pdd-cli 0.0.22__py3-none-any.whl → 0.0.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pdd-cli might be problematic. Click here for more details.

pdd/__init__.py CHANGED
@@ -0,0 +1 @@
1
+ __version__ = "0.0.24"
pdd/bug_main.py CHANGED
@@ -3,6 +3,7 @@ import sys
3
3
  from typing import Tuple, Optional
4
4
  import click
5
5
  from rich import print as rprint
6
+ from pathlib import Path
6
7
 
7
8
  from .construct_paths import construct_paths
8
9
  from .bug_to_unit_test import bug_to_unit_test
@@ -74,9 +75,22 @@ def bug_main(
74
75
 
75
76
  # Save results if output path is provided
76
77
  if output_file_paths.get("output"):
78
+ output_path = output_file_paths["output"]
79
+ # Additional check to ensure the path is not empty
80
+ if not output_path or output_path.strip() == '':
81
+ # Use a default output path in the current directory
82
+ output_path = f"test_{Path(code_file).stem}_bug.{language.lower()}"
83
+ if not ctx.obj.get('quiet', False):
84
+ rprint(f"[yellow]Warning: Empty output path detected. Using default: {output_path}[/yellow]")
85
+ output_file_paths["output"] = output_path
86
+
77
87
  # Create directory if it doesn't exist
78
- os.makedirs(os.path.dirname(output_file_paths["output"]), exist_ok=True)
79
- with open(output_file_paths["output"], 'w') as f:
88
+ dir_path = os.path.dirname(output_path)
89
+ if dir_path: # Only create directory if there's a directory part in the path
90
+ os.makedirs(dir_path, exist_ok=True)
91
+
92
+ # Write the file
93
+ with open(output_path, 'w') as f:
80
94
  f.write(unit_test)
81
95
 
82
96
  # Provide user feedback
pdd/cli.py CHANGED
@@ -12,6 +12,7 @@ from rich.panel import Panel
12
12
 
13
13
  from .install_completion import install_completion as install_completion_main
14
14
  import pdd.install_completion
15
+ from pdd import __version__
15
16
 
16
17
  pdd.install_completion.get_local_pdd_path()
17
18
  # ----------------------------------------------------------------------
@@ -46,7 +47,7 @@ console = Console()
46
47
  @click.option("--review-examples", is_flag=True,
47
48
  help="Review and optionally exclude few-shot examples before command execution.")
48
49
  @click.option('--local', is_flag=True, help='Run commands locally instead of in the cloud.')
49
- @click.version_option(version="0.0.22")
50
+ @click.version_option(version=__version__)
50
51
  @click.pass_context
51
52
  def cli(
52
53
  ctx,
@@ -374,9 +375,9 @@ def crash(
374
375
  @cli.command(name="install_completion")
375
376
  def install_completion():
376
377
  """
377
- Install shell completion for the PDD CLI by detecting the users shell,
378
+ Install shell completion for the PDD CLI by detecting the user's shell,
378
379
  copying the relevant completion script, and appending a source command
379
- to the users shell RC file if not already present.
380
+ to the user's shell RC file if not already present.
380
381
  """
381
382
  return install_completion_main()
382
383
 
pdd/data/llm_model.csv CHANGED
@@ -1,17 +1,17 @@
1
1
  provider,model,input,output,coding_arena_elo,base_url,api_key,counter,encoder,max_tokens,max_completion_tokens,structured_output
2
- OpenAI,"gpt-4o-mini",0.15,0.60,1246,,OPENAI_API_KEY,tiktoken,o200k_base,,16384,True
3
- OpenAI,"grok-2-1212",2,10,1255,"https://api.x.ai/v1",XAI_API_KEY,tiktoken,o200k_base,4096,,False
2
+ OpenAI,"gpt-4.1-nano",0.1,0.40,1246,,OPENAI_API_KEY,tiktoken,o200k_base,,32768,True
3
+ OpenAI,"grok-3-beta",3,15,1255,"https://api.x.ai/v1",XAI_API_KEY,tiktoken,o200k_base,131072,,False
4
4
  Anthropic,"claude-3-5-haiku-20241022",1,5,1259,,ANTHROPIC_API_KEY,anthropic,claude-3-sonnet-20240229,8192,,False
5
5
  OpenAI,"deepseek-coder",0.14,0.28,1279,https://api.deepseek.com/beta,DEEPSEEK_API_KEY,autotokenizer,deepseek-coder-7b-instruct-v1.5,8192,,False
6
- Google,"gemini-2.0-flash-thinking-exp-01-21",.1,.4,1291,,GOOGLE_API_KEY,,,8192,,False
7
- GoogleVertexAI,"gemini-2.0-pro-exp-02-05",1.25,5,1299,,VERTEX_AI_API_KEY,,,8192,,False
6
+ Google,"gemini-2.5-flash-preview-04-17",.15,3.5,1291,,GOOGLE_API_KEY,,,65535,,False
7
+ GoogleVertexAI,"gemini-2.5-pro-exp-03-25",1.25,10,1299,,VERTEX_AI_API_KEY,,,65535,,False
8
8
  Anthropic,claude-3-7-sonnet-20250219,3,15,1312,,ANTHROPIC_API_KEY,anthropic,claude-3-sonnet-20240229,64000,,False
9
- Google,gemini-2.5-pro-exp-03-25,1.25,5,1313,,GOOGLE_API_KEY,,,8192,,False
9
+ Google,gemini-2.5-pro-exp-03-25,1.25,10,1313,,GOOGLE_API_KEY,,,65535,,False
10
10
  OpenAI,"deepseek-r1-distill-llama-70b-specdec",5,5,1314,https://api.groq.com/openai/v1,GROQ_API_KEY,autotokenizer,deepseek-coder-7b-instruct-v1.5,16384,,False
11
11
  Ollama,"deepseek-r1:70b-llama-distill-q8_0",0.0,0.0,1315,,PWD,,,,,False
12
12
  Ollama,deepseek-r1:32b-qwen-distill-fp16,0.0,0.0,1316,,PWD,,,,,False
13
- OpenAI,"o3-mini",1.1,4.4,1319,,OPENAI_API_KEY,tiktoken,o200k_base,,100000,True
14
- OpenAI,"o1-2024-12-17",15,60,1331,,OPENAI_API_KEY,tiktoken,o200k_base,,32768,True
15
- OpenAI,"gpt-4o-2024-11-20",2.5,10,1332,,OPENAI_API_KEY,tiktoken,o200k_base,,16384,True
13
+ OpenAI,"o4-mini",1.1,4.4,1319,,OPENAI_API_KEY,tiktoken,o200k_base,,100000,True
14
+ OpenAI,"o3",10,40,1331,,OPENAI_API_KEY,tiktoken,o200k_base,,100000,True
15
+ OpenAI,"gpt-4.1",2,8,1332,,OPENAI_API_KEY,tiktoken,o200k_base,,32768,True
16
16
  OpenAI,"deepseek-reasoner",0.55,2.19,1336,https://api.deepseek.com/beta,DEEPSEEK_API_KEY,autotokenizer,deepseek-coder-7b-instruct-v1.5,8192,,False
17
17
  Fireworks,accounts/fireworks/models/deepseek-r1,3,8,1338,,FIREWORKS_API_KEY,,,8192,,False
@@ -0,0 +1,259 @@
1
+ import re
2
+ from typing import Dict, Any
3
+ from rich import print as rprint
4
+ from rich.markdown import Markdown
5
+ from .load_prompt_template import load_prompt_template
6
+ from .llm_invoke import llm_invoke
7
+
8
+ def fix_verification_errors(
9
+ program: str,
10
+ prompt: str,
11
+ code: str,
12
+ output: str,
13
+ strength: float,
14
+ temperature: float = 0.0,
15
+ verbose: bool = False,
16
+ ) -> Dict[str, Any]:
17
+ """
18
+ Identifies and fixes issues in a code module based on verification output.
19
+
20
+ Args:
21
+ program: The program code that ran the code module.
22
+ prompt: The prompt used to generate the code module.
23
+ code: The code module to be fixed.
24
+ output: The output logs from the program run during verification.
25
+ strength: The strength (0-1) for the LLM model selection.
26
+ temperature: The temperature for the LLM model. Defaults to 0.
27
+ verbose: If True, prints detailed execution information. Defaults to False.
28
+
29
+ Returns:
30
+ A dictionary containing:
31
+ - 'explanation': A string with verification details and fix explanation
32
+ in XML format, or None if no issues were found.
33
+ - 'fixed_program': The potentially fixed program code string.
34
+ - 'fixed_code': The potentially fixed code module string.
35
+ - 'total_cost': The total cost incurred from LLM calls.
36
+ - 'model_name': The name of the LLM model used.
37
+ - 'verification_issues_count': The number of issues found during verification.
38
+ """
39
+ total_cost = 0.0
40
+ model_name = None
41
+ verification_issues_count = 0
42
+ verification_details = None
43
+ fix_explanation = None
44
+ fixed_program = program
45
+ fixed_code = code
46
+ final_explanation = None
47
+
48
+ if not all([program, prompt, code, output]):
49
+ rprint("[bold red]Error:[/bold red] Missing one or more required inputs (program, prompt, code, output).")
50
+ return {
51
+ "explanation": None,
52
+ "fixed_program": program,
53
+ "fixed_code": code,
54
+ "total_cost": 0.0,
55
+ "model_name": None,
56
+ "verification_issues_count": 0,
57
+ }
58
+ if not (0.0 <= strength <= 1.0):
59
+ rprint(f"[bold red]Error:[/bold red] Strength must be between 0.0 and 1.0, got {strength}.")
60
+ return {
61
+ "explanation": None,
62
+ "fixed_program": program,
63
+ "fixed_code": code,
64
+ "total_cost": 0.0,
65
+ "model_name": None,
66
+ "verification_issues_count": 0,
67
+ }
68
+
69
+ if verbose:
70
+ rprint("[blue]Loading prompt templates...[/blue]")
71
+ try:
72
+ find_errors_prompt_template = load_prompt_template("find_verification_errors_LLM")
73
+ fix_errors_prompt_template = load_prompt_template("fix_verification_errors_LLM")
74
+ if not find_errors_prompt_template or not fix_errors_prompt_template:
75
+ raise ValueError("One or both prompt templates could not be loaded.")
76
+ except Exception as e:
77
+ rprint(f"[bold red]Error loading prompt templates:[/bold red] {e}")
78
+ return {
79
+ "explanation": None,
80
+ "fixed_program": program,
81
+ "fixed_code": code,
82
+ "total_cost": total_cost,
83
+ "model_name": model_name,
84
+ "verification_issues_count": verification_issues_count,
85
+ }
86
+ if verbose:
87
+ rprint("[green]Prompt templates loaded successfully.[/green]")
88
+
89
+ if verbose:
90
+ rprint(f"\n[blue]Step 2: Running verification check (Strength: {strength}, Temp: {temperature})...[/blue]")
91
+
92
+ verification_input_json = {
93
+ "program": program,
94
+ "prompt": prompt,
95
+ "code": code,
96
+ "output": output,
97
+ }
98
+
99
+ try:
100
+ verification_response = llm_invoke(
101
+ prompt=find_errors_prompt_template,
102
+ input_json=verification_input_json,
103
+ strength=strength,
104
+ temperature=temperature,
105
+ verbose=False,
106
+ )
107
+ total_cost += verification_response.get('cost', 0.0)
108
+ model_name = verification_response.get('model_name', model_name)
109
+ verification_result = verification_response.get('result', '')
110
+
111
+ if verbose:
112
+ rprint(f"[cyan]Verification LLM call complete.[/cyan]")
113
+ rprint(f" [dim]Model Used:[/dim] {verification_response.get('model_name', 'N/A')}")
114
+ rprint(f" [dim]Cost:[/dim] ${verification_response.get('cost', 0.0):.6f}")
115
+
116
+ except Exception as e:
117
+ rprint(f"[bold red]Error during verification LLM call:[/bold red] {e}")
118
+ return {
119
+ "explanation": None,
120
+ "fixed_program": program,
121
+ "fixed_code": code,
122
+ "total_cost": total_cost,
123
+ "model_name": model_name,
124
+ "verification_issues_count": verification_issues_count,
125
+ }
126
+
127
+ if verbose:
128
+ rprint("\n[blue]Verification Result:[/blue]")
129
+ rprint(Markdown(verification_result))
130
+
131
+ issues_found = False
132
+ try:
133
+ count_match = re.search(r"<issues_count>(\d+)</issues_count>", verification_result)
134
+ if count_match:
135
+ verification_issues_count = int(count_match.group(1))
136
+ else:
137
+ rprint("[yellow]Warning:[/yellow] Could not find <issues_count> tag in verification result. Assuming 0 issues.")
138
+ verification_issues_count = 0
139
+
140
+ if verification_issues_count > 0:
141
+ details_match = re.search(r"<details>(.*?)</details>", verification_result, re.DOTALL)
142
+ if details_match:
143
+ verification_details = details_match.group(1).strip()
144
+ if verification_details:
145
+ issues_found = True
146
+ if verbose:
147
+ rprint(f"\n[yellow]Found {verification_issues_count} potential issues. Proceeding to fix step.[/yellow]")
148
+ else:
149
+ rprint("[yellow]Warning:[/yellow] <issues_count> is > 0, but <details> tag is empty. Treating as no issues found.")
150
+ verification_issues_count = 0
151
+ else:
152
+ rprint("[yellow]Warning:[/yellow] <issues_count> is > 0, but could not find <details> tag. Treating as no issues found.")
153
+ verification_issues_count = 0
154
+ else:
155
+ if verbose:
156
+ rprint("\n[green]No issues found during verification.[/green]")
157
+
158
+ except ValueError:
159
+ rprint("[bold red]Error:[/bold red] Could not parse integer value from <issues_count> tag.")
160
+ return {
161
+ "explanation": None,
162
+ "fixed_program": program,
163
+ "fixed_code": code,
164
+ "total_cost": total_cost,
165
+ "model_name": model_name,
166
+ "verification_issues_count": 0,
167
+ }
168
+ except Exception as e:
169
+ rprint(f"[bold red]Error parsing verification result:[/bold red] {e}")
170
+ return {
171
+ "explanation": None,
172
+ "fixed_program": program,
173
+ "fixed_code": code,
174
+ "total_cost": total_cost,
175
+ "model_name": model_name,
176
+ "verification_issues_count": 0,
177
+ }
178
+
179
+ if issues_found and verification_details:
180
+ if verbose:
181
+ rprint(f"\n[blue]Step 5: Running fix generation (Strength: {strength}, Temp: {temperature})...[/blue]")
182
+
183
+ fix_input_json = {
184
+ "program": program,
185
+ "prompt": prompt,
186
+ "code": code,
187
+ "output": output,
188
+ "issues": verification_details,
189
+ }
190
+
191
+ try:
192
+ fix_response = llm_invoke(
193
+ prompt=fix_errors_prompt_template,
194
+ input_json=fix_input_json,
195
+ strength=strength,
196
+ temperature=temperature,
197
+ verbose=False,
198
+ )
199
+ total_cost += fix_response.get('cost', 0.0)
200
+ model_name = fix_response.get('model_name', model_name)
201
+ fix_result = fix_response.get('result', '')
202
+
203
+ if verbose:
204
+ rprint(f"[cyan]Fix LLM call complete.[/cyan]")
205
+ rprint(f" [dim]Model Used:[/dim] {fix_response.get('model_name', 'N/A')}")
206
+ rprint(f" [dim]Cost:[/dim] ${fix_response.get('cost', 0.0):.6f}")
207
+ rprint("\n[blue]Fix Result:[/blue]")
208
+ rprint(Markdown(fix_result))
209
+
210
+ fixed_program_match = re.search(r"<fixed_program>(.*?)</fixed_program>", fix_result, re.DOTALL)
211
+ fixed_code_match = re.search(r"<fixed_code>(.*?)</fixed_code>", fix_result, re.DOTALL)
212
+ explanation_match = re.search(r"<explanation>(.*?)</explanation>", fix_result, re.DOTALL)
213
+
214
+ if fixed_program_match:
215
+ fixed_program = fixed_program_match.group(1).strip()
216
+ if verbose: rprint("[green]Extracted fixed program.[/green]")
217
+ else:
218
+ if verbose: rprint("[yellow]Warning:[/yellow] Could not find <fixed_program> tag in fix result. Using original program.")
219
+
220
+ if fixed_code_match:
221
+ fixed_code = fixed_code_match.group(1).strip()
222
+ if verbose: rprint("[green]Extracted fixed code module.[/green]")
223
+ else:
224
+ if verbose: rprint("[yellow]Warning:[/yellow] Could not find <fixed_code> tag in fix result. Using original code module.")
225
+
226
+ if explanation_match:
227
+ fix_explanation = explanation_match.group(1).strip()
228
+ if verbose: rprint("[green]Extracted fix explanation.[/green]")
229
+ else:
230
+ if verbose: rprint("[yellow]Warning:[/yellow] Could not find <explanation> tag in fix result.")
231
+ fix_explanation = "[Fix explanation not provided by LLM]"
232
+
233
+ except Exception as e:
234
+ rprint(f"[bold red]Error during fix LLM call or extraction:[/bold red] {e}")
235
+ if verification_details and fix_explanation is None:
236
+ fix_explanation = f"[Error during fix generation: {e}]"
237
+
238
+ if verbose:
239
+ rprint(f"\n[bold blue]Total Cost for fix_verification_errors run:[/bold blue] ${total_cost:.6f}")
240
+
241
+ if issues_found and verification_details and fix_explanation:
242
+ final_explanation = (
243
+ f"<verification_details>{verification_details}</verification_details>\n"
244
+ f"<fix_explanation>{fix_explanation}</fix_explanation>"
245
+ )
246
+ elif issues_found and verification_details:
247
+ final_explanation = (
248
+ f"<verification_details>{verification_details}</verification_details>\n"
249
+ f"<fix_explanation>[Fix explanation not available or extraction failed]</fix_explanation>"
250
+ )
251
+
252
+ return {
253
+ "explanation": final_explanation,
254
+ "fixed_program": fixed_program,
255
+ "fixed_code": fixed_code,
256
+ "total_cost": total_cost,
257
+ "model_name": model_name,
258
+ "verification_issues_count": verification_issues_count,
259
+ }