piegy 2.1.0__cp38-cp38-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Binary file
piegy/__init__.py ADDED
@@ -0,0 +1,56 @@
1
+ '''
2
+ Payoff-Driven Stochastic Spatial Model for Evolutionary Game Theory
3
+ -----------------------------------------------------------------------------
4
+
5
+ Provides:
6
+ 1. A stochastic spatial model for simulating the interaction and evolution of two species in either 1D or 2D space
7
+ 2. Plot & video functions to visualize simulation results.
8
+ 3. Module to test influence of certain variables on results.
9
+ 4. Data saving & reading module.
10
+ 4. Additional analytical tools.
11
+
12
+ Websites:
13
+ - The *piegy* documentation: https://piegy.readthedocs.io/en/
14
+ - GitHub repository at: https://github.com/Chenning04/piegy.git
15
+ - PyPI page: https://pypi.org/project/piegy/
16
+
17
+
18
+ Last update: May 12, 2025
19
+ '''
20
+
21
+ from .__version__ import __version__
22
+
23
+ from .simulation import model, run, demo_model, UV_expected_val, check_overflow_func
24
+ from .videos import make_video, SUPPORTED_FIGURES
25
+ from .data_tools import save_data, read_data
26
+
27
+ from .analysis import rounds_expected, scale_maxtime, check_convergence, combine_sim
28
+
29
+ from .figures import (UV_heatmap, UV_bar, UV_dyna, UV_hist, UV_std, UV_expected,
30
+ pi_heatmap, pi_bar, pi_dyna, pi_hist, pi_std, UV_pi)
31
+
32
+ from .test_var import (test_var1, var_UV1, var_pi1, var_convergence1, get_dirs1,
33
+ test_var2, var_UV2, var_pi2, var_convergence2, get_dirs2)
34
+
35
+
36
+ simulation_memebers = ['model', 'run', 'demo_model']
37
+
38
+ videos_members = ['make_video', 'SUPPORTED_FIGURES']
39
+
40
+ data_members = ['save_data', 'read_data']
41
+
42
+ analysis_members = ['expected_rounds', 'scale_maxtime', 'check_convergence', 'combine_mod']
43
+
44
+ figures_members = ['UV_heatmap', 'UV_bar', 'UV_dyna', 'UV_hist', 'UV_std', 'UV_expected_val', 'UV_expected',
45
+ 'pi_heatmap', 'pi_bar', 'pi_dyna', 'pi_hist', 'pi_std', 'UV_pi']
46
+
47
+ test_var_members = ['test_var1', 'var_UV1', 'var_pi1', 'var_convergence1', 'get_dirs1',
48
+ 'test_var2', 'var_UV2', 'var_pi2', 'var_convergence2', 'get_dirs2']
49
+
50
+
51
+ __all__ = simulation_memebers + videos_members + data_members + figures_members + analysis_members + test_var_members
52
+
53
+
54
+
55
+
56
+
piegy/__version__.py ADDED
@@ -0,0 +1,31 @@
1
+ __version__ = '2.1.0'
2
+
3
+ '''
4
+ version history:
5
+
6
+ 0.1.0: first publishing, May 11, 2025
7
+ 0.1.1: fix dependency errors
8
+ 0.1.2: fixing module not find error
9
+ 0.1.3: restructuring package
10
+ 0.1.4 ~ 0.1.6: fixing moviepy import issue
11
+ 0.1.7: changed name back to 'piegy'
12
+ 0.1.8: updated installation in README
13
+ 0.1.9: first round of full debugging
14
+
15
+ 1.0.0: first version in PyPI.
16
+ 1.1.0: debugging. Updated a range of functions, in the following modules: figures, videos, test_var, model, figure_tools
17
+ 1.1.1: minor debugging in model module.
18
+ 1.1.2: fix text bad location in figure_tools, update labeling and titling in figures and test_var. Add dpi param to make_video in videos. Remove reset_data function in model.
19
+ 1.1.3: update README.
20
+ 1.1.4: changed name: ``model`` module to ``simulation``, and ``model.simulation`` class to ``simulation.model``. Bug fix in videos.
21
+ 1.1.5: update README.
22
+ 1.1.6: change name of variables in model class -- for compatability with the new C core. 1.1.6 is the last verion of v1. From v2 on, the piegy package has C core.
23
+
24
+ 2.0.0: update simulation core to C-based.
25
+ 2.0.1: re-upload, the C core is not included in package.
26
+ 2.0.2: update version number in __version__.py and update README.
27
+ 2.0.3: speed boost & debugging in C core. Add check_overflow feature in simulation module, checks whether overflow/too large numbers might be encountered in simulation.
28
+ 2.0.4: minor debuggings.
29
+ 2.0.5: fix error in random number generator.
30
+ 2.1.0: redo random number generator. Update package upload so that more compatible across platforms.
31
+ '''
piegy/analysis.py ADDED
@@ -0,0 +1,222 @@
1
+ '''
2
+ This file contains pre-processing, post-processing, and analytical tools for simulations.
3
+
4
+ Public Funcions:
5
+ - check_convergence: Check whether a simulation result converges. i.e. whether U, V's fluctuation are very small.
6
+ - combine_sim: Combine two model objects and return a new one (the first two unchanged).
7
+ Intended usage: say you have mod1, mod2 with same parameters except for sim_time, say 10 and 20.
8
+ Then combine_sim takes a weighted average (with ratio 1:2) of results and return a new sim3.
9
+ So that you now have sim3 with 30 sim_time.
10
+
11
+ Private Functions:
12
+ - rounds_expected: Roughly calculates how many rounds are expected in a single simulation (which reflects runtime).
13
+ NOTE: Not well-developed. Not recommending to use.
14
+ - scale_maxtime: Given two simulation objects, scale first one's maxtime towards the second, so that the two have the same expected rounds.
15
+ Intended to possibly decrease maxtime and save runtime.
16
+ NOTE: Not well-developed. Not recommending to use.
17
+
18
+ '''
19
+
20
+ from . import simulation as simulation
21
+ from . import figures as figures
22
+ from .tools import figure_tools as figure_t
23
+
24
+ import numpy as np
25
+ import math
26
+
27
+
28
+
29
+
30
+ def rounds_expected(mod):
31
+ '''
32
+ NOTE: Not well-developed. Not recommending to use.
33
+
34
+ Predict how many rounds will run in single_test. i.e., how many for loops from time = 0 to mod.maxtime.
35
+ Calculated based on expected_UV.
36
+ '''
37
+
38
+ N = mod.N
39
+ M = mod.M
40
+ U_expected, V_expected = figures.UV_expected_val(mod)
41
+
42
+ rates = []
43
+ patch0 = None # simulate patch i, j
44
+ patch0_nb = [] # simulate neighbors of patch i, j
45
+
46
+ # loop through N, M, create a sample patch to calculate rates, store them
47
+ for i in range(N):
48
+ for j in range(M):
49
+ patch0 = simulation.patch(U_expected[i][j], V_expected[i][j], mod.X[i][j], mod.P[i][j])
50
+
51
+ nb_indices = None
52
+ if mod.boundary:
53
+ nb_indices = simulation.find_nb_zero_flux(N, M, i, j)
54
+ else:
55
+ nb_indices = simulation.find_nb_periodical(N, M, i, j)
56
+
57
+ for k in range(4):
58
+ if nb_indices[k] != None:
59
+ i_nb = nb_indices[k][0]
60
+ j_nb = nb_indices[k][1]
61
+ patch0_nb_k = simulation.patch(U_expected[i_nb][j_nb], V_expected[i_nb][j_nb], mod.X[i_nb][j_nb], mod.P[i_nb][j_nb])
62
+ patch0_nb_k.update_pi_k()
63
+ patch0_nb.append(patch0_nb_k)
64
+
65
+ else:
66
+ patch0_nb.append(None)
67
+
68
+ patch0.nb = patch0_nb
69
+ patch0.update_pi_k()
70
+ patch0.update_mig()
71
+
72
+ rates += patch0.pi_death_rates
73
+ rates += patch0.mig_rates
74
+
75
+ delta_t_expected = (1 / sum(rates)) * math.log(1 / 0.5)
76
+ r_expected = round(mod.maxtime / delta_t_expected)
77
+
78
+ return r_expected
79
+
80
+
81
+
82
+
83
+ def scale_maxtime(mod1, mod2, scale_interval = True):
84
+ '''
85
+ NOTE: Not well-developed. Not recommending to use.
86
+
87
+ Scale mod1's maxtime towards mod2's, so they will run similar number of rounds in single_test, and hence similar runtime.
88
+ Intended to reduce the effect of changing params on runtime.
89
+
90
+ Input:
91
+ - scale_interval decides whether to scale mod1's interval as well, so that the same number of data will be stored.
92
+ '''
93
+
94
+ r_expected1 = rounds_expected(mod1)
95
+ r_expected2 = rounds_expected(mod2)
96
+ ratio = r_expected2 / r_expected1
97
+
98
+ new_maxtime = mod1.maxtime * ratio
99
+ old_max_record = mod1.maxtime / mod1.interval
100
+
101
+ if scale_interval:
102
+ mod1.interval = new_maxtime / old_max_record
103
+
104
+ mod1.change_maxtime(new_maxtime)
105
+
106
+
107
+
108
+
109
+ def check_convergence(mod, interval = 20, start = 0.8, fluc = 0.07):
110
+ '''
111
+ Check whether a simulation converges or not.
112
+ Based on whether the fluctuation of U, V, pi all < 'fluc' in the later 'tail' portion of time.
113
+
114
+ Essentially find the max and min values (of population) in every small interval, and then check whether their difference > min * fluc.
115
+
116
+ Inputs:
117
+ - sim: a simulation.model object
118
+ - interval: int, how many records to take average over,
119
+ and then compare this "local mean" with "whole-tail mean" and expect the difference to be less than fluc.
120
+ - start: (0, 1) float, decides where you expect to check convergence from. Smaller start needs earlier convergence.
121
+ - fluc: (0, 1) float. How much fluctuation is allowed between the average value of a small interval and the mean.
122
+ '''
123
+
124
+ if (start < 0) or (start > 1):
125
+ raise ValueError("start should be a float in (0, 1)")
126
+ if (fluc < 0) or (fluc > 1):
127
+ raise ValueError("fluc should be a float in (0, 1)")
128
+ if (type(interval) != int) or (interval < 1):
129
+ raise ValueError("interval should be an int >= 1")
130
+
131
+ interval = figure_t.scale_interval(interval, mod.compress_itv)
132
+
133
+ start_index = int(mod.max_record * start) # where the tail starts
134
+ num_interval = int((mod.max_record - start_index) / interval) # how many intervals in total
135
+
136
+ # find the max and min value of the small intervals
137
+ # initiate as average of the first interval
138
+ min_U = np.mean(mod.U[:, :, start_index : start_index + interval])
139
+ max_U = np.mean(mod.U[:, :, start_index : start_index + interval])
140
+ min_V = np.mean(mod.V[:, :, start_index : start_index + interval])
141
+ max_V = np.mean(mod.V[:, :, start_index : start_index + interval])
142
+
143
+ for i in range(1, num_interval):
144
+ # lower and upper bound of current interval
145
+ lower = start_index + i * interval
146
+ upper = lower + interval
147
+
148
+ ave_U = np.mean(mod.U[:, :, lower : upper])
149
+ ave_V = np.mean(mod.V[:, :, lower : upper])
150
+
151
+ # Compare with min, max
152
+ if ave_U > max_U:
153
+ max_U = ave_U
154
+ if ave_U < min_U:
155
+ min_U = ave_U
156
+
157
+ if ave_V > max_V:
158
+ max_V = ave_V
159
+ if ave_V < min_V:
160
+ min_V = ave_V
161
+
162
+ # check whether (max - min) > min * fluc
163
+ if (max_U - min_U) > min_U * fluc:
164
+ return False
165
+ if (max_V - min_V) > min_V * fluc:
166
+ return False
167
+
168
+ return True
169
+
170
+
171
+
172
+
173
+ def combine_sim(mod1, mod2):
174
+ '''
175
+ Combine data of mod1 and mod2.
176
+ Intended usage: assume mod1 and mod2 has the same N, M, maxtime, interval, boundary, max_record, and I, X, P
177
+ combine_sim then combines the two results and calculate a new weighted average of the two data, return a new sim object.
178
+ Essentially allows breaking up many rounds of simulations into several smaller pieces, and then put together.
179
+
180
+ Inputs:
181
+ - mod1, mod2: both simulation.model objects. All input parameters the same except for sim_time, print_pct and seed.
182
+ Raises error if not.
183
+
184
+ Returns:
185
+
186
+ - sim3: a new model object whose U, V, Upi, Vpi are weighted averages of mod1 and mod2
187
+ (weighted by sim_time).
188
+ sim3.print_pct is set to mod1's, seed set to None, sim_time set to sum of mod1's and mod2's. All other params same as mod1
189
+ '''
190
+ if not (mod1.N == mod2.N and
191
+ mod1.M == mod2.M and
192
+ mod1.maxtime == mod2.maxtime and
193
+ mod1.record_itv == mod2.record_itv and
194
+ mod1.boundary == mod2.boundary and
195
+ mod1.max_record == mod2.max_record and
196
+ np.array_equal(mod1.I, mod2.I) and
197
+ np.array_equal(mod1.X, mod2.X) and
198
+ np.array_equal(mod1.P, mod2.P)):
199
+
200
+ raise ValueError('mod1 and mod2 have different input parameters (N, M, maxtime, interval, boundary, max_record, or I, X, P).')
201
+
202
+ if mod1.seed == mod2.seed:
203
+ raise ValueError('Cannot combine two simulations with the same seed.')
204
+
205
+ # copy mod1, except for no data and a different sim_time
206
+ combined_sim_time = mod1.sim_time + mod2.sim_time
207
+ sim3 = mod1.copy(copy_data = False)
208
+ sim3.sim_time = combined_sim_time
209
+ sim3.seed = None
210
+
211
+ for i in range(sim3.N):
212
+ for j in range(sim3.M):
213
+ for k in range(sim3.max_record):
214
+ sim3.U[i][j][k] = (mod1.U[i][j][k] * mod1.sim_time + mod2.U[i][j][k] * mod2.sim_time) / combined_sim_time
215
+ sim3.V[i][j][k] = (mod1.V[i][j][k] * mod1.sim_time + mod2.V[i][j][k] * mod2.sim_time) / combined_sim_time
216
+ sim3.Upi[i][j][k] = (mod1.Upi[i][j][k] * mod1.sim_time + mod2.Upi[i][j][k] * mod2.sim_time) / combined_sim_time
217
+ sim3.Vpi[i][j][k] = (mod1.Vpi[i][j][k] * mod1.sim_time + mod2.Vpi[i][j][k] * mod2.sim_time) / combined_sim_time
218
+
219
+ return sim3
220
+
221
+
222
+
piegy/data_tools.py ADDED
@@ -0,0 +1,127 @@
1
+ '''
2
+ Stores and reads a model object.
3
+
4
+ Functions:
5
+ - save_data: save a model object.
6
+ - read_data: read a model object.
7
+ '''
8
+
9
+
10
+ from . import simulation
11
+
12
+ import json
13
+ import gzip
14
+ import os
15
+
16
+
17
+ def save_data(mod, dirs = '', print_msg = True):
18
+ '''
19
+ Saves a model object. Data will be stored at dirs/data.json.gz
20
+
21
+ Inputs:
22
+ - mod: Your model object.
23
+ - dirs: Where to save it.
24
+ - print_msg: Whether to print message after saving.
25
+ '''
26
+
27
+ try:
28
+ _ = mod.N
29
+ except AttributeError:
30
+ raise ValueError('mod is not a model object')
31
+
32
+ if dirs != '':
33
+ # add slash '/'
34
+ if dirs[:-1] != '/':
35
+ dirs += '/'
36
+ if not os.path.exists(dirs):
37
+ os.makedirs(dirs)
38
+
39
+ data = []
40
+
41
+ inputs = []
42
+ inputs.append(mod.N)
43
+ inputs.append(mod.M)
44
+ inputs.append(mod.maxtime)
45
+ inputs.append(mod.record_itv)
46
+ inputs.append(mod.sim_time)
47
+ inputs.append(mod.boundary)
48
+ inputs.append(mod.I.tolist())
49
+ inputs.append(mod.X.tolist())
50
+ inputs.append(mod.P.tolist())
51
+ inputs.append(mod.print_pct)
52
+ inputs.append(mod.seed)
53
+ inputs.append(mod.check_overflow)
54
+ data.append(inputs)
55
+
56
+ # skipped rng
57
+
58
+ outputs = []
59
+ outputs.append(mod.max_record)
60
+ outputs.append(mod.compress_itv)
61
+ outputs.append(mod.U.tolist())
62
+ outputs.append(mod.V.tolist())
63
+ outputs.append(mod.Upi.tolist())
64
+ outputs.append(mod.Vpi.tolist())
65
+ # H&Vpi_total are not saved, will be calculated when reading the data
66
+ data.append(outputs)
67
+
68
+ data_json = json.dumps(data)
69
+ data_bytes = data_json.encode('utf-8')
70
+ data_dirs = dirs + 'data.json.gz'
71
+
72
+ with gzip.open(data_dirs, 'w') as f:
73
+ f.write(data_bytes)
74
+
75
+ if print_msg:
76
+ print('data saved: ' + data_dirs)
77
+
78
+
79
+
80
+ def read_data(dirs):
81
+ '''
82
+ Reads and returns a model object.
83
+
84
+ Inputs:
85
+ - dirs: where to read from, just provide the folder-subfolder names. Don't include 'data.json.gz'
86
+ - print_msg: this function prints a message when the mod.compress_itv != None. Setting print_msg = False will skip ignore this message.
87
+
88
+ Returns:
89
+ - mod: a piegy.model.model object read from the data.
90
+ '''
91
+
92
+ if dirs != '':
93
+ # add slash '/'
94
+ if dirs[:-1] != '/':
95
+ dirs += '/'
96
+ if not os.path.exists(dirs):
97
+ raise FileNotFoundError('dirs not found: ' + dirs)
98
+
99
+ if not os.path.isfile(dirs + 'data.json.gz'):
100
+ raise FileNotFoundError('data not found in ' + dirs)
101
+
102
+ with gzip.open(dirs + 'data.json.gz', 'r') as f:
103
+ data_bytes = f.read()
104
+ data_json = data_bytes.decode('utf-8')
105
+ data = json.loads(data_json)
106
+
107
+ # inputs
108
+ try:
109
+ mod = simulation.model(N = data[0][0], M = data[0][1], maxtime = data[0][2], record_itv = data[0][3],
110
+ sim_time = data[0][4], boundary = data[0][5], I = data[0][6], X = data[0][7], P = data[0][8],
111
+ print_pct = data[0][9], seed = data[0][10], check_overflow = data[0][11])
112
+ except:
113
+ raise ValueError('Invalid input parameters saved in data')
114
+
115
+ # outputs
116
+ try:
117
+ mod.set_data(data_empty = False, max_record = data[1][0], compress_itv = data[1][1],
118
+ U = data[1][2], V = data[1][3], Upi = data[1][4], Vpi = data[1][5])
119
+ except:
120
+ raise ValueError('Invalid model results saved in data')
121
+
122
+ return mod
123
+
124
+
125
+
126
+
127
+