passagemath-plot 10.6.31rc3__cp314-cp314-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-plot might be problematic. Click here for more details.

Files changed (82) hide show
  1. passagemath_plot-10.6.31rc3.dist-info/METADATA +172 -0
  2. passagemath_plot-10.6.31rc3.dist-info/RECORD +82 -0
  3. passagemath_plot-10.6.31rc3.dist-info/WHEEL +6 -0
  4. passagemath_plot-10.6.31rc3.dist-info/top_level.txt +2 -0
  5. passagemath_plot.dylibs/libgfortran.5.dylib +0 -0
  6. passagemath_plot.dylibs/libgsl.28.dylib +0 -0
  7. passagemath_plot.dylibs/libopenblasp-r0.3.29.dylib +0 -0
  8. passagemath_plot.dylibs/libquadmath.0.dylib +0 -0
  9. sage/all__sagemath_plot.py +15 -0
  10. sage/ext_data/threejs/animation.css +195 -0
  11. sage/ext_data/threejs/animation.html +85 -0
  12. sage/ext_data/threejs/animation.js +273 -0
  13. sage/ext_data/threejs/fat_lines.js +48 -0
  14. sage/ext_data/threejs/threejs-version.txt +1 -0
  15. sage/ext_data/threejs/threejs_template.html +597 -0
  16. sage/interfaces/all__sagemath_plot.py +1 -0
  17. sage/interfaces/gnuplot.py +196 -0
  18. sage/interfaces/jmoldata.py +208 -0
  19. sage/interfaces/povray.py +56 -0
  20. sage/plot/all.py +42 -0
  21. sage/plot/animate.py +1796 -0
  22. sage/plot/arc.py +504 -0
  23. sage/plot/arrow.py +671 -0
  24. sage/plot/bar_chart.py +205 -0
  25. sage/plot/bezier_path.py +400 -0
  26. sage/plot/circle.py +435 -0
  27. sage/plot/colors.py +1606 -0
  28. sage/plot/complex_plot.cpython-314-darwin.so +0 -0
  29. sage/plot/complex_plot.pyx +1446 -0
  30. sage/plot/contour_plot.py +1792 -0
  31. sage/plot/density_plot.py +318 -0
  32. sage/plot/disk.py +373 -0
  33. sage/plot/ellipse.py +375 -0
  34. sage/plot/graphics.py +3580 -0
  35. sage/plot/histogram.py +354 -0
  36. sage/plot/hyperbolic_arc.py +404 -0
  37. sage/plot/hyperbolic_polygon.py +416 -0
  38. sage/plot/hyperbolic_regular_polygon.py +296 -0
  39. sage/plot/line.py +626 -0
  40. sage/plot/matrix_plot.py +629 -0
  41. sage/plot/misc.py +509 -0
  42. sage/plot/multigraphics.py +1294 -0
  43. sage/plot/plot.py +4183 -0
  44. sage/plot/plot3d/all.py +23 -0
  45. sage/plot/plot3d/base.cpython-314-darwin.so +0 -0
  46. sage/plot/plot3d/base.pxd +12 -0
  47. sage/plot/plot3d/base.pyx +3378 -0
  48. sage/plot/plot3d/implicit_plot3d.py +659 -0
  49. sage/plot/plot3d/implicit_surface.cpython-314-darwin.so +0 -0
  50. sage/plot/plot3d/implicit_surface.pyx +1453 -0
  51. sage/plot/plot3d/index_face_set.cpython-314-darwin.so +0 -0
  52. sage/plot/plot3d/index_face_set.pxd +32 -0
  53. sage/plot/plot3d/index_face_set.pyx +1873 -0
  54. sage/plot/plot3d/introduction.py +131 -0
  55. sage/plot/plot3d/list_plot3d.py +649 -0
  56. sage/plot/plot3d/parametric_plot3d.py +1130 -0
  57. sage/plot/plot3d/parametric_surface.cpython-314-darwin.so +0 -0
  58. sage/plot/plot3d/parametric_surface.pxd +12 -0
  59. sage/plot/plot3d/parametric_surface.pyx +893 -0
  60. sage/plot/plot3d/platonic.py +601 -0
  61. sage/plot/plot3d/plot3d.py +1442 -0
  62. sage/plot/plot3d/plot_field3d.py +162 -0
  63. sage/plot/plot3d/point_c.pxi +148 -0
  64. sage/plot/plot3d/revolution_plot3d.py +309 -0
  65. sage/plot/plot3d/shapes.cpython-314-darwin.so +0 -0
  66. sage/plot/plot3d/shapes.pxd +22 -0
  67. sage/plot/plot3d/shapes.pyx +1382 -0
  68. sage/plot/plot3d/shapes2.py +1512 -0
  69. sage/plot/plot3d/tachyon.py +1779 -0
  70. sage/plot/plot3d/texture.py +453 -0
  71. sage/plot/plot3d/transform.cpython-314-darwin.so +0 -0
  72. sage/plot/plot3d/transform.pxd +21 -0
  73. sage/plot/plot3d/transform.pyx +268 -0
  74. sage/plot/plot3d/tri_plot.py +589 -0
  75. sage/plot/plot_field.py +362 -0
  76. sage/plot/point.py +624 -0
  77. sage/plot/polygon.py +562 -0
  78. sage/plot/primitive.py +249 -0
  79. sage/plot/scatter_plot.py +199 -0
  80. sage/plot/step.py +85 -0
  81. sage/plot/streamline_plot.py +328 -0
  82. sage/plot/text.py +432 -0
sage/plot/arc.py ADDED
@@ -0,0 +1,504 @@
1
+ # sage_setup: distribution = sagemath-plot
2
+ """
3
+ Arcs of circles and ellipses
4
+ """
5
+ # ****************************************************************************
6
+ # Copyright (C) 2010 Vincent Delecroix <20100.delecroix@gmail.com>,
7
+ #
8
+ # Distributed under the terms of the GNU General Public License (GPL)
9
+ #
10
+ # This code is distributed in the hope that it will be useful,
11
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13
+ # General Public License for more details.
14
+ #
15
+ # The full text of the GPL is available at:
16
+ #
17
+ # https://www.gnu.org/licenses/
18
+ # ****************************************************************************
19
+
20
+ from sage.plot.primitive import GraphicPrimitive
21
+ from sage.plot.colors import to_mpl_color
22
+
23
+ from sage.misc.decorators import options, rename_keyword
24
+
25
+ from math import fmod, sin, cos, pi, atan
26
+
27
+
28
+ class Arc(GraphicPrimitive):
29
+ """
30
+ Primitive class for the Arc graphics type. See ``arc?`` for information
31
+ about actually plotting an arc of a circle or an ellipse.
32
+
33
+ INPUT:
34
+
35
+ - ``x``, ``y`` -- coordinates of the center of the arc
36
+
37
+ - ``r1``, ``r2`` -- lengths of the two radii
38
+
39
+ - ``angle`` -- angle of the horizontal with width
40
+
41
+ - ``sector`` -- sector of angle
42
+
43
+ - ``options`` -- dictionary of valid plot options to pass to constructor
44
+
45
+ EXAMPLES:
46
+
47
+ Note that the construction should be done using ``arc``::
48
+
49
+ sage: from math import pi
50
+ sage: from sage.plot.arc import Arc
51
+ sage: print(Arc(0,0,1,1,pi/4,pi/4,pi/2,{}))
52
+ Arc with center (0.0,0.0) radii (1.0,1.0) angle 0.78539816339... inside the sector (0.78539816339...,1.5707963267...)
53
+ """
54
+ def __init__(self, x, y, r1, r2, angle, s1, s2, options):
55
+ """
56
+ Initialize base class ``Arc``.
57
+
58
+ EXAMPLES::
59
+
60
+ sage: # needs sage.symbolic
61
+ sage: A = arc((2,3),1,1,pi/4,(0,pi))
62
+ sage: A[0].x == 2
63
+ True
64
+ sage: A[0].y == 3
65
+ True
66
+ sage: A[0].r1 == 1
67
+ True
68
+ sage: A[0].r2 == 1
69
+ True
70
+ sage: A[0].angle
71
+ 0.7853981633974483
72
+ sage: bool(A[0].s1 == 0)
73
+ True
74
+ sage: A[0].s2
75
+ 3.141592653589793
76
+
77
+ TESTS::
78
+
79
+ sage: from sage.plot.arc import Arc
80
+ sage: a = Arc(0,0,1,1,0,0,1,{})
81
+ sage: print(loads(dumps(a)))
82
+ Arc with center (0.0,0.0) radii (1.0,1.0) angle 0.0 inside the sector (0.0,1.0)
83
+ """
84
+ self.x = float(x)
85
+ self.y = float(y)
86
+ self.r1 = float(r1)
87
+ self.r2 = float(r2)
88
+ if self.r1 <= 0 or self.r2 <= 0:
89
+ raise ValueError("the radii must be positive real numbers")
90
+
91
+ self.angle = float(angle)
92
+ self.s1 = float(s1)
93
+ self.s2 = float(s2)
94
+ if self.s2 < self.s1:
95
+ self.s1, self.s2 = self.s2, self.s1
96
+ GraphicPrimitive.__init__(self, options)
97
+
98
+ def get_minmax_data(self):
99
+ r"""
100
+ Return a dictionary with the bounding box data.
101
+
102
+ The bounding box is computed as minimal as possible.
103
+
104
+ EXAMPLES:
105
+
106
+ An example without angle::
107
+
108
+ sage: p = arc((-2, 3), 1, 2)
109
+ sage: d = p.get_minmax_data()
110
+ sage: d['xmin']
111
+ -3.0
112
+ sage: d['xmax']
113
+ -1.0
114
+ sage: d['ymin']
115
+ 1.0
116
+ sage: d['ymax']
117
+ 5.0
118
+
119
+ The same example with a rotation of angle `\pi/2`::
120
+
121
+ sage: from math import pi
122
+ sage: p = arc((-2, 3), 1, 2, pi/2)
123
+ sage: d = p.get_minmax_data()
124
+ sage: d['xmin']
125
+ -4.0
126
+ sage: d['xmax']
127
+ 0.0
128
+ sage: d['ymin']
129
+ 2.0
130
+ sage: d['ymax']
131
+ 4.0
132
+ """
133
+ from sage.plot.plot import minmax_data
134
+
135
+ twopi = 2 * pi
136
+
137
+ s1 = self.s1
138
+ s2 = self.s2
139
+ s = s2 - s1
140
+ s1 = fmod(s1, twopi)
141
+ if s1 < 0:
142
+ s1 += twopi
143
+ s2 = fmod(s1 + s, twopi)
144
+ if s2 < 0:
145
+ s2 += twopi
146
+
147
+ r1 = self.r1
148
+ r2 = self.r2
149
+
150
+ angle = fmod(self.angle, twopi)
151
+ if angle < 0:
152
+ angle += twopi
153
+
154
+ epsilon = 0.0000001
155
+
156
+ cos_angle = cos(angle)
157
+ sin_angle = sin(angle)
158
+
159
+ if cos_angle > 1 - epsilon:
160
+ xmin = -r1
161
+ ymin = -r2
162
+ xmax = r1
163
+ ymax = r2
164
+ axmin = pi
165
+ axmax = 0
166
+ aymin = 3 * pi / 2
167
+ aymax = pi / 2
168
+
169
+ elif cos_angle < -1 + epsilon:
170
+ xmin = -r1
171
+ ymin = -r2
172
+ xmax = r1
173
+ ymax = r2
174
+ axmin = 0
175
+ axmax = pi
176
+ aymin = pi / 2
177
+ aymax = 3 * pi / 2
178
+
179
+ elif sin_angle > 1 - epsilon:
180
+ xmin = -r2
181
+ ymin = -r1
182
+ xmax = r2
183
+ ymax = r1
184
+ axmin = pi / 2
185
+ axmax = 3 * pi / 2
186
+ aymin = pi
187
+ aymax = 0
188
+
189
+ elif sin_angle < -1 + epsilon:
190
+ xmin = -r2
191
+ ymin = -r1
192
+ xmax = r2
193
+ ymax = r1
194
+ axmin = 3 * pi / 2
195
+ axmax = pi / 2
196
+ aymin = 0
197
+ aymax = pi
198
+
199
+ else:
200
+ tan_angle = sin_angle / cos_angle
201
+ axmax = atan(-r2 / r1 * tan_angle)
202
+ if axmax < 0:
203
+ axmax += twopi
204
+ xmax = (r1 * cos_angle * cos(axmax) -
205
+ r2 * sin_angle * sin(axmax))
206
+ if xmax < 0:
207
+ xmax = -xmax
208
+ axmax = fmod(axmax + pi, twopi)
209
+ xmin = -xmax
210
+ axmin = fmod(axmax + pi, twopi)
211
+
212
+ aymax = atan(r2 / (r1 * tan_angle))
213
+ if aymax < 0:
214
+ aymax += twopi
215
+ ymax = (r1 * sin_angle * cos(aymax) +
216
+ r2 * cos_angle * sin(aymax))
217
+ if ymax < 0:
218
+ ymax = -ymax
219
+ aymax = fmod(aymax + pi, twopi)
220
+ ymin = -ymax
221
+ aymin = fmod(aymax + pi, twopi)
222
+
223
+ if s < twopi - epsilon: # bb determined by the sector
224
+ def is_cyclic_ordered(x1, x2, x3):
225
+ return ((x1 < x2 < x3) or
226
+ (x2 < x3 < x1) or
227
+ (x3 < x1 < x2))
228
+
229
+ x1 = cos_angle * r1 * cos(s1) - sin_angle * r2 * sin(s1)
230
+ x2 = cos_angle * r1 * cos(s2) - sin_angle * r2 * sin(s2)
231
+ y1 = sin_angle * r1 * cos(s1) + cos_angle * r2 * sin(s1)
232
+ y2 = sin_angle * r1 * cos(s2) + cos_angle * r2 * sin(s2)
233
+
234
+ if is_cyclic_ordered(s1, s2, axmin):
235
+ xmin = min(x1, x2)
236
+ if is_cyclic_ordered(s1, s2, aymin):
237
+ ymin = min(y1, y2)
238
+ if is_cyclic_ordered(s1, s2, axmax):
239
+ xmax = max(x1, x2)
240
+ if is_cyclic_ordered(s1, s2, aymax):
241
+ ymax = max(y1, y2)
242
+
243
+ return minmax_data([self.x + xmin, self.x + xmax],
244
+ [self.y + ymin, self.y + ymax],
245
+ dict=True)
246
+
247
+ def _allowed_options(self):
248
+ """
249
+ Return the allowed options for the ``Arc`` class.
250
+
251
+ EXAMPLES::
252
+
253
+ sage: p = arc((3, 3), 1, 1)
254
+ sage: p[0]._allowed_options()['alpha']
255
+ 'How transparent the figure is.'
256
+ """
257
+ return {'alpha': 'How transparent the figure is.',
258
+ 'thickness': 'How thick the border of the arc is.',
259
+ 'hue': 'The color given as a hue.',
260
+ 'rgbcolor': 'The color',
261
+ 'zorder': '2D only: The layer level in which to draw',
262
+ 'linestyle': "2D only: The style of the line, which is one of "
263
+ "'dashed', 'dotted', 'solid', 'dashdot', or '--', ':', '-', '-.', "
264
+ "respectively."}
265
+
266
+ def _matplotlib_arc(self):
267
+ """
268
+ Return ``self`` as a matplotlib arc object.
269
+
270
+ EXAMPLES::
271
+
272
+ sage: from sage.plot.arc import Arc
273
+ sage: Arc(2,3,2.2,2.2,0,2,3,{})._matplotlib_arc()
274
+ <matplotlib.patches.Arc object at ...>
275
+ """
276
+ import matplotlib.patches as patches
277
+ p = patches.Arc((self.x, self.y),
278
+ 2. * self.r1,
279
+ 2. * self.r2,
280
+ angle=fmod(self.angle, 2 * pi) * (180. / pi),
281
+ theta1=self.s1 * (180. / pi),
282
+ theta2=self.s2 * (180. / pi))
283
+ return p
284
+
285
+ def bezier_path(self):
286
+ """
287
+ Return ``self`` as a Bezier path.
288
+
289
+ This is needed to concatenate arcs, in order to
290
+ create hyperbolic polygons.
291
+
292
+ EXAMPLES::
293
+
294
+ sage: from sage.plot.arc import Arc
295
+ sage: op = {'alpha':1,'thickness':1,'rgbcolor':'blue','zorder':0,
296
+ ....: 'linestyle':'--'}
297
+ sage: Arc(2,3,2.2,2.2,0,2,3,op).bezier_path()
298
+ Graphics object consisting of 1 graphics primitive
299
+
300
+ sage: from math import pi
301
+ sage: a = arc((0,0),2,1,0,(pi/5,pi/2+pi/12), linestyle='--', color='red')
302
+ sage: b = a[0].bezier_path()
303
+ sage: b[0]
304
+ Bezier path from (1.133..., 0.8237...) to (-0.2655..., 0.9911...)
305
+ """
306
+ from sage.plot.bezier_path import BezierPath
307
+ from sage.plot.graphics import Graphics
308
+ from matplotlib.path import Path
309
+ import numpy as np
310
+ ma = self._matplotlib_arc()
311
+
312
+ def theta_stretch(theta, scale):
313
+ theta = np.deg2rad(theta)
314
+ x = np.cos(theta)
315
+ y = np.sin(theta)
316
+ return np.rad2deg(np.arctan2(scale * y, x))
317
+ theta1 = theta_stretch(ma.theta1, ma.width / ma.height)
318
+ theta2 = theta_stretch(ma.theta2, ma.width / ma.height)
319
+
320
+ pa = ma
321
+ pa._path = Path.arc(theta1, theta2)
322
+ transform = pa.get_transform().get_matrix()
323
+ cA, cC, cE = transform[0]
324
+ cB, cD, cF = transform[1]
325
+ points = []
326
+ for u in pa._path.vertices:
327
+ x, y = list(u)
328
+ points += [(cA * x + cC * y + cE, cB * x + cD * y + cF)]
329
+ cutlist = [points[0: 4]]
330
+ N = 4
331
+ while N < len(points):
332
+ cutlist += [points[N: N + 3]]
333
+ N += 3
334
+ g = Graphics()
335
+ opt = self.options()
336
+ opt['fill'] = False
337
+ g.add_primitive(BezierPath(cutlist, opt))
338
+ return g
339
+
340
+ def _repr_(self) -> str:
341
+ """
342
+ String representation of ``Arc`` primitive.
343
+
344
+ EXAMPLES::
345
+
346
+ sage: from sage.plot.arc import Arc
347
+ sage: print(Arc(2,3,2.2,2.2,0,2,3,{}))
348
+ Arc with center (2.0,3.0) radii (2.2,2.2) angle 0.0 inside the sector (2.0,3.0)
349
+ """
350
+ return f"Arc with center ({self.x},{self.y}) radii ({self.r1},{self.r2}) angle {self.angle} inside the sector ({self.s1},{self.s2})"
351
+
352
+ def _render_on_subplot(self, subplot):
353
+ """
354
+ TESTS::
355
+
356
+ sage: from math import pi
357
+ sage: A = arc((1,1),3,4,pi/4,(pi,4*pi/3)); A
358
+ Graphics object consisting of 1 graphics primitive
359
+ """
360
+ from sage.plot.misc import get_matplotlib_linestyle
361
+
362
+ options = self.options()
363
+
364
+ p = self._matplotlib_arc()
365
+ p.set_linewidth(float(options['thickness']))
366
+ a = float(options['alpha'])
367
+ p.set_alpha(a)
368
+ z = int(options.pop('zorder', 1))
369
+ p.set_zorder(z)
370
+ c = to_mpl_color(options['rgbcolor'])
371
+ p.set_linestyle(get_matplotlib_linestyle(options['linestyle'],
372
+ return_type='long'))
373
+ p.set_edgecolor(c)
374
+ subplot.add_patch(p)
375
+
376
+ def plot3d(self):
377
+ r"""
378
+ TESTS::
379
+
380
+ sage: from sage.plot.arc import Arc
381
+ sage: Arc(0,0,1,1,0,0,1,{}).plot3d()
382
+ Traceback (most recent call last):
383
+ ...
384
+ NotImplementedError
385
+ """
386
+ raise NotImplementedError
387
+
388
+
389
+ @rename_keyword(color='rgbcolor')
390
+ @options(alpha=1, thickness=1, linestyle='solid', zorder=5, rgbcolor='blue',
391
+ aspect_ratio=1.0)
392
+ def arc(center, r1, r2=None, angle=0.0, sector=(0.0, 2 * pi), **options):
393
+ r"""
394
+ An arc (that is a portion of a circle or an ellipse).
395
+
396
+ Type ``arc.options`` to see all options.
397
+
398
+ INPUT:
399
+
400
+ - ``center`` -- 2-tuple of real numbers; position of the center
401
+
402
+ - ``r1``, ``r2`` -- positive real numbers; radii of the ellipse. If only ``r1``
403
+ is set, then the two radii are supposed to be equal and this function returns
404
+ an arc of circle.
405
+
406
+ - ``angle`` -- real number; angle between the horizontal and the axis that
407
+ corresponds to ``r1``
408
+
409
+ - ``sector`` -- 2-tuple (default: (0,2*pi)); angles sector in which the arc will
410
+ be drawn
411
+
412
+ OPTIONS:
413
+
414
+ - ``alpha`` -- float (default: 1) -- transparency
415
+
416
+ - ``thickness`` -- float (default: 1) -- thickness of the arc
417
+
418
+ - ``color``, ``rgbcolor`` -- string or 2-tuple (default: ``'blue'``); the
419
+ color of the arc
420
+
421
+ - ``linestyle`` -- string (default: ``'solid'``); the style of the line,
422
+ which is one of ``'dashed'``, ``'dotted'``, ``'solid'``, ``'dashdot'``,
423
+ or ``'--'``, ``':'``, ``'-'``, ``'-.'``, respectively
424
+
425
+ EXAMPLES:
426
+
427
+ Plot an arc of circle centered at (0,0) with radius 1 in the sector
428
+ `(\pi/4,3*\pi/4)`::
429
+
430
+ sage: from math import pi
431
+ sage: arc((0,0), 1, sector=(pi/4,3*pi/4))
432
+ Graphics object consisting of 1 graphics primitive
433
+
434
+ .. PLOT::
435
+
436
+ sphinx_plot(arc((0,0), 1, sector=(pi/4,3*pi/4)))
437
+
438
+ Plot an arc of an ellipse between the angles 0 and `\pi/2`::
439
+
440
+ sage: arc((2,3), 2, 1, sector=(0,pi/2))
441
+ Graphics object consisting of 1 graphics primitive
442
+
443
+ .. PLOT::
444
+
445
+ sphinx_plot(arc((2,3), 2, 1, sector=(0,pi/2)))
446
+
447
+ Plot an arc of a rotated ellipse between the angles 0 and `\pi/2`::
448
+
449
+ sage: arc((2,3), 2, 1, angle=pi/5, sector=(0,pi/2))
450
+ Graphics object consisting of 1 graphics primitive
451
+
452
+ .. PLOT::
453
+
454
+ sphinx_plot(arc((2,3), 2, 1, angle=pi/5, sector=(0,pi/2)))
455
+
456
+ Plot an arc of an ellipse in red with a dashed linestyle::
457
+
458
+ sage: arc((0,0), 2, 1, 0, (0,pi/2), linestyle='dashed', color='red')
459
+ Graphics object consisting of 1 graphics primitive
460
+ sage: arc((0,0), 2, 1, 0, (0,pi/2), linestyle='--', color='red')
461
+ Graphics object consisting of 1 graphics primitive
462
+
463
+ .. PLOT::
464
+
465
+ sphinx_plot(arc((0,0), 2, 1, 0, (0,pi/2), linestyle='dashed', color='red'))
466
+
467
+ The default aspect ratio for arcs is 1.0::
468
+
469
+ sage: arc((0,0), 1, sector=(pi/4,3*pi/4)).aspect_ratio()
470
+ 1.0
471
+
472
+ It is not possible to draw arcs in 3D::
473
+
474
+ sage: A = arc((0,0,0), 1)
475
+ Traceback (most recent call last):
476
+ ...
477
+ NotImplementedError
478
+ """
479
+ from sage.plot.all import Graphics
480
+
481
+ # Reset aspect_ratio to 'automatic' in case scale is 'semilog[xy]'.
482
+ # Otherwise matplotlib complains.
483
+ scale = options.get('scale', None)
484
+ if isinstance(scale, (list, tuple)):
485
+ scale = scale[0]
486
+ if scale == 'semilogy' or scale == 'semilogx':
487
+ options['aspect_ratio'] = 'automatic'
488
+
489
+ if len(center) == 2:
490
+ if r2 is None:
491
+ r2 = r1
492
+ g = Graphics()
493
+ g._set_extra_kwds(Graphics._extract_kwds_for_show(options))
494
+ if len(sector) != 2:
495
+ raise ValueError("the sector must consist of two angles")
496
+ g.add_primitive(Arc(
497
+ center[0], center[1],
498
+ r1, r2,
499
+ angle,
500
+ sector[0], sector[1],
501
+ options))
502
+ return g
503
+ elif len(center) == 3:
504
+ raise NotImplementedError