petpal 0.5.9__py3-none-any.whl → 0.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- petpal/cli/cli_preproc.py +34 -2
- petpal/preproc/image_operations_4d.py +3 -4
- petpal/preproc/segmentation_tools.py +57 -8
- petpal/preproc/symmetric_geometric_transfer_matrix.py +63 -17
- {petpal-0.5.9.dist-info → petpal-0.6.0.dist-info}/METADATA +1 -1
- {petpal-0.5.9.dist-info → petpal-0.6.0.dist-info}/RECORD +9 -9
- {petpal-0.5.9.dist-info → petpal-0.6.0.dist-info}/WHEEL +0 -0
- {petpal-0.5.9.dist-info → petpal-0.6.0.dist-info}/entry_points.txt +0 -0
- {petpal-0.5.9.dist-info → petpal-0.6.0.dist-info}/licenses/LICENSE +0 -0
petpal/cli/cli_preproc.py
CHANGED
|
@@ -83,7 +83,12 @@ Examples:
|
|
|
83
83
|
.. code-block:: bash
|
|
84
84
|
|
|
85
85
|
petpal-preproc warp-pet-atlas -i /path/to/input_img.nii.gz -o petpal_reg-atlas.nii.gz --anatomical /path/to/anat.nii.gz --reference-atlas /path/to/atlas.nii.gz
|
|
86
|
-
|
|
86
|
+
|
|
87
|
+
* Crop segmentation to PET FOV:
|
|
88
|
+
|
|
89
|
+
.. code-block:: bash
|
|
90
|
+
|
|
91
|
+
petpal-preproc seg-crop -i /path/to/input_img.nii.gz -o petpal_cropped_seg.nii.gz --segmentation /path/to/segmentation.nii.gz
|
|
87
92
|
|
|
88
93
|
See Also:
|
|
89
94
|
* :mod:`~petpal.preproc.image_operations_4d` - module used for operations on 4D images.
|
|
@@ -99,7 +104,8 @@ from ..preproc import (image_operations_4d,
|
|
|
99
104
|
motion_corr,
|
|
100
105
|
register,
|
|
101
106
|
regional_tac_extraction,
|
|
102
|
-
standard_uptake_value
|
|
107
|
+
standard_uptake_value,
|
|
108
|
+
segmentation_tools)
|
|
103
109
|
|
|
104
110
|
|
|
105
111
|
_PREPROC_EXAMPLES_ = r"""
|
|
@@ -126,6 +132,10 @@ Examples:
|
|
|
126
132
|
petpal-preproc warp-pet-atlas -i /path/to/input_img.nii.gz -o petpal_reg-atlas.nii.gz --anatomical /path/to/anat.nii.gz --reference-atlas /path/to/atlas.nii.gz
|
|
127
133
|
- SUV:
|
|
128
134
|
petpal-preproc suv -i /path/to/input_img.nii.gz -o petpal_suv.nii.gz --weight 75 --dose 250 --start-time 1200 --end-time 3600
|
|
135
|
+
- Crop segmentation image to PET FOV:
|
|
136
|
+
petpal-preproc seg-crop -i /path/to/input_img.nii.gz -o petpal_cropped_seg.nii.gz --segmentation /path/to/segmentation.nii.gz
|
|
137
|
+
- Add eroded white matter region to segmentation image:
|
|
138
|
+
petpal-preproc eroded-wm -i /path/to/input_segmentation.nii.gz -o petpal_seg_with_eroded_wm.nii.gz
|
|
129
139
|
"""
|
|
130
140
|
|
|
131
141
|
|
|
@@ -357,6 +367,19 @@ def _generate_args() -> argparse.ArgumentParser:
|
|
|
357
367
|
required=True,
|
|
358
368
|
help='End time for SUV calculation in seconds from scan start',
|
|
359
369
|
type=float)
|
|
370
|
+
|
|
371
|
+
parser_seg_crop = subparsers.add_parser('seg-crop',help='Crop segmentation image to PET FOV')
|
|
372
|
+
_add_common_args(parser_seg_crop)
|
|
373
|
+
parser_seg_crop.add_argument('-s',
|
|
374
|
+
'--segmentation',
|
|
375
|
+
required=True,
|
|
376
|
+
help='Path to segmentation image',
|
|
377
|
+
type=str)
|
|
378
|
+
|
|
379
|
+
parser_eroded_wm = subparsers.add_parser('eroded-wm',
|
|
380
|
+
help='Add eroded white matter region to segmentation image')
|
|
381
|
+
_add_common_args(parser_eroded_wm)
|
|
382
|
+
|
|
360
383
|
return parser
|
|
361
384
|
|
|
362
385
|
|
|
@@ -454,6 +477,15 @@ def main():
|
|
|
454
477
|
end_time=args.end_time,
|
|
455
478
|
weight=args.weight,
|
|
456
479
|
dose=args.dose)
|
|
480
|
+
case 'seg_crop':
|
|
481
|
+
input_img = ants.image_read(filename=args.input_img)
|
|
482
|
+
seg_img = ants.image_read(filename=args.segmentation)
|
|
483
|
+
seg_cropped = segmentation_tools.seg_crop_to_pet_fov(pet_img=input_img,
|
|
484
|
+
segmentation_img=seg_img)
|
|
485
|
+
ants.image_write(seg_cropped,args.out_img)
|
|
486
|
+
case 'eroded_wm':
|
|
487
|
+
segmentation_tools.eroded_wm_segmentation(input_segmentation_path=args.input_img,
|
|
488
|
+
out_segmentation_path=args.out_img)
|
|
457
489
|
|
|
458
490
|
if __name__ == "__main__":
|
|
459
491
|
main()
|
|
@@ -64,10 +64,9 @@ def stitch_broken_scans(input_image_path: str,
|
|
|
64
64
|
try:
|
|
65
65
|
noninitial_time_zeroes = [meta['TimeZero'] for meta in noninitial_image_metadata_dicts]
|
|
66
66
|
actual_time_zero = initial_image_metadata['TimeZero']
|
|
67
|
-
except KeyError:
|
|
68
|
-
raise KeyError(
|
|
69
|
-
|
|
70
|
-
|
|
67
|
+
except KeyError as exc:
|
|
68
|
+
raise KeyError('.json sidecar for one of your input images does not contain required BIDS '
|
|
69
|
+
'key "TimeZero".') from exc
|
|
71
70
|
initial_scan_time = datetime.time.fromisoformat(actual_time_zero)
|
|
72
71
|
placeholder_date = datetime.date.today()
|
|
73
72
|
initial_scan_datetime = datetime.datetime.combine(date=placeholder_date,
|
|
@@ -84,7 +84,9 @@ def segmentations_merge(segmentation_primary: np.ndarray,
|
|
|
84
84
|
regions added.
|
|
85
85
|
"""
|
|
86
86
|
for region in regions:
|
|
87
|
-
|
|
87
|
+
condition_above = segmentation_secondary > region - 0.1
|
|
88
|
+
condition_below = segmentation_secondary < region + 0.1
|
|
89
|
+
region_mask = condition_above & condition_below
|
|
88
90
|
segmentation_primary[region_mask] = region
|
|
89
91
|
return segmentation_primary
|
|
90
92
|
|
|
@@ -229,8 +231,9 @@ def resample_segmentation(input_image_path: str,
|
|
|
229
231
|
seg_image = nibabel.load(segmentation_image_path)
|
|
230
232
|
pet_series = pet_image.get_fdata()
|
|
231
233
|
image_first_frame = pet_series[:, :, :, 0]
|
|
234
|
+
to_vox_map_tuple = (image_first_frame.shape, pet_image.affine)
|
|
232
235
|
seg_resampled = processing.resample_from_to(from_img=seg_image,
|
|
233
|
-
to_vox_map=
|
|
236
|
+
to_vox_map=to_vox_map_tuple,
|
|
234
237
|
order=0)
|
|
235
238
|
nibabel.save(seg_resampled, out_seg_path)
|
|
236
239
|
if verbose:
|
|
@@ -238,23 +241,30 @@ def resample_segmentation(input_image_path: str,
|
|
|
238
241
|
|
|
239
242
|
|
|
240
243
|
def vat_wm_ref_region(input_segmentation_path: str,
|
|
241
|
-
out_segmentation_path: str):
|
|
244
|
+
out_segmentation_path: str | None) -> ants.ANTsImage:
|
|
242
245
|
"""
|
|
243
246
|
Generates the cortical white matter reference region described in O'Donnell
|
|
244
|
-
JL et al. (2024)
|
|
247
|
+
JL et al. (2024).
|
|
248
|
+
|
|
249
|
+
Reference: O'Donnell JL et al. (2024). PET Quantification of [18F]VAT in Human Brain and Its
|
|
245
250
|
Test-Retest Reproducibility and Age Dependence. J Nucl Med. 2024 Jun
|
|
246
251
|
3;65(6):956-961. doi: 10.2967/jnumed.123.266860. PMID: 38604762; PMCID:
|
|
247
|
-
PMC11149597.
|
|
252
|
+
PMC11149597.
|
|
253
|
+
|
|
254
|
+
Requires FreeSurfer segmentation with original label mappings.
|
|
248
255
|
|
|
249
256
|
Args:
|
|
250
257
|
input_segmentation_path (str): Path to segmentation on which white
|
|
251
258
|
matter reference region is computed.
|
|
252
259
|
out_segmentation_path (str): Path to which white matter reference
|
|
253
260
|
region mask image is saved.
|
|
261
|
+
|
|
262
|
+
Returns:
|
|
263
|
+
wm_erode (ants.ANTsImage): Eroded white matter reference region mask image.
|
|
254
264
|
"""
|
|
255
265
|
wm_regions = [2,41,251,252,253,254,255,77,3000,3001,3002,3003,3004,3005,
|
|
256
266
|
3006,3007,3008,3009,3010,3011,3012,3013,3014,3015,3016,3017,
|
|
257
|
-
3018,3019,3020,3021,3022,3023,3024,3025,3026,3027,
|
|
267
|
+
3018,3019,3020,3021,3022,3023,3024,3025,3026,3027,3028,3029,
|
|
258
268
|
3030,3031,3032,3033,3034,3035,4000,4001,4002,4003,4004,4005,
|
|
259
269
|
4006,4007,4008,4009,4010,4011,4012,4013,4014,4015,4016,4017,
|
|
260
270
|
4018,4019,4020,4021,4022,4023,4024,4025,4026,4027,4028,4029,
|
|
@@ -277,7 +287,45 @@ def vat_wm_ref_region(input_segmentation_path: str,
|
|
|
277
287
|
wm_csf_eroded = ants.threshold_image(image=wm_csf_blurred, low_thresh=0.95, binary=True)
|
|
278
288
|
wm_erode = ants.mask_image(image=wm_merged, mask=wm_csf_eroded)
|
|
279
289
|
|
|
280
|
-
|
|
290
|
+
if out_segmentation_path is not None:
|
|
291
|
+
ants.image_write(image=wm_erode, filename=out_segmentation_path)
|
|
292
|
+
|
|
293
|
+
return wm_erode
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def eroded_wm_segmentation(input_segmentation_path: str,
|
|
297
|
+
out_segmentation_path: str | None,
|
|
298
|
+
eroded_wm_region_mapping: int = 1) -> ants.ANTsImage:
|
|
299
|
+
"""
|
|
300
|
+
Generates eroded white matter region on a segmentation image and merges it into the image,
|
|
301
|
+
saving result as a new segmentation image.
|
|
302
|
+
|
|
303
|
+
Requires FreeSurfer segmentation with original label mappings.
|
|
304
|
+
|
|
305
|
+
Args:
|
|
306
|
+
input_segmentation_path (str): Path to input freesurfer segmentation, such as aparc+aseg or
|
|
307
|
+
wmparc.
|
|
308
|
+
out_segmentation_path (str): Path to output segmentation image with replaced values in
|
|
309
|
+
eroded whited matter region.
|
|
310
|
+
eroded_wm_region_mapping (int): Segmentation mapping for the eroded white matter region in
|
|
311
|
+
the output image. Default "1".
|
|
312
|
+
|
|
313
|
+
Returns:
|
|
314
|
+
seg_img (ants.ANTsImage): Input segmentation image with values in eroded white matter
|
|
315
|
+
replaced with `eroded_wm_region_mapping`.
|
|
316
|
+
|
|
317
|
+
See also:
|
|
318
|
+
:meth:`~petpal.preproc.segmentation_tools.vat_wm_ref_region` - function that generates the
|
|
319
|
+
eroded white matter region.
|
|
320
|
+
"""
|
|
321
|
+
wm_erode = vat_wm_ref_region(input_segmentation_path=input_segmentation_path,
|
|
322
|
+
out_segmentation_path=None)
|
|
323
|
+
seg_img = ants.image_read(input_segmentation_path)
|
|
324
|
+
seg_img[wm_erode==1] = int(eroded_wm_region_mapping)
|
|
325
|
+
if out_segmentation_path is not None:
|
|
326
|
+
ants.image_write(image=seg_img, filename=out_segmentation_path)
|
|
327
|
+
|
|
328
|
+
return seg_img
|
|
281
329
|
|
|
282
330
|
|
|
283
331
|
def vat_wm_region_merge(wmparc_segmentation_path: str,
|
|
@@ -500,7 +548,8 @@ def calc_vesselness_mask_from_quantiled_vesselness(input_image: ants.core.ANTsIm
|
|
|
500
548
|
morph_dil_radius: int = 0,
|
|
501
549
|
z_crop: int = 3) -> ants.core.ANTsImage:
|
|
502
550
|
"""
|
|
503
|
-
Generates a binary vesselness mask from a given vesselness image using quantile-based
|
|
551
|
+
Generates a binary vesselness mask from a given vesselness image using quantile-based
|
|
552
|
+
thresholding.
|
|
504
553
|
|
|
505
554
|
This function creates a binary mask by thresholding a vesselness image at a specified
|
|
506
555
|
quantile of non-zero voxel values. Additionally, it allows for optional z-axis cropping
|
|
@@ -9,6 +9,7 @@ import warnings
|
|
|
9
9
|
import numpy as np
|
|
10
10
|
from scipy.ndimage import gaussian_filter
|
|
11
11
|
import ants
|
|
12
|
+
import pandas as pd
|
|
12
13
|
|
|
13
14
|
from ..meta.label_maps import LabelMapLoader
|
|
14
15
|
from ..utils.useful_functions import check_physical_space_for_ants_image_pair
|
|
@@ -92,24 +93,33 @@ class Sgtm:
|
|
|
92
93
|
elif self.input_image.dimension == 4:
|
|
93
94
|
self.sgtm_result = self.run_sgtm_4d()
|
|
94
95
|
|
|
95
|
-
def save(self, output_path: str, out_tac_prefix: str | None = None):
|
|
96
|
+
def save(self, output_path: str, out_tac_prefix: str | None = None, one_tsv_per_region: bool = False):
|
|
96
97
|
r"""Save sGTM results by writing the resulting array to one or more files.
|
|
97
98
|
|
|
98
|
-
The behavior depends on the input
|
|
99
|
+
The behavior depends on the input image provided. If input image is 3D, saves the average sGTM value for each
|
|
99
100
|
region in a TSV with one row per region. If input image is 4D, saves time series average values for each frame
|
|
100
|
-
within each region
|
|
101
|
+
within each region. 4D operation saves a single file unless `one_tsv_per_region` is set to True.
|
|
101
102
|
|
|
102
103
|
Args:
|
|
103
|
-
output_path (str): Path to save sGTM results. For 3D images, this should typically be
|
|
104
|
-
.tsv file. For 4D images, this is the directory where the sGTM
|
|
104
|
+
output_path (str): Path to save sGTM results. For 3D images, this should typically be
|
|
105
|
+
the full path to a .tsv file. For 4D images, this is the directory where the sGTM
|
|
106
|
+
TACs will be saved.
|
|
105
107
|
out_tac_prefix (Optional, str): Prefix of the TAC files. Typically, something like
|
|
106
108
|
``'sub-001_ses-001_desc-sGTM'``. Defaults to None.
|
|
109
|
+
one_tsv_per_region (bool): If True, saves one tsv file for each unique region, as
|
|
110
|
+
opposed to one file containing all TACs if False. Default False.
|
|
107
111
|
"""
|
|
108
112
|
if self.input_image.dimension == 3:
|
|
109
113
|
self.save_results_3d(sgtm_result=self.sgtm_result, out_tsv_path=output_path)
|
|
110
114
|
elif self.input_image.dimension == 4:
|
|
111
|
-
|
|
112
|
-
|
|
115
|
+
if one_tsv_per_region:
|
|
116
|
+
self.save_results_4d_tacs(sgtm_result=self.sgtm_result,
|
|
117
|
+
out_tac_dir=output_path,
|
|
118
|
+
out_tac_prefix=out_tac_prefix)
|
|
119
|
+
else:
|
|
120
|
+
self.save_results_4d_multitacs(sgtm_result=self.sgtm_result,
|
|
121
|
+
out_tac_dir=output_path,
|
|
122
|
+
out_tac_prefix=out_tac_prefix)
|
|
113
123
|
|
|
114
124
|
def __call__(self, output_path: str, out_tac_prefix: str | None = None):
|
|
115
125
|
r"""Run sGTM and save results.
|
|
@@ -162,8 +172,20 @@ class Sgtm:
|
|
|
162
172
|
"segmentation to ensure this criteria is met, or use sGTM without "
|
|
163
173
|
"label map for automated complete region mapping.")
|
|
164
174
|
seg_label_map = LabelMapLoader(label_map_option=self.label_map_option).label_map
|
|
165
|
-
|
|
166
|
-
|
|
175
|
+
unique_mappings = unique_segmentation_labels(segmentation_img=self.segmentation_image,
|
|
176
|
+
zeroth_roi=self.zeroth_roi)
|
|
177
|
+
region_index_map = []
|
|
178
|
+
region_short_names = []
|
|
179
|
+
label_map_labels = list(seg_label_map.keys())
|
|
180
|
+
label_map_mappings = list(seg_label_map.values())
|
|
181
|
+
for mapping in unique_mappings:
|
|
182
|
+
if mapping in label_map_mappings:
|
|
183
|
+
id_mapping_index = label_map_mappings.index(mapping)
|
|
184
|
+
region_index_map.append(label_map_mappings[id_mapping_index])
|
|
185
|
+
region_short_names.append(label_map_labels[id_mapping_index])
|
|
186
|
+
else:
|
|
187
|
+
region_index_map.append(mapping)
|
|
188
|
+
region_short_names.append(f'UNK{mapping:05d}')
|
|
167
189
|
return (region_index_map, region_short_names)
|
|
168
190
|
|
|
169
191
|
|
|
@@ -291,7 +313,6 @@ class Sgtm:
|
|
|
291
313
|
|
|
292
314
|
return unique_labels, t_corrected, condition_number
|
|
293
315
|
|
|
294
|
-
|
|
295
316
|
def run_sgtm_4d(self) -> np.ndarray:
|
|
296
317
|
r"""Calculated partial volume corrected TACs on a 4D image by running sGTM on each frame in
|
|
297
318
|
the 4D image.
|
|
@@ -326,7 +347,6 @@ class Sgtm:
|
|
|
326
347
|
|
|
327
348
|
return np.asarray(frame_results)
|
|
328
349
|
|
|
329
|
-
|
|
330
350
|
def save_results_3d(self, sgtm_result: tuple, out_tsv_path: str):
|
|
331
351
|
r"""Saves the result of an sGTM calculation.
|
|
332
352
|
|
|
@@ -337,12 +357,10 @@ class Sgtm:
|
|
|
337
357
|
sgtm_result (tuple): Output of :meth:`run_sgtm_3d`
|
|
338
358
|
out_tsv_path (str): File path to which results are saved.
|
|
339
359
|
"""
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
comments='')
|
|
345
|
-
|
|
360
|
+
sgtm_result_to_write = pd.DataFrame(columns=['Region','Mean'])
|
|
361
|
+
sgtm_result_to_write['Region'] = self.unique_labels[1]
|
|
362
|
+
sgtm_result_to_write['Mean'] = sgtm_result[1]
|
|
363
|
+
sgtm_result_to_write.to_csv(out_tsv_path,sep='\t',index=False)
|
|
346
364
|
|
|
347
365
|
def save_results_4d_tacs(self,
|
|
348
366
|
sgtm_result: np.ndarray,
|
|
@@ -368,3 +386,31 @@ class Sgtm:
|
|
|
368
386
|
activity=tac_array[i,:])
|
|
369
387
|
out_tac_path = os.path.join(f'{out_tac_dir}', f'{out_tac_prefix}_seg-{name}_tac.tsv')
|
|
370
388
|
pvc_tac.to_tsv(filename=out_tac_path)
|
|
389
|
+
|
|
390
|
+
def save_results_4d_multitacs(self,
|
|
391
|
+
sgtm_result: np.ndarray,
|
|
392
|
+
out_tac_dir: str,
|
|
393
|
+
out_tac_prefix: str):
|
|
394
|
+
"""Like :meth:`save_results_4d_tacs`, but saves all TACs to a single file.
|
|
395
|
+
|
|
396
|
+
Args:
|
|
397
|
+
sgtm_result (np.ndarray): Array of results from :meth:`run_sgtm_4d`
|
|
398
|
+
out_tac_dir (str): Path to folder where regional TACs will be saved.
|
|
399
|
+
out_tac_prefix (str): Prefix of the TAC files.
|
|
400
|
+
"""
|
|
401
|
+
os.makedirs(out_tac_dir, exist_ok=True)
|
|
402
|
+
input_image_path = self.input_image_path
|
|
403
|
+
scan_timing = ScanTimingInfo.from_nifti(image_path=input_image_path)
|
|
404
|
+
tac_time_starts = scan_timing.start_in_mins
|
|
405
|
+
tac_time_ends = scan_timing.end_in_mins
|
|
406
|
+
|
|
407
|
+
tac_array = np.asarray(sgtm_result).T
|
|
408
|
+
tacs_data_columns = ['frame_start(min)','frame_end(min)']+self.unique_labels[1]
|
|
409
|
+
tacs_data = pd.DataFrame(columns=tacs_data_columns)
|
|
410
|
+
|
|
411
|
+
tacs_data['frame_start(min)'] = tac_time_starts
|
|
412
|
+
tacs_data['frame_end(min)'] = tac_time_ends
|
|
413
|
+
for i, (_label, name) in enumerate(zip(*self.unique_labels)):
|
|
414
|
+
tacs_data[name] = tac_array[i,:]
|
|
415
|
+
tacs_data[f'{name}_unc'] = np.full(tac_array.shape[1],np.nan)
|
|
416
|
+
tacs_data.to_csv(f'{out_tac_dir}/{out_tac_prefix}_multitacs.tsv', sep='\t', index=False)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: petpal
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.6.0
|
|
4
4
|
Summary: PET-PAL (Positron Emission Tomography Processing and Analysis Library)
|
|
5
5
|
Project-URL: Repository, https://github.com/PETPAL-WUSM/PETPAL.git
|
|
6
6
|
Author-email: Noah Goldman <noahg@wustl.edu>, Bradley Judge <bjudge@wustl.edu>, Furqan Dar <dar@wustl.edu>, Kenan Oestreich <kenan.oestreich@wustl.edu>
|
|
@@ -6,7 +6,7 @@ petpal/cli/cli_idif.py,sha256=6lh_kJHcGjlHDXZOvbiuHrNqpk5FovVV5_j7_dPHTHU,5145
|
|
|
6
6
|
petpal/cli/cli_parametric_images.py,sha256=JBFb8QlxZoGOzqvCJPFuZ7czzGWntJP5ZcfeM5-QF4Y,7385
|
|
7
7
|
petpal/cli/cli_pib_processing.py,sha256=ye_yw0ZQ4cSrMNemGR7cU9v6epD7Wbq1xaNAJwLzV_8,6889
|
|
8
8
|
petpal/cli/cli_plot_tacs.py,sha256=XycaYQQl9Jp5jqDp3QXOlVT2sXHYYpYSraEArxsfJec,6479
|
|
9
|
-
petpal/cli/cli_preproc.py,sha256=
|
|
9
|
+
petpal/cli/cli_preproc.py,sha256=Wy0Y_2hTXg_Xyg2F7xOA93B4X4wzKX6QJDkB5mSikOI,23607
|
|
10
10
|
petpal/cli/cli_pvc.py,sha256=DC0JZ6p1pkc5BDgQ006bi9y0Mz32ENrjUaOtSvFobP4,3967
|
|
11
11
|
petpal/cli/cli_reference_tissue_models.py,sha256=18BlKN4rMehyFbdq_yr88oztqR99_gBtWKImhwf7CQY,13283
|
|
12
12
|
petpal/cli/cli_stats.py,sha256=Mqbzc9yYo9SVAfxzaYbAbk7EheW472l1PY_ptlD1DOI,2050
|
|
@@ -38,15 +38,15 @@ petpal/pipelines/steps_base.py,sha256=W7GVN5-tsXe_7fvhoMRIlOk5ggY8V2wpSSmDONphLn
|
|
|
38
38
|
petpal/pipelines/steps_containers.py,sha256=TV4LkPK48OnAds10vLcsPI3qtWjHsmwr6XGu3hup59Q,33767
|
|
39
39
|
petpal/preproc/__init__.py,sha256=HmTVnCiKMxetDT_w-qU_62UOC39_A83LHXhZm07Q81I,504
|
|
40
40
|
petpal/preproc/decay_correction.py,sha256=jT8X2lmMrdGf9-lo1ooKul_yomPqm1p24gB9On_GHl0,6872
|
|
41
|
-
petpal/preproc/image_operations_4d.py,sha256=
|
|
41
|
+
petpal/preproc/image_operations_4d.py,sha256=UEaMw9YwnX-TOvmKxsA2qsU5GRR1Tq46l7gQz7TVzdk,31372
|
|
42
42
|
petpal/preproc/motion_corr.py,sha256=dz10qjXBVTF_RH5RPZ68drUVX2qyj-MnZ674_Ccwz2Y,28670
|
|
43
43
|
petpal/preproc/motion_target.py,sha256=_OJp3NoYcyD3Ke3wl2KbfOhbJ6dp6ZduR9LLz0rIaC0,3945
|
|
44
44
|
petpal/preproc/partial_volume_corrections.py,sha256=J06j_Y_lhj3b3b9M5FbB2r2EPWQvoymG3GRUffSlYdE,6799
|
|
45
45
|
petpal/preproc/regional_tac_extraction.py,sha256=ZXo2u-EAUg5wZj7GGYLMEaOAfLv8OCOR-Gd0xvih6Y4,22358
|
|
46
46
|
petpal/preproc/register.py,sha256=NKg8mt_XMGa5HBdxYZh3sMu_KMJ0W41VHlX4Zl8wlyE,14171
|
|
47
|
-
petpal/preproc/segmentation_tools.py,sha256=
|
|
47
|
+
petpal/preproc/segmentation_tools.py,sha256=CDD0NWV23rkNB56HjZGLsO4HbV61O57KsNzQsR4d06g,29106
|
|
48
48
|
petpal/preproc/standard_uptake_value.py,sha256=YJIt0fl3fwMLl0tRYHpPPprMTaN4Q5JjQ5dx_CQX1nI,7494
|
|
49
|
-
petpal/preproc/symmetric_geometric_transfer_matrix.py,sha256=
|
|
49
|
+
petpal/preproc/symmetric_geometric_transfer_matrix.py,sha256=Sr5qMTiNC76ZRKiGG5So7fceV_Lr0ql7UybO_kJgmNo,20360
|
|
50
50
|
petpal/utils/__init__.py,sha256=PlxBIKUtNvtSFnNZqz8myszOysaYzS8nSILMK4haVGg,412
|
|
51
51
|
petpal/utils/bids_utils.py,sha256=3eZAzwGpOBUQ5ShVBUJJpmUBUhr3VcOikR-KpGCsdE0,7664
|
|
52
52
|
petpal/utils/constants.py,sha256=Bz0HooHVx_8blXrBagS7g6rcMm8PnCzbO0YY4qR0oSo,738
|
|
@@ -65,8 +65,8 @@ petpal/visualizations/graphical_plots.py,sha256=ZCKUeLX2TAQscuHjA4bzlFm1bACHIyCw
|
|
|
65
65
|
petpal/visualizations/image_visualization.py,sha256=Ob6TD4Q0pIrxi0m9SznK1TRWbX1Ea9Pt4wNMdRrTfTs,9124
|
|
66
66
|
petpal/visualizations/qc_plots.py,sha256=iaCPe-LWWyM3OZzDPZodHZhP-z5fRdpUgaH7QS9VxPM,1243
|
|
67
67
|
petpal/visualizations/tac_plots.py,sha256=zSGdptL-EnqhfDViAX8LFunln5a1b-NJ5ft7ZDcxQ38,15116
|
|
68
|
-
petpal-0.
|
|
69
|
-
petpal-0.
|
|
70
|
-
petpal-0.
|
|
71
|
-
petpal-0.
|
|
72
|
-
petpal-0.
|
|
68
|
+
petpal-0.6.0.dist-info/METADATA,sha256=L5uinIwYmIUU0Ie_1wiLf-9TDeUeJrq6cHUuVXKSIq0,2617
|
|
69
|
+
petpal-0.6.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
70
|
+
petpal-0.6.0.dist-info/entry_points.txt,sha256=0SZmyXqBxKzQg2eerDA16n2BdUEXyixEm0_AUo2dFns,653
|
|
71
|
+
petpal-0.6.0.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
72
|
+
petpal-0.6.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|