pertpy 0.11.2__py3-none-any.whl → 0.11.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pertpy/__init__.py CHANGED
@@ -2,7 +2,7 @@
2
2
 
3
3
  __author__ = "Lukas Heumos"
4
4
  __email__ = "lukas.heumos@posteo.net"
5
- __version__ = "0.11.2"
5
+ __version__ = "0.11.4"
6
6
 
7
7
  import warnings
8
8
 
@@ -16,7 +16,7 @@ from jax import config, random
16
16
  from lamin_utils import logger
17
17
  from matplotlib import cm, rcParams
18
18
  from matplotlib import image as mpimg
19
- from matplotlib.colors import ListedColormap
19
+ from matplotlib.colors import Colormap
20
20
  from mudata import MuData
21
21
  from numpyro.infer import HMC, MCMC, NUTS, initialization
22
22
  from rich import box, print
@@ -34,7 +34,6 @@ if TYPE_CHECKING:
34
34
  from ete4 import Tree
35
35
  from jax._src.typing import Array
36
36
  from matplotlib.axes import Axes
37
- from matplotlib.colors import Colormap
38
37
  from matplotlib.figure import Figure
39
38
 
40
39
  config.update("jax_enable_x64", True)
@@ -1141,7 +1140,7 @@ class CompositionalModel2(ABC):
1141
1140
  level_names: list[str],
1142
1141
  figsize: tuple[float, float] | None = None,
1143
1142
  dpi: int | None = 100,
1144
- palette: ListedColormap | None = cm.tab20,
1143
+ palette: str | Colormap | None = cm.tab20,
1145
1144
  show_legend: bool | None = True,
1146
1145
  ) -> plt.Axes:
1147
1146
  """Plots a stacked barplot for one (discrete) covariate.
@@ -1156,12 +1155,15 @@ class CompositionalModel2(ABC):
1156
1155
  level_names: Names of the covariate's levels
1157
1156
  figsize: Figure size (matplotlib).
1158
1157
  dpi: Resolution in DPI (matplotlib).
1159
- palette: The color map for the barplot.
1158
+ palette: The color map (name) for the barplot.
1160
1159
  show_legend: If True, adds a legend.
1161
1160
 
1162
1161
  Returns:
1163
1162
  A :class:`~matplotlib.axes.Axes` object
1164
1163
  """
1164
+ if isinstance(palette, str):
1165
+ palette = getattr(cm, palette)
1166
+
1165
1167
  n_bars, n_types = y.shape
1166
1168
 
1167
1169
  figsize = rcParams["figure.figsize"] if figsize is None else figsize
@@ -1202,7 +1204,7 @@ class CompositionalModel2(ABC):
1202
1204
  feature_name: str,
1203
1205
  *,
1204
1206
  modality_key: str = "coda",
1205
- palette: ListedColormap | None = cm.tab20,
1207
+ palette: str | Colormap | None = cm.tab20,
1206
1208
  show_legend: bool | None = True,
1207
1209
  level_order: list[str] = None,
1208
1210
  figsize: tuple[float, float] | None = None,
@@ -1217,7 +1219,7 @@ class CompositionalModel2(ABC):
1217
1219
  modality_key: If data is a MuData object, specify which modality to use.
1218
1220
  figsize: Figure size.
1219
1221
  dpi: Dpi setting.
1220
- palette: The matplotlib color map for the barplot.
1222
+ palette: The matplotlib color map (name) for the barplot.
1221
1223
  show_legend: If True, adds a legend.
1222
1224
  level_order: Custom ordering of bars on the x-axis.
1223
1225
  {common_plot_args}
@@ -1299,7 +1301,7 @@ class CompositionalModel2(ABC):
1299
1301
  plot_facets: bool = True,
1300
1302
  plot_zero_covariate: bool = True,
1301
1303
  plot_zero_cell_type: bool = False,
1302
- palette: str | ListedColormap | None = cm.tab20,
1304
+ palette: str | Colormap | None = cm.tab20,
1303
1305
  level_order: list[str] = None,
1304
1306
  args_barplot: dict | None = None,
1305
1307
  figsize: tuple[float, float] | None = None,
@@ -1321,7 +1323,7 @@ class CompositionalModel2(ABC):
1321
1323
  plot_zero_cell_type: If True, plot cell type that have zero effect. If False, do not plot.
1322
1324
  figsize: Figure size.
1323
1325
  dpi: Figure size.
1324
- palette: The seaborn color map for the barplot.
1326
+ palette: The seaborn color map (name) for the barplot.
1325
1327
  level_order: Custom ordering of bars on the x-axis.
1326
1328
  args_barplot: Arguments passed to sns.barplot.
1327
1329
  {common_plot_args}
@@ -1397,7 +1399,7 @@ class CompositionalModel2(ABC):
1397
1399
 
1398
1400
  # If plot as facets, create a FacetGrid and map barplot to it.
1399
1401
  if plot_facets:
1400
- if isinstance(palette, ListedColormap):
1402
+ if isinstance(palette, Colormap):
1401
1403
  palette = np.array([palette(i % palette.N) for i in range(len(plot_df["Cell Type"].unique()))]).tolist()
1402
1404
  if figsize is not None:
1403
1405
  height = figsize[0]
@@ -1437,7 +1439,7 @@ class CompositionalModel2(ABC):
1437
1439
  else:
1438
1440
  _, ax = plt.subplots(figsize=figsize, dpi=dpi)
1439
1441
  if len(covariate_names) == 1:
1440
- if isinstance(palette, ListedColormap):
1442
+ if isinstance(palette, Colormap):
1441
1443
  palette = np.array(
1442
1444
  [palette(i % palette.N) for i in range(len(plot_df["Cell Type"].unique()))]
1443
1445
  ).tolist()
@@ -1451,7 +1453,7 @@ class CompositionalModel2(ABC):
1451
1453
  )
1452
1454
  ax.set_title(covariate_names[0])
1453
1455
  else:
1454
- if isinstance(palette, ListedColormap):
1456
+ if isinstance(palette, Colormap):
1455
1457
  palette = np.array([palette(i % palette.N) for i in range(len(covariate_names))]).tolist()
1456
1458
  sns.barplot(
1457
1459
  data=plot_df,
@@ -1485,7 +1487,7 @@ class CompositionalModel2(ABC):
1485
1487
  cell_types: list | None = None,
1486
1488
  args_boxplot: dict | None = None,
1487
1489
  args_swarmplot: dict | None = None,
1488
- palette: str | None = "Blues",
1490
+ palette: str | Colormap | None = "Blues",
1489
1491
  show_legend: bool | None = True,
1490
1492
  level_order: list[str] = None,
1491
1493
  figsize: tuple[float, float] | None = None,
@@ -1510,7 +1512,7 @@ class CompositionalModel2(ABC):
1510
1512
  args_swarmplot: Arguments passed to sns.swarmplot.
1511
1513
  figsize: Figure size.
1512
1514
  dpi: Dpi setting.
1513
- palette: The seaborn color map for the barplot.
1515
+ palette: The seaborn color map (name) for the barplot.
1514
1516
  show_legend: If True, adds a legend.
1515
1517
  level_order: Custom ordering of bars on the x-axis.
1516
1518
  {common_plot_args}
@@ -1535,6 +1537,8 @@ class CompositionalModel2(ABC):
1535
1537
  args_swarmplot = {}
1536
1538
  if isinstance(data, MuData):
1537
1539
  data = data[modality_key]
1540
+ if isinstance(palette, Colormap):
1541
+ palette = palette(range(2))
1538
1542
 
1539
1543
  # y scale transformations
1540
1544
  if y_scale == "relative":
@@ -2104,7 +2108,7 @@ class CompositionalModel2(ABC):
2104
2108
  modality_key_1: str = "rna",
2105
2109
  modality_key_2: str = "coda",
2106
2110
  color_map: Colormap | str | None = None,
2107
- palette: str | Sequence[str] | None = None,
2111
+ palette: str | Sequence[str] | Colormap | None = None,
2108
2112
  ax: Axes = None,
2109
2113
  return_fig: bool = False,
2110
2114
  **kwargs,
@@ -2122,7 +2126,7 @@ class CompositionalModel2(ABC):
2122
2126
  modality_key_1: Key to the cell-level AnnData in the MuData object.
2123
2127
  modality_key_2: Key to the aggregated sample-level AnnData object in the MuData object.
2124
2128
  color_map: The color map to use for plotting.
2125
- palette: The color palette to use for plotting.
2129
+ palette: The color palette (name) to use for plotting.
2126
2130
  ax: A matplotlib axes object. Only works if plotting a single component.
2127
2131
  {common_plot_args}
2128
2132
  **kwargs: All other keyword arguments are passed to `scanpy.plot.umap()`
@@ -2154,9 +2158,6 @@ class CompositionalModel2(ABC):
2154
2158
  >>> tasccoda_model.run_nuts(
2155
2159
  ... tasccoda_data, modality_key="coda", rng_key=1234, num_samples=10000, num_warmup=1000
2156
2160
  ... )
2157
- >>> tasccoda_model.run_nuts(
2158
- ... tasccoda_data, modality_key="coda", rng_key=1234, num_samples=10000, num_warmup=1000
2159
- ... )
2160
2161
  >>> sc.tl.umap(tasccoda_data["rna"])
2161
2162
  >>> tasccoda_model.plot_effects_umap(tasccoda_data,
2162
2163
  >>> effect_name=["effect_df_condition[T.Salmonella]",
@@ -2173,6 +2174,10 @@ class CompositionalModel2(ABC):
2173
2174
  data_coda = mdata[modality_key_2]
2174
2175
  if isinstance(effect_name, str):
2175
2176
  effect_name = [effect_name]
2177
+ if isinstance(palette, Colormap):
2178
+ palette = {
2179
+ cluster: palette(i % palette.N) for i, cluster in enumerate(data_rna.obs[cluster_key].unique().tolist())
2180
+ }
2176
2181
  for _, effect in enumerate(effect_name):
2177
2182
  data_rna.obs[effect] = [data_coda.varm[effect].loc[f"{c}", "Effect"] for c in data_rna.obs[cluster_key]]
2178
2183
  if kwargs.get("vmin"):
pertpy/tools/_dialogue.py CHANGED
@@ -80,7 +80,7 @@ class Dialogue:
80
80
  Returns:
81
81
  A Pandas DataFrame of pseudobulk counts
82
82
  """
83
- # TODO: Replace with decoupler's implementation
83
+ # TODO: Replace with scanpy get implementation
84
84
  pseudobulk = {"Genes": adata.var_names.values}
85
85
 
86
86
  for category in adata.obs.loc[:, groupby].cat.categories:
@@ -572,9 +572,7 @@ class MethodBase(ABC):
572
572
  if any(adata.obs[[groupby, pairedby]].value_counts() > 1):
573
573
  logger.info("Performing pseudobulk for paired samples")
574
574
  ps = PseudobulkSpace()
575
- adata = ps.compute(
576
- adata, target_col=groupby, groups_col=pairedby, layer_key=layer, mode="sum", min_cells=1, min_counts=1
577
- )
575
+ adata = ps.compute(adata, target_col=groupby, groups_col=pairedby, layer_key=layer, mode="sum")
578
576
 
579
577
  X = adata.layers[layer] if layer is not None else adata.X
580
578
  with contextlib.suppress(AttributeError):
@@ -1,21 +1,15 @@
1
1
  from __future__ import annotations
2
2
 
3
- from typing import TYPE_CHECKING
3
+ from typing import Literal
4
4
 
5
- import matplotlib.pyplot as plt
6
5
  import numpy as np
6
+ import scanpy as sc
7
7
  from anndata import AnnData
8
- from decoupler import get_pseudobulk as dc_get_pseudobulk
9
- from decoupler import plot_psbulk_samples as dc_plot_psbulk_samples
10
8
  from sklearn.cluster import DBSCAN, KMeans
11
9
 
12
- from pertpy._doc import _doc_params, doc_common_plot_args
13
10
  from pertpy.tools._perturbation_space._clustering import ClusteringSpace
14
11
  from pertpy.tools._perturbation_space._perturbation_space import PerturbationSpace
15
12
 
16
- if TYPE_CHECKING:
17
- from matplotlib.pyplot import Figure
18
-
19
13
 
20
14
  class CentroidSpace(PerturbationSpace):
21
15
  """Computes the centroids per perturbation of a pre-computed embedding."""
@@ -126,9 +120,9 @@ class PseudobulkSpace(PerturbationSpace):
126
120
  groups_col: str = None,
127
121
  layer_key: str = None,
128
122
  embedding_key: str = None,
129
- **kwargs,
123
+ mode: Literal["count_nonzero", "mean", "sum", "var", "median"] = "sum",
130
124
  ) -> AnnData: # type: ignore
131
- """Determines pseudobulks of an AnnData object. It uses Decoupler implementation.
125
+ """Determines pseudobulks of an AnnData object.
132
126
 
133
127
  Args:
134
128
  adata: Anndata object of size cells x genes
@@ -137,7 +131,7 @@ class PseudobulkSpace(PerturbationSpace):
137
131
  The summarized expression per perturbation (target_col) and group (groups_col) is computed.
138
132
  layer_key: If specified pseudobulk computation is done by using the specified layer. Otherwise, computation is done with .X
139
133
  embedding_key: `obsm` key of the AnnData embedding to use for computation. Defaults to the 'X' matrix otherwise.
140
- **kwargs: Are passed to decoupler's get_pseuobulk.
134
+ mode: Pseudobulk aggregation function
141
135
 
142
136
  Returns:
143
137
  AnnData object with one observation per perturbation.
@@ -167,53 +161,16 @@ class PseudobulkSpace(PerturbationSpace):
167
161
  adata = adata_emb
168
162
 
169
163
  adata.obs[target_col] = adata.obs[target_col].astype("category")
170
- ps_adata = dc_get_pseudobulk(adata, sample_col=target_col, layer=layer_key, groups_col=groups_col, **kwargs) # type: ignore
164
+ ps_adata = sc.get.aggregate(
165
+ adata, by=[target_col] if groups_col is None else [target_col, groups_col], func=mode, layer=layer_key
166
+ )
167
+ if mode in ps_adata.layers:
168
+ ps_adata.X = ps_adata.layers[mode]
171
169
 
172
170
  ps_adata.obs[target_col] = ps_adata.obs[target_col].astype("category")
173
171
 
174
172
  return ps_adata
175
173
 
176
- @_doc_params(common_plot_args=doc_common_plot_args)
177
- def plot_psbulk_samples( # pragma: no cover # noqa: D417
178
- self,
179
- adata: AnnData,
180
- groupby: str,
181
- *,
182
- return_fig: bool = False,
183
- **kwargs,
184
- ) -> Figure | None:
185
- """Plot the pseudobulk samples of an AnnData object.
186
-
187
- Plot the count number vs. the number of cells per pseudobulk sample.
188
-
189
- Args:
190
- adata: Anndata containing pseudobulk samples.
191
- groupby: `.obs` column to color the samples by.
192
- {common_plot_args}
193
- **kwargs: Are passed to decoupler's plot_psbulk_samples.
194
-
195
- Returns:
196
- If `return_fig` is `True`, returns the figure, otherwise `None`.
197
-
198
- Examples:
199
- >>> import pertpy as pt
200
- >>> adata = pt.dt.zhang_2021()
201
- >>> ps = pt.tl.PseudobulkSpace()
202
- >>> pdata = ps.compute(
203
- ... adata, target_col="Patient", groups_col="Cluster", mode="sum", min_cells=10, min_counts=1000
204
- ... )
205
- >>> ps.plot_psbulk_samples(pdata, groupby=["Patient", "Major celltype"], figsize=(12, 4))
206
-
207
- Preview:
208
- .. image:: /_static/docstring_previews/pseudobulk_samples.png
209
- """
210
- fig = dc_plot_psbulk_samples(adata, groupby, return_fig=True, **kwargs)
211
-
212
- if return_fig:
213
- return fig
214
- plt.show()
215
- return None
216
-
217
174
 
218
175
  class KMeansSpace(ClusteringSpace):
219
176
  """Computes K-Means clustering of the expression values."""
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pertpy
3
- Version: 0.11.2
3
+ Version: 0.11.4
4
4
  Summary: Perturbation Analysis in the scverse ecosystem.
5
5
  Project-URL: Documentation, https://pertpy.readthedocs.io
6
6
  Project-URL: Source, https://github.com/scverse/pertpy
@@ -49,7 +49,6 @@ Requires-Python: <3.14,>=3.11
49
49
  Requires-Dist: adjusttext
50
50
  Requires-Dist: arviz
51
51
  Requires-Dist: blitzgsea
52
- Requires-Dist: decoupler
53
52
  Requires-Dist: fast-array-utils
54
53
  Requires-Dist: lamin-utils
55
54
  Requires-Dist: mudata
@@ -132,22 +131,50 @@ You can install _pertpy_ in less than a minute via [pip] from [PyPI]:
132
131
  pip install pertpy
133
132
  ```
134
133
 
134
+ ### Differential gene expression
135
+
136
+ If you want to use the differential gene expression interface, please install pertpy by running:
137
+
138
+ ```console
139
+ pip install 'pertpy[de]'
140
+ ```
141
+
142
+ ### tascCODA
143
+
135
144
  if you want to use tascCODA, please install pertpy as follows:
136
145
 
137
146
  ```console
138
147
  pip install 'pertpy[tcoda]'
139
148
  ```
140
149
 
141
- If you want to use the differential gene expression interface, please install pertpy by running:
150
+ ### milo
151
+
152
+ milo further requires edger, statmod, and rpy2 to be installed:
153
+
154
+ ```R
155
+ BiocManager::install("edgeR")
156
+ BiocManager::install("statmod")
157
+ ```
142
158
 
143
159
  ```console
144
- pip install 'pertpy[de]'
160
+ pip install rpy2
145
161
  ```
146
162
 
147
163
  ## Citation
148
164
 
149
- [Lukas Heumos, Yuge Ji, Lilly May, Tessa Green, Xinyue Zhang, Xichen Wu, Johannes Ostner, Stefan Peidli, Antonia Schumacher, Karin Hrovatin, Michaela Mueller, Faye Chong, Gregor Sturm, Alejandro Tejada, Emma Dann, Mingze Dong, Mojtaba Bahrami, Ilan Gold, Sergei Rybakov, Altana Namsaraeva, Amir Ali Moinfar, Zihe Zheng, Eljas Roellin, Isra Mekki, Chris Sander, Mohammad Lotfollahi, Herbert B. Schiller, Fabian J. Theis
150
- bioRxiv 2024.08.04.606516; doi: https://doi.org/10.1101/2024.08.04.606516](https://www.biorxiv.org/content/10.1101/2024.08.04.606516v1)
165
+ ```bibtex
166
+ @article {Heumos2024.08.04.606516,
167
+ author = {Heumos, Lukas and Ji, Yuge and May, Lilly and Green, Tessa and Zhang, Xinyue and Wu, Xichen and Ostner, Johannes and Peidli, Stefan and Schumacher, Antonia and Hrovatin, Karin and Müller, Michaela and Chong, Faye and Sturm, Gregor and Tejada, Alejandro and Dann, Emma and Dong, Mingze and Bahrami, Mojtaba and Gold, Ilan and Rybakov, Sergei and Namsaraeva, Altana and Moinfar, Amir and Zheng, Zihe and Roellin, Eljas and Mekki, Isra and Sander, Chris and Lotfollahi, Mohammad and Schiller, Herbert B. and Theis, Fabian J.},
168
+ title = {Pertpy: an end-to-end framework for perturbation analysis},
169
+ elocation-id = {2024.08.04.606516},
170
+ year = {2024},
171
+ doi = {10.1101/2024.08.04.606516},
172
+ publisher = {Cold Spring Harbor Laboratory},
173
+ URL = {https://www.biorxiv.org/content/early/2024/08/07/2024.08.04.606516},
174
+ eprint = {https://www.biorxiv.org/content/early/2024/08/07/2024.08.04.606516.full.pdf},
175
+ journal = {bioRxiv}
176
+ }
177
+ ```
151
178
 
152
179
  [pip]: https://pip.pypa.io/
153
180
  [pypi]: https://pypi.org/
@@ -1,4 +1,4 @@
1
- pertpy/__init__.py,sha256=wwZLpjFSDAZzGA0HGNuk8LoxXjWdrD9OKvpJ4fdsHZU,716
1
+ pertpy/__init__.py,sha256=fJegZfFrqw0e5er2WVo0NzDOgeJ7DZD9M_rflPLoizQ,716
2
2
  pertpy/_doc.py,sha256=j5TMNC-DA9yIMqIIUNpjpcVgWfRqyBBfvbRjnCM_OLs,427
3
3
  pertpy/_types.py,sha256=IcHCojCUqx8CapibNkcYf2TUqjBFP2ujeELvn_IBSBQ,154
4
4
  pertpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -19,18 +19,18 @@ pertpy/preprocessing/_guide_rna_mixture.py,sha256=pT_YkjmN4iEJ-THBROu_dpbr8E6u8G
19
19
  pertpy/tools/__init__.py,sha256=xjfw3Dd_KGytjjCID0uEs6Fz7DalH46fCjVL2Zf2kOo,2629
20
20
  pertpy/tools/_augur.py,sha256=tc1YKyc0BwzrEGgctsfyy7DsTNKxyvy7ZvWraTWCc1A,55262
21
21
  pertpy/tools/_cinemaot.py,sha256=54-rS0AEj31dMe7iU4kEmLoAunq3jNuhsBE3IEp9hrI,38071
22
- pertpy/tools/_dialogue.py,sha256=cCSwo9ge1pOLoA7QHTPb3b865juCFWUaKX5aD7UoSjo,52355
22
+ pertpy/tools/_dialogue.py,sha256=mygIZm5i_bnEE37TTQtr1efl_KJq-ejzeL3V1Bmr7Pg,52354
23
23
  pertpy/tools/_enrichment.py,sha256=55mwotLH9DXQOhl85MCkxXu-MX0RysLyrPheJysAnF0,21369
24
24
  pertpy/tools/_milo.py,sha256=r-kZcpAcoQuhi41AnVuzh-cMIcV3HB3-RGzynHyDc1A,43712
25
25
  pertpy/tools/_mixscape.py,sha256=qjXGyH-oeBFte0efuHJfhVEbivnzUVWREwC40ef6Se8,57203
26
26
  pertpy/tools/decoupler_LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
27
27
  pertpy/tools/transferlearning_MMD_LICENSE,sha256=MUvDA-o_j9htRpI8fStVdCRuyLdPkQUuIH0a_EIc57w,1069
28
28
  pertpy/tools/_coda/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- pertpy/tools/_coda/_base_coda.py,sha256=-rpdipPLFd4cFXyLMN7uFgv-pFJseKaqDmyWRBrGfws,111519
29
+ pertpy/tools/_coda/_base_coda.py,sha256=aw_aSB_NIUL0yQw2t-MUysxoXt1xdUDLK-pItRGUW3s,111703
30
30
  pertpy/tools/_coda/_sccoda.py,sha256=0Ret6O56kAfCNOdBvtxqiyuj2rUPp18SV1GVK1AvYGU,22607
31
31
  pertpy/tools/_coda/_tasccoda.py,sha256=BTaOAmL458zQ_og3x4ENlDnJHD6_F4YkdCoXWsF4i1U,30465
32
32
  pertpy/tools/_differential_gene_expression/__init__.py,sha256=SEydWg0iT3Y1pApjnCAOuHxFeI6xVUfgyBHv2s3LADU,487
33
- pertpy/tools/_differential_gene_expression/_base.py,sha256=PpfH_RZXsN79Bu0yBFPE9TXEqNsZ4bSzSbhM0wZou2I,38322
33
+ pertpy/tools/_differential_gene_expression/_base.py,sha256=ELx0e9DChJGO3yRpCLUOykt3oNOyDAPOQZZGSwzBSR0,38265
34
34
  pertpy/tools/_differential_gene_expression/_checks.py,sha256=hH_GP0lWGO-5zrCFX4YiIVCZBCuK0ZJ0jFmdlx2Qm4k,1639
35
35
  pertpy/tools/_differential_gene_expression/_dge_comparison.py,sha256=LXhp5djKKCAk9VI7OqxOuja849G5lnd8Ehcs9Epk8rg,4159
36
36
  pertpy/tools/_differential_gene_expression/_edger.py,sha256=nSHMDA4drGq_sJwUXs5I2EbMHwqjiS08GqOU_1_dXPc,4798
@@ -46,13 +46,13 @@ pertpy/tools/_perturbation_space/_comparison.py,sha256=-NzCPRT-IlhJ9hOz7NQLSk0ri
46
46
  pertpy/tools/_perturbation_space/_discriminator_classifiers.py,sha256=gDid9Z1_AAPHPWuNgAkbP7yrgcC0qjjqTuWjTzTAAZo,23373
47
47
  pertpy/tools/_perturbation_space/_metrics.py,sha256=y8-baP8WRdB1iDgvP3uuQxSCDxA2lcxvEHHM2C_vWHY,3248
48
48
  pertpy/tools/_perturbation_space/_perturbation_space.py,sha256=8RxVUkVEPZj5YZ-C-NP5zO4aYYVD04PzlsYuaIG-wjY,19447
49
- pertpy/tools/_perturbation_space/_simple.py,sha256=nnagHJ_aPv4ZCqfnVLdVUT_JShtIXg7iEP_sCMD3JLY,14271
49
+ pertpy/tools/_perturbation_space/_simple.py,sha256=AJlHRaEP-vViBeMDvvMtUnXMuIKqZVc7wggnjsHMfMw,12721
50
50
  pertpy/tools/_scgen/__init__.py,sha256=uERFlFyF88TH0uLiwmsUGEfHfLVCiZMFuk8gO5f7164,45
51
51
  pertpy/tools/_scgen/_base_components.py,sha256=Qq8myRUm43q9XBrZ9gBggfa2cSV2wbz_KYoLgH7iF1A,3009
52
52
  pertpy/tools/_scgen/_scgen.py,sha256=31T8ez0FxABIbunJHCk8xvGulHFb8RHXSsyM_z1WsPY,30850
53
53
  pertpy/tools/_scgen/_scgenvae.py,sha256=bPk4v7EdJc7ROdLuDitHiX_Pvwa7Flw2qHRUwBvjLJY,3889
54
54
  pertpy/tools/_scgen/_utils.py,sha256=qz5QUn_Bvk2NGyYVzp3jgjWTFOMt1YyHwUo6HWtoThY,2871
55
- pertpy-0.11.2.dist-info/METADATA,sha256=jlccMD9v37v5vcJJbwpumliEoQR-07sy8vwCKzLL7D0,8047
56
- pertpy-0.11.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
57
- pertpy-0.11.2.dist-info/licenses/LICENSE,sha256=XuiT2hxeRInhquEIBKMZ5M21n5syhDQ4XbABoposIAg,1100
58
- pertpy-0.11.2.dist-info/RECORD,,
55
+ pertpy-0.11.4.dist-info/METADATA,sha256=Ox3dUh5YA5_a72GAOjCUj-l4Xc2vqz8sEZlhNlfEykY,8701
56
+ pertpy-0.11.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
57
+ pertpy-0.11.4.dist-info/licenses/LICENSE,sha256=XuiT2hxeRInhquEIBKMZ5M21n5syhDQ4XbABoposIAg,1100
58
+ pertpy-0.11.4.dist-info/RECORD,,