phm-algo-ias 1.1.1__cp311-cp311-manylinux_2_28_aarch64.whl → 1.2.1__cp311-cp311-manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of phm-algo-ias might be problematic. Click here for more details.

Binary file
algo/_version.py CHANGED
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '1.1.1'
32
- __version_tuple__ = version_tuple = (1, 1, 1)
31
+ __version__ = version = '1.2.1'
32
+ __version_tuple__ = version_tuple = (1, 2, 1)
33
33
 
34
- __commit_id__ = commit_id = 'gbe7236c04'
34
+ __commit_id__ = commit_id = 'g1795d513f'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: phm-algo-ias
3
- Version: 1.1.1
3
+ Version: 1.2.1
4
4
  Summary: Example algo package with Cython-compiled submodules
5
5
  Author: Your Name
6
6
  Classifier: Programming Language :: Python :: 3
@@ -0,0 +1,12 @@
1
+ algo/__init__.py,sha256=39U0vAwYJyChXgyxKTVca-mYS5g6wp0axllwilFCx9g,228
2
+ algo/_version.py,sha256=Tf2xulSqhfEs27CqfGBlJobD0tHuWvrAUYz-3gCGZ0M,712
3
+ algo/HI/HI.cpython-311-aarch64-linux-gnu.so,sha256=PRLyEvLe2n15s0FvYm_roMYyikh3Zv3C4W2hTZgWW80,674088
4
+ algo/HI/__init__.py,sha256=qHY2ACOtfIznQYvMFLJBpoB0xjUdd0rY2FUVunk2kEk,127
5
+ algo/RUL/RUL.cpython-311-aarch64-linux-gnu.so,sha256=HvC_zfF1vKwqs1PSgF_mZ-h-HjFov265wRAIPqzhYOY,291816
6
+ algo/RUL/__init__.py,sha256=VoJ0tZAIEh6TI8pJSo6hBAjEUYb2n2KiQ9dpXnrGF5g,131
7
+ test_code/HI_Verify.py,sha256=q6wPeanv5c5z9wDSSm0zL1E7Zd0EflINvxxjnhF7Gv4,8761
8
+ test_code/health_index_robot.py,sha256=qOQwfu8HOpfjEg7u804HZJq2D4PbzpsEVgT6PRtJ5-c,4424
9
+ phm_algo_ias-1.2.1.dist-info/METADATA,sha256=AyO1jxDC8x61WwNVIc8ES2Q4lBjBCk0qINAbdOlIxyw,610
10
+ phm_algo_ias-1.2.1.dist-info/WHEEL,sha256=8jTxASeLvPr09PZ22DGSMQlRkrmgeqGaotjla49xWxo,114
11
+ phm_algo_ias-1.2.1.dist-info/top_level.txt,sha256=G1rxqg36Dwkx3w8o50708_IOrZelxPOJVB_KPOLlJM0,26
12
+ phm_algo_ias-1.2.1.dist-info/RECORD,,
test_code/HI_Verify.py CHANGED
@@ -164,22 +164,23 @@ def rename_columns(df: pd.DataFrame) -> pd.DataFrame:
164
164
 
165
165
  if __name__ == "__main__":
166
166
  #------------------------------- << Training Model >> ---------------------------------------------------------
167
- #time_scale = "h" # 輸入時間維度 : "每小時"("h"), "每分鐘"("min")
168
- file_path = os.path.join(os.getcwd(), "data", "410_good_1_all_feature.csv")
167
+ time_scale = "h" # 輸入時間維度 : "每小時"("h"), "每分鐘"("min")
168
+ file_path = os.path.join(os.getcwd(), "data", "410_good_1.csv")
169
169
  df = pd.read_csv(file_path)
170
170
 
171
171
  #df = df[["Time"] + df.select_dtypes(include="number").columns.tolist()]
172
172
  df = rename_columns(df) # 更改欄位名稱 (.CSV檔欄位名稱->系統欄位名稱)
173
173
 
174
- algo_config = "1, 0, 1, 1, 2, 1, 1" # [時長維度, testing資料離處理, 低解析度特徵刪除, 特徵選擇, 資料正規化, 模型, rul_deadline]
175
-
174
+ algo_config = "1, 0, 1, 3, 3, 1, 1, 3" # [時長維度, testing資料離處理, 低解析度特徵刪除, 特徵選擇, 資料正規化, 模型, rul_deadline, feature_extraction]
175
+ #df = df.loc[:1800] ############################
176
+ #df = pd.concat([df] * 23, ignore_index=True)
176
177
  result = HI.training_model(df, algo_config) # Training Model : "training_model_robust_index"(訓練模型指標分數), "training_model_robust_status"(verify:綠燈,warning:紅燈)
177
178
  print(result)
178
179
 
179
180
  # result_clean = HI.outlier_clean(df, result) # 測試資料清洗後的model
180
181
  # print(result_clean)
181
182
 
182
- #Health_train = plot(result['HI_Score'], target="train") # 繪出HI圖
183
+ Health_train = plot(result['HI_Score'], target="train") # 繪出HI圖
183
184
 
184
185
  #展覽pickle檔案輸出
185
186
  # pick_path = os.path.join(os.getcwd(), "uploaded_files", "model", "model.pkl")
@@ -198,17 +199,18 @@ if __name__ == "__main__":
198
199
  # good_bad_result = HI.training_model_GB_compare(df_1, df_2, time_scale)
199
200
 
200
201
  #------------------------------- << Inference_HI & 嫌疑度變量 >> ---------------------------------------------------------
201
- file_path_test = os.path.join(os.getcwd(), "data", "410_good_1_all_feature.csv")
202
+ file_path_test = os.path.join(os.getcwd(), "data", "410_good_1.csv")
202
203
  test_df = pd.read_csv(file_path_test)
204
+ #test_df = df.loc[:12000]
203
205
  test_df = rename_columns(test_df) # 更改欄位名稱 (.CSV檔欄位名稱->系統欄位名稱)
204
206
  test_result = HI.testing_model(test_df,result) # Inference : 輸出 "HI_Score"(HI分數), "suspicious_variable"(變量嫌疑度)
205
207
  print(test_result)
206
208
 
207
209
  #test_cleaned = HI.testing_model(test_df,result_clean) # 測試資料清洗後的model
208
- #Health_test = plot(test_result['HI_Score'], target="test")
210
+ Health_test = plot(test_result['HI_Score'], target="test")
209
211
 
210
212
  #------------------------------------- << RUL >> ------------------------------------------------------------------------
211
- RUL_result = RUL.rul_calculation_h(test_result["HI_Score"], result) # Inference : 輸出 RUL
213
+ RUL_result = RUL.rul_calculation(test_result["T2"], result, 0.9) # Inference : 輸出 RUL
212
214
  print(RUL_result)
213
215
 
214
216
  #------------------------------- << HI_Score 異常時間區段 >> --------------------------------------------------------------
@@ -1,12 +0,0 @@
1
- algo/__init__.py,sha256=39U0vAwYJyChXgyxKTVca-mYS5g6wp0axllwilFCx9g,228
2
- algo/_version.py,sha256=fXellVhWRA4cMOkEBuKmFjLLro0rVyAOEKs6CbgrYtc,712
3
- algo/HI/HI.cpython-311-aarch64-linux-gnu.so,sha256=l6hT3UWXPMkA30YlW2F2_e0OdTZWANS9bsYB7wClS8Y,672072
4
- algo/HI/__init__.py,sha256=qHY2ACOtfIznQYvMFLJBpoB0xjUdd0rY2FUVunk2kEk,127
5
- algo/RUL/RUL.cpython-311-aarch64-linux-gnu.so,sha256=cGxJcJ5cMwWdfpg_d524ZBlJ2w80CIXfUWeC5HoDpWw,289096
6
- algo/RUL/__init__.py,sha256=VoJ0tZAIEh6TI8pJSo6hBAjEUYb2n2KiQ9dpXnrGF5g,131
7
- test_code/HI_Verify.py,sha256=WgYlEpbqdUpe5XNjSE__D_1hqCWWlykkeNfX9u2pWrw,8636
8
- test_code/health_index_robot.py,sha256=qOQwfu8HOpfjEg7u804HZJq2D4PbzpsEVgT6PRtJ5-c,4424
9
- phm_algo_ias-1.1.1.dist-info/METADATA,sha256=NjtQDqSdRhodwFbtndtmzcNmvtmeU9ZgB0f8uOgJDSI,610
10
- phm_algo_ias-1.1.1.dist-info/WHEEL,sha256=8jTxASeLvPr09PZ22DGSMQlRkrmgeqGaotjla49xWxo,114
11
- phm_algo_ias-1.1.1.dist-info/top_level.txt,sha256=G1rxqg36Dwkx3w8o50708_IOrZelxPOJVB_KPOLlJM0,26
12
- phm_algo_ias-1.1.1.dist-info/RECORD,,