pixeltable 0.1.0__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pixeltable might be problematic. Click here for more details.

Files changed (147) hide show
  1. pixeltable/__init__.py +34 -6
  2. pixeltable/catalog/__init__.py +13 -0
  3. pixeltable/catalog/catalog.py +159 -0
  4. pixeltable/catalog/column.py +200 -0
  5. pixeltable/catalog/dir.py +32 -0
  6. pixeltable/catalog/globals.py +33 -0
  7. pixeltable/catalog/insertable_table.py +191 -0
  8. pixeltable/catalog/named_function.py +36 -0
  9. pixeltable/catalog/path.py +58 -0
  10. pixeltable/catalog/path_dict.py +139 -0
  11. pixeltable/catalog/schema_object.py +39 -0
  12. pixeltable/catalog/table.py +581 -0
  13. pixeltable/catalog/table_version.py +749 -0
  14. pixeltable/catalog/table_version_path.py +133 -0
  15. pixeltable/catalog/view.py +203 -0
  16. pixeltable/client.py +590 -30
  17. pixeltable/dataframe.py +540 -349
  18. pixeltable/env.py +359 -45
  19. pixeltable/exceptions.py +12 -21
  20. pixeltable/exec/__init__.py +9 -0
  21. pixeltable/exec/aggregation_node.py +78 -0
  22. pixeltable/exec/cache_prefetch_node.py +116 -0
  23. pixeltable/exec/component_iteration_node.py +79 -0
  24. pixeltable/exec/data_row_batch.py +95 -0
  25. pixeltable/exec/exec_context.py +22 -0
  26. pixeltable/exec/exec_node.py +61 -0
  27. pixeltable/exec/expr_eval_node.py +217 -0
  28. pixeltable/exec/in_memory_data_node.py +69 -0
  29. pixeltable/exec/media_validation_node.py +43 -0
  30. pixeltable/exec/sql_scan_node.py +225 -0
  31. pixeltable/exprs/__init__.py +24 -0
  32. pixeltable/exprs/arithmetic_expr.py +102 -0
  33. pixeltable/exprs/array_slice.py +71 -0
  34. pixeltable/exprs/column_property_ref.py +77 -0
  35. pixeltable/exprs/column_ref.py +105 -0
  36. pixeltable/exprs/comparison.py +77 -0
  37. pixeltable/exprs/compound_predicate.py +98 -0
  38. pixeltable/exprs/data_row.py +195 -0
  39. pixeltable/exprs/expr.py +586 -0
  40. pixeltable/exprs/expr_set.py +39 -0
  41. pixeltable/exprs/function_call.py +380 -0
  42. pixeltable/exprs/globals.py +69 -0
  43. pixeltable/exprs/image_member_access.py +115 -0
  44. pixeltable/exprs/image_similarity_predicate.py +58 -0
  45. pixeltable/exprs/inline_array.py +107 -0
  46. pixeltable/exprs/inline_dict.py +101 -0
  47. pixeltable/exprs/is_null.py +38 -0
  48. pixeltable/exprs/json_mapper.py +121 -0
  49. pixeltable/exprs/json_path.py +159 -0
  50. pixeltable/exprs/literal.py +54 -0
  51. pixeltable/exprs/object_ref.py +41 -0
  52. pixeltable/exprs/predicate.py +44 -0
  53. pixeltable/exprs/row_builder.py +355 -0
  54. pixeltable/exprs/rowid_ref.py +94 -0
  55. pixeltable/exprs/type_cast.py +53 -0
  56. pixeltable/exprs/variable.py +45 -0
  57. pixeltable/func/__init__.py +9 -0
  58. pixeltable/func/aggregate_function.py +194 -0
  59. pixeltable/func/batched_function.py +53 -0
  60. pixeltable/func/callable_function.py +69 -0
  61. pixeltable/func/expr_template_function.py +82 -0
  62. pixeltable/func/function.py +110 -0
  63. pixeltable/func/function_registry.py +227 -0
  64. pixeltable/func/globals.py +36 -0
  65. pixeltable/func/nos_function.py +202 -0
  66. pixeltable/func/signature.py +166 -0
  67. pixeltable/func/udf.py +163 -0
  68. pixeltable/functions/__init__.py +52 -103
  69. pixeltable/functions/eval.py +216 -0
  70. pixeltable/functions/fireworks.py +34 -0
  71. pixeltable/functions/huggingface.py +120 -0
  72. pixeltable/functions/image.py +16 -0
  73. pixeltable/functions/openai.py +256 -0
  74. pixeltable/functions/pil/image.py +148 -7
  75. pixeltable/functions/string.py +13 -0
  76. pixeltable/functions/together.py +122 -0
  77. pixeltable/functions/util.py +41 -0
  78. pixeltable/functions/video.py +62 -0
  79. pixeltable/iterators/__init__.py +3 -0
  80. pixeltable/iterators/base.py +48 -0
  81. pixeltable/iterators/document.py +311 -0
  82. pixeltable/iterators/video.py +89 -0
  83. pixeltable/metadata/__init__.py +54 -0
  84. pixeltable/metadata/converters/convert_10.py +18 -0
  85. pixeltable/metadata/schema.py +211 -0
  86. pixeltable/plan.py +656 -0
  87. pixeltable/store.py +418 -182
  88. pixeltable/tests/conftest.py +146 -88
  89. pixeltable/tests/functions/test_fireworks.py +42 -0
  90. pixeltable/tests/functions/test_functions.py +60 -0
  91. pixeltable/tests/functions/test_huggingface.py +158 -0
  92. pixeltable/tests/functions/test_openai.py +152 -0
  93. pixeltable/tests/functions/test_together.py +111 -0
  94. pixeltable/tests/test_audio.py +65 -0
  95. pixeltable/tests/test_catalog.py +27 -0
  96. pixeltable/tests/test_client.py +14 -14
  97. pixeltable/tests/test_component_view.py +370 -0
  98. pixeltable/tests/test_dataframe.py +439 -0
  99. pixeltable/tests/test_dirs.py +78 -62
  100. pixeltable/tests/test_document.py +120 -0
  101. pixeltable/tests/test_exprs.py +592 -135
  102. pixeltable/tests/test_function.py +297 -67
  103. pixeltable/tests/test_migration.py +43 -0
  104. pixeltable/tests/test_nos.py +54 -0
  105. pixeltable/tests/test_snapshot.py +208 -0
  106. pixeltable/tests/test_table.py +1195 -263
  107. pixeltable/tests/test_transactional_directory.py +42 -0
  108. pixeltable/tests/test_types.py +5 -11
  109. pixeltable/tests/test_video.py +151 -34
  110. pixeltable/tests/test_view.py +530 -0
  111. pixeltable/tests/utils.py +320 -45
  112. pixeltable/tool/create_test_db_dump.py +149 -0
  113. pixeltable/tool/create_test_video.py +81 -0
  114. pixeltable/type_system.py +445 -124
  115. pixeltable/utils/__init__.py +17 -46
  116. pixeltable/utils/arrow.py +98 -0
  117. pixeltable/utils/clip.py +12 -15
  118. pixeltable/utils/coco.py +136 -0
  119. pixeltable/utils/documents.py +39 -0
  120. pixeltable/utils/filecache.py +195 -0
  121. pixeltable/utils/help.py +11 -0
  122. pixeltable/utils/hf_datasets.py +157 -0
  123. pixeltable/utils/media_store.py +76 -0
  124. pixeltable/utils/parquet.py +167 -0
  125. pixeltable/utils/pytorch.py +91 -0
  126. pixeltable/utils/s3.py +13 -0
  127. pixeltable/utils/sql.py +17 -0
  128. pixeltable/utils/transactional_directory.py +35 -0
  129. pixeltable-0.2.4.dist-info/LICENSE +18 -0
  130. pixeltable-0.2.4.dist-info/METADATA +127 -0
  131. pixeltable-0.2.4.dist-info/RECORD +132 -0
  132. {pixeltable-0.1.0.dist-info → pixeltable-0.2.4.dist-info}/WHEEL +1 -1
  133. pixeltable/catalog.py +0 -1421
  134. pixeltable/exprs.py +0 -1745
  135. pixeltable/function.py +0 -269
  136. pixeltable/functions/clip.py +0 -10
  137. pixeltable/functions/pil/__init__.py +0 -23
  138. pixeltable/functions/tf.py +0 -21
  139. pixeltable/index.py +0 -57
  140. pixeltable/tests/test_dict.py +0 -24
  141. pixeltable/tests/test_functions.py +0 -11
  142. pixeltable/tests/test_tf.py +0 -69
  143. pixeltable/tf.py +0 -33
  144. pixeltable/utils/tf.py +0 -33
  145. pixeltable/utils/video.py +0 -32
  146. pixeltable-0.1.0.dist-info/METADATA +0 -34
  147. pixeltable-0.1.0.dist-info/RECORD +0 -36
@@ -0,0 +1,157 @@
1
+ import datasets
2
+ from typing import Union, Optional, List, Dict, Any
3
+ import pixeltable.type_system as ts
4
+ from pixeltable import exceptions as excs
5
+ import math
6
+ import logging
7
+ import pixeltable
8
+ import random
9
+
10
+ _logger = logging.getLogger(__name__)
11
+
12
+ # use 100MB as the batch size limit for loading a huggingface dataset into pixeltable.
13
+ # The primary goal is to bound memory use, regardless of dataset size.
14
+ # Second goal is to limit overhead. 100MB is presumed to be reasonable for a lot of storage systems.
15
+ _K_BATCH_SIZE_BYTES = 100_000_000
16
+
17
+ # note, there are many more types. we allow overrides in the schema_override parameter
18
+ # to handle cases where the appropriate type is not yet mapped, or to override this mapping.
19
+ # https://huggingface.co/docs/datasets/v2.17.0/en/package_reference/main_classes#datasets.Value
20
+ _hf_to_pxt: Dict[str, ts.ColumnType] = {
21
+ 'int32': ts.IntType(nullable=True), # pixeltable widens to big int
22
+ 'int64': ts.IntType(nullable=True),
23
+ 'bool': ts.BoolType(nullable=True),
24
+ 'float32': ts.FloatType(nullable=True),
25
+ 'string': ts.StringType(nullable=True),
26
+ 'timestamp[s]': ts.TimestampType(nullable=True),
27
+ 'timestamp[ms]': ts.TimestampType(nullable=True), # HF dataset iterator converts timestamps to datetime.datetime
28
+ }
29
+
30
+ def _to_pixeltable_type(
31
+ feature_type: Union[datasets.ClassLabel, datasets.Value, datasets.Sequence],
32
+ ) -> Optional[ts.ColumnType]:
33
+ """Convert a huggingface feature type to a pixeltable ColumnType if one is defined."""
34
+ if isinstance(feature_type, datasets.ClassLabel):
35
+ # enum, example: ClassLabel(names=['neg', 'pos'], id=None)
36
+ return ts.StringType(nullable=True)
37
+ elif isinstance(feature_type, datasets.Value):
38
+ # example: Value(dtype='int64', id=None)
39
+ return _hf_to_pxt.get(feature_type.dtype, None)
40
+ elif isinstance(feature_type, datasets.Sequence):
41
+ # example: cohere wiki. Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)
42
+ dtype = _to_pixeltable_type(feature_type.feature)
43
+ length = feature_type.length if feature_type.length != -1 else None
44
+ return ts.ArrayType(shape=(length,), dtype=dtype)
45
+ else:
46
+ return None
47
+
48
+ def _get_hf_schema(dataset: Union[datasets.Dataset, datasets.DatasetDict]) -> datasets.Features:
49
+ """Get the schema of a huggingface dataset as a dictionary."""
50
+ first_dataset = dataset if isinstance(dataset, datasets.Dataset) else next(iter(dataset.values()))
51
+ return first_dataset.features
52
+
53
+ def huggingface_schema_to_pixeltable_schema(
54
+ hf_dataset: Union[datasets.Dataset, datasets.DatasetDict],
55
+ ) -> Dict[str, Optional[ts.ColumnType]]:
56
+ """Generate a pixeltable schema from a huggingface dataset schema.
57
+ Columns without a known mapping are mapped to None
58
+ """
59
+ hf_schema = _get_hf_schema(hf_dataset)
60
+ pixeltable_schema = {
61
+ column_name: _to_pixeltable_type(feature_type) for column_name, feature_type in hf_schema.items()
62
+ }
63
+ return pixeltable_schema
64
+
65
+ def import_huggingface_dataset(
66
+ cl: 'pixeltable.Client',
67
+ table_path: str,
68
+ dataset: Union[datasets.Dataset, datasets.DatasetDict],
69
+ *,
70
+ column_name_for_split: Optional[str],
71
+ schema_override: Optional[Dict[str, Any]],
72
+ **kwargs,
73
+ ) -> 'pixeltable.InsertableTable':
74
+ """See `pixeltable.Client.import_huggingface_dataset` for documentation"""
75
+ if table_path in cl.list_tables():
76
+ raise excs.Error(f'table {table_path} already exists')
77
+
78
+ if not isinstance(dataset, (datasets.Dataset, datasets.DatasetDict)):
79
+ raise excs.Error(f'`type(dataset)` must be `datasets.Dataset` or `datasets.DatasetDict`. Got {type(dataset)=}')
80
+
81
+ if isinstance(dataset, datasets.Dataset):
82
+ # when loading an hf dataset partially, dataset.split._name is sometimes the form "train[0:1000]"
83
+ raw_name = dataset.split._name
84
+ split_name = raw_name.split('[')[0] if raw_name is not None else None
85
+ dataset_dict = {split_name: dataset}
86
+ else:
87
+ dataset_dict = dataset
88
+
89
+ pixeltable_schema = huggingface_schema_to_pixeltable_schema(dataset)
90
+ if schema_override is not None:
91
+ pixeltable_schema.update(schema_override)
92
+
93
+ if column_name_for_split is not None:
94
+ if column_name_for_split in pixeltable_schema:
95
+ raise excs.Error(
96
+ f'Column name `{column_name_for_split}` already exists in dataset schema; provide a different `column_name_for_split`'
97
+ )
98
+ pixeltable_schema[column_name_for_split] = ts.StringType(nullable=True)
99
+
100
+ for field, column_type in pixeltable_schema.items():
101
+ if column_type is None:
102
+ raise excs.Error(f'Could not infer pixeltable type for feature `{field}` in huggingface dataset')
103
+
104
+ if isinstance(dataset, datasets.Dataset):
105
+ # when loading an hf dataset partially, dataset.split._name is sometimes the form "train[0:1000]"
106
+ raw_name = dataset.split._name
107
+ split_name = raw_name.split('[')[0] if raw_name is not None else None
108
+ dataset_dict = {split_name: dataset}
109
+ elif isinstance(dataset, datasets.DatasetDict):
110
+ dataset_dict = dataset
111
+ else:
112
+ raise excs.Error(f'`type(dataset)` must be `datasets.Dataset` or `datasets.DatasetDict`. Got {type(dataset)=}')
113
+
114
+ # extract all class labels from the dataset to translate category ints to strings
115
+ hf_schema = _get_hf_schema(dataset)
116
+ categorical_features = {
117
+ feature_name: feature_type.names
118
+ for (feature_name, feature_type) in hf_schema.items()
119
+ if isinstance(feature_type, datasets.ClassLabel)
120
+ }
121
+
122
+ try:
123
+ # random tmp name
124
+ tmp_name = f'{table_path}_tmp_{random.randint(0, 100000000)}'
125
+ tab = cl.create_table(tmp_name, pixeltable_schema, **kwargs)
126
+
127
+ def _translate_row(row: Dict[str, Any], split_name: str) -> Dict[str, Any]:
128
+ output_row = row.copy()
129
+ # map all class labels to strings
130
+ for field, values in categorical_features.items():
131
+ output_row[field] = values[row[field]]
132
+ # add split name to row
133
+ if column_name_for_split is not None:
134
+ output_row[column_name_for_split] = split_name
135
+ return output_row
136
+
137
+ for split_name, split_dataset in dataset_dict.items():
138
+ num_batches = split_dataset.size_in_bytes / _K_BATCH_SIZE_BYTES
139
+ tuples_per_batch = math.ceil(split_dataset.num_rows / num_batches)
140
+ assert tuples_per_batch > 0
141
+
142
+ batch = []
143
+ for row in split_dataset:
144
+ batch.append(_translate_row(row, split_name))
145
+ if len(batch) >= tuples_per_batch:
146
+ tab.insert(batch)
147
+ batch = []
148
+ # last batch
149
+ if len(batch) > 0:
150
+ tab.insert(batch)
151
+
152
+ except Exception as e:
153
+ _logger.error(f'Error while inserting dataset into table: {tmp_name}')
154
+ raise e
155
+
156
+ cl.move(tmp_name, table_path)
157
+ return cl.get_table(table_path)
@@ -0,0 +1,76 @@
1
+ import glob
2
+ import os
3
+ import re
4
+ import shutil
5
+ import uuid
6
+ from typing import Optional, List, Tuple, Dict
7
+ from pathlib import Path
8
+ from collections import defaultdict
9
+ from uuid import UUID
10
+
11
+ from pixeltable.env import Env
12
+
13
+
14
+ class MediaStore:
15
+ """
16
+ Utilities to manage media files stored in Env.media_dir
17
+
18
+ Media file names are a composite of: table id, column id, version, uuid:
19
+ the table id/column id/version are redundant but useful for identifying all files for a table
20
+ or all files created for a particular version of a table
21
+ """
22
+ pattern = re.compile(r'([0-9a-fA-F]+)_(\d+)_(\d+)_([0-9a-fA-F]+)') # tbl_id, col_id, version, uuid
23
+
24
+ @classmethod
25
+ def prepare_media_path(cls, tbl_id: UUID, col_id: int, version: int, ext: Optional[str] = None) -> Path:
26
+ """
27
+ Construct a new, unique Path name for a persisted media file, and create the parent directory
28
+ for the new Path if it does not already exist. The Path will reside in
29
+ the environment's media_dir.
30
+ """
31
+ id_hex = uuid.uuid4().hex
32
+ parent = Env.get().media_dir / tbl_id.hex / id_hex[0:2] / id_hex[0:4]
33
+ parent.mkdir(parents=True, exist_ok=True)
34
+ return parent / f'{tbl_id.hex}_{col_id}_{version}_{id_hex}{ext or ""}'
35
+
36
+ @classmethod
37
+ def delete(cls, tbl_id: UUID, version: Optional[int] = None) -> None:
38
+ """Delete all files belonging to tbl_id. If version is not None, delete
39
+ only those files belonging to the specified version."""
40
+ assert tbl_id is not None
41
+ if version is None:
42
+ # Remove the entire folder for this table id.
43
+ path = Env.get().media_dir / tbl_id.hex
44
+ if path.exists():
45
+ shutil.rmtree(path)
46
+ else:
47
+ # Remove only the elements for the specified version.
48
+ paths = glob.glob(str(Env.get().media_dir / tbl_id.hex) + f'/**/{tbl_id.hex}_*_{version}_*', recursive=True)
49
+ for path in paths:
50
+ os.remove(path)
51
+
52
+ @classmethod
53
+ def count(cls, tbl_id: UUID) -> int:
54
+ """
55
+ Return number of files for given tbl_id.
56
+ """
57
+ paths = glob.glob(str(Env.get().media_dir / tbl_id.hex) + f'/**/{tbl_id.hex}_*', recursive=True)
58
+ return len(paths)
59
+
60
+ @classmethod
61
+ def stats(cls) -> List[Tuple[int, int, int, int]]:
62
+ paths = glob.glob(str(Env.get().media_dir) + "/**", recursive=True)
63
+ # key: (tbl_id, col_id), value: (num_files, size)
64
+ d: Dict[Tuple[UUID, int], List[int]] = defaultdict(lambda: [0, 0])
65
+ for p in paths:
66
+ if not os.path.isdir(p):
67
+ matched = re.match(cls.pattern, Path(p).name)
68
+ assert matched is not None
69
+ tbl_id, col_id = UUID(hex=matched[1]), int(matched[2])
70
+ file_info = os.stat(p)
71
+ t = d[(tbl_id, col_id)]
72
+ t[0] += 1
73
+ t[1] += file_info.st_size
74
+ result = [(tbl_id, col_id, num_files, size) for (tbl_id, col_id), (num_files, size) in d.items()]
75
+ result.sort(key=lambda e: e[3], reverse=True)
76
+ return result
@@ -0,0 +1,167 @@
1
+ import io
2
+ import json
3
+ import logging
4
+ from collections import deque
5
+ from pathlib import Path
6
+ from typing import Dict, List, Optional, Union
7
+
8
+ import numpy as np
9
+ import PIL.Image
10
+ import pyarrow as pa
11
+ import pyarrow.parquet
12
+
13
+ import pixeltable.type_system as ts
14
+ from pixeltable.utils.arrow import iter_tuples, to_arrow_schema, to_pixeltable_schema
15
+ from pixeltable.utils.transactional_directory import transactional_directory
16
+ import pixeltable.exceptions as exc
17
+
18
+ import random
19
+
20
+ _logger = logging.getLogger(__name__)
21
+
22
+
23
+ def _write_batch(value_batch : Dict[str, deque], schema : pa.Schema, output_path : Path) -> None:
24
+ pydict = {}
25
+ for field in schema:
26
+ if isinstance(field.type, pa.FixedShapeTensorType):
27
+ stacked_arr = np.stack(value_batch[field.name])
28
+ pydict[field.name] = pa.FixedShapeTensorArray.from_numpy_ndarray(stacked_arr)
29
+ else:
30
+ pydict[field.name] = value_batch[field.name]
31
+
32
+ tab = pa.Table.from_pydict(pydict, schema=schema)
33
+ pa.parquet.write_table(tab, output_path)
34
+
35
+ def save_parquet(df: 'pixeltable.DataFrame', dest_path: Path, partition_size_bytes: int = 100_000_000) -> None:
36
+ """
37
+ Internal method to stream dataframe data to parquet format.
38
+ Does not materialize the dataset to memory.
39
+
40
+ It preserves pixeltable type metadata in a json file, which would otherwise
41
+ not be available in the parquet format.
42
+
43
+ Images are stored inline in a compressed format in their parquet file.
44
+
45
+ Args:
46
+ df : dataframe to save.
47
+ dest_path : path to directory to save the parquet files to.
48
+ partition_size_bytes : maximum target size for each chunk. Default 100_000_000 bytes.
49
+ """
50
+ column_names = df.get_column_names()
51
+ column_types = df.get_column_types()
52
+ type_dict = {k: v.as_dict() for k, v in zip(column_names, column_types)}
53
+ arrow_schema = to_arrow_schema(dict(zip(column_names, column_types)))
54
+
55
+ # store the changes atomically
56
+ with transactional_directory(dest_path) as temp_path:
57
+ # dump metadata json file so we can inspect what was the source of the parquet file later on.
58
+ json.dump(df._as_dict(), (temp_path / '.pixeltable.json').open('w')) # pylint: disable=protected-access
59
+ json.dump(type_dict, (temp_path / '.pixeltable.column_types.json').open('w')) # keep type metadata
60
+
61
+ batch_num = 0
62
+ current_value_batch : Dict[str, deque] = {k:deque() for k in column_names}
63
+ current_byte_estimate = 0
64
+
65
+ for data_row in df._exec(): # pylint: disable=protected-access
66
+ for (col_name, col_type, e) in zip(column_names, column_types, df._select_list_exprs): # pylint: disable=protected-access
67
+ val = data_row[e.slot_idx]
68
+ if val is None:
69
+ current_value_batch[col_name].append(val)
70
+ continue
71
+
72
+ assert val is not None
73
+ if col_type.is_image_type():
74
+ # images get inlined into the parquet file
75
+ if data_row.file_paths is not None and data_row.file_paths[e.slot_idx] is not None:
76
+ # if there is a file, read directly to preserve information
77
+ with open(data_row.file_paths[e.slot_idx], 'rb') as f:
78
+ val = f.read()
79
+ elif isinstance(val, PIL.Image.Image):
80
+ # if no file available, eg. bc it is computed, convert to png
81
+ buf = io.BytesIO()
82
+ val.save(buf, format='PNG')
83
+ val = buf.getvalue()
84
+ else:
85
+ assert False, f'unknown image type {type(val)}'
86
+ length = len(val)
87
+ elif col_type.is_string_type():
88
+ length = len(val)
89
+ elif col_type.is_video_type():
90
+ if data_row.file_paths is not None and data_row.file_paths[e.slot_idx] is not None:
91
+ val = data_row.file_paths[e.slot_idx]
92
+ else:
93
+ assert False, f'unknown video type {type(val)}'
94
+ length = len(val)
95
+ elif col_type.is_json_type():
96
+ val = json.dumps(val)
97
+ length = len(val)
98
+ elif col_type.is_array_type():
99
+ length = val.nbytes
100
+ elif col_type.is_int_type():
101
+ length = 8
102
+ elif col_type.is_float_type():
103
+ length = 8
104
+ elif col_type.is_bool_type():
105
+ length = 1
106
+ elif col_type.is_timestamp_type():
107
+ length = 8
108
+ else:
109
+ assert False, f'unknown type {col_type} for {col_name}'
110
+
111
+ current_value_batch[col_name].append(val)
112
+ current_byte_estimate += length
113
+ if current_byte_estimate > partition_size_bytes:
114
+ assert batch_num < 100_000, 'wrote too many parquet files, unclear ordering'
115
+ _write_batch(current_value_batch, arrow_schema, temp_path / f'part-{batch_num:05d}.parquet')
116
+ batch_num += 1
117
+ current_value_batch = {k:deque() for k in column_names}
118
+ current_byte_estimate = 0
119
+
120
+ _write_batch(current_value_batch, arrow_schema, temp_path / f'part-{batch_num:05d}.parquet')
121
+
122
+
123
+ def parquet_schema_to_pixeltable_schema(parquet_path: str) -> Dict[str, Optional[ts.ColumnType]]:
124
+ """Generate a default pixeltable schema for the given parquet file. Returns None for unknown types."""
125
+
126
+ input_path = Path(parquet_path).expanduser()
127
+ parquet_dataset = pa.parquet.ParquetDataset(input_path)
128
+ return to_pixeltable_schema(parquet_dataset.schema)
129
+
130
+
131
+ def import_parquet(
132
+ cl: 'pixeltable.Client',
133
+ table_path: str,
134
+ *,
135
+ parquet_path: str,
136
+ schema_override: Optional[Dict[str, ts.ColumnType]],
137
+ **kwargs,
138
+ ) -> 'catalog.InsertableTable':
139
+ """See `pixeltable.Client.import_parquet` for documentation"""
140
+ input_path = Path(parquet_path).expanduser()
141
+ parquet_dataset = pa.parquet.ParquetDataset(input_path)
142
+
143
+ schema = parquet_schema_to_pixeltable_schema(parquet_path)
144
+ if schema_override is None:
145
+ schema_override = {}
146
+
147
+ schema.update(schema_override)
148
+ for k, v in schema.items():
149
+ if v is None:
150
+ raise exc.Error(f'Could not infer pixeltable type for column {k} from parquet file')
151
+
152
+ if table_path in cl.list_tables():
153
+ raise exc.Error(f'Table {table_path} already exists')
154
+
155
+ try:
156
+ tmp_name = f'{table_path}_tmp_{random.randint(0, 100000000)}'
157
+ tab = cl.create_table(tmp_name, schema, **kwargs)
158
+ for fragment in parquet_dataset.fragments:
159
+ for batch in fragment.to_batches():
160
+ dict_batch = list(iter_tuples(batch))
161
+ tab.insert(dict_batch)
162
+ except Exception as e:
163
+ _logger.error(f'Error while inserting Parquet file into table: {e}')
164
+ raise e
165
+
166
+ cl.move(tmp_name, table_path)
167
+ return cl.get_table(table_path)
@@ -0,0 +1,91 @@
1
+ import io
2
+ import pyarrow as pa
3
+ import pyarrow.parquet
4
+ import torch
5
+ import torch.utils.data
6
+ from pathlib import Path
7
+ import PIL.Image
8
+ import json
9
+ from typing import Dict, Iterator, Any
10
+ import datetime
11
+
12
+ from pixeltable.type_system import ColumnType
13
+ import numpy as np
14
+
15
+ class PixeltablePytorchDataset(torch.utils.data.IterableDataset):
16
+ """
17
+ PyTorch dataset interface for pixeltable data.
18
+ NB. This class must inherit from torch.utils.data.IterableDataset for it
19
+ to work with torch.utils.data.DataLoader.
20
+ """
21
+ def __init__(
22
+ self,
23
+ path: Path,
24
+ image_format: str,
25
+ ):
26
+ """
27
+ Args:
28
+ path: path to directory containing parquet files
29
+ image_format: 'np' or 'pt'. 'np' is RGB uint8 array,
30
+ 'pt' is result of torchvision.transforms.ToTensor()
31
+ """
32
+ super().__init__()
33
+
34
+ self.path = path
35
+ self.image_format = image_format
36
+ assert image_format in ["np", "pt"]
37
+ column_type_path = path / '.pixeltable.column_types.json'
38
+ assert column_type_path.exists(), f"missing {column_type_path}"
39
+ with column_type_path.open() as f:
40
+ column_types = json.load(f)
41
+ self.column_types = {k: ColumnType.from_dict(v) for k, v in column_types.items()}
42
+ self.part_metadata = pa.parquet.ParquetDataset(path).files
43
+
44
+ def _unmarshall(self, k: str, v: Any) -> Any:
45
+ if self.column_types[k].is_image_type():
46
+ assert isinstance(v, bytes)
47
+ im = PIL.Image.open(io.BytesIO(v))
48
+ arr = np.array(im) # will copy data to guarantee "WRITEABLE" flag assertion below.
49
+ assert arr.flags["WRITEABLE"]
50
+
51
+ if self.image_format == "np":
52
+ return arr
53
+
54
+ assert self.image_format == "pt"
55
+ import torchvision # pylint: disable = import-outside-toplevel
56
+
57
+ # use arr instead of im in ToTensor() to guarantee array input
58
+ # to torch.from_numpy is writable. Using im is a suspected cause of
59
+ # https://github.com/pixeltable/pixeltable/issues/69
60
+ return torchvision.transforms.ToTensor()(arr)
61
+ elif self.column_types[k].is_json_type():
62
+ assert isinstance(v, str)
63
+ return json.loads(v)
64
+ elif self.column_types[k].is_array_type():
65
+ assert isinstance(v, np.ndarray)
66
+ if not v.flags["WRITEABLE"]:
67
+ v = v.copy()
68
+ assert v.flags["WRITEABLE"]
69
+ return v
70
+ elif self.column_types[k].is_timestamp_type():
71
+ # pytorch default collation only supports numeric types
72
+ assert isinstance(v, datetime.datetime)
73
+ return v.timestamp()
74
+ else:
75
+ assert not isinstance(v, np.ndarray) # all array outputs should be handled above
76
+ return v
77
+
78
+ def __iter__(self) -> Iterator[Dict[str, Any]]:
79
+ import pixeltable.utils.arrow as arrow
80
+ worker_info = torch.utils.data.get_worker_info()
81
+
82
+ if worker_info is None:
83
+ part_list = range(len(self.part_metadata))
84
+ else:
85
+ part_list = [ i for i in part_list if (i % worker_info.num_workers) == worker_info.id ]
86
+
87
+ for part_no in part_list:
88
+ pqf = pa.parquet.ParquetFile(self.part_metadata[part_no])
89
+ for batch in pqf.iter_batches():
90
+ for tup in arrow.iter_tuples(batch):
91
+ yield {k: self._unmarshall(k, v) for k, v in tup.items()}
pixeltable/utils/s3.py ADDED
@@ -0,0 +1,13 @@
1
+ from typing import Any
2
+
3
+
4
+ def get_client() -> Any:
5
+ import boto3
6
+ import botocore
7
+ try:
8
+ boto3.Session().get_credentials().get_frozen_credentials()
9
+ return boto3.client('s3') # credentials are available
10
+ except AttributeError:
11
+ # No credentials available, use unsigned mode
12
+ config = botocore.config.Config(signature_version=botocore.UNSIGNED)
13
+ return boto3.client('s3', config=config)
@@ -0,0 +1,17 @@
1
+ import logging
2
+
3
+ import sqlalchemy as sql
4
+
5
+
6
+ def log_stmt(logger: logging.Logger, stmt) -> None:
7
+ logger.debug(f'executing {str(stmt.compile(dialect=sql.dialects.postgresql.dialect()))}')
8
+
9
+ def log_explain(logger: logging.Logger, stmt: sql.sql.ClauseElement, conn: sql.engine.Connection) -> None:
10
+ try:
11
+ # don't set dialect=Env.get().engine.dialect: x % y turns into x %% y, which results in a syntax error
12
+ stmt_str = str(stmt.compile(compile_kwargs={'literal_binds': True}))
13
+ explain_result = conn.execute(sql.text(f'EXPLAIN {stmt_str}'))
14
+ explain_str = '\n'.join([str(row) for row in explain_result])
15
+ logger.debug(f'SqlScanNode explain:\n{explain_str}')
16
+ except Exception as e:
17
+ logger.warning(f'EXPLAIN failed')
@@ -0,0 +1,35 @@
1
+ import shutil
2
+ from contextlib import contextmanager
3
+ from pathlib import Path
4
+ from typing import Any, Generator
5
+
6
+ import pixeltable.exceptions as excs
7
+
8
+
9
+ @contextmanager
10
+ def transactional_directory(folder_path: Path) -> Generator[Path, Any, Any]:
11
+ """
12
+ Args:
13
+ folder_path: path to the folder we want to create
14
+
15
+ Yields:
16
+ A pathlib.Path to a hidden temporary folder, which can be used to accumulate changes.
17
+ If everything succeeds, the changes are committed via an atomic move operation upon exiting the 'with' block (os.replace)
18
+ If an exception occurred, no changes are visible in the original folder.
19
+
20
+ Example:
21
+ folder_path = pathlib.Path("path/to/folder")
22
+ with transactional_folder(folder_path) as temp_folder:
23
+ (temp_folder / "subfolder1").mkdir()
24
+ (temp_folder / "subfolder2").mkdir()
25
+ """
26
+ if folder_path.exists():
27
+ raise excs.Error(f"Folder {folder_path} already exists")
28
+
29
+ tmp_folder = folder_path.parent / f".tmp_{folder_path.name}"
30
+ # Remove the temporary folder if it already exists, eg if the previous run crashed
31
+ shutil.rmtree(str(tmp_folder), ignore_errors=True)
32
+ tmp_folder.mkdir(parents=True)
33
+ yield tmp_folder
34
+ # If everything succeeds, `commit' the changes by moving the temporary folder
35
+ tmp_folder.rename(folder_path)
@@ -0,0 +1,18 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+
6
+ Copyright 2023 Marcel Kornacker
7
+
8
+ Licensed under the Apache License, Version 2.0 (the "License");
9
+ you may not use this file except in compliance with the License.
10
+ You may obtain a copy of the License at
11
+
12
+ http://www.apache.org/licenses/LICENSE-2.0
13
+
14
+ Unless required by applicable law or agreed to in writing, software
15
+ distributed under the License is distributed on an "AS IS" BASIS,
16
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ See the License for the specific language governing permissions and
18
+ limitations under the License.