and calls `tools._invoke()`."""
|
|
101
|
+
return tools._invoke(_openai_response_to_pxt_tool_calls(response))
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
__all__ = local_public_names(__name__)
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def __dir__() -> list[str]:
|
|
108
|
+
return __all__
|
|
@@ -17,7 +17,7 @@ def create_chat_completion(
|
|
|
17
17
|
model_path: Optional[str] = None,
|
|
18
18
|
repo_id: Optional[str] = None,
|
|
19
19
|
repo_filename: Optional[str] = None,
|
|
20
|
-
|
|
20
|
+
model_kwargs: Optional[dict[str, Any]] = None,
|
|
21
21
|
) -> dict:
|
|
22
22
|
"""
|
|
23
23
|
Generate a chat completion from a list of messages.
|
|
@@ -35,14 +35,14 @@ def create_chat_completion(
|
|
|
35
35
|
repo_id: The Hugging Face model repo id (if using a pretrained model).
|
|
36
36
|
repo_filename: A filename or glob pattern to match the model file in the repo (optional, if using a
|
|
37
37
|
pretrained model).
|
|
38
|
-
|
|
39
|
-
`top_p`, and `top_k`. For details, see the
|
|
38
|
+
model_kwargs: Additional keyword args for the llama_cpp `create_chat_completions` API, such as `max_tokens`,
|
|
39
|
+
`temperature`, `top_p`, and `top_k`. For details, see the
|
|
40
40
|
[llama_cpp create_chat_completions documentation](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion).
|
|
41
41
|
"""
|
|
42
42
|
Env.get().require_package('llama_cpp', min_version=[0, 3, 1])
|
|
43
43
|
|
|
44
|
-
if
|
|
45
|
-
|
|
44
|
+
if model_kwargs is None:
|
|
45
|
+
model_kwargs = {}
|
|
46
46
|
|
|
47
47
|
if (model_path is None) == (repo_id is None):
|
|
48
48
|
raise excs.Error('Exactly one of `model_path` or `repo_id` must be provided.')
|
|
@@ -56,7 +56,7 @@ def create_chat_completion(
|
|
|
56
56
|
else:
|
|
57
57
|
Env.get().require_package('huggingface_hub')
|
|
58
58
|
llm = _lookup_pretrained_model(repo_id, repo_filename, n_gpu_layers)
|
|
59
|
-
return llm.create_chat_completion(messages, **
|
|
59
|
+
return llm.create_chat_completion(messages, **model_kwargs) # type: ignore
|
|
60
60
|
|
|
61
61
|
|
|
62
62
|
def _is_gpu_available() -> bool:
|
|
@@ -5,7 +5,7 @@ first `pip install mistralai` and configure your Mistral AI credentials, as desc
|
|
|
5
5
|
the [Working with Mistral AI](https://pixeltable.readme.io/docs/working-with-mistralai) tutorial.
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
|
-
from typing import TYPE_CHECKING,
|
|
8
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
9
9
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
|
|
@@ -16,7 +16,7 @@ from pixeltable.func.signature import Batch
|
|
|
16
16
|
from pixeltable.utils.code import local_public_names
|
|
17
17
|
|
|
18
18
|
if TYPE_CHECKING:
|
|
19
|
-
import mistralai
|
|
19
|
+
import mistralai
|
|
20
20
|
|
|
21
21
|
|
|
22
22
|
@register_client('mistral')
|
|
@@ -32,16 +32,7 @@ def _mistralai_client() -> 'mistralai.Mistral':
|
|
|
32
32
|
|
|
33
33
|
@pxt.udf(resource_pool='request-rate:mistral')
|
|
34
34
|
async def chat_completions(
|
|
35
|
-
messages: list[dict[str, str]],
|
|
36
|
-
*,
|
|
37
|
-
model: str,
|
|
38
|
-
temperature: Optional[float] = 0.7,
|
|
39
|
-
top_p: Optional[float] = 1.0,
|
|
40
|
-
max_tokens: Optional[int] = None,
|
|
41
|
-
stop: Optional[list[str]] = None,
|
|
42
|
-
random_seed: Optional[int] = None,
|
|
43
|
-
response_format: Optional[dict] = None,
|
|
44
|
-
safe_prompt: Optional[bool] = False,
|
|
35
|
+
messages: list[dict[str, str]], *, model: str, model_kwargs: Optional[dict[str, Any]] = None
|
|
45
36
|
) -> dict:
|
|
46
37
|
"""
|
|
47
38
|
Chat Completion API.
|
|
@@ -60,8 +51,8 @@ async def chat_completions(
|
|
|
60
51
|
Args:
|
|
61
52
|
messages: The prompt(s) to generate completions for.
|
|
62
53
|
model: ID of the model to use. (See overview here: <https://docs.mistral.ai/getting-started/models/>)
|
|
63
|
-
|
|
64
|
-
|
|
54
|
+
model_kwargs: Additional keyword args for the Mistral `chat/completions` API.
|
|
55
|
+
For details on the available parameters, see: <https://docs.mistral.ai/api/#tag/chat>
|
|
65
56
|
|
|
66
57
|
Returns:
|
|
67
58
|
A dictionary containing the response and other metadata.
|
|
@@ -73,34 +64,20 @@ async def chat_completions(
|
|
|
73
64
|
>>> messages = [{'role': 'user', 'content': tbl.prompt}]
|
|
74
65
|
... tbl.add_computed_column(response=completions(messages, model='mistral-latest-small'))
|
|
75
66
|
"""
|
|
67
|
+
if model_kwargs is None:
|
|
68
|
+
model_kwargs = {}
|
|
69
|
+
|
|
76
70
|
Env.get().require_package('mistralai')
|
|
77
71
|
result = await _mistralai_client().chat.complete_async(
|
|
78
72
|
messages=messages, # type: ignore[arg-type]
|
|
79
73
|
model=model,
|
|
80
|
-
|
|
81
|
-
top_p=top_p,
|
|
82
|
-
max_tokens=_opt(max_tokens),
|
|
83
|
-
stop=stop,
|
|
84
|
-
random_seed=_opt(random_seed),
|
|
85
|
-
response_format=response_format, # type: ignore[arg-type]
|
|
86
|
-
safe_prompt=safe_prompt,
|
|
74
|
+
**model_kwargs,
|
|
87
75
|
)
|
|
88
76
|
return result.dict()
|
|
89
77
|
|
|
90
78
|
|
|
91
79
|
@pxt.udf(resource_pool='request-rate:mistral')
|
|
92
|
-
async def fim_completions(
|
|
93
|
-
prompt: str,
|
|
94
|
-
*,
|
|
95
|
-
model: str,
|
|
96
|
-
temperature: Optional[float] = 0.7,
|
|
97
|
-
top_p: Optional[float] = 1.0,
|
|
98
|
-
max_tokens: Optional[int] = None,
|
|
99
|
-
min_tokens: Optional[int] = None,
|
|
100
|
-
stop: Optional[list[str]] = None,
|
|
101
|
-
random_seed: Optional[int] = None,
|
|
102
|
-
suffix: Optional[str] = None,
|
|
103
|
-
) -> dict:
|
|
80
|
+
async def fim_completions(prompt: str, *, model: str, model_kwargs: Optional[dict[str, Any]] = None) -> dict:
|
|
104
81
|
"""
|
|
105
82
|
Fill-in-the-middle Completion API.
|
|
106
83
|
|
|
@@ -118,6 +95,8 @@ async def fim_completions(
|
|
|
118
95
|
Args:
|
|
119
96
|
prompt: The text/code to complete.
|
|
120
97
|
model: ID of the model to use. (See overview here: <https://docs.mistral.ai/getting-started/models/>)
|
|
98
|
+
model_kwargs: Additional keyword args for the Mistral `fim/completions` API.
|
|
99
|
+
For details on the available parameters, see: <https://docs.mistral.ai/api/#tag/fim>
|
|
121
100
|
|
|
122
101
|
For details on the other parameters, see: <https://docs.mistral.ai/api/#tag/fim>
|
|
123
102
|
|
|
@@ -130,18 +109,11 @@ async def fim_completions(
|
|
|
130
109
|
|
|
131
110
|
>>> tbl.add_computed_column(response=completions(tbl.prompt, model='codestral-latest'))
|
|
132
111
|
"""
|
|
112
|
+
if model_kwargs is None:
|
|
113
|
+
model_kwargs = {}
|
|
114
|
+
|
|
133
115
|
Env.get().require_package('mistralai')
|
|
134
|
-
result = await _mistralai_client().fim.complete_async(
|
|
135
|
-
prompt=prompt,
|
|
136
|
-
model=model,
|
|
137
|
-
temperature=temperature,
|
|
138
|
-
top_p=top_p,
|
|
139
|
-
max_tokens=_opt(max_tokens),
|
|
140
|
-
min_tokens=_opt(min_tokens),
|
|
141
|
-
stop=stop,
|
|
142
|
-
random_seed=_opt(random_seed),
|
|
143
|
-
suffix=_opt(suffix),
|
|
144
|
-
)
|
|
116
|
+
result = await _mistralai_client().fim.complete_async(prompt=prompt, model=model, **model_kwargs)
|
|
145
117
|
return result.dict()
|
|
146
118
|
|
|
147
119
|
|
|
@@ -182,15 +154,6 @@ def _(model: str) -> ts.ArrayType:
|
|
|
182
154
|
return ts.ArrayType((dimensions,), dtype=ts.FloatType())
|
|
183
155
|
|
|
184
156
|
|
|
185
|
-
_T = TypeVar('_T')
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
def _opt(arg: Optional[_T]) -> Union[_T, 'mistralai.types.basemodel.Unset']:
|
|
189
|
-
from mistralai.types import UNSET
|
|
190
|
-
|
|
191
|
-
return arg if arg is not None else UNSET
|
|
192
|
-
|
|
193
|
-
|
|
194
157
|
__all__ = local_public_names(__name__)
|
|
195
158
|
|
|
196
159
|
|