pixeltable 0.2.13__py3-none-any.whl → 0.2.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pixeltable might be problematic. Click here for more details.
- pixeltable/__init__.py +1 -1
- pixeltable/__version__.py +2 -2
- pixeltable/catalog/column.py +8 -3
- pixeltable/catalog/globals.py +8 -0
- pixeltable/catalog/table.py +25 -9
- pixeltable/catalog/table_version.py +30 -55
- pixeltable/catalog/view.py +1 -1
- pixeltable/env.py +4 -4
- pixeltable/exec/__init__.py +2 -1
- pixeltable/exec/row_update_node.py +61 -0
- pixeltable/exec/{sql_scan_node.py → sql_node.py} +120 -56
- pixeltable/exprs/__init__.py +1 -1
- pixeltable/exprs/arithmetic_expr.py +41 -16
- pixeltable/exprs/expr.py +72 -22
- pixeltable/exprs/function_call.py +64 -29
- pixeltable/exprs/globals.py +5 -1
- pixeltable/exprs/inline_array.py +18 -11
- pixeltable/exprs/method_ref.py +63 -0
- pixeltable/ext/__init__.py +9 -0
- pixeltable/ext/functions/__init__.py +8 -0
- pixeltable/ext/functions/whisperx.py +45 -5
- pixeltable/ext/functions/yolox.py +60 -14
- pixeltable/func/callable_function.py +12 -4
- pixeltable/func/expr_template_function.py +1 -1
- pixeltable/func/function.py +12 -2
- pixeltable/func/function_registry.py +24 -9
- pixeltable/func/udf.py +32 -4
- pixeltable/functions/__init__.py +1 -1
- pixeltable/functions/fireworks.py +33 -0
- pixeltable/functions/huggingface.py +96 -6
- pixeltable/functions/image.py +226 -41
- pixeltable/functions/json.py +46 -0
- pixeltable/functions/openai.py +214 -0
- pixeltable/functions/string.py +195 -218
- pixeltable/functions/timestamp.py +210 -0
- pixeltable/functions/together.py +106 -0
- pixeltable/functions/video.py +2 -2
- pixeltable/functions/{eval.py → vision.py} +170 -27
- pixeltable/functions/whisper.py +32 -0
- pixeltable/io/__init__.py +1 -1
- pixeltable/io/external_store.py +2 -2
- pixeltable/io/globals.py +133 -1
- pixeltable/io/pandas.py +82 -31
- pixeltable/iterators/video.py +55 -23
- pixeltable/metadata/__init__.py +1 -1
- pixeltable/metadata/converters/convert_18.py +39 -0
- pixeltable/metadata/notes.py +10 -0
- pixeltable/plan.py +76 -1
- pixeltable/store.py +65 -28
- pixeltable/tool/create_test_db_dump.py +8 -9
- pixeltable/tool/doc_plugins/griffe.py +4 -0
- pixeltable/type_system.py +84 -63
- {pixeltable-0.2.13.dist-info → pixeltable-0.2.15.dist-info}/METADATA +2 -2
- {pixeltable-0.2.13.dist-info → pixeltable-0.2.15.dist-info}/RECORD +57 -51
- pixeltable/exprs/image_member_access.py +0 -96
- {pixeltable-0.2.13.dist-info → pixeltable-0.2.15.dist-info}/LICENSE +0 -0
- {pixeltable-0.2.13.dist-info → pixeltable-0.2.15.dist-info}/WHEEL +0 -0
- {pixeltable-0.2.13.dist-info → pixeltable-0.2.15.dist-info}/entry_points.txt +0 -0
|
@@ -0,0 +1,210 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Pixeltable [UDFs](https://pixeltable.readme.io/docs/user-defined-functions-udfs) for `TimestampType`.
|
|
3
|
+
|
|
4
|
+
Usage example:
|
|
5
|
+
```python
|
|
6
|
+
import pixeltable as pxt
|
|
7
|
+
|
|
8
|
+
t = pxt.get_table(...)
|
|
9
|
+
t.select(t.timestamp_col.year, t.timestamp_col.weekday()).collect()
|
|
10
|
+
```
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
from datetime import datetime
|
|
14
|
+
from typing import Optional
|
|
15
|
+
|
|
16
|
+
import pixeltable.func as func
|
|
17
|
+
from pixeltable.utils.code import local_public_names
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@func.udf(is_method=True)
|
|
21
|
+
def year(self: datetime) -> int:
|
|
22
|
+
"""
|
|
23
|
+
Between [`MINYEAR`](https://docs.python.org/3/library/datetime.html#datetime.MINYEAR) and
|
|
24
|
+
[`MAXYEAR`](https://docs.python.org/3/library/datetime.html#datetime.MAXYEAR) inclusive.
|
|
25
|
+
|
|
26
|
+
Equivalent to [`datetime.year`](https://docs.python.org/3/library/datetime.html#datetime.datetime.year).
|
|
27
|
+
"""
|
|
28
|
+
return self.year
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@func.udf(is_method=True)
|
|
32
|
+
def month(self: datetime) -> int:
|
|
33
|
+
"""
|
|
34
|
+
Between 1 and 12 inclusive.
|
|
35
|
+
|
|
36
|
+
Equivalent to [`datetime.month`](https://docs.python.org/3/library/datetime.html#datetime.datetime.month).
|
|
37
|
+
"""
|
|
38
|
+
return self.month
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
@func.udf(is_method=True)
|
|
42
|
+
def day(self: datetime) -> int:
|
|
43
|
+
"""
|
|
44
|
+
Between 1 and the number of days in the given month of the given year.
|
|
45
|
+
|
|
46
|
+
Equivalent to [`datetime.day`](https://docs.python.org/3/library/datetime.html#datetime.datetime.day).
|
|
47
|
+
"""
|
|
48
|
+
return self.day
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@func.udf(is_method=True)
|
|
52
|
+
def hour(self: datetime) -> int:
|
|
53
|
+
"""
|
|
54
|
+
Between 0 and 23 inclusive.
|
|
55
|
+
|
|
56
|
+
Equivalent to [`datetime.hour`](https://docs.python.org/3/library/datetime.html#datetime.datetime.hour).
|
|
57
|
+
"""
|
|
58
|
+
return self.hour
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
@func.udf(is_method=True)
|
|
62
|
+
def minute(self: datetime) -> int:
|
|
63
|
+
"""
|
|
64
|
+
Between 0 and 59 inclusive.
|
|
65
|
+
|
|
66
|
+
Equivalent to [`datetime.minute`](https://docs.python.org/3/library/datetime.html#datetime.datetime.minute).
|
|
67
|
+
"""
|
|
68
|
+
return self.minute
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@func.udf(is_method=True)
|
|
72
|
+
def second(self: datetime) -> int:
|
|
73
|
+
"""
|
|
74
|
+
Between 0 and 59 inclusive.
|
|
75
|
+
|
|
76
|
+
Equivalent to [`datetime.second`](https://docs.python.org/3/library/datetime.html#datetime.datetime.second).
|
|
77
|
+
"""
|
|
78
|
+
return self.second
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@func.udf(is_method=True)
|
|
82
|
+
def microsecond(self: datetime) -> int:
|
|
83
|
+
"""
|
|
84
|
+
Between 0 and 999999 inclusive.
|
|
85
|
+
|
|
86
|
+
Equivalent to [`datetime.microsecond`](https://docs.python.org/3/library/datetime.html#datetime.datetime.microsecond).
|
|
87
|
+
"""
|
|
88
|
+
return self.microsecond
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
@func.udf(is_method=True)
|
|
92
|
+
def weekday(self: datetime) -> int:
|
|
93
|
+
"""
|
|
94
|
+
Between 0 (Monday) and 6 (Sunday) inclusive.
|
|
95
|
+
|
|
96
|
+
Equivalent to [`datetime.weekday()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.weekday).
|
|
97
|
+
"""
|
|
98
|
+
return self.weekday()
|
|
99
|
+
|
|
100
|
+
@func.udf(is_method=True)
|
|
101
|
+
def isoweekday(self: datetime) -> int:
|
|
102
|
+
"""
|
|
103
|
+
Return the day of the week as an integer, where Monday is 1 and Sunday is 7.
|
|
104
|
+
|
|
105
|
+
Equivalent to [`datetime.isoweekday()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.isoweekday).
|
|
106
|
+
"""
|
|
107
|
+
return self.isoweekday()
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
@func.udf(is_method=True)
|
|
111
|
+
def isocalendar(self: datetime) -> dict:
|
|
112
|
+
"""
|
|
113
|
+
Return a dictionary with three entries: `'year'`, `'week'`, and `'weekday'`.
|
|
114
|
+
|
|
115
|
+
Equivalent to
|
|
116
|
+
[`datetime.isocalendar()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.isocalendar).
|
|
117
|
+
"""
|
|
118
|
+
iso_year, iso_week, iso_weekday = self.isocalendar()
|
|
119
|
+
return {'year': iso_year, 'week': iso_week, 'weekday': iso_weekday}
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
@func.udf(is_method=True)
|
|
123
|
+
def isoformat(self: datetime, sep: str = 'T', timespec: str = 'auto') -> str:
|
|
124
|
+
"""
|
|
125
|
+
Return a string representing the date and time in ISO 8601 format.
|
|
126
|
+
|
|
127
|
+
Equivalent to [`datetime.isoformat()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.isoformat).
|
|
128
|
+
|
|
129
|
+
Args:
|
|
130
|
+
sep: Separator between date and time.
|
|
131
|
+
timespec: The number of additional terms in the output. See the [`datetime.isoformat()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.isoformat) documentation for more details.
|
|
132
|
+
"""
|
|
133
|
+
return self.isoformat(sep=sep, timespec=timespec)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
@func.udf(is_method=True)
|
|
137
|
+
def strftime(self: datetime, format: str) -> str:
|
|
138
|
+
"""
|
|
139
|
+
Return a string representing the date and time, controlled by an explicit format string.
|
|
140
|
+
|
|
141
|
+
Equivalent to [`datetime.strftime()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime).
|
|
142
|
+
|
|
143
|
+
Args:
|
|
144
|
+
format: The format string to control the output. For a complete list of formatting directives, see [`strftime()` and `strptime()` Behavior](https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior).
|
|
145
|
+
"""
|
|
146
|
+
return self.strftime(format)
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
# @func.udf
|
|
150
|
+
# def date(self: datetime) -> datetime:
|
|
151
|
+
# """
|
|
152
|
+
# Return the date part of the datetime.
|
|
153
|
+
#
|
|
154
|
+
# Equivalent to [`datetime.date()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.date).
|
|
155
|
+
# """
|
|
156
|
+
# d = self.date()
|
|
157
|
+
# return datetime(d.year, d.month, d.day)
|
|
158
|
+
#
|
|
159
|
+
#
|
|
160
|
+
# @func.udf
|
|
161
|
+
# def time(self: datetime) -> datetime:
|
|
162
|
+
# """
|
|
163
|
+
# Return the time part of the datetime, with microseconds set to 0.
|
|
164
|
+
#
|
|
165
|
+
# Equivalent to [`datetime.time()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.time).
|
|
166
|
+
# """
|
|
167
|
+
# t = self.time()
|
|
168
|
+
# return datetime(1, 1, 1, t.hour, t.minute, t.second, t.microsecond)
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
@func.udf(is_method=True)
|
|
172
|
+
def replace(
|
|
173
|
+
self: datetime, year: Optional[int] = None, month: Optional[int] = None, day: Optional[int] = None,
|
|
174
|
+
hour: Optional[int] = None, minute: Optional[int] = None, second: Optional[int] = None,
|
|
175
|
+
microsecond: Optional[int] = None) -> datetime:
|
|
176
|
+
"""
|
|
177
|
+
Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
|
|
178
|
+
arguments are specified.
|
|
179
|
+
|
|
180
|
+
Equivalent to [`datetime.replace()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.replace).
|
|
181
|
+
"""
|
|
182
|
+
kwargs = {k: v for k, v in locals().items() if k != 'self' and v is not None}
|
|
183
|
+
return self.replace(**kwargs)
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
@func.udf(is_method=True)
|
|
187
|
+
def toordinal(self: datetime) -> int:
|
|
188
|
+
"""
|
|
189
|
+
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1.
|
|
190
|
+
|
|
191
|
+
Equivalent to [`datetime.toordinal()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.toordinal).
|
|
192
|
+
"""
|
|
193
|
+
return self.toordinal()
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
@func.udf(is_method=True)
|
|
197
|
+
def posix_timestamp(self: datetime) -> float:
|
|
198
|
+
"""
|
|
199
|
+
Return POSIX timestamp corresponding to the datetime instance.
|
|
200
|
+
|
|
201
|
+
Equivalent to [`datetime.timestamp()`](https://docs.python.org/3/library/datetime.html#datetime.datetime.timestamp).
|
|
202
|
+
"""
|
|
203
|
+
return self.timestamp()
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
__all__ = local_public_names(__name__)
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def __dir__():
|
|
210
|
+
return __all__
|
pixeltable/functions/together.py
CHANGED
|
@@ -1,3 +1,10 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Pixeltable [UDFs](https://pixeltable.readme.io/docs/user-defined-functions-udfs)
|
|
3
|
+
that wrap various endpoints from the Together AI API. In order to use them, you must
|
|
4
|
+
first `pip install together` and configure your Together AI credentials, as described in
|
|
5
|
+
the [Working with Together AI](https://pixeltable.readme.io/docs/together-ai) tutorial.
|
|
6
|
+
"""
|
|
7
|
+
|
|
1
8
|
import base64
|
|
2
9
|
from typing import Optional, TYPE_CHECKING
|
|
3
10
|
|
|
@@ -41,6 +48,31 @@ def completions(
|
|
|
41
48
|
n: Optional[int] = None,
|
|
42
49
|
safety_model: Optional[str] = None,
|
|
43
50
|
) -> dict:
|
|
51
|
+
"""
|
|
52
|
+
Generate completions based on a given prompt using a specified model.
|
|
53
|
+
|
|
54
|
+
Equivalent to the Together AI `completions` API endpoint.
|
|
55
|
+
For additional details, see: [https://docs.together.ai/reference/completions-1](https://docs.together.ai/reference/completions-1)
|
|
56
|
+
|
|
57
|
+
__Requirements:__
|
|
58
|
+
|
|
59
|
+
- `pip install together`
|
|
60
|
+
|
|
61
|
+
Args:
|
|
62
|
+
prompt: A string providing context for the model to complete.
|
|
63
|
+
model: The name of the model to query.
|
|
64
|
+
|
|
65
|
+
For details on the other parameters, see: [https://docs.together.ai/reference/completions-1](https://docs.together.ai/reference/completions-1)
|
|
66
|
+
|
|
67
|
+
Returns:
|
|
68
|
+
A dictionary containing the response and other metadata.
|
|
69
|
+
|
|
70
|
+
Examples:
|
|
71
|
+
Add a computed column that applies the model `mistralai/Mixtral-8x7B-v0.1` to an existing Pixeltable column `tbl.prompt`
|
|
72
|
+
of the table `tbl`:
|
|
73
|
+
|
|
74
|
+
>>> tbl['response'] = completions(tbl.prompt, model='mistralai/Mixtral-8x7B-v0.1')
|
|
75
|
+
"""
|
|
44
76
|
return (
|
|
45
77
|
_together_client()
|
|
46
78
|
.completions.create(
|
|
@@ -80,6 +112,32 @@ def chat_completions(
|
|
|
80
112
|
tools: Optional[dict] = None,
|
|
81
113
|
tool_choice: Optional[dict] = None,
|
|
82
114
|
) -> dict:
|
|
115
|
+
"""
|
|
116
|
+
Generate chat completions based on a given prompt using a specified model.
|
|
117
|
+
|
|
118
|
+
Equivalent to the Together AI `chat/completions` API endpoint.
|
|
119
|
+
For additional details, see: [https://docs.together.ai/reference/chat-completions-1](https://docs.together.ai/reference/chat-completions-1)
|
|
120
|
+
|
|
121
|
+
__Requirements:__
|
|
122
|
+
|
|
123
|
+
- `pip install together`
|
|
124
|
+
|
|
125
|
+
Args:
|
|
126
|
+
messages: A list of messages comprising the conversation so far.
|
|
127
|
+
model: The name of the model to query.
|
|
128
|
+
|
|
129
|
+
For details on the other parameters, see: [https://docs.together.ai/reference/chat-completions-1](https://docs.together.ai/reference/chat-completions-1)
|
|
130
|
+
|
|
131
|
+
Returns:
|
|
132
|
+
A dictionary containing the response and other metadata.
|
|
133
|
+
|
|
134
|
+
Examples:
|
|
135
|
+
Add a computed column that applies the model `mistralai/Mixtral-8x7B-v0.1` to an existing Pixeltable column `tbl.prompt`
|
|
136
|
+
of the table `tbl`:
|
|
137
|
+
|
|
138
|
+
>>> messages = [{'role': 'user', 'content': tbl.prompt}]
|
|
139
|
+
... tbl['response'] = chat_completions(tbl.prompt, model='mistralai/Mixtral-8x7B-v0.1')
|
|
140
|
+
"""
|
|
83
141
|
return (
|
|
84
142
|
_together_client()
|
|
85
143
|
.chat.completions.create(
|
|
@@ -117,6 +175,29 @@ _embedding_dimensions_cache = {
|
|
|
117
175
|
|
|
118
176
|
@pxt.udf(batch_size=32, return_type=pxt.ArrayType((None,), dtype=pxt.FloatType()))
|
|
119
177
|
def embeddings(input: Batch[str], *, model: str) -> Batch[np.ndarray]:
|
|
178
|
+
"""
|
|
179
|
+
Query an embedding model for a given string of text.
|
|
180
|
+
|
|
181
|
+
Equivalent to the Together AI `embeddings` API endpoint.
|
|
182
|
+
For additional details, see: [https://docs.together.ai/reference/embeddings-2](https://docs.together.ai/reference/embeddings-2)
|
|
183
|
+
|
|
184
|
+
__Requirements:__
|
|
185
|
+
|
|
186
|
+
- `pip install together`
|
|
187
|
+
|
|
188
|
+
Args:
|
|
189
|
+
input: A string providing the text for the model to embed.
|
|
190
|
+
model: The name of the embedding model to use.
|
|
191
|
+
|
|
192
|
+
Returns:
|
|
193
|
+
An array representing the application of the given embedding to `input`.
|
|
194
|
+
|
|
195
|
+
Examples:
|
|
196
|
+
Add a computed column that applies the model `togethercomputer/m2-bert-80M-8k-retrieval`
|
|
197
|
+
to an existing Pixeltable column `tbl.text` of the table `tbl`:
|
|
198
|
+
|
|
199
|
+
>>> tbl['response'] = embeddings(tbl.text, model='togethercomputer/m2-bert-80M-8k-retrieval')
|
|
200
|
+
"""
|
|
120
201
|
result = _together_client().embeddings.create(input=input, model=model)
|
|
121
202
|
return [np.array(data.embedding, dtype=np.float64) for data in result.data]
|
|
122
203
|
|
|
@@ -141,6 +222,31 @@ def image_generations(
|
|
|
141
222
|
width: Optional[int] = None,
|
|
142
223
|
negative_prompt: Optional[str] = None,
|
|
143
224
|
) -> PIL.Image.Image:
|
|
225
|
+
"""
|
|
226
|
+
Generate images based on a given prompt using a specified model.
|
|
227
|
+
|
|
228
|
+
Equivalent to the Together AI `images/generations` API endpoint.
|
|
229
|
+
For additional details, see: [https://docs.together.ai/reference/post_images-generations](https://docs.together.ai/reference/post_images-generations)
|
|
230
|
+
|
|
231
|
+
__Requirements:__
|
|
232
|
+
|
|
233
|
+
- `pip install together`
|
|
234
|
+
|
|
235
|
+
Args:
|
|
236
|
+
prompt: A description of the desired images.
|
|
237
|
+
model: The model to use for image generation.
|
|
238
|
+
|
|
239
|
+
For details on the other parameters, see: [https://docs.together.ai/reference/post_images-generations](https://docs.together.ai/reference/post_images-generations)
|
|
240
|
+
|
|
241
|
+
Returns:
|
|
242
|
+
The generated image.
|
|
243
|
+
|
|
244
|
+
Examples:
|
|
245
|
+
Add a computed column that applies the model `runwayml/stable-diffusion-v1-5`
|
|
246
|
+
to an existing Pixeltable column `tbl.prompt` of the table `tbl`:
|
|
247
|
+
|
|
248
|
+
>>> tbl['response'] = image_generations(tbl.prompt, model='runwayml/stable-diffusion-v1-5')
|
|
249
|
+
"""
|
|
144
250
|
# TODO(aaron-siegel): Decompose CPU/GPU ops into separate functions
|
|
145
251
|
result = _together_client().images.generate(
|
|
146
252
|
prompt=prompt, model=model, steps=steps, seed=seed, height=height, width=width, negative_prompt=negative_prompt
|
pixeltable/functions/video.py
CHANGED
|
@@ -96,7 +96,7 @@ _extract_audio_param_types = [
|
|
|
96
96
|
]
|
|
97
97
|
|
|
98
98
|
|
|
99
|
-
@func.udf(return_type=ts.AudioType(nullable=True), param_types=_extract_audio_param_types)
|
|
99
|
+
@func.udf(return_type=ts.AudioType(nullable=True), param_types=_extract_audio_param_types, is_method=True)
|
|
100
100
|
def extract_audio(
|
|
101
101
|
video_path: str, stream_idx: int = 0, format: str = 'wav', codec: Optional[str] = None
|
|
102
102
|
) -> Optional[str]:
|
|
@@ -128,7 +128,7 @@ def extract_audio(
|
|
|
128
128
|
return output_filename
|
|
129
129
|
|
|
130
130
|
|
|
131
|
-
@func.udf(return_type=ts.JsonType(nullable=False), param_types=[ts.VideoType(nullable=False)])
|
|
131
|
+
@func.udf(return_type=ts.JsonType(nullable=False), param_types=[ts.VideoType(nullable=False)], is_method=True)
|
|
132
132
|
def get_metadata(video: str) -> dict:
|
|
133
133
|
"""
|
|
134
134
|
Gets various metadata associated with a video file and returns it as a dictionary.
|
|
@@ -1,11 +1,29 @@
|
|
|
1
|
-
|
|
1
|
+
"""
|
|
2
|
+
Pixeltable [UDFs](https://pixeltable.readme.io/docs/user-defined-functions-udfs) for Computer Vision.
|
|
3
|
+
|
|
4
|
+
Example:
|
|
5
|
+
```python
|
|
6
|
+
import pixeltable as pxt
|
|
7
|
+
from pixeltable.functions import vision as pxtv
|
|
8
|
+
|
|
9
|
+
t = pxt.get_table(...)
|
|
10
|
+
t.select(pxtv.draw_bounding_boxes(t.img, boxes=t.boxes, label=t.labels)).collect()
|
|
11
|
+
```
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
import colorsys
|
|
15
|
+
import hashlib
|
|
16
|
+
import random
|
|
2
17
|
from collections import defaultdict
|
|
3
|
-
import
|
|
18
|
+
from typing import Optional, Union, Any
|
|
4
19
|
|
|
20
|
+
import PIL.Image
|
|
21
|
+
import PIL.Image
|
|
5
22
|
import numpy as np
|
|
6
23
|
|
|
7
|
-
import pixeltable.type_system as ts
|
|
8
24
|
import pixeltable.func as func
|
|
25
|
+
import pixeltable.type_system as ts
|
|
26
|
+
from pixeltable.utils.code import local_public_names
|
|
9
27
|
|
|
10
28
|
|
|
11
29
|
# TODO: figure out a better submodule structure
|
|
@@ -14,7 +32,7 @@ import pixeltable.func as func
|
|
|
14
32
|
# the following function has been adapted from MMEval
|
|
15
33
|
# (sources at https://github.com/open-mmlab/mmeval)
|
|
16
34
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
17
|
-
def
|
|
35
|
+
def __calculate_bboxes_area(bboxes: np.ndarray) -> np.ndarray:
|
|
18
36
|
"""Calculate area of bounding boxes.
|
|
19
37
|
|
|
20
38
|
Args:
|
|
@@ -31,7 +49,7 @@ def calculate_bboxes_area(bboxes: np.ndarray) -> np.ndarray:
|
|
|
31
49
|
# the following function has been adapted from MMEval
|
|
32
50
|
# (sources at https://github.com/open-mmlab/mmeval)
|
|
33
51
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
34
|
-
def
|
|
52
|
+
def __calculate_overlaps(bboxes1: np.ndarray, bboxes2: np.ndarray) -> np.ndarray:
|
|
35
53
|
"""Calculate the overlap between each bbox of bboxes1 and bboxes2.
|
|
36
54
|
|
|
37
55
|
Args:
|
|
@@ -58,8 +76,8 @@ def calculate_overlaps(bboxes1: np.ndarray, bboxes2: np.ndarray) -> np.ndarray:
|
|
|
58
76
|
exchange = False
|
|
59
77
|
|
|
60
78
|
# Calculate the bboxes area.
|
|
61
|
-
area1 =
|
|
62
|
-
area2 =
|
|
79
|
+
area1 = __calculate_bboxes_area(bboxes1)
|
|
80
|
+
area2 = __calculate_bboxes_area(bboxes2)
|
|
63
81
|
eps = np.finfo(np.float32).eps
|
|
64
82
|
|
|
65
83
|
for i in range(bboxes1.shape[0]):
|
|
@@ -80,9 +98,9 @@ def calculate_overlaps(bboxes1: np.ndarray, bboxes2: np.ndarray) -> np.ndarray:
|
|
|
80
98
|
# the following function has been adapted from MMEval
|
|
81
99
|
# (sources at https://github.com/open-mmlab/mmeval)
|
|
82
100
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
83
|
-
def
|
|
101
|
+
def __calculate_image_tpfp(
|
|
84
102
|
pred_bboxes: np.ndarray, pred_scores: np.ndarray, gt_bboxes: np.ndarray, min_iou: float
|
|
85
|
-
) ->
|
|
103
|
+
) -> tuple[np.ndarray, np.ndarray]:
|
|
86
104
|
"""Calculate the true positive and false positive on an image.
|
|
87
105
|
|
|
88
106
|
Args:
|
|
@@ -95,11 +113,8 @@ def calculate_image_tpfp(
|
|
|
95
113
|
|
|
96
114
|
Returns:
|
|
97
115
|
tuple (tp, fp):
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
the true positive flag of each predicted bbox on this image.
|
|
101
|
-
- fp (numpy.ndarray): Shape (N,),
|
|
102
|
-
the false positive flag of each predicted bbox on this image.
|
|
116
|
+
tp: Shape (N,), the true positive flag of each predicted bbox on this image.
|
|
117
|
+
fp: Shape (N,), the false positive flag of each predicted bbox on this image.
|
|
103
118
|
"""
|
|
104
119
|
# Step 1. Concatenate `gt_bboxes` and `ignore_gt_bboxes`, then set
|
|
105
120
|
# the `ignore_gt_flags`.
|
|
@@ -121,7 +136,7 @@ def calculate_image_tpfp(
|
|
|
121
136
|
|
|
122
137
|
# Step 4. Calculate the IoUs between the predicted bboxes and the
|
|
123
138
|
# ground truth bboxes.
|
|
124
|
-
ious =
|
|
139
|
+
ious = __calculate_overlaps(pred_bboxes, gt_bboxes)
|
|
125
140
|
# For each pred bbox, the max iou with all gts.
|
|
126
141
|
ious_max = ious.max(axis=1)
|
|
127
142
|
# For each pred bbox, which gt overlaps most with it.
|
|
@@ -160,14 +175,17 @@ def calculate_image_tpfp(
|
|
|
160
175
|
],
|
|
161
176
|
)
|
|
162
177
|
def eval_detections(
|
|
163
|
-
pred_bboxes:
|
|
164
|
-
pred_labels:
|
|
165
|
-
pred_scores:
|
|
166
|
-
gt_bboxes:
|
|
167
|
-
gt_labels:
|
|
168
|
-
) ->
|
|
178
|
+
pred_bboxes: list[list[int]],
|
|
179
|
+
pred_labels: list[int],
|
|
180
|
+
pred_scores: list[float],
|
|
181
|
+
gt_bboxes: list[list[int]],
|
|
182
|
+
gt_labels: list[int],
|
|
183
|
+
) -> dict:
|
|
184
|
+
"""
|
|
185
|
+
Evaluates the performance of a set of predicted bounding boxes against a set of ground truth bounding boxes.
|
|
186
|
+
"""
|
|
169
187
|
class_idxs = list(set(pred_labels + gt_labels))
|
|
170
|
-
result:
|
|
188
|
+
result: list[dict] = []
|
|
171
189
|
pred_bboxes_arr = np.asarray(pred_bboxes)
|
|
172
190
|
pred_classes_arr = np.asarray(pred_labels)
|
|
173
191
|
pred_scores_arr = np.asarray(pred_scores)
|
|
@@ -177,7 +195,7 @@ def eval_detections(
|
|
|
177
195
|
pred_filter = pred_classes_arr == class_idx
|
|
178
196
|
gt_filter = gt_classes_arr == class_idx
|
|
179
197
|
class_pred_scores = pred_scores_arr[pred_filter]
|
|
180
|
-
tp, fp =
|
|
198
|
+
tp, fp = __calculate_image_tpfp(pred_bboxes_arr[pred_filter], class_pred_scores, gt_bboxes_arr[gt_filter], [0.5])
|
|
181
199
|
ordered_class_pred_scores = -np.sort(-class_pred_scores)
|
|
182
200
|
result.append(
|
|
183
201
|
{
|
|
@@ -194,17 +212,21 @@ def eval_detections(
|
|
|
194
212
|
|
|
195
213
|
@func.uda(update_types=[ts.JsonType()], value_type=ts.JsonType(), allows_std_agg=True, allows_window=False)
|
|
196
214
|
class mean_ap(func.Aggregator):
|
|
215
|
+
"""
|
|
216
|
+
Calculates the mean average precision (mAP) over
|
|
217
|
+
[`eval_detections()`][pixeltable.functions.vision.eval_detections] results.
|
|
218
|
+
"""
|
|
197
219
|
def __init__(self):
|
|
198
|
-
self.class_tpfp:
|
|
220
|
+
self.class_tpfp: dict[int, list[dict]] = defaultdict(list)
|
|
199
221
|
|
|
200
|
-
def update(self, eval_dicts:
|
|
222
|
+
def update(self, eval_dicts: list[dict]) -> None:
|
|
201
223
|
for eval_dict in eval_dicts:
|
|
202
224
|
class_idx = eval_dict['class']
|
|
203
225
|
self.class_tpfp[class_idx].append(eval_dict)
|
|
204
226
|
|
|
205
|
-
def value(self) ->
|
|
227
|
+
def value(self) -> dict:
|
|
206
228
|
eps = np.finfo(np.float32).eps
|
|
207
|
-
result:
|
|
229
|
+
result: dict[int, float] = {}
|
|
208
230
|
for class_idx, tpfp in self.class_tpfp.items():
|
|
209
231
|
a1 = [x['tp'] for x in tpfp]
|
|
210
232
|
tp = np.concatenate([x['tp'] for x in tpfp], axis=0)
|
|
@@ -225,3 +247,124 @@ class mean_ap(func.Aggregator):
|
|
|
225
247
|
ap = np.sum((mrec[ind + 1] - mrec[ind]) * mpre[ind + 1])
|
|
226
248
|
result[class_idx] = ap.item()
|
|
227
249
|
return result
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def _create_label_colors(labels: list[Any]) -> dict[Any, str]:
|
|
253
|
+
"""
|
|
254
|
+
Create random colors for labels such that a particular label always gets the same color.
|
|
255
|
+
|
|
256
|
+
Returns:
|
|
257
|
+
dict mapping labels to colors
|
|
258
|
+
"""
|
|
259
|
+
distinct_labels = set(labels)
|
|
260
|
+
result: dict[Any, str] = {}
|
|
261
|
+
for label in distinct_labels:
|
|
262
|
+
# consistent hash for the label
|
|
263
|
+
label_hash = int(hashlib.md5(str(label).encode()).hexdigest(), 16)
|
|
264
|
+
hue = (label_hash % 360) / 360.0
|
|
265
|
+
rgb = colorsys.hsv_to_rgb(hue, 0.7, 0.95)
|
|
266
|
+
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255))
|
|
267
|
+
result[label] = hex_color
|
|
268
|
+
return result
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
@func.udf
|
|
272
|
+
def draw_bounding_boxes(
|
|
273
|
+
img: PIL.Image.Image,
|
|
274
|
+
boxes: list[list[int]],
|
|
275
|
+
labels: Optional[list[Any]] = None,
|
|
276
|
+
color: Optional[str] = None,
|
|
277
|
+
label_colors: Optional[dict[Union[str, int], str]] = None,
|
|
278
|
+
box_colors: Optional[list[str]] = None,
|
|
279
|
+
fill: bool = False,
|
|
280
|
+
width: int = 1,
|
|
281
|
+
font: Optional[str] = None,
|
|
282
|
+
font_size: Optional[int] = None,
|
|
283
|
+
) -> PIL.Image.Image:
|
|
284
|
+
"""
|
|
285
|
+
Draws bounding boxes on the given image.
|
|
286
|
+
|
|
287
|
+
Labels can be any type that supports `str()` and is hashable (e.g., strings, ints, etc.).
|
|
288
|
+
|
|
289
|
+
Colors can be specified as common HTML color names (e.g., 'red') supported by PIL's
|
|
290
|
+
[`ImageColor`](https://pillow.readthedocs.io/en/stable/reference/ImageColor.html#imagecolor-module) module or as
|
|
291
|
+
RGB hex codes (e.g., '#FF0000').
|
|
292
|
+
|
|
293
|
+
If no colors are specified, this function randomly assigns each label a specific color based on a hash of the label.
|
|
294
|
+
|
|
295
|
+
Args:
|
|
296
|
+
img: The image on which to draw the bounding boxes.
|
|
297
|
+
boxes: List of bounding boxes, each represented as [xmin, ymin, xmax, ymax].
|
|
298
|
+
labels: List of labels for each bounding box.
|
|
299
|
+
color: Single color to be used for all bounding boxes and labels.
|
|
300
|
+
label_colors: Dictionary mapping labels to colors.
|
|
301
|
+
box_colors: List of colors, one per bounding box.
|
|
302
|
+
fill: Whether to fill the bounding boxes with color.
|
|
303
|
+
width: Width of the bounding box borders.
|
|
304
|
+
font: Name of a system font or path to a TrueType font file, as required by
|
|
305
|
+
[`PIL.ImageFont.truetype()`](https://pillow.readthedocs.io/en/stable/reference/ImageFont.html#PIL.ImageFont.truetype).
|
|
306
|
+
If `None`, uses the default provided by
|
|
307
|
+
[`PIL.ImageFont.load_default()`](https://pillow.readthedocs.io/en/stable/reference/ImageFont.html#PIL.ImageFont.load_default).
|
|
308
|
+
font_size: Size of the font used for labels in points. Only used in conjunction with non-`None` `font` argument.
|
|
309
|
+
|
|
310
|
+
Returns:
|
|
311
|
+
The image with bounding boxes drawn on it.
|
|
312
|
+
"""
|
|
313
|
+
color_params = sum([color is not None, label_colors is not None, box_colors is not None])
|
|
314
|
+
if color_params > 1:
|
|
315
|
+
raise ValueError("Only one of 'color', 'label_colors', or 'box_colors' can be set")
|
|
316
|
+
|
|
317
|
+
# ensure the number of labels matches the number of boxes
|
|
318
|
+
num_boxes = len(boxes)
|
|
319
|
+
if labels is None:
|
|
320
|
+
labels = [None] * num_boxes
|
|
321
|
+
elif len(labels) != num_boxes:
|
|
322
|
+
raise ValueError('Number of boxes and labels must match')
|
|
323
|
+
|
|
324
|
+
DEFAULT_COLOR = 'white'
|
|
325
|
+
if box_colors is not None:
|
|
326
|
+
if len(box_colors) != num_boxes:
|
|
327
|
+
raise ValueError('Number of boxes and box colors must match')
|
|
328
|
+
else:
|
|
329
|
+
if color is not None:
|
|
330
|
+
box_colors = [color] * num_boxes
|
|
331
|
+
elif label_colors is not None:
|
|
332
|
+
box_colors = [label_colors.get(label, DEFAULT_COLOR) for label in labels]
|
|
333
|
+
else:
|
|
334
|
+
label_colors = _create_label_colors(labels)
|
|
335
|
+
box_colors = [label_colors[label] for label in labels]
|
|
336
|
+
|
|
337
|
+
from PIL import ImageDraw, ImageFont, ImageColor
|
|
338
|
+
# set default font if not provided
|
|
339
|
+
if font is None:
|
|
340
|
+
txt_font = ImageFont.load_default()
|
|
341
|
+
else:
|
|
342
|
+
txt_font = ImageFont.truetype(font=font, size=font_size or 10)
|
|
343
|
+
|
|
344
|
+
img_to_draw = img.copy()
|
|
345
|
+
draw = ImageDraw.Draw(img_to_draw, 'RGBA' if fill else 'RGB')
|
|
346
|
+
|
|
347
|
+
for i, (bbox, label) in enumerate(zip(boxes, labels)):
|
|
348
|
+
# determine color for the current box and label
|
|
349
|
+
color = box_colors[i % len(box_colors)]
|
|
350
|
+
|
|
351
|
+
if fill:
|
|
352
|
+
rgb_color = ImageColor.getrgb(color)
|
|
353
|
+
fill_color = rgb_color + (100,) # semi-transparent
|
|
354
|
+
draw.rectangle(bbox, outline=color, width=width, fill=fill_color)
|
|
355
|
+
else:
|
|
356
|
+
draw.rectangle(bbox, outline=color, width=width)
|
|
357
|
+
|
|
358
|
+
if label is not None:
|
|
359
|
+
label_str = str(label)
|
|
360
|
+
margin = width + 1
|
|
361
|
+
draw.text((bbox[0] + margin, bbox[1] + margin), label_str, fill=color, font=txt_font)
|
|
362
|
+
|
|
363
|
+
return img_to_draw
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
__all__ = local_public_names(__name__)
|
|
367
|
+
|
|
368
|
+
|
|
369
|
+
def __dir__():
|
|
370
|
+
return __all__
|
pixeltable/functions/whisper.py
CHANGED
|
@@ -1,3 +1,11 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Pixeltable [UDF](https://pixeltable.readme.io/docs/user-defined-functions-udfs)
|
|
3
|
+
that wraps the OpenAI Whisper library.
|
|
4
|
+
|
|
5
|
+
This UDF will cause Pixeltable to invoke the relevant model locally. In order to use it, you must
|
|
6
|
+
first `pip install openai-whisper`.
|
|
7
|
+
"""
|
|
8
|
+
|
|
1
9
|
from typing import TYPE_CHECKING, Optional
|
|
2
10
|
|
|
3
11
|
import pixeltable as pxt
|
|
@@ -39,6 +47,30 @@ def transcribe(
|
|
|
39
47
|
append_punctuations: str = '"\'.。,,!!??::”)]}、',
|
|
40
48
|
decode_options: Optional[dict] = None,
|
|
41
49
|
) -> dict:
|
|
50
|
+
"""
|
|
51
|
+
Transcribe an audio file using Whisper.
|
|
52
|
+
|
|
53
|
+
This UDF runs a transcription model _locally_ using the Whisper library,
|
|
54
|
+
equivalent to the Whisper `transcribe` function, as described in the
|
|
55
|
+
[Whisper library documentation](https://github.com/openai/whisper).
|
|
56
|
+
|
|
57
|
+
__Requirements:__
|
|
58
|
+
|
|
59
|
+
- `pip install openai-whisper`
|
|
60
|
+
|
|
61
|
+
Args:
|
|
62
|
+
audio: The audio file to transcribe.
|
|
63
|
+
model: The name of the model to use for transcription.
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
A dictionary containing the transcription and various other metadata.
|
|
67
|
+
|
|
68
|
+
Examples:
|
|
69
|
+
Add a computed column that applies the model `base.en` to an existing Pixeltable column `tbl.audio`
|
|
70
|
+
of the table `tbl`:
|
|
71
|
+
|
|
72
|
+
>>> tbl['result'] = transcribe(tbl.audio, model='base.en')
|
|
73
|
+
"""
|
|
42
74
|
import torch
|
|
43
75
|
|
|
44
76
|
if decode_options is None:
|
pixeltable/io/__init__.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
from .external_store import ExternalStore, SyncStatus
|
|
2
|
-
from .globals import create_label_studio_project
|
|
2
|
+
from .globals import create_label_studio_project, import_rows, import_json
|
|
3
3
|
from .hf_datasets import import_huggingface_dataset
|
|
4
4
|
from .pandas import import_csv, import_excel, import_pandas
|
|
5
5
|
from .parquet import import_parquet
|