pertpy 0.10.0__py3-none-any.whl → 0.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pertpy/__init__.py +5 -1
- pertpy/_doc.py +1 -3
- pertpy/_types.py +6 -0
- pertpy/data/_dataloader.py +68 -24
- pertpy/data/_datasets.py +9 -9
- pertpy/metadata/__init__.py +2 -1
- pertpy/metadata/_cell_line.py +133 -25
- pertpy/metadata/_look_up.py +13 -19
- pertpy/metadata/_moa.py +1 -1
- pertpy/preprocessing/_guide_rna.py +138 -44
- pertpy/preprocessing/_guide_rna_mixture.py +17 -19
- pertpy/tools/__init__.py +1 -1
- pertpy/tools/_augur.py +106 -98
- pertpy/tools/_cinemaot.py +74 -114
- pertpy/tools/_coda/_base_coda.py +129 -145
- pertpy/tools/_coda/_sccoda.py +66 -69
- pertpy/tools/_coda/_tasccoda.py +71 -79
- pertpy/tools/_dialogue.py +48 -40
- pertpy/tools/_differential_gene_expression/_base.py +21 -31
- pertpy/tools/_differential_gene_expression/_checks.py +4 -6
- pertpy/tools/_differential_gene_expression/_dge_comparison.py +5 -6
- pertpy/tools/_differential_gene_expression/_edger.py +6 -10
- pertpy/tools/_differential_gene_expression/_pydeseq2.py +1 -1
- pertpy/tools/_differential_gene_expression/_simple_tests.py +3 -3
- pertpy/tools/_differential_gene_expression/_statsmodels.py +8 -5
- pertpy/tools/_distances/_distance_tests.py +1 -2
- pertpy/tools/_distances/_distances.py +31 -45
- pertpy/tools/_enrichment.py +7 -22
- pertpy/tools/_milo.py +19 -15
- pertpy/tools/_mixscape.py +73 -75
- pertpy/tools/_perturbation_space/_clustering.py +4 -4
- pertpy/tools/_perturbation_space/_comparison.py +4 -4
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +83 -32
- pertpy/tools/_perturbation_space/_perturbation_space.py +10 -10
- pertpy/tools/_perturbation_space/_simple.py +12 -14
- pertpy/tools/_scgen/_scgen.py +16 -17
- pertpy/tools/_scgen/_scgenvae.py +2 -2
- pertpy/tools/_scgen/_utils.py +3 -1
- {pertpy-0.10.0.dist-info → pertpy-0.11.0.dist-info}/METADATA +36 -20
- pertpy-0.11.0.dist-info/RECORD +58 -0
- {pertpy-0.10.0.dist-info → pertpy-0.11.0.dist-info}/licenses/LICENSE +1 -0
- pertpy/tools/_kernel_pca.py +0 -50
- pertpy-0.10.0.dist-info/RECORD +0 -58
- {pertpy-0.10.0.dist-info → pertpy-0.11.0.dist-info}/WHEEL +0 -0
@@ -4,9 +4,9 @@ import multiprocessing
|
|
4
4
|
from abc import ABC, abstractmethod
|
5
5
|
from typing import TYPE_CHECKING, Literal, NamedTuple
|
6
6
|
|
7
|
-
import numba
|
8
7
|
import numpy as np
|
9
8
|
import pandas as pd
|
9
|
+
from numba import jit
|
10
10
|
from ott.geometry.geometry import Geometry
|
11
11
|
from ott.geometry.pointcloud import PointCloud
|
12
12
|
from ott.problems.linear.linear_problem import LinearProblem
|
@@ -135,9 +135,7 @@ class Distance:
|
|
135
135
|
self.aggregation_func = agg_fct
|
136
136
|
if metric == "edistance":
|
137
137
|
metric_fct = Edistance()
|
138
|
-
elif metric
|
139
|
-
metric_fct = EuclideanDistance(self.aggregation_func)
|
140
|
-
elif metric == "root_mean_squared_error":
|
138
|
+
elif metric in ("euclidean", "root_mean_squared_error"):
|
141
139
|
metric_fct = EuclideanDistance(self.aggregation_func)
|
142
140
|
elif metric == "mse":
|
143
141
|
metric_fct = MeanSquaredDistance(self.aggregation_func)
|
@@ -181,7 +179,7 @@ class Distance:
|
|
181
179
|
|
182
180
|
if layer_key and obsm_key:
|
183
181
|
raise ValueError(
|
184
|
-
"Cannot use 'layer_key' and 'obsm_key' at the same time.\
|
182
|
+
"Cannot use 'layer_key' and 'obsm_key' at the same time.\nPlease provide only one of the two keys."
|
185
183
|
)
|
186
184
|
if not layer_key and not obsm_key:
|
187
185
|
obsm_key = "X_pca"
|
@@ -201,6 +199,7 @@ class Distance:
|
|
201
199
|
Args:
|
202
200
|
X: First vector of shape (n_samples, n_features).
|
203
201
|
Y: Second vector of shape (n_samples, n_features).
|
202
|
+
kwargs: Passed to the metric function.
|
204
203
|
|
205
204
|
Returns:
|
206
205
|
float: Distance between X and Y.
|
@@ -239,9 +238,10 @@ class Distance:
|
|
239
238
|
Y: Second vector of shape (n_samples, n_features).
|
240
239
|
n_bootstrap: Number of bootstrap samples.
|
241
240
|
random_state: Random state for bootstrapping.
|
241
|
+
**kwargs: Passed to the metric function.
|
242
242
|
|
243
243
|
Returns:
|
244
|
-
|
244
|
+
Mean and variance of distance between X and Y.
|
245
245
|
|
246
246
|
Examples:
|
247
247
|
>>> import pertpy as pt
|
@@ -286,8 +286,8 @@ class Distance:
|
|
286
286
|
kwargs: Additional keyword arguments passed to the metric function.
|
287
287
|
|
288
288
|
Returns:
|
289
|
-
|
290
|
-
tuple[
|
289
|
+
:class:`pandas.DataFrame`: Dataframe with pairwise distances.
|
290
|
+
tuple[:class:`pandas.DataFrame`, :class:`pandas.DataFrame`]: Two Dataframes, one for the mean and one for the variance of pairwise distances.
|
291
291
|
|
292
292
|
Examples:
|
293
293
|
>>> import pertpy as pt
|
@@ -309,7 +309,7 @@ class Distance:
|
|
309
309
|
# able to handle precomputed distances such as the PseudobulkDistance.
|
310
310
|
if self.metric_fct.accepts_precomputed:
|
311
311
|
# Precompute the pairwise distances if needed
|
312
|
-
if f"{self.obsm_key}_{self.cell_wise_metric}_predistances" not in adata.obsp
|
312
|
+
if f"{self.obsm_key}_{self.cell_wise_metric}_predistances" not in adata.obsp:
|
313
313
|
self.precompute_distances(adata, n_jobs=n_jobs, **kwargs)
|
314
314
|
pwd = adata.obsp[f"{self.obsm_key}_{self.cell_wise_metric}_predistances"]
|
315
315
|
for index_x, group_x in enumerate(fct(groups)):
|
@@ -339,10 +339,7 @@ class Distance:
|
|
339
339
|
df.loc[group_x, group_y] = df.loc[group_y, group_x] = bootstrap_output.mean
|
340
340
|
df_var.loc[group_x, group_y] = df_var.loc[group_y, group_x] = bootstrap_output.variance
|
341
341
|
else:
|
342
|
-
if self.layer_key
|
343
|
-
embedding = adata.layers[self.layer_key]
|
344
|
-
else:
|
345
|
-
embedding = adata.obsm[self.obsm_key].copy()
|
342
|
+
embedding = adata.layers[self.layer_key] if self.layer_key else adata.obsm[self.obsm_key].copy()
|
346
343
|
for index_x, group_x in enumerate(fct(groups)):
|
347
344
|
cells_x = embedding[np.asarray(grouping == group_x)].copy()
|
348
345
|
for group_y in groups[index_x:]: # type: ignore
|
@@ -409,8 +406,8 @@ class Distance:
|
|
409
406
|
kwargs: Additional keyword arguments passed to the metric function.
|
410
407
|
|
411
408
|
Returns:
|
412
|
-
|
413
|
-
tuple[
|
409
|
+
:class:`pandas.DataFrame`: Dataframe with distances of groups to selected_group.
|
410
|
+
tuple[:class:`pandas.DataFrame`, :class:`pandas.DataFrame`]: Two Dataframes, one for the mean and one for the variance of distances of groups to selected_group.
|
414
411
|
|
415
412
|
|
416
413
|
Examples:
|
@@ -446,7 +443,7 @@ class Distance:
|
|
446
443
|
# able to handle precomputed distances such as the PseudobulkDistance.
|
447
444
|
if self.metric_fct.accepts_precomputed:
|
448
445
|
# Precompute the pairwise distances if needed
|
449
|
-
if f"{self.obsm_key}_{self.cell_wise_metric}_predistances" not in adata.obsp
|
446
|
+
if f"{self.obsm_key}_{self.cell_wise_metric}_predistances" not in adata.obsp:
|
450
447
|
self.precompute_distances(adata, n_jobs=n_jobs, **kwargs)
|
451
448
|
pwd = adata.obsp[f"{self.obsm_key}_{self.cell_wise_metric}_predistances"]
|
452
449
|
for group_x in fct(groups):
|
@@ -473,10 +470,7 @@ class Distance:
|
|
473
470
|
df.loc[group_x] = bootstrap_output.mean
|
474
471
|
df_var.loc[group_x] = bootstrap_output.variance
|
475
472
|
else:
|
476
|
-
if self.layer_key
|
477
|
-
embedding = adata.layers[self.layer_key]
|
478
|
-
else:
|
479
|
-
embedding = adata.obsm[self.obsm_key].copy()
|
473
|
+
embedding = adata.layers[self.layer_key] if self.layer_key else adata.obsm[self.obsm_key].copy()
|
480
474
|
for group_x in fct(groups):
|
481
475
|
cells_x = embedding[np.asarray(grouping == group_x)].copy()
|
482
476
|
group_y = selected_group
|
@@ -524,10 +518,7 @@ class Distance:
|
|
524
518
|
>>> distance = pt.tools.Distance(metric="edistance")
|
525
519
|
>>> distance.precompute_distances(adata)
|
526
520
|
"""
|
527
|
-
if self.layer_key
|
528
|
-
cells = adata.layers[self.layer_key]
|
529
|
-
else:
|
530
|
-
cells = adata.obsm[self.obsm_key].copy()
|
521
|
+
cells = adata.layers[self.layer_key] if self.layer_key else adata.obsm[self.obsm_key].copy()
|
531
522
|
pwd = pairwise_distances(cells, cells, metric=self.cell_wise_metric, n_jobs=n_jobs)
|
532
523
|
adata.obsp[f"{self.obsm_key}_{self.cell_wise_metric}_predistances"] = pwd
|
533
524
|
|
@@ -618,6 +609,7 @@ class AbstractDistance(ABC):
|
|
618
609
|
Args:
|
619
610
|
X: First vector of shape (n_samples, n_features).
|
620
611
|
Y: Second vector of shape (n_samples, n_features).
|
612
|
+
kwargs: Passed to the metrics function.
|
621
613
|
|
622
614
|
Returns:
|
623
615
|
float: Distance between X and Y.
|
@@ -630,8 +622,8 @@ class AbstractDistance(ABC):
|
|
630
622
|
|
631
623
|
Args:
|
632
624
|
P: Pairwise distance matrix of shape (n_samples, n_samples).
|
633
|
-
idx: Boolean array of shape (n_samples,) indicating which
|
634
|
-
|
625
|
+
idx: Boolean array of shape (n_samples,) indicating which samples belong to X (or Y, since each metric is symmetric).
|
626
|
+
kwargs: Passed to the metrics function.
|
635
627
|
|
636
628
|
Returns:
|
637
629
|
float: Distance between X and Y.
|
@@ -645,12 +637,12 @@ class Edistance(AbstractDistance):
|
|
645
637
|
def __init__(self) -> None:
|
646
638
|
super().__init__()
|
647
639
|
self.accepts_precomputed = True
|
648
|
-
self.cell_wise_metric = "
|
640
|
+
self.cell_wise_metric = "euclidean"
|
649
641
|
|
650
642
|
def __call__(self, X: np.ndarray, Y: np.ndarray, **kwargs) -> float:
|
651
|
-
sigma_X = pairwise_distances(X, X, metric=
|
652
|
-
sigma_Y = pairwise_distances(Y, Y, metric=
|
653
|
-
delta = pairwise_distances(X, Y, metric=
|
643
|
+
sigma_X = pairwise_distances(X, X, metric=self.cell_wise_metric, **kwargs).mean()
|
644
|
+
sigma_Y = pairwise_distances(Y, Y, metric=self.cell_wise_metric, **kwargs).mean()
|
645
|
+
delta = pairwise_distances(X, Y, metric=self.cell_wise_metric, **kwargs).mean()
|
654
646
|
return 2 * delta - sigma_X - sigma_Y
|
655
647
|
|
656
648
|
def from_precomputed(self, P: np.ndarray, idx: np.ndarray, **kwargs) -> float:
|
@@ -881,7 +873,7 @@ class R2ScoreDistance(AbstractDistance):
|
|
881
873
|
|
882
874
|
|
883
875
|
class SymmetricKLDivergence(AbstractDistance):
|
884
|
-
"""Average of symmetric KL divergence between gene distributions of two groups
|
876
|
+
"""Average of symmetric KL divergence between gene distributions of two groups.
|
885
877
|
|
886
878
|
Assuming a Gaussian distribution for each gene in each group, calculates
|
887
879
|
the KL divergence between them and averages over all genes. Repeats this ABBA to get a symmetrized distance.
|
@@ -908,7 +900,7 @@ class SymmetricKLDivergence(AbstractDistance):
|
|
908
900
|
|
909
901
|
|
910
902
|
class TTestDistance(AbstractDistance):
|
911
|
-
"""Average of T test statistic between two groups assuming unequal variances"""
|
903
|
+
"""Average of T test statistic between two groups assuming unequal variances."""
|
912
904
|
|
913
905
|
def __init__(self) -> None:
|
914
906
|
super().__init__()
|
@@ -932,16 +924,14 @@ class TTestDistance(AbstractDistance):
|
|
932
924
|
|
933
925
|
|
934
926
|
class KSTestDistance(AbstractDistance):
|
935
|
-
"""Average of two-sided KS test statistic between two groups"""
|
927
|
+
"""Average of two-sided KS test statistic between two groups."""
|
936
928
|
|
937
929
|
def __init__(self) -> None:
|
938
930
|
super().__init__()
|
939
931
|
self.accepts_precomputed = False
|
940
932
|
|
941
933
|
def __call__(self, X: np.ndarray, Y: np.ndarray, **kwargs) -> float:
|
942
|
-
stats = []
|
943
|
-
for i in range(X.shape[1]):
|
944
|
-
stats.append(abs(kstest(X[:, i], Y[:, i])[0]))
|
934
|
+
stats = [abs(kstest(X[:, i], Y[:, i])[0]) for i in range(X.shape[1])]
|
945
935
|
return sum(stats) / len(stats)
|
946
936
|
|
947
937
|
def from_precomputed(self, P: np.ndarray, idx: np.ndarray, **kwargs) -> float:
|
@@ -949,10 +939,7 @@ class KSTestDistance(AbstractDistance):
|
|
949
939
|
|
950
940
|
|
951
941
|
class NBLL(AbstractDistance):
|
952
|
-
"""
|
953
|
-
Average of Log likelihood (scalar) of group B cells
|
954
|
-
according to a NB distribution fitted over group A
|
955
|
-
"""
|
942
|
+
"""Average of Log likelihood (scalar) of group B cells according to a NB distribution fitted over group A."""
|
956
943
|
|
957
944
|
def __init__(self) -> None:
|
958
945
|
super().__init__()
|
@@ -960,15 +947,12 @@ class NBLL(AbstractDistance):
|
|
960
947
|
|
961
948
|
def __call__(self, X: np.ndarray, Y: np.ndarray, epsilon=1e-8, **kwargs) -> float:
|
962
949
|
def _is_count_matrix(matrix, tolerance=1e-6):
|
963
|
-
|
964
|
-
return True
|
965
|
-
else:
|
966
|
-
return False
|
950
|
+
return bool(matrix.dtype.kind == "i" or np.all(np.abs(matrix - np.round(matrix)) < tolerance))
|
967
951
|
|
968
952
|
if not _is_count_matrix(matrix=X) or not _is_count_matrix(matrix=Y):
|
969
953
|
raise ValueError("NBLL distance only works for raw counts.")
|
970
954
|
|
971
|
-
@
|
955
|
+
@jit(forceobj=True)
|
972
956
|
def _compute_nll(y: np.ndarray, nb_params: tuple[float, float], epsilon: float) -> float:
|
973
957
|
mu = np.exp(nb_params[0])
|
974
958
|
theta = 1 / nb_params[1]
|
@@ -1163,9 +1147,11 @@ class MeanVarDistributionDistance(AbstractDistance):
|
|
1163
1147
|
|
1164
1148
|
def __call__(self, X: np.ndarray, Y: np.ndarray, **kwargs) -> float:
|
1165
1149
|
"""Difference of mean-var distributions in 2 matrices.
|
1150
|
+
|
1166
1151
|
Args:
|
1167
1152
|
X: Normalized and log transformed cells x genes count matrix.
|
1168
1153
|
Y: Normalized and log transformed cells x genes count matrix.
|
1154
|
+
kwargs: Passed to the metrics function.
|
1169
1155
|
"""
|
1170
1156
|
mean_x, var_x = self._mean_var(X, log=True)
|
1171
1157
|
mean_y, var_y = self._mean_var(Y, log=True)
|
pertpy/tools/_enrichment.py
CHANGED
@@ -25,10 +25,7 @@ def _prepare_targets(
|
|
25
25
|
categories: str | Sequence[str] = None,
|
26
26
|
) -> ChainMap | dict:
|
27
27
|
if categories is not None:
|
28
|
-
if isinstance(categories, str)
|
29
|
-
categories = [categories]
|
30
|
-
else:
|
31
|
-
categories = list(categories)
|
28
|
+
categories = [categories] if isinstance(categories, str) else list(categories)
|
32
29
|
|
33
30
|
if targets is None:
|
34
31
|
pt_drug = Drug()
|
@@ -97,10 +94,7 @@ class Enrichment:
|
|
97
94
|
Returns:
|
98
95
|
An AnnData object with scores.
|
99
96
|
"""
|
100
|
-
if layer is not None
|
101
|
-
mtx = adata.layers[layer]
|
102
|
-
else:
|
103
|
-
mtx = adata.X
|
97
|
+
mtx = adata.layers[layer] if layer is not None else adata.X
|
104
98
|
|
105
99
|
targets = _prepare_targets(targets=targets, nested=nested, categories=categories) # type: ignore
|
106
100
|
full_targets = targets.copy()
|
@@ -114,10 +108,7 @@ class Enrichment:
|
|
114
108
|
weights = pd.DataFrame(targets, index=adata.var_names)
|
115
109
|
weights = weights.loc[:, weights.sum() > 0]
|
116
110
|
weights = weights / weights.sum()
|
117
|
-
if issparse(mtx)
|
118
|
-
scores = mtx.dot(weights)
|
119
|
-
else:
|
120
|
-
scores = np.dot(mtx, weights)
|
111
|
+
scores = mtx.dot(weights) if issparse(mtx) else np.dot(mtx, weights)
|
121
112
|
|
122
113
|
if method == "seurat":
|
123
114
|
obs_avg = _mean(mtx, names=adata.var_names, axis=0)
|
@@ -136,10 +127,7 @@ class Enrichment:
|
|
136
127
|
control_gene_weights = pd.DataFrame(control_groups, index=adata.var_names)
|
137
128
|
control_gene_weights = control_gene_weights / control_gene_weights.sum()
|
138
129
|
|
139
|
-
if issparse(mtx)
|
140
|
-
control_profiles = mtx.dot(control_gene_weights)
|
141
|
-
else:
|
142
|
-
control_profiles = np.dot(mtx, control_gene_weights)
|
130
|
+
control_profiles = mtx.dot(control_gene_weights) if issparse(mtx) else np.dot(mtx, control_gene_weights)
|
143
131
|
drug_bins = {}
|
144
132
|
for drug in weights.columns:
|
145
133
|
bins = np.unique(obs_cut[targets[drug]])
|
@@ -178,7 +166,7 @@ class Enrichment:
|
|
178
166
|
Accepts two forms:
|
179
167
|
- A dictionary with the names of the groups as keys, and the entries being the corresponding gene lists.
|
180
168
|
- A dictionary of dictionaries defined like above, with names of gene group categories as keys.
|
181
|
-
|
169
|
+
If passing one of those, specify `nested=True`.
|
182
170
|
nested: Whether `targets` is a dictionary of dictionaries with group categories as keys.
|
183
171
|
categories: If `targets=None` or `nested=True`, this argument can be used to subset the gene groups to one or more categories (keys of the original dictionary).
|
184
172
|
In case of the ChEMBL drug targets, these are ATC level 1/level 2 category codes.
|
@@ -293,7 +281,7 @@ class Enrichment:
|
|
293
281
|
return enrichment
|
294
282
|
|
295
283
|
@_doc_params(common_plot_args=doc_common_plot_args)
|
296
|
-
def plot_dotplot(
|
284
|
+
def plot_dotplot( # pragma: no cover # noqa: D417
|
297
285
|
self,
|
298
286
|
adata: AnnData,
|
299
287
|
*,
|
@@ -341,10 +329,7 @@ class Enrichment:
|
|
341
329
|
.. image:: /_static/docstring_previews/enrichment_dotplot.png
|
342
330
|
"""
|
343
331
|
if categories is not None:
|
344
|
-
if isinstance(categories, str)
|
345
|
-
categories = [categories]
|
346
|
-
else:
|
347
|
-
categories = list(categories)
|
332
|
+
categories = [categories] if isinstance(categories, str) else list(categories)
|
348
333
|
|
349
334
|
if targets is None:
|
350
335
|
pt_drug = Drug()
|
pertpy/tools/_milo.py
CHANGED
@@ -51,14 +51,16 @@ class Milo:
|
|
51
51
|
Args:
|
52
52
|
input: AnnData
|
53
53
|
feature_key: Key to store the cell-level AnnData object in the MuData object
|
54
|
+
|
54
55
|
Returns:
|
55
|
-
|
56
|
+
:class:`mudata.MuData` object with original AnnData.
|
56
57
|
|
57
58
|
Examples:
|
58
59
|
>>> import pertpy as pt
|
59
60
|
>>> adata = pt.dt.bhattacherjee()
|
60
61
|
>>> milo = pt.tl.Milo()
|
61
62
|
>>> mdata = milo.load(adata)
|
63
|
+
|
62
64
|
"""
|
63
65
|
mdata = MuData({feature_key: input, "milo": AnnData()})
|
64
66
|
|
@@ -113,6 +115,7 @@ class Milo:
|
|
113
115
|
>>> mdata = milo.load(adata)
|
114
116
|
>>> sc.pp.neighbors(mdata["rna"])
|
115
117
|
>>> milo.make_nhoods(mdata["rna"])
|
118
|
+
|
116
119
|
"""
|
117
120
|
if isinstance(data, MuData):
|
118
121
|
adata = data[feature_key]
|
@@ -177,10 +180,7 @@ class Milo:
|
|
177
180
|
adata.obs["nhood_ixs_random"] = adata.obs["nhood_ixs_random"].astype("int")
|
178
181
|
adata.uns["nhood_neighbors_key"] = neighbors_key
|
179
182
|
# Store distance to K-th nearest neighbor (used for spatial FDR correction)
|
180
|
-
if neighbors_key is None
|
181
|
-
knn_dists = adata.obsp["distances"]
|
182
|
-
else:
|
183
|
-
knn_dists = adata.obsp[neighbors_key + "_distances"]
|
183
|
+
knn_dists = adata.obsp["distances"] if neighbors_key is None else adata.obsp[neighbors_key + "_distances"]
|
184
184
|
|
185
185
|
nhood_ixs = adata.obs["nhood_ixs_refined"] == 1
|
186
186
|
dist_mat = knn_dists[np.asarray(nhood_ixs), :]
|
@@ -223,6 +223,7 @@ class Milo:
|
|
223
223
|
>>> sc.pp.neighbors(mdata["rna"])
|
224
224
|
>>> milo.make_nhoods(mdata["rna"])
|
225
225
|
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
|
226
|
+
|
226
227
|
"""
|
227
228
|
if isinstance(data, MuData):
|
228
229
|
adata = data[feature_key]
|
@@ -297,6 +298,7 @@ class Milo:
|
|
297
298
|
>>> milo.make_nhoods(mdata["rna"])
|
298
299
|
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
|
299
300
|
>>> milo.da_nhoods(mdata, design="~label")
|
301
|
+
|
300
302
|
"""
|
301
303
|
try:
|
302
304
|
sample_adata = mdata["milo"]
|
@@ -428,7 +430,7 @@ class Milo:
|
|
428
430
|
feature_key: If input data is MuData, specify key to cell-level AnnData object.
|
429
431
|
|
430
432
|
Returns:
|
431
|
-
|
433
|
+
Adds in place.
|
432
434
|
- `milo_mdata['milo'].var["nhood_annotation"]`: assigning a label to each nhood
|
433
435
|
- `milo_mdata['milo'].var["nhood_annotation_frac"]` stores the fraciton of cells in the neighbourhood with the assigned label
|
434
436
|
- `milo_mdata['milo'].varm['frac_annotation']`: stores the fraction of cells from each label in each nhood
|
@@ -444,6 +446,7 @@ class Milo:
|
|
444
446
|
>>> milo.make_nhoods(mdata["rna"])
|
445
447
|
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
|
446
448
|
>>> milo.annotate_nhoods(mdata, anno_col="cell_type")
|
449
|
+
|
447
450
|
"""
|
448
451
|
try:
|
449
452
|
sample_adata = mdata["milo"]
|
@@ -482,7 +485,7 @@ class Milo:
|
|
482
485
|
feature_key: If input data is MuData, specify key to cell-level AnnData object.
|
483
486
|
|
484
487
|
Returns:
|
485
|
-
|
488
|
+
Adds in place.
|
486
489
|
- `milo_mdata['milo'].var["nhood_{anno_col}"]`: assigning a continuous value to each nhood
|
487
490
|
|
488
491
|
Examples:
|
@@ -567,7 +570,7 @@ class Milo:
|
|
567
570
|
sample_adata.obs = sample_obs.loc[sample_adata.obs_names]
|
568
571
|
|
569
572
|
def build_nhood_graph(self, mdata: MuData, basis: str = "X_umap", feature_key: str | None = "rna"):
|
570
|
-
"""Build graph of neighbourhoods used for visualization of DA results
|
573
|
+
"""Build graph of neighbourhoods used for visualization of DA results.
|
571
574
|
|
572
575
|
Args:
|
573
576
|
mdata: MuData object
|
@@ -625,6 +628,7 @@ class Milo:
|
|
625
628
|
>>> milo.make_nhoods(mdata["rna"])
|
626
629
|
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
|
627
630
|
>>> milo.add_nhood_expression(mdata)
|
631
|
+
|
628
632
|
"""
|
629
633
|
try:
|
630
634
|
sample_adata = mdata["milo"]
|
@@ -652,7 +656,7 @@ class Milo:
|
|
652
656
|
def _setup_rpy2(
|
653
657
|
self,
|
654
658
|
):
|
655
|
-
"""Set up rpy2 to run edgeR"""
|
659
|
+
"""Set up rpy2 to run edgeR."""
|
656
660
|
from rpy2.robjects import numpy2ri, pandas2ri
|
657
661
|
from rpy2.robjects.packages import importr
|
658
662
|
|
@@ -715,7 +719,7 @@ class Milo:
|
|
715
719
|
sample_adata.var.loc[keep_nhoods, "SpatialFDR"] = adjp
|
716
720
|
|
717
721
|
@_doc_params(common_plot_args=doc_common_plot_args)
|
718
|
-
def plot_nhood_graph(
|
722
|
+
def plot_nhood_graph( # pragma: no cover # noqa: D417
|
719
723
|
self,
|
720
724
|
mdata: MuData,
|
721
725
|
*,
|
@@ -730,7 +734,7 @@ class Milo:
|
|
730
734
|
return_fig: bool = False,
|
731
735
|
**kwargs,
|
732
736
|
) -> Figure | None:
|
733
|
-
"""Visualize DA results on abstracted graph (wrapper around sc.pl.embedding)
|
737
|
+
"""Visualize DA results on abstracted graph (wrapper around sc.pl.embedding).
|
734
738
|
|
735
739
|
Args:
|
736
740
|
mdata: MuData object
|
@@ -808,7 +812,7 @@ class Milo:
|
|
808
812
|
return None
|
809
813
|
|
810
814
|
@_doc_params(common_plot_args=doc_common_plot_args)
|
811
|
-
def plot_nhood(
|
815
|
+
def plot_nhood( # pragma: no cover # noqa: D417
|
812
816
|
self,
|
813
817
|
mdata: MuData,
|
814
818
|
ix: int,
|
@@ -869,7 +873,7 @@ class Milo:
|
|
869
873
|
return None
|
870
874
|
|
871
875
|
@_doc_params(common_plot_args=doc_common_plot_args)
|
872
|
-
def plot_da_beeswarm(
|
876
|
+
def plot_da_beeswarm( # pragma: no cover # noqa: D417
|
873
877
|
self,
|
874
878
|
mdata: MuData,
|
875
879
|
*,
|
@@ -880,7 +884,7 @@ class Milo:
|
|
880
884
|
palette: str | Sequence[str] | dict[str, str] | None = None,
|
881
885
|
return_fig: bool = False,
|
882
886
|
) -> Figure | None:
|
883
|
-
"""Plot beeswarm plot of logFC against nhood labels
|
887
|
+
"""Plot beeswarm plot of logFC against nhood labels.
|
884
888
|
|
885
889
|
Args:
|
886
890
|
mdata: MuData object
|
@@ -995,7 +999,7 @@ class Milo:
|
|
995
999
|
return None
|
996
1000
|
|
997
1001
|
@_doc_params(common_plot_args=doc_common_plot_args)
|
998
|
-
def plot_nhood_counts_by_cond(
|
1002
|
+
def plot_nhood_counts_by_cond( # pragma: no cover # noqa: D417
|
999
1003
|
self,
|
1000
1004
|
mdata: MuData,
|
1001
1005
|
test_var: str,
|