phoonnx 0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- phoonnx/__init__.py +0 -0
- phoonnx/config.py +490 -0
- phoonnx/locale/ca/phonetic_spellings.txt +2 -0
- phoonnx/locale/en/phonetic_spellings.txt +1 -0
- phoonnx/locale/gl/phonetic_spellings.txt +2 -0
- phoonnx/locale/pt/phonetic_spellings.txt +2 -0
- phoonnx/phoneme_ids.py +453 -0
- phoonnx/phonemizers/__init__.py +45 -0
- phoonnx/phonemizers/ar.py +42 -0
- phoonnx/phonemizers/base.py +216 -0
- phoonnx/phonemizers/en.py +250 -0
- phoonnx/phonemizers/fa.py +46 -0
- phoonnx/phonemizers/gl.py +142 -0
- phoonnx/phonemizers/he.py +67 -0
- phoonnx/phonemizers/ja.py +119 -0
- phoonnx/phonemizers/ko.py +97 -0
- phoonnx/phonemizers/mul.py +606 -0
- phoonnx/phonemizers/vi.py +44 -0
- phoonnx/phonemizers/zh.py +308 -0
- phoonnx/thirdparty/__init__.py +0 -0
- phoonnx/thirdparty/arpa2ipa.py +249 -0
- phoonnx/thirdparty/cotovia/cotovia_aarch64 +0 -0
- phoonnx/thirdparty/cotovia/cotovia_x86_64 +0 -0
- phoonnx/thirdparty/hangul2ipa.py +783 -0
- phoonnx/thirdparty/ko_tables/aspiration.csv +20 -0
- phoonnx/thirdparty/ko_tables/assimilation.csv +31 -0
- phoonnx/thirdparty/ko_tables/double_coda.csv +17 -0
- phoonnx/thirdparty/ko_tables/hanja.tsv +8525 -0
- phoonnx/thirdparty/ko_tables/ipa.csv +22 -0
- phoonnx/thirdparty/ko_tables/neutralization.csv +11 -0
- phoonnx/thirdparty/ko_tables/tensification.csv +56 -0
- phoonnx/thirdparty/ko_tables/yale.csv +22 -0
- phoonnx/thirdparty/kog2p/__init__.py +385 -0
- phoonnx/thirdparty/kog2p/rulebook.txt +212 -0
- phoonnx/thirdparty/mantoq/__init__.py +67 -0
- phoonnx/thirdparty/mantoq/buck/__init__.py +0 -0
- phoonnx/thirdparty/mantoq/buck/phonetise_buckwalter.py +569 -0
- phoonnx/thirdparty/mantoq/buck/symbols.py +64 -0
- phoonnx/thirdparty/mantoq/buck/tokenization.py +105 -0
- phoonnx/thirdparty/mantoq/num2words.py +37 -0
- phoonnx/thirdparty/mantoq/pyarabic/__init__.py +12 -0
- phoonnx/thirdparty/mantoq/pyarabic/arabrepr.py +64 -0
- phoonnx/thirdparty/mantoq/pyarabic/araby.py +1647 -0
- phoonnx/thirdparty/mantoq/pyarabic/named_const.py +227 -0
- phoonnx/thirdparty/mantoq/pyarabic/normalize.py +161 -0
- phoonnx/thirdparty/mantoq/pyarabic/number.py +826 -0
- phoonnx/thirdparty/mantoq/pyarabic/number_const.py +1704 -0
- phoonnx/thirdparty/mantoq/pyarabic/stack.py +52 -0
- phoonnx/thirdparty/mantoq/pyarabic/trans.py +517 -0
- phoonnx/thirdparty/mantoq/unicode_symbol2label.py +4173 -0
- phoonnx/thirdparty/tashkeel/LICENSE +22 -0
- phoonnx/thirdparty/tashkeel/SOURCE +1 -0
- phoonnx/thirdparty/tashkeel/__init__.py +212 -0
- phoonnx/thirdparty/tashkeel/hint_id_map.json +18 -0
- phoonnx/thirdparty/tashkeel/input_id_map.json +56 -0
- phoonnx/thirdparty/tashkeel/model.onnx +0 -0
- phoonnx/thirdparty/tashkeel/target_id_map.json +17 -0
- phoonnx/thirdparty/zh_num.py +238 -0
- phoonnx/util.py +705 -0
- phoonnx/version.py +6 -0
- phoonnx/voice.py +521 -0
- phoonnx-0.0.0.dist-info/METADATA +255 -0
- phoonnx-0.0.0.dist-info/RECORD +86 -0
- phoonnx-0.0.0.dist-info/WHEEL +5 -0
- phoonnx-0.0.0.dist-info/top_level.txt +2 -0
- phoonnx_train/__main__.py +151 -0
- phoonnx_train/export_onnx.py +109 -0
- phoonnx_train/norm_audio/__init__.py +92 -0
- phoonnx_train/norm_audio/trim.py +54 -0
- phoonnx_train/norm_audio/vad.py +54 -0
- phoonnx_train/preprocess.py +420 -0
- phoonnx_train/vits/__init__.py +0 -0
- phoonnx_train/vits/attentions.py +427 -0
- phoonnx_train/vits/commons.py +147 -0
- phoonnx_train/vits/config.py +330 -0
- phoonnx_train/vits/dataset.py +214 -0
- phoonnx_train/vits/lightning.py +352 -0
- phoonnx_train/vits/losses.py +58 -0
- phoonnx_train/vits/mel_processing.py +139 -0
- phoonnx_train/vits/models.py +732 -0
- phoonnx_train/vits/modules.py +527 -0
- phoonnx_train/vits/monotonic_align/__init__.py +20 -0
- phoonnx_train/vits/monotonic_align/setup.py +13 -0
- phoonnx_train/vits/transforms.py +212 -0
- phoonnx_train/vits/utils.py +16 -0
- phoonnx_train/vits/wavfile.py +860 -0
@@ -0,0 +1,527 @@
|
|
1
|
+
import math
|
2
|
+
import typing
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import nn
|
6
|
+
from torch.nn import Conv1d
|
7
|
+
from torch.nn import functional as F
|
8
|
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
9
|
+
|
10
|
+
from .commons import fused_add_tanh_sigmoid_multiply, get_padding, init_weights
|
11
|
+
from .transforms import piecewise_rational_quadratic_transform
|
12
|
+
|
13
|
+
|
14
|
+
class LayerNorm(nn.Module):
|
15
|
+
def __init__(self, channels: int, eps: float = 1e-5):
|
16
|
+
super().__init__()
|
17
|
+
self.channels = channels
|
18
|
+
self.eps = eps
|
19
|
+
|
20
|
+
self.gamma = nn.Parameter(torch.ones(channels))
|
21
|
+
self.beta = nn.Parameter(torch.zeros(channels))
|
22
|
+
|
23
|
+
def forward(self, x):
|
24
|
+
x = x.transpose(1, -1)
|
25
|
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
26
|
+
return x.transpose(1, -1)
|
27
|
+
|
28
|
+
|
29
|
+
class ConvReluNorm(nn.Module):
|
30
|
+
def __init__(
|
31
|
+
self,
|
32
|
+
in_channels: int,
|
33
|
+
hidden_channels: int,
|
34
|
+
out_channels: int,
|
35
|
+
kernel_size: int,
|
36
|
+
n_layers: int,
|
37
|
+
p_dropout: float,
|
38
|
+
):
|
39
|
+
super().__init__()
|
40
|
+
self.in_channels = in_channels
|
41
|
+
self.hidden_channels = hidden_channels
|
42
|
+
self.out_channels = out_channels
|
43
|
+
self.kernel_size = kernel_size
|
44
|
+
self.n_layers = n_layers
|
45
|
+
self.p_dropout = p_dropout
|
46
|
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
47
|
+
|
48
|
+
self.conv_layers = nn.ModuleList()
|
49
|
+
self.norm_layers = nn.ModuleList()
|
50
|
+
self.conv_layers.append(
|
51
|
+
nn.Conv1d(
|
52
|
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
53
|
+
)
|
54
|
+
)
|
55
|
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56
|
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
57
|
+
for _ in range(n_layers - 1):
|
58
|
+
self.conv_layers.append(
|
59
|
+
nn.Conv1d(
|
60
|
+
hidden_channels,
|
61
|
+
hidden_channels,
|
62
|
+
kernel_size,
|
63
|
+
padding=kernel_size // 2,
|
64
|
+
)
|
65
|
+
)
|
66
|
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
67
|
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
68
|
+
self.proj.weight.data.zero_()
|
69
|
+
self.proj.bias.data.zero_()
|
70
|
+
|
71
|
+
def forward(self, x, x_mask):
|
72
|
+
x_org = x
|
73
|
+
for i in range(self.n_layers):
|
74
|
+
x = self.conv_layers[i](x * x_mask)
|
75
|
+
x = self.norm_layers[i](x)
|
76
|
+
x = self.relu_drop(x)
|
77
|
+
x = x_org + self.proj(x)
|
78
|
+
return x * x_mask
|
79
|
+
|
80
|
+
|
81
|
+
class DDSConv(nn.Module):
|
82
|
+
"""
|
83
|
+
Dialted and Depth-Separable Convolution
|
84
|
+
"""
|
85
|
+
|
86
|
+
def __init__(
|
87
|
+
self, channels: int, kernel_size: int, n_layers: int, p_dropout: float = 0.0
|
88
|
+
):
|
89
|
+
super().__init__()
|
90
|
+
self.channels = channels
|
91
|
+
self.kernel_size = kernel_size
|
92
|
+
self.n_layers = n_layers
|
93
|
+
self.p_dropout = p_dropout
|
94
|
+
|
95
|
+
self.drop = nn.Dropout(p_dropout)
|
96
|
+
self.convs_sep = nn.ModuleList()
|
97
|
+
self.convs_1x1 = nn.ModuleList()
|
98
|
+
self.norms_1 = nn.ModuleList()
|
99
|
+
self.norms_2 = nn.ModuleList()
|
100
|
+
for i in range(n_layers):
|
101
|
+
dilation = kernel_size**i
|
102
|
+
padding = (kernel_size * dilation - dilation) // 2
|
103
|
+
self.convs_sep.append(
|
104
|
+
nn.Conv1d(
|
105
|
+
channels,
|
106
|
+
channels,
|
107
|
+
kernel_size,
|
108
|
+
groups=channels,
|
109
|
+
dilation=dilation,
|
110
|
+
padding=padding,
|
111
|
+
)
|
112
|
+
)
|
113
|
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
114
|
+
self.norms_1.append(LayerNorm(channels))
|
115
|
+
self.norms_2.append(LayerNorm(channels))
|
116
|
+
|
117
|
+
def forward(self, x, x_mask, g=None):
|
118
|
+
if g is not None:
|
119
|
+
x = x + g
|
120
|
+
for i in range(self.n_layers):
|
121
|
+
y = self.convs_sep[i](x * x_mask)
|
122
|
+
y = self.norms_1[i](y)
|
123
|
+
y = F.gelu(y)
|
124
|
+
y = self.convs_1x1[i](y)
|
125
|
+
y = self.norms_2[i](y)
|
126
|
+
y = F.gelu(y)
|
127
|
+
y = self.drop(y)
|
128
|
+
x = x + y
|
129
|
+
return x * x_mask
|
130
|
+
|
131
|
+
|
132
|
+
class WN(torch.nn.Module):
|
133
|
+
def __init__(
|
134
|
+
self,
|
135
|
+
hidden_channels: int,
|
136
|
+
kernel_size: int,
|
137
|
+
dilation_rate: int,
|
138
|
+
n_layers: int,
|
139
|
+
gin_channels: int = 0,
|
140
|
+
p_dropout: float = 0,
|
141
|
+
):
|
142
|
+
super().__init__()
|
143
|
+
assert kernel_size % 2 == 1
|
144
|
+
self.hidden_channels = hidden_channels
|
145
|
+
self.kernel_size = (kernel_size,)
|
146
|
+
self.dilation_rate = dilation_rate
|
147
|
+
self.n_layers = n_layers
|
148
|
+
self.gin_channels = gin_channels
|
149
|
+
self.p_dropout = p_dropout
|
150
|
+
|
151
|
+
self.in_layers = torch.nn.ModuleList()
|
152
|
+
self.res_skip_layers = torch.nn.ModuleList()
|
153
|
+
self.drop = nn.Dropout(p_dropout)
|
154
|
+
|
155
|
+
if gin_channels != 0:
|
156
|
+
cond_layer = torch.nn.Conv1d(
|
157
|
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
158
|
+
)
|
159
|
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
160
|
+
|
161
|
+
for i in range(n_layers):
|
162
|
+
dilation = dilation_rate**i
|
163
|
+
padding = int((kernel_size * dilation - dilation) / 2)
|
164
|
+
in_layer = torch.nn.Conv1d(
|
165
|
+
hidden_channels,
|
166
|
+
2 * hidden_channels,
|
167
|
+
kernel_size,
|
168
|
+
dilation=dilation,
|
169
|
+
padding=padding,
|
170
|
+
)
|
171
|
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
172
|
+
self.in_layers.append(in_layer)
|
173
|
+
|
174
|
+
# last one is not necessary
|
175
|
+
if i < n_layers - 1:
|
176
|
+
res_skip_channels = 2 * hidden_channels
|
177
|
+
else:
|
178
|
+
res_skip_channels = hidden_channels
|
179
|
+
|
180
|
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
181
|
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
182
|
+
self.res_skip_layers.append(res_skip_layer)
|
183
|
+
|
184
|
+
def forward(self, x, x_mask, g=None, **kwargs):
|
185
|
+
output = torch.zeros_like(x)
|
186
|
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
187
|
+
|
188
|
+
if g is not None:
|
189
|
+
g = self.cond_layer(g)
|
190
|
+
|
191
|
+
for i in range(self.n_layers):
|
192
|
+
x_in = self.in_layers[i](x)
|
193
|
+
if g is not None:
|
194
|
+
cond_offset = i * 2 * self.hidden_channels
|
195
|
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
196
|
+
else:
|
197
|
+
g_l = torch.zeros_like(x_in)
|
198
|
+
|
199
|
+
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
200
|
+
acts = self.drop(acts)
|
201
|
+
|
202
|
+
res_skip_acts = self.res_skip_layers[i](acts)
|
203
|
+
if i < self.n_layers - 1:
|
204
|
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
205
|
+
x = (x + res_acts) * x_mask
|
206
|
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
207
|
+
else:
|
208
|
+
output = output + res_skip_acts
|
209
|
+
return output * x_mask
|
210
|
+
|
211
|
+
def remove_weight_norm(self):
|
212
|
+
if self.gin_channels != 0:
|
213
|
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
214
|
+
for l in self.in_layers:
|
215
|
+
torch.nn.utils.remove_weight_norm(l)
|
216
|
+
for l in self.res_skip_layers:
|
217
|
+
torch.nn.utils.remove_weight_norm(l)
|
218
|
+
|
219
|
+
|
220
|
+
class ResBlock1(torch.nn.Module):
|
221
|
+
def __init__(
|
222
|
+
self,
|
223
|
+
channels: int,
|
224
|
+
kernel_size: int = 3,
|
225
|
+
dilation: typing.Tuple[int] = (1, 3, 5),
|
226
|
+
):
|
227
|
+
super(ResBlock1, self).__init__()
|
228
|
+
self.LRELU_SLOPE = 0.1
|
229
|
+
self.convs1 = nn.ModuleList(
|
230
|
+
[
|
231
|
+
weight_norm(
|
232
|
+
Conv1d(
|
233
|
+
channels,
|
234
|
+
channels,
|
235
|
+
kernel_size,
|
236
|
+
1,
|
237
|
+
dilation=dilation[0],
|
238
|
+
padding=get_padding(kernel_size, dilation[0]),
|
239
|
+
)
|
240
|
+
),
|
241
|
+
weight_norm(
|
242
|
+
Conv1d(
|
243
|
+
channels,
|
244
|
+
channels,
|
245
|
+
kernel_size,
|
246
|
+
1,
|
247
|
+
dilation=dilation[1],
|
248
|
+
padding=get_padding(kernel_size, dilation[1]),
|
249
|
+
)
|
250
|
+
),
|
251
|
+
weight_norm(
|
252
|
+
Conv1d(
|
253
|
+
channels,
|
254
|
+
channels,
|
255
|
+
kernel_size,
|
256
|
+
1,
|
257
|
+
dilation=dilation[2],
|
258
|
+
padding=get_padding(kernel_size, dilation[2]),
|
259
|
+
)
|
260
|
+
),
|
261
|
+
]
|
262
|
+
)
|
263
|
+
self.convs1.apply(init_weights)
|
264
|
+
|
265
|
+
self.convs2 = nn.ModuleList(
|
266
|
+
[
|
267
|
+
weight_norm(
|
268
|
+
Conv1d(
|
269
|
+
channels,
|
270
|
+
channels,
|
271
|
+
kernel_size,
|
272
|
+
1,
|
273
|
+
dilation=1,
|
274
|
+
padding=get_padding(kernel_size, 1),
|
275
|
+
)
|
276
|
+
),
|
277
|
+
weight_norm(
|
278
|
+
Conv1d(
|
279
|
+
channels,
|
280
|
+
channels,
|
281
|
+
kernel_size,
|
282
|
+
1,
|
283
|
+
dilation=1,
|
284
|
+
padding=get_padding(kernel_size, 1),
|
285
|
+
)
|
286
|
+
),
|
287
|
+
weight_norm(
|
288
|
+
Conv1d(
|
289
|
+
channels,
|
290
|
+
channels,
|
291
|
+
kernel_size,
|
292
|
+
1,
|
293
|
+
dilation=1,
|
294
|
+
padding=get_padding(kernel_size, 1),
|
295
|
+
)
|
296
|
+
),
|
297
|
+
]
|
298
|
+
)
|
299
|
+
self.convs2.apply(init_weights)
|
300
|
+
|
301
|
+
def forward(self, x, x_mask=None):
|
302
|
+
for c1, c2 in zip(self.convs1, self.convs2):
|
303
|
+
xt = F.leaky_relu(x, self.LRELU_SLOPE)
|
304
|
+
if x_mask is not None:
|
305
|
+
xt = xt * x_mask
|
306
|
+
xt = c1(xt)
|
307
|
+
xt = F.leaky_relu(xt, self.LRELU_SLOPE)
|
308
|
+
if x_mask is not None:
|
309
|
+
xt = xt * x_mask
|
310
|
+
xt = c2(xt)
|
311
|
+
x = xt + x
|
312
|
+
if x_mask is not None:
|
313
|
+
x = x * x_mask
|
314
|
+
return x
|
315
|
+
|
316
|
+
def remove_weight_norm(self):
|
317
|
+
for l in self.convs1:
|
318
|
+
remove_weight_norm(l)
|
319
|
+
for l in self.convs2:
|
320
|
+
remove_weight_norm(l)
|
321
|
+
|
322
|
+
|
323
|
+
class ResBlock2(torch.nn.Module):
|
324
|
+
def __init__(
|
325
|
+
self, channels: int, kernel_size: int = 3, dilation: typing.Tuple[int] = (1, 3)
|
326
|
+
):
|
327
|
+
super(ResBlock2, self).__init__()
|
328
|
+
self.LRELU_SLOPE = 0.1
|
329
|
+
self.convs = nn.ModuleList(
|
330
|
+
[
|
331
|
+
weight_norm(
|
332
|
+
Conv1d(
|
333
|
+
channels,
|
334
|
+
channels,
|
335
|
+
kernel_size,
|
336
|
+
1,
|
337
|
+
dilation=dilation[0],
|
338
|
+
padding=get_padding(kernel_size, dilation[0]),
|
339
|
+
)
|
340
|
+
),
|
341
|
+
weight_norm(
|
342
|
+
Conv1d(
|
343
|
+
channels,
|
344
|
+
channels,
|
345
|
+
kernel_size,
|
346
|
+
1,
|
347
|
+
dilation=dilation[1],
|
348
|
+
padding=get_padding(kernel_size, dilation[1]),
|
349
|
+
)
|
350
|
+
),
|
351
|
+
]
|
352
|
+
)
|
353
|
+
self.convs.apply(init_weights)
|
354
|
+
|
355
|
+
def forward(self, x, x_mask=None):
|
356
|
+
for c in self.convs:
|
357
|
+
xt = F.leaky_relu(x, self.LRELU_SLOPE)
|
358
|
+
if x_mask is not None:
|
359
|
+
xt = xt * x_mask
|
360
|
+
xt = c(xt)
|
361
|
+
x = xt + x
|
362
|
+
if x_mask is not None:
|
363
|
+
x = x * x_mask
|
364
|
+
return x
|
365
|
+
|
366
|
+
def remove_weight_norm(self):
|
367
|
+
for l in self.convs:
|
368
|
+
remove_weight_norm(l)
|
369
|
+
|
370
|
+
|
371
|
+
class Log(nn.Module):
|
372
|
+
def forward(
|
373
|
+
self, x: torch.Tensor, x_mask: torch.Tensor, reverse: bool = False, **kwargs
|
374
|
+
):
|
375
|
+
if not reverse:
|
376
|
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
377
|
+
logdet = torch.sum(-y, [1, 2])
|
378
|
+
return y, logdet
|
379
|
+
else:
|
380
|
+
x = torch.exp(x) * x_mask
|
381
|
+
return x
|
382
|
+
|
383
|
+
|
384
|
+
class Flip(nn.Module):
|
385
|
+
def forward(self, x: torch.Tensor, *args, reverse: bool = False, **kwargs):
|
386
|
+
x = torch.flip(x, [1])
|
387
|
+
if not reverse:
|
388
|
+
logdet = torch.zeros(x.size(0)).type_as(x)
|
389
|
+
return x, logdet
|
390
|
+
else:
|
391
|
+
return x
|
392
|
+
|
393
|
+
|
394
|
+
class ElementwiseAffine(nn.Module):
|
395
|
+
def __init__(self, channels: int):
|
396
|
+
super().__init__()
|
397
|
+
self.channels = channels
|
398
|
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
399
|
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
400
|
+
|
401
|
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
402
|
+
if not reverse:
|
403
|
+
y = self.m + torch.exp(self.logs) * x
|
404
|
+
y = y * x_mask
|
405
|
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
406
|
+
return y, logdet
|
407
|
+
else:
|
408
|
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
409
|
+
return x
|
410
|
+
|
411
|
+
|
412
|
+
class ResidualCouplingLayer(nn.Module):
|
413
|
+
def __init__(
|
414
|
+
self,
|
415
|
+
channels: int,
|
416
|
+
hidden_channels: int,
|
417
|
+
kernel_size: int,
|
418
|
+
dilation_rate: int,
|
419
|
+
n_layers: int,
|
420
|
+
p_dropout: float = 0,
|
421
|
+
gin_channels: int = 0,
|
422
|
+
mean_only: bool = False,
|
423
|
+
):
|
424
|
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
425
|
+
super().__init__()
|
426
|
+
self.channels = channels
|
427
|
+
self.hidden_channels = hidden_channels
|
428
|
+
self.kernel_size = kernel_size
|
429
|
+
self.dilation_rate = dilation_rate
|
430
|
+
self.n_layers = n_layers
|
431
|
+
self.half_channels = channels // 2
|
432
|
+
self.mean_only = mean_only
|
433
|
+
|
434
|
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
435
|
+
self.enc = WN(
|
436
|
+
hidden_channels,
|
437
|
+
kernel_size,
|
438
|
+
dilation_rate,
|
439
|
+
n_layers,
|
440
|
+
p_dropout=p_dropout,
|
441
|
+
gin_channels=gin_channels,
|
442
|
+
)
|
443
|
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
444
|
+
self.post.weight.data.zero_()
|
445
|
+
self.post.bias.data.zero_()
|
446
|
+
|
447
|
+
def forward(self, x, x_mask, g=None, reverse=False):
|
448
|
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
449
|
+
h = self.pre(x0) * x_mask
|
450
|
+
h = self.enc(h, x_mask, g=g)
|
451
|
+
stats = self.post(h) * x_mask
|
452
|
+
if not self.mean_only:
|
453
|
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
454
|
+
else:
|
455
|
+
m = stats
|
456
|
+
logs = torch.zeros_like(m)
|
457
|
+
|
458
|
+
if not reverse:
|
459
|
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
460
|
+
x = torch.cat([x0, x1], 1)
|
461
|
+
logdet = torch.sum(logs, [1, 2])
|
462
|
+
return x, logdet
|
463
|
+
else:
|
464
|
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
465
|
+
x = torch.cat([x0, x1], 1)
|
466
|
+
return x
|
467
|
+
|
468
|
+
|
469
|
+
class ConvFlow(nn.Module):
|
470
|
+
def __init__(
|
471
|
+
self,
|
472
|
+
in_channels: int,
|
473
|
+
filter_channels: int,
|
474
|
+
kernel_size: int,
|
475
|
+
n_layers: int,
|
476
|
+
num_bins: int = 10,
|
477
|
+
tail_bound: float = 5.0,
|
478
|
+
):
|
479
|
+
super().__init__()
|
480
|
+
self.in_channels = in_channels
|
481
|
+
self.filter_channels = filter_channels
|
482
|
+
self.kernel_size = kernel_size
|
483
|
+
self.n_layers = n_layers
|
484
|
+
self.num_bins = num_bins
|
485
|
+
self.tail_bound = tail_bound
|
486
|
+
self.half_channels = in_channels // 2
|
487
|
+
|
488
|
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
489
|
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
490
|
+
self.proj = nn.Conv1d(
|
491
|
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
492
|
+
)
|
493
|
+
self.proj.weight.data.zero_()
|
494
|
+
self.proj.bias.data.zero_()
|
495
|
+
|
496
|
+
def forward(self, x, x_mask, g=None, reverse=False):
|
497
|
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
498
|
+
h = self.pre(x0)
|
499
|
+
h = self.convs(h, x_mask, g=g)
|
500
|
+
h = self.proj(h) * x_mask
|
501
|
+
|
502
|
+
b, c, t = x0.shape
|
503
|
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
504
|
+
|
505
|
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
506
|
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
507
|
+
self.filter_channels
|
508
|
+
)
|
509
|
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
510
|
+
|
511
|
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
512
|
+
x1,
|
513
|
+
unnormalized_widths,
|
514
|
+
unnormalized_heights,
|
515
|
+
unnormalized_derivatives,
|
516
|
+
inverse=reverse,
|
517
|
+
tails="linear",
|
518
|
+
tail_bound=self.tail_bound,
|
519
|
+
)
|
520
|
+
|
521
|
+
x = torch.cat([x0, x1], 1) * x_mask
|
522
|
+
|
523
|
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
524
|
+
if not reverse:
|
525
|
+
return x, logdet
|
526
|
+
else:
|
527
|
+
return x
|
@@ -0,0 +1,20 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import torch
|
3
|
+
|
4
|
+
from .monotonic_align.core import maximum_path_c
|
5
|
+
|
6
|
+
|
7
|
+
def maximum_path(neg_cent, mask):
|
8
|
+
"""Cython optimized version.
|
9
|
+
neg_cent: [b, t_t, t_s]
|
10
|
+
mask: [b, t_t, t_s]
|
11
|
+
"""
|
12
|
+
device = neg_cent.device
|
13
|
+
dtype = neg_cent.dtype
|
14
|
+
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
15
|
+
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
16
|
+
|
17
|
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
18
|
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
19
|
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
20
|
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
@@ -0,0 +1,13 @@
|
|
1
|
+
from distutils.core import setup
|
2
|
+
from pathlib import Path
|
3
|
+
|
4
|
+
import numpy
|
5
|
+
from Cython.Build import cythonize
|
6
|
+
|
7
|
+
_DIR = Path(__file__).parent
|
8
|
+
|
9
|
+
setup(
|
10
|
+
name="monotonic_align",
|
11
|
+
ext_modules=cythonize(str(_DIR / "core.pyx")),
|
12
|
+
include_dirs=[numpy.get_include()],
|
13
|
+
)
|