phasorpy 0.1__cp311-cp311-win_arm64.whl → 0.3__cp311-cp311-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
phasorpy/plot.py CHANGED
@@ -171,12 +171,16 @@ class PhasorPlot:
171
171
  @property
172
172
  def fig(self) -> Figure | None:
173
173
  """Matplotlib :py:class:`matplotlib.figure.Figure`."""
174
- return self._ax.get_figure()
174
+ try:
175
+ # matplotlib >= 3.10.0
176
+ return self._ax.get_figure(root=True)
177
+ except TypeError:
178
+ return self._ax.get_figure() # type: ignore[return-value]
175
179
 
176
180
  @property
177
181
  def dataunit_to_point(self) -> float:
178
182
  """Factor to convert data to point unit."""
179
- fig = self._ax.get_figure()
183
+ fig = self.fig
180
184
  assert fig is not None
181
185
  length = fig.bbox_inches.height * self._ax.get_position().height * 72.0
182
186
  vrange: float = numpy.diff(self._ax.get_ylim()).item()
phasorpy/utils.py CHANGED
@@ -7,9 +7,309 @@ that do not naturally fit into other modules.
7
7
 
8
8
  from __future__ import annotations
9
9
 
10
- __all__ = ['number_threads']
10
+ __all__ = [
11
+ 'anscombe_transformation',
12
+ 'anscombe_transformation_inverse',
13
+ 'number_threads',
14
+ 'spectral_vector_denoise',
15
+ ]
11
16
 
17
+ import math
12
18
  import os
19
+ from typing import TYPE_CHECKING
20
+
21
+ if TYPE_CHECKING:
22
+ from ._typing import Any, NDArray, ArrayLike, DTypeLike, Literal, Sequence
23
+
24
+ import numpy
25
+
26
+ from ._phasorpy import (
27
+ _anscombe,
28
+ _anscombe_inverse,
29
+ _anscombe_inverse_approx,
30
+ _phasor_from_signal_vector,
31
+ _signal_denoise_vector,
32
+ )
33
+ from ._utils import parse_harmonic
34
+
35
+
36
+ def spectral_vector_denoise(
37
+ signal: ArrayLike,
38
+ /,
39
+ spectral_vector: ArrayLike | None = None,
40
+ *,
41
+ axis: int = -1,
42
+ harmonic: int | Sequence[int] | Literal['all'] | str | None = None,
43
+ sigma: float = 0.05,
44
+ vmin: float | None = None,
45
+ dtype: DTypeLike | None = None,
46
+ num_threads: int | None = None,
47
+ ) -> NDArray[Any]:
48
+ """Return spectral-vector-denoised signal.
49
+
50
+ The spectral vector denoising algorithm is based on a Gaussian weighted
51
+ average calculation, with weights obtained in n-dimensional Chebyshev or
52
+ Fourier space [4]_.
53
+
54
+ Parameters
55
+ ----------
56
+ signal : array_like
57
+ Hyperspectral data to be denoised.
58
+ A minimum of three samples are required along `axis`.
59
+ The samples must be uniformly spaced.
60
+ spectral_vector : array_like, optional
61
+ Spectral vector.
62
+ For example, phasor coordinates, PCA projected phasor coordinates,
63
+ or Chebyshev coefficients.
64
+ Must be of same shape as `signal` with `axis` removed and axis
65
+ containing spectral space appended.
66
+ If None (default), phasor coordinates are calculated at specified
67
+ `harmonic`.
68
+ axis : int, optional, default: -1
69
+ Axis over which `spectral_vector` is computed if not provided.
70
+ The default is the last axis (-1).
71
+ harmonic : int, sequence of int, or 'all', optional
72
+ Harmonics to include in calculating `spectral_vector`.
73
+ If `'all'`, include all harmonics for `signal` samples along `axis`.
74
+ Else, harmonics must be at least one and no larger than half the
75
+ number of `signal` samples along `axis`.
76
+ The default is the first harmonic (fundamental frequency).
77
+ A minimum of `harmonic * 2 + 1` samples are required along `axis`
78
+ to calculate correct phasor coordinates at `harmonic`.
79
+ sigma : float, default: 0.05
80
+ Width of Gaussian filter in spectral vector space.
81
+ Weighted averages are calculated using the spectra of signal items
82
+ within an spectral vector Euclidean distance of `3 * sigma` and
83
+ intensity above `vmin`.
84
+ vmin : float, optional
85
+ Signal intensity along `axis` below which not to include in denoising.
86
+ dtype : dtype_like, optional
87
+ Data type of output arrays. Either float32 or float64.
88
+ The default is float64 unless the `signal` is float32.
89
+ num_threads : int, optional
90
+ Number of OpenMP threads to use for parallelization.
91
+ By default, multi-threading is disabled.
92
+ If zero, up to half of logical CPUs are used.
93
+ OpenMP may not be available on all platforms.
94
+
95
+ Returns
96
+ -------
97
+ ndarray
98
+ Denoised signal of `dtype`.
99
+ Spectra with integrated intensity below `vmin` are unchanged.
100
+
101
+ References
102
+ ----------
103
+
104
+ .. [4] Harman RC, Lang RT, Kercher EM, Leven P, and Spring BQ.
105
+ `Denoising multiplexed microscopy images in n-dimensional spectral space
106
+ <https://doi.org/10.1364/BOE.463979>`_.
107
+ *Biomedical Optics Express*, 13(8): 4298-4309 (2022)
108
+
109
+ Examples
110
+ --------
111
+ Denoise a hyperspectral image with a Gaussian filter width of 0.1 in
112
+ spectral vector space using first and second harmonic:
113
+
114
+ >>> signal = numpy.random.randint(0, 255, (8, 16, 16))
115
+ >>> spectral_vector_denoise(signal, axis=0, sigma=0.1, harmonic=[1, 2])
116
+ array([[[...]]])
117
+
118
+ """
119
+ num_threads = number_threads(num_threads)
120
+
121
+ signal = numpy.asarray(signal)
122
+ if axis == -1 or axis == signal.ndim - 1:
123
+ axis = -1
124
+ else:
125
+ signal = numpy.moveaxis(signal, axis, -1)
126
+ shape = signal.shape
127
+ samples = shape[-1]
128
+
129
+ if harmonic is None:
130
+ harmonic = 1
131
+ harmonic, _ = parse_harmonic(harmonic, samples // 2)
132
+ num_harmonics = len(harmonic)
133
+
134
+ if vmin is None or vmin < 0.0:
135
+ vmin = 0.0
136
+
137
+ sincos = numpy.empty((num_harmonics, samples, 2))
138
+ for i, h in enumerate(harmonic):
139
+ phase = numpy.linspace(
140
+ 0,
141
+ h * math.pi * 2.0,
142
+ samples,
143
+ endpoint=False,
144
+ dtype=numpy.float64,
145
+ )
146
+ sincos[i, :, 0] = numpy.cos(phase)
147
+ sincos[i, :, 1] = numpy.sin(phase)
148
+
149
+ signal = numpy.ascontiguousarray(signal).reshape(-1, samples)
150
+ size = signal.shape[0]
151
+
152
+ if dtype is None:
153
+ if signal.dtype.char == 'f':
154
+ dtype = signal.dtype
155
+ else:
156
+ dtype = numpy.float64
157
+ dtype = numpy.dtype(dtype)
158
+ if dtype.char not in {'d', 'f'}:
159
+ raise ValueError('dtype is not floating point')
160
+
161
+ if spectral_vector is None:
162
+ spectral_vector = numpy.zeros((size, num_harmonics * 2), dtype=dtype)
163
+ _phasor_from_signal_vector(
164
+ spectral_vector, signal, sincos, num_threads
165
+ )
166
+ else:
167
+ spectral_vector = numpy.ascontiguousarray(spectral_vector, dtype=dtype)
168
+ if spectral_vector.shape[:-1] != shape[:-1]:
169
+ raise ValueError('signal and spectral_vector shape mismatch')
170
+ spectral_vector = spectral_vector.reshape(
171
+ -1, spectral_vector.shape[-1]
172
+ )
173
+
174
+ if dtype == signal.dtype:
175
+ denoised = signal.copy()
176
+ else:
177
+ denoised = numpy.zeros(signal.shape, dtype=dtype)
178
+ denoised[:] = signal
179
+ integrated = numpy.zeros(size, dtype=dtype)
180
+ _signal_denoise_vector(
181
+ denoised, integrated, signal, spectral_vector, sigma, vmin, num_threads
182
+ )
183
+
184
+ denoised = denoised.reshape(shape)
185
+ if axis != -1:
186
+ denoised = numpy.moveaxis(denoised, -1, axis)
187
+ return denoised
188
+
189
+
190
+ def anscombe_transformation(
191
+ data: ArrayLike,
192
+ /,
193
+ **kwargs: Any,
194
+ ) -> NDArray[Any]:
195
+ r"""Return Anscombe variance-stabilizing transformation.
196
+
197
+ The Anscombe transformation normalizes the standard deviation of noisy,
198
+ Poisson-distributed data.
199
+ It can be used to transform un-normalized phasor coordinates to
200
+ approximate standard Gaussian distributions.
201
+
202
+ Parameters
203
+ ----------
204
+ data: array_like
205
+ Noisy Poisson-distributed data to be transformed.
206
+ **kwargs
207
+ Optional `arguments passed to numpy universal functions
208
+ <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
209
+
210
+ Returns
211
+ -------
212
+ ndarray
213
+ Anscombe-transformed data with variance of approximately 1.
214
+
215
+ Notes
216
+ -----
217
+ The Anscombe transformation according to [1]_:
218
+
219
+ .. math::
220
+
221
+ z = 2 \cdot \sqrt{x + 3 / 8}
222
+
223
+ References
224
+ ----------
225
+
226
+ .. [1] Anscombe FJ.
227
+ `The transformation of Poisson, binomial and negative-binomial data
228
+ <https://doi.org/10.2307/2332343>`_.
229
+ *Biometrika*, 35(3-4): 246-254 (1948)
230
+
231
+ Examples
232
+ --------
233
+
234
+ >>> z = anscombe_transformation(numpy.random.poisson(10, 10000))
235
+ >>> numpy.allclose(numpy.std(z), 1.0, atol=0.1)
236
+ True
237
+
238
+ """
239
+ return _anscombe(data, **kwargs) # type: ignore[no-any-return]
240
+
241
+
242
+ def anscombe_transformation_inverse(
243
+ data: ArrayLike,
244
+ /,
245
+ *,
246
+ approx: bool = False,
247
+ **kwargs: Any,
248
+ ) -> NDArray[Any]:
249
+ r"""Return inverse Anscombe transformation.
250
+
251
+ Parameters
252
+ ----------
253
+ data: array_like
254
+ Anscombe-transformed data.
255
+ approx: bool, default: False
256
+ If true, return approximation of exact unbiased inverse.
257
+ **kwargs
258
+ Optional `arguments passed to numpy universal functions
259
+ <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
260
+
261
+ Returns
262
+ -------
263
+ ndarray
264
+ Inverse Anscombe-transformed data.
265
+
266
+ Notes
267
+ -----
268
+ The inverse Anscombe transformation according to [1]_:
269
+
270
+ .. math::
271
+
272
+ x = (z / 2.0)^2 - 3 / 8
273
+
274
+ The approximate inverse Anscombe transformation according to [2]_ and [3]_:
275
+
276
+ .. math::
277
+
278
+ x = 1/4 \cdot z^2{2}
279
+ + 1/4 \cdot \sqrt{3/2} \cdot z^{-1}
280
+ - 11/8 \cdot z^{-2}
281
+ + 5/8 \cdot \sqrt(3/2) \cdot z^{-3}
282
+ - 1/8
283
+
284
+ References
285
+ ----------
286
+
287
+ .. [2] Makitalo M, and Foi A.
288
+ `A closed-form approximation of the exact unbiased inverse of the
289
+ Anscombe variance-stabilizing transformation
290
+ <https://doi.org/10.1109/TIP.2011.2121085>`_.
291
+ IEEE Trans Image Process, 20(9): 2697-8 (2011).
292
+
293
+ .. [3] Makitalo M, and Foi A
294
+ `Optimal inversion of the generalized Anscombe transformation for
295
+ Poisson-Gaussian noise
296
+ <https://doi.org/10.1109/TIP.2012.2202675>`_,
297
+ IEEE Trans Image Process, 22(1): 91-103 (2013)
298
+
299
+ Examples
300
+ --------
301
+
302
+ >>> x = numpy.random.poisson(10, 100)
303
+ >>> x2 = anscombe_transformation_inverse(anscombe_transformation(x))
304
+ >>> numpy.allclose(x, x2, atol=1e-3)
305
+ True
306
+
307
+ """
308
+ if approx:
309
+ return _anscombe_inverse_approx( # type: ignore[no-any-return]
310
+ data, **kwargs
311
+ )
312
+ return _anscombe_inverse(data, **kwargs) # type: ignore[no-any-return]
13
313
 
14
314
 
15
315
  def number_threads(
phasorpy/version.py CHANGED
@@ -2,7 +2,7 @@
2
2
 
3
3
  from __future__ import annotations
4
4
 
5
- __version__ = '0.1'
5
+ __version__ = '0.3'
6
6
 
7
7
 
8
8
  def versions(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: phasorpy
3
- Version: 0.1
3
+ Version: 0.3
4
4
  Summary: Analysis of fluorescence lifetime and hyperspectral images using the phasor approach
5
5
  Author: PhasorPy Contributors
6
6
  License: MIT
@@ -26,32 +26,32 @@ Classifier: Programming Language :: Python :: 3.13
26
26
  Requires-Python: >=3.10
27
27
  Description-Content-Type: text/markdown
28
28
  License-File: LICENSE.txt
29
- Requires-Dist: numpy >=1.24.0
30
- Requires-Dist: matplotlib >=3.7.0
31
- Requires-Dist: scipy >=1.11.0
29
+ Requires-Dist: numpy>=1.24.0
30
+ Requires-Dist: matplotlib>=3.7.0
31
+ Requires-Dist: scipy>=1.11.0
32
32
  Requires-Dist: click
33
33
  Requires-Dist: pooch
34
34
  Requires-Dist: tqdm
35
- Requires-Dist: xarray >=2023.4.0
36
- Requires-Dist: tifffile >=2024.8.30
37
- Provides-Extra: all
38
- Requires-Dist: lfdfiles >=2024.5.24 ; extra == 'all'
39
- Requires-Dist: sdtfile >=2024.5.24 ; extra == 'all'
40
- Requires-Dist: ptufile >=2024.9.14 ; extra == 'all'
35
+ Requires-Dist: xarray>=2023.4.0
36
+ Requires-Dist: tifffile>=2024.8.30
41
37
  Provides-Extra: docs
42
- Requires-Dist: sphinx ; extra == 'docs'
43
- Requires-Dist: sphinx-issues ; extra == 'docs'
44
- Requires-Dist: sphinx-gallery ; extra == 'docs'
45
- Requires-Dist: sphinx-copybutton ; extra == 'docs'
46
- Requires-Dist: sphinx-click ; extra == 'docs'
47
- Requires-Dist: pydata-sphinx-theme ; extra == 'docs'
48
- Requires-Dist: numpydoc ; extra == 'docs'
38
+ Requires-Dist: sphinx; extra == "docs"
39
+ Requires-Dist: sphinx-issues; extra == "docs"
40
+ Requires-Dist: sphinx_gallery; extra == "docs"
41
+ Requires-Dist: sphinx-copybutton; extra == "docs"
42
+ Requires-Dist: sphinx_click; extra == "docs"
43
+ Requires-Dist: pydata-sphinx-theme>=0.16.0; extra == "docs"
44
+ Requires-Dist: numpydoc; extra == "docs"
49
45
  Provides-Extra: test
50
- Requires-Dist: pytest ; extra == 'test'
51
- Requires-Dist: pytest-cov ; extra == 'test'
52
- Requires-Dist: pytest-runner ; extra == 'test'
53
- Requires-Dist: pytest-doctestplus ; extra == 'test'
54
- Requires-Dist: coverage ; extra == 'test'
46
+ Requires-Dist: pytest; extra == "test"
47
+ Requires-Dist: pytest-cov; extra == "test"
48
+ Requires-Dist: pytest-runner; extra == "test"
49
+ Requires-Dist: pytest-doctestplus; extra == "test"
50
+ Requires-Dist: coverage; extra == "test"
51
+ Provides-Extra: all
52
+ Requires-Dist: lfdfiles>=2024.5.24; extra == "all"
53
+ Requires-Dist: sdtfile>=2024.5.24; extra == "all"
54
+ Requires-Dist: ptufile>=2024.9.14; extra == "all"
55
55
 
56
56
  # PhasorPy
57
57
 
@@ -0,0 +1,24 @@
1
+ phasorpy/__init__.py,sha256=SwOTreV7wd8ZEL3waXQlgbNnsErWJ0dh6A2d77DWp0Y,254
2
+ phasorpy/__main__.py,sha256=0u6C98HYfajV1RoUww8kAc0CxdsON0ijgEyTYExCSLM,149
3
+ phasorpy/_phasorpy.cp311-win_arm64.pyd,sha256=2TFkN6YcWkuQ3k-n0FrKqukggbhjYbYJKNnsrzrbYjQ,713216
4
+ phasorpy/_phasorpy.pyx,sha256=1jHkJGcsdzCSLMGdpmvjFuSbg1A4w0XBa4Jy4udXzm4,62066
5
+ phasorpy/_typing.py,sha256=ii-5-8KTs2BZq0Ytu3yJl8ejSQj1V06c1_Jcwa_2Snk,1324
6
+ phasorpy/_utils.py,sha256=0c3d8D69wG7mTUzc-qh4GDff64FXJK9vFzRrZ0-XOqw,13255
7
+ phasorpy/cli.py,sha256=orN_31JOTzIUEfySwTo_Kr24UUzPKdA-DkemsmM8IHk,1977
8
+ phasorpy/color.py,sha256=axzL2b0d_g_6pG1wgHSdbiNtn7wAooYl3t-zaUNOBTE,17313
9
+ phasorpy/components.py,sha256=0ZuUaJllf4c2UFbiTOse5PYXkMLNF8q5VSUxvSgPjy8,10415
10
+ phasorpy/conftest.py,sha256=BywY24LnrOhaTHZIYkVAQ09JmvKZXevNKoshdLeL9nA,949
11
+ phasorpy/cursors.py,sha256=sUZ-9PJ5faJLWewRuENhF7nRJ-drPtW8Ui8YWD6UOw4,15546
12
+ phasorpy/datasets.py,sha256=AvZcR9hVgW5m7blKt51tFPC7zd1HBJ46GjfCeBb2r9E,15523
13
+ phasorpy/io.py,sha256=8kes4ebfbiu1bpNOA7cfbuZhCX39sMyRn86vnRh00i0,58340
14
+ phasorpy/phasor.py,sha256=zYCbg_KPw_JXRbrOjhinp9iUt51wE7M15DEovN9Z_RE,113150
15
+ phasorpy/plot.py,sha256=mkNcXN7caXHPBiBJazo5mEZawUitnGny8xbFsHS3u9c,69959
16
+ phasorpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
+ phasorpy/utils.py,sha256=an_dOCZM9WCNUxI3GFuxdjrF8BRVQIc0OnQStgiXF7A,11675
18
+ phasorpy/version.py,sha256=LDRHtMREhlYztKP-wHgHhtANbGj-bBz7rnICDjQ9Trw,1800
19
+ phasorpy-0.3.dist-info/LICENSE.txt,sha256=bxzmxrql9vHNenjAb0m7dSkLbEQJW9zJi2E0WjkAI68,1104
20
+ phasorpy-0.3.dist-info/METADATA,sha256=OwEDIpNLNxk2BM1IQnfkQihI3CGlgZF7uv_XnFpo7Pg,3464
21
+ phasorpy-0.3.dist-info/WHEEL,sha256=45MrEx9L3kxvoUOi1Ml5oJx5dPWL_htjh1sXeu3-0rk,101
22
+ phasorpy-0.3.dist-info/entry_points.txt,sha256=VRhsl3qGiIKwtMraKapmduchTMbdReUi1AoVTe9f3ss,47
23
+ phasorpy-0.3.dist-info/top_level.txt,sha256=4Y0uYzya5R2loleAxZ6s2n53_FysUbgFTfFaU0i9rbo,9
24
+ phasorpy-0.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (75.6.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp311-cp311-win_arm64
5
5
 
@@ -1,24 +0,0 @@
1
- phasorpy/__init__.py,sha256=SwOTreV7wd8ZEL3waXQlgbNnsErWJ0dh6A2d77DWp0Y,254
2
- phasorpy/__main__.py,sha256=0u6C98HYfajV1RoUww8kAc0CxdsON0ijgEyTYExCSLM,149
3
- phasorpy/_phasorpy.cp311-win_arm64.pyd,sha256=JXvrlyLw3MJ6BOL5bVN0Et5R9beAiFo1l_btqCaMhR0,421376
4
- phasorpy/_phasorpy.pyx,sha256=UaeZnopcilXZVhJVSlR6tgTpfnaa3LZEEbqMwpSuGsE,50792
5
- phasorpy/_typing.py,sha256=ii-5-8KTs2BZq0Ytu3yJl8ejSQj1V06c1_Jcwa_2Snk,1324
6
- phasorpy/_utils.py,sha256=4Z_qsLoKLXh2GlQcDdO1tNORJkXqO3Pr2UhZoc2_TmA,12563
7
- phasorpy/cli.py,sha256=orN_31JOTzIUEfySwTo_Kr24UUzPKdA-DkemsmM8IHk,1977
8
- phasorpy/color.py,sha256=axzL2b0d_g_6pG1wgHSdbiNtn7wAooYl3t-zaUNOBTE,17313
9
- phasorpy/components.py,sha256=0ZuUaJllf4c2UFbiTOse5PYXkMLNF8q5VSUxvSgPjy8,10415
10
- phasorpy/conftest.py,sha256=BywY24LnrOhaTHZIYkVAQ09JmvKZXevNKoshdLeL9nA,949
11
- phasorpy/cursors.py,sha256=sUZ-9PJ5faJLWewRuENhF7nRJ-drPtW8Ui8YWD6UOw4,15546
12
- phasorpy/datasets.py,sha256=WnFAvMEAAz4pdl86ZXDzvLHuBAifxbCpVS9f5EAUo3k,14893
13
- phasorpy/io.py,sha256=ZiZ4GaRHvchRcfRJ77yz9Xy3FkznQECKPfmKb0lbY4s,54250
14
- phasorpy/phasor.py,sha256=GBk4hkRA2XuNlihLddhs2t_-pUNhkQpBzqAnmXJpJc0,102219
15
- phasorpy/plot.py,sha256=NfIEn_QynSMNTQGvDrSU6UsIgz15A43VcCLRfsLtnMk,69810
16
- phasorpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
- phasorpy/utils.py,sha256=lDX4s1u3lHC96A358znupGX2kPwaSodcSanRb_vCNZM,2114
18
- phasorpy/version.py,sha256=dCgRcJM149CfpwC5ESqQEENkLTbCktaTidh3IYOX7vg,1800
19
- phasorpy-0.1.dist-info/LICENSE.txt,sha256=bxzmxrql9vHNenjAb0m7dSkLbEQJW9zJi2E0WjkAI68,1104
20
- phasorpy-0.1.dist-info/METADATA,sha256=rHsAqZBSUA-KnLkCtxUGhXTdnDCSQx8AXq7_eeCIZZs,3479
21
- phasorpy-0.1.dist-info/WHEEL,sha256=DIC5NNQ6-42fIcHfGR6yTsF2AOYlMMX1M9_biTquSmY,101
22
- phasorpy-0.1.dist-info/entry_points.txt,sha256=VRhsl3qGiIKwtMraKapmduchTMbdReUi1AoVTe9f3ss,47
23
- phasorpy-0.1.dist-info/top_level.txt,sha256=4Y0uYzya5R2loleAxZ6s2n53_FysUbgFTfFaU0i9rbo,9
24
- phasorpy-0.1.dist-info/RECORD,,