pixeltable 0.2.30__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pixeltable might be problematic. Click here for more details.

Files changed (60) hide show
  1. pixeltable/__init__.py +1 -1
  2. pixeltable/__version__.py +2 -2
  3. pixeltable/catalog/table.py +212 -173
  4. pixeltable/catalog/table_version.py +2 -1
  5. pixeltable/catalog/view.py +3 -5
  6. pixeltable/dataframe.py +52 -39
  7. pixeltable/env.py +94 -5
  8. pixeltable/exec/__init__.py +1 -1
  9. pixeltable/exec/aggregation_node.py +3 -3
  10. pixeltable/exec/cache_prefetch_node.py +13 -7
  11. pixeltable/exec/component_iteration_node.py +3 -9
  12. pixeltable/exec/data_row_batch.py +17 -5
  13. pixeltable/exec/exec_node.py +32 -12
  14. pixeltable/exec/expr_eval/__init__.py +1 -0
  15. pixeltable/exec/expr_eval/evaluators.py +245 -0
  16. pixeltable/exec/expr_eval/expr_eval_node.py +404 -0
  17. pixeltable/exec/expr_eval/globals.py +114 -0
  18. pixeltable/exec/expr_eval/row_buffer.py +76 -0
  19. pixeltable/exec/expr_eval/schedulers.py +232 -0
  20. pixeltable/exec/in_memory_data_node.py +2 -2
  21. pixeltable/exec/row_update_node.py +14 -14
  22. pixeltable/exec/sql_node.py +2 -2
  23. pixeltable/exprs/column_ref.py +5 -1
  24. pixeltable/exprs/data_row.py +50 -40
  25. pixeltable/exprs/expr.py +57 -12
  26. pixeltable/exprs/function_call.py +54 -19
  27. pixeltable/exprs/inline_expr.py +12 -21
  28. pixeltable/exprs/literal.py +25 -8
  29. pixeltable/exprs/row_builder.py +23 -0
  30. pixeltable/exprs/similarity_expr.py +4 -4
  31. pixeltable/func/__init__.py +5 -5
  32. pixeltable/func/aggregate_function.py +4 -0
  33. pixeltable/func/callable_function.py +54 -6
  34. pixeltable/func/expr_template_function.py +5 -1
  35. pixeltable/func/function.py +54 -13
  36. pixeltable/func/query_template_function.py +56 -10
  37. pixeltable/func/tools.py +51 -14
  38. pixeltable/func/udf.py +7 -1
  39. pixeltable/functions/__init__.py +1 -1
  40. pixeltable/functions/anthropic.py +108 -21
  41. pixeltable/functions/gemini.py +2 -6
  42. pixeltable/functions/huggingface.py +10 -28
  43. pixeltable/functions/openai.py +225 -28
  44. pixeltable/globals.py +8 -5
  45. pixeltable/index/embedding_index.py +90 -38
  46. pixeltable/io/label_studio.py +1 -1
  47. pixeltable/metadata/__init__.py +1 -1
  48. pixeltable/metadata/converters/convert_24.py +11 -2
  49. pixeltable/metadata/converters/convert_25.py +19 -0
  50. pixeltable/metadata/notes.py +1 -0
  51. pixeltable/plan.py +24 -9
  52. pixeltable/store.py +6 -0
  53. pixeltable/type_system.py +4 -7
  54. pixeltable/utils/arrow.py +3 -3
  55. {pixeltable-0.2.30.dist-info → pixeltable-0.3.1.dist-info}/METADATA +5 -11
  56. {pixeltable-0.2.30.dist-info → pixeltable-0.3.1.dist-info}/RECORD +59 -53
  57. pixeltable/exec/expr_eval_node.py +0 -232
  58. {pixeltable-0.2.30.dist-info → pixeltable-0.3.1.dist-info}/LICENSE +0 -0
  59. {pixeltable-0.2.30.dist-info → pixeltable-0.3.1.dist-info}/WHEEL +0 -0
  60. {pixeltable-0.2.30.dist-info → pixeltable-0.3.1.dist-info}/entry_points.txt +0 -0
@@ -1,232 +0,0 @@
1
- import logging
2
- import sys
3
- import time
4
- import warnings
5
- from dataclasses import dataclass
6
- from typing import Iterable, Optional
7
-
8
- from tqdm import TqdmWarning, tqdm
9
-
10
- from pixeltable import exprs
11
- from pixeltable.func import CallableFunction
12
-
13
- from .data_row_batch import DataRowBatch
14
- from .exec_node import ExecNode
15
-
16
- _logger = logging.getLogger('pixeltable')
17
-
18
-
19
- class ExprEvalNode(ExecNode):
20
- """Materializes expressions
21
- """
22
- @dataclass
23
- class Cohort:
24
- """List of exprs that form an evaluation context and contain calls to at most one external function"""
25
- exprs_: list[exprs.Expr]
26
- batched_fn: Optional[CallableFunction]
27
- segment_ctxs: list['exprs.RowBuilder.EvalCtx']
28
- target_slot_idxs: list[int]
29
- batch_size: int = 8
30
-
31
- def __init__(
32
- self, row_builder: exprs.RowBuilder, output_exprs: Iterable[exprs.Expr], input_exprs: Iterable[exprs.Expr],
33
- input: ExecNode
34
- ):
35
- super().__init__(row_builder, output_exprs, input_exprs, input)
36
- self.input_exprs = input_exprs
37
- input_slot_idxs = {e.slot_idx for e in input_exprs}
38
- # we're only materializing exprs that are not already in the input
39
- self.target_exprs = [e for e in output_exprs if e.slot_idx not in input_slot_idxs]
40
- self.pbar: Optional[tqdm] = None
41
- self.cohorts: list[ExprEvalNode.Cohort] = []
42
- self._create_cohorts()
43
-
44
- def __next__(self) -> DataRowBatch:
45
- input_batch = next(self.input)
46
- # compute target exprs
47
- for cohort in self.cohorts:
48
- self._exec_cohort(cohort, input_batch)
49
- _logger.debug(f'ExprEvalNode: returning {len(input_batch)} rows')
50
- return input_batch
51
-
52
- def _open(self) -> None:
53
- warnings.simplefilter("ignore", category=TqdmWarning)
54
- # This is a temporary hack. When B-tree indices on string columns were implemented (via computed columns
55
- # that invoke the `BtreeIndex.str_filter` udf), it resulted in frivolous progress bars appearing on every
56
- # insertion. This special-cases the `str_filter` call to suppress the corresponding progress bar.
57
- # TODO(aaron-siegel) Remove this hack once we clean up progress bars more generally.
58
- is_str_filter_node = all(
59
- isinstance(expr, exprs.FunctionCall) and expr.fn.name == 'str_filter' for expr in self.output_exprs
60
- )
61
- if self.ctx.show_pbar and not is_str_filter_node:
62
- self.pbar = tqdm(
63
- total=len(self.target_exprs) * self.ctx.num_rows,
64
- desc='Computing cells',
65
- unit=' cells',
66
- ncols=100,
67
- file=sys.stdout
68
- )
69
-
70
- def _close(self) -> None:
71
- if self.pbar is not None:
72
- self.pbar.close()
73
-
74
- def _get_batched_fn(self, expr: exprs.Expr) -> Optional[CallableFunction]:
75
- if isinstance(expr, exprs.FunctionCall) and isinstance(expr.fn, CallableFunction) and expr.fn.is_batched:
76
- return expr.fn
77
- return None
78
-
79
- def _is_batched_fn_call(self, expr: exprs.Expr) -> bool:
80
- return self._get_batched_fn(expr) is not None
81
-
82
- def _create_cohorts(self) -> None:
83
- all_exprs = self.row_builder.get_dependencies(self.target_exprs)
84
- # break up all_exprs into cohorts such that each cohort contains calls to at most one external function;
85
- # seed the cohorts with only the ext fn calls
86
- cohorts: list[list[exprs.Expr]] = []
87
- current_batched_fn: Optional[CallableFunction] = None
88
- for e in all_exprs:
89
- if not self._is_batched_fn_call(e):
90
- continue
91
- assert isinstance(e, exprs.FunctionCall)
92
- assert isinstance(e.fn, CallableFunction)
93
- if current_batched_fn is None or current_batched_fn != e.fn:
94
- # create a new cohort
95
- cohorts.append([])
96
- current_batched_fn = e.fn
97
- cohorts[-1].append(e)
98
-
99
- # expand the cohorts to include all exprs that are in the same evaluation context as the external calls;
100
- # cohorts are evaluated in order, so we can exclude the target slots from preceding cohorts and input slots
101
- exclude = set(e.slot_idx for e in self.input_exprs)
102
- all_target_slot_idxs = set(e.slot_idx for e in self.target_exprs)
103
- target_slot_idxs: list[list[int]] = [] # the ones materialized by each cohort
104
- for i in range(len(cohorts)):
105
- cohorts[i] = self.row_builder.get_dependencies(
106
- cohorts[i], exclude=[self.row_builder.unique_exprs[slot_idx] for slot_idx in exclude])
107
- target_slot_idxs.append(
108
- [e.slot_idx for e in cohorts[i] if e.slot_idx in all_target_slot_idxs])
109
- exclude.update(target_slot_idxs[-1])
110
-
111
- all_cohort_slot_idxs = set(e.slot_idx for cohort in cohorts for e in cohort)
112
- remaining_slot_idxs = set(all_target_slot_idxs) - all_cohort_slot_idxs
113
- if len(remaining_slot_idxs) > 0:
114
- cohorts.append(self.row_builder.get_dependencies(
115
- [self.row_builder.unique_exprs[slot_idx] for slot_idx in remaining_slot_idxs],
116
- exclude=[self.row_builder.unique_exprs[slot_idx] for slot_idx in exclude]))
117
- target_slot_idxs.append(list(remaining_slot_idxs))
118
- # we need to have captured all target slots at this point
119
- assert all_target_slot_idxs == set().union(*target_slot_idxs)
120
-
121
- for i in range(len(cohorts)):
122
- cohort = cohorts[i]
123
- # segment the cohort into sublists that contain either a single ext. function call or no ext. function calls
124
- # (i.e., only computed cols)
125
- assert len(cohort) > 0
126
- # create the first segment here, so we can avoid checking for an empty list in the loop
127
- segments = [[cohort[0]]]
128
- is_batched_segment = self._is_batched_fn_call(cohort[0])
129
- batched_fn: Optional[CallableFunction] = self._get_batched_fn(cohort[0])
130
- for e in cohort[1:]:
131
- if self._is_batched_fn_call(e):
132
- segments.append([e])
133
- is_batched_segment = True
134
- batched_fn = self._get_batched_fn(e)
135
- else:
136
- if is_batched_segment:
137
- # start a new segment
138
- segments.append([])
139
- is_batched_segment = False
140
- segments[-1].append(e)
141
-
142
- # we create the EvalCtxs manually because create_eval_ctx() would repeat the dependencies of each segment
143
- segment_ctxs = [
144
- exprs.RowBuilder.EvalCtx(
145
- slot_idxs=[e.slot_idx for e in s], exprs=s, target_slot_idxs=[], target_exprs=[])
146
- for s in segments
147
- ]
148
- cohort_info = self.Cohort(cohort, batched_fn, segment_ctxs, target_slot_idxs[i])
149
- self.cohorts.append(cohort_info)
150
-
151
- def _exec_cohort(self, cohort: Cohort, rows: DataRowBatch) -> None:
152
- """Compute the cohort for the entire input batch by dividing it up into sub-batches"""
153
- batch_start_idx = 0 # start row of the current sub-batch
154
- # for multi-resolution models, we re-assess the correct ext fn batch size for each input batch
155
- ext_batch_size = cohort.batched_fn.get_batch_size() if cohort.batched_fn is not None else None
156
- if ext_batch_size is not None:
157
- cohort.batch_size = ext_batch_size
158
-
159
- while batch_start_idx < len(rows):
160
- num_batch_rows = min(cohort.batch_size, len(rows) - batch_start_idx)
161
- for segment_ctx in cohort.segment_ctxs:
162
- if not self._is_batched_fn_call(segment_ctx.exprs[0]):
163
- # compute batch row-wise
164
- for row_idx in range(batch_start_idx, batch_start_idx + num_batch_rows):
165
- self.row_builder.eval(
166
- rows[row_idx], segment_ctx, self.ctx.profile, ignore_errors=self.ctx.ignore_errors)
167
- else:
168
- fn_call = segment_ctx.exprs[0]
169
- assert isinstance(fn_call, exprs.FunctionCall)
170
- # make a batched external function call
171
- arg_batches: list[list[exprs.Expr]] = [[] for _ in range(len(fn_call.args))]
172
- kwarg_batches: dict[str, list[exprs.Expr]] = {k: [] for k in fn_call.kwargs.keys()}
173
-
174
- valid_batch_idxs: list[int] = [] # rows with exceptions are not valid
175
- for row_idx in range(batch_start_idx, batch_start_idx + num_batch_rows):
176
- row = rows[row_idx]
177
- if row.has_exc(fn_call.slot_idx):
178
- # one of our inputs had an exception, skip this row
179
- continue
180
- valid_batch_idxs.append(row_idx)
181
- args, kwargs = fn_call._make_args(row)
182
- for i in range(len(args)):
183
- arg_batches[i].append(args[i])
184
- for k in kwargs.keys():
185
- kwarg_batches[k].append(kwargs[k])
186
- num_valid_batch_rows = len(valid_batch_idxs)
187
-
188
- if ext_batch_size is None:
189
- # we need to choose a batch size based on the args
190
- assert isinstance(fn_call.fn, CallableFunction)
191
- sample_args = [arg_batches[i][0] for i in range(len(arg_batches))]
192
- ext_batch_size = fn_call.fn.get_batch_size(*sample_args)
193
-
194
- num_remaining_batch_rows = num_valid_batch_rows
195
- while num_remaining_batch_rows > 0:
196
- # we make ext. fn calls in batches of ext_batch_size
197
- if ext_batch_size is None:
198
- pass
199
- num_ext_batch_rows = min(ext_batch_size, num_remaining_batch_rows)
200
- ext_batch_offset = num_valid_batch_rows - num_remaining_batch_rows # offset into args, not rows
201
- call_args = [
202
- arg_batches[i][ext_batch_offset:ext_batch_offset + num_ext_batch_rows]
203
- for i in range(len(arg_batches))
204
- ]
205
- call_kwargs = {
206
- k: kwarg_batches[k][ext_batch_offset:ext_batch_offset + num_ext_batch_rows]
207
- for k in kwarg_batches.keys()
208
- }
209
- start_ts = time.perf_counter()
210
- assert isinstance(fn_call.fn, CallableFunction)
211
- result_batch = fn_call.fn.exec_batch(call_args, call_kwargs)
212
- self.ctx.profile.eval_time[fn_call.slot_idx] += time.perf_counter() - start_ts
213
- self.ctx.profile.eval_count[fn_call.slot_idx] += num_ext_batch_rows
214
-
215
- # move the result into the row batch
216
- for result_idx in range(len(result_batch)):
217
- row_idx = valid_batch_idxs[ext_batch_offset + result_idx]
218
- row = rows[row_idx]
219
- row[fn_call.slot_idx] = result_batch[result_idx]
220
-
221
- num_remaining_batch_rows -= num_ext_batch_rows
222
-
223
- # switch to the ext fn batch size
224
- cohort.batch_size = ext_batch_size
225
-
226
- # make sure images for stored cols have been saved to files before moving on to the next batch
227
- rows.flush_imgs(
228
- slice(batch_start_idx, batch_start_idx + num_batch_rows), self.stored_img_cols, self.flushed_img_slots)
229
- if self.pbar is not None:
230
- self.pbar.update(num_batch_rows * len(cohort.target_slot_idxs))
231
- batch_start_idx += num_batch_rows
232
-