patito 0.5.1__py3-none-any.whl → 0.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- patito/__init__.py +4 -23
- patito/_docs.py +1 -0
- patito/_pydantic/__init__.py +0 -0
- patito/_pydantic/column_info.py +94 -0
- patito/_pydantic/dtypes/__init__.py +25 -0
- patito/_pydantic/dtypes/dtypes.py +249 -0
- patito/_pydantic/dtypes/utils.py +227 -0
- patito/_pydantic/repr.py +139 -0
- patito/_pydantic/schema.py +96 -0
- patito/exceptions.py +174 -7
- patito/polars.py +310 -102
- patito/pydantic.py +361 -511
- patito/validators.py +229 -96
- {patito-0.5.1.dist-info → patito-0.6.2.dist-info}/METADATA +12 -26
- patito-0.6.2.dist-info/RECORD +17 -0
- patito/database.py +0 -658
- patito/duckdb.py +0 -2793
- patito/sql.py +0 -88
- patito/xdg.py +0 -22
- patito-0.5.1.dist-info/RECORD +0 -14
- {patito-0.5.1.dist-info → patito-0.6.2.dist-info}/LICENSE +0 -0
- {patito-0.5.1.dist-info → patito-0.6.2.dist-info}/WHEEL +0 -0
patito/validators.py
CHANGED
|
@@ -1,31 +1,35 @@
|
|
|
1
1
|
"""Module for validating datastructures with respect to model specifications."""
|
|
2
|
+
|
|
2
3
|
from __future__ import annotations
|
|
3
4
|
|
|
4
|
-
import
|
|
5
|
-
|
|
5
|
+
from typing import (
|
|
6
|
+
TYPE_CHECKING,
|
|
7
|
+
Any,
|
|
8
|
+
Optional,
|
|
9
|
+
Sequence,
|
|
10
|
+
Type,
|
|
11
|
+
Union,
|
|
12
|
+
_UnionGenericAlias,
|
|
13
|
+
cast,
|
|
14
|
+
)
|
|
6
15
|
|
|
7
16
|
import polars as pl
|
|
8
|
-
from
|
|
17
|
+
from pydantic.aliases import AliasGenerator
|
|
18
|
+
from typing_extensions import get_args
|
|
9
19
|
|
|
20
|
+
from patito._pydantic.dtypes import is_optional
|
|
10
21
|
from patito.exceptions import (
|
|
11
22
|
ColumnDTypeError,
|
|
23
|
+
DataFrameValidationError,
|
|
12
24
|
ErrorWrapper,
|
|
13
25
|
MissingColumnsError,
|
|
14
26
|
MissingValuesError,
|
|
15
27
|
RowValueError,
|
|
16
|
-
|
|
17
|
-
ValidationError,
|
|
28
|
+
SuperfluousColumnsError,
|
|
18
29
|
)
|
|
19
30
|
|
|
20
|
-
if sys.version_info >= (3, 10): # pragma: no cover
|
|
21
|
-
from types import UnionType # pyright: ignore
|
|
22
|
-
|
|
23
|
-
UNION_TYPES = (Union, UnionType)
|
|
24
|
-
else:
|
|
25
|
-
UNION_TYPES = (Union,) # pragma: no cover
|
|
26
|
-
|
|
27
31
|
try:
|
|
28
|
-
import pandas as pd
|
|
32
|
+
import pandas as pd # type: ignore
|
|
29
33
|
|
|
30
34
|
_PANDAS_AVAILABLE = True
|
|
31
35
|
except ImportError:
|
|
@@ -38,7 +42,7 @@ if TYPE_CHECKING:
|
|
|
38
42
|
VALID_POLARS_TYPES = {
|
|
39
43
|
"enum": {pl.Categorical},
|
|
40
44
|
"boolean": {pl.Boolean},
|
|
41
|
-
"string": {pl.
|
|
45
|
+
"string": {pl.String, pl.Datetime, pl.Date},
|
|
42
46
|
"number": {pl.Float32, pl.Float64},
|
|
43
47
|
"integer": {
|
|
44
48
|
pl.Int8,
|
|
@@ -53,24 +57,8 @@ VALID_POLARS_TYPES = {
|
|
|
53
57
|
}
|
|
54
58
|
|
|
55
59
|
|
|
56
|
-
def
|
|
57
|
-
"""
|
|
58
|
-
Return True if the given type annotation is an Optional annotation.
|
|
59
|
-
|
|
60
|
-
Args:
|
|
61
|
-
type_annotation: The type annotation to be checked.
|
|
62
|
-
|
|
63
|
-
Returns:
|
|
64
|
-
True if the outermost type is Optional.
|
|
65
|
-
"""
|
|
66
|
-
return (get_origin(type_annotation) in UNION_TYPES) and (
|
|
67
|
-
type(None) in get_args(type_annotation)
|
|
68
|
-
)
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
def _dewrap_optional(type_annotation: Type) -> Type:
|
|
72
|
-
"""
|
|
73
|
-
Return the inner, wrapped type of an Optional.
|
|
60
|
+
def _dewrap_optional(type_annotation: Type[Any] | Any) -> Type:
|
|
61
|
+
"""Return the inner, wrapped type of an Optional.
|
|
74
62
|
|
|
75
63
|
Is a no-op for non-Optional types.
|
|
76
64
|
|
|
@@ -79,6 +67,7 @@ def _dewrap_optional(type_annotation: Type) -> Type:
|
|
|
79
67
|
|
|
80
68
|
Returns:
|
|
81
69
|
The input type, but with the outermost Optional removed.
|
|
70
|
+
|
|
82
71
|
"""
|
|
83
72
|
return (
|
|
84
73
|
next( # pragma: no cover
|
|
@@ -86,54 +75,94 @@ def _dewrap_optional(type_annotation: Type) -> Type:
|
|
|
86
75
|
for valid_type in get_args(type_annotation)
|
|
87
76
|
if valid_type is not type(None) # noqa: E721
|
|
88
77
|
)
|
|
89
|
-
if
|
|
78
|
+
if is_optional(type_annotation)
|
|
90
79
|
else type_annotation
|
|
91
80
|
)
|
|
92
81
|
|
|
93
82
|
|
|
83
|
+
def _transform_df(dataframe: pl.DataFrame, schema: type[Model]) -> pl.DataFrame:
|
|
84
|
+
"""Transform any properties of the dataframe according to the model.
|
|
85
|
+
|
|
86
|
+
Currently only supports using AliasGenerator to transform column names to match a model.
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
dataframe: Polars DataFrame to be validated.
|
|
90
|
+
schema: Patito model which specifies how the dataframe should be structured.
|
|
91
|
+
|
|
92
|
+
"""
|
|
93
|
+
# Check if an alias generator is present in model_config
|
|
94
|
+
if alias_gen := schema.model_config.get("alias_generator"):
|
|
95
|
+
if isinstance(alias_gen, AliasGenerator):
|
|
96
|
+
alias_func = alias_gen.validation_alias or alias_gen.alias
|
|
97
|
+
assert (
|
|
98
|
+
alias_func is not None
|
|
99
|
+
), "An AliasGenerator must contain a transforming function"
|
|
100
|
+
else: # alias_gen is a function
|
|
101
|
+
alias_func = alias_gen
|
|
102
|
+
|
|
103
|
+
new_cols: list[str] = [
|
|
104
|
+
alias_func(field_name) for field_name in dataframe.columns
|
|
105
|
+
] # type: ignore
|
|
106
|
+
dataframe.columns = new_cols
|
|
107
|
+
return dataframe
|
|
108
|
+
|
|
109
|
+
|
|
94
110
|
def _find_errors( # noqa: C901
|
|
95
111
|
dataframe: pl.DataFrame,
|
|
96
112
|
schema: Type[Model],
|
|
113
|
+
columns: Optional[Sequence[str]] = None,
|
|
114
|
+
allow_missing_columns: bool = False,
|
|
115
|
+
allow_superfluous_columns: bool = False,
|
|
97
116
|
) -> list[ErrorWrapper]:
|
|
98
|
-
"""
|
|
99
|
-
Validate the given dataframe.
|
|
117
|
+
"""Validate the given dataframe.
|
|
100
118
|
|
|
101
119
|
Args:
|
|
102
120
|
dataframe: Polars DataFrame to be validated.
|
|
103
121
|
schema: Patito model which specifies how the dataframe should be structured.
|
|
122
|
+
columns: If specified, only validate the given columns. Missing columns will
|
|
123
|
+
check if any specified columns are missing from the inputted dataframe,
|
|
124
|
+
and superfluous columns will check if any columns not specified in the
|
|
125
|
+
schema are present in the columns list.
|
|
126
|
+
allow_missing_columns: If True, missing columns will not be considered an error.
|
|
127
|
+
allow_superfluous_columns: If True, additional columns will not be considered an error.
|
|
104
128
|
|
|
105
129
|
Returns:
|
|
106
130
|
A list of patito.exception.ErrorWrapper instances. The specific validation
|
|
107
131
|
error can be retrieved from the "exc" attribute on each error wrapper instance.
|
|
108
132
|
|
|
109
133
|
MissingColumnsError: If there are any missing columns.
|
|
110
|
-
|
|
134
|
+
SuperfluousColumnsError: If there are additional, non-specified columns.
|
|
111
135
|
MissingValuesError: If there are nulls in a non-optional column.
|
|
112
136
|
ColumnDTypeError: If any column has the wrong dtype.
|
|
113
137
|
NotImplementedError: If validation has not been implement for the given
|
|
114
138
|
type.
|
|
139
|
+
|
|
115
140
|
"""
|
|
116
141
|
errors: list[ErrorWrapper] = []
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
142
|
+
schema_subset = columns or schema.columns
|
|
143
|
+
column_subset = columns or dataframe.columns
|
|
144
|
+
if not allow_missing_columns:
|
|
145
|
+
# Check if any columns are missing
|
|
146
|
+
for missing_column in set(schema_subset) - set(dataframe.columns):
|
|
147
|
+
errors.append(
|
|
148
|
+
ErrorWrapper(
|
|
149
|
+
MissingColumnsError("Missing column"),
|
|
150
|
+
loc=missing_column,
|
|
151
|
+
)
|
|
123
152
|
)
|
|
124
|
-
)
|
|
125
153
|
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
154
|
+
if not allow_superfluous_columns:
|
|
155
|
+
# Check if any additional columns are included
|
|
156
|
+
for superfluous_column in set(column_subset) - set(schema.columns):
|
|
157
|
+
errors.append(
|
|
158
|
+
ErrorWrapper(
|
|
159
|
+
SuperfluousColumnsError("Superfluous column"),
|
|
160
|
+
loc=superfluous_column,
|
|
161
|
+
)
|
|
132
162
|
)
|
|
133
|
-
)
|
|
134
163
|
|
|
135
164
|
# Check if any non-optional columns have null values
|
|
136
|
-
for column in schema.non_nullable_columns.intersection(
|
|
165
|
+
for column in schema.non_nullable_columns.intersection(column_subset):
|
|
137
166
|
num_missing_values = dataframe.get_column(name=column).null_count()
|
|
138
167
|
if num_missing_values:
|
|
139
168
|
errors.append(
|
|
@@ -147,10 +176,12 @@ def _find_errors( # noqa: C901
|
|
|
147
176
|
)
|
|
148
177
|
|
|
149
178
|
for column, dtype in schema.dtypes.items():
|
|
179
|
+
if column not in column_subset:
|
|
180
|
+
continue
|
|
150
181
|
if not isinstance(dtype, pl.List):
|
|
151
182
|
continue
|
|
152
183
|
|
|
153
|
-
annotation = schema.
|
|
184
|
+
annotation = schema.model_fields[column].annotation # type: ignore[unreachable]
|
|
154
185
|
|
|
155
186
|
# Retrieve the annotation of the list itself,
|
|
156
187
|
# dewrapping any potential Optional[...]
|
|
@@ -158,7 +189,7 @@ def _find_errors( # noqa: C901
|
|
|
158
189
|
|
|
159
190
|
# Check if the list items themselves should be considered nullable
|
|
160
191
|
item_type = get_args(list_type)[0]
|
|
161
|
-
if
|
|
192
|
+
if is_optional(item_type):
|
|
162
193
|
continue
|
|
163
194
|
|
|
164
195
|
num_missing_values = (
|
|
@@ -189,7 +220,8 @@ def _find_errors( # noqa: C901
|
|
|
189
220
|
valid_dtypes = schema.valid_dtypes
|
|
190
221
|
dataframe_datatypes = dict(zip(dataframe.columns, dataframe.dtypes))
|
|
191
222
|
for column_name, column_properties in schema._schema_properties().items():
|
|
192
|
-
|
|
223
|
+
column_info = schema.column_infos[column_name]
|
|
224
|
+
if column_name not in dataframe.columns or column_name not in column_subset:
|
|
193
225
|
continue
|
|
194
226
|
|
|
195
227
|
polars_type = dataframe_datatypes[column_name]
|
|
@@ -204,23 +236,16 @@ def _find_errors( # noqa: C901
|
|
|
204
236
|
)
|
|
205
237
|
|
|
206
238
|
# Test for when only specific values are accepted
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
ErrorWrapper(
|
|
216
|
-
RowValueError(
|
|
217
|
-
f"Rows with invalid values: {impermissible_values}."
|
|
218
|
-
),
|
|
219
|
-
loc=column_name,
|
|
220
|
-
)
|
|
221
|
-
)
|
|
239
|
+
e = _find_enum_errors(
|
|
240
|
+
df=dataframe,
|
|
241
|
+
column_name=column_name,
|
|
242
|
+
props=column_properties,
|
|
243
|
+
schema=schema,
|
|
244
|
+
)
|
|
245
|
+
if e is not None:
|
|
246
|
+
errors.append(e)
|
|
222
247
|
|
|
223
|
-
if
|
|
248
|
+
if column_info.unique:
|
|
224
249
|
# Coalescing to 0 in the case of dataframe of height 0
|
|
225
250
|
num_duplicated = dataframe[column_name].is_duplicated().sum() or 0
|
|
226
251
|
if num_duplicated > 0:
|
|
@@ -231,47 +256,117 @@ def _find_errors( # noqa: C901
|
|
|
231
256
|
)
|
|
232
257
|
)
|
|
233
258
|
|
|
259
|
+
# Intercept struct columns, and process errors separately
|
|
260
|
+
if schema.dtypes[column_name] == pl.Struct:
|
|
261
|
+
nested_schema = schema.model_fields[column_name].annotation
|
|
262
|
+
|
|
263
|
+
# Additional unpack required if structs column is optional
|
|
264
|
+
if type(nested_schema) == _UnionGenericAlias:
|
|
265
|
+
nested_schema = nested_schema.__args__[0]
|
|
266
|
+
|
|
267
|
+
# We need to filter out any null rows as the submodel won't know
|
|
268
|
+
# that all of a row's columns may be null
|
|
269
|
+
dataframe = dataframe.filter(pl.col(column_name).is_not_null())
|
|
270
|
+
if dataframe.is_empty():
|
|
271
|
+
continue
|
|
272
|
+
|
|
273
|
+
struct_errors = _find_errors(
|
|
274
|
+
dataframe=dataframe.select(column_name).unnest(column_name),
|
|
275
|
+
schema=nested_schema,
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
# Format nested errors
|
|
279
|
+
for error in struct_errors:
|
|
280
|
+
error._loc = f"{column_name}.{error._loc}"
|
|
281
|
+
|
|
282
|
+
errors.extend(struct_errors)
|
|
283
|
+
|
|
284
|
+
# No need to do any more checks
|
|
285
|
+
continue
|
|
286
|
+
|
|
287
|
+
# Intercept list of structs columns, and process errors separately
|
|
288
|
+
elif schema.dtypes[column_name] == pl.List(pl.Struct):
|
|
289
|
+
nested_schema = schema.model_fields[column_name].annotation.__args__[0]
|
|
290
|
+
|
|
291
|
+
# Additional unpack required if structs column is optional
|
|
292
|
+
if type(nested_schema) == _UnionGenericAlias:
|
|
293
|
+
nested_schema = nested_schema.__args__[0]
|
|
294
|
+
|
|
295
|
+
# We need to filter out any null rows as the submodel won't know
|
|
296
|
+
# that all of a row's columns may be null
|
|
297
|
+
dataframe = dataframe.filter(pl.col(column_name).is_not_null())
|
|
298
|
+
if dataframe.is_empty():
|
|
299
|
+
continue
|
|
300
|
+
|
|
301
|
+
list_struct_errors = _find_errors(
|
|
302
|
+
dataframe=dataframe.select(column_name)
|
|
303
|
+
.explode(column_name)
|
|
304
|
+
.unnest(column_name),
|
|
305
|
+
schema=nested_schema,
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
# Format nested errors
|
|
309
|
+
for error in list_struct_errors:
|
|
310
|
+
error._loc = f"{column_name}.{error._loc}"
|
|
311
|
+
|
|
312
|
+
errors.extend(list_struct_errors)
|
|
313
|
+
|
|
314
|
+
# No need to do any more checks
|
|
315
|
+
continue
|
|
316
|
+
|
|
234
317
|
# Check for bounded value fields
|
|
235
318
|
col = pl.col(column_name)
|
|
236
319
|
filters = {
|
|
237
|
-
"maximum": lambda v: col <= v,
|
|
238
|
-
"exclusiveMaximum": lambda v: col < v,
|
|
239
|
-
"minimum": lambda v: col >= v,
|
|
240
|
-
"exclusiveMinimum": lambda v: col > v,
|
|
241
|
-
"multipleOf": lambda v: (col == 0) | ((col % v) == 0),
|
|
242
|
-
"const": lambda v: col == v,
|
|
243
|
-
"pattern": lambda v: col.str.contains(v),
|
|
244
|
-
"minLength": lambda v: col.str.
|
|
245
|
-
"maxLength": lambda v: col.str.
|
|
320
|
+
"maximum": lambda v, col=col: col <= v,
|
|
321
|
+
"exclusiveMaximum": lambda v, col=col: col < v,
|
|
322
|
+
"minimum": lambda v, col=col: col >= v,
|
|
323
|
+
"exclusiveMinimum": lambda v, col=col: col > v,
|
|
324
|
+
"multipleOf": lambda v, col=col: (col == 0) | ((col % v) == 0),
|
|
325
|
+
"const": lambda v, col=col: col == v,
|
|
326
|
+
"pattern": lambda v, col=col: col.str.contains(v),
|
|
327
|
+
"minLength": lambda v, col=col: col.str.len_chars() >= v,
|
|
328
|
+
"maxLength": lambda v, col=col: col.str.len_chars() <= v,
|
|
246
329
|
}
|
|
247
|
-
|
|
330
|
+
if "anyOf" in column_properties:
|
|
331
|
+
checks = [
|
|
332
|
+
check(x[key])
|
|
333
|
+
for key, check in filters.items()
|
|
334
|
+
for x in column_properties["anyOf"]
|
|
335
|
+
if key in x
|
|
336
|
+
]
|
|
337
|
+
else:
|
|
338
|
+
checks = []
|
|
339
|
+
checks += [
|
|
248
340
|
check(column_properties[key])
|
|
249
341
|
for key, check in filters.items()
|
|
250
342
|
if key in column_properties
|
|
251
343
|
]
|
|
252
344
|
if checks:
|
|
253
|
-
|
|
345
|
+
n_invalid_rows = 0
|
|
254
346
|
for check in checks:
|
|
255
|
-
lazy_df =
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
347
|
+
lazy_df = dataframe.lazy()
|
|
348
|
+
lazy_df = lazy_df.filter(
|
|
349
|
+
~check
|
|
350
|
+
) # get failing rows (nulls will evaluate to null on boolean check, we only want failures (false)))
|
|
351
|
+
invalid_rows = lazy_df.collect()
|
|
352
|
+
n_invalid_rows += invalid_rows.height
|
|
353
|
+
if n_invalid_rows > 0:
|
|
259
354
|
errors.append(
|
|
260
355
|
ErrorWrapper(
|
|
261
356
|
RowValueError(
|
|
262
|
-
f"{
|
|
357
|
+
f"{n_invalid_rows} row{'' if n_invalid_rows == 1 else 's'} "
|
|
263
358
|
"with out of bound values."
|
|
264
359
|
),
|
|
265
360
|
loc=column_name,
|
|
266
361
|
)
|
|
267
362
|
)
|
|
268
363
|
|
|
269
|
-
if
|
|
270
|
-
custom_constraints =
|
|
364
|
+
if column_info.constraints is not None:
|
|
365
|
+
custom_constraints = column_info.constraints
|
|
271
366
|
if isinstance(custom_constraints, pl.Expr):
|
|
272
367
|
custom_constraints = [custom_constraints]
|
|
273
|
-
constraints = pl.
|
|
274
|
-
[constraint.
|
|
368
|
+
constraints = pl.any_horizontal(
|
|
369
|
+
[constraint.not_() for constraint in custom_constraints]
|
|
275
370
|
)
|
|
276
371
|
if "_" in constraints.meta.root_names():
|
|
277
372
|
# An underscore is an alias for the current field
|
|
@@ -295,24 +390,62 @@ def _find_errors( # noqa: C901
|
|
|
295
390
|
return errors
|
|
296
391
|
|
|
297
392
|
|
|
393
|
+
def _find_enum_errors(
|
|
394
|
+
df: pl.DataFrame, column_name: str, props: dict[str, Any], schema: Type[Model]
|
|
395
|
+
) -> ErrorWrapper | None:
|
|
396
|
+
if "enum" not in props:
|
|
397
|
+
if "items" in props and "enum" in props["items"]:
|
|
398
|
+
return _find_enum_errors(df, column_name, props["items"], schema)
|
|
399
|
+
return None
|
|
400
|
+
permissible_values = set(props["enum"])
|
|
401
|
+
if column_name in schema.nullable_columns:
|
|
402
|
+
permissible_values.add(None)
|
|
403
|
+
if isinstance(df[column_name].dtype, pl.List):
|
|
404
|
+
actual_values = set(df[column_name].explode().unique())
|
|
405
|
+
else:
|
|
406
|
+
actual_values = set(df[column_name].unique())
|
|
407
|
+
impermissible_values = actual_values - permissible_values
|
|
408
|
+
if impermissible_values:
|
|
409
|
+
return ErrorWrapper(
|
|
410
|
+
RowValueError(f"Rows with invalid values: {impermissible_values}."),
|
|
411
|
+
loc=column_name,
|
|
412
|
+
)
|
|
413
|
+
return None
|
|
414
|
+
|
|
415
|
+
|
|
298
416
|
def validate(
|
|
299
|
-
dataframe: Union["pd.DataFrame", pl.DataFrame],
|
|
417
|
+
dataframe: Union["pd.DataFrame", pl.DataFrame],
|
|
418
|
+
schema: Type[Model],
|
|
419
|
+
columns: Optional[Sequence[str]] = None,
|
|
420
|
+
allow_missing_columns: bool = False,
|
|
421
|
+
allow_superfluous_columns: bool = False,
|
|
300
422
|
) -> None:
|
|
301
|
-
"""
|
|
302
|
-
Validate the given dataframe.
|
|
423
|
+
"""Validate the given dataframe.
|
|
303
424
|
|
|
304
425
|
Args:
|
|
305
426
|
dataframe: Polars DataFrame to be validated.
|
|
306
427
|
schema: Patito model which specifies how the dataframe should be structured.
|
|
428
|
+
columns: Optional list of columns to validate. If not provided, all columns
|
|
429
|
+
of the dataframe will be validated.
|
|
430
|
+
allow_missing_columns: If True, missing columns will not be considered an error.
|
|
431
|
+
allow_superfluous_columns: If True, additional columns will not be considered an error.
|
|
307
432
|
|
|
308
433
|
Raises:
|
|
309
|
-
|
|
434
|
+
DataFrameValidationError: If the given dataframe does not match the given schema.
|
|
435
|
+
|
|
310
436
|
"""
|
|
311
437
|
if _PANDAS_AVAILABLE and isinstance(dataframe, pd.DataFrame):
|
|
312
438
|
polars_dataframe = pl.from_pandas(dataframe)
|
|
313
439
|
else:
|
|
314
440
|
polars_dataframe = cast(pl.DataFrame, dataframe)
|
|
315
441
|
|
|
316
|
-
|
|
442
|
+
polars_dataframe = _transform_df(polars_dataframe, schema)
|
|
443
|
+
errors = _find_errors(
|
|
444
|
+
dataframe=polars_dataframe,
|
|
445
|
+
schema=schema,
|
|
446
|
+
columns=columns,
|
|
447
|
+
allow_missing_columns=allow_missing_columns,
|
|
448
|
+
allow_superfluous_columns=allow_superfluous_columns,
|
|
449
|
+
)
|
|
317
450
|
if errors:
|
|
318
|
-
raise
|
|
451
|
+
raise DataFrameValidationError(errors=errors, model=schema)
|
|
@@ -1,29 +1,26 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: patito
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.6.2
|
|
4
4
|
Summary: A dataframe modelling library built on top of polars and pydantic.
|
|
5
|
-
Home-page: https://github.com/
|
|
5
|
+
Home-page: https://github.com/JakobGM/patito
|
|
6
6
|
License: MIT
|
|
7
7
|
Keywords: validation,dataframe
|
|
8
8
|
Author: Jakob Gerhard Martinussen
|
|
9
9
|
Author-email: jakobgm@gmail.com
|
|
10
|
-
Requires-Python: >=3.
|
|
10
|
+
Requires-Python: >=3.9
|
|
11
11
|
Classifier: License :: OSI Approved :: MIT License
|
|
12
12
|
Classifier: Programming Language :: Python :: 3
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
14
13
|
Classifier: Programming Language :: Python :: 3.9
|
|
15
14
|
Classifier: Programming Language :: Python :: 3.10
|
|
16
15
|
Classifier: Programming Language :: Python :: 3.11
|
|
17
16
|
Provides-Extra: caching
|
|
18
17
|
Provides-Extra: docs
|
|
19
|
-
Provides-Extra: duckdb
|
|
20
18
|
Provides-Extra: pandas
|
|
21
19
|
Requires-Dist: Sphinx (<7) ; extra == "docs"
|
|
22
|
-
Requires-Dist:
|
|
23
|
-
Requires-Dist:
|
|
24
|
-
Requires-Dist:
|
|
25
|
-
Requires-Dist:
|
|
26
|
-
Requires-Dist: pydantic (>=1.7.0,<2.0.0)
|
|
20
|
+
Requires-Dist: pandas ; extra == "pandas"
|
|
21
|
+
Requires-Dist: polars (>=0.20.1)
|
|
22
|
+
Requires-Dist: pyarrow (>=5.0.0) ; extra == "caching"
|
|
23
|
+
Requires-Dist: pydantic (>=2.4.1)
|
|
27
24
|
Requires-Dist: sphinx-autobuild ; extra == "docs"
|
|
28
25
|
Requires-Dist: sphinx-autodoc-typehints ; extra == "docs"
|
|
29
26
|
Requires-Dist: sphinx-rtd-theme ; extra == "docs"
|
|
@@ -31,10 +28,10 @@ Requires-Dist: sphinx-toolbox ; extra == "docs"
|
|
|
31
28
|
Requires-Dist: sphinxcontrib-mermaid ; extra == "docs"
|
|
32
29
|
Requires-Dist: typing-extensions
|
|
33
30
|
Project-URL: Documentation, https://patito.readthedocs.io
|
|
34
|
-
Project-URL: Repository, https://github.com/
|
|
31
|
+
Project-URL: Repository, https://github.com/JakobGM/patito
|
|
35
32
|
Description-Content-Type: text/markdown
|
|
36
33
|
|
|
37
|
-
# <center><img height="30px" src="https://
|
|
34
|
+
# <center><img height="30px" src="https://em-content.zobj.net/thumbs/120/samsung/78/duck_1f986.png"> Patito<center>
|
|
38
35
|
|
|
39
36
|
<p align="center">
|
|
40
37
|
<em>
|
|
@@ -66,7 +63,6 @@ These schema can be used for:
|
|
|
66
63
|
🧪 Easy generation of valid mock data frames for tests.\
|
|
67
64
|
🐍 Retrieve and represent singular rows in an object-oriented manner.\
|
|
68
65
|
🧠 Provide a single source of truth for the core data models in your code base. \
|
|
69
|
-
🦆 Integration with DuckDB for running flexible SQL queries.
|
|
70
66
|
|
|
71
67
|
Patito has first-class support for [polars]("https://github.com/pola-rs/polars"), a _"blazingly fast DataFrames library written in Rust"_.
|
|
72
68
|
|
|
@@ -76,16 +72,6 @@ Patito has first-class support for [polars]("https://github.com/pola-rs/polars")
|
|
|
76
72
|
pip install patito
|
|
77
73
|
```
|
|
78
74
|
|
|
79
|
-
#### DuckDB Integration
|
|
80
|
-
|
|
81
|
-
Patito can also integrate with [DuckDB](https://duckdb.org/).
|
|
82
|
-
In order to enable this integration you must explicitly specify it during installation:
|
|
83
|
-
|
|
84
|
-
```sh
|
|
85
|
-
pip install 'patito[duckdb]'
|
|
86
|
-
```
|
|
87
|
-
|
|
88
|
-
|
|
89
75
|
## Documentation
|
|
90
76
|
|
|
91
77
|
The full documentation of Patio can be found [here](https://patito.readthedocs.io).
|
|
@@ -96,7 +82,7 @@ Patito allows you to specify the type of each column in your dataframe by creati
|
|
|
96
82
|
|
|
97
83
|
```py
|
|
98
84
|
# models.py
|
|
99
|
-
from typing import Literal
|
|
85
|
+
from typing import Literal
|
|
100
86
|
|
|
101
87
|
import patito as pt
|
|
102
88
|
|
|
@@ -121,7 +107,7 @@ df = pl.DataFrame(
|
|
|
121
107
|
)
|
|
122
108
|
try:
|
|
123
109
|
Product.validate(df)
|
|
124
|
-
except pt.
|
|
110
|
+
except pt.exceptions.DataFrameValidationError as exc:
|
|
125
111
|
print(exc)
|
|
126
112
|
# 3 validation errors for Product
|
|
127
113
|
# is_for_sale
|
|
@@ -167,7 +153,7 @@ def num_products_for_sale(products: pl.DataFrame) -> int:
|
|
|
167
153
|
return products.filter(pl.col("is_for_sale")).height
|
|
168
154
|
```
|
|
169
155
|
|
|
170
|
-
The following test would fail with a `patito.
|
|
156
|
+
The following test would fail with a `patito.exceptions.DataFrameValidationError`:
|
|
171
157
|
|
|
172
158
|
```py
|
|
173
159
|
def test_num_products_for_sale():
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
patito/__init__.py,sha256=4qD13kfoa85_kyTCChm3xQcKKzIy3G8AZQp8T_bjcmo,844
|
|
2
|
+
patito/_docs.py,sha256=9mfttyylWpqaOZv8xfDMEwCHHaY7GQwfyI7CDg7tWe8,162
|
|
3
|
+
patito/_pydantic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
|
+
patito/_pydantic/column_info.py,sha256=zy3z0gCdQZhNA3_eQ9mEf3Di-gOR8Gt4vmS3v2iULkc,3536
|
|
5
|
+
patito/_pydantic/dtypes/__init__.py,sha256=2vTvL4N4yMN0cbv2CSoa1OFwCswx6FhuQdsYhMaz_dU,578
|
|
6
|
+
patito/_pydantic/dtypes/dtypes.py,sha256=nHtgyI0LsvA_hEIELUxtS4JnDwutqem7iT6nxMDLJxc,9510
|
|
7
|
+
patito/_pydantic/dtypes/utils.py,sha256=6g2mVVSYCs0LSqiPlc4D2Wm3X2gm8sKJnXZYcthfabY,7017
|
|
8
|
+
patito/_pydantic/repr.py,sha256=l9WLjwJ85nJwZCxLIwHih7UuMVVgz17W5th_UD7XZAM,4341
|
|
9
|
+
patito/_pydantic/schema.py,sha256=1XLByZ1jJVP7PUNTkoSPDo0D_hy8QncNLjXKV2N0XDE,3622
|
|
10
|
+
patito/exceptions.py,sha256=VfkkpLblu2Go4QnfWwew7g1NJ_gmynv28p-eGH84tLs,6060
|
|
11
|
+
patito/polars.py,sha256=iAnMFfVyJfSdHantESrIdaX6tZDWj71jyWBery325ac,35333
|
|
12
|
+
patito/pydantic.py,sha256=1gyPfo8-68sdy26yC8c7CQhk_9Mmr0KRsyuS4g54Ddw,48685
|
|
13
|
+
patito/validators.py,sha256=d7lu3MBqaaLLvBVMd5BgarLYpGYHMeJEuTSGAoYqDf0,16231
|
|
14
|
+
patito-0.6.2.dist-info/LICENSE,sha256=3bc4YyuF0e5nd59E3CsR8QM1Ua7pqKfC9DD1LVBVMs4,1139
|
|
15
|
+
patito-0.6.2.dist-info/METADATA,sha256=vUijDkEO0zT5uxED3sN3fTvgsFEIojFYFcENJ1u9_cA,13947
|
|
16
|
+
patito-0.6.2.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
|
|
17
|
+
patito-0.6.2.dist-info/RECORD,,
|