pg-sui 1.6.14.dev9__py3-none-any.whl → 1.6.16a3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pg_sui-1.6.16a3.dist-info/METADATA +292 -0
- {pg_sui-1.6.14.dev9.dist-info → pg_sui-1.6.16a3.dist-info}/RECORD +14 -14
- pgsui/_version.py +2 -2
- pgsui/cli.py +14 -1
- pgsui/data_processing/containers.py +116 -104
- pgsui/impute/unsupervised/base.py +4 -1
- pgsui/impute/unsupervised/imputers/autoencoder.py +111 -35
- pgsui/impute/unsupervised/imputers/nlpca.py +239 -127
- pgsui/impute/unsupervised/imputers/ubp.py +135 -50
- pgsui/impute/unsupervised/imputers/vae.py +134 -46
- pg_sui-1.6.14.dev9.dist-info/METADATA +0 -344
- {pg_sui-1.6.14.dev9.dist-info → pg_sui-1.6.16a3.dist-info}/WHEEL +0 -0
- {pg_sui-1.6.14.dev9.dist-info → pg_sui-1.6.16a3.dist-info}/entry_points.txt +0 -0
- {pg_sui-1.6.14.dev9.dist-info → pg_sui-1.6.16a3.dist-info}/licenses/LICENSE +0 -0
- {pg_sui-1.6.14.dev9.dist-info → pg_sui-1.6.16a3.dist-info}/top_level.txt +0 -0
|
@@ -343,19 +343,19 @@ class NLPCAConfig:
|
|
|
343
343
|
cfg.model.dropout_rate = 0.10
|
|
344
344
|
cfg.model.gamma = 1.5
|
|
345
345
|
# Train
|
|
346
|
-
cfg.train.batch_size =
|
|
347
|
-
cfg.train.learning_rate =
|
|
346
|
+
cfg.train.batch_size = 256
|
|
347
|
+
cfg.train.learning_rate = 2e-3
|
|
348
348
|
cfg.train.early_stop_gen = 5
|
|
349
349
|
cfg.train.min_epochs = 10
|
|
350
|
-
cfg.train.max_epochs =
|
|
351
|
-
cfg.train.weights_beta = 0.
|
|
352
|
-
cfg.train.weights_max_ratio =
|
|
350
|
+
cfg.train.max_epochs = 150
|
|
351
|
+
cfg.train.weights_beta = 0.999
|
|
352
|
+
cfg.train.weights_max_ratio = 5.0
|
|
353
353
|
# Tuning
|
|
354
354
|
cfg.tune.enabled = True
|
|
355
355
|
cfg.tune.fast = True
|
|
356
|
-
cfg.tune.n_trials =
|
|
357
|
-
cfg.tune.epochs =
|
|
358
|
-
cfg.tune.batch_size =
|
|
356
|
+
cfg.tune.n_trials = 20
|
|
357
|
+
cfg.tune.epochs = 150
|
|
358
|
+
cfg.tune.batch_size = 256
|
|
359
359
|
cfg.tune.max_samples = 512
|
|
360
360
|
cfg.tune.max_loci = 0
|
|
361
361
|
cfg.tune.eval_interval = 20
|
|
@@ -374,26 +374,26 @@ class NLPCAConfig:
|
|
|
374
374
|
cfg.model.gamma = 2.0
|
|
375
375
|
# Train
|
|
376
376
|
cfg.train.batch_size = 128
|
|
377
|
-
cfg.train.learning_rate =
|
|
377
|
+
cfg.train.learning_rate = 1e-3
|
|
378
378
|
cfg.train.early_stop_gen = 15
|
|
379
379
|
cfg.train.min_epochs = 50
|
|
380
380
|
cfg.train.max_epochs = 600
|
|
381
381
|
cfg.train.weights_beta = 0.9999
|
|
382
|
-
cfg.train.weights_max_ratio =
|
|
382
|
+
cfg.train.weights_max_ratio = 5.0
|
|
383
383
|
# Tuning
|
|
384
384
|
cfg.tune.enabled = True
|
|
385
|
-
cfg.tune.fast =
|
|
386
|
-
cfg.tune.n_trials =
|
|
387
|
-
cfg.tune.epochs =
|
|
385
|
+
cfg.tune.fast = False
|
|
386
|
+
cfg.tune.n_trials = 60
|
|
387
|
+
cfg.tune.epochs = 200
|
|
388
388
|
cfg.tune.batch_size = 128
|
|
389
389
|
cfg.tune.max_samples = 2048
|
|
390
390
|
cfg.tune.max_loci = 0
|
|
391
|
-
cfg.tune.eval_interval =
|
|
392
|
-
cfg.tune.infer_epochs =
|
|
391
|
+
cfg.tune.eval_interval = 10
|
|
392
|
+
cfg.tune.infer_epochs = 50
|
|
393
393
|
cfg.tune.patience = 10
|
|
394
394
|
cfg.tune.proxy_metric_batch = 0
|
|
395
395
|
# Eval
|
|
396
|
-
cfg.evaluate.eval_latent_steps =
|
|
396
|
+
cfg.evaluate.eval_latent_steps = 40
|
|
397
397
|
|
|
398
398
|
else: # thorough
|
|
399
399
|
# Model
|
|
@@ -404,26 +404,26 @@ class NLPCAConfig:
|
|
|
404
404
|
cfg.model.gamma = 2.5
|
|
405
405
|
# Train
|
|
406
406
|
cfg.train.batch_size = 64
|
|
407
|
-
cfg.train.learning_rate =
|
|
408
|
-
cfg.train.early_stop_gen =
|
|
407
|
+
cfg.train.learning_rate = 5e-4
|
|
408
|
+
cfg.train.early_stop_gen = 30
|
|
409
409
|
cfg.train.min_epochs = 100
|
|
410
|
-
cfg.train.max_epochs =
|
|
410
|
+
cfg.train.max_epochs = 2000
|
|
411
411
|
cfg.train.weights_beta = 0.9999
|
|
412
|
-
cfg.train.weights_max_ratio =
|
|
412
|
+
cfg.train.weights_max_ratio = 5.0
|
|
413
413
|
# Tuning
|
|
414
414
|
cfg.tune.enabled = True
|
|
415
|
-
cfg.tune.fast = False
|
|
416
|
-
cfg.tune.n_trials =
|
|
415
|
+
cfg.tune.fast = False # Full search
|
|
416
|
+
cfg.tune.n_trials = 100
|
|
417
417
|
cfg.tune.epochs = 600
|
|
418
418
|
cfg.tune.batch_size = 64
|
|
419
|
-
cfg.tune.max_samples =
|
|
419
|
+
cfg.tune.max_samples = 0 # No limit
|
|
420
420
|
cfg.tune.max_loci = 0
|
|
421
421
|
cfg.tune.eval_interval = 10
|
|
422
422
|
cfg.tune.infer_epochs = 80
|
|
423
|
-
cfg.tune.patience =
|
|
423
|
+
cfg.tune.patience = 20
|
|
424
424
|
cfg.tune.proxy_metric_batch = 0
|
|
425
425
|
# Eval
|
|
426
|
-
cfg.evaluate.eval_latent_steps =
|
|
426
|
+
cfg.evaluate.eval_latent_steps = 100
|
|
427
427
|
|
|
428
428
|
return cfg
|
|
429
429
|
|
|
@@ -496,19 +496,19 @@ class UBPConfig:
|
|
|
496
496
|
cfg.model.dropout_rate = 0.10
|
|
497
497
|
cfg.model.gamma = 1.5
|
|
498
498
|
# Train
|
|
499
|
-
cfg.train.batch_size =
|
|
500
|
-
cfg.train.learning_rate =
|
|
499
|
+
cfg.train.batch_size = 256
|
|
500
|
+
cfg.train.learning_rate = 2e-3
|
|
501
501
|
cfg.train.early_stop_gen = 5
|
|
502
502
|
cfg.train.min_epochs = 10
|
|
503
|
-
cfg.train.max_epochs =
|
|
504
|
-
cfg.train.weights_beta = 0.
|
|
505
|
-
cfg.train.weights_max_ratio =
|
|
503
|
+
cfg.train.max_epochs = 150
|
|
504
|
+
cfg.train.weights_beta = 0.999
|
|
505
|
+
cfg.train.weights_max_ratio = 5.0
|
|
506
506
|
# Tuning
|
|
507
507
|
cfg.tune.enabled = True
|
|
508
508
|
cfg.tune.fast = True
|
|
509
|
-
cfg.tune.n_trials =
|
|
510
|
-
cfg.tune.epochs =
|
|
511
|
-
cfg.tune.batch_size =
|
|
509
|
+
cfg.tune.n_trials = 20
|
|
510
|
+
cfg.tune.epochs = 150
|
|
511
|
+
cfg.tune.batch_size = 256
|
|
512
512
|
cfg.tune.max_samples = 512
|
|
513
513
|
cfg.tune.max_loci = 0
|
|
514
514
|
cfg.tune.eval_interval = 20
|
|
@@ -529,26 +529,26 @@ class UBPConfig:
|
|
|
529
529
|
cfg.model.gamma = 2.0
|
|
530
530
|
# Train
|
|
531
531
|
cfg.train.batch_size = 128
|
|
532
|
-
cfg.train.learning_rate =
|
|
532
|
+
cfg.train.learning_rate = 1e-3
|
|
533
533
|
cfg.train.early_stop_gen = 15
|
|
534
534
|
cfg.train.min_epochs = 50
|
|
535
535
|
cfg.train.max_epochs = 600
|
|
536
536
|
cfg.train.weights_beta = 0.9999
|
|
537
|
-
cfg.train.weights_max_ratio =
|
|
537
|
+
cfg.train.weights_max_ratio = 5.0
|
|
538
538
|
# Tuning
|
|
539
539
|
cfg.tune.enabled = True
|
|
540
|
-
cfg.tune.fast =
|
|
541
|
-
cfg.tune.n_trials =
|
|
542
|
-
cfg.tune.epochs =
|
|
540
|
+
cfg.tune.fast = False
|
|
541
|
+
cfg.tune.n_trials = 60
|
|
542
|
+
cfg.tune.epochs = 200
|
|
543
543
|
cfg.tune.batch_size = 128
|
|
544
544
|
cfg.tune.max_samples = 2048
|
|
545
545
|
cfg.tune.max_loci = 0
|
|
546
|
-
cfg.tune.eval_interval =
|
|
547
|
-
cfg.tune.infer_epochs =
|
|
546
|
+
cfg.tune.eval_interval = 10
|
|
547
|
+
cfg.tune.infer_epochs = 50
|
|
548
548
|
cfg.tune.patience = 10
|
|
549
549
|
cfg.tune.proxy_metric_batch = 0
|
|
550
550
|
# Eval
|
|
551
|
-
cfg.evaluate.eval_latent_steps =
|
|
551
|
+
cfg.evaluate.eval_latent_steps = 40
|
|
552
552
|
cfg.evaluate.eval_latent_lr = 1e-2
|
|
553
553
|
cfg.evaluate.eval_latent_weight_decay = 0.0
|
|
554
554
|
|
|
@@ -561,26 +561,26 @@ class UBPConfig:
|
|
|
561
561
|
cfg.model.gamma = 2.5
|
|
562
562
|
# Train
|
|
563
563
|
cfg.train.batch_size = 64
|
|
564
|
-
cfg.train.learning_rate =
|
|
565
|
-
cfg.train.early_stop_gen =
|
|
564
|
+
cfg.train.learning_rate = 5e-4
|
|
565
|
+
cfg.train.early_stop_gen = 30
|
|
566
566
|
cfg.train.min_epochs = 100
|
|
567
|
-
cfg.train.max_epochs =
|
|
567
|
+
cfg.train.max_epochs = 2000
|
|
568
568
|
cfg.train.weights_beta = 0.9999
|
|
569
|
-
cfg.train.weights_max_ratio =
|
|
569
|
+
cfg.train.weights_max_ratio = 5.0
|
|
570
570
|
# Tuning
|
|
571
571
|
cfg.tune.enabled = True
|
|
572
572
|
cfg.tune.fast = False
|
|
573
|
-
cfg.tune.n_trials =
|
|
573
|
+
cfg.tune.n_trials = 100
|
|
574
574
|
cfg.tune.epochs = 600
|
|
575
575
|
cfg.tune.batch_size = 64
|
|
576
|
-
cfg.tune.max_samples =
|
|
576
|
+
cfg.tune.max_samples = 0
|
|
577
577
|
cfg.tune.max_loci = 0
|
|
578
578
|
cfg.tune.eval_interval = 10
|
|
579
579
|
cfg.tune.infer_epochs = 80
|
|
580
|
-
cfg.tune.patience =
|
|
580
|
+
cfg.tune.patience = 20
|
|
581
581
|
cfg.tune.proxy_metric_batch = 0
|
|
582
582
|
# Eval
|
|
583
|
-
cfg.evaluate.eval_latent_steps =
|
|
583
|
+
cfg.evaluate.eval_latent_steps = 100
|
|
584
584
|
cfg.evaluate.eval_latent_lr = 1e-2
|
|
585
585
|
cfg.evaluate.eval_latent_weight_decay = 0.0
|
|
586
586
|
|
|
@@ -657,18 +657,18 @@ class AutoencoderConfig:
|
|
|
657
657
|
cfg.model.layer_scaling_factor = 2.0
|
|
658
658
|
cfg.model.dropout_rate = 0.10
|
|
659
659
|
cfg.model.gamma = 1.5
|
|
660
|
-
cfg.train.batch_size =
|
|
661
|
-
cfg.train.learning_rate =
|
|
660
|
+
cfg.train.batch_size = 256
|
|
661
|
+
cfg.train.learning_rate = 2e-3
|
|
662
662
|
cfg.train.early_stop_gen = 5
|
|
663
663
|
cfg.train.min_epochs = 10
|
|
664
|
-
cfg.train.max_epochs =
|
|
665
|
-
cfg.train.weights_beta = 0.
|
|
666
|
-
cfg.train.weights_max_ratio =
|
|
664
|
+
cfg.train.max_epochs = 150
|
|
665
|
+
cfg.train.weights_beta = 0.999
|
|
666
|
+
cfg.train.weights_max_ratio = 5.0
|
|
667
667
|
cfg.tune.enabled = True
|
|
668
668
|
cfg.tune.fast = True
|
|
669
|
-
cfg.tune.n_trials =
|
|
670
|
-
cfg.tune.epochs =
|
|
671
|
-
cfg.tune.batch_size =
|
|
669
|
+
cfg.tune.n_trials = 20
|
|
670
|
+
cfg.tune.epochs = 150
|
|
671
|
+
cfg.tune.batch_size = 256
|
|
672
672
|
cfg.tune.max_samples = 512
|
|
673
673
|
cfg.tune.max_loci = 0
|
|
674
674
|
cfg.tune.eval_interval = 20
|
|
@@ -684,20 +684,20 @@ class AutoencoderConfig:
|
|
|
684
684
|
cfg.model.dropout_rate = 0.20
|
|
685
685
|
cfg.model.gamma = 2.0
|
|
686
686
|
cfg.train.batch_size = 128
|
|
687
|
-
cfg.train.learning_rate =
|
|
687
|
+
cfg.train.learning_rate = 1e-3
|
|
688
688
|
cfg.train.early_stop_gen = 15
|
|
689
689
|
cfg.train.min_epochs = 50
|
|
690
690
|
cfg.train.max_epochs = 600
|
|
691
691
|
cfg.train.weights_beta = 0.9999
|
|
692
|
-
cfg.train.weights_max_ratio =
|
|
692
|
+
cfg.train.weights_max_ratio = 5.0
|
|
693
693
|
cfg.tune.enabled = True
|
|
694
|
-
cfg.tune.fast =
|
|
695
|
-
cfg.tune.n_trials =
|
|
696
|
-
cfg.tune.epochs =
|
|
694
|
+
cfg.tune.fast = False
|
|
695
|
+
cfg.tune.n_trials = 60
|
|
696
|
+
cfg.tune.epochs = 200
|
|
697
697
|
cfg.tune.batch_size = 128
|
|
698
698
|
cfg.tune.max_samples = 2048
|
|
699
699
|
cfg.tune.max_loci = 0
|
|
700
|
-
cfg.tune.eval_interval =
|
|
700
|
+
cfg.tune.eval_interval = 10
|
|
701
701
|
cfg.tune.patience = 10
|
|
702
702
|
cfg.tune.proxy_metric_batch = 0
|
|
703
703
|
if hasattr(cfg.tune, "infer_epochs"):
|
|
@@ -710,21 +710,21 @@ class AutoencoderConfig:
|
|
|
710
710
|
cfg.model.dropout_rate = 0.30
|
|
711
711
|
cfg.model.gamma = 2.5
|
|
712
712
|
cfg.train.batch_size = 64
|
|
713
|
-
cfg.train.learning_rate =
|
|
714
|
-
cfg.train.early_stop_gen =
|
|
713
|
+
cfg.train.learning_rate = 5e-4
|
|
714
|
+
cfg.train.early_stop_gen = 30
|
|
715
715
|
cfg.train.min_epochs = 100
|
|
716
|
-
cfg.train.max_epochs =
|
|
716
|
+
cfg.train.max_epochs = 2000
|
|
717
717
|
cfg.train.weights_beta = 0.9999
|
|
718
|
-
cfg.train.weights_max_ratio =
|
|
718
|
+
cfg.train.weights_max_ratio = 5.0
|
|
719
719
|
cfg.tune.enabled = True
|
|
720
720
|
cfg.tune.fast = False
|
|
721
|
-
cfg.tune.n_trials =
|
|
721
|
+
cfg.tune.n_trials = 100
|
|
722
722
|
cfg.tune.epochs = 600
|
|
723
723
|
cfg.tune.batch_size = 64
|
|
724
|
-
cfg.tune.max_samples =
|
|
724
|
+
cfg.tune.max_samples = 0
|
|
725
725
|
cfg.tune.max_loci = 0
|
|
726
726
|
cfg.tune.eval_interval = 10
|
|
727
|
-
cfg.tune.patience =
|
|
727
|
+
cfg.tune.patience = 20
|
|
728
728
|
cfg.tune.proxy_metric_batch = 0
|
|
729
729
|
if hasattr(cfg.tune, "infer_epochs"):
|
|
730
730
|
cfg.tune.infer_epochs = 0
|
|
@@ -812,30 +812,30 @@ class VAEConfig:
|
|
|
812
812
|
cfg.sim.sim_strategy = "random"
|
|
813
813
|
cfg.sim.sim_prop = 0.2
|
|
814
814
|
|
|
815
|
-
# VAE KL schedules, shortened for speed
|
|
816
|
-
cfg.vae.kl_beta = 1.0
|
|
817
|
-
cfg.vae.kl_warmup = 25
|
|
818
|
-
cfg.vae.kl_ramp = 100
|
|
819
|
-
|
|
820
815
|
if preset == "fast":
|
|
821
816
|
cfg.model.latent_dim = 4
|
|
822
817
|
cfg.model.num_hidden_layers = 1
|
|
823
818
|
cfg.model.layer_scaling_factor = 2.0
|
|
824
819
|
cfg.model.dropout_rate = 0.10
|
|
825
820
|
cfg.model.gamma = 1.5
|
|
826
|
-
|
|
827
|
-
cfg.
|
|
828
|
-
cfg.
|
|
821
|
+
# VAE specifics
|
|
822
|
+
cfg.vae.kl_beta = 0.5
|
|
823
|
+
cfg.vae.kl_warmup = 10
|
|
824
|
+
cfg.vae.kl_ramp = 40
|
|
825
|
+
# Train
|
|
826
|
+
cfg.train.batch_size = 256
|
|
827
|
+
cfg.train.learning_rate = 2e-3
|
|
829
828
|
cfg.train.early_stop_gen = 5
|
|
830
829
|
cfg.train.min_epochs = 10
|
|
831
|
-
cfg.train.max_epochs =
|
|
832
|
-
cfg.train.weights_beta = 0.
|
|
833
|
-
cfg.train.weights_max_ratio =
|
|
830
|
+
cfg.train.max_epochs = 150
|
|
831
|
+
cfg.train.weights_beta = 0.999
|
|
832
|
+
cfg.train.weights_max_ratio = 5.0
|
|
833
|
+
# Tune
|
|
834
834
|
cfg.tune.enabled = True
|
|
835
835
|
cfg.tune.fast = True
|
|
836
|
-
cfg.tune.n_trials =
|
|
837
|
-
cfg.tune.epochs =
|
|
838
|
-
cfg.tune.batch_size =
|
|
836
|
+
cfg.tune.n_trials = 20
|
|
837
|
+
cfg.tune.epochs = 150
|
|
838
|
+
cfg.tune.batch_size = 256
|
|
839
839
|
cfg.tune.max_samples = 512
|
|
840
840
|
cfg.tune.max_loci = 0
|
|
841
841
|
cfg.tune.eval_interval = 20
|
|
@@ -850,21 +850,27 @@ class VAEConfig:
|
|
|
850
850
|
cfg.model.layer_scaling_factor = 3.0
|
|
851
851
|
cfg.model.dropout_rate = 0.20
|
|
852
852
|
cfg.model.gamma = 2.0
|
|
853
|
+
# VAE specifics
|
|
854
|
+
cfg.vae.kl_beta = 1.0
|
|
855
|
+
cfg.vae.kl_warmup = 50
|
|
856
|
+
cfg.vae.kl_ramp = 150
|
|
857
|
+
# Train
|
|
853
858
|
cfg.train.batch_size = 128
|
|
854
|
-
cfg.train.learning_rate =
|
|
859
|
+
cfg.train.learning_rate = 1e-3
|
|
855
860
|
cfg.train.early_stop_gen = 15
|
|
856
861
|
cfg.train.min_epochs = 50
|
|
857
862
|
cfg.train.max_epochs = 600
|
|
858
863
|
cfg.train.weights_beta = 0.9999
|
|
859
|
-
cfg.train.weights_max_ratio =
|
|
864
|
+
cfg.train.weights_max_ratio = 5.0
|
|
865
|
+
# Tune
|
|
860
866
|
cfg.tune.enabled = True
|
|
861
|
-
cfg.tune.fast =
|
|
862
|
-
cfg.tune.n_trials =
|
|
863
|
-
cfg.tune.epochs =
|
|
867
|
+
cfg.tune.fast = False
|
|
868
|
+
cfg.tune.n_trials = 60
|
|
869
|
+
cfg.tune.epochs = 200
|
|
864
870
|
cfg.tune.batch_size = 128
|
|
865
871
|
cfg.tune.max_samples = 2048
|
|
866
872
|
cfg.tune.max_loci = 0
|
|
867
|
-
cfg.tune.eval_interval =
|
|
873
|
+
cfg.tune.eval_interval = 10
|
|
868
874
|
cfg.tune.patience = 10
|
|
869
875
|
cfg.tune.proxy_metric_batch = 0
|
|
870
876
|
if hasattr(cfg.tune, "infer_epochs"):
|
|
@@ -876,22 +882,28 @@ class VAEConfig:
|
|
|
876
882
|
cfg.model.layer_scaling_factor = 5.0
|
|
877
883
|
cfg.model.dropout_rate = 0.30
|
|
878
884
|
cfg.model.gamma = 2.5
|
|
885
|
+
# VAE specifics
|
|
886
|
+
cfg.vae.kl_beta = 1.0
|
|
887
|
+
cfg.vae.kl_warmup = 100
|
|
888
|
+
cfg.vae.kl_ramp = 400
|
|
889
|
+
# Train
|
|
879
890
|
cfg.train.batch_size = 64
|
|
880
|
-
cfg.train.learning_rate =
|
|
881
|
-
cfg.train.early_stop_gen =
|
|
891
|
+
cfg.train.learning_rate = 5e-4
|
|
892
|
+
cfg.train.early_stop_gen = 30
|
|
882
893
|
cfg.train.min_epochs = 100
|
|
883
|
-
cfg.train.max_epochs =
|
|
894
|
+
cfg.train.max_epochs = 2000
|
|
884
895
|
cfg.train.weights_beta = 0.9999
|
|
885
|
-
cfg.train.weights_max_ratio =
|
|
896
|
+
cfg.train.weights_max_ratio = 5.0
|
|
897
|
+
# Tune
|
|
886
898
|
cfg.tune.enabled = True
|
|
887
899
|
cfg.tune.fast = False
|
|
888
|
-
cfg.tune.n_trials =
|
|
900
|
+
cfg.tune.n_trials = 100
|
|
889
901
|
cfg.tune.epochs = 600
|
|
890
902
|
cfg.tune.batch_size = 64
|
|
891
|
-
cfg.tune.max_samples =
|
|
903
|
+
cfg.tune.max_samples = 0
|
|
892
904
|
cfg.tune.max_loci = 0
|
|
893
905
|
cfg.tune.eval_interval = 10
|
|
894
|
-
cfg.tune.patience =
|
|
906
|
+
cfg.tune.patience = 20
|
|
895
907
|
cfg.tune.proxy_metric_batch = 0
|
|
896
908
|
if hasattr(cfg.tune, "infer_epochs"):
|
|
897
909
|
cfg.tune.infer_epochs = 0
|
|
@@ -1264,13 +1276,13 @@ class RFConfig:
|
|
|
1264
1276
|
"""Build a config from a named preset."""
|
|
1265
1277
|
cfg = cls()
|
|
1266
1278
|
if preset == "fast":
|
|
1267
|
-
cfg.model.n_estimators =
|
|
1279
|
+
cfg.model.n_estimators = 50
|
|
1268
1280
|
cfg.model.max_depth = None
|
|
1269
1281
|
cfg.imputer.max_iter = 5
|
|
1270
1282
|
cfg.io.n_jobs = 1
|
|
1271
1283
|
cfg.tune.enabled = False
|
|
1272
1284
|
elif preset == "balanced":
|
|
1273
|
-
cfg.model.n_estimators = 200
|
|
1285
|
+
cfg.model.n_estimators = 200
|
|
1274
1286
|
cfg.model.max_depth = None
|
|
1275
1287
|
cfg.imputer.max_iter = 10
|
|
1276
1288
|
cfg.io.n_jobs = 1
|
|
@@ -1279,7 +1291,7 @@ class RFConfig:
|
|
|
1279
1291
|
elif preset == "thorough":
|
|
1280
1292
|
cfg.model.n_estimators = 500
|
|
1281
1293
|
cfg.model.max_depth = 50 # Added safety cap
|
|
1282
|
-
cfg.imputer.max_iter =
|
|
1294
|
+
cfg.imputer.max_iter = 20
|
|
1283
1295
|
cfg.io.n_jobs = 1
|
|
1284
1296
|
cfg.tune.enabled = False
|
|
1285
1297
|
cfg.tune.n_trials = 250
|
|
@@ -1357,14 +1369,14 @@ class HGBConfig:
|
|
|
1357
1369
|
cfg = cls()
|
|
1358
1370
|
if preset == "fast":
|
|
1359
1371
|
cfg.model.n_estimators = 50
|
|
1360
|
-
cfg.model.learning_rate = 0.
|
|
1372
|
+
cfg.model.learning_rate = 0.2
|
|
1361
1373
|
cfg.model.max_depth = None
|
|
1362
1374
|
cfg.imputer.max_iter = 5
|
|
1363
1375
|
cfg.io.n_jobs = 1
|
|
1364
1376
|
cfg.tune.enabled = False
|
|
1365
1377
|
cfg.tune.n_trials = 50
|
|
1366
1378
|
elif preset == "balanced":
|
|
1367
|
-
cfg.model.n_estimators =
|
|
1379
|
+
cfg.model.n_estimators = 150
|
|
1368
1380
|
cfg.model.learning_rate = 0.1
|
|
1369
1381
|
cfg.model.max_depth = None
|
|
1370
1382
|
cfg.imputer.max_iter = 10
|
|
@@ -1373,10 +1385,10 @@ class HGBConfig:
|
|
|
1373
1385
|
cfg.tune.n_trials = 100
|
|
1374
1386
|
elif preset == "thorough":
|
|
1375
1387
|
cfg.model.n_estimators = 500
|
|
1376
|
-
cfg.model.learning_rate = 0.05
|
|
1388
|
+
cfg.model.learning_rate = 0.05
|
|
1377
1389
|
cfg.model.n_iter_no_change = 20 # Increased patience
|
|
1378
1390
|
cfg.model.max_depth = None
|
|
1379
|
-
cfg.imputer.max_iter =
|
|
1391
|
+
cfg.imputer.max_iter = 20
|
|
1380
1392
|
cfg.io.n_jobs = 1
|
|
1381
1393
|
cfg.tune.enabled = False
|
|
1382
1394
|
cfg.tune.n_trials = 250
|
|
@@ -278,10 +278,13 @@ class BaseNNImputer:
|
|
|
278
278
|
raise AttributeError(msg)
|
|
279
279
|
|
|
280
280
|
# Start with a base set of fixed (non-tuned) parameters.
|
|
281
|
+
base_num_classes = getattr(self, "output_classes_", None)
|
|
282
|
+
if base_num_classes is None:
|
|
283
|
+
base_num_classes = self.num_classes_
|
|
281
284
|
all_params = {
|
|
282
285
|
"n_features": self.num_features_,
|
|
283
286
|
"prefix": self.prefix,
|
|
284
|
-
"num_classes":
|
|
287
|
+
"num_classes": base_num_classes,
|
|
285
288
|
"verbose": self.verbose,
|
|
286
289
|
"debug": self.debug,
|
|
287
290
|
"device": self.device,
|