perftester 0.5.1__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
perftester/__init__.py CHANGED
@@ -6,10 +6,11 @@ from .perftester import (
6
6
  CLIPathError,
7
7
  LogFilePathError,
8
8
  Config,
9
+ MemLog,
9
10
  config,
10
11
  memory_usage_benchmark,
11
12
  memory_usage_test,
12
13
  time_benchmark,
13
14
  time_test,
14
- pp,
15
+ pp
15
16
  )
perftester/perftester.py CHANGED
@@ -26,6 +26,7 @@ You can change this behavior, however:
26
26
  Let's return to previous settings:
27
27
  >>> pt.config.digits_for_printing = 4
28
28
  """
29
+ import builtins
29
30
  import copy
30
31
  import os
31
32
  import rounder
@@ -42,9 +43,11 @@ from easycheck import (
42
43
  check_if_paths_exist,
43
44
  assert_instance,
44
45
  )
46
+ from functools import wraps
45
47
  from memory_profiler import memory_usage
46
48
  from pathlib import Path
47
49
  from pprint import pprint
50
+ from pympler.asizeof import asizeof
48
51
  from statistics import mean
49
52
 
50
53
 
@@ -842,6 +845,60 @@ def _add_func_to_config(func):
842
845
  )
843
846
 
844
847
 
848
+ # Full memory measurement
849
+
850
+ builtins.__dict__["MEMLOGS"] = []
851
+
852
+
853
+ MemLog = namedtuple("MemLog", "ID memory")
854
+
855
+
856
+ def MEMPRINT():
857
+ """Pretty-print MEMLOGS."""
858
+ for i, memlog in enumerate(MEMLOGS): # type: ignore
859
+ ID = memlog.ID if memlog.ID else ""
860
+ print(f"{i: < 4} "
861
+ f"{round(memlog.memory / 1024/1024, 1): <6} → "
862
+ f"{ID}")
863
+
864
+
865
+ def MEMPOINT(ID=None):
866
+ """Global function to measure full memory and log it into MEMLOGS.
867
+
868
+ The function is available from any module of a session. It logs into
869
+ MEMLOGS, also available from any module.
870
+
871
+ Memory is collected using pympler.asizeof.asizeof(), and reported in
872
+ bytes. So, the function measures the size of all current gc objects,
873
+ including module, global and stack frame objects, minus the size
874
+ of `MEMLOGS`.
875
+ """
876
+ MEMLOGS.append(MemLog( # type: ignore
877
+ ID,
878
+ (asizeof(all=True) - asizeof(MEMLOGS))) # type: ignore
879
+ )
880
+
881
+
882
+ def MEMTRACE(func, ID_before=None, ID_after=None):
883
+ """Decorator to log memory before and after running a function."""
884
+ @wraps(func)
885
+ def inner(*args, **kwargs):
886
+ before = ID_before if ID_before else f"Before {func.__name__}()"
887
+ MEMPOINT(before)
888
+ f = func(*args, **kwargs)
889
+ after = ID_after if ID_after else f"After {func.__name__}()"
890
+ MEMPOINT(after)
891
+ return f
892
+ return inner
893
+
894
+
895
+ builtins.__dict__["MEMPOINT"] = MEMPOINT
896
+ builtins.__dict__["MEMPRINT"] = MEMPRINT
897
+ builtins.__dict__["MEMTRACE"] = MEMTRACE
898
+
899
+ MEMPOINT("perftester import")
900
+
901
+
845
902
  if __name__ == "__main__":
846
903
  import doctest
847
904
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: perftester
3
- Version: 0.5.1
3
+ Version: 0.6.0
4
4
  Summary: Lightweight performance testing in Python
5
5
  Home-page: https://github.com/nyggus/perftester
6
6
  Author: Nyggus
@@ -14,6 +14,7 @@ Requires-Python: >=3.8
14
14
  Description-Content-Type: text/markdown
15
15
  Requires-Dist: easycheck
16
16
  Requires-Dist: memory-profiler
17
+ Requires-Dist: pympler
17
18
  Requires-Dist: rounder
18
19
  Provides-Extra: dev
19
20
  Requires-Dist: black ; extra == 'dev'
@@ -31,13 +32,12 @@ pip install perftester
31
32
 
32
33
  The package has three external dependencies: [`memory_profiler`](https://pypi.org/project/memory-profiler/) ([repo](https://github.com/pythonprofilers/memory_profiler)), [`easycheck`](https://pypi.org/project/easycheck/) ([repo](https://github.com/nyggus/easycheck)), and [`rounder`](https://pypi.org/project/rounder/) ([repo](https://github.com/nyggus/rounder)).
33
34
 
34
- > `perftester` is still under heavy testing. If you find anything that does not work as intended, please let me know via nyggus <at> gmail.com.
35
+ > `perftester` is still under heavy testing. If you find anything that does not work as intended, please let me know via nyggus `<at>` gmail.com.
35
36
 
36
37
  ## Pre-introduction: TL;DR
37
38
 
38
39
  At the most basic level, using `perftester` is simple. It offers you two functions for benchmarking (one for execution time and one for memory), and two functions for performance testing (likewise). Read below for a very short introduction of them. If you want to learn more, however, do not stop there, but read on.
39
40
 
40
-
41
41
  ### Benchmarking
42
42
 
43
43
  You have `time_benchmark()` and `memory_benchmark()` functions:
@@ -47,6 +47,7 @@ import perftester as pt
47
47
  def foo(x, n): return [x] * n
48
48
  pt.time_benchmark(foo, x=129, n=100)
49
49
  ```
50
+
50
51
  and this will print the results of the time benchmark, with raw results similar to those that `timeit.repeat()` returns, but unlike it, `pt.time_benchmark()` returns mean raw time per function run, not overall; in additional, you will see some summaries of the results.
51
52
 
52
53
  The above call did actually run `timeit.repeat()` function, with the default configuration of `Number=100_000` and `Repeat=5`. If you want to change any of these, you can use arguments `Number` and `Repeat`, correspondigly:
@@ -101,7 +102,7 @@ The API of `perftester` testinf functions is similar to that of benchmarking fun
101
102
  >>> pt.memory_usage_test(foo, raw_limit=25, x=129, n=100)
102
103
 
103
104
  # A relative test
104
- >>> pt.memory_usage_test(foo, relative_limit=1.01, x=129, n=100)
105
+ >>> pt.memory_usage_test(foo, relative_limit=1.2, x=129, n=100)
105
106
 
106
107
  ```
107
108
 
@@ -122,16 +123,17 @@ That's all in this short introduction. If you're interested in more advanced use
122
123
 
123
124
  ## Introduction
124
125
 
125
-
126
126
  `perftester` is a lightweight package for simple performance testing in Python. Here, performance refers to execution time and memory usage, so performance testing means testing if a function performs quickly enough and does not use too much RAM. In addition, the module offers you simple functions for straightforward benchmarking, in terms of both execution time and memory.
127
127
 
128
128
  Under the hood, `perftester` is a wrapper around two functions from other modules:
129
+
129
130
  * `perftester.time_benchmark()` and `perftester.time_test()` use `timeit.repeat()`
130
131
  * `perftester.memory_usage_benchmark()` and `perftester.memory_usage_test()` use `memory_profiler.memory_usage()`
131
132
 
132
133
  What `perftester` offers is a testing framework with as simple syntax as possible.
133
134
 
134
135
  You can use `perftester` in three main ways:
136
+
135
137
  * in an interactive session, for simple benchmarking of functions;
136
138
  * as part of another testing framework, like `doctest` or `pytest`s; and
137
139
  * as an independent testing framework.
@@ -140,7 +142,6 @@ The first way is a different type of use from the other two. I use it to learn t
140
142
 
141
143
  When it comes to actual testing, it's difficult to say which of the last two ways is better or more convinient: it may depend on how many performance tests you have, and how much time they take. If the tests do not take more than a couple of seconds, then you can combine them with unit tests. But if they take much time, you should likely make them independent of unit tests, and run them from time to time.
142
144
 
143
-
144
145
  ## Using `perftester`
145
146
 
146
147
  ### Use it as a separate testing framework
@@ -161,10 +162,9 @@ Read more about using perftester that way [here](docs/use_perftester_as_CLI.md).
161
162
 
162
163
  > There is no best approach, but remember to choose one that suits your needs.
163
164
 
164
-
165
165
  ### Use `perftester` inside `pytest`
166
166
 
167
- This is a very simple approach, perhaps the simplest one: When you use `pytest`, you can simply add `perftester` testing functions to `pytest` testing functions, and that way both frameworks will be combined, or rather the `pytest` framework will run `perftester` tests. The amount of additional work is minimal.
167
+ This is a very simple approach, perhaps the simplest one: When you use `pytest`, you can simply add `perftester` testing functions to `pytest` testing functions, and that way both frameworks will be combined, or rather the `pytest` framework will run `perftester` tests. The amount of additional work is minimal.
168
168
 
169
169
  For instance, you can write the following test function:
170
170
 
@@ -197,19 +197,16 @@ If you now run `pytest` and the test passes, nothing will happen — just like w
197
197
 
198
198
  This is the easiest way to use `perftester`. Its only drawback is that if the performance tests take much time, `pytest` will also take much time, something usually to be avoided. You can then do some `pytest` tricks to not run `perftester` tests, and run them only when you want — or you can simply use the above-described command-line `perftester` framework for performance testing.
199
199
 
200
-
201
200
  ### Use `perftester` inside `doctest`
202
201
 
203
- In the same way, you can use `perftester` in `doctest`. You will find plenty of examples in the documentation here, and in the [tests/ folder](tests/).
202
+ In the same way, you can use `perftester` in `doctest`. You will find plenty of examples in the documentation here, and in the [tests/ folder](tests/).
204
203
 
205
- > A great fan of `doctest`ing, I do **not** recommend using `perftester` in docstrings. For me, `doctest`s in docstrings should clarify things and explain how functions work, and adding a performance test to a function's docstring would decrease readability.
204
+ > A great fan of `doctest`ing, I do **not** recommend using `perftester` in docstrings. For me, `doctest`s in docstrings should clarify things and explain how functions work, and adding a performance test to a function's docstring would decrease readability.
206
205
 
207
206
  The best way, thus, is to write performance tests as separate `doctest` files, dedicated to performance testing. You can collect such files in a shell script that runs performance tests.
208
207
 
209
-
210
208
  ## Basic use of `perftester`
211
209
 
212
-
213
210
  ### Simple benchmarking
214
211
 
215
212
  To create a performance test for a function, you likely need to know how it behaves. You can run two simple benchmarking functions, `pt.memory_usage_benchmark()` and `pt.time_benchmark()`, which will run time and memory benchmarks, respectively. First, we will decrease `number` (passed to `timeit.repeat`), in order to shorten the benchmarks (which here serve as `doctest`s):
@@ -273,7 +270,6 @@ True
273
270
 
274
271
  For time tests, we have the `pt.time_test()` function. First, a raw time test:
275
272
 
276
-
277
273
  ```python
278
274
  >>> pt.time_test(f, raw_limit=2e-05, n=100)
279
275
 
@@ -302,8 +298,7 @@ We also can combine both:
302
298
 
303
299
  ```
304
300
 
305
- You can read about relative testing below, [in section](#raw-and-relative-performance-testing).
306
-
301
+ You can read about relative testing below, [in section](#raw-and-relative-performance-testing).
307
302
 
308
303
  ### Memory testing
309
304
 
@@ -311,15 +306,15 @@ Memory tests use `pt.memory_usage_test()` function, which is used in the same wa
311
306
 
312
307
  ```python
313
308
  >>> pt.memory_usage_test(f, raw_limit=27, n=100) # test on raw memory
314
- >>> pt.memory_usage_test(f, relative_limit=1.01, n=100) # relative time test
315
- >>> pt.memory_usage_test(f, raw_limit=27, relative_limit=1.01, n=100) # both
309
+ >>> pt.memory_usage_test(f, relative_limit=1.2, n=100) # relative time test
310
+ >>> pt.memory_usage_test(f, raw_limit=27, relative_limit=1.2, n=100) # both
316
311
 
317
312
  ```
318
313
 
319
314
  In a memory usage test, a function is called only once. You can change that — but do that only if you have solid reasons — using, for example, `pt.config.set(f, "time", "repeat", 2)`, which will set this setting for the function in the configuration (so it will be used for all next calls for function `f()`). You can also do it just once (so, without saving the setting in `pt.config.settings`), using the `Repeat` argument:
320
315
 
321
316
  ```python
322
- >>> pt.memory_usage_test(f, raw_limit=27, relative_limit=1.01, n=100, Repeat=100)
317
+ >>> pt.memory_usage_test(f, raw_limit=27, relative_limit=1.2, n=100, Repeat=100)
323
318
 
324
319
  ```
325
320
 
@@ -327,7 +322,6 @@ In a memory usage test, a function is called only once. You can change that —
327
322
 
328
323
  Of course, memory tests do not have to be very useful for functions that do not have to allocate too much memory, but as you will see in other documentation files in `perftester`, some function do use a lot of memory, and such tests do make quite a lot sense for them.
329
324
 
330
-
331
325
  ## Configuration: `pt.config`
332
326
 
333
327
  The whole configuration is stored in the `pt.config` object, which you can easily change. Here's a short example of how you can use it:
@@ -365,7 +359,6 @@ and so on. You can also change settings in each testing file itself, preferably
365
359
 
366
360
  When you use `perftester` in an interactive session, you update `pt.config` in a normal way, in the session. And when you use `perftester` inside `pytest`, you can do it in conftest.py and in each testing function.
367
361
 
368
-
369
362
  ## Output
370
363
 
371
364
  If a test fails, you will see something like this:
@@ -396,7 +389,6 @@ You can locate where a particular test failed, using the module, `perftester_` f
396
389
 
397
390
  > Like in `pytest`, a recommended approach is to use one performance test per `perftester_` function. This can save you some time and trouble, but also this will ensure that all tests will be run.
398
391
 
399
-
400
392
  #### Summary output
401
393
 
402
394
  At the end, you will see a simple summary of the results, something like this:
@@ -417,7 +409,6 @@ perftester_for_testing.perftester_f2_time_and_memory
417
409
  perftester_for_testing.perftester_f_2
418
410
  ```
419
411
 
420
-
421
412
  ## Relative tests against another function
422
413
 
423
414
  In the basic use, when you choose a relative benchmark, you compare the performance of your function with that of a built-in (empty) function `pt.config.benchmark_function()`. In most cases, this is what you need. Sometimes, however, you may wish to benchmark against another function. For instance, you may want to build your own function that does the same thing as a Python built-in function, and you want to test (and show) that your function performs better. There are two ways of achieving this:
@@ -425,7 +416,6 @@ In the basic use, when you choose a relative benchmark, you compare the performa
425
416
  * you can use a simple trick; [see here](benchmarking_against_another_function.md);
426
417
  * you can overwrite the built-in benchmark functions; [see here](change_benchmarking_function.md).
427
418
 
428
-
429
419
  ## Raw and relative performance testing
430
420
 
431
421
  Surely, any performance tests are strongly environment-dependent, so you need to remember that when writing and conducting any performance tests. `perftester`, however, offers a solution to this: You can define tests based on
@@ -441,6 +431,99 @@ You can of course combine both types of tests, and you can do it in a very simpl
441
431
 
442
432
  > Warning! Relative results can be different between operating systems.
443
433
 
434
+ ## Tracing full memory usage
435
+
436
+ Currently, `perftester` contains a beta version (under heavy testing) of a new feature that can be used to trace full memory usage of a Python program.
437
+
438
+ > Warning: Backward compatibility of this feature is not guaranteed! It does not affect the main functionality of `perftester`, however, so its backward compatibility should be kept.
439
+
440
+ The feature works in the following way. When you import `perftester` — but you need to do it with `import perftester`, not via importing particular objects — you will be able to see new objects in the global space. One of the is `MEMLOGS`:
441
+
442
+ ```python-repl
443
+ >>> import perftester
444
+ >>> MEMLOGS[0].ID
445
+ 'perftester import'
446
+
447
+ ```
448
+
449
+ It's an empty list for the moment. When you start tracing memory using `perftester`, this list will collect the subsequent measurements. You can measure them in two ways. One is via a `MEMPOINT()` function, and another via a `MEMTRACE` decorator. They, too, are in the global scope, so you can use them in any module inside a session in which `perftester` was already imported.
450
+
451
+ The `MEMLOGS` list will contain elements being instances of `MemLog`, which is a `functools.namedtuple `data type, with two attributes:`"ID"`and `"memory"`. This data type is imported with `perftester`, so if you want to use it, you can reach it as `perftester.MemLog`. You don't have to use it, though. Since it's a named tuple, you can treat it as a regular tuple.
452
+
453
+ #### What sort of memory is measured?
454
+
455
+ The feature uses `pympler.asizeof.asizeof(all=True)` to measure the size of all current gc objects, including module, global and stack frame objects, minus the size of `MEMLOGS`. The memory is measured in MB.
456
+
457
+ #### Using `MEMPOINT()`
458
+
459
+ `MEMPOINT()` creates a point of full-memory measurement. It will be appended into `MEMLOGS`.
460
+
461
+ ```python-repl
462
+ 3>>> import perftester
463
+ >>> def foo(n):
464
+ ... x = [i for i in range(n)]
465
+ ... MEMPOINT()
466
+ ... return x
467
+ >>> _ = foo(100)
468
+ >>> _ = foo(1_000_000)
469
+ >>> len(MEMLOGS)
470
+ 3
471
+ >>> MEMLOGS[2].memory > MEMLOGS[1].memory
472
+ True
473
+
474
+ ```
475
+
476
+ The last tests checks whether the second measurement — that is, from the function with `n` of a million — uses more memory that the function using `n` of a hundred. Makes sense, and indeed the test passes.
477
+
478
+ When creating a point, you can use an ID, for instance, `MEMPOINT("from sth() function")`.
479
+
480
+ `MEMPOINT()` can be used to create a point anywhere inside the code. Nevertheless, if you want to trace memory for a function, you can use a `MEMTRACE` decorator:
481
+
482
+ ```python-repl
483
+ >>> @MEMTRACE
484
+ ... def bar(n):
485
+ ... return [i for i in range(n)]
486
+ >>> _ = bar(1_000_000)
487
+ >>> MEMLOGS[-2].memory < MEMLOGS[-1].memory
488
+ True
489
+
490
+ ```
491
+
492
+ The decorator creates two points: one right before running the test and another right after returning.
493
+
494
+ The last line tests whether memory before running the function is smaller than that after running it — and given so big `n`, it should be.
495
+
496
+ Look here:
497
+
498
+ ```python-repl
499
+ >>> @MEMTRACE
500
+ ... def bar(n):
501
+ ... x = [i for i in range(n)]
502
+ ... y = [i/3 for i in x]
503
+ ... z = [i/3 for i in y]
504
+ ... MEMPOINT("with x, y, z")
505
+ ... del x
506
+ ... MEMPOINT("without x")
507
+ ... del y
508
+ ... MEMPOINT("without x and y")
509
+ ... del z
510
+ ... MEMPOINT("without x and y and z")
511
+ ... return
512
+ >>> _ = bar(100_000)
513
+ >>> MEMLOGS[-3].memory > MEMLOGS[-2].memory > MEMLOGS[-1].memory
514
+ True
515
+
516
+ ```
517
+
518
+ ### Print `MEMLOGS`
519
+
520
+ You can do whatever you want with `MEMLOGS`. However, when you want to see this object nicely printed, use the `MEMPRINT()` function, available from the global scope, too. You will see the results printed in a pretty way, with memory provided in MB.
521
+
522
+ ### Why the global scope?
523
+
524
+ Since this feature of `perftester` is to be used to debug memory use from various modules, it'd be inconvinient to import the required objects in all these modules. That's why for the moment, the required objects are kept in the global scope — but this can change in future versions.
525
+
526
+ If you have any comments about this, please share them via Issues of the package's repository.
444
527
 
445
528
  ## Other tools
446
529
 
@@ -452,26 +535,22 @@ Of course, Python comes with various powerful tools for profiling, benchmarking
452
535
 
453
536
  In fact, `perftester` is just a simple wrapper around `timeit` and `memory_profiler`, since `perftester` itself does not come with its own solutions. It simply uses these functions and offers an easy-to-use API to benchmark and test memory and time performance.
454
537
 
455
-
456
538
  ## Manipulating the traceback
457
539
 
458
540
  The default behavior of `perftester` is to **not** include the full traceback when a test does not pass. This is because when running performance tests, you're not interested in finding bugs, and this is what traceback is for. Instead, you want to see which test did not pass and how.
459
541
 
460
542
  > This behavior will not affect any other function than the two `perftester` testing functions: `pt.time_test()` and `pt.memory_usage_test()`. If you want to use this behavior for other functions, too, you can use `pt.config.cut_traceback()`; to reverse, use `pt.config.full_traceback()`.
461
543
 
462
-
463
544
  ## Caveats
464
545
 
465
546
  * `perftester` does not work with multiple threads or processes.
466
547
  * `perftester` is still in a beta version and so is still under testing.
467
548
  * Watch out when you're running the same test in different operating systems. Even relative tests can differ from OS to OS.
468
549
 
469
-
470
550
  ## Operating systems
471
551
 
472
552
  The package is developed in Linux (actually, under WSL) and checked in Windows 10, so it works in both these environments.
473
553
 
474
-
475
554
  ## Support
476
555
 
477
556
  Any contribution will be welcome. You can submit an issue in the [repository](https://github.com/nyggus/perftester). You can also create your own pull requests.
@@ -0,0 +1,12 @@
1
+ perftester/__init__.py,sha256=hKwAZUH1tVe9lA82sIE6nxjhJCqB2AcoSk6hqDeNTA8,284
2
+ perftester/__main__.py,sha256=aX_J60lLY2yoz5jXtNoqTnAE_wm_s4llQHeR3z2Mx68,5119
3
+ perftester/perftester.py,sha256=Tb1_JtqcsWClgHFF87nUG59idg5haj8eYCeu-5WfOEM,33256
4
+ perftester/tmp.py,sha256=jqCDGCRO5fv7Uv7cJLu4PNmnaUMIApuu3nT_2zQwWqQ,1657
5
+ perftester/tmp_working.py,sha256=7ub5M6PFFfhSTCp_a-YQOZSFD05VNxa8Y7tDnEcBZzk,820
6
+ perftester/understand.py,sha256=H70Yjt3MPSB8rSjEi88Rwik15ZaVKn7OFBizC5H72NA,15670
7
+ perftester-0.6.0.dist-info/LICENSE,sha256=mZFAdfuYFAyBYiir4m3CTQu151mpXbMbh7Mm5M1bZAE,1063
8
+ perftester-0.6.0.dist-info/METADATA,sha256=ikxGNZAp9O2tNRcbugbN20mV-QgH48LSW02CR8Vwor4,28718
9
+ perftester-0.6.0.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
10
+ perftester-0.6.0.dist-info/entry_points.txt,sha256=gM6Vf1BEeLY-1X9IQlO1TPAO3lJ5vToKfnJHT4MruIk,57
11
+ perftester-0.6.0.dist-info/top_level.txt,sha256=i1-4oWlkta2MsNKlZwJCibhn7aBexQfxncoPy2a6dfA,11
12
+ perftester-0.6.0.dist-info/RECORD,,
@@ -1,12 +0,0 @@
1
- perftester/__init__.py,sha256=x9O2UW8vfTuF7uKzPUeZ397FEzjcv42X2H26je9cyOI,273
2
- perftester/__main__.py,sha256=aX_J60lLY2yoz5jXtNoqTnAE_wm_s4llQHeR3z2Mx68,5119
3
- perftester/perftester.py,sha256=q8fj5hl0vW5rmB5FmdVqKZ5Vk43SkMgsC8tLX8m77Gw,31559
4
- perftester/tmp.py,sha256=jqCDGCRO5fv7Uv7cJLu4PNmnaUMIApuu3nT_2zQwWqQ,1657
5
- perftester/tmp_working.py,sha256=7ub5M6PFFfhSTCp_a-YQOZSFD05VNxa8Y7tDnEcBZzk,820
6
- perftester/understand.py,sha256=H70Yjt3MPSB8rSjEi88Rwik15ZaVKn7OFBizC5H72NA,15670
7
- perftester-0.5.1.dist-info/LICENSE,sha256=mZFAdfuYFAyBYiir4m3CTQu151mpXbMbh7Mm5M1bZAE,1063
8
- perftester-0.5.1.dist-info/METADATA,sha256=gieG4jHDVbnwmfPwh_RB8jRlWnHPvjtiQ06SmfP1lgM,24670
9
- perftester-0.5.1.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
10
- perftester-0.5.1.dist-info/entry_points.txt,sha256=gM6Vf1BEeLY-1X9IQlO1TPAO3lJ5vToKfnJHT4MruIk,57
11
- perftester-0.5.1.dist-info/top_level.txt,sha256=i1-4oWlkta2MsNKlZwJCibhn7aBexQfxncoPy2a6dfA,11
12
- perftester-0.5.1.dist-info/RECORD,,