pertpy 0.7.0__py3-none-any.whl → 0.9.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (56) hide show
  1. pertpy/__init__.py +2 -1
  2. pertpy/data/__init__.py +61 -0
  3. pertpy/data/_dataloader.py +27 -23
  4. pertpy/data/_datasets.py +58 -0
  5. pertpy/metadata/__init__.py +2 -0
  6. pertpy/metadata/_cell_line.py +39 -70
  7. pertpy/metadata/_compound.py +3 -4
  8. pertpy/metadata/_drug.py +2 -6
  9. pertpy/metadata/_look_up.py +38 -51
  10. pertpy/metadata/_metadata.py +7 -10
  11. pertpy/metadata/_moa.py +2 -6
  12. pertpy/plot/__init__.py +0 -5
  13. pertpy/preprocessing/__init__.py +2 -0
  14. pertpy/preprocessing/_guide_rna.py +6 -7
  15. pertpy/tools/__init__.py +67 -6
  16. pertpy/tools/_augur.py +14 -15
  17. pertpy/tools/_cinemaot.py +2 -2
  18. pertpy/tools/_coda/_base_coda.py +118 -142
  19. pertpy/tools/_coda/_sccoda.py +16 -15
  20. pertpy/tools/_coda/_tasccoda.py +21 -22
  21. pertpy/tools/_dialogue.py +18 -23
  22. pertpy/tools/_differential_gene_expression/__init__.py +20 -0
  23. pertpy/tools/_differential_gene_expression/_base.py +657 -0
  24. pertpy/tools/_differential_gene_expression/_checks.py +41 -0
  25. pertpy/tools/_differential_gene_expression/_dge_comparison.py +86 -0
  26. pertpy/tools/_differential_gene_expression/_edger.py +125 -0
  27. pertpy/tools/_differential_gene_expression/_formulaic.py +189 -0
  28. pertpy/tools/_differential_gene_expression/_pydeseq2.py +95 -0
  29. pertpy/tools/_differential_gene_expression/_simple_tests.py +162 -0
  30. pertpy/tools/_differential_gene_expression/_statsmodels.py +72 -0
  31. pertpy/tools/_distances/_distance_tests.py +21 -16
  32. pertpy/tools/_distances/_distances.py +406 -70
  33. pertpy/tools/_enrichment.py +10 -15
  34. pertpy/tools/_kernel_pca.py +1 -1
  35. pertpy/tools/_milo.py +77 -54
  36. pertpy/tools/_mixscape.py +15 -11
  37. pertpy/tools/_perturbation_space/_clustering.py +5 -2
  38. pertpy/tools/_perturbation_space/_comparison.py +112 -0
  39. pertpy/tools/_perturbation_space/_discriminator_classifiers.py +21 -23
  40. pertpy/tools/_perturbation_space/_perturbation_space.py +23 -21
  41. pertpy/tools/_perturbation_space/_simple.py +3 -3
  42. pertpy/tools/_scgen/__init__.py +1 -1
  43. pertpy/tools/_scgen/_base_components.py +2 -3
  44. pertpy/tools/_scgen/_scgen.py +33 -28
  45. pertpy/tools/_scgen/_utils.py +2 -2
  46. {pertpy-0.7.0.dist-info → pertpy-0.9.1.dist-info}/METADATA +32 -14
  47. pertpy-0.9.1.dist-info/RECORD +57 -0
  48. {pertpy-0.7.0.dist-info → pertpy-0.9.1.dist-info}/WHEEL +1 -1
  49. pertpy/plot/_augur.py +0 -171
  50. pertpy/plot/_coda.py +0 -601
  51. pertpy/plot/_guide_rna.py +0 -64
  52. pertpy/plot/_milopy.py +0 -209
  53. pertpy/plot/_mixscape.py +0 -355
  54. pertpy/tools/_differential_gene_expression.py +0 -325
  55. pertpy-0.7.0.dist-info/RECORD +0 -53
  56. {pertpy-0.7.0.dist-info → pertpy-0.9.1.dist-info}/licenses/LICENSE +0 -0
pertpy/plot/_milopy.py DELETED
@@ -1,209 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import warnings
4
- from typing import TYPE_CHECKING
5
-
6
- import matplotlib.pyplot as plt
7
- import numpy as np
8
- import pandas as pd
9
- import scanpy as sc
10
- import seaborn as sns
11
-
12
- if TYPE_CHECKING:
13
- from collections.abc import Sequence
14
-
15
- from mudata import MuData
16
-
17
-
18
- class MilopyPlot:
19
- """Plotting functions for Milopy."""
20
-
21
- @staticmethod
22
- def nhood_graph(
23
- mdata: MuData,
24
- alpha: float = 0.1,
25
- min_logFC: float = 0,
26
- min_size: int = 10,
27
- plot_edges: bool = False,
28
- title: str = "DA log-Fold Change",
29
- show: bool | None = None,
30
- save: bool | str | None = None,
31
- **kwargs,
32
- ) -> None:
33
- """Visualize DA results on abstracted graph (wrapper around sc.pl.embedding)
34
-
35
- Args:
36
- mdata: MuData object
37
- alpha: Significance threshold. (default: 0.1)
38
- min_logFC: Minimum absolute log-Fold Change to show results. If is 0, show all significant neighbourhoods. (default: 0)
39
- min_size: Minimum size of nodes in visualization. (default: 10)
40
- plot_edges: If edges for neighbourhood overlaps whould be plotted. Defaults to False.
41
- title: Plot title. Defaults to "DA log-Fold Change".
42
- show: Show the plot, do not return axis.
43
- save: If `True` or a `str`, save the figure. A string is appended to the default filename.
44
- Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
45
- **kwargs: Additional arguments to `scanpy.pl.embedding`.
46
-
47
- Examples:
48
- >>> import pertpy as pt
49
- >>> adata = pt.dt.bhattacherjee()
50
- >>> milo = pt.tl.Milo()
51
- >>> mdata = milo.load(adata)
52
- >>> sc.pp.neighbors(mdata["rna"])
53
- >>> sc.tl.umap(mdata["rna"])
54
- >>> milo.make_nhoods(mdata["rna"])
55
- >>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
56
- >>> milo.da_nhoods(mdata,
57
- >>> design='~label',
58
- >>> model_contrasts='labelwithdraw_15d_Cocaine-labelwithdraw_48h_Cocaine')
59
- >>> milo.build_nhood_graph(mdata)
60
- >>> milo.plot_nhood_graph(mdata)
61
- """
62
- warnings.warn(
63
- "This function is deprecated and will be removed in pertpy 0.8.0!"
64
- " Please use the corresponding 'pt.tl' object",
65
- FutureWarning,
66
- stacklevel=2,
67
- )
68
-
69
- from pertpy.tools import Milo
70
-
71
- milo = Milo()
72
-
73
- return milo.plot_nhood_graph(
74
- madata=mdata,
75
- alpha=alpha,
76
- min_logFC=min_logFC,
77
- min_size=min_size,
78
- plot_edges=plot_edges,
79
- title=title,
80
- show=show,
81
- save=save,
82
- **kwargs,
83
- )
84
-
85
- @staticmethod
86
- def nhood(
87
- mdata: MuData,
88
- ix: int,
89
- feature_key: str | None = "rna",
90
- basis="X_umap",
91
- show: bool | None = None,
92
- save: bool | str | None = None,
93
- **kwargs,
94
- ) -> None:
95
- """Visualize cells in a neighbourhood.
96
-
97
- Args:
98
- mdata: MuData object with feature_key slot, storing neighbourhood assignments in `mdata[feature_key].obsm['nhoods']`
99
- ix: index of neighbourhood to visualize
100
- basis: Embedding to use for visualization. Defaults to "X_umap".
101
- show: Show the plot, do not return axis.
102
- save: If True or a str, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf', '.png', '.svg'}.
103
- **kwargs: Additional arguments to `scanpy.pl.embedding`.
104
-
105
- Examples:
106
- >>> import pertpy as pt
107
- >>> import scanpy as sc
108
- >>> adata = pt.dt.bhattacherjee()
109
- >>> milo = pt.tl.Milo()
110
- >>> mdata = milo.load(adata)
111
- >>> sc.pp.neighbors(mdata["rna"])
112
- >>> sc.tl.umap(mdata["rna"])
113
- >>> milo.make_nhoods(mdata["rna"])
114
- >>> pt.pl.milo.nhood(mdata, ix=0)
115
- """
116
- warnings.warn(
117
- "This function is deprecated and will be removed in pertpy 0.8.0!"
118
- " Please use the corresponding 'pt.tl' object",
119
- FutureWarning,
120
- stacklevel=2,
121
- )
122
-
123
- from pertpy.tools import Milo
124
-
125
- milo = Milo()
126
-
127
- milo.plot_nhood(mdata=mdata, ix=ix, feature_key=feature_key, basis=basis, show=show, save=save, **kwargs)
128
-
129
- @staticmethod
130
- def da_beeswarm(
131
- mdata: MuData,
132
- feature_key: str | None = "rna",
133
- anno_col: str = "nhood_annotation",
134
- alpha: float = 0.1,
135
- subset_nhoods: list[str] = None,
136
- palette: str | Sequence[str] | dict[str, str] | None = None,
137
- ):
138
- """Plot beeswarm plot of logFC against nhood labels
139
-
140
- Args:
141
- mdata: MuData object
142
- anno_col: Column in mdata['milo'].var to use as annotation. (default: 'nhood_annotation'.)
143
- alpha: Significance threshold. (default: 0.1)
144
- subset_nhoods: List of nhoods to plot. If None, plot all nhoods. (default: None)
145
- palette: Name of Seaborn color palette for violinplots.
146
- Defaults to pre-defined category colors for violinplots.
147
-
148
- Examples:
149
- >>> import pertpy as pt
150
- >>> import scanpy as sc
151
- >>> adata = pt.dt.bhattacherjee()
152
- >>> milo = pt.tl.Milo()
153
- >>> mdata = milo.load(adata)
154
- >>> sc.pp.neighbors(mdata["rna"])
155
- >>> milo.make_nhoods(mdata["rna"])
156
- >>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
157
- >>> milo.da_nhoods(mdata, design="~label")
158
- >>> milo.annotate_nhoods(mdata, anno_col="cell_type")
159
- >>> milo.plot_da_beeswarm(mdata)
160
- """
161
- warnings.warn(
162
- "This function is deprecated and will be removed in pertpy 0.8.0!"
163
- " Please use the corresponding 'pt.tl' object",
164
- FutureWarning,
165
- stacklevel=2,
166
- )
167
-
168
- from pertpy.tools import Milo
169
-
170
- milo = Milo()
171
-
172
- milo.plot_da_beeswarm(
173
- mdata=mdata,
174
- feature_key=feature_key,
175
- anno_col=anno_col,
176
- alpha=alpha,
177
- subset_nhoods=subset_nhoods,
178
- palette=palette,
179
- )
180
-
181
- @staticmethod
182
- def nhood_counts_by_cond(
183
- mdata: MuData,
184
- test_var: str,
185
- subset_nhoods: list = None,
186
- log_counts: bool = False,
187
- ):
188
- """Plot boxplot of cell numbers vs condition of interest
189
-
190
- Args:
191
- mdata: MuData object storing cell level and nhood level information
192
- test_var: Name of column in adata.obs storing condition of interest (y-axis for boxplot)
193
- subset_nhoods: List of obs_names for neighbourhoods to include in plot. If None, plot all nhoods. (default: None)
194
- log_counts: Whether to plot log1p of cell counts. (default: False)
195
- """
196
- warnings.warn(
197
- "This function is deprecated and will be removed in pertpy 0.8.0!"
198
- " Please use the corresponding 'pt.tl' object",
199
- FutureWarning,
200
- stacklevel=2,
201
- )
202
-
203
- from pertpy.tools import Milo
204
-
205
- milo = Milo()
206
-
207
- milo.plot_nhood_counts_by_cond(
208
- mdata=mdata, test_var=test_var, subset_nhoods=subset_nhoods, log_counts=log_counts
209
- )
pertpy/plot/_mixscape.py DELETED
@@ -1,355 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import warnings
4
- from typing import TYPE_CHECKING, Literal
5
-
6
- if TYPE_CHECKING:
7
- from collections.abc import Sequence
8
-
9
- from anndata import AnnData
10
- from matplotlib.axes import Axes
11
-
12
-
13
- class MixscapePlot:
14
- """Plotting functions for Mixscape."""
15
-
16
- @staticmethod
17
- def barplot( # pragma: no cover
18
- adata: AnnData,
19
- guide_rna_column: str,
20
- mixscape_class_global="mixscape_class_global",
21
- axis_text_x_size: int = 8,
22
- axis_text_y_size: int = 6,
23
- axis_title_size: int = 8,
24
- strip_text_size: int = 6,
25
- panel_spacing_x: float = 0.3,
26
- panel_spacing_y: float = 0.3,
27
- legend_title_size: int = 18,
28
- legend_text_size: int = 18,
29
- show: bool | None = None,
30
- save: bool | str | None = None,
31
- ):
32
- """Barplot to visualize perturbation scores calculated from RunMixscape function.
33
-
34
- Args:
35
- adata: The annotated data object.
36
- guide_rna_column: The column of `.obs` with guide RNA labels. The target gene labels.
37
- The format must be <gene_target>g<#>. For example, 'STAT2g1' and 'ATF2g1'.
38
- mixscape_class_global: The column of `.obs` with mixscape global classification result (perturbed, NP or NT).
39
- show: Show the plot, do not return axis.
40
- save: If True or a str, save the figure. A string is appended to the default filename.
41
- Infer the filetype if ending on {'.pdf', '.png', '.svg'}.
42
-
43
- Returns:
44
- If show is False, return ggplot object used to draw the plot.
45
-
46
- Examples:
47
- >>> import pertpy as pt
48
- >>> mdata = pt.dt.papalexi_2021()
49
- >>> ms = pt.tl.Mixscape()
50
- >>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
51
- >>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
52
- >>> ms.plot_barplot(mdata["rna"], guide_rna_column="NT")
53
- """
54
- warnings.warn(
55
- "This function is deprecated and will be removed in pertpy 0.8.0!"
56
- " Please use the corresponding 'pt.tl' object",
57
- FutureWarning,
58
- stacklevel=2,
59
- )
60
-
61
- from pertpy.tools import Mixscape
62
-
63
- ms = Mixscape()
64
- return ms.plot_barplot(
65
- adata=adata,
66
- guide_rna_column=guide_rna_column,
67
- mixscape_class_global=mixscape_class_global,
68
- axis_text_x_size=axis_text_x_size,
69
- axis_text_y_size=axis_text_y_size,
70
- axis_title_size=axis_title_size,
71
- legend_title_size=legend_title_size,
72
- legend_text_size=legend_text_size,
73
- show=show,
74
- save=save,
75
- )
76
-
77
- @staticmethod
78
- def heatmap( # pragma: no cover
79
- adata: AnnData,
80
- labels: str,
81
- target_gene: str,
82
- control: str,
83
- layer: str | None = None,
84
- method: str | None = "wilcoxon",
85
- subsample_number: int | None = 900,
86
- vmin: float | None = -2,
87
- vmax: float | None = 2,
88
- show: bool | None = None,
89
- save: bool | str | None = None,
90
- **kwargs,
91
- ):
92
- """Heatmap plot using mixscape results. Requires `pt.tl.mixscape()` to be run first.
93
-
94
- Args:
95
- adata: The annotated data object.
96
- labels: The column of `.obs` with target gene labels.
97
- target_gene: Target gene name to visualize heatmap for.
98
- control: Control category from the `pert_key` column.
99
- layer: Key from `adata.layers` whose value will be used to perform tests on.
100
- method: The default method is 'wilcoxon', see `method` parameter in `scanpy.tl.rank_genes_groups` for more options.
101
- subsample_number: Subsample to this number of observations.
102
- vmin: The value representing the lower limit of the color scale. Values smaller than vmin are plotted with the same color as vmin.
103
- vmax: The value representing the upper limit of the color scale. Values larger than vmax are plotted with the same color as vmax.
104
- show: Show the plot, do not return axis.
105
- save: If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
106
- **kwds: Additional arguments to `scanpy.pl.rank_genes_groups_heatmap`.
107
-
108
- Examples:
109
- >>> import pertpy as pt
110
- >>> mdata = pt.dt.papalexi_2021()
111
- >>> ms = pt.tl.Mixscape()
112
- >>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
113
- >>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
114
- >>> ms.plot_heatmap(
115
- ... adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", layer="X_pert", control="NT"
116
- ... )
117
- """
118
- warnings.warn(
119
- "This function is deprecated and will be removed in pertpy 0.8.0!"
120
- " Please use the corresponding 'pt.tl' object",
121
- FutureWarning,
122
- stacklevel=2,
123
- )
124
-
125
- from pertpy.tools import Mixscape
126
-
127
- ms = Mixscape()
128
- return ms.plot_heatmap(
129
- adata=adata,
130
- labels=labels,
131
- target_gene=target_gene,
132
- control=control,
133
- layer=layer,
134
- method=method,
135
- subsample_number=subsample_number,
136
- vmin=vmin,
137
- vmax=vmax,
138
- show=show,
139
- save=save,
140
- **kwargs,
141
- )
142
-
143
- @staticmethod
144
- def perturbscore( # pragma: no cover
145
- adata: AnnData,
146
- labels: str,
147
- target_gene: str,
148
- mixscape_class="mixscape_class",
149
- color="orange",
150
- split_by: str = None,
151
- before_mixscape=False,
152
- perturbation_type: str = "KO",
153
- ):
154
- """Density plots to visualize perturbation scores calculated by the `pt.tl.mixscape` function. Requires `pt.tl.mixscape` to be run first.
155
-
156
- https://satijalab.org/seurat/reference/plotperturbscore
157
-
158
- Args:
159
- adata: The annotated data object.
160
- labels: The column of `.obs` with target gene labels.
161
- target_gene: Target gene name to visualize perturbation scores for.
162
- mixscape_class: The column of `.obs` with mixscape classifications.
163
- color: Specify color of target gene class or knockout cell class. For control non-targeting and non-perturbed cells, colors are set to different shades of grey.
164
- split_by: Provide the column `.obs` if multiple biological replicates exist to calculate
165
- the perturbation signature for every replicate separately.
166
- before_mixscape: Option to split densities based on mixscape classification (default) or original target gene classification. Default is set to NULL and plots cells by original class ID.
167
- perturbation_type: specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.
168
-
169
- Returns:
170
- The ggplot object used for drawn.
171
-
172
- Examples:
173
- Visualizing the perturbation scores for the cells in a dataset:
174
-
175
- >>> import pertpy as pt
176
- >>> mdata = pt.dt.papalexi_2021()
177
- >>> mixscape_identifier = pt.tl.Mixscape()
178
- >>> mixscape_identifier.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
179
- >>> mixscape_identifier.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
180
- >>> mixscape_identifier.perturbscore(
181
- ... adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", color="orange"
182
- ... )
183
- """
184
- warnings.warn(
185
- "This function is deprecated and will be removed in pertpy 0.8.0!"
186
- " Please use the corresponding 'pt.tl' object",
187
- FutureWarning,
188
- stacklevel=2,
189
- )
190
-
191
- from pertpy.tools import Mixscape
192
-
193
- ms = Mixscape()
194
- return ms.plot_perturbscore(
195
- adata=adata,
196
- labels=labels,
197
- target_gene=target_gene,
198
- mixscape_class=mixscape_class,
199
- color=color,
200
- split_by=split_by,
201
- before_mixscape=before_mixscape,
202
- perturbation_type=perturbation_type,
203
- )
204
-
205
- @staticmethod
206
- def violin( # pragma: no cover
207
- adata: AnnData,
208
- target_gene_idents: str | list[str],
209
- keys: str | Sequence[str] = "mixscape_class_p_ko",
210
- groupby: str | None = "mixscape_class",
211
- log: bool = False,
212
- use_raw: bool | None = None,
213
- stripplot: bool = True,
214
- hue: str | None = None,
215
- jitter: float | bool = True,
216
- size: int = 1,
217
- layer: str | None = None,
218
- scale: Literal["area", "count", "width"] = "width",
219
- order: Sequence[str] | None = None,
220
- multi_panel: bool | None = None,
221
- xlabel: str = "",
222
- ylabel: str | Sequence[str] | None = None,
223
- rotation: float | None = None,
224
- show: bool | None = None,
225
- save: bool | str | None = None,
226
- ax: Axes | None = None,
227
- **kwargs,
228
- ):
229
- """Violin plot using mixscape results. Requires `pt.tl.mixscape` to be run first.
230
-
231
- Args:
232
- adata: The annotated data object.
233
- target_gene: Target gene name to plot.
234
- keys: Keys for accessing variables of `.var_names` or fields of `.obs`. Default is 'mixscape_class_p_ko'.
235
- groupby: The key of the observation grouping to consider. Default is 'mixscape_class'.
236
- log: Plot on logarithmic axis.
237
- use_raw: Whether to use `raw` attribute of `adata`. Defaults to `True` if `.raw` is present.
238
- stripplot: Add a stripplot on top of the violin plot.
239
- order: Order in which to show the categories.
240
- xlabel: Label of the x axis. Defaults to `groupby` if `rotation` is `None`, otherwise, no label is shown.
241
- ylabel: Label of the y axis. If `None` and `groupby` is `None`, defaults to `'value'`. If `None` and `groubpy` is not `None`, defaults to `keys`.
242
- show: Show the plot, do not return axis.
243
- save: If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
244
- ax: A matplotlib axes object. Only works if plotting a single component.
245
- **kwargs: Additional arguments to `seaborn.violinplot`.
246
-
247
- Returns:
248
- A :class:`~matplotlib.axes.Axes` object if `ax` is `None` else `None`.
249
-
250
- Examples:
251
- >>> import pertpy as pt
252
- >>> mdata = pt.dt.papalexi_2021()
253
- >>> ms = pt.tl.Mixscape()
254
- >>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
255
- >>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
256
- >>> ms.plot_violin(
257
- ... adata=mdata["rna"], target_gene_idents=["NT", "IFNGR2 NP", "IFNGR2 KO"], groupby="mixscape_class"
258
- ... )
259
- """
260
- warnings.warn(
261
- "This function is deprecated and will be removed in pertpy 0.8.0!"
262
- " Please use the corresponding 'pt.tl' object",
263
- FutureWarning,
264
- stacklevel=2,
265
- )
266
-
267
- from pertpy.tools import Mixscape
268
-
269
- ms = Mixscape()
270
- return ms.plot_violin(
271
- adata=adata,
272
- target_gene_idents=target_gene_idents,
273
- keys=keys,
274
- groupby=groupby,
275
- log=log,
276
- use_raw=use_raw,
277
- stripplot=stripplot,
278
- hue=hue,
279
- jitter=jitter,
280
- size=size,
281
- layer=layer,
282
- scale=scale,
283
- order=order,
284
- multi_panel=multi_panel,
285
- xlabel=xlabel,
286
- ylabel=ylabel,
287
- rotation=rotation,
288
- show=show,
289
- save=save,
290
- ax=ax,
291
- **kwargs,
292
- )
293
-
294
- @staticmethod
295
- def lda( # pragma: no cover
296
- adata: AnnData,
297
- control: str,
298
- mixscape_class="mixscape_class",
299
- mixscape_class_global="mixscape_class_global",
300
- perturbation_type: str | None = "KO",
301
- lda_key: str | None = "mixscape_lda",
302
- n_components: int | None = None,
303
- show: bool | None = None,
304
- save: bool | str | None = None,
305
- **kwargs,
306
- ):
307
- """Visualizing perturbation responses with Linear Discriminant Analysis. Requires `pt.tl.mixscape()` to be run first.
308
-
309
- Args:
310
- adata: The annotated data object.
311
- control: Control category from the `pert_key` column.
312
- labels: The column of `.obs` with target gene labels.
313
- mixscape_class: The column of `.obs` with the mixscape classification result.
314
- mixscape_class_global: The column of `.obs` with mixscape global classification result (perturbed, NP or NT).
315
- perturbation_type: Specify type of CRISPR perturbation expected for labeling mixscape classifications.
316
- Defaults to 'KO'.
317
- lda_key: If not speficied, lda looks .uns["mixscape_lda"] for the LDA results.
318
- n_components: The number of dimensions of the embedding.
319
- show: Show the plot, do not return axis.
320
- save: If `True` or a `str`, save the figure. A string is appended to the default filename.
321
- Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
322
- **kwargs: Additional arguments to `scanpy.pl.umap`.
323
-
324
- Examples:
325
- >>> import pertpy as pt
326
- >>> mdata = pt.dt.papalexi_2021()
327
- >>> ms = pt.tl.Mixscape()
328
- >>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
329
- >>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
330
- >>> ms.lda(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
331
- >>> ms.plot_lda(adata=mdata["rna"], control="NT")
332
- """
333
- warnings.warn(
334
- "This function is deprecated and will be removed in pertpy 0.8.0!"
335
- " Please use the corresponding 'pt.tl' object",
336
- FutureWarning,
337
- stacklevel=2,
338
- )
339
-
340
- from pertpy.tools import Mixscape
341
-
342
- ms = Mixscape()
343
-
344
- return ms.plot_lda(
345
- adata=adata,
346
- control=control,
347
- mixscape_class=mixscape_class,
348
- mixscape_class_global=mixscape_class_global,
349
- perturbation_type=perturbation_type,
350
- lda_key=lda_key,
351
- n_components=n_components,
352
- show=show,
353
- save=save,
354
- **kwargs,
355
- )