pennylane-lightning-tensor 0.42.0__cp313-cp313-manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,787 @@
1
+ # Copyright 2024 Xanadu Quantum Technologies Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Class implementation for tensornet manipulation.
16
+ """
17
+
18
+ # pylint: disable=import-error, no-name-in-module, ungrouped-imports
19
+ try:
20
+ from pennylane_lightning.lightning_tensor_ops import (
21
+ exactTensorNetC64,
22
+ exactTensorNetC128,
23
+ mpsTensorNetC64,
24
+ mpsTensorNetC128,
25
+ )
26
+ except ImportError:
27
+ pass
28
+
29
+ import numpy as np
30
+ import pennylane as qml
31
+ from pennylane import BasisState, MPSPrep, StatePrep
32
+ from pennylane.exceptions import DeviceError
33
+ from pennylane.ops.op_math import Adjoint
34
+ from pennylane.tape import QuantumScript
35
+ from pennylane.wires import Wires
36
+
37
+
38
+ def svd_split(
39
+ Mat: np.ndarray, site_shape: list[int], max_bond_dim: int, is_right: bool = True
40
+ ) -> tuple[np.ndarray, np.ndarray]:
41
+ """Perform SVD decomposition of a matrix using numpy linalg.
42
+
43
+ This function allows selecting which orthonormal singular vector to return.
44
+ If `is_right` is True, it returns Vd; otherwise, it returns U.
45
+ Note that this function is intended to be moved to the C++ layer.
46
+
47
+ Args:
48
+ Mat (np.ndarray): Input matrix.
49
+ site_shape (list[int]): Shape of the site tensor.
50
+ max_bond_dim (int): Maximum bond dimension.
51
+ is_right (bool): Direction of the SVD decomposition. Default is True.
52
+
53
+ Returns:
54
+ tuple[np.ndarray, np.ndarray]: U and Vd matrices.
55
+ """
56
+ # TODO: Check if cutensornet allows us to remove all zero (or < tol) singular values and the respective rows and columns of U and Vd
57
+
58
+ U, S, Vd = np.linalg.svd(Mat, full_matrices=False)
59
+
60
+ # Removing noise from singular values
61
+ # Reference: https://scicomp.stackexchange.com/questions/350/what-should-be-the-criteria-for-accepting-rejecting-singular-values/355#355
62
+ epsilon = np.finfo(Mat.dtype).eps * S[0] if S[0] > 1.0 else np.finfo(Mat.dtype).eps
63
+ S[S < epsilon] = 0.0
64
+
65
+ bonds = len(S)
66
+ chi = min(bonds, max_bond_dim)
67
+
68
+ # Crop the singular values and the corresponding singular vectors
69
+ S = S[:chi]
70
+ U = U[:, :chi]
71
+ Vd = Vd[:chi]
72
+
73
+ if is_right: # Vd as orthonormal singular vectors
74
+ U = U * S # Append singular values to U
75
+ else: # U as orthonormal singular vectors
76
+ Vd = (S * Vd.T).T # Append singular values to Vd, equivalent operation to np.diag(S) @ Vd
77
+
78
+ # keep only chi bonds and reshape to fit the bond dimension and site shape
79
+ Vd = Vd.reshape([chi] + site_shape + [-1])
80
+ U = U.reshape([-1] + site_shape + [chi])
81
+
82
+ if is_right:
83
+ return U, Vd
84
+ else:
85
+ return Vd, U
86
+
87
+
88
+ def decompose_dense(
89
+ psi: np.ndarray,
90
+ n_wires: int,
91
+ site_shape: list[int],
92
+ max_bond_dim: int,
93
+ canonical_right: bool = True,
94
+ ) -> list[np.ndarray]:
95
+ """Decompose a dense state vector/gate matrix into MPS/MPO sites.
96
+
97
+ Args:
98
+ psi (np.ndarray): input state vector or gate matrix
99
+ n_wires (int): number of wires
100
+ site_shape (list[int]): shape of the site tensor
101
+ max_bond_dim (int): maximum bond dimension
102
+ canonical_right (bool): right-canonical form if True; left-canonical form if False. Default is True.
103
+
104
+ Returns:
105
+ list[np.ndarray]: MPS/MPO sites
106
+ """
107
+
108
+ Ms = []
109
+ site_len = np.prod(site_shape)
110
+
111
+ psi = np.reshape(psi, (-1, site_len) if canonical_right else (site_len, -1))
112
+ psi, A = svd_split(psi, site_shape, max_bond_dim, is_right=canonical_right)
113
+
114
+ Ms.append(A)
115
+ bondL = psi.shape[-1 if canonical_right else 0]
116
+
117
+ for _ in range(1, n_wires - 1):
118
+ psi = np.reshape(psi, (-1, site_len * bondL) if canonical_right else (site_len * bondL, -1))
119
+ psi, A = svd_split(psi, site_shape, max_bond_dim, is_right=canonical_right)
120
+ Ms.append(A)
121
+
122
+ bondL = psi.shape[-1 if canonical_right else 0]
123
+
124
+ Ms.append(psi)
125
+
126
+ if canonical_right:
127
+ Ms.reverse()
128
+
129
+ # Removing the virtual bond dimension of 1 from the first and last sites
130
+ Ms[0] = np.reshape(Ms[0], Ms[0].shape[1:])
131
+ Ms[-1] = np.reshape(Ms[-1], Ms[-1].shape[:-1])
132
+
133
+ return Ms
134
+
135
+
136
+ def gate_matrix_decompose(
137
+ gate_ops_matrix: np.ndarray,
138
+ wires: list[int],
139
+ max_mpo_bond_dim: int,
140
+ c_dtype: np.complex64 | np.complex128,
141
+ ) -> tuple[list[np.ndarray], list[int]]:
142
+ """Permute and decompose a gate matrix into MPO sites.
143
+
144
+ This method return the MPO sites in the Fortran order of the ``cutensornet`` backend. Note that MSB in the Pennylane convention is the LSB in the ``cutensornet`` convention.
145
+
146
+ Args:
147
+ gate_ops_matrix (np.ndarray): input gate matrix
148
+ wires (list): list of wires
149
+ max_mpo_bond_dim (int): maximum bond dimension
150
+ c_dtype (np.complex64 | np.complex128): complex dtype
151
+
152
+ Returns:
153
+ [list[np.ndarray], list[int]]: MPO sites and sorted wires
154
+ """
155
+ sorted_indexed_wires = sorted(enumerate(wires), key=lambda x: x[1])
156
+
157
+ original_axes, sorted_wires = zip(*sorted_indexed_wires)
158
+
159
+ tensor_shape = [2] * len(wires) * 2
160
+
161
+ matrix = gate_ops_matrix.astype(c_dtype)
162
+
163
+ # Convert the gate matrix to the correct shape and complex dtype
164
+ gate_tensor = matrix.reshape(tensor_shape)
165
+
166
+ # Create the correct order of indices for the gate tensor to be decomposed
167
+ indices_order = []
168
+ for i in range(len(wires)):
169
+ indices_order.extend([original_axes[i], original_axes[i] + len(wires)])
170
+ # Reverse the indices order to match the target wire order of cutensornet backend
171
+ indices_order.reverse()
172
+
173
+ # Permutation of the gate tensor
174
+ gate_tensor = np.transpose(gate_tensor, axes=indices_order)
175
+
176
+ mpo_site_shape = [2] * 2
177
+
178
+ # The indices order of MPOs: 1. left-most site: [ket, bra, bondR]; 2. right-most sites: [bondL, ket, bra]; 3. sites in-between: [bondL, ket, bra, bondR].
179
+ MPOs = decompose_dense(gate_tensor, len(wires), mpo_site_shape, max_mpo_bond_dim)
180
+
181
+ # Convert the MPOs to the correct order for the cutensornet backend
182
+ mpos = []
183
+ for index, MPO in enumerate(MPOs):
184
+ if index == 0:
185
+ # [ket, bra, bond](0, 1, 2) -> [ket, bond, bra](0, 2, 1) -> Fortran order or reverse indices(1, 2, 0) to match the order requirement of cutensornet backend.
186
+ mpos.append(np.transpose(MPO, axes=(1, 2, 0)))
187
+ elif index == len(MPOs) - 1:
188
+ # [bond, ket, bra](0, 1, 2) -> Fortran order or reverse indices(2, 1, 0) to match the order requirement of cutensornet backend.
189
+ mpos.append(np.transpose(MPO, axes=(2, 1, 0)))
190
+ else:
191
+ # [bondL, ket, bra, bondR](0, 1, 2, 3) -> [bondL, ket, bondR, bra](0, 1, 3, 2) -> Fortran order or reverse indices(2, 3, 1, 0) to match the requirement of cutensornet backend.
192
+ mpos.append(np.transpose(MPO, axes=(2, 3, 1, 0)))
193
+
194
+ return mpos, sorted_wires
195
+
196
+
197
+ def check_canonical_form(mps: list[np.ndarray], is_right: bool = True) -> bool:
198
+ """Check if the MPS is in the canonical form.
199
+
200
+ The computation of expectation values and matrix elements is simpler if the MPS is built from orthonormal tensors, i.e. in canonical form (either in the left or right direction).
201
+
202
+ Args:
203
+ mps (list[np.ndarray]): MPS state
204
+ is_right (bool): True if the MPS is in the right canonical form; False if the MPS is in the left canonical form. Default is True.
205
+
206
+ Returns:
207
+ bool: True if the MPS is in the canonical form specified by the direction
208
+ """
209
+
210
+ for sites in mps:
211
+
212
+ sites_conj_t = sites.conj().T
213
+
214
+ if not is_right:
215
+ sites, sites_conj_t = sites_conj_t, sites
216
+
217
+ C = np.tensordot(sites, sites_conj_t, axes=[[-1, -2], [0, 1]])
218
+
219
+ # Compare C with the identity matrix
220
+ if not np.allclose(C, np.eye(C.shape[0], dtype=C.dtype), atol=np.finfo(C.dtype).eps * 1e4):
221
+ return False
222
+
223
+ # Return True if all the values of canon_values are True
224
+ return True
225
+
226
+
227
+ def expand_mps_first_site(state_MPS: list[np.ndarray], max_bond_dim: int = 128) -> list[np.ndarray]:
228
+ """Expand the MPS to match the size of the target wires.
229
+
230
+ This function modifies the original MPS state by adding a single wire at the beginning of the MPS state. The algorithm to expand the input MPS state to fit into the device MPS state is based on the following steps:
231
+
232
+ - Set the device MPS state as $B$ and the input MPS state as $A$.
233
+ - Padding with zeros the tensor $B_i$ to fit the tensor shape $A_{i+1}$ up to $i = N/2$ where $N$ is the total number of tensors in $B$.
234
+ - Add the identity matrix with shape `(1,2,2)` at the beginning of $B$.
235
+ - Restore the $B$ MPS into the initial canonical form to spread the new site information across the entire MPS $A$.
236
+
237
+ The details about how to create a MPS state can be found in the PennyLane tutorial: [Introducing matrix product states for quantum practitioners](https://pennylane.ai/qml/demos/tutorial_mps)
238
+
239
+ Args:
240
+ state_MPS (list[np.ndarray]): The MPS state to be expanded.
241
+ max_bond_dim (int): The maximum bond dimension.
242
+
243
+ Returns:
244
+ list[np.ndarray]: The expanded MPS state.
245
+ """
246
+
247
+ expanded_MPS = state_MPS
248
+
249
+ # Number of sites that should be changed from the first site
250
+ n_sites = len(state_MPS)
251
+ n_sites_change = (n_sites + 1) // 2
252
+ odd_n_sites = n_sites % 2 == 1
253
+
254
+ for i in range(n_sites_change - 1):
255
+ # Create the new site for expanded_MPS
256
+ new_site = expanded_MPS[i]
257
+
258
+ # Horizontal padding with zeros
259
+ horizontal_pad = 2**i if 2**i < max_bond_dim else 0
260
+ new_site = np.pad(new_site, ((0, horizontal_pad), (0, 0), (0, 0)), mode="constant")
261
+
262
+ # Vertical padding with zeros
263
+ target_l, _, target_r = state_MPS[i + 1].shape
264
+
265
+ if odd_n_sites: # odd sites need to double the bond dimension
266
+ target_r = target_l * 2 if target_l * 2 < max_bond_dim else max_bond_dim
267
+
268
+ site_r = new_site.shape[-1]
269
+
270
+ new_site = np.pad(
271
+ new_site.reshape(target_l, 2, site_r),
272
+ ((0, 0), (0, 0), (0, target_r - site_r)),
273
+ mode="constant",
274
+ )
275
+
276
+ # Assign the new site
277
+ expanded_MPS[i] = new_site
278
+
279
+ # Padding mid site
280
+ new_site = expanded_MPS[n_sites_change - 1]
281
+
282
+ # Horizontal padding
283
+ horizontal_pad = 2 ** (n_sites_change - 1) if 2 ** (n_sites_change - 1) < max_bond_dim else 0
284
+ new_site = np.pad(new_site, ((0, horizontal_pad), (0, 0), (0, 0)), mode="constant")
285
+
286
+ # Vertical padding
287
+ target_l, _, target_r = state_MPS[n_sites_change].shape
288
+
289
+ # if the mid + 1 site is odd, the bond dimension needs to be doubled
290
+ if odd_n_sites:
291
+ target_l *= 2
292
+ target_r *= 2
293
+ else: # even
294
+ target_r = target_l
295
+
296
+ site_r = new_site.shape[-1]
297
+
298
+ new_site = new_site.reshape(target_l, 2, target_r)
299
+ new_site = np.pad(new_site, ((0, 0), (0, 0), (0, target_r - site_r)), mode="constant")
300
+
301
+ # Assign the last new site
302
+ expanded_MPS[n_sites_change - 1] = new_site
303
+
304
+ # Add the initial site
305
+ expanded_MPS = [np.eye(2, dtype=state_MPS[0].dtype).reshape(1, 2, 2)] + expanded_MPS
306
+
307
+ return expanded_MPS
308
+
309
+
310
+ def restore_left_canonical_form(mps: list[np.ndarray], site_shape: list[int]) -> list[np.ndarray]:
311
+ """Restore the left canonical form of the MPS.
312
+
313
+ The left canonical form is defined as the form where the tensors are orthonormal in the left direction.
314
+
315
+ Args:
316
+ mps (list[np.ndarray]): MPS state
317
+ site_shape (list[int]): shape of the site tensor
318
+
319
+ Returns:
320
+ list[np.ndarray]: MPS state in the left canonical form
321
+ """
322
+
323
+ new_mps = []
324
+ Vd = np.eye(1, dtype=mps[0].dtype)
325
+
326
+ for site in mps:
327
+ site_p = np.tensordot(Vd, site, axes=[[-1], [0]])
328
+ site_p = site_p.reshape(-1, site.shape[-1])
329
+
330
+ U, S, Vd = np.linalg.svd(site_p, full_matrices=False)
331
+
332
+ # Removing noise from singular values
333
+ epsilon = np.finfo(site.dtype).eps * S[0] if S[0] > 1.0 else np.finfo(site.dtype).eps
334
+ S[S < epsilon] = 0.0
335
+
336
+ bonds = len(S)
337
+
338
+ Vd = S * Vd
339
+ U = U.reshape([-1] + site_shape + [bonds])
340
+
341
+ new_mps.append(U)
342
+
343
+ return new_mps
344
+
345
+
346
+ def restore_right_canonical_form(mps: list[np.ndarray], site_shape: list[int]) -> list[np.ndarray]:
347
+ """Restore the right canonical form of the MPS.
348
+
349
+ The right canonical form is defined as the form where the tensors are orthonormal in the right direction.
350
+
351
+ Args:
352
+ mps (list[np.ndarray]): MPS state
353
+ site_shape (list[int]): shape of the site tensor
354
+
355
+ Returns:
356
+ list[np.ndarray]: MPS state in the right canonical form
357
+ """
358
+
359
+ new_mps = []
360
+ U = np.eye(1, dtype=mps[0].dtype)
361
+
362
+ for site in reversed(mps):
363
+ site_p = np.tensordot(site, U, axes=[[-1], [0]])
364
+ site_p = site_p.reshape(site.shape[0], -1)
365
+
366
+ U, S, Vd = np.linalg.svd(site_p, full_matrices=False)
367
+
368
+ # Removing noise from singular values
369
+ epsilon = np.finfo(site.dtype).eps * S[0] if S[0] > 1.0 else np.finfo(site.dtype).eps
370
+ S[S < epsilon] = 0.0
371
+
372
+ bonds = len(S)
373
+
374
+ U = U * S
375
+ Vd = Vd.reshape([bonds] + site_shape + [-1])
376
+
377
+ new_mps.append(Vd)
378
+
379
+ new_mps.reverse()
380
+
381
+ return new_mps
382
+
383
+
384
+ # pylint: disable=too-many-instance-attributes
385
+ class LightningTensorNet:
386
+ """Lightning tensornet class.
387
+
388
+ Interfaces with C++ python binding methods for tensornet manipulation.
389
+
390
+ Args:
391
+ num_wires(int): the number of wires to initialize the device with
392
+ c_dtype: Datatypes for tensor network representation. Must be one of
393
+ ``np.complex64`` or ``np.complex128``. Default is ``np.complex128``
394
+ method(string): tensor network method. Supported methods are "mps" (Matrix Product State) and
395
+ "tn" (Exact Tensor Network). Options: ["mps", "tn"].
396
+ device_name(string): tensor network device name. Options: ["lightning.tensor"]
397
+ Keyword Args:
398
+ max_bond_dim (int): The maximum bond dimension to be used in the MPS simulation. Default is 128.
399
+ The accuracy of the wavefunction representation comes with a memory tradeoff which can be
400
+ tuned with `max_bond_dim`. The larger the internal bond dimension, the more entanglement can
401
+ be described but the larger the memory requirements. Note that GPUs are ill-suited (i.e. less
402
+ competitive compared with CPUs) for simulating circuits with low bond dimensions and/or circuit
403
+ layers with a single or few gates because the arithmetic intensity is lower.
404
+ cutoff (float): The threshold used to truncate the singular values of the MPS tensors. Default is 0.
405
+ cutoff_mode (str): Singular value truncation mode for MPS tensors can be done either by
406
+ considering the absolute values of the singular values (``"abs"``) or by considering
407
+ the relative values of the singular values (``"rel"``). Default is ``"abs"``.
408
+ """
409
+
410
+ # pylint: disable=too-many-arguments, too-many-positional-arguments
411
+ def __init__(
412
+ self,
413
+ num_wires=None,
414
+ method: str = "mps",
415
+ c_dtype=np.complex128,
416
+ device_name="lightning.tensor",
417
+ **kwargs,
418
+ ):
419
+ if device_name != "lightning.tensor":
420
+ raise DeviceError(f'The device name "{device_name}" is not a valid option.')
421
+
422
+ if num_wires < 2:
423
+ raise ValueError("Number of wires must be greater than 1.")
424
+
425
+ self._num_wires = num_wires
426
+ self._method = method
427
+ self._c_dtype = c_dtype
428
+ self._device_name = device_name
429
+
430
+ self._wires = Wires(range(num_wires))
431
+
432
+ if self._method == "mps":
433
+ self._max_bond_dim = kwargs.get("max_bond_dim", 128)
434
+ self._cutoff = kwargs.get("cutoff", 0)
435
+ self._cutoff_mode = kwargs.get("cutoff_mode", "abs")
436
+ self._tensornet = self._tensornet_dtype()(self._num_wires, self._max_bond_dim)
437
+ elif self._method == "tn":
438
+ self._tensornet = self._tensornet_dtype()(self._num_wires)
439
+ else:
440
+ raise DeviceError(f"The method {self._method} is not supported.")
441
+
442
+ @property
443
+ def dtype(self):
444
+ """Returns the tensor network data type."""
445
+ return self._c_dtype
446
+
447
+ @property
448
+ def device_name(self):
449
+ """Returns the tensor network device name."""
450
+ return self._device_name
451
+
452
+ @property
453
+ def num_wires(self):
454
+ """Returns the number of wires addressed on this device"""
455
+ return self._num_wires
456
+
457
+ @property
458
+ def method(self):
459
+ """Returns the method (mps or tn) for evaluating the tensor network."""
460
+ return self._method
461
+
462
+ @property
463
+ def tensornet(self):
464
+ """Returns a handle to the tensor network."""
465
+ return self._tensornet
466
+
467
+ @property
468
+ def state(self):
469
+ """Copy the state vector data to a numpy array."""
470
+ state = np.zeros(2**self._num_wires, dtype=self.dtype)
471
+ self._tensornet.getState(state)
472
+ return state
473
+
474
+ def _tensornet_dtype(self):
475
+ """Binding to Lightning Managed tensor network C++ class.
476
+
477
+ Returns: the tensor network class
478
+ """
479
+ if self.method == "tn": # Using "tn" method
480
+ return exactTensorNetC128 if self.dtype == np.complex128 else exactTensorNetC64
481
+ # Using "mps" method
482
+ return mpsTensorNetC128 if self.dtype == np.complex128 else mpsTensorNetC64
483
+
484
+ def reset_state(self):
485
+ """Reset the device's initial quantum state"""
486
+ # init the quantum state to |00..0>
487
+ self._tensornet.reset()
488
+
489
+ def _preprocess_state_vector(self, state, device_wires):
490
+ """Convert a specified state to a full internal state vector.
491
+
492
+ Args:
493
+ state (array[complex]): normalized input state of length ``2**len(device_wires)``
494
+ device_wires (Wires): wires that get initialized in the state
495
+
496
+ Returns:
497
+ array[complex]: normalized input state of length ``2**len(device_wires)``
498
+ """
499
+ output_shape = [2] * self._num_wires
500
+ # special case for integral types
501
+ if state.dtype.kind == "i":
502
+ state = np.array(state, dtype=self.dtype)
503
+
504
+ if len(device_wires) == self._num_wires and Wires(sorted(device_wires)) == device_wires:
505
+ return np.reshape(state, output_shape).ravel(order="C")
506
+
507
+ local_dev_wires = device_wires.tolist().copy()
508
+ local_dev_wires = local_dev_wires[::-1]
509
+
510
+ # generate basis states on subset of qubits via broadcasting as substitute of cartesian product.
511
+
512
+ # Allocate a single row as a base to avoid a large array allocation with
513
+ # the cartesian product algorithm.
514
+ # Initialize the base with the pattern [0 1 0 1 ...].
515
+ base = np.tile([0, 1], 2 ** (len(local_dev_wires) - 1)).astype(dtype=np.int64)
516
+ # Allocate the array where it will accumulate the value of the indexes depending on
517
+ # the value of the basis.
518
+ indexes = np.zeros(2 ** (len(local_dev_wires)), dtype=np.int64)
519
+
520
+ max_dev_wire = self._num_wires - 1
521
+
522
+ # Iterate over all device wires.
523
+ for i, wire in enumerate(local_dev_wires):
524
+
525
+ # Accumulate indexes from the basis.
526
+ indexes += base * 2 ** (max_dev_wire - wire)
527
+
528
+ if i == len(local_dev_wires) - 1:
529
+ continue
530
+
531
+ two_n = 2 ** (i + 1) # Compute the value of the base.
532
+
533
+ # Update the value of the base without reallocating a new array.
534
+ # Reshape the basis to swap the internal columns.
535
+ base = base.reshape(-1, two_n * 2)
536
+ swapper_A = two_n // 2
537
+ swapper_B = swapper_A + two_n
538
+
539
+ base[:, swapper_A:swapper_B] = base[:, swapper_A:swapper_B][:, ::-1]
540
+ # Flatten the base array
541
+ base = base.reshape(-1)
542
+
543
+ # get full state vector to be factorized into MPS
544
+ full_state = np.zeros(2**self._num_wires, dtype=self.dtype)
545
+ for i, value in enumerate(state):
546
+ full_state[indexes[i]] = value
547
+ return np.reshape(full_state, output_shape).ravel(order="C")
548
+
549
+ def _apply_state_vector(self, state, device_wires: Wires):
550
+ """Convert a specified state to MPS state.
551
+
552
+ Args:
553
+ state (array[complex]): normalized input state of length ``2**len(device_wires)``
554
+ or broadcasted state of shape ``(batch_size, 2**len(device_wires))``
555
+ device_wires (Wires): wires that get initialized in the state
556
+ """
557
+ if self.method == "tn":
558
+ raise DeviceError("Exact Tensor Network does not support StatePrep")
559
+
560
+ if self.method == "mps":
561
+ state = self._preprocess_state_vector(state, device_wires)
562
+ mps_site_shape = [2]
563
+ M = decompose_dense(state, self._num_wires, mps_site_shape, self._max_bond_dim)
564
+ self._tensornet.updateMPSSitesData(M)
565
+
566
+ def _apply_mps_state(self, mps: tuple[np.ndarray], target_wires: Wires) -> None:
567
+
568
+ if len(target_wires) == self._num_wires and Wires(sorted(target_wires)) == target_wires:
569
+ self._tensornet.updateMPSSitesData(mps)
570
+ return
571
+
572
+ trgt_wires = target_wires.tolist()
573
+
574
+ # Sort wires in ascending order
575
+ trgt_wires.sort()
576
+
577
+ # check if 0 is present in trgt_wires and the number of wires to be appended is more than 1
578
+ if not 0 in trgt_wires and (self._num_wires - len(trgt_wires) > 1):
579
+ raise DeviceError(
580
+ "MPSPrep only support to append a single wire at the beginning of the MPS."
581
+ )
582
+
583
+ mps = list(mps)
584
+
585
+ if len(mps[0].shape) != 3:
586
+ mps[0] = mps[0].reshape(1, 2, 2)
587
+
588
+ if len(mps[-1].shape) != 3:
589
+ mps[-1] = mps[-1].reshape(2, 2, 1)
590
+
591
+ # Check the canonical form of the MPS
592
+ if check_canonical_form(mps, is_right=False):
593
+ # Expand and restore the canonical form for the current MPS to match the size of the target wires
594
+ new_mps = expand_mps_first_site(mps, self._max_bond_dim)
595
+ new_mps = restore_left_canonical_form(new_mps, [2])
596
+
597
+ elif check_canonical_form(mps, is_right=True):
598
+ # Expand and restore the canonical form for the current MPS to match the size of the target wires
599
+ new_mps = expand_mps_first_site(mps, self._max_bond_dim)
600
+ new_mps = restore_right_canonical_form(new_mps, [2])
601
+
602
+ else: # No canonical form
603
+ new_mps = expand_mps_first_site(mps, self._max_bond_dim)
604
+
605
+ # Restore dimension of first and last sites
606
+ new_mps[0] = new_mps[0].reshape(2, 2)
607
+ new_mps[-1] = new_mps[-1].reshape(2, 2)
608
+
609
+ # Update the MPS sites in the tensornet
610
+ self._tensornet.updateMPSSitesData(new_mps)
611
+
612
+ def _apply_basis_state(self, state, wires):
613
+ """Initialize the quantum state in a specified computational basis state.
614
+
615
+ Args:
616
+ state (array[int]): computational basis state of shape ``(wires,)``
617
+ consisting of 0s and 1s.
618
+ wires (Wires): wires that the provided computational state should be
619
+ initialized on
620
+
621
+ Note: This function does not support broadcasted inputs yet.
622
+ """
623
+ # length of basis state parameter
624
+ n_basis_state = len(state)
625
+
626
+ if not set(state.tolist()).issubset({0, 1}):
627
+ raise ValueError("BasisState parameter must consist of 0 or 1 integers.")
628
+
629
+ if n_basis_state != len(wires):
630
+ raise ValueError("BasisState parameter and wires must be of equal length.")
631
+
632
+ self._tensornet.setBasisState(state)
633
+
634
+ def _apply_MPO(self, gate_matrix, wires):
635
+ """Apply a matrix product operator to the quantum state (MPS method only).
636
+
637
+ Args:
638
+ gate_matrix (array[complex/float]): matrix representation of the MPO
639
+ wires (Wires): wires that the MPO should be applied to
640
+ Returns:
641
+ None
642
+ """
643
+ # TODO: Discuss if public interface for max_mpo_bond_dim argument
644
+ max_mpo_bond_dim = self._max_bond_dim
645
+
646
+ # Get sorted wires and MPO site tensor
647
+ mpos, sorted_wires = gate_matrix_decompose(
648
+ gate_matrix, wires, max_mpo_bond_dim, self._c_dtype
649
+ )
650
+
651
+ self._tensornet.applyMPOOperation(mpos, sorted_wires, max_mpo_bond_dim)
652
+
653
+ # pylint: disable=too-many-branches
654
+ def _apply_lightning_controlled(self, operation):
655
+ """Apply an arbitrary controlled operation to the state tensor. Note that `cutensornet` only supports controlled gates with a single wire target.
656
+
657
+ Args:
658
+ operation (~pennylane.operation.Operation): controlled operation to apply
659
+
660
+ Returns:
661
+ None
662
+ """
663
+ tensornet = self._tensornet
664
+
665
+ basename = operation.base.name
666
+ method = getattr(tensornet, f"{basename}", None)
667
+ control_wires = list(operation.control_wires)
668
+ control_values = operation.control_values
669
+ target_wires = list(operation.target_wires)
670
+
671
+ if method is not None and basename not in ("GlobalPhase", "MultiRZ"):
672
+ inv = False
673
+ param = operation.parameters
674
+ method(control_wires, control_values, target_wires, inv, param)
675
+ else: # apply gate as an n-controlled matrix
676
+ method = getattr(tensornet, "applyControlledMatrix")
677
+ method(qml.matrix(operation.base), control_wires, control_values, target_wires, False)
678
+
679
+ # pylint: disable=too-many-statements
680
+ def _apply_lightning(self, operations):
681
+ """Apply a list of operations to the quantum state.
682
+
683
+ Args:
684
+ operations (list[~pennylane.operation.Operation]): operations to apply
685
+
686
+ Returns:
687
+ None
688
+ """
689
+ tensornet = self._tensornet
690
+
691
+ # Skip over identity operations instead of performing
692
+ # matrix multiplication with it.
693
+ for operation in operations:
694
+ if isinstance(operation, qml.Identity):
695
+ continue
696
+ if isinstance(operation, Adjoint):
697
+ name = operation.base.name
698
+ invert_param = True
699
+ else:
700
+ name = operation.name
701
+ invert_param = False
702
+ method = getattr(tensornet, name, None)
703
+ wires = list(operation.wires)
704
+
705
+ if (
706
+ isinstance(operation, qml.ops.Controlled)
707
+ and len(list(operation.target_wires)) == 1
708
+ and len(set(operation.control_values)) == 1
709
+ ):
710
+ self._apply_lightning_controlled(operation)
711
+ elif isinstance(operation, qml.GlobalPhase):
712
+ matrix = np.eye(2) * operation.matrix().flatten()[0]
713
+ method = getattr(tensornet, "applyMatrix")
714
+ # GlobalPhase is always applied to the first wire in the tensor network
715
+ method(matrix, [0], False)
716
+ elif len(wires) <= 2:
717
+ if method is not None:
718
+ param = operation.parameters
719
+ method(wires, invert_param, param)
720
+ else:
721
+ # Inverse can be set to False since qml.matrix(operation) is already in
722
+ # inverted form
723
+ method = getattr(tensornet, "applyMatrix")
724
+ try:
725
+ method(qml.matrix(operation), wires, False)
726
+ except AttributeError: # pragma: no cover
727
+ # To support older versions of PL
728
+ method(operation.matrix(), wires, False)
729
+ else:
730
+ try:
731
+ gate_ops_matrix = qml.matrix(operation)
732
+ except AttributeError: # pragma: no cover
733
+ # To support older versions of PL
734
+ gate_ops_matrix = operation.matrix()
735
+
736
+ if self.method == "mps":
737
+ self._apply_MPO(gate_ops_matrix, wires)
738
+ if self.method == "tn":
739
+ method = getattr(tensornet, "applyMatrix")
740
+ method(gate_ops_matrix, wires, False)
741
+
742
+ def apply_operations(self, operations):
743
+ """Append operations to the tensor network graph."""
744
+ # State preparation is currently done in Python
745
+ if operations: # make sure operations[0] exists
746
+ if isinstance(operations[0], StatePrep):
747
+ if self.method == "mps":
748
+ self._apply_state_vector(
749
+ operations[0].parameters[0].copy(), operations[0].wires
750
+ )
751
+ operations = operations[1:]
752
+ if self.method == "tn":
753
+ raise DeviceError("Exact Tensor Network does not support StatePrep")
754
+ elif isinstance(operations[0], BasisState):
755
+ self._apply_basis_state(operations[0].parameters[0], operations[0].wires)
756
+ operations = operations[1:]
757
+ elif isinstance(operations[0], MPSPrep):
758
+ if self.method == "mps":
759
+ self._apply_mps_state(operations[0].mps, operations[0].wires)
760
+
761
+ operations = operations[1:]
762
+
763
+ if self.method == "tn":
764
+ raise DeviceError("Exact Tensor Network does not support MPSPrep")
765
+
766
+ self._apply_lightning(operations)
767
+
768
+ def set_tensor_network(self, circuit: QuantumScript):
769
+ """
770
+ Set the tensor network that results from executing the given quantum script.
771
+
772
+ This is an internal function that will be called by the successor to ``lightning.tensor``.
773
+
774
+ Args:
775
+ circuit (QuantumScript): The single circuit to simulate
776
+ """
777
+ self.apply_operations(circuit.operations)
778
+ self.appendFinalState()
779
+
780
+ return self
781
+
782
+ def appendFinalState(self):
783
+ """
784
+ Append the final state to the tensor network. This function should be called once when apply_operations is called. It only applies to the MPS method and is an empty call for the Exact Tensor Network method.
785
+ """
786
+ if self.method == "mps":
787
+ self._tensornet.appendMPSFinalState(self._cutoff, self._cutoff_mode)