phylogenie 2.0.11__py3-none-any.whl → 2.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of phylogenie might be problematic. Click here for more details.

phylogenie/__init__.py CHANGED
@@ -8,6 +8,9 @@ from phylogenie.generators import (
8
8
  DatasetGeneratorConfig,
9
9
  EpidemiologicalTreeDatasetGenerator,
10
10
  FBDTreeDatasetGenerator,
11
+ SkylineMatrixModel,
12
+ SkylineParameterModel,
13
+ SkylineVectorModel,
11
14
  TreeDatasetGeneratorConfig,
12
15
  )
13
16
  from phylogenie.io import load_fasta, load_newick
@@ -48,13 +51,16 @@ __all__ = [
48
51
  "FBDTreeDatasetGenerator",
49
52
  "SkylineMatrix",
50
53
  "SkylineMatrixCoercible",
54
+ "SkylineMatrixModel",
51
55
  "skyline_matrix",
52
56
  "SkylineParameter",
53
57
  "SkylineParameterLike",
58
+ "SkylineParameterModel",
54
59
  "skyline_parameter",
55
60
  "SkylineVector",
56
61
  "SkylineVectorCoercible",
57
62
  "SkylineVectorLike",
63
+ "SkylineVectorModel",
58
64
  "skyline_vector",
59
65
  "Tree",
60
66
  "TreeDatasetGeneratorConfig",
@@ -3,6 +3,11 @@ from typing import Annotated
3
3
  from pydantic import Field
4
4
 
5
5
  from phylogenie.generators.alisim import AliSimDatasetGenerator
6
+ from phylogenie.generators.configs import (
7
+ SkylineMatrixModel,
8
+ SkylineParameterModel,
9
+ SkylineVectorModel,
10
+ )
6
11
  from phylogenie.generators.dataset import DatasetGenerator
7
12
  from phylogenie.generators.trees import (
8
13
  BDEITreeDatasetGenerator,
@@ -29,4 +34,7 @@ __all__ = [
29
34
  "BDTreeDatasetGenerator",
30
35
  "BDEITreeDatasetGenerator",
31
36
  "BDSSTreeDatasetGenerator",
37
+ "SkylineMatrixModel",
38
+ "SkylineParameterModel",
39
+ "SkylineVectorModel",
32
40
  ]
@@ -10,9 +10,9 @@ class Distribution(BaseModel):
10
10
 
11
11
  Integer = str | int
12
12
  Scalar = str | pgt.Scalar
13
- ManyScalars = str | list[Scalar]
14
- OneOrManyScalars = Scalar | list[Scalar]
15
- OneOrMany2DScalars = Scalar | list[list[Scalar]]
13
+ ManyScalars = str | pgt.Many[Scalar]
14
+ OneOrManyScalars = Scalar | pgt.Many[Scalar]
15
+ OneOrMany2DScalars = Scalar | pgt.Many2D[Scalar]
16
16
 
17
17
 
18
18
  class StrictBaseModel(BaseModel):
@@ -25,15 +25,15 @@ class SkylineParameterModel(StrictBaseModel):
25
25
 
26
26
 
27
27
  class SkylineVectorModel(StrictBaseModel):
28
- value: str | list[OneOrManyScalars]
28
+ value: str | pgt.Many[OneOrManyScalars]
29
29
  change_times: ManyScalars
30
30
 
31
31
 
32
32
  class SkylineMatrixModel(StrictBaseModel):
33
- value: str | list[OneOrMany2DScalars]
33
+ value: str | pgt.Many[OneOrMany2DScalars]
34
34
  change_times: ManyScalars
35
35
 
36
36
 
37
37
  SkylineParameter = Scalar | SkylineParameterModel
38
- SkylineVector = str | pgt.Scalar | list[SkylineParameter] | SkylineVectorModel
39
- SkylineMatrix = str | pgt.Scalar | list[SkylineVector] | SkylineMatrixModel | None
38
+ SkylineVector = str | pgt.Scalar | pgt.Many[SkylineParameter] | SkylineVectorModel
39
+ SkylineMatrix = str | pgt.Scalar | pgt.Many[SkylineVector] | SkylineMatrixModel | None
@@ -41,21 +41,24 @@ class DatasetGenerator(ABC, cfg.StrictBaseModel):
41
41
  self._generate_one(filename=filename, rng=default_rng(seed), data=data)
42
42
 
43
43
  def _generate(self, rng: Generator, n_samples: int, output_dir: str) -> None:
44
+ if os.path.exists(output_dir):
45
+ print(f"Output directory {output_dir} already exists. Skipping.")
46
+ return
47
+
48
+ data_dir = (
49
+ output_dir
50
+ if self.context is None
51
+ else os.path.join(output_dir, DATA_DIRNAME)
52
+ )
53
+ os.makedirs(data_dir)
54
+
44
55
  data: list[dict[str, Any]] = [{} for _ in range(n_samples)]
45
56
  if self.context is not None:
46
- data_dir = os.path.join(output_dir, DATA_DIRNAME)
47
57
  for d, (k, v) in product(data, self.context.items()):
48
58
  args = v.model_extra if v.model_extra is not None else {}
49
59
  d[k] = np.array(getattr(rng, v.type)(**args)).tolist()
50
60
  df = pd.DataFrame([{"file_id": str(i), **d} for i, d in enumerate(data)])
51
61
  df.to_csv(os.path.join(output_dir, METADATA_FILENAME), index=False)
52
- else:
53
- data_dir = output_dir
54
-
55
- if os.path.exists(data_dir):
56
- print(f"Output directory {data_dir} already exists. Skipping.")
57
- return
58
- os.makedirs(data_dir)
59
62
 
60
63
  joblib.Parallel(n_jobs=self.n_jobs)(
61
64
  joblib.delayed(self.generate_one)(
@@ -100,7 +100,7 @@ def skyline_vector(
100
100
  )
101
101
  if isinstance(x, pgt.Scalar):
102
102
  return x
103
- if ctg.is_list_of_skyline_parameter_configs(x):
103
+ if ctg.is_many_skyline_parameter_configs(x):
104
104
  return [skyline_parameter(p, data) for p in x]
105
105
 
106
106
  assert isinstance(x, cfg.SkylineVectorModel)
@@ -161,7 +161,7 @@ def skyline_matrix(
161
161
  )
162
162
  if isinstance(x, pgt.Scalar):
163
163
  return x
164
- if ctg.is_list_of_skyline_vector_configs(x):
164
+ if ctg.is_many_skyline_vector_configs(x):
165
165
  return [skyline_vector(v, data) for v in x]
166
166
 
167
167
  assert isinstance(x, cfg.SkylineMatrixModel)
@@ -1,28 +1,25 @@
1
1
  from typing import Any, TypeGuard
2
2
 
3
3
  import phylogenie.generators.configs as cfg
4
+ import phylogenie.typeguards as tg
4
5
  import phylogenie.typings as pgt
5
6
 
6
7
 
7
- def is_list(x: Any) -> TypeGuard[list[Any]]:
8
- return isinstance(x, list)
8
+ def is_many_scalar_configs(x: Any) -> TypeGuard[pgt.Many[cfg.Scalar]]:
9
+ return tg.is_many(x) and all(isinstance(v, cfg.Scalar) for v in x)
9
10
 
10
11
 
11
- def is_list_of_scalar_configs(x: Any) -> TypeGuard[list[cfg.Scalar]]:
12
- return is_list(x) and all(isinstance(v, cfg.Scalar) for v in x)
13
-
14
-
15
- def is_list_of_skyline_parameter_configs(
12
+ def is_many_skyline_parameter_configs(
16
13
  x: Any,
17
- ) -> TypeGuard[list[cfg.SkylineParameter]]:
18
- return is_list(x) and all(isinstance(v, cfg.SkylineParameter) for v in x)
14
+ ) -> TypeGuard[pgt.Many[cfg.SkylineParameter]]:
15
+ return tg.is_many(x) and all(isinstance(v, cfg.SkylineParameter) for v in x)
19
16
 
20
17
 
21
18
  def is_skyline_vector_config(x: Any) -> TypeGuard[cfg.SkylineVector]:
22
19
  return isinstance(
23
20
  x, str | pgt.Scalar | cfg.SkylineVectorModel
24
- ) or is_list_of_skyline_parameter_configs(x)
21
+ ) or is_many_skyline_parameter_configs(x)
25
22
 
26
23
 
27
- def is_list_of_skyline_vector_configs(x: Any) -> TypeGuard[list[cfg.SkylineVector]]:
28
- return is_list(x) and all(is_skyline_vector_config(v) for v in x)
24
+ def is_many_skyline_vector_configs(x: Any) -> TypeGuard[pgt.Many[cfg.SkylineVector]]:
25
+ return tg.is_many(x) and all(is_skyline_vector_config(v) for v in x)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: phylogenie
3
- Version: 2.0.11
3
+ Version: 2.0.13
4
4
  Summary: Generate phylogenetic datasets with minimal setup effort
5
5
  Author: Gabriele Marino
6
6
  Author-email: gabmarino.8601@gmail.com
@@ -1,11 +1,11 @@
1
- phylogenie/__init__.py,sha256=1w_0H9lg7hI3b-NLjKuzc34GbJJGyjLq9LrlogecTzI,1759
2
- phylogenie/generators/__init__.py,sha256=zsOxy28-9j9alOQLIgrOAFfmM58NNHO_NEtW-KXQXAY,888
1
+ phylogenie/__init__.py,sha256=4BytT42_M1K6T3W9eqHQCrKc6g0Lh5LTQxP8dGIJTsk,1915
2
+ phylogenie/generators/__init__.py,sha256=VCpuvmOoY_N6p1h_Q0peYgGIIUIFLsvZT3T7vbHG6w0,1090
3
3
  phylogenie/generators/alisim.py,sha256=dDqlSwLDbRE2u5SZlsq1mArobTBtuk0aeXY3m1N-bWA,2374
4
- phylogenie/generators/configs.py,sha256=5ZWdKhRUjlNifw7QKXbooKV1fElqfCk_jBGxfcjh8do,969
5
- phylogenie/generators/dataset.py,sha256=OB51YI9ilo-lrw8ETCDQAFh9iXWtPLBRyLg4JOjMi7c,2577
6
- phylogenie/generators/factories.py,sha256=O8wqL-PvZps0Dq6mQa_PTi4vBvky5LkQIy1jjfOUm-4,6944
4
+ phylogenie/generators/configs.py,sha256=4jSBUZiFo2GacXWed5dy7lUEkaOWZkZG-KY9vHfhqGU,993
5
+ phylogenie/generators/dataset.py,sha256=hbkN5McM4BKY7D0hLNaxdoAGsLHac6O-D4sgnZ0wFX4,2618
6
+ phylogenie/generators/factories.py,sha256=0ckeAsKnPy69Vbdoi1rIyf6zRcqamz9VfSi0mAiTzds,6938
7
7
  phylogenie/generators/trees.py,sha256=jukaVXGcPGzDBEYMGJ1MKqWt4XbAB5EEfuHXDpwKTqM,9173
8
- phylogenie/generators/typeguards.py,sha256=Qph6ZnQ7wDMUNvB0VWQKlq42f8wkKOnM42cfMqhNov4,862
8
+ phylogenie/generators/typeguards.py,sha256=yj4VkhOaUXJ2OrY-6zhOeY9C4yKIQxjZtk2d-vIxttQ,828
9
9
  phylogenie/io.py,sha256=ZXlofnSh7FX5UJiP0svRHrTraMSNgKa1GiAv0bMz7jU,2854
10
10
  phylogenie/main.py,sha256=vtvSpQxBNlYABoFQ25czl-l3fIr4QRo3svWVd-jcArw,1170
11
11
  phylogenie/msa.py,sha256=JDGyZUsAq6-m-SQjoCDjAkAZIxfgyl_PDIhdYn5HOow,2064
@@ -21,8 +21,8 @@ phylogenie/treesimulator/gillespie.py,sha256=4uMt_-Rr3cRXWGKC8veBIB-uqtKtN-dLbAH
21
21
  phylogenie/treesimulator/model.py,sha256=XpzAicmg2O6K0Trk5YolH-B_HJZxoSauF2wZOMqp-Iw,5559
22
22
  phylogenie/typeguards.py,sha256=JtqmbEWJZBRHbWgCvcl6nrWm3VcBfzRbklbTBYHItn0,1325
23
23
  phylogenie/typings.py,sha256=O1X6lGKTjJ2YJz3ApQ-rYb_tEJNUIcHdUIeYlSM4s5o,500
24
- phylogenie-2.0.11.dist-info/LICENSE.txt,sha256=NUrDqElK-eD3I0WqC004CJsy6cs0JgsAoebDv_42-pw,1071
25
- phylogenie-2.0.11.dist-info/METADATA,sha256=H9fTgI9BaoI2j7-Od2an5dPivAxl1jk2DACT3m9DCoE,5473
26
- phylogenie-2.0.11.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
27
- phylogenie-2.0.11.dist-info/entry_points.txt,sha256=Rt6_usN0FkBX1ZfiqCirjMN9FKOgFLG8rydcQ8kugeE,51
28
- phylogenie-2.0.11.dist-info/RECORD,,
24
+ phylogenie-2.0.13.dist-info/LICENSE.txt,sha256=NUrDqElK-eD3I0WqC004CJsy6cs0JgsAoebDv_42-pw,1071
25
+ phylogenie-2.0.13.dist-info/METADATA,sha256=XkYNiu3IYt516JJ8dw-iIo9zonC8LFiB_ZVGhNyw-eY,5473
26
+ phylogenie-2.0.13.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
27
+ phylogenie-2.0.13.dist-info/entry_points.txt,sha256=Rt6_usN0FkBX1ZfiqCirjMN9FKOgFLG8rydcQ8kugeE,51
28
+ phylogenie-2.0.13.dist-info/RECORD,,